Switch-like control of helicase processivity by single-stranded DNA binding protein
Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase fun...
Saved in:
Published in | eLife Vol. 10 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
eLife Science Publications, Ltd
19.03.2021
eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase function, although the underlying mechanisms remain largely unknown.
Ferroplasma acidarmanus
xeroderma pigmentosum group D (XPD) helicase serves as a model for understanding the molecular mechanisms of superfamily 2B helicases, and its activity is enhanced by the cognate single-stranded DNA binding protein replication protein A 2 (RPA2). Here, optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent ‘processivity switch’ in XPD. A point mutation at a regulatory DNA binding site on XPD similarly activates this switch. These findings provide new insights on mechanisms of helicase regulation by accessory proteins. |
---|---|
AbstractList | Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase function, although the underlying mechanisms remain largely unknown. Ferroplasma acidarmanus xeroderma pigmentosum group D (XPD) helicase serves as a model for understanding the molecular mechanisms of superfamily 2B helicases, and its activity is enhanced by the cognate single-stranded DNA binding protein replication protein A 2 (RPA2). Here, optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent 'processivity switch' in XPD. A point mutation at a regulatory DNA binding site on XPD similarly activates this switch. These findings provide new insights on mechanisms of helicase regulation by accessory proteins. Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase function, although the underlying mechanisms remain largely unknown. xeroderma pigmentosum group D (XPD) helicase serves as a model for understanding the molecular mechanisms of superfamily 2B helicases, and its activity is enhanced by the cognate single-stranded DNA binding protein replication protein A 2 (RPA2). Here, optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent 'processivity switch' in XPD. A point mutation at a regulatory DNA binding site on XPD similarly activates this switch. These findings provide new insights on mechanisms of helicase regulation by accessory proteins. Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase function, although the underlying mechanisms remain largely unknown. Ferroplasma acidarmanus xeroderma pigmentosum group D (XPD) helicase serves as a model for understanding the molecular mechanisms of superfamily 2B helicases, and its activity is enhanced by the cognate single-stranded DNA binding protein replication protein A 2 (RPA2). Here, optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent ‘processivity switch’ in XPD. A point mutation at a regulatory DNA binding site on XPD similarly activates this switch. These findings provide new insights on mechanisms of helicase regulation by accessory proteins. Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase function, although the underlying mechanisms remain largely unknown. Ferroplasma acidarmanus xeroderma pigmentosum group D (XPD) helicase serves as a model for understanding the molecular mechanisms of superfamily 2B helicases, and its activity is enhanced by the cognate single-stranded DNA binding protein replication protein A 2 (RPA2). Here, optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent 'processivity switch' in XPD. A point mutation at a regulatory DNA binding site on XPD similarly activates this switch. These findings provide new insights on mechanisms of helicase regulation by accessory proteins.Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase function, although the underlying mechanisms remain largely unknown. Ferroplasma acidarmanus xeroderma pigmentosum group D (XPD) helicase serves as a model for understanding the molecular mechanisms of superfamily 2B helicases, and its activity is enhanced by the cognate single-stranded DNA binding protein replication protein A 2 (RPA2). Here, optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent 'processivity switch' in XPD. A point mutation at a regulatory DNA binding site on XPD similarly activates this switch. These findings provide new insights on mechanisms of helicase regulation by accessory proteins. |
Audience | Academic |
Author | Yeo, Steve Sho, Sei Chemla, Yann R Stekas, Barbara Honda, Masayoshi Troitskaia, Alice Spies, Maria |
Author_xml | – sequence: 1 givenname: Barbara surname: Stekas fullname: Stekas, Barbara organization: Department of Physics, University of Illinois, Urbana-Champaign, Urbana, United States – sequence: 2 givenname: Steve surname: Yeo fullname: Yeo, Steve organization: Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, United States – sequence: 3 givenname: Alice surname: Troitskaia fullname: Troitskaia, Alice organization: Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, United States – sequence: 4 givenname: Masayoshi orcidid: 0000-0001-8920-6301 surname: Honda fullname: Honda, Masayoshi organization: Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, United States – sequence: 5 givenname: Sei surname: Sho fullname: Sho, Sei organization: Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, United States – sequence: 6 givenname: Maria orcidid: 0000-0002-7375-8037 surname: Spies fullname: Spies, Maria organization: Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, United States – sequence: 7 givenname: Yann R orcidid: 0000-0001-9167-0234 surname: Chemla fullname: Chemla, Yann R organization: Department of Physics, University of Illinois, Urbana-Champaign, Urbana, United States, Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, United States, Center for the Physics of Living Cells, University of Illinois, Urbana-Champaign, Urbana, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33739282$$D View this record in MEDLINE/PubMed |
BookMark | eNptkt1v0zAUxSM0xMbYE-8oEi8glOLEX_HLpGp8VapAoiDxZjnOdeqS2iV2B_3vcdoN1mm-D7ZufvckOT5PsxPnHWTZ8xJNOKXkLcytgQlDtKSPsrMKUVSgmvw4uXM-zS5CWKG0OKnrUjzJTjHmWFR1dZYtFr9t1Muitz8h197Fwfe5N_kSeqtVgHwzeA0h2Gsbd3mzy4N1XQ9FiINyLbT5u8_TvLGuTe2RjWDds-yxUX2Ai5v9PPv-4f23q0_F_MvH2dV0XmjKWSw0AqYVkMpoww00uFRto6nCGAyjgCtMDa4ER4lgreAKcVQLSmtBygpVDT7PZgfd1quV3Ax2rYad9MrKfcMPnVRDtLoH2SAmMBHAWlBE0ErgNpXhTV0CIYCT1uVBa7Nt1tBqSE6o_kj0-ImzS9n5a8mF4IyhJPDqRmDwv7YQolzboKHvlQO_DbKiCBNMMakT-vIeuvLbwSWrEiVoWSe58j_VqfQD1hmf3qtHUTlllJHkBh6_e_IAlaqFtU33Ccam_tHA66OB8c7hT-zUNgQ5W3w9Zl_cNeWfG7fxSUB5APTgQxjASG2jinbMkbK9LJEcUyr3KZX7lKaZN_dmbmUfov8CyEHmIQ |
CitedBy_id | crossref_primary_10_1016_j_jbc_2024_107894 crossref_primary_10_3390_ijms24032806 crossref_primary_10_1016_j_dnarep_2023_103542 crossref_primary_10_1038_s41420_023_01451_9 crossref_primary_10_1016_j_cell_2024_09_020 crossref_primary_10_1016_j_bpj_2023_12_014 crossref_primary_10_1016_j_jbc_2022_102786 |
Cites_doi | 10.1016/j.dnarep.2011.04.028 10.1017/S0033583502003864 10.1007/978-1-4614-5037-5_3 10.1021/nl502890g 10.1038/s41467-019-10745-5 10.1146/annurev.biochem.76.052305.115300 10.1038/nature04928 10.1016/S0022-2836(03)00153-0 10.1371/journal.pbio.0060149 10.1016/j.cell.2008.04.030 10.1038/emboj.2011.374 10.1016/j.cell.2008.04.029 10.1021/nn301895c 10.1074/jbc.M006555200 10.1016/j.dnarep.2011.04.021 10.1073/pnas.0306713101 10.1371/journal.pbio.1001954 10.1016/j.dnarep.2014.01.013 10.1146/annurev-biophys-062215-011158 10.1016/j.jmb.2008.09.001 10.1016/j.molcel.2009.07.003 10.1016/j.dnarep.2016.05.019 10.1016/j.sbi.2010.03.011 10.1073/pnas.1615439114 10.7554/eLife.00334 10.1016/j.jmb.2007.10.070 10.1007/978-1-4614-5037-5_5 10.1093/nar/gkh540 10.1007/978-1-4614-5037-5_9 10.1016/j.sbi.2011.11.004 10.4161/cc.9.9.11469 10.1080/10409238.2020.1813070 10.1016/j.cub.2012.12.032 10.1038/376362a0 10.1038/emboj.2011.412 10.1073/pnas.1712882114 10.1016/j.celrep.2013.05.002 10.1074/jbc.M500653200 10.1016/j.bpj.2009.07.048 10.1017/S0033583502003852 10.1007/978-1-4614-5037-5_10 10.1007/978-1-4939-6421-5_8 10.1074/jbc.M001557200 10.1074/jbc.M412870200 10.1016/j.molcel.2010.07.029 10.1146/annurev.biophys.32.110601.142506 10.1073/pnas.0509828103 10.2741/4038 10.1074/jbc.274.26.18341 10.1182/blood-2006-11-057273 10.1063/1.1645654 10.1038/nmeth.1574 10.1126/science.aaa0445 10.1093/nar/gkh980 10.1080/10409230802341296 10.1515/bc.2010.076 10.1038/nrm2394 10.1007/978-1-4614-5037-5_1 10.1126/science.aaa0130 |
ContentType | Journal Article |
Copyright | 2021, Stekas et al. COPYRIGHT 2021 eLife Science Publications, Ltd. 2021, Stekas et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021, Stekas et al 2021 Stekas et al |
Copyright_xml | – notice: 2021, Stekas et al. – notice: COPYRIGHT 2021 eLife Science Publications, Ltd. – notice: 2021, Stekas et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021, Stekas et al 2021 Stekas et al |
DBID | AAYXX CITATION NPM ISR 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7554/eLife.60515 |
DatabaseName | CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: Text complet a ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_b069349e6dea495293d3d3f7b81e44e3 PMC7997660 A656407033 33739282 10_7554_eLife_60515 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM131704 – fundername: NIGMS NIH HHS grantid: R01 GM120353 – fundername: ; grantid: R35 GM131704 – fundername: ; grantid: R01 GM120353 |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP 3V. FRP NPM RHF PMFND 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c576t-c0e6cae42fcf7feb31adbc5a33ef65e3235f3297042f6d97a07089558941202b3 |
IEDL.DBID | 7X7 |
ISSN | 2050-084X |
IngestDate | Wed Aug 27 01:32:53 EDT 2025 Thu Aug 21 18:17:48 EDT 2025 Tue Aug 05 10:24:35 EDT 2025 Fri Jul 25 11:39:22 EDT 2025 Tue Jun 17 21:07:44 EDT 2025 Tue Jun 10 20:33:14 EDT 2025 Fri Jun 27 03:48:47 EDT 2025 Thu Jan 02 22:56:29 EST 2025 Thu Apr 24 23:00:31 EDT 2025 Tue Jul 01 04:13:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | single molecule single-stranded DNA binding protein optical tweezers structural biology dna repair helicase molecular biophysics |
Language | English |
License | 2021, Stekas et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c576t-c0e6cae42fcf7feb31adbc5a33ef65e3235f3297042f6d97a07089558941202b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8920-6301 0000-0002-7375-8037 0000-0001-9167-0234 |
OpenAccessLink | https://www.proquest.com/docview/2595186031?pq-origsite=%requestingapplication% |
PMID | 33739282 |
PQID | 2595186031 |
PQPubID | 2045579 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b069349e6dea495293d3d3f7b81e44e3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7997660 proquest_miscellaneous_2503435348 proquest_journals_2595186031 gale_infotracmisc_A656407033 gale_infotracacademiconefile_A656407033 gale_incontextgauss_ISR_A656407033 pubmed_primary_33739282 crossref_citationtrail_10_7554_eLife_60515 crossref_primary_10_7554_eLife_60515 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-19 |
PublicationDateYYYYMMDD | 2021-03-19 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2021 |
Publisher | eLife Science Publications, Ltd eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Publisher_xml | – name: eLife Science Publications, Ltd – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
References | Harami (bib28) 2017; 114 Pugh (bib45) 2008; 383 Delagoutte (bib19) 2003; 36 Kerssemakers (bib33) 2006; 442 Robbins (bib49) 2005; 280 Comstock (bib15) 2015; 348 Kuper (bib37) 2013; 767 Gupta (bib27) 2007; 110 Shereda (bib51) 2008; 43 Ghoneim (bib26) 2014; 14 Houten (bib31) 2016; 44 Fuss (bib25) 2011; 10 Caldwell (bib10) 2020; 55 Cui (bib16) 2004; 32 Doherty (bib21) 2005; 280 Mathieu (bib41) 2013; 23 Chemla (bib13) 2020 Dessinges (bib20) 2004; 101 Arslan (bib1) 2015; 348 Landry (bib38) 2009; 97 Spies (bib54) 2010; 9 Singleton (bib52) 2007; 76 Bustamante (bib7) 2008 Spies (bib53) 2014; 20 Pant (bib44) 2003; 327 Shamoo (bib50) 1995; 376 Honda (bib30) 2009; 35 Kuper (bib36) 2014; 12 Brosh (bib6) 2000; 275 Fairman-Williams (bib23) 2010; 20 Liu (bib39) 2008; 133 McGlynn (bib42) 2013; 767 Yoder (bib62) 2006; 103 Fan (bib24) 2008; 133 Pugh (bib46) 2012; 31 Daley (bib17) 2013; 767 Cadman (bib9) 2004; 32 Bétous (bib3) 2013; 3 Beyer (bib4) 2013; 767 Theobald (bib56) 2003; 32 Nguyen (bib43) 2017; 114 Egly (bib22) 2011; 10 Berg-Sørensen (bib2) 2004; 75 Ito (bib32) 2010; 39 Kokic (bib34) 2019; 10 Wolski (bib60) 2010; 391 Byrd (bib8) 2012; 17 Camunas-Soler (bib11) 2016; 45 Delagoutte (bib18) 2002; 35 Kuper (bib35) 2012; 31 Whitley (bib58) 2017; 1486 Wu (bib61) 2013; 767 White (bib57) 2012; 22 Harmon (bib29) 2001; 276 Swoboda (bib55) 2012; 6 Rajagopal (bib48) 2008; 376 Wolski (bib59) 2008; 6 Brosh (bib5) 1999; 274 Comstock (bib14) 2011; 8 Lohman (bib40) 2008; 9 Qi (bib47) 2013; 2 Chemla (bib12) 2020 |
References_xml | – volume: 10 start-page: 697 year: 2011 ident: bib25 article-title: XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase publication-title: DNA Repair doi: 10.1016/j.dnarep.2011.04.028 – volume-title: Old-Trap-Labview-Code year: 2020 ident: bib13 – volume: 36 start-page: 1 year: 2003 ident: bib19 article-title: Helicase mechanisms and the coupling of helicases within macromolecular machines part II: integration of helicases into cellular processes publication-title: Quarterly Reviews of Biophysics doi: 10.1017/S0033583502003864 – volume: 767 start-page: 47 year: 2013 ident: bib4 article-title: Structure and mechanisms of SF2 DNA helicases publication-title: Advances in Experimental Medicine and Biology doi: 10.1007/978-1-4614-5037-5_3 – volume: 14 start-page: 5920 year: 2014 ident: bib26 article-title: Direct correlation of DNA binding and single protein domain motion via dual illumination fluorescence microscopy publication-title: Nano Letters doi: 10.1021/nl502890g – volume: 10 year: 2019 ident: bib34 article-title: Structural basis of TFIIH activation for nucleotide excision repair publication-title: Nature Communications doi: 10.1038/s41467-019-10745-5 – volume: 76 start-page: 23 year: 2007 ident: bib52 article-title: Structure and mechanism of helicases and nucleic acid translocases publication-title: Annual Review of Biochemistry doi: 10.1146/annurev.biochem.76.052305.115300 – volume: 442 start-page: 709 year: 2006 ident: bib33 article-title: Assembly dynamics of microtubules at molecular resolution publication-title: Nature doi: 10.1038/nature04928 – volume: 327 start-page: 571 year: 2003 ident: bib44 article-title: Kinetic regulation of single DNA molecule denaturation by T4 gene 32 protein structural domains publication-title: Journal of Molecular Biology doi: 10.1016/S0022-2836(03)00153-0 – volume: 6 year: 2008 ident: bib59 article-title: Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD publication-title: PLOS Biology doi: 10.1371/journal.pbio.0060149 – volume: 133 start-page: 789 year: 2008 ident: bib24 article-title: XPD helicase structures and activities: insights into the Cancer and aging phenotypes from XPD mutations publication-title: Cell doi: 10.1016/j.cell.2008.04.030 – volume: 31 start-page: 494 year: 2012 ident: bib35 article-title: Functional and structural studies of the nucleotide excision repair helicase XPD suggest a polarity for DNA translocation publication-title: The EMBO Journal doi: 10.1038/emboj.2011.374 – volume: 133 start-page: 801 year: 2008 ident: bib39 article-title: Structure of the DNA repair helicase XPD publication-title: Cell doi: 10.1016/j.cell.2008.04.029 – volume: 6 start-page: 6364 year: 2012 ident: bib55 article-title: Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments publication-title: ACS Nano doi: 10.1021/nn301895c – volume: 276 start-page: 232 year: 2001 ident: bib29 article-title: Biochemical characterization of the DNA helicase activity of the Escherichia coli RecQ helicase publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M006555200 – volume: 10 start-page: 714 year: 2011 ident: bib22 article-title: A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor publication-title: DNA Repair doi: 10.1016/j.dnarep.2011.04.021 – volume: 101 start-page: 6439 year: 2004 ident: bib20 article-title: Single-molecule assay reveals strand switching and enhanced processivity of UvrD publication-title: PNAS doi: 10.1073/pnas.0306713101 – volume: 12 year: 2014 ident: bib36 article-title: In TFIIH, XPD helicase is exclusively devoted to DNA repair publication-title: PLOS Biology doi: 10.1371/journal.pbio.1001954 – volume: 20 start-page: 58 year: 2014 ident: bib53 article-title: Two steps forward, one step back: determining XPD helicase mechanism by single-molecule fluorescence and high-resolution optical tweezers publication-title: DNA Repair doi: 10.1016/j.dnarep.2014.01.013 – volume: 45 start-page: 65 year: 2016 ident: bib11 article-title: Elastic properties of nucleic acids by Single-Molecule force spectroscopy publication-title: Annual Review of Biophysics doi: 10.1146/annurev-biophys-062215-011158 – volume: 383 start-page: 982 year: 2008 ident: bib45 article-title: Ferroplasma acidarmanus RPA2 facilitates efficient unwinding of forked DNA substrates by monomers of FacXPD helicase publication-title: Journal of Molecular Biology doi: 10.1016/j.jmb.2008.09.001 – volume: 35 start-page: 694 year: 2009 ident: bib30 article-title: Single-molecule analysis reveals differential effect of ssDNA-binding proteins on DNA translocation by XPD helicase publication-title: Molecular Cell doi: 10.1016/j.molcel.2009.07.003 – volume: 44 start-page: 136 year: 2016 ident: bib31 article-title: Role of XPD in cellular functions: to TFIIH and beyond publication-title: DNA Repair doi: 10.1016/j.dnarep.2016.05.019 – volume: 20 start-page: 313 year: 2010 ident: bib23 article-title: SF1 and SF2 helicases: family matters publication-title: Current Opinion in Structural Biology doi: 10.1016/j.sbi.2010.03.011 – volume: 114 start-page: E466 year: 2017 ident: bib28 article-title: Shuttling along DNA and directed processing of D-loops by RecQ helicase support quality control of homologous recombination publication-title: PNAS doi: 10.1073/pnas.1615439114 – volume: 2 year: 2013 ident: bib47 article-title: Sequence-dependent base pair stepping dynamics in XPD helicase unwinding publication-title: eLife doi: 10.7554/eLife.00334 – volume: 376 start-page: 69 year: 2008 ident: bib48 article-title: Single strand binding proteins increase the processivity of DNA unwinding by the hepatitis C virus helicase publication-title: Journal of Molecular Biology doi: 10.1016/j.jmb.2007.10.070 – volume: 767 start-page: 97 year: 2013 ident: bib42 article-title: Helicases at the replication fork publication-title: Advances in Experimental Medicine and Biology doi: 10.1007/978-1-4614-5037-5_5 – volume: 32 start-page: 2158 year: 2004 ident: bib16 article-title: Analysis of the unwinding activity of the dimeric RECQ1 helicase in the presence of human replication protein A publication-title: Nucleic Acids Research doi: 10.1093/nar/gkh540 – volume: 767 start-page: 185 year: 2013 ident: bib17 article-title: Roles of DNA helicases in the mediation and regulation of homologous recombination publication-title: Advances in Experimental Medicine and Biology doi: 10.1007/978-1-4614-5037-5_9 – volume-title: Fleezer-Labview-Code year: 2020 ident: bib12 – volume: 22 start-page: 94 year: 2012 ident: bib57 article-title: Iron-sulphur clusters in nucleic acid processing enzymes publication-title: Current Opinion in Structural Biology doi: 10.1016/j.sbi.2011.11.004 – volume: 9 start-page: 1742 year: 2010 ident: bib54 article-title: Inching over hurdles: how DNA helicases move on crowded lattices publication-title: Cell Cycle doi: 10.4161/cc.9.9.11469 – volume: 55 start-page: 482 year: 2020 ident: bib10 article-title: Dynamic elements of replication protein A at the crossroads of DNA replication, recombination, and repair publication-title: Critical Reviews in Biochemistry and Molecular Biology doi: 10.1080/10409238.2020.1813070 – volume: 23 start-page: 204 year: 2013 ident: bib41 article-title: DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH publication-title: Current Biology doi: 10.1016/j.cub.2012.12.032 – volume: 376 start-page: 362 year: 1995 ident: bib50 article-title: Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA publication-title: Nature doi: 10.1038/376362a0 – volume: 31 start-page: 503 year: 2012 ident: bib46 article-title: Regulation of translocation polarity by helicase domain 1 in SF2B helicases publication-title: The EMBO Journal doi: 10.1038/emboj.2011.412 – volume: 114 start-page: 12178 year: 2017 ident: bib43 article-title: Large domain movements upon UvrD dimerization and helicase activation publication-title: PNAS doi: 10.1073/pnas.1712882114 – volume: 3 start-page: 1958 year: 2013 ident: bib3 article-title: Substrate-selective repair and restart of replication forks by DNA translocases publication-title: Cell Reports doi: 10.1016/j.celrep.2013.05.002 – volume: 280 start-page: 29494 year: 2005 ident: bib21 article-title: Physical and functional mapping of the replication protein A interaction domain of the werner and bloom syndrome helicases publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M500653200 – volume: 97 start-page: 2128 year: 2009 ident: bib38 article-title: Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments publication-title: Biophysical Journal doi: 10.1016/j.bpj.2009.07.048 – volume: 35 start-page: 431 year: 2002 ident: bib18 article-title: Helicase mechanisms and the coupling of helicases within macromolecular machines part I: structures and properties of isolated helicases publication-title: Quarterly Reviews of Biophysics doi: 10.1017/S0033583502003852 – volume: 767 start-page: 203 year: 2013 ident: bib37 article-title: DNA helicases in NER, BER, and MMR publication-title: Advances in Experimental Medicine and Biology doi: 10.1007/978-1-4614-5037-5_10 – volume: 1486 start-page: 183 year: 2017 ident: bib58 article-title: High-Resolution "Fleezers": Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection publication-title: Methods in Molecular Biology doi: 10.1007/978-1-4939-6421-5_8 – volume: 275 start-page: 23500 year: 2000 ident: bib6 article-title: Replication protein A physically interacts with the bloom's Syndrome Protein and Stimulates Its Helicase Activity publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M001557200 – volume: 280 start-page: 15325 year: 2005 ident: bib49 article-title: The Euryarchaeota, nature's Medium for Engineering of Single-stranded DNA-binding Proteins publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M412870200 – volume: 39 start-page: 632 year: 2010 ident: bib32 article-title: MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation publication-title: Molecular Cell doi: 10.1016/j.molcel.2010.07.029 – volume: 32 start-page: 115 year: 2003 ident: bib56 article-title: Nucleic acid recognition by OB-fold proteins publication-title: Annual Review of Biophysics and Biomolecular Structure doi: 10.1146/annurev.biophys.32.110601.142506 – volume: 103 start-page: 4622 year: 2006 ident: bib62 article-title: The DNA repair genes XPB and XPD defend cells from retroviral infection publication-title: PNAS doi: 10.1073/pnas.0509828103 – volume-title: Single-Molecule Techniques year: 2008 ident: bib7 – volume: 17 start-page: 2070 year: 2012 ident: bib8 article-title: Superfamily 2 helicases publication-title: Frontiers in Bioscience doi: 10.2741/4038 – volume: 274 start-page: 18341 year: 1999 ident: bib5 article-title: Functional and physical interaction between WRN helicase and human replication protein A publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.274.26.18341 – volume: 110 start-page: 2390 year: 2007 ident: bib27 article-title: FANCJ (BACH1) helicase forms DNA damage inducible foci with replication protein A and interacts physically and functionally with the single-stranded DNA-binding protein publication-title: Blood doi: 10.1182/blood-2006-11-057273 – volume: 75 start-page: 594 year: 2004 ident: bib2 article-title: Power spectrum analysis for optical tweezers publication-title: Review of Scientific Instruments doi: 10.1063/1.1645654 – volume: 8 start-page: 335 year: 2011 ident: bib14 article-title: Ultrahigh-resolution optical trap with single-fluorophore sensitivity publication-title: Nature Methods doi: 10.1038/nmeth.1574 – volume: 348 start-page: 344 year: 2015 ident: bib1 article-title: Protein structure engineering of a superhelicase through conformational control publication-title: Science doi: 10.1126/science.aaa0445 – volume: 32 start-page: 6378 year: 2004 ident: bib9 article-title: PriA helicase and SSB interact physically and functionally publication-title: Nucleic Acids Research doi: 10.1093/nar/gkh980 – volume: 43 start-page: 289 year: 2008 ident: bib51 article-title: SSB as an organizer/mobilizer of genome maintenance complexes publication-title: Critical Reviews in Biochemistry and Molecular Biology doi: 10.1080/10409230802341296 – volume: 391 start-page: 761 year: 2010 ident: bib60 article-title: The XPD helicase: xpanding archaeal XPD structures to get a grip on human DNA repair publication-title: Biological Chemistry doi: 10.1515/bc.2010.076 – volume: 9 start-page: 391 year: 2008 ident: bib40 article-title: Non-hexameric DNA helicases and translocases: mechanisms and regulation publication-title: Nature Reviews Molecular Cell Biology doi: 10.1038/nrm2394 – volume: 767 start-page: 1 year: 2013 ident: bib61 article-title: Overview: what are helicases? publication-title: Advances in Experimental Medicine and Biology doi: 10.1007/978-1-4614-5037-5_1 – volume: 348 start-page: 352 year: 2015 ident: bib15 article-title: Protein structure direct observation of structure-function relationship in a nucleic acid-processing enzyme publication-title: Science doi: 10.1126/science.aaa0130 |
SSID | ssj0000748819 |
Score | 2.3316731 |
Snippet | Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell,... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | DNA DNA binding proteins DNA biosynthesis DNA helicase dna repair Genomes helicase Hydrolysis Molecular modelling optical tweezers Point mutation Protein binding Proteins Replication protein A single molecule Single-stranded DNA single-stranded DNA binding protein Structural Biology and Molecular Biophysics Unwinding Xeroderma pigmentosum XPD protein |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPginp_VU6IcCEK9NkmT5nH9OE7Re3A9uLfQpBOvuHSP213k_ntn0t6yRcEX6VszhXQyk_lg5jeMHfo2Eu55mwsNPlfBx9y2RZMbNBdeyyAMUEL_66k-OVOfz6vznVFfVBM2wAMPjDvyhbZSWdAtNOjMo3Vq8YnG1yUoBQnnE23eTjCV7mCDglnaoSHPoMk8gi9dhLeaRppMTFBC6v_zPt4xSNNiyR3rc3yP3R3dRj4btrvPbkF_n90eBkleP2Dz-a8O2Z8vup_Ax-pzvoz8AigntwJ-OfQDpEkR3F9zyhAsIKc8B6XA-YfTGfdd6nDhCbqh6x-ys-OP39-f5OO4hDxg0LDOQwE6NKBEDNFEDJLLpvWhaqSEqCuQQlZRCmtQTaNurWlQ22tbVbVVpSiEl4_YXr_s4QnjIihrrI8mFLWCqBoZQEVhoYy2BK0z9uaGgy6MWOI00mLhMKYgdrvEbpfYnbHDLfHlAKHxd7J3dBRbEsK9Ti9QGtwoDe5f0pCxV3SQjpAteiqd-dFsViv3af7NzdBzVXTBIdHrkSgucdehGTsR8N8JDGtCeTChRNUL0-UbeXGj6q8cxpNVWdPw7oy93C7Tl1TO1sNyQzSFRD9Vqjpjjwfx2v63lAZ91lpkzEwEb8KY6UrfXSRgcGPRudTF0__ByWfsjqDyHSpdtAdsb321gefof639i6RqvwF3Ey68 priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA_nieCL-G31lCgHgtC1bdKkeZL14zjFuwfXhXsLTTq5Ky7dcz_Q_e-dabvLVQ_Zt80U2slM5jfD5DeMHboqEO95FWcKXCy9C7GpkjLWGC6cEj7TQAX9k1N1PJVfzvKzPbYdxtkrcHltakfzpKaL2ej3z807dHjEryON0fAtfK0DjBRNK7nBbmJI0uShJz3Ob49kjXaamu5-3t_PDCJSS9z_7_F8JT4NeyevBKOju-xOjyL5uNv2e2wPmvvsVjdXcvOATSa_atyNeFb_AN43o_N54BdAJbol8MvuekA7OIK7DaeCwQxiKntQRZx_PB1zV7cXXnjL5FA3D9n06NP3D8dxPz0h9phDrGKfgPIlyCz4oAPmzGlZOZ-XQkBQOYhM5EFkRqPXBlUZXaLzFybPCyPTLMmceMT2m3kDTxjPvDTauKB9UkgIshQeZMgMpMGkoFTE3mw1aH1PLU4TLmYWUwxSt23VbVt1R-xwJ3zZMWpcL_aetmInQjTY7R_zxbntvcq6RBkhDagKSsz0ELpU-AvaFSlICSJir2gjLRFdNNRJc16ul0v7efLNjhHISjrvUOh1LxTm-Na-7C8m4LcTN9ZA8mAgiZ7oh8tbe7FbQ7aYXuZpQbO8I_Zyt0xPUndbA_M1ySQCYauQRcQed-a1-24hNELYIouYHhjeQDHDlaa-aHnCtUGsqZKn_3-tZ-x2Rn061KNoDtj-arGG5wi0Vu5F60R_AMt9KNk priority: 102 providerName: Scholars Portal |
Title | Switch-like control of helicase processivity by single-stranded DNA binding protein |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33739282 https://www.proquest.com/docview/2595186031 https://www.proquest.com/docview/2503435348 https://pubmed.ncbi.nlm.nih.gov/PMC7997660 https://doaj.org/article/b069349e6dea495293d3d3f7b81e44e3 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0RfBF_G60HqsUBCE2yW52s09y1ZYq9pCehXsL2c1sGzySs3eH9L93JsmdDYoc5OF2Asnszsf-Mvsbxg5s6Yn3vAwTBTaUzvrQlFERagwXVgmXaCBA_2yiTi_kl1k66wG3ZV9WufGJraMuG0cY-SGm6WmcUU_kD4ufIXWNoq-rfQuNu2yXqMuopEvP9BZjwfCYYcTrjuVpDJyH8LXy8F5RY5NBIGr5-v_2yrfC0rBk8lYMOnnIHvTJIx93s_2I3YH6MbvXtZO8ecKm018VTkI4r34A72vQeeP5FRAytwS-6E4FtP0iuL3hhBPMISS0g4Bw_mky5rZqz7nwlsChqp-yi5Pj7x9Pw75pQuhw67AKXQTKFSAT77z2uFWOi9K6tBACvEpBJCL1IjEajdWr0ugCbT4zaZoZGSdRYsUztlM3NewxnjhptLFeuyiT4GUhHEifGIi9iUGpgL3baDB3PaM4NbaY57izIHXnrbrzVt0BO9gKLzoijX-LHdFUbEWI_br9o7m-zHtjym2kjJAGVAkFbvAwYynx57XNYpASRMDe0ETmxG9RUwHNZbFeLvPP0_N8jPmrJDeHQm97Id_gU7uiP4-A706UWAPJ_YEkGqAbDm_WS947gGX-Z7kG7PV2mO6korYamjXJRAKzVSGzgD3vltf2vYXQmLlmScD0YOENFDMcqaurlh5cG0wxVfTi_4_1kt1PqDyHShPNPttZXa_hFeZXKztqjWjEdo-OJ9_ORy1Kgdczmf0GIMcpzg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAguiDeGAgYVISGZ2rvrxx4QSmmrhKYRalqpN-Ndz7YWkROaRFX-FL-RGdsJtUDcqty848iendl5eGY-xrZ1bmnuee7xCLQnjbaeyv3Mi9Fc6EgYHgMl9I-GUe9Ufj0LzzbYr1UvDJVVrs7E6qDOJ4Zy5DvopodBQpjIn6c_PUKNoq-rKwiNWiwOYXmFIdvsU38P9_cd5wf7J196XoMq4Bn0reee8SEyGUhujY0txpJBlmsTZkKAjUIQXIRWcBWjNNsoV3GGSpGoMEyUDLjPtcD_vcU2pcBQpsM2d_eH347XWR00yAna2LoRMEZTvQODwsLHiKBUWqavQgj42w5cM4TtIs1rVu_gPrvXuKtut5avB2wDyofsdg1guXzERqOrArfdGxc_wG2q3t2JdS-AcoEzcKd1H0KFUOHqpUuZiTF4lF-h1Lu7N-y6uqg6a9xqZERRPmanN8LQJ6xTTkp4xlxupIqVtrHxEwlWZsKAtFxBYFUAUeSwDysOpqaZYU5QGuMUYxlid1qxO63Y7bDtNfG0Ht3xb7Jd2oo1Cc3bri5MLs_TRn1T7UdKSAVRDhmGlOgj5fizsU4CkBKEw97SRqY0UaOkkp3zbDGbpf3RcdpFj1nSwYpE7xsiO8GnNlnTAYHvTkO4WpRbLUpUedNeXslL2hw5s_SPgjjszXqZ7qQyuhImC6LxBfrHQiYOe1qL1_q9hYjRV064w-KW4LUY014pi4tqIHms0KmN_Of_f6zX7E7v5GiQDvrDwxfsLqfiICqMVFusM79cwEv07ub6VaNSLvt-01r8GylYZHA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGEIgXxH8CAwIaQkIKTWwnjh8QKpRqZaNClEl9C4lz3iKqpKytpn41Ph13SVoWgXib8hZfovh85ztf7u7H2H6WW-p7nns8gsyTJrOezv3UU2guskgYroAC-p_H0cGx_DQNpzvs16YWhtIqN3tivVHnlaEYeQ_d9DCICRO5Z9u0iC-D4bv5T48QpOhP6wZOoxGRQ1if4_Ft8XY0wLV-yfnw47cPB16LMOAZ9LOXnvEhMilIbo1VFs-VQZpnJkyFABuFILgIreBaoWTbKNcqRQWJdRjGWgbc55nA915hV5UIA9IxNVXb-A6a5hitbVMSqNBo9-CosPAmIlCVjhGssQL-tggXTGI3XfOC_RveYjdbx9XtN5J2m-1AeYdda6As13fZZHJeoAB4s-IHuG3-u1tZ9xQoKrgAd95UJNRYFW62dilGMQOPIi0UhHcH476bFXWNjVs3jyjKe-z4Uth5n-2WVQkPmcuN1EpnVhk_lmBlKgxIyzUEVgcQRQ57veFgYtpu5gSqMUvwVEPsTmp2JzW7Hba_JZ43TTz-TfaelmJLQp236xvV2UnSKnKS-ZEWUkOUQ4qHS_SWcrysyuIApAThsBe0kAn11ihJSk_S1WKRjCZfkz76zpK2WCR61RLZCr_apG0tBM6d2nF1KPc6lKj8pju8kZek3XwWyR9Vcdjz7TA9SQl1JVQrovEFespCxg570IjXdt5CKPSaY-4w1RG8DmO6I2VxWrcmVxrd28h_9P_Pesauo-4mR6Px4WN2g1OWEGVI6j22uzxbwRN085bZ01qfXPb9shX4N6mXZ0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Switch-like+control+of+helicase+processivity+by+single-stranded+DNA+binding+protein&rft.jtitle=eLife&rft.au=Stekas%2C+Barbara&rft.au=Yeo%2C+Steve&rft.au=Troitskaia+Alice&rft.au=Honda+Masayoshi&rft.date=2021-03-19&rft.pub=eLife+Sciences+Publications+Ltd&rft.eissn=2050-084X&rft.volume=10&rft_id=info:doi/10.7554%2FeLife.60515&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |