Switch-like control of helicase processivity by single-stranded DNA binding protein

Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase fun...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 10
Main Authors Stekas, Barbara, Yeo, Steve, Troitskaia, Alice, Honda, Masayoshi, Sho, Sei, Spies, Maria, Chemla, Yann R
Format Journal Article
LanguageEnglish
Published England eLife Science Publications, Ltd 19.03.2021
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase function, although the underlying mechanisms remain largely unknown. Ferroplasma acidarmanus xeroderma pigmentosum group D (XPD) helicase serves as a model for understanding the molecular mechanisms of superfamily 2B helicases, and its activity is enhanced by the cognate single-stranded DNA binding protein replication protein A 2 (RPA2). Here, optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent ‘processivity switch’ in XPD. A point mutation at a regulatory DNA binding site on XPD similarly activates this switch. These findings provide new insights on mechanisms of helicase regulation by accessory proteins.
AbstractList Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase function, although the underlying mechanisms remain largely unknown. Ferroplasma acidarmanus xeroderma pigmentosum group D (XPD) helicase serves as a model for understanding the molecular mechanisms of superfamily 2B helicases, and its activity is enhanced by the cognate single-stranded DNA binding protein replication protein A 2 (RPA2). Here, optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent 'processivity switch' in XPD. A point mutation at a regulatory DNA binding site on XPD similarly activates this switch. These findings provide new insights on mechanisms of helicase regulation by accessory proteins.
Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase function, although the underlying mechanisms remain largely unknown. xeroderma pigmentosum group D (XPD) helicase serves as a model for understanding the molecular mechanisms of superfamily 2B helicases, and its activity is enhanced by the cognate single-stranded DNA binding protein replication protein A 2 (RPA2). Here, optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent 'processivity switch' in XPD. A point mutation at a regulatory DNA binding site on XPD similarly activates this switch. These findings provide new insights on mechanisms of helicase regulation by accessory proteins.
Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase function, although the underlying mechanisms remain largely unknown. Ferroplasma acidarmanus xeroderma pigmentosum group D (XPD) helicase serves as a model for understanding the molecular mechanisms of superfamily 2B helicases, and its activity is enhanced by the cognate single-stranded DNA binding protein replication protein A 2 (RPA2). Here, optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent ‘processivity switch’ in XPD. A point mutation at a regulatory DNA binding site on XPD similarly activates this switch. These findings provide new insights on mechanisms of helicase regulation by accessory proteins.
Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase function, although the underlying mechanisms remain largely unknown. Ferroplasma acidarmanus xeroderma pigmentosum group D (XPD) helicase serves as a model for understanding the molecular mechanisms of superfamily 2B helicases, and its activity is enhanced by the cognate single-stranded DNA binding protein replication protein A 2 (RPA2). Here, optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent 'processivity switch' in XPD. A point mutation at a regulatory DNA binding site on XPD similarly activates this switch. These findings provide new insights on mechanisms of helicase regulation by accessory proteins.Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase function, although the underlying mechanisms remain largely unknown. Ferroplasma acidarmanus xeroderma pigmentosum group D (XPD) helicase serves as a model for understanding the molecular mechanisms of superfamily 2B helicases, and its activity is enhanced by the cognate single-stranded DNA binding protein replication protein A 2 (RPA2). Here, optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent 'processivity switch' in XPD. A point mutation at a regulatory DNA binding site on XPD similarly activates this switch. These findings provide new insights on mechanisms of helicase regulation by accessory proteins.
