Trajectory Modelling Techniques Useful to Epidemiological Research: A Comparative Narrative Review of Approaches

Trajectory modelling techniques have been developed to determine subgroups within a given population and are increasingly used to better understand intra- and inter-individual variability in health outcome patterns over time. The objectives of this narrative review are to explore various trajectory...

Full description

Saved in:
Bibliographic Details
Published inClinical epidemiology Vol. 12; pp. 1205 - 1222
Main Authors Nguena Nguefack, Hermine Lore, Pagé, M Gabrielle, Katz, Joel, Choinière, Manon, Vanasse, Alain, Dorais, Marc, Samb, Oumar Mallé, Lacasse, Anaïs
Format Journal Article
LanguageEnglish
Published New Zealand Dove Medical Press Limited 01.01.2020
Taylor & Francis Ltd
Dove
Dove Medical Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Trajectory modelling techniques have been developed to determine subgroups within a given population and are increasingly used to better understand intra- and inter-individual variability in health outcome patterns over time. The objectives of this narrative review are to explore various trajectory modelling approaches useful to epidemiological research and give an overview of their applications and differences. Guidance for reporting on the results of trajectory modelling is also covered. Trajectory modelling techniques reviewed include latent class modelling approaches, ie, growth mixture modelling (GMM), group-based trajectory modelling (GBTM), latent class analysis (LCA), and latent transition analysis (LTA). A parallel is drawn to other individual-centered statistical approaches such as cluster analysis (CA) and sequence analysis (SA). Depending on the research question and type of data, a number of approaches can be used for trajectory modelling of health outcomes measured in longitudinal studies. However, the various terms to designate latent class modelling approaches (GMM, GBTM, LTA, LCA) are used inconsistently and often interchangeably in the available scientific literature. Improved consistency in the terminology and reporting guidelines have the potential to increase researchers' efficiency when it comes to choosing the most appropriate technique that best suits their research questions.
AbstractList Hermine Lore Nguena Nguefack,1 M Gabrielle Pagé,2,3 Joel Katz,4 Manon Choinière,2,3 Alain Vanasse,5,6 Marc Dorais,7 Oumar Mallé Samb,1 Anaïs Lacasse1 1Département des Sciences de la santé, Université du Québec en Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, Québec, Canada; 2Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; 3Département d'anesthésiologie et de médecine de la douleur, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada; 4Department of Psychology, Faculty of Health, York University, Toronto, Ontario, Canada; 5Département de médecine de famille et de médecine d'urgence, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; 6Centre de recherche du Centre hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, Québec, Canada; 7StatSciences Inc., Notre-Dame-de-lL'île-Perrot, Québec, CanadaCorrespondence: Anaïs LacasseDépartement des sciences de la santé, Université du Québec en Abitibi-Témiscamingue (UQAT), 445, Boul. de l'Université, Rouyn-Noranda (Qc) J9X 5E4, Québec, CanadaTel +1 819 762 0971, 2722Email lacassea@uqat.caAbstract: Trajectory modelling techniques have been developed to determine subgroups within a given population and are increasingly used to better understand intra- and inter-individual variability in health outcome patterns over time. The objectives of this narrative review are to explore various trajectory modelling approaches useful to epidemiological research and give an overview of their applications and differences. Guidance for reporting on the results of trajectory modelling is also covered. Trajectory modelling techniques reviewed include latent class modelling approaches, ie, growth mixture modelling (GMM), group-based trajectory modelling (GBTM), latent class analysis (LCA), and latent transition analysis (LTA). A parallel is drawn to other individual-centered statistical approaches such as cluster analysis (CA) and sequence analysis (SA). Depending on the research question and type of data, a number of approaches can be used for trajectory modelling of health outcomes measured in longitudinal studies. However, the various terms to designate latent class modelling approaches (GMM, GBTM, LTA, LCA) are used inconsistently and often interchangeably in the available scientific literature. Improved consistency in the terminology and reporting guidelines have the potential to increase researchers' efficiency when it comes to choosing the most appropriate technique that best suits their research questions.Keywords: modelling techniques, growth mixture modelling, group-based trajectory modelling, latent class analysis, latent transition analysis, cluster analysis, sequence analysis
Trajectory modelling techniques have been developed to determine subgroups within a given population and are increasingly used to better understand intra- and inter-individual variability in health outcome patterns over time. The objectives of this narrative review are to explore various trajectory modelling approaches useful to epidemiological research and give an overview of their applications and differences. Guidance for reporting on the results of trajectory modelling is also covered. Trajectory modelling techniques reviewed include latent class modelling approaches, ie, growth mixture modelling (GMM), group-based trajectory modelling (GBTM), latent class analysis (LCA), and latent transition analysis (LTA). A parallel is drawn to other individual-centered statistical approaches such as cluster analysis (CA) and sequence analysis (SA). Depending on the research question and type of data, a number of approaches can be used for trajectory modelling of health outcomes measured in longitudinal studies. However, the various terms to designate latent class modelling approaches (GMM, GBTM, LTA, LCA) are used inconsistently and often interchangeably in the available scientific literature. Improved consistency in the terminology and reporting guidelines have the potential to increase researchers’ efficiency when it comes to choosing the most appropriate technique that best suits their research questions.
Trajectory modelling techniques have been developed to determine subgroups within a given population and are increasingly used to better understand intra- and inter-individual variability in health outcome patterns over time. The objectives of this narrative review are to explore various trajectory modelling approaches useful to epidemiological research and give an overview of their applications and differences. Guidance for reporting on the results of trajectory modelling is also covered. Trajectory modelling techniques reviewed include latent class modelling approaches, ie, growth mixture modelling (GMM), group-based trajectory modelling (GBTM), latent class analysis (LCA), and latent transition analysis (LTA). A parallel is drawn to other individual-centered statistical approaches such as cluster analysis (CA) and sequence analysis (SA). Depending on the research question and type of data, a number of approaches can be used for trajectory modelling of health outcomes measured in longitudinal studies. However, the various terms to designate latent class modelling approaches (GMM, GBTM, LTA, LCA) are used inconsistently and often interchangeably in the available scientific literature. Improved consistency in the terminology and reporting guidelines have the potential to increase researchers' efficiency when it comes to choosing the most appropriate technique that best suits their research questions. Keywords: modelling techniques, growth mixture modelling, group-based trajectory modelling, latent class analysis, latent transition analysis, cluster analysis, sequence analysis
Trajectory modelling techniques have been developed to determine subgroups within a given population and are increasingly used to better understand intra- and inter-individual variability in health outcome patterns over time. The objectives of this narrative review are to explore various trajectory modelling approaches useful to epidemiological research and give an overview of their applications and differences. Guidance for reporting on the results of trajectory modelling is also covered. Trajectory modelling techniques reviewed include latent class modelling approaches, ie, growth mixture modelling (GMM), group-based trajectory modelling (GBTM), latent class analysis (LCA), and latent transition analysis (LTA). A parallel is drawn to other individual-centered statistical approaches such as cluster analysis (CA) and sequence analysis (SA). Depending on the research question and type of data, a number of approaches can be used for trajectory modelling of health outcomes measured in longitudinal studies. However, the various terms to designate latent class modelling approaches (GMM, GBTM, LTA, LCA) are used inconsistently and often interchangeably in the available scientific literature. Improved consistency in the terminology and reporting guidelines have the potential to increase researchers' efficiency when it comes to choosing the most appropriate technique that best suits their research questions.Trajectory modelling techniques have been developed to determine subgroups within a given population and are increasingly used to better understand intra- and inter-individual variability in health outcome patterns over time. The objectives of this narrative review are to explore various trajectory modelling approaches useful to epidemiological research and give an overview of their applications and differences. Guidance for reporting on the results of trajectory modelling is also covered. Trajectory modelling techniques reviewed include latent class modelling approaches, ie, growth mixture modelling (GMM), group-based trajectory modelling (GBTM), latent class analysis (LCA), and latent transition analysis (LTA). A parallel is drawn to other individual-centered statistical approaches such as cluster analysis (CA) and sequence analysis (SA). Depending on the research question and type of data, a number of approaches can be used for trajectory modelling of health outcomes measured in longitudinal studies. However, the various terms to designate latent class modelling approaches (GMM, GBTM, LTA, LCA) are used inconsistently and often interchangeably in the available scientific literature. Improved consistency in the terminology and reporting guidelines have the potential to increase researchers' efficiency when it comes to choosing the most appropriate technique that best suits their research questions.
Audience Academic
Author Katz, Joel
Choinière, Manon
Pagé, M Gabrielle
Vanasse, Alain
Samb, Oumar Mallé
Dorais, Marc
Lacasse, Anaïs
Nguena Nguefack, Hermine Lore
Author_xml – sequence: 1
  givenname: Hermine Lore
  surname: Nguena Nguefack
  fullname: Nguena Nguefack, Hermine Lore
– sequence: 2
  givenname: M Gabrielle
  orcidid: 0000-0002-7742-2717
  surname: Pagé
  fullname: Pagé, M Gabrielle
– sequence: 3
  givenname: Joel
  orcidid: 0000-0002-8686-447X
  surname: Katz
  fullname: Katz, Joel
– sequence: 4
  givenname: Manon
  orcidid: 0000-0001-9593-8883
  surname: Choinière
  fullname: Choinière, Manon
– sequence: 5
  givenname: Alain
  surname: Vanasse
  fullname: Vanasse, Alain
– sequence: 6
  givenname: Marc
  surname: Dorais
  fullname: Dorais, Marc
– sequence: 7
  givenname: Oumar Mallé
  surname: Samb
  fullname: Samb, Oumar Mallé
– sequence: 8
  givenname: Anaïs
  orcidid: 0000-0002-3992-5145
  surname: Lacasse
  fullname: Lacasse, Anaïs
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33154677$$D View this record in MEDLINE/PubMed
BookMark eNptks9v0zAUxyM0xMbYjTOyhIQ40GLHie1wQKqqApPKD43ubDnOc-MqjYOdFO2_x6FltNPsg5_sz_s---v3PDlrXQtJ8pLgaUoy_n6-XPyY_kxZngr-JLkghBcTQrPi7Cg-T65C2OA4KCWc42fJeQzyjHF-kXQrrzage-fv0FdXQdPYdo1WoOvW_hogoNsAZmhQ79CisxVsrWvc2mrVoBsIoLyuP6AZmrttp7zq7Q7QN-UP0Q3sLPxGzqBZ13mndA3hRfLUqCbA1WG9TG4_LVbzL5Pl98_X89lyonPO-klZgIBcC6ExUF5hXlKdUZYxg4tS44JjnFEQAvNCUZrHI1OWPI2PSklaFBW9TK73upVTG9l5u1X-Tjpl5d8N59dS-d7qBqQ2uMQiFjHUZLkRJaSUlhVnOdUFS3HU-rjX6oZyC5WGtveqORE9PWltLdduJznDIhdpFHh7EPBudLWXWxt0NFu14IYg0ywXmHIieERfP0A3bvBttCpSjMQRL_SfWqv4ANsaF-vqUVTOWEYKzFk2UtNHqDjHf9Sxk4yN-ycJb44SalBNXwfXDL11bTgFXx07cm_Fv8aKwLs9oL0LwYO5RwiWY-vKsXXloXUjnj7Ate3VWDbe2DaPJ_0B4EvuIA
CitedBy_id crossref_primary_10_1007_s10964_023_01887_3
crossref_primary_10_1111_add_16523
crossref_primary_10_1002_acr_25100
crossref_primary_10_1186_s12967_022_03718_8
crossref_primary_10_1016_j_pmedr_2023_102262
crossref_primary_10_1136_bmjopen_2024_089528
crossref_primary_10_3389_fpsyt_2025_1536042
crossref_primary_10_1016_j_psychres_2023_115284
crossref_primary_10_1186_s12872_023_03056_7
crossref_primary_10_1001_jamanetworkopen_2023_28159
crossref_primary_10_1038_s41698_023_00412_w
crossref_primary_10_1002_ijc_34650
crossref_primary_10_1186_s40695_023_00089_y
crossref_primary_10_1213_ANE_0000000000005759
crossref_primary_10_1002_ppul_26488
crossref_primary_10_1002_jia2_26168
crossref_primary_10_1016_j_healthplace_2024_103246
crossref_primary_10_1186_s12916_024_03326_x
crossref_primary_10_1213_ANE_0000000000006848
crossref_primary_10_6004_jnccn_2021_7014
crossref_primary_10_1136_archdischild_2023_326425
crossref_primary_10_1002_brb3_3442
crossref_primary_10_1016_j_jebdp_2022_101794
crossref_primary_10_3389_fnut_2024_1433544
crossref_primary_10_1002_jcsm_13615
crossref_primary_10_1016_j_ekir_2025_02_007
crossref_primary_10_1016_j_jdent_2022_104113
crossref_primary_10_3390_ijerph21020174
crossref_primary_10_1016_j_numecd_2024_103802
crossref_primary_10_1002_osp4_70045
crossref_primary_10_1002_dad2_12540
crossref_primary_10_3233_JAD_215046
crossref_primary_10_1016_j_breast_2025_104441
crossref_primary_10_2340_jrm_v55_4343
crossref_primary_10_1186_s12913_022_08987_z
crossref_primary_10_3389_fpain_2022_1014793
crossref_primary_10_1371_journal_pone_0298126
crossref_primary_10_1164_rccm_202208_1569OC
crossref_primary_10_3168_jds_2024_24762
crossref_primary_10_1007_s40520_024_02791_x
crossref_primary_10_1093_sleep_zsaf021
crossref_primary_10_2196_41203
crossref_primary_10_3390_ijerph21060749
crossref_primary_10_1002_jts_22868
crossref_primary_10_1016_j_lana_2025_101030
crossref_primary_10_1093_pm_pnad167
crossref_primary_10_1177_13623613241304513
crossref_primary_10_1161_JAHA_122_030010
crossref_primary_10_1016_j_socscimed_2025_117703
crossref_primary_10_2196_42190
crossref_primary_10_1177_02654075241254861
crossref_primary_10_1111_bjd_20625
crossref_primary_10_1186_s12889_024_19975_9
crossref_primary_10_3389_fpubh_2024_1428384
crossref_primary_10_1080_21620555_2024_2395526
crossref_primary_10_3389_fpubh_2023_1137527
crossref_primary_10_1111_jan_16378
crossref_primary_10_1016_j_ecoenv_2023_115792
crossref_primary_10_1016_j_jad_2023_10_057
crossref_primary_10_1161_JAHA_123_032603
crossref_primary_10_1063_5_0073141
crossref_primary_10_1017_S2045796023000136
crossref_primary_10_1136_bmjopen_2021_049795
crossref_primary_10_1136_bmjopen_2024_086801
crossref_primary_10_3390_ijerph19063593
crossref_primary_10_1016_j_xjmad_2024_100101
crossref_primary_10_1093_geroni_igae050
crossref_primary_10_1164_rccm_202306_1072OC
crossref_primary_10_1016_j_socscimed_2025_117841
crossref_primary_10_1001_jamanetworkopen_2024_17796
crossref_primary_10_1016_j_tate_2024_104660
crossref_primary_10_1186_s13058_023_01623_6
crossref_primary_10_1016_j_biopsych_2024_01_001
crossref_primary_10_2174_0117450179298863240516070510
crossref_primary_10_1080_27697061_2024_2374412
crossref_primary_10_1111_cdoe_12770
crossref_primary_10_1007_s40726_025_00341_1
crossref_primary_10_1038_s41598_023_38455_5
crossref_primary_10_1016_j_sleh_2023_02_003
crossref_primary_10_1016_j_eclinm_2023_102165
crossref_primary_10_3389_fmed_2022_994308
crossref_primary_10_3389_fendo_2024_1389330
crossref_primary_10_1186_s12877_024_05448_6
crossref_primary_10_1007_s10964_021_01544_7
crossref_primary_10_1016_j_exger_2023_112093
crossref_primary_10_3389_fpubh_2024_1450167
crossref_primary_10_3390_ijerph192114052
crossref_primary_10_1001_jama_2023_0367
crossref_primary_10_1007_s40620_024_02167_4
crossref_primary_10_2196_59792
crossref_primary_10_1136_rapm_2024_105344
crossref_primary_10_1007_s11205_022_03053_x
crossref_primary_10_1097_j_pain_0000000000002911
crossref_primary_10_1080_10749357_2023_2188756
crossref_primary_10_1177_00220345251315155
crossref_primary_10_1016_j_smrv_2024_101916
crossref_primary_10_1007_s00431_024_05925_5
crossref_primary_10_1093_geronb_gbac006
crossref_primary_10_1007_s10802_024_01195_9
crossref_primary_10_1038_s41598_024_59173_6
crossref_primary_10_2188_jea_JE20220175
crossref_primary_10_2147_CLEP_S380828
crossref_primary_10_2215_CJN_0000000000000398
crossref_primary_10_1097_HJH_0000000000003861
crossref_primary_10_1093_rheumatology_keac335
crossref_primary_10_1111_1753_0407_13523
crossref_primary_10_1186_s12889_024_17854_x
crossref_primary_10_1093_ntr_ntae301
crossref_primary_10_1080_17501911_2024_2402681
crossref_primary_10_1177_08982643221125838
crossref_primary_10_1001_jamadermatol_2022_4053
crossref_primary_10_1111_pcn_13590
crossref_primary_10_1186_s12884_025_07414_5
crossref_primary_10_1016_j_heliyon_2022_e10493
crossref_primary_10_1038_s41598_024_64311_1
crossref_primary_10_1007_s00011_025_01999_5
crossref_primary_10_7189_jogh_15_04060
crossref_primary_10_1097_PR9_0000000000001165
crossref_primary_10_1111_eci_13968
crossref_primary_10_59400_apr2580
crossref_primary_10_1111_aphw_12584
crossref_primary_10_3390_jcm12031091
crossref_primary_10_1016_j_amepre_2022_10_018
crossref_primary_10_1016_j_jad_2024_03_139
crossref_primary_10_1177_03635465221116313
crossref_primary_10_1097_j_pain_0000000000003461
crossref_primary_10_1007_s00406_024_01774_3
crossref_primary_10_1016_j_healthpol_2024_105202
crossref_primary_10_2196_48907
crossref_primary_10_1177_08862605251324966
crossref_primary_10_1136_bmjopen_2022_070509
crossref_primary_10_5688_ajpe8594
crossref_primary_10_1093_rap_rkae053
crossref_primary_10_1111_jopy_12928
crossref_primary_10_3389_fepid_2022_980476
crossref_primary_10_1186_s13643_022_01971_y
crossref_primary_10_1097_GME_0000000000002447
crossref_primary_10_1128_spectrum_00229_24
crossref_primary_10_3389_fnagi_2023_1122927
crossref_primary_10_1093_ageing_afae264
crossref_primary_10_3389_fpain_2022_1003237
crossref_primary_10_1177_14574969241241969
crossref_primary_10_1016_j_socscimed_2023_116449
crossref_primary_10_1371_journal_pone_0293506
crossref_primary_10_1177_26350106241293120
crossref_primary_10_1017_S000711452200263X
crossref_primary_10_1186_s12889_025_22083_x
crossref_primary_10_1007_s10654_024_01179_5
crossref_primary_10_3390_jcm11216249
crossref_primary_10_1007_s00415_023_11748_5
crossref_primary_10_1186_s12911_023_02213_4
crossref_primary_10_1097_MAO_0000000000004332
crossref_primary_10_1002_smi_3327
crossref_primary_10_1186_s12939_023_02088_x
crossref_primary_10_2147_COPD_S487178
crossref_primary_10_1001_jamapsychiatry_2024_2148
crossref_primary_10_1186_s12916_023_02926_3
crossref_primary_10_1002_mnfr_202400833
crossref_primary_10_1038_s41598_023_41660_x
crossref_primary_10_1186_s12889_024_20617_3
crossref_primary_10_1111_all_15916
crossref_primary_10_1186_s12937_024_01053_w
crossref_primary_10_1371_journal_pone_0312248
crossref_primary_10_1016_j_psyneuen_2024_107221
crossref_primary_10_3389_fmed_2022_1071431
crossref_primary_10_3390_ijerph19127023
crossref_primary_10_1371_journal_pone_0294017
crossref_primary_10_1016_j_jad_2023_07_014
crossref_primary_10_1186_s13613_024_01328_9
crossref_primary_10_1590_0102_311xen106622
crossref_primary_10_1016_j_jdent_2023_104559
crossref_primary_10_1080_17441692_2024_2447792
crossref_primary_10_1177_07334648241232759
crossref_primary_10_1097_MNH_0000000000000972
crossref_primary_10_1111_obr_13695
crossref_primary_10_1186_s12913_023_10326_9
crossref_primary_10_3233_NRE_210293
crossref_primary_10_1186_s40337_022_00603_z
crossref_primary_10_1186_s12889_024_19098_1
crossref_primary_10_1016_j_lanhl_2024_100652
crossref_primary_10_1136_bmjdrc_2023_003696
crossref_primary_10_1186_s12916_022_02513_y
crossref_primary_10_1016_j_jad_2022_05_001
crossref_primary_10_1016_j_ssmph_2024_101717
crossref_primary_10_1111_add_70008
crossref_primary_10_1093_ageing_afae218
crossref_primary_10_1016_j_josat_2024_209434
crossref_primary_10_1016_j_amepre_2022_06_018
crossref_primary_10_1002_cam4_7353
crossref_primary_10_1155_2024_5570405
crossref_primary_10_1111_hiv_13524
crossref_primary_10_1136_bmjopen_2022_065188
crossref_primary_10_1371_journal_pgph_0001595
crossref_primary_10_1016_j_ssmph_2023_101510
crossref_primary_10_1186_s12874_023_01993_7
crossref_primary_10_1002_gps_70006
crossref_primary_10_1371_journal_pone_0283799
crossref_primary_10_1016_j_socscimed_2024_117562
crossref_primary_10_1007_s43621_024_00212_7
crossref_primary_10_1002_smi_70010
crossref_primary_10_1016_j_tjfa_2025_100027
crossref_primary_10_1186_s12889_024_19996_4
crossref_primary_10_3389_fpain_2025_1512878
crossref_primary_10_1002_icd_2358
crossref_primary_10_1016_j_brs_2024_04_010
crossref_primary_10_1097_CM9_0000000000002703
crossref_primary_10_1186_s12887_024_05151_w
crossref_primary_10_1016_j_numecd_2023_02_018
crossref_primary_10_1007_s10964_023_01796_5
crossref_primary_10_18332_tid_163175
crossref_primary_10_1371_journal_pone_0280878
crossref_primary_10_1007_s10459_023_10279_y
crossref_primary_10_1186_s12889_023_17365_1
crossref_primary_10_1007_s11764_024_01582_7
crossref_primary_10_3390_ejihpe14110186
crossref_primary_10_1016_j_earlhumdev_2024_106138
crossref_primary_10_1192_bjo_2023_586
crossref_primary_10_1016_j_archger_2023_105133
crossref_primary_10_1016_j_maturitas_2024_107943
crossref_primary_10_1016_j_archger_2024_105682
crossref_primary_10_3390_curroncol29110651
crossref_primary_10_1177_1179173X221089710
crossref_primary_10_2139_ssrn_4052643
Cites_doi 10.1007/s10508-014-0258-6
10.1186/s12882-016-0238-2
10.1097/01.j.pain.0000460319.87643.11
10.1016/j.aci.2018.02.003
10.1016/j.sapharm.2016.11.011
10.14301/llcs.v8i4.409
10.1161/CIRCOUTCOMES.115.002068
10.1186/1472-6947-14-24
10.1007/BF02294210
10.1016/j.ajog.2015.06.011
10.1111/j.1467-9531.2010.01227.x
10.18637/jss.v036.i07
10.1186/1479-5868-5-57
10.1002/icd.481
10.1002/icd.482
10.1017/S0954579413000424
10.1037/tra0000094
10.1177/0011000016658097
10.1111/j.1530-0277.2000.tb02070.x
10.15288/jsa.2000.61.799
10.1002/sim.2148
10.18637/jss.v042.i10
10.3917/popu.804.0621
10.1177/0049124111400041
10.1177/075910630709500104
10.1093/aje/kws303
10.1038/oby.2010.228
10.1002/asi.23009
10.1080/10705511.2016.1253479
10.1002/ejp.998
10.1080/10705511.2014.882666
10.5271/sjweh.3584
10.1007/s11136-013-0380-2
10.1080/03610926.2012.719986
10.3758/s13428-017-0976-5
10.1097/01.j.pain.0000460327.10515.2d
10.1007/s10182-011-0171-4
10.1111/rssa.12125
10.1111/j.1467-8624.2009.01269.x
10.1111/cdep.12163
10.1080/10705511.2014.915181
10.18637/jss.v040.i04
10.1080/10705511.2016.1247646
10.1073/pnas.82.18.6186
10.2147/JPR.S191183
10.1037/0021-843X.112.4.526
10.1037/0012-1649.44.2.446
10.1136/bmjopen-2017-020683
10.1186/s12874-018-0620-9
10.1007/s11121-011-0201-1
10.1186/s12913-015-0857-5
10.1097/j.pain.0000000000000281
10.1111/1467-9868.00090
10.1080/10705510701575602
10.1016/j.drugalcdep.2011.03.030
10.1111/j.1751-9004.2007.00054.x
10.1007/s40865-018-0085-x
10.1177/0165025409343765
10.1146/annurev.clinpsy.121208.131413
10.3389/fpsyg.2018.00675
10.1023/A:1022137429115
10.1037/1082-989X.4.2.139
10.3389/fpsyg.2014.00343
10.1177/0049124101029003005
10.1177/0013164417719111
10.1016/j.lindif.2017.11.001
10.1111/j.0006-341X.1999.00463.x
10.1146/annurev.psych.53.100901.135239
10.1002/sim.5819
10.20982/tqmp.11.2.p063
10.1177/0013164415588946
10.1097/BRS.0000000000000975
10.1046/j.1360-0443.91.12s1.10.x
10.1186/s13229-019-0264-6
10.20982/tqmp.05.1.p011
10.1086/681962
10.1093/jpepsy/jst085
10.1016/j.jpainsymman.2016.08.018
10.1037/0012-1649.44.2.457
10.14301/llcs.v8i2.415
10.1007/s10654-020-00615-6
10.1016/j.puhe.2018.01.007
10.1016/j.invent.2015.02.003
10.1111/dmcn.13913
10.1016/j.joca.2014.09.026
10.1093/ageing/afw127
10.1111/bjc.12237
10.1207/S15328007SEM0904_8
10.1097/JCN.0b013e3182834191
10.1186/s12913-020-5030-0
10.1002/sim.7241
10.1002/pst.1541
10.1093/jpepsy/jst084
10.1037/a0025328
10.1016/j.joca.2014.03.009
10.1016/j.ssmph.2016.11.008
10.1007/978-3-642-38326-7_37
10.1016/j.joca.2016.01.989
10.1177/1536867X1601600303
10.1080/10705511.2019.1590146
10.1111/jftr.12120
10.1016/j.jpain.2013.09.005
ContentType Journal Article
Copyright 2020 Nguena Nguefack et al.
COPYRIGHT 2020 Dove Medical Press Limited
2020. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Nguena Nguefack et al. 2020 Nguena Nguefack et al.
Copyright_xml – notice: 2020 Nguena Nguefack et al.
– notice: COPYRIGHT 2020 Dove Medical Press Limited
– notice: 2020. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Nguena Nguefack et al. 2020 Nguena Nguefack et al.
DBID AAYXX
CITATION
NPM
3V.
7XB
8C1
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.2147/CLEP.S265287
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Public Health Database
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Public Health
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Health Research Premium Collection (Alumni)
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE - Academic


PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
DocumentTitleAlternate Nguena Nguefack et al
EISSN 1179-1349
EndPage 1222
ExternalDocumentID oai_doaj_org_article_cf0b087d0f3f45f8be233bd7653c9620
PMC7608582
A641907643
33154677
10_2147_CLEP_S265287
Genre Journal Article
Review
GeographicLocations Canada
Quebec
GeographicLocations_xml – name: Quebec
– name: Canada
GroupedDBID ---
0YH
29B
2WC
53G
5VS
8C1
8G5
AAYXX
ABUWG
ADBBV
ADRAZ
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
C1A
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HYE
IAO
IHR
IHW
IPNFZ
ITC
KQ8
M2O
M48
M~E
O5R
O5S
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RIG
RPM
TDBHL
TR2
UKHRP
VDV
NPM
PMFND
3V.
7XB
8FK
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c576t-b9e8e5c88c0e37d07b3c43646f09bc0970043e88079a335436fbb7246721299d3
IEDL.DBID M48
ISSN 1179-1349
IngestDate Wed Aug 27 01:14:37 EDT 2025
Thu Aug 21 18:25:40 EDT 2025
Thu Jul 10 19:31:40 EDT 2025
Fri Jul 25 22:51:57 EDT 2025
Tue Jun 17 21:18:23 EDT 2025
Tue Jun 10 20:21:27 EDT 2025
Thu May 22 21:21:04 EDT 2025
Thu Jan 02 22:42:00 EST 2025
Tue Jul 01 02:28:42 EDT 2025
Thu Apr 24 22:54:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords latent transition analysis
group-based trajectory modelling
growth mixture modelling
modelling techniques
sequence analysis
latent class analysis
cluster analysis
Language English
License http://creativecommons.org/licenses/by-nc/3.0
2020 Nguena Nguefack et al.
This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-b9e8e5c88c0e37d07b3c43646f09bc0970043e88079a335436fbb7246721299d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8686-447X
0000-0001-9593-8883
0000-0002-3992-5145
0000-0002-7742-2717
OpenAccessLink https://doaj.org/article/cf0b087d0f3f45f8be233bd7653c9620
PMID 33154677
PQID 2461111203
PQPubID 3933188
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_cf0b087d0f3f45f8be233bd7653c9620
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7608582
proquest_miscellaneous_2458037187
proquest_journals_2461111203
gale_infotracmisc_A641907643
gale_infotracacademiconefile_A641907643
gale_healthsolutions_A641907643
pubmed_primary_33154677
crossref_primary_10_2147_CLEP_S265287
crossref_citationtrail_10_2147_CLEP_S265287
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New Zealand
PublicationPlace_xml – name: New Zealand
– name: Macclesfield
PublicationTitle Clinical epidemiology
PublicationTitleAlternate Clin Epidemiol
PublicationYear 2020
Publisher Dove Medical Press Limited
Taylor & Francis Ltd
Dove
Dove Medical Press
Publisher_xml – name: Dove Medical Press Limited
– name: Taylor & Francis Ltd
– name: Dove
– name: Dove Medical Press
References Pagé (ref54) 2017; 21
Haviland (ref94) 2011; 40
Kaplan (ref82) 2008; 44
(ref111) 1998
Nylund-Gibson (ref96) 2019; 26
Karlin (ref113) 1985; 82
Sotres-Alvarez (ref67) 2013; 177
Liao (ref105) 2016; 17
Linzer (ref79) 2011; 42
Le Meur (ref115) 2015; 15
Dupéré (ref32) 2007; 95
Lee (ref136) 2013; 25
(ref102) 2017
Jones (ref55) 2001; 29
Zhang (ref74) 2004; 5
Tan (ref100) 2006; 8
Curran (ref16) 1999; 27
Berlin (ref39) 2014; 39
Collins (ref23) 2014; 22
Curran (ref6) 2003; 112
Barban (ref4) 2012; 61
(ref53) 2019
Frankfurt (ref46) 2016; 44
(ref89) 2008
Barnett (ref134) 2008; 5
Ryoo (ref63) 2018; 9
Rebora (ref128) 2012; 11
Panken (ref29) 2016
Bussu (ref47) 2019; 10
Schreiber (ref86) 2016; 13
Li (ref132) 2019; 12
Langford (ref28) 2015; 156
Leroy (ref103) 2017
Ram (ref2) 2009; 33
Velicer (ref66) 1996; 91
Lanza (ref69) 2007; 14
Lesnard (ref129) 2006
Arling (ref133) 2015; 8
Baumgartner (ref59) 2014; 65
Andruff (ref57) 2009; 5
Vanasse (ref124) 2020; 20
Wurpts (ref72) 2012
Muthén (ref37) 2000; 24
Losina (ref93) 2016; 24
Pat-Horenczyk (ref83) 2016; 8
Huh (ref85) 2011; 19
Bollen (ref19) 2002; 53
Robette (ref122) 2008; 63
(ref50) 2010
Studer (ref119) 2016; 179
Nicholls (ref25) 2014; 22
Connell (ref42) 2006; 15
Gabadinho (ref125) 2011; 40
Su (ref127) 2017; 36
van de Schoot (ref95) 2017; 24
Asparouhov (ref70) 2017; 24
(ref36) 1987
Asparouhov (ref97) 2014; 21
Sivarathri (ref98) 2014; 2
Muthén (ref78) 2011; 13
Esplin (ref104) 2015; 213
Visser (ref80) 2010; 36
Kongsted (ref24) 2016; 14
Park (ref71) 2018; 78
(ref38) 2015
Harvey (ref65) 2015; 11
Robette (ref121) 2011
Shi (ref30) 2013; 22
Han (ref18) 2017; 8
Fonseca (ref107) 2012
Gottfredson (ref92) 2014; 21
Enthoven (ref10) 2016; 45
Vasilenko (ref90) 2015; 44
Kantardzic (ref99) 2019
Defossez (ref114) 2014; 14
Lanza (ref34) 2016; 10
Seaton (ref135) 2012; 48
Arrandale (ref8) 2006
Elmer (ref5) 2018; 18
Li (ref137) 2016; 76
Nagin (ref22) 1999; 4
Muthén (ref40) 2006; 15
Hesser (ref131) 2015; 2
(ref15) 2004
Lanza (ref35) 2008; 44
Jones (ref61) 2012; 10
Warren (ref33) 2015; 120
Cumsille (ref138) 2009; 80
Deyo (ref11) 2015; 40
Maione (ref108) 2019; 15
Herle (ref14) 2020; 35
ref139
(ref101) 2018
Cravedi (ref106) 2018; 60
ref88
Rabbitts (ref26) 2015; 156
Nielsen (ref60) 2014; 43
Flint (ref62) 2017; 53
Mikolai (ref126) 2017; 8
Langeheine (ref64) 1994
Ray (ref91) 2018; 4
Gauthier (ref120) 2010; 40
(ref31) 1991
Lanza (ref75) 2013; 14
Martin (ref51) 2015; 7
Lanza (ref73) 2015
Nagin (ref9) 2010; 6
Kuramoto (ref87) 2011; 118
McDevitt-Petrovic (ref48) 2020; 59
ref77
Pagé (ref12) 2015; 156
(ref7) 2011
Muthén (ref49) 2002; 9
Masterson Creber (ref45) 2014; 29
Muthén (ref41) 1999; 55
Halpin (ref130) 2016; 16
Reinecke (ref3) 2011; 95
Muthén (ref20) 1984; 49
Jung (ref1) 2008; 2
Sammel (ref44) 1997; 59
Roux (ref116) 2018
Chung (ref76) 2005; 24
ref118
(ref58) 2015
Amatya (ref110) 2013; 32
(ref84) 1995
Vanasse (ref112) 2018; 157
(ref21) 1994
Sieberg (ref27) 2013; 14
Heggeseth (ref17) 2013
McNeish (ref43) 2018; 50
Guo (ref68) 2000; 61
Proust-Lima (ref52) 2015
(ref123) 2018
Haenssgen (ref117) 2017; 3
Jones (ref56) 2007
Bolin (ref109) 2014; 5
Lennon (ref13) 2018; 8
Hickendorff (ref81) 2018; 66
References_xml – volume-title: Latent Class Analysis
  year: 1987
  ident: ref36
– volume: 44
  start-page: 705
  year: 2015
  ident: ref90
  publication-title: Arch Sex Behav
  doi: 10.1007/s10508-014-0258-6
– volume: 17
  start-page: 25
  year: 2016
  ident: ref105
  publication-title: BMC Nephrol
  doi: 10.1186/s12882-016-0238-2
– year: 2015
  ident: ref52
  publication-title: arXiv e-Prints
– volume: 156
  start-page: 371
  year: 2015
  ident: ref28
  publication-title: PAIN
  doi: 10.1097/01.j.pain.0000460319.87643.11
– volume: 5
  start-page: 697
  year: 2004
  ident: ref74
  publication-title: J Machine Learning Res
– volume: 15
  start-page: 153
  year: 2019
  ident: ref108
  publication-title: Applied Computing Informatics
  doi: 10.1016/j.aci.2018.02.003
– volume: 13
  start-page: 1196
  year: 2016
  ident: ref86
  publication-title: Research Social Administrative Pharmacy
  doi: 10.1016/j.sapharm.2016.11.011
– volume: 8
  start-page: 319
  year: 2017
  ident: ref18
  publication-title: Longit Life Course Stud
  doi: 10.14301/llcs.v8i4.409
– volume: 8
  start-page: S131
  year: 2015
  ident: ref133
  publication-title: Circ Cardiovasc Qual Outcomes
  doi: 10.1161/CIRCOUTCOMES.115.002068
– start-page: 90
  year: 2006
  ident: ref129
  publication-title: Bulletin de méthodologie sociologique
– volume: 14
  start-page: 24
  year: 2014
  ident: ref114
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/1472-6947-14-24
– start-page: 170
  year: 1994
  ident: ref64
  publication-title: Analyzing Social and Political Change: A Casebook of Methods
– volume: 49
  start-page: 115
  year: 1984
  ident: ref20
  publication-title: Psychometrika
  doi: 10.1007/BF02294210
– volume: 213
  start-page: 429 e421429
  year: 2015
  ident: ref104
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2015.06.011
– volume: 40
  start-page: 1
  year: 2010
  ident: ref120
  publication-title: Sociol Methodol
  doi: 10.1111/j.1467-9531.2010.01227.x
– volume-title: Latent Variable Models in Clinical Psychology
  year: 2019
  ident: ref53
– volume: 36
  start-page: 1
  year: 2010
  ident: ref80
  publication-title: J Stat Softw
  doi: 10.18637/jss.v036.i07
– volume: 5
  start-page: 57
  year: 2008
  ident: ref134
  publication-title: Int J Behavioral Nutrition Physical Activity
  doi: 10.1186/1479-5868-5-57
– volume: 15
  start-page: 609
  year: 2006
  ident: ref42
  publication-title: Infant Child Dev
  doi: 10.1002/icd.481
– year: 2012
  ident: ref107
  publication-title: Int J Soc Res Methodol
– volume: 8
  start-page: 487
  year: 2006
  ident: ref100
  publication-title: Introduction Data Mining
– volume: 15
  start-page: 623
  year: 2006
  ident: ref40
  publication-title: Infant Child Dev
  doi: 10.1002/icd.482
– volume: 25
  start-page: 1137
  year: 2013
  ident: ref136
  publication-title: Dev Psychopathol
  doi: 10.1017/S0954579413000424
– volume: 8
  start-page: 541
  year: 2016
  ident: ref83
  publication-title: Psychological Trauma: Theory, Research, Practice, and Policy
  doi: 10.1037/tra0000094
– volume: 44
  start-page: 622
  year: 2016
  ident: ref46
  publication-title: Couns Psychol
  doi: 10.1177/0011000016658097
– volume: 24
  start-page: 882
  year: 2000
  ident: ref37
  publication-title: Alcohol Clin Exp Res
  doi: 10.1111/j.1530-0277.2000.tb02070.x
– volume: 61
  start-page: 799
  year: 2000
  ident: ref68
  publication-title: J Stud Alcohol
  doi: 10.15288/jsa.2000.61.799
– volume: 24
  start-page: 2895
  year: 2005
  ident: ref76
  publication-title: Stat Med
  doi: 10.1002/sim.2148
– volume: 42
  start-page: 10
  year: 2011
  ident: ref79
  publication-title: J Stat Softw
  doi: 10.18637/jss.v042.i10
– volume: 63
  start-page: 621
  year: 2008
  ident: ref122
  publication-title: Population
  doi: 10.3917/popu.804.0621
– volume: 40
  start-page: 367
  year: 2011
  ident: ref94
  publication-title: Sociol Methods Res
  doi: 10.1177/0049124111400041
– year: 2007
  ident: ref56
  publication-title: Carnegie Mellon University
– volume: 95
  start-page: 26
  year: 2007
  ident: ref32
  publication-title: Bulletin de méthodologie sociologique
  doi: 10.1177/075910630709500104
– volume: 177
  start-page: 852
  year: 2013
  ident: ref67
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kws303
– volume: 19
  start-page: 652
  year: 2011
  ident: ref85
  publication-title: Obesity
  doi: 10.1038/oby.2010.228
– volume-title: New Developments in Statistics for Psychology and the Social Sciences
  year: 1991
  ident: ref31
– volume: 65
  start-page: 797
  year: 2014
  ident: ref59
  publication-title: J Association Information Sci Technol
  doi: 10.1002/asi.23009
– volume: 24
  start-page: 257
  year: 2017
  ident: ref70
  publication-title: Structural Equation Modeling: A Multidisciplinary J
  doi: 10.1080/10705511.2016.1253479
– volume: 21
  start-page: 965
  year: 2017
  ident: ref54
  publication-title: European J Pain
  doi: 10.1002/ejp.998
– volume: 21
  start-page: 196
  year: 2014
  ident: ref92
  publication-title: Structural Equation Modeling: A Multidisciplinary J
  doi: 10.1080/10705511.2014.882666
– start-page: 520
  year: 2016
  ident: ref29
  publication-title: Scand J Work Environ Health
  doi: 10.5271/sjweh.3584
– volume: 22
  start-page: 2331
  year: 2013
  ident: ref30
  publication-title: Quality Life Res
  doi: 10.1007/s11136-013-0380-2
– volume: 43
  start-page: 4337
  year: 2014
  ident: ref60
  publication-title: Communications Stat Theory Methods
  doi: 10.1080/03610926.2012.719986
– start-page: 295
  year: 2019
  ident: ref99
  publication-title: Data Mining
– volume: 50
  start-page: 1398
  year: 2018
  ident: ref43
  publication-title: Behav Res Methods
  doi: 10.3758/s13428-017-0976-5
– volume: 156
  start-page: 460
  year: 2015
  ident: ref12
  publication-title: PAIN
  doi: 10.1097/01.j.pain.0000460327.10515.2d
– volume: 95
  start-page: 415
  year: 2011
  ident: ref3
  publication-title: AStA
  doi: 10.1007/s10182-011-0171-4
– volume: 179
  start-page: 481
  year: 2016
  ident: ref119
  publication-title: J Royal Stat Society
  doi: 10.1111/rssa.12125
– volume: 80
  start-page: 418
  year: 2009
  ident: ref138
  publication-title: Child Dev
  doi: 10.1111/j.1467-8624.2009.01269.x
– volume-title: A Bayesian Zero-Inflated Generalized Growth Mixture Model for Adolescent Health Risk Behaviors
  year: 2015
  ident: ref38
– volume: 61
  start-page: 765
  year: 2012
  ident: ref4
  publication-title: J Royal Statistical Society
– volume: 10
  start-page: 59
  year: 2016
  ident: ref34
  publication-title: Child Dev Perspect
  doi: 10.1111/cdep.12163
– volume: 21
  start-page: 329
  year: 2014
  ident: ref97
  publication-title: Structural Equation Modeling: A Multidisciplinary J
  doi: 10.1080/10705511.2014.915181
– volume: 40
  start-page: 1
  year: 2011
  ident: ref125
  publication-title: J Stat Softw
  doi: 10.18637/jss.v040.i04
– volume: 24
  start-page: 451
  year: 2017
  ident: ref95
  publication-title: Structural Equation Modeling: A Multidisciplinary J
  doi: 10.1080/10705511.2016.1247646
– volume: 82
  start-page: 6186
  year: 1985
  ident: ref113
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.82.18.6186
– volume: 12
  start-page: 1673
  year: 2019
  ident: ref132
  publication-title: J Pain Res
  doi: 10.2147/JPR.S191183
– volume: 112
  start-page: 526
  year: 2003
  ident: ref6
  publication-title: J Abnorm Psychol
  doi: 10.1037/0021-843X.112.4.526
– volume: 44
  start-page: 446
  year: 2008
  ident: ref35
  publication-title: Dev Psychol
  doi: 10.1037/0012-1649.44.2.446
– ident: ref88
– volume: 8
  start-page: e020683
  year: 2018
  ident: ref13
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-020683
– volume: 18
  start-page: 152
  year: 2018
  ident: ref5
  publication-title: BMC Med Res Methodol
  doi: 10.1186/s12874-018-0620-9
– volume-title: Group-Based Trajectory Modeling for Longitudinal Data of Healthcare Financial Charges in Patients with Inflammatory Bowel Disease
  year: 2015
  ident: ref58
– volume: 14
  start-page: 157
  year: 2013
  ident: ref75
  publication-title: Society Prevention Res
  doi: 10.1007/s11121-011-0201-1
– volume: 15
  start-page: 200
  year: 2015
  ident: ref115
  publication-title: BMC Health Serv Res
  doi: 10.1186/s12913-015-0857-5
– ident: ref77
– volume-title: Introduction to Data Mining
  year: 2018
  ident: ref101
– volume: 156
  start-page: 2383
  year: 2015
  ident: ref26
  publication-title: Pain
  doi: 10.1097/j.pain.0000000000000281
– volume: 59
  start-page: 667
  year: 1997
  ident: ref44
  publication-title: J Royal Stat Society Series B
  doi: 10.1111/1467-9868.00090
– volume: 14
  start-page: 671
  year: 2007
  ident: ref69
  publication-title: Structural Equation Modeling
  doi: 10.1080/10705510701575602
– volume: 118
  start-page: 237
  year: 2011
  ident: ref87
  publication-title: Drug Alcohol Depend
  doi: 10.1016/j.drugalcdep.2011.03.030
– volume: 2
  start-page: 302
  year: 2008
  ident: ref1
  publication-title: Soc Personal Psychol Compass
  doi: 10.1111/j.1751-9004.2007.00054.x
– volume: 4
  start-page: 276
  year: 2018
  ident: ref91
  publication-title: J Developmental Life-Course Criminology
  doi: 10.1007/s40865-018-0085-x
– volume: 33
  start-page: 565
  year: 2009
  ident: ref2
  publication-title: Int J Behav Dev
  doi: 10.1177/0165025409343765
– volume: 6
  start-page: 109
  year: 2010
  ident: ref9
  publication-title: Annu Rev Clin Psychol
  doi: 10.1146/annurev.clinpsy.121208.131413
– year: 2012
  ident: ref72
  publication-title: Arizona State Univ Master Arts
– volume: 13
  start-page: 1
  year: 2011
  ident: ref78
  publication-title: Mplus Web Notes
– volume: 9
  start-page: 675
  year: 2018
  ident: ref63
  publication-title: Front Psychol
  doi: 10.3389/fpsyg.2018.00675
– volume: 27
  start-page: 567
  year: 1999
  ident: ref16
  publication-title: Am J Community Psychol
  doi: 10.1023/A:1022137429115
– volume: 4
  start-page: 139
  year: 1999
  ident: ref22
  publication-title: Psychol Methods
  doi: 10.1037/1082-989X.4.2.139
– volume: 5
  start-page: 343
  year: 2014
  ident: ref109
  publication-title: Front Psychol
  doi: 10.3389/fpsyg.2014.00343
– volume: 29
  start-page: 374
  year: 2001
  ident: ref55
  publication-title: Sociological Methods Res
  doi: 10.1177/0049124101029003005
– volume: 78
  start-page: 737
  year: 2018
  ident: ref71
  publication-title: Educ Psychol Meas
  doi: 10.1177/0013164417719111
– volume: 66
  start-page: 4
  year: 2018
  ident: ref81
  publication-title: Learn Individ Differ
  doi: 10.1016/j.lindif.2017.11.001
– volume: 55
  start-page: 463
  year: 1999
  ident: ref41
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00463.x
– start-page: 1
  year: 2017
  ident: ref103
  publication-title: Revue de médecine périnatale
– volume: 10
  start-page: 2015
  year: 2012
  ident: ref61
  publication-title: Research Showcase@ CMU Carnegie Mellon University Retrieved on July
– volume: 53
  start-page: 605
  year: 2002
  ident: ref19
  publication-title: Ann Rev Psychol
  doi: 10.1146/annurev.psych.53.100901.135239
– volume: 32
  start-page: 4162
  year: 2013
  ident: ref110
  publication-title: Stat Med
  doi: 10.1002/sim.5819
– volume: 11
  start-page: 2
  year: 2015
  ident: ref65
  publication-title: Quantitative Methods Psychol
  doi: 10.20982/tqmp.11.2.p063
– volume: 14
  start-page: 1
  year: 2016
  ident: ref24
  publication-title: BMC Musculoskelet Disord
– volume: 76
  start-page: 181
  year: 2016
  ident: ref137
  publication-title: Educ Psychol Meas
  doi: 10.1177/0013164415588946
– volume: 40
  start-page: 1352
  year: 2015
  ident: ref11
  publication-title: SPINE
  doi: 10.1097/BRS.0000000000000975
– year: 2015
  ident: ref73
  publication-title: University Park: The Methodology Center, Penn State
– volume-title: Latent Variables Analysis: Applications for Developmental Research
  year: 1994
  ident: ref21
– volume: 91
  start-page: 197
  year: 1996
  ident: ref66
  publication-title: Addiction
  doi: 10.1046/j.1360-0443.91.12s1.10.x
– volume: 10
  start-page: 13
  year: 2019
  ident: ref47
  publication-title: Mol Autism
  doi: 10.1186/s13229-019-0264-6
– volume-title: Mplus Users’ Guide, Technical Appendix
  year: 2008
  ident: ref89
– volume: 5
  start-page: 11
  year: 2009
  ident: ref57
  publication-title: Tutor Quant Methods Psychol
  doi: 10.20982/tqmp.05.1.p011
– volume: 120
  start-page: 1809
  year: 2015
  ident: ref33
  publication-title: Am J Sociol
  doi: 10.1086/681962
– volume: 39
  start-page: 188
  year: 2014
  ident: ref39
  publication-title: J Pediatr Psychol
  doi: 10.1093/jpepsy/jst085
– year: 2011
  ident: ref121
  publication-title: Collections Du CEPED
– volume-title: Handbook of Quantitative Methodology for the Social Sciences
  year: 2004
  ident: ref15
– volume: 53
  start-page: 224
  year: 2017
  ident: ref62
  publication-title: J Pain Symptom Manage
  doi: 10.1016/j.jpainsymman.2016.08.018
– volume-title: Numerical Ecology
  year: 1998
  ident: ref111
– volume: 44
  start-page: 457
  year: 2008
  ident: ref82
  publication-title: Dev Psychol
  doi: 10.1037/0012-1649.44.2.457
– volume: 8
  start-page: 191
  year: 2017
  ident: ref126
  publication-title: Longit Life Course Stud
  doi: 10.14301/llcs.v8i2.415
– volume-title: Handbook of Statistical Modeling for the Social and Behavioral Sciences
  year: 1995
  ident: ref84
– volume: 35
  start-page: 205
  year: 2020
  ident: ref14
  publication-title: Eur J Epidemiol
  doi: 10.1007/s10654-020-00615-6
– year: 2013
  ident: ref17
  publication-title: Univ California, Berkeley
– volume: 157
  start-page: 53
  year: 2018
  ident: ref112
  publication-title: Public Health
  doi: 10.1016/j.puhe.2018.01.007
– volume: 2
  start-page: 110
  year: 2015
  ident: ref131
  publication-title: Internet Interventions
  doi: 10.1016/j.invent.2015.02.003
– volume: 60
  start-page: 942
  year: 2018
  ident: ref106
  publication-title: Dev Med Child Neurol
  doi: 10.1111/dmcn.13913
– volume: 22
  start-page: 2041
  year: 2014
  ident: ref25
  publication-title: Osteoarthritis Cartilage
  doi: 10.1016/j.joca.2014.09.026
– volume: 45
  start-page: 878
  year: 2016
  ident: ref10
  publication-title: Age Ageing
  doi: 10.1093/ageing/afw127
– volume: 59
  start-page: 169
  year: 2020
  ident: ref48
  publication-title: British J Clin Psychol
  doi: 10.1111/bjc.12237
– volume-title: Practical Guide to Cluster Analysis in R: Unsupervised Machine Learning
  year: 2017
  ident: ref102
– volume: 9
  start-page: 599
  year: 2002
  ident: ref49
  publication-title: Structural Equation Modeling
  doi: 10.1207/S15328007SEM0904_8
– volume: 29
  start-page: 209
  year: 2014
  ident: ref45
  publication-title: J Cardiovasc Nurs
  doi: 10.1097/JCN.0b013e3182834191
– volume: 20
  start-page: 1
  year: 2020
  ident: ref124
  publication-title: BMC Health Serv Res
  doi: 10.1186/s12913-020-5030-0
– volume: 36
  start-page: 1823
  year: 2017
  ident: ref127
  publication-title: Stat Med
  doi: 10.1002/sim.7241
– volume-title: Cluster Analysis
  year: 2011
  ident: ref7
– volume: 11
  start-page: 494
  year: 2012
  ident: ref128
  publication-title: Pharm Stat
  doi: 10.1002/pst.1541
– ident: ref139
  doi: 10.1093/jpepsy/jst084
– start-page: 962280218772068
  year: 2018
  ident: ref116
  publication-title: Stat Methods Med Res
– volume: 48
  start-page: 448
  year: 2012
  ident: ref135
  publication-title: Dev Psychol
  doi: 10.1037/a0025328
– volume: 22
  start-page: 622
  year: 2014
  ident: ref23
  publication-title: Osteoarthritis Cartilage
  doi: 10.1016/j.joca.2014.03.009
– volume: 3
  start-page: 37
  year: 2017
  ident: ref117
  publication-title: SSM Popul Health
  doi: 10.1016/j.ssmph.2016.11.008
– ident: ref118
  doi: 10.1007/978-3-642-38326-7_37
– volume: 2
  start-page: 2590
  year: 2014
  ident: ref98
  publication-title: Int J Recent Innovation Trends Computing Communication
– volume: 24
  start-page: 765
  year: 2016
  ident: ref93
  publication-title: Osteoarthritis Cartilage
  doi: 10.1016/j.joca.2016.01.989
– start-page: 1
  year: 2006
  ident: ref8
  publication-title: UBC Faculty Res Publications
– volume-title: Handbook of Quantitative Criminology
  year: 2010
  ident: ref50
– volume: 16
  start-page: 590
  year: 2016
  ident: ref130
  publication-title: Stata J
  doi: 10.1177/1536867X1601600303
– volume-title: Sequence Analysis and Related Approaches: Innovative Methods and Applications
  year: 2018
  ident: ref123
– volume: 26
  start-page: 967
  year: 2019
  ident: ref96
  publication-title: Structural Equation Modeling: A Multidisciplinary J
  doi: 10.1080/10705511.2019.1590146
– volume: 7
  start-page: 482
  year: 2015
  ident: ref51
  publication-title: J Fam Theory Rev
  doi: 10.1111/jftr.12120
– volume: 14
  start-page: 1694
  year: 2013
  ident: ref27
  publication-title: J Pain
  doi: 10.1016/j.jpain.2013.09.005
SSID ssj0000331770
Score 2.6194682
SecondaryResourceType review_article
Snippet Trajectory modelling techniques have been developed to determine subgroups within a given population and are increasingly used to better understand intra- and...
Hermine Lore Nguena Nguefack,1 M Gabrielle Pagé,2,3 Joel Katz,4 Manon Choinière,2,3 Alain Vanasse,5,6 Marc Dorais,7 Oumar Mallé Samb,1 Anaïs Lacasse1...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1205
SubjectTerms Clinical medicine
cluster analysis
Epidemiology
Estimates
group-based trajectory modelling
growth mixture modelling
Health aspects
Latent class analysis
latent transition analysis
modelling techniques
Pain
Population
Random variables
Review
sequence analysis
Terminology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA_SJ0HE-nlaNYLig6zdJpsv387jShEtgj3oW7hkE6qUvdK7e-h_70yS2-4i4ov3dNzMwWY-MpnZyW8IeXsEYaZ13les8ZCgRKEqF1tRQRLnTJMg27A08O1UniyaL-fifDDqC3vCMjxwFtyhj7WrtWrryGMjonaBce5aJQX3RrKUrUPMGyRTaQ_mEBfTpDiEPKsQgy93veNYnsPZ1_n3jz-YFAw76QbxKMH2_7k5D6LTuHNyEIqOH5D75QxJp_nZ98md0D0k93IBjuZ7RY_IFUShX6kkf0Nx4FnC3qZnO8jWNV2sQ9xe0s2Kzm-nxKLK6K4b7xOd0tktOjg9XV6Xb_mNAl1FOi2Y5GH9mCyO52ezk6qMV6g8JBmbypmgg_Ba-zpwELBy3DdcNjLWxvnaIPA9D-Dfyiw5F0CKzikGOyuEO2Na_oTsdasuPCNUNM4Ir0wwOiVoLtQmQHanj-oQlJIT8mEnZOsL9jiOwLi0kIOgSiyqxBaVTMi7nvsqY278he8z6qvnQaTs9APYjy32Y_9lPxPyGrVt87XT3t_tVDZwVlJwYJuQ94kDPR4e2i_LxQVYOmJnjTgPRpzgqX5M3lmULTvF2iKeH3xYDeQ3PRn_id1vXVhtkUdohFbEJT_NBtgvGgxdgEqAokamOZLKmNL9vEg44krCeVuz5_9DjC_IXYaViFScOiB7m-tteAnHtY17lTzzN4xHObo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge0FCiO-FDTASiAcU5sVxbPOCuqrThKCaYJX2ZtWOzYempGvaB_577hI3bYQgT1XuKsW5L9_l_DtCXp9AmCmtc2mWO0hQgpCpDaVIIYmzOm8h27A08GVanM_yT1fiKhbcmthWufGJraMua4c18mPEPYMrY_zj4ibFqVH4dTWO0LhN9sEFK0i-9k8n04uvfZWFcYiPknUd7ziS53j8eXLx_ltWiAy76HZiUQvZ_7dj3olMw67JnTB0dp_ci_tHOuoE_oDc8tVDcrcrvtHuTNEjsoAI9Kstx_-mOOysxd2mlxu41obOGh_W13RV08l2QiyKi2468T7QER1vkcHpdL6Mv7qvCbQOdBTxyH3zmMzOJpfj8zSOVkgdJBir1GqvvHBKOea5LJm03OW8yIvAtHVMI-g992DbUs85F0AK1kqQASSMEMBK_oTsVXXlDwgVudXCSe21apMz65n2kNmpE-a9lEVC3m1esnERdxzHX1wbyD9QJAZFYqJIEvKm5150eBv_4DtFefU8iJLd3qiX3000OuMCs0zB8gIPuQjK-oxzW8pCcKeLjCXkJUrbdEdOe1s3oyKHfZKEzVpC3rYcaO3w0G4eDy3A0hE3a8B5NOAEK3VD8kajTPQSjdnqdEJe9WT8J3a-Vb5eI49QCKuIS37aKWC_aFBuASIBihyo5uCtDCnVzx8thrgsYK-tsmf_f6xDcifD-kJbcjoie6vl2j-HTdjKvoiW9gdMYzB-
  priority: 102
  providerName: ProQuest
Title Trajectory Modelling Techniques Useful to Epidemiological Research: A Comparative Narrative Review of Approaches
URI https://www.ncbi.nlm.nih.gov/pubmed/33154677
https://www.proquest.com/docview/2461111203
https://www.proquest.com/docview/2458037187
https://pubmed.ncbi.nlm.nih.gov/PMC7608582
https://doaj.org/article/cf0b087d0f3f45f8be233bd7653c9620
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rixMxEA_3-CKI-LZ61giKH2Tv0s1mkwgivdKjiFcOvcL5aWmyid5Rds8-wPvvnck-7pZTsB9K6UxLk5nJPDr5DSFvBuBmcmNtFCcWEhQvZGR8LiJI4oxOAmQblgaOp-lklnw-E2dbpJk2Wm_g6q-pHc6Tmi0X-79_XX0Cg_-IbcyDRB6MvoxP9r_FqYDof5vsgk-SaKLHdaAfzmQOfjJMjkMItAgx-aou-Ftf0PFPAcb_9mF9w1t1OylvuKaj--ReHVPSYaUED8iWKx6Su1VBjlb3jB6RS_BKF6FEf0VxAFrA4qanDYTris5Wzm8WdF3S8fXUWBQhbbrzPtAhHV2jhdPpfFm_qv5hoKWnwxqj3K0ek9nR-HQ0iepxC5GFpGMdGe2UE1YpyxyXOZOG24SnSeqZNpZpBMLnDuxd6jnnAkjeGBnDSQvuT-ucPyE7RVm4Z4SKxGhhpXZahYTNOKYdZHtqwJyTMu2R980mZ7bGIseRGIsMchIUSYYiyWqR9MjblvuywuD4B98hyqvlQeTs8Ea5_JHVhphZzwxTsDzPfSK8Mi7m3OQyFdzqNGY98gqlnVXXUFv7z4ZpArGThACuR94FDtRJ-NF2Xl9kgKUjllaHc6_DCZZru-RGo7JG8TPE94NHzID8uiXjJ7EbrnDlBnmEQqhFXPLTSgHbRYOiCxAJUGRHNTu70qUU5z8DrrhMIf5W8fP_Xt8LcifG8kOoSO2RnfVy415CjLY2fbLNvk_gWY0GfbJ7OJ6efO2Hekc_GOYf1u87zw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9gASQnwTGMxITDygbF4cxzESQl3p1LGumqCV9mZqx9lAU1L6IbR_ir-Ru3y1EYK39amKr03sO99Xzr8j5M0BmJnEWOsHoYUAJRXSN2kifAjijAoLyDZMDZwOo_44_HwuzjfI7_osDJZV1jqxUNRJbjFHvo-4Z_AJGP84_elj1yh8u1q30CjF4sRd_4KQbf7h-BPwdzcIjnqjbt-vugr4FnzrhW-Ui52wcWyZ4zJh0nAb8iiMUqaMZQrx3rkDsZZqwrmAodQYCbeHWAl0d8Lhf2-RLbjOQBFsHfaGZ1-arA7jYI8lKyvssQXQfnfQO9v7GkQiwKq9NdtXtAj42xCsWcJ2leaa2Tu6T-5V_irtlAL2gGy47CG5Wyb7aHmG6RGZgsX7UaT_ryk2Vytwvumohoed0_Hcpcsrushpb9WRFsWD1pV_72mHdldI5HQ4mVXfyrcXNE9pp8I_d_PHZHwji_6EbGZ55p4RKkKjhJXKqbgIBo1jykEkGR8w56SMPPKuXmRtK5xzbLdxpSHeQZZoZImuWOKR3YZ6WuJ7_IPuEPnV0CAqd3Ehn13oapNrmzLDYpheytNQpLFxAecmkZHgVkUB88gOcluXR1wb3aI7UQh-mQTn0CNvCwrULvDQdlIdkoCpI05Xi3K7RQlawbaHa4nSlVaa69Ue8sjrZhh_iZV2mcuXSCNihHHEKT8tBbCZNAi3AJbAiGyJZmtV2iPZ98sCs1xG4NvHwfP_P9YOud0fnQ704Hh48oLcCTC3UaS7tsnmYrZ0L8EBXJhX1a6j5NtNb_Q_DFFrFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwELfGkBASQrwJDGYkJj6grK4dxwkSQqVrtbFRTWKV9s3UjsNDKCltJ7R_jb-OO-fRRgi-rZ-i-lrZvvO9cv4dIS_7YGYyY23IIwsBSi5VaPJMhhDEmTTykG2YGvg4iQ-n0Ydzeb5Ffjd3YbCsstGJXlFnpcUceQ9xz-DDmejldVnE6cH43fxniB2k8E1r006jEpFjd_kLwrfl26MD4PUe5-PR2fAwrDsMhBb87FVoUpc4aZPEMidUxpQRNhJxFOcsNZaliP0uHIi4SmdCSBjKjVEwFYibQI9nAv73GrmuBNhZvKU-7Lf5HSbAMitW1dpjM6De8GR0uv-Jx5Jj_d6GFfTNAv42CRs2sVuvuWEAx3fI7dpzpYNK1O6SLVfcI7eqtB-tbjPdJ3Owfd_9i4BLim3WPOI3PWuAYpd0unSwsXRV0tG6Ny0KCm1qAN_QAR2uMcnpZLaon6r3GLTM6aBGQnfLB2R6JVv-kGwXZeEeEyojk0qrUpcmPiw0jqUOYsqkz5xTKg7I62aTta0Rz7Hxxg8NkQ-yRCNLdM2SgOy11PMK6eMfdO-RXy0N4nP7L8rFF10fd21zZlgCy8tFHsk8MY4LYTIVS2HTmLOA7CK3dXXZtdUyehBH4KEpcBMD8spToJ6BSdtZfV0Clo6IXR3KnQ4l6AfbHW4kStf6aanXpykgL9ph_CXW3BWuvEAamSCgIy75USWA7aJBuCWwBEZURzQ7u9IdKb599ejlKgYvP-FP_j-tXXIDjrc-OZocPyU3OSY5fN5rh2yvFhfuGXiCK_PcHzlKPl_1Gf8Dq4xtuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trajectory+Modelling+Techniques+Useful+to+Epidemiological+Research%3A+A+Comparative+Narrative+Review+of+Approaches&rft.jtitle=Clinical+epidemiology&rft.au=Lore%2C+Hermine&rft.au=Nguefack%2C+Nguena&rft.au=Page%2C+M+Gabrielle&rft.au=Katz%2C+Joel&rft.date=2020-01-01&rft.pub=Dove+Medical+Press+Limited&rft.issn=1179-1349&rft.eissn=1179-1349&rft.volume=12&rft.spage=1205&rft_id=info:doi/10.2147%2FCLEP.S265287&rft.externalDocID=A641907643
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1179-1349&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1179-1349&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1179-1349&client=summon