Audience Academic
Author Yeo, Steve
Sho, Sei
Chemla, Yann R
Stekas, Barbara
Honda, Masayoshi
Troitskaia, Alice
Spies, Maria
Author_xml – sequence: 1
  givenname: Barbara
  surname: Stekas
  fullname: Stekas, Barbara
  organization: Department of Physics, University of Illinois, Urbana-Champaign, Urbana, United States
– sequence: 2
  givenname: Steve
  surname: Yeo
  fullname: Yeo, Steve
  organization: Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, United States
– sequence: 3
  givenname: Alice
  surname: Troitskaia
  fullname: Troitskaia, Alice
  organization: Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, United States
– sequence: 4
  givenname: Masayoshi
  orcidid: 0000-0001-8920-6301
  surname: Honda
  fullname: Honda, Masayoshi
  organization: Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, United States
– sequence: 5
  givenname: Sei
  surname: Sho
  fullname: Sho, Sei
  organization: Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, United States
– sequence: 6
  givenname: Maria
  orcidid: 0000-0002-7375-8037
  surname: Spies
  fullname: Spies, Maria
  organization: Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, United States
– sequence: 7
  givenname: Yann R
  orcidid: 0000-0001-9167-0234
  surname: Chemla
  fullname: Chemla, Yann R
  organization: Department of Physics, University of Illinois, Urbana-Champaign, Urbana, United States, Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, United States, Center for the Physics of Living Cells, University of Illinois, Urbana-Champaign, Urbana, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33739282$$D View this record in MEDLINE/PubMed
BookMark eNptkt1v0zAUxSM0xMbYE-8oEi8glOLEX_HLpGp8VapAoiDxZjnOdeqS2iV2B_3vcdoN1mm-D7ZufvckOT5PsxPnHWTZ8xJNOKXkLcytgQlDtKSPsrMKUVSgmvw4uXM-zS5CWKG0OKnrUjzJTjHmWFR1dZYtFr9t1Muitz8h197Fwfe5N_kSeqtVgHwzeA0h2Gsbd3mzy4N1XQ9FiINyLbT5u8_TvLGuTe2RjWDds-yxUX2Ai5v9PPv-4f23q0_F_MvH2dV0XmjKWSw0AqYVkMpoww00uFRto6nCGAyjgCtMDa4ER4lgreAKcVQLSmtBygpVDT7PZgfd1quV3Ax2rYad9MrKfcMPnVRDtLoH2SAmMBHAWlBE0ErgNpXhTV0CIYCT1uVBa7Nt1tBqSE6o_kj0-ImzS9n5a8mF4IyhJPDqRmDwv7YQolzboKHvlQO_DbKiCBNMMakT-vIeuvLbwSWrEiVoWSe58j_VqfQD1hmf3qtHUTlllJHkBh6_e_IAlaqFtU33Ccam_tHA66OB8c7hT-zUNgQ5W3w9Zl_cNeWfG7fxSUB5APTgQxjASG2jinbMkbK9LJEcUyr3KZX7lKaZN_dmbmUfov8CyEHmIQ
CitedBy_id crossref_primary_10_1016_j_jbc_2024_107894
crossref_primary_10_3390_ijms24032806
crossref_primary_10_1016_j_dnarep_2023_103542
crossref_primary_10_1038_s41420_023_01451_9
crossref_primary_10_1016_j_cell_2024_09_020
crossref_primary_10_1016_j_bpj_2023_12_014
crossref_primary_10_1016_j_jbc_2022_102786
Cites_doi 10.1016/j.dnarep.2011.04.028
10.1017/S0033583502003864
10.1007/978-1-4614-5037-5_3
10.1021/nl502890g
10.1038/s41467-019-10745-5
10.1146/annurev.biochem.76.052305.115300
10.1038/nature04928
10.1016/S0022-2836(03)00153-0
10.1371/journal.pbio.0060149
10.1016/j.cell.2008.04.030
10.1038/emboj.2011.374
10.1016/j.cell.2008.04.029
10.1021/nn301895c
10.1074/jbc.M006555200
10.1016/j.dnarep.2011.04.021
10.1073/pnas.0306713101
10.1371/journal.pbio.1001954
10.1016/j.dnarep.2014.01.013
10.1146/annurev-biophys-062215-011158
10.1016/j.jmb.2008.09.001
10.1016/j.molcel.2009.07.003
10.1016/j.dnarep.2016.05.019
10.1016/j.sbi.2010.03.011
10.1073/pnas.1615439114
10.7554/eLife.00334
10.1016/j.jmb.2007.10.070
10.1007/978-1-4614-5037-5_5
10.1093/nar/gkh540
10.1007/978-1-4614-5037-5_9
10.1016/j.sbi.2011.11.004
10.4161/cc.9.9.11469
10.1080/10409238.2020.1813070
10.1016/j.cub.2012.12.032
10.1038/376362a0
10.1038/emboj.2011.412
10.1073/pnas.1712882114
10.1016/j.celrep.2013.05.002
10.1074/jbc.M500653200
10.1016/j.bpj.2009.07.048
10.1017/S0033583502003852
10.1007/978-1-4614-5037-5_10
10.1007/978-1-4939-6421-5_8
10.1074/jbc.M001557200
10.1074/jbc.M412870200
10.1016/j.molcel.2010.07.029
10.1146/annurev.biophys.32.110601.142506
10.1073/pnas.0509828103
10.2741/4038
10.1074/jbc.274.26.18341
10.1182/blood-2006-11-057273
10.1063/1.1645654
10.1038/nmeth.1574
10.1126/science.aaa0445
10.1093/nar/gkh980
10.1080/10409230802341296
10.1515/bc.2010.076
10.1038/nrm2394
10.1007/978-1-4614-5037-5_1
10.1126/science.aaa0130
ContentType Journal Article
Copyright 2021, Stekas et al.
COPYRIGHT 2021 eLife Science Publications, Ltd.
2021, Stekas et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021, Stekas et al 2021 Stekas et al
Copyright_xml – notice: 2021, Stekas et al.
– notice: COPYRIGHT 2021 eLife Science Publications, Ltd.
– notice: 2021, Stekas et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021, Stekas et al 2021 Stekas et al
DBID AAYXX
CITATION
NPM
ISR
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.60515
DatabaseName CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

Publicly Available Content Database
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: Text complet a ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_b069349e6dea495293d3d3f7b81e44e3
PMC7997660
A656407033
33739282
10_7554_eLife_60515
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM131704
– fundername: NIGMS NIH HHS
  grantid: R01 GM120353
– fundername: ;
  grantid: R35 GM131704
– fundername: ;
  grantid: R01 GM120353
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
3V.
FRP
NPM
RHF
PMFND
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c576t-c0e6cae42fcf7feb31adbc5a33ef65e3235f3297042f6d97a07089558941202b3
IEDL.DBID 7X7
ISSN 2050-084X
IngestDate Wed Aug 27 01:32:53 EDT 2025
Thu Aug 21 18:17:48 EDT 2025
Tue Aug 05 10:24:35 EDT 2025
Fri Jul 25 11:39:22 EDT 2025
Tue Jun 17 21:07:44 EDT 2025
Tue Jun 10 20:33:14 EDT 2025
Fri Jun 27 03:48:47 EDT 2025
Thu Jan 02 22:56:29 EST 2025
Thu Apr 24 23:00:31 EDT 2025
Tue Jul 01 04:13:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords single molecule
single-stranded DNA binding protein
optical tweezers
structural biology
dna repair
helicase
molecular biophysics
Language English
License 2021, Stekas et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-c0e6cae42fcf7feb31adbc5a33ef65e3235f3297042f6d97a07089558941202b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8920-6301
0000-0002-7375-8037
0000-0001-9167-0234
OpenAccessLink https://www.proquest.com/docview/2595186031?pq-origsite=%requestingapplication%
PMID 33739282
PQID 2595186031
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_b069349e6dea495293d3d3f7b81e44e3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7997660
proquest_miscellaneous_2503435348
proquest_journals_2595186031
gale_infotracmisc_A656407033
gale_infotracacademiconefile_A656407033
gale_incontextgauss_ISR_A656407033
pubmed_primary_33739282
crossref_citationtrail_10_7554_eLife_60515
crossref_primary_10_7554_eLife_60515
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-19
PublicationDateYYYYMMDD 2021-03-19
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-19
  day: 19
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2021
Publisher eLife Science Publications, Ltd
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Science Publications, Ltd
– name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Harami (bib28) 2017; 114
Pugh (bib45) 2008; 383
Delagoutte (bib19) 2003; 36
Kerssemakers (bib33) 2006; 442
Robbins (bib49) 2005; 280
Comstock (bib15) 2015; 348
Kuper (bib37) 2013; 767
Gupta (bib27) 2007; 110
Shereda (bib51) 2008; 43
Ghoneim (bib26) 2014; 14
Houten (bib31) 2016; 44
Fuss (bib25) 2011; 10
Caldwell (bib10) 2020; 55
Cui (bib16) 2004; 32
Doherty (bib21) 2005; 280
Mathieu (bib41) 2013; 23
Chemla (bib13) 2020
Dessinges (bib20) 2004; 101
Arslan (bib1) 2015; 348
Landry (bib38) 2009; 97
Spies (bib54) 2010; 9
Singleton (bib52) 2007; 76
Bustamante (bib7) 2008
Spies (bib53) 2014; 20
Pant (bib44) 2003; 327
Shamoo (bib50) 1995; 376
Honda (bib30) 2009; 35
Kuper (bib36) 2014; 12
Brosh (bib6) 2000; 275
Fairman-Williams (bib23) 2010; 20
Liu (bib39) 2008; 133
McGlynn (bib42) 2013; 767
Yoder (bib62) 2006; 103
Fan (bib24) 2008; 133
Pugh (bib46) 2012; 31
Daley (bib17) 2013; 767
Cadman (bib9) 2004; 32
Bétous (bib3) 2013; 3
Beyer (bib4) 2013; 767
Theobald (bib56) 2003; 32
Nguyen (bib43) 2017; 114
Egly (bib22) 2011; 10
Berg-Sørensen (bib2) 2004; 75
Ito (bib32) 2010; 39
Kokic (bib34) 2019; 10
Wolski (bib60) 2010; 391
Byrd (bib8) 2012; 17
Camunas-Soler (bib11) 2016; 45
Delagoutte (bib18) 2002; 35
Kuper (bib35) 2012; 31
Whitley (bib58) 2017; 1486
Wu (bib61) 2013; 767
White (bib57) 2012; 22
Harmon (bib29) 2001; 276
Swoboda (bib55) 2012; 6
Rajagopal (bib48) 2008; 376
Wolski (bib59) 2008; 6
Brosh (bib5) 1999; 274
Comstock (bib14) 2011; 8
Lohman (bib40) 2008; 9
Qi (bib47) 2013; 2
Chemla (bib12) 2020
References_xml – volume: 10
  start-page: 697
  year: 2011
  ident: bib25
  article-title: XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2011.04.028
– volume-title: Old-Trap-Labview-Code
  year: 2020
  ident: bib13
– volume: 36
  start-page: 1
  year: 2003
  ident: bib19
  article-title: Helicase mechanisms and the coupling of helicases within macromolecular machines part II: integration of helicases into cellular processes
  publication-title: Quarterly Reviews of Biophysics
  doi: 10.1017/S0033583502003864
– volume: 767
  start-page: 47
  year: 2013
  ident: bib4
  article-title: Structure and mechanisms of SF2 DNA helicases
  publication-title: Advances in Experimental Medicine and Biology
  doi: 10.1007/978-1-4614-5037-5_3
– volume: 14
  start-page: 5920
  year: 2014
  ident: bib26
  article-title: Direct correlation of DNA binding and single protein domain motion via dual illumination fluorescence microscopy
  publication-title: Nano Letters
  doi: 10.1021/nl502890g
– volume: 10
  year: 2019
  ident: bib34
  article-title: Structural basis of TFIIH activation for nucleotide excision repair
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-10745-5
– volume: 76
  start-page: 23
  year: 2007
  ident: bib52
  article-title: Structure and mechanism of helicases and nucleic acid translocases
  publication-title: Annual Review of Biochemistry
  doi: 10.1146/annurev.biochem.76.052305.115300
– volume: 442
  start-page: 709
  year: 2006
  ident: bib33
  article-title: Assembly dynamics of microtubules at molecular resolution
  publication-title: Nature
  doi: 10.1038/nature04928
– volume: 327
  start-page: 571
  year: 2003
  ident: bib44
  article-title: Kinetic regulation of single DNA molecule denaturation by T4 gene 32 protein structural domains
  publication-title: Journal of Molecular Biology
  doi: 10.1016/S0022-2836(03)00153-0
– volume: 6
  year: 2008
  ident: bib59
  article-title: Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD
  publication-title: PLOS Biology
  doi: 10.1371/journal.pbio.0060149
– volume: 133
  start-page: 789
  year: 2008
  ident: bib24
  article-title: XPD helicase structures and activities: insights into the Cancer and aging phenotypes from XPD mutations
  publication-title: Cell
  doi: 10.1016/j.cell.2008.04.030
– volume: 31
  start-page: 494
  year: 2012
  ident: bib35
  article-title: Functional and structural studies of the nucleotide excision repair helicase XPD suggest a polarity for DNA translocation
  publication-title: The EMBO Journal
  doi: 10.1038/emboj.2011.374
– volume: 133
  start-page: 801
  year: 2008
  ident: bib39
  article-title: Structure of the DNA repair helicase XPD
  publication-title: Cell
  doi: 10.1016/j.cell.2008.04.029
– volume: 6
  start-page: 6364
  year: 2012
  ident: bib55
  article-title: Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments
  publication-title: ACS Nano
  doi: 10.1021/nn301895c
– volume: 276
  start-page: 232
  year: 2001
  ident: bib29
  article-title: Biochemical characterization of the DNA helicase activity of the Escherichia coli RecQ helicase
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M006555200
– volume: 10
  start-page: 714
  year: 2011
  ident: bib22
  article-title: A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2011.04.021
– volume: 101
  start-page: 6439
  year: 2004
  ident: bib20
  article-title: Single-molecule assay reveals strand switching and enhanced processivity of UvrD
  publication-title: PNAS
  doi: 10.1073/pnas.0306713101
– volume: 12
  year: 2014
  ident: bib36
  article-title: In TFIIH, XPD helicase is exclusively devoted to DNA repair
  publication-title: PLOS Biology
  doi: 10.1371/journal.pbio.1001954
– volume: 20
  start-page: 58
  year: 2014
  ident: bib53
  article-title: Two steps forward, one step back: determining XPD helicase mechanism by single-molecule fluorescence and high-resolution optical tweezers
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2014.01.013
– volume: 45
  start-page: 65
  year: 2016
  ident: bib11
  article-title: Elastic properties of nucleic acids by Single-Molecule force spectroscopy
  publication-title: Annual Review of Biophysics
  doi: 10.1146/annurev-biophys-062215-011158
– volume: 383
  start-page: 982
  year: 2008
  ident: bib45
  article-title: Ferroplasma acidarmanus RPA2 facilitates efficient unwinding of forked DNA substrates by monomers of FacXPD helicase
  publication-title: Journal of Molecular Biology
  doi: 10.1016/j.jmb.2008.09.001
– volume: 35
  start-page: 694
  year: 2009
  ident: bib30
  article-title: Single-molecule analysis reveals differential effect of ssDNA-binding proteins on DNA translocation by XPD helicase
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2009.07.003
– volume: 44
  start-page: 136
  year: 2016
  ident: bib31
  article-title: Role of XPD in cellular functions: to TFIIH and beyond
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2016.05.019
– volume: 20
  start-page: 313
  year: 2010
  ident: bib23
  article-title: SF1 and SF2 helicases: family matters
  publication-title: Current Opinion in Structural Biology
  doi: 10.1016/j.sbi.2010.03.011
– volume: 114
  start-page: E466
  year: 2017
  ident: bib28
  article-title: Shuttling along DNA and directed processing of D-loops by RecQ helicase support quality control of homologous recombination
  publication-title: PNAS
  doi: 10.1073/pnas.1615439114
– volume: 2
  year: 2013
  ident: bib47
  article-title: Sequence-dependent base pair stepping dynamics in XPD helicase unwinding
  publication-title: eLife
  doi: 10.7554/eLife.00334
– volume: 376
  start-page: 69
  year: 2008
  ident: bib48
  article-title: Single strand binding proteins increase the processivity of DNA unwinding by the hepatitis C virus helicase
  publication-title: Journal of Molecular Biology
  doi: 10.1016/j.jmb.2007.10.070
– volume: 767
  start-page: 97
  year: 2013
  ident: bib42
  article-title: Helicases at the replication fork
  publication-title: Advances in Experimental Medicine and Biology
  doi: 10.1007/978-1-4614-5037-5_5
– volume: 32
  start-page: 2158
  year: 2004
  ident: bib16
  article-title: Analysis of the unwinding activity of the dimeric RECQ1 helicase in the presence of human replication protein A
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkh540
– volume: 767
  start-page: 185
  year: 2013
  ident: bib17
  article-title: Roles of DNA helicases in the mediation and regulation of homologous recombination
  publication-title: Advances in Experimental Medicine and Biology
  doi: 10.1007/978-1-4614-5037-5_9
– volume-title: Fleezer-Labview-Code
  year: 2020
  ident: bib12
– volume: 22
  start-page: 94
  year: 2012
  ident: bib57
  article-title: Iron-sulphur clusters in nucleic acid processing enzymes
  publication-title: Current Opinion in Structural Biology
  doi: 10.1016/j.sbi.2011.11.004
– volume: 9
  start-page: 1742
  year: 2010
  ident: bib54
  article-title: Inching over hurdles: how DNA helicases move on crowded lattices
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.9.11469
– volume: 55
  start-page: 482
  year: 2020
  ident: bib10
  article-title: Dynamic elements of replication protein A at the crossroads of DNA replication, recombination, and repair
  publication-title: Critical Reviews in Biochemistry and Molecular Biology
  doi: 10.1080/10409238.2020.1813070
– volume: 23
  start-page: 204
  year: 2013
  ident: bib41
  article-title: DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH
  publication-title: Current Biology
  doi: 10.1016/j.cub.2012.12.032
– volume: 376
  start-page: 362
  year: 1995
  ident: bib50
  article-title: Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA
  publication-title: Nature
  doi: 10.1038/376362a0
– volume: 31
  start-page: 503
  year: 2012
  ident: bib46
  article-title: Regulation of translocation polarity by helicase domain 1 in SF2B helicases
  publication-title: The EMBO Journal
  doi: 10.1038/emboj.2011.412
– volume: 114
  start-page: 12178
  year: 2017
  ident: bib43
  article-title: Large domain movements upon UvrD dimerization and helicase activation
  publication-title: PNAS
  doi: 10.1073/pnas.1712882114
– volume: 3
  start-page: 1958
  year: 2013
  ident: bib3
  article-title: Substrate-selective repair and restart of replication forks by DNA translocases
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2013.05.002
– volume: 280
  start-page: 29494
  year: 2005
  ident: bib21
  article-title: Physical and functional mapping of the replication protein A interaction domain of the werner and bloom syndrome helicases
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M500653200
– volume: 97
  start-page: 2128
  year: 2009
  ident: bib38
  article-title: Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments
  publication-title: Biophysical Journal
  doi: 10.1016/j.bpj.2009.07.048
– volume: 35
  start-page: 431
  year: 2002
  ident: bib18
  article-title: Helicase mechanisms and the coupling of helicases within macromolecular machines part I: structures and properties of isolated helicases
  publication-title: Quarterly Reviews of Biophysics
  doi: 10.1017/S0033583502003852
– volume: 767
  start-page: 203
  year: 2013
  ident: bib37
  article-title: DNA helicases in NER, BER, and MMR
  publication-title: Advances in Experimental Medicine and Biology
  doi: 10.1007/978-1-4614-5037-5_10
– volume: 1486
  start-page: 183
  year: 2017
  ident: bib58
  article-title: High-Resolution "Fleezers": Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection
  publication-title: Methods in Molecular Biology
  doi: 10.1007/978-1-4939-6421-5_8
– volume: 275
  start-page: 23500
  year: 2000
  ident: bib6
  article-title: Replication protein A physically interacts with the bloom's Syndrome Protein and Stimulates Its Helicase Activity
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M001557200
– volume: 280
  start-page: 15325
  year: 2005
  ident: bib49
  article-title: The Euryarchaeota, nature's Medium for Engineering of Single-stranded DNA-binding Proteins
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M412870200
– volume: 39
  start-page: 632
  year: 2010
  ident: bib32
  article-title: MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2010.07.029
– volume: 32
  start-page: 115
  year: 2003
  ident: bib56
  article-title: Nucleic acid recognition by OB-fold proteins
  publication-title: Annual Review of Biophysics and Biomolecular Structure
  doi: 10.1146/annurev.biophys.32.110601.142506
– volume: 103
  start-page: 4622
  year: 2006
  ident: bib62
  article-title: The DNA repair genes XPB and XPD defend cells from retroviral infection
  publication-title: PNAS
  doi: 10.1073/pnas.0509828103
– volume-title: Single-Molecule Techniques
  year: 2008
  ident: bib7
– volume: 17
  start-page: 2070
  year: 2012
  ident: bib8
  article-title: Superfamily 2 helicases
  publication-title: Frontiers in Bioscience
  doi: 10.2741/4038
– volume: 274
  start-page: 18341
  year: 1999
  ident: bib5
  article-title: Functional and physical interaction between WRN helicase and human replication protein A
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.274.26.18341
– volume: 110
  start-page: 2390
  year: 2007
  ident: bib27
  article-title: FANCJ (BACH1) helicase forms DNA damage inducible foci with replication protein A and interacts physically and functionally with the single-stranded DNA-binding protein
  publication-title: Blood
  doi: 10.1182/blood-2006-11-057273
– volume: 75
  start-page: 594
  year: 2004
  ident: bib2
  article-title: Power spectrum analysis for optical tweezers
  publication-title: Review of Scientific Instruments
  doi: 10.1063/1.1645654
– volume: 8
  start-page: 335
  year: 2011
  ident: bib14
  article-title: Ultrahigh-resolution optical trap with single-fluorophore sensitivity
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1574
– volume: 348
  start-page: 344
  year: 2015
  ident: bib1
  article-title: Protein structure engineering of a superhelicase through conformational control
  publication-title: Science
  doi: 10.1126/science.aaa0445
– volume: 32
  start-page: 6378
  year: 2004
  ident: bib9
  article-title: PriA helicase and SSB interact physically and functionally
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkh980
– volume: 43
  start-page: 289
  year: 2008
  ident: bib51
  article-title: SSB as an organizer/mobilizer of genome maintenance complexes
  publication-title: Critical Reviews in Biochemistry and Molecular Biology
  doi: 10.1080/10409230802341296
– volume: 391
  start-page: 761
  year: 2010
  ident: bib60
  article-title: The XPD helicase: xpanding archaeal XPD structures to get a grip on human DNA repair
  publication-title: Biological Chemistry
  doi: 10.1515/bc.2010.076
– volume: 9
  start-page: 391
  year: 2008
  ident: bib40
  article-title: Non-hexameric DNA helicases and translocases: mechanisms and regulation
  publication-title: Nature Reviews Molecular Cell Biology
  doi: 10.1038/nrm2394
– volume: 767
  start-page: 1
  year: 2013
  ident: bib61
  article-title: Overview: what are helicases?
  publication-title: Advances in Experimental Medicine and Biology
  doi: 10.1007/978-1-4614-5037-5_1
– volume: 348
  start-page: 352
  year: 2015
  ident: bib15
  article-title: Protein structure direct observation of structure-function relationship in a nucleic acid-processing enzyme
  publication-title: Science
  doi: 10.1126/science.aaa0130
SSID ssj0000748819
Score 2.3316731
Snippet Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms DNA
DNA binding proteins
DNA biosynthesis
DNA helicase
dna repair
Genomes
helicase
Hydrolysis
Molecular modelling
optical tweezers
Point mutation
Protein binding
Proteins
Replication protein A
single molecule
Single-stranded DNA
single-stranded DNA binding protein
Structural Biology and Molecular Biophysics
Unwinding
Xeroderma pigmentosum
XPD protein
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPginp_VU6IcCEK9NkmT5nH9OE7Re3A9uLfQpBOvuHSP213k_ntn0t6yRcEX6VszhXQyk_lg5jeMHfo2Eu55mwsNPlfBx9y2RZMbNBdeyyAMUEL_66k-OVOfz6vznVFfVBM2wAMPjDvyhbZSWdAtNOjMo3Vq8YnG1yUoBQnnE23eTjCV7mCDglnaoSHPoMk8gi9dhLeaRppMTFBC6v_zPt4xSNNiyR3rc3yP3R3dRj4btrvPbkF_n90eBkleP2Dz-a8O2Z8vup_Ax-pzvoz8AigntwJ-OfQDpEkR3F9zyhAsIKc8B6XA-YfTGfdd6nDhCbqh6x-ys-OP39-f5OO4hDxg0LDOQwE6NKBEDNFEDJLLpvWhaqSEqCuQQlZRCmtQTaNurWlQ22tbVbVVpSiEl4_YXr_s4QnjIihrrI8mFLWCqBoZQEVhoYy2BK0z9uaGgy6MWOI00mLhMKYgdrvEbpfYnbHDLfHlAKHxd7J3dBRbEsK9Ti9QGtwoDe5f0pCxV3SQjpAteiqd-dFsViv3af7NzdBzVXTBIdHrkSgucdehGTsR8N8JDGtCeTChRNUL0-UbeXGj6q8cxpNVWdPw7oy93C7Tl1TO1sNyQzSFRD9Vqjpjjwfx2v63lAZ91lpkzEwEb8KY6UrfXSRgcGPRudTF0__ByWfsjqDyHSpdtAdsb321gefof639i6RqvwF3Ey68
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA_nieCL-G31lCgHgtC1bdKkeZL14zjFuwfXhXsLTTq5Ky7dcz_Q_e-dabvLVQ_Zt80U2slM5jfD5DeMHboqEO95FWcKXCy9C7GpkjLWGC6cEj7TQAX9k1N1PJVfzvKzPbYdxtkrcHltakfzpKaL2ej3z807dHjEryON0fAtfK0DjBRNK7nBbmJI0uShJz3Ob49kjXaamu5-3t_PDCJSS9z_7_F8JT4NeyevBKOju-xOjyL5uNv2e2wPmvvsVjdXcvOATSa_atyNeFb_AN43o_N54BdAJbol8MvuekA7OIK7DaeCwQxiKntQRZx_PB1zV7cXXnjL5FA3D9n06NP3D8dxPz0h9phDrGKfgPIlyCz4oAPmzGlZOZ-XQkBQOYhM5EFkRqPXBlUZXaLzFybPCyPTLMmceMT2m3kDTxjPvDTauKB9UkgIshQeZMgMpMGkoFTE3mw1aH1PLU4TLmYWUwxSt23VbVt1R-xwJ3zZMWpcL_aetmInQjTY7R_zxbntvcq6RBkhDagKSsz0ELpU-AvaFSlICSJir2gjLRFdNNRJc16ul0v7efLNjhHISjrvUOh1LxTm-Na-7C8m4LcTN9ZA8mAgiZ7oh8tbe7FbQ7aYXuZpQbO8I_Zyt0xPUndbA_M1ySQCYauQRcQed-a1-24hNELYIouYHhjeQDHDlaa-aHnCtUGsqZKn_3-tZ-x2Rn061KNoDtj-arGG5wi0Vu5F60R_AMt9KNk
  priority: 102
  providerName: Scholars Portal
Title Switch-like control of helicase processivity by single-stranded DNA binding protein
URI https://www.ncbi.nlm.nih.gov/pubmed/33739282
https://www.proquest.com/docview/2595186031
https://www.proquest.com/docview/2503435348
https://pubmed.ncbi.nlm.nih.gov/PMC7997660
https://doaj.org/article/b069349e6dea495293d3d3f7b81e44e3
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0RfBF_G60HqsUBCE2yW52s09y1ZYq9pCehXsL2c1sGzySs3eH9L93JsmdDYoc5OF2Asnszsf-Mvsbxg5s6Yn3vAwTBTaUzvrQlFERagwXVgmXaCBA_2yiTi_kl1k66wG3ZV9WufGJraMuG0cY-SGm6WmcUU_kD4ufIXWNoq-rfQuNu2yXqMuopEvP9BZjwfCYYcTrjuVpDJyH8LXy8F5RY5NBIGr5-v_2yrfC0rBk8lYMOnnIHvTJIx93s_2I3YH6MbvXtZO8ecKm018VTkI4r34A72vQeeP5FRAytwS-6E4FtP0iuL3hhBPMISS0g4Bw_mky5rZqz7nwlsChqp-yi5Pj7x9Pw75pQuhw67AKXQTKFSAT77z2uFWOi9K6tBACvEpBJCL1IjEajdWr0ugCbT4zaZoZGSdRYsUztlM3NewxnjhptLFeuyiT4GUhHEifGIi9iUGpgL3baDB3PaM4NbaY57izIHXnrbrzVt0BO9gKLzoijX-LHdFUbEWI_br9o7m-zHtjym2kjJAGVAkFbvAwYynx57XNYpASRMDe0ETmxG9RUwHNZbFeLvPP0_N8jPmrJDeHQm97Id_gU7uiP4-A706UWAPJ_YEkGqAbDm_WS947gGX-Z7kG7PV2mO6korYamjXJRAKzVSGzgD3vltf2vYXQmLlmScD0YOENFDMcqaurlh5cG0wxVfTi_4_1kt1PqDyHShPNPttZXa_hFeZXKztqjWjEdo-OJ9_ORy1Kgdczmf0GIMcpzg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAguiDeGAgYVISGZ2rvrxx4QSmmrhKYRalqpN-Ndz7YWkROaRFX-FL-RGdsJtUDcqty848iendl5eGY-xrZ1bmnuee7xCLQnjbaeyv3Mi9Fc6EgYHgMl9I-GUe9Ufj0LzzbYr1UvDJVVrs7E6qDOJ4Zy5DvopodBQpjIn6c_PUKNoq-rKwiNWiwOYXmFIdvsU38P9_cd5wf7J196XoMq4Bn0reee8SEyGUhujY0txpJBlmsTZkKAjUIQXIRWcBWjNNsoV3GGSpGoMEyUDLjPtcD_vcU2pcBQpsM2d_eH347XWR00yAna2LoRMEZTvQODwsLHiKBUWqavQgj42w5cM4TtIs1rVu_gPrvXuKtut5avB2wDyofsdg1guXzERqOrArfdGxc_wG2q3t2JdS-AcoEzcKd1H0KFUOHqpUuZiTF4lF-h1Lu7N-y6uqg6a9xqZERRPmanN8LQJ6xTTkp4xlxupIqVtrHxEwlWZsKAtFxBYFUAUeSwDysOpqaZYU5QGuMUYxlid1qxO63Y7bDtNfG0Ht3xb7Jd2oo1Cc3bri5MLs_TRn1T7UdKSAVRDhmGlOgj5fizsU4CkBKEw97SRqY0UaOkkp3zbDGbpf3RcdpFj1nSwYpE7xsiO8GnNlnTAYHvTkO4WpRbLUpUedNeXslL2hw5s_SPgjjszXqZ7qQyuhImC6LxBfrHQiYOe1qL1_q9hYjRV064w-KW4LUY014pi4tqIHms0KmN_Of_f6zX7E7v5GiQDvrDwxfsLqfiICqMVFusM79cwEv07ub6VaNSLvt-01r8GylYZHA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGEIgXxH8CAwIaQkIKTWwnjh8QKpRqZaNClEl9C4lz3iKqpKytpn41Ph13SVoWgXib8hZfovh85ztf7u7H2H6WW-p7nns8gsyTJrOezv3UU2guskgYroAC-p_H0cGx_DQNpzvs16YWhtIqN3tivVHnlaEYeQ_d9DCICRO5Z9u0iC-D4bv5T48QpOhP6wZOoxGRQ1if4_Ft8XY0wLV-yfnw47cPB16LMOAZ9LOXnvEhMilIbo1VFs-VQZpnJkyFABuFILgIreBaoWTbKNcqRQWJdRjGWgbc55nA915hV5UIA9IxNVXb-A6a5hitbVMSqNBo9-CosPAmIlCVjhGssQL-tggXTGI3XfOC_RveYjdbx9XtN5J2m-1AeYdda6As13fZZHJeoAB4s-IHuG3-u1tZ9xQoKrgAd95UJNRYFW62dilGMQOPIi0UhHcH476bFXWNjVs3jyjKe-z4Uth5n-2WVQkPmcuN1EpnVhk_lmBlKgxIyzUEVgcQRQ57veFgYtpu5gSqMUvwVEPsTmp2JzW7Hba_JZ43TTz-TfaelmJLQp236xvV2UnSKnKS-ZEWUkOUQ4qHS_SWcrysyuIApAThsBe0kAn11ihJSk_S1WKRjCZfkz76zpK2WCR61RLZCr_apG0tBM6d2nF1KPc6lKj8pju8kZek3XwWyR9Vcdjz7TA9SQl1JVQrovEFespCxg570IjXdt5CKPSaY-4w1RG8DmO6I2VxWrcmVxrd28h_9P_Pesauo-4mR6Px4WN2g1OWEGVI6j22uzxbwRN085bZ01qfXPb9shX4N6mXZ0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Switch-like+control+of+helicase+processivity+by+single-stranded+DNA+binding+protein&rft.jtitle=eLife&rft.au=Stekas%2C+Barbara&rft.au=Yeo%2C+Steve&rft.au=Troitskaia+Alice&rft.au=Honda+Masayoshi&rft.date=2021-03-19&rft.pub=eLife+Sciences+Publications+Ltd&rft.eissn=2050-084X&rft.volume=10&rft_id=info:doi/10.7554%2FeLife.60515&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon