Trajectory Modelling Techniques Useful to Epidemiological Research: A Comparative Narrative Review of Approaches
Trajectory modelling techniques have been developed to determine subgroups within a given population and are increasingly used to better understand intra- and inter-individual variability in health outcome patterns over time. The objectives of this narrative review are to explore various trajectory...
Saved in:
Published in | Clinical epidemiology Vol. 12; pp. 1205 - 1222 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New Zealand
Dove Medical Press Limited
01.01.2020
Taylor & Francis Ltd Dove Dove Medical Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Trajectory modelling techniques have been developed to determine subgroups within a given population and are increasingly used to better understand intra- and inter-individual variability in health outcome patterns over time. The objectives of this narrative review are to explore various trajectory modelling approaches useful to epidemiological research and give an overview of their applications and differences. Guidance for reporting on the results of trajectory modelling is also covered. Trajectory modelling techniques reviewed include latent class modelling approaches, ie, growth mixture modelling (GMM), group-based trajectory modelling (GBTM), latent class analysis (LCA), and latent transition analysis (LTA). A parallel is drawn to other individual-centered statistical approaches such as cluster analysis (CA) and sequence analysis (SA). Depending on the research question and type of data, a number of approaches can be used for trajectory modelling of health outcomes measured in longitudinal studies. However, the various terms to designate latent class modelling approaches (GMM, GBTM, LTA, LCA) are used inconsistently and often interchangeably in the available scientific literature. Improved consistency in the terminology and reporting guidelines have the potential to increase researchers' efficiency when it comes to choosing the most appropriate technique that best suits their research questions. |
---|---|
AbstractList | Hermine Lore Nguena Nguefack,1 M Gabrielle Pagé,2,3 Joel Katz,4 Manon Choinière,2,3 Alain Vanasse,5,6 Marc Dorais,7 Oumar Mallé Samb,1 Anaïs Lacasse1 1Département des Sciences de la santé, Université du Québec en Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, Québec, Canada; 2Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; 3Département d'anesthésiologie et de médecine de la douleur, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada; 4Department of Psychology, Faculty of Health, York University, Toronto, Ontario, Canada; 5Département de médecine de famille et de médecine d'urgence, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; 6Centre de recherche du Centre hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, Québec, Canada; 7StatSciences Inc., Notre-Dame-de-lL'île-Perrot, Québec, CanadaCorrespondence: Anaïs LacasseDépartement des sciences de la santé, Université du Québec en Abitibi-Témiscamingue (UQAT), 445, Boul. de l'Université, Rouyn-Noranda (Qc) J9X 5E4, Québec, CanadaTel +1 819 762 0971, 2722Email lacassea@uqat.caAbstract: Trajectory modelling techniques have been developed to determine subgroups within a given population and are increasingly used to better understand intra- and inter-individual variability in health outcome patterns over time. The objectives of this narrative review are to explore various trajectory modelling approaches useful to epidemiological research and give an overview of their applications and differences. Guidance for reporting on the results of trajectory modelling is also covered. Trajectory modelling techniques reviewed include latent class modelling approaches, ie, growth mixture modelling (GMM), group-based trajectory modelling (GBTM), latent class analysis (LCA), and latent transition analysis (LTA). A parallel is drawn to other individual-centered statistical approaches such as cluster analysis (CA) and sequence analysis (SA). Depending on the research question and type of data, a number of approaches can be used for trajectory modelling of health outcomes measured in longitudinal studies. However, the various terms to designate latent class modelling approaches (GMM, GBTM, LTA, LCA) are used inconsistently and often interchangeably in the available scientific literature. Improved consistency in the terminology and reporting guidelines have the potential to increase researchers' efficiency when it comes to choosing the most appropriate technique that best suits their research questions.Keywords: modelling techniques, growth mixture modelling, group-based trajectory modelling, latent class analysis, latent transition analysis, cluster analysis, sequence analysis Trajectory modelling techniques have been developed to determine subgroups within a given population and are increasingly used to better understand intra- and inter-individual variability in health outcome patterns over time. The objectives of this narrative review are to explore various trajectory modelling approaches useful to epidemiological research and give an overview of their applications and differences. Guidance for reporting on the results of trajectory modelling is also covered. Trajectory modelling techniques reviewed include latent class modelling approaches, ie, growth mixture modelling (GMM), group-based trajectory modelling (GBTM), latent class analysis (LCA), and latent transition analysis (LTA). A parallel is drawn to other individual-centered statistical approaches such as cluster analysis (CA) and sequence analysis (SA). Depending on the research question and type of data, a number of approaches can be used for trajectory modelling of health outcomes measured in longitudinal studies. However, the various terms to designate latent class modelling approaches (GMM, GBTM, LTA, LCA) are used inconsistently and often interchangeably in the available scientific literature. Improved consistency in the terminology and reporting guidelines have the potential to increase researchers’ efficiency when it comes to choosing the most appropriate technique that best suits their research questions. Trajectory modelling techniques have been developed to determine subgroups within a given population and are increasingly used to better understand intra- and inter-individual variability in health outcome patterns over time. The objectives of this narrative review are to explore various trajectory modelling approaches useful to epidemiological research and give an overview of their applications and differences. Guidance for reporting on the results of trajectory modelling is also covered. Trajectory modelling techniques reviewed include latent class modelling approaches, ie, growth mixture modelling (GMM), group-based trajectory modelling (GBTM), latent class analysis (LCA), and latent transition analysis (LTA). A parallel is drawn to other individual-centered statistical approaches such as cluster analysis (CA) and sequence analysis (SA). Depending on the research question and type of data, a number of approaches can be used for trajectory modelling of health outcomes measured in longitudinal studies. However, the various terms to designate latent class modelling approaches (GMM, GBTM, LTA, LCA) are used inconsistently and often interchangeably in the available scientific literature. Improved consistency in the terminology and reporting guidelines have the potential to increase researchers' efficiency when it comes to choosing the most appropriate technique that best suits their research questions. Keywords: modelling techniques, growth mixture modelling, group-based trajectory modelling, latent class analysis, latent transition analysis, cluster analysis, sequence analysis Trajectory modelling techniques have been developed to determine subgroups within a given population and are increasingly used to better understand intra- and inter-individual variability in health outcome patterns over time. The objectives of this narrative review are to explore various trajectory modelling approaches useful to epidemiological research and give an overview of their applications and differences. Guidance for reporting on the results of trajectory modelling is also covered. Trajectory modelling techniques reviewed include latent class modelling approaches, ie, growth mixture modelling (GMM), group-based trajectory modelling (GBTM), latent class analysis (LCA), and latent transition analysis (LTA). A parallel is drawn to other individual-centered statistical approaches such as cluster analysis (CA) and sequence analysis (SA). Depending on the research question and type of data, a number of approaches can be used for trajectory modelling of health outcomes measured in longitudinal studies. However, the various terms to designate latent class modelling approaches (GMM, GBTM, LTA, LCA) are used inconsistently and often interchangeably in the available scientific literature. Improved consistency in the terminology and reporting guidelines have the potential to increase researchers' efficiency when it comes to choosing the most appropriate technique that best suits their research questions.Trajectory modelling techniques have been developed to determine subgroups within a given population and are increasingly used to better understand intra- and inter-individual variability in health outcome patterns over time. The objectives of this narrative review are to explore various trajectory modelling approaches useful to epidemiological research and give an overview of their applications and differences. Guidance for reporting on the results of trajectory modelling is also covered. Trajectory modelling techniques reviewed include latent class modelling approaches, ie, growth mixture modelling (GMM), group-based trajectory modelling (GBTM), latent class analysis (LCA), and latent transition analysis (LTA). A parallel is drawn to other individual-centered statistical approaches such as cluster analysis (CA) and sequence analysis (SA). Depending on the research question and type of data, a number of approaches can be used for trajectory modelling of health outcomes measured in longitudinal studies. However, the various terms to designate latent class modelling approaches (GMM, GBTM, LTA, LCA) are used inconsistently and often interchangeably in the available scientific literature. Improved consistency in the terminology and reporting guidelines have the potential to increase researchers' efficiency when it comes to choosing the most appropriate technique that best suits their research questions. |
Audience | Academic |
Author | Katz, Joel Choinière, Manon Pagé, M Gabrielle Vanasse, Alain Samb, Oumar Mallé Dorais, Marc Lacasse, Anaïs Nguena Nguefack, Hermine Lore |
Author_xml | – sequence: 1 givenname: Hermine Lore surname: Nguena Nguefack fullname: Nguena Nguefack, Hermine Lore – sequence: 2 givenname: M Gabrielle orcidid: 0000-0002-7742-2717 surname: Pagé fullname: Pagé, M Gabrielle – sequence: 3 givenname: Joel orcidid: 0000-0002-8686-447X surname: Katz fullname: Katz, Joel – sequence: 4 givenname: Manon orcidid: 0000-0001-9593-8883 surname: Choinière fullname: Choinière, Manon – sequence: 5 givenname: Alain surname: Vanasse fullname: Vanasse, Alain – sequence: 6 givenname: Marc surname: Dorais fullname: Dorais, Marc – sequence: 7 givenname: Oumar Mallé surname: Samb fullname: Samb, Oumar Mallé – sequence: 8 givenname: Anaïs orcidid: 0000-0002-3992-5145 surname: Lacasse fullname: Lacasse, Anaïs |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33154677$$D View this record in MEDLINE/PubMed |
BookMark | eNptks9v0zAUxyM0xMbYjTOyhIQ40GLHie1wQKqqApPKD43ubDnOc-MqjYOdFO2_x6FltNPsg5_sz_s---v3PDlrXQtJ8pLgaUoy_n6-XPyY_kxZngr-JLkghBcTQrPi7Cg-T65C2OA4KCWc42fJeQzyjHF-kXQrrzage-fv0FdXQdPYdo1WoOvW_hogoNsAZmhQ79CisxVsrWvc2mrVoBsIoLyuP6AZmrttp7zq7Q7QN-UP0Q3sLPxGzqBZ13mndA3hRfLUqCbA1WG9TG4_LVbzL5Pl98_X89lyonPO-klZgIBcC6ExUF5hXlKdUZYxg4tS44JjnFEQAvNCUZrHI1OWPI2PSklaFBW9TK73upVTG9l5u1X-Tjpl5d8N59dS-d7qBqQ2uMQiFjHUZLkRJaSUlhVnOdUFS3HU-rjX6oZyC5WGtveqORE9PWltLdduJznDIhdpFHh7EPBudLWXWxt0NFu14IYg0ywXmHIieERfP0A3bvBttCpSjMQRL_SfWqv4ANsaF-vqUVTOWEYKzFk2UtNHqDjHf9Sxk4yN-ycJb44SalBNXwfXDL11bTgFXx07cm_Fv8aKwLs9oL0LwYO5RwiWY-vKsXXloXUjnj7Ate3VWDbe2DaPJ_0B4EvuIA |
CitedBy_id | crossref_primary_10_1007_s10964_023_01887_3 crossref_primary_10_1111_add_16523 crossref_primary_10_1002_acr_25100 crossref_primary_10_1186_s12967_022_03718_8 crossref_primary_10_1016_j_pmedr_2023_102262 crossref_primary_10_1136_bmjopen_2024_089528 crossref_primary_10_3389_fpsyt_2025_1536042 crossref_primary_10_1016_j_psychres_2023_115284 crossref_primary_10_1186_s12872_023_03056_7 crossref_primary_10_1001_jamanetworkopen_2023_28159 crossref_primary_10_1038_s41698_023_00412_w crossref_primary_10_1002_ijc_34650 crossref_primary_10_1186_s40695_023_00089_y crossref_primary_10_1213_ANE_0000000000005759 crossref_primary_10_1002_ppul_26488 crossref_primary_10_1002_jia2_26168 crossref_primary_10_1016_j_healthplace_2024_103246 crossref_primary_10_1186_s12916_024_03326_x crossref_primary_10_1213_ANE_0000000000006848 crossref_primary_10_6004_jnccn_2021_7014 crossref_primary_10_1136_archdischild_2023_326425 crossref_primary_10_1002_brb3_3442 crossref_primary_10_1016_j_jebdp_2022_101794 crossref_primary_10_3389_fnut_2024_1433544 crossref_primary_10_1002_jcsm_13615 crossref_primary_10_1016_j_ekir_2025_02_007 crossref_primary_10_1016_j_jdent_2022_104113 crossref_primary_10_3390_ijerph21020174 crossref_primary_10_1016_j_numecd_2024_103802 crossref_primary_10_1002_osp4_70045 crossref_primary_10_1002_dad2_12540 crossref_primary_10_3233_JAD_215046 crossref_primary_10_1016_j_breast_2025_104441 crossref_primary_10_2340_jrm_v55_4343 crossref_primary_10_1186_s12913_022_08987_z crossref_primary_10_3389_fpain_2022_1014793 crossref_primary_10_1371_journal_pone_0298126 crossref_primary_10_1164_rccm_202208_1569OC crossref_primary_10_3168_jds_2024_24762 crossref_primary_10_1007_s40520_024_02791_x crossref_primary_10_1093_sleep_zsaf021 crossref_primary_10_2196_41203 crossref_primary_10_3390_ijerph21060749 crossref_primary_10_1002_jts_22868 crossref_primary_10_1016_j_lana_2025_101030 crossref_primary_10_1093_pm_pnad167 crossref_primary_10_1177_13623613241304513 crossref_primary_10_1161_JAHA_122_030010 crossref_primary_10_1016_j_socscimed_2025_117703 crossref_primary_10_2196_42190 crossref_primary_10_1177_02654075241254861 crossref_primary_10_1111_bjd_20625 crossref_primary_10_1186_s12889_024_19975_9 crossref_primary_10_3389_fpubh_2024_1428384 crossref_primary_10_1080_21620555_2024_2395526 crossref_primary_10_3389_fpubh_2023_1137527 crossref_primary_10_1111_jan_16378 crossref_primary_10_1016_j_ecoenv_2023_115792 crossref_primary_10_1016_j_jad_2023_10_057 crossref_primary_10_1161_JAHA_123_032603 crossref_primary_10_1063_5_0073141 crossref_primary_10_1017_S2045796023000136 crossref_primary_10_1136_bmjopen_2021_049795 crossref_primary_10_1136_bmjopen_2024_086801 crossref_primary_10_3390_ijerph19063593 crossref_primary_10_1016_j_xjmad_2024_100101 crossref_primary_10_1093_geroni_igae050 crossref_primary_10_1164_rccm_202306_1072OC crossref_primary_10_1016_j_socscimed_2025_117841 crossref_primary_10_1001_jamanetworkopen_2024_17796 crossref_primary_10_1016_j_tate_2024_104660 crossref_primary_10_1186_s13058_023_01623_6 crossref_primary_10_1016_j_biopsych_2024_01_001 crossref_primary_10_2174_0117450179298863240516070510 crossref_primary_10_1080_27697061_2024_2374412 crossref_primary_10_1111_cdoe_12770 crossref_primary_10_1007_s40726_025_00341_1 crossref_primary_10_1038_s41598_023_38455_5 crossref_primary_10_1016_j_sleh_2023_02_003 crossref_primary_10_1016_j_eclinm_2023_102165 crossref_primary_10_3389_fmed_2022_994308 crossref_primary_10_3389_fendo_2024_1389330 crossref_primary_10_1186_s12877_024_05448_6 crossref_primary_10_1007_s10964_021_01544_7 crossref_primary_10_1016_j_exger_2023_112093 crossref_primary_10_3389_fpubh_2024_1450167 crossref_primary_10_3390_ijerph192114052 crossref_primary_10_1001_jama_2023_0367 crossref_primary_10_1007_s40620_024_02167_4 crossref_primary_10_2196_59792 crossref_primary_10_1136_rapm_2024_105344 crossref_primary_10_1007_s11205_022_03053_x crossref_primary_10_1097_j_pain_0000000000002911 crossref_primary_10_1080_10749357_2023_2188756 crossref_primary_10_1177_00220345251315155 crossref_primary_10_1016_j_smrv_2024_101916 crossref_primary_10_1007_s00431_024_05925_5 crossref_primary_10_1093_geronb_gbac006 crossref_primary_10_1007_s10802_024_01195_9 crossref_primary_10_1038_s41598_024_59173_6 crossref_primary_10_2188_jea_JE20220175 crossref_primary_10_2147_CLEP_S380828 crossref_primary_10_2215_CJN_0000000000000398 crossref_primary_10_1097_HJH_0000000000003861 crossref_primary_10_1093_rheumatology_keac335 crossref_primary_10_1111_1753_0407_13523 crossref_primary_10_1186_s12889_024_17854_x crossref_primary_10_1093_ntr_ntae301 crossref_primary_10_1080_17501911_2024_2402681 crossref_primary_10_1177_08982643221125838 crossref_primary_10_1001_jamadermatol_2022_4053 crossref_primary_10_1111_pcn_13590 crossref_primary_10_1186_s12884_025_07414_5 crossref_primary_10_1016_j_heliyon_2022_e10493 crossref_primary_10_1038_s41598_024_64311_1 crossref_primary_10_1007_s00011_025_01999_5 crossref_primary_10_7189_jogh_15_04060 crossref_primary_10_1097_PR9_0000000000001165 crossref_primary_10_1111_eci_13968 crossref_primary_10_59400_apr2580 crossref_primary_10_1111_aphw_12584 crossref_primary_10_3390_jcm12031091 crossref_primary_10_1016_j_amepre_2022_10_018 crossref_primary_10_1016_j_jad_2024_03_139 crossref_primary_10_1177_03635465221116313 crossref_primary_10_1097_j_pain_0000000000003461 crossref_primary_10_1007_s00406_024_01774_3 crossref_primary_10_1016_j_healthpol_2024_105202 crossref_primary_10_2196_48907 crossref_primary_10_1177_08862605251324966 crossref_primary_10_1136_bmjopen_2022_070509 crossref_primary_10_5688_ajpe8594 crossref_primary_10_1093_rap_rkae053 crossref_primary_10_1111_jopy_12928 crossref_primary_10_3389_fepid_2022_980476 crossref_primary_10_1186_s13643_022_01971_y crossref_primary_10_1097_GME_0000000000002447 crossref_primary_10_1128_spectrum_00229_24 crossref_primary_10_3389_fnagi_2023_1122927 crossref_primary_10_1093_ageing_afae264 crossref_primary_10_3389_fpain_2022_1003237 crossref_primary_10_1177_14574969241241969 crossref_primary_10_1016_j_socscimed_2023_116449 crossref_primary_10_1371_journal_pone_0293506 crossref_primary_10_1177_26350106241293120 crossref_primary_10_1017_S000711452200263X crossref_primary_10_1186_s12889_025_22083_x crossref_primary_10_1007_s10654_024_01179_5 crossref_primary_10_3390_jcm11216249 crossref_primary_10_1007_s00415_023_11748_5 crossref_primary_10_1186_s12911_023_02213_4 crossref_primary_10_1097_MAO_0000000000004332 crossref_primary_10_1002_smi_3327 crossref_primary_10_1186_s12939_023_02088_x crossref_primary_10_2147_COPD_S487178 crossref_primary_10_1001_jamapsychiatry_2024_2148 crossref_primary_10_1186_s12916_023_02926_3 crossref_primary_10_1002_mnfr_202400833 crossref_primary_10_1038_s41598_023_41660_x crossref_primary_10_1186_s12889_024_20617_3 crossref_primary_10_1111_all_15916 crossref_primary_10_1186_s12937_024_01053_w crossref_primary_10_1371_journal_pone_0312248 crossref_primary_10_1016_j_psyneuen_2024_107221 crossref_primary_10_3389_fmed_2022_1071431 crossref_primary_10_3390_ijerph19127023 crossref_primary_10_1371_journal_pone_0294017 crossref_primary_10_1016_j_jad_2023_07_014 crossref_primary_10_1186_s13613_024_01328_9 crossref_primary_10_1590_0102_311xen106622 crossref_primary_10_1016_j_jdent_2023_104559 crossref_primary_10_1080_17441692_2024_2447792 crossref_primary_10_1177_07334648241232759 crossref_primary_10_1097_MNH_0000000000000972 crossref_primary_10_1111_obr_13695 crossref_primary_10_1186_s12913_023_10326_9 crossref_primary_10_3233_NRE_210293 crossref_primary_10_1186_s40337_022_00603_z crossref_primary_10_1186_s12889_024_19098_1 crossref_primary_10_1016_j_lanhl_2024_100652 crossref_primary_10_1136_bmjdrc_2023_003696 crossref_primary_10_1186_s12916_022_02513_y crossref_primary_10_1016_j_jad_2022_05_001 crossref_primary_10_1016_j_ssmph_2024_101717 crossref_primary_10_1111_add_70008 crossref_primary_10_1093_ageing_afae218 crossref_primary_10_1016_j_josat_2024_209434 crossref_primary_10_1016_j_amepre_2022_06_018 crossref_primary_10_1002_cam4_7353 crossref_primary_10_1155_2024_5570405 crossref_primary_10_1111_hiv_13524 crossref_primary_10_1136_bmjopen_2022_065188 crossref_primary_10_1371_journal_pgph_0001595 crossref_primary_10_1016_j_ssmph_2023_101510 crossref_primary_10_1186_s12874_023_01993_7 crossref_primary_10_1002_gps_70006 crossref_primary_10_1371_journal_pone_0283799 crossref_primary_10_1016_j_socscimed_2024_117562 crossref_primary_10_1007_s43621_024_00212_7 crossref_primary_10_1002_smi_70010 crossref_primary_10_1016_j_tjfa_2025_100027 crossref_primary_10_1186_s12889_024_19996_4 crossref_primary_10_3389_fpain_2025_1512878 crossref_primary_10_1002_icd_2358 crossref_primary_10_1016_j_brs_2024_04_010 crossref_primary_10_1097_CM9_0000000000002703 crossref_primary_10_1186_s12887_024_05151_w crossref_primary_10_1016_j_numecd_2023_02_018 crossref_primary_10_1007_s10964_023_01796_5 crossref_primary_10_18332_tid_163175 crossref_primary_10_1371_journal_pone_0280878 crossref_primary_10_1007_s10459_023_10279_y crossref_primary_10_1186_s12889_023_17365_1 crossref_primary_10_1007_s11764_024_01582_7 crossref_primary_10_3390_ejihpe14110186 crossref_primary_10_1016_j_earlhumdev_2024_106138 crossref_primary_10_1192_bjo_2023_586 crossref_primary_10_1016_j_archger_2023_105133 crossref_primary_10_1016_j_maturitas_2024_107943 crossref_primary_10_1016_j_archger_2024_105682 crossref_primary_10_3390_curroncol29110651 crossref_primary_10_1177_1179173X221089710 crossref_primary_10_2139_ssrn_4052643 |
Cites_doi | 10.1007/s10508-014-0258-6 10.1186/s12882-016-0238-2 10.1097/01.j.pain.0000460319.87643.11 10.1016/j.aci.2018.02.003 10.1016/j.sapharm.2016.11.011 10.14301/llcs.v8i4.409 10.1161/CIRCOUTCOMES.115.002068 10.1186/1472-6947-14-24 10.1007/BF02294210 10.1016/j.ajog.2015.06.011 10.1111/j.1467-9531.2010.01227.x 10.18637/jss.v036.i07 10.1186/1479-5868-5-57 10.1002/icd.481 10.1002/icd.482 10.1017/S0954579413000424 10.1037/tra0000094 10.1177/0011000016658097 10.1111/j.1530-0277.2000.tb02070.x 10.15288/jsa.2000.61.799 10.1002/sim.2148 10.18637/jss.v042.i10 10.3917/popu.804.0621 10.1177/0049124111400041 10.1177/075910630709500104 10.1093/aje/kws303 10.1038/oby.2010.228 10.1002/asi.23009 10.1080/10705511.2016.1253479 10.1002/ejp.998 10.1080/10705511.2014.882666 10.5271/sjweh.3584 10.1007/s11136-013-0380-2 10.1080/03610926.2012.719986 10.3758/s13428-017-0976-5 10.1097/01.j.pain.0000460327.10515.2d 10.1007/s10182-011-0171-4 10.1111/rssa.12125 10.1111/j.1467-8624.2009.01269.x 10.1111/cdep.12163 10.1080/10705511.2014.915181 10.18637/jss.v040.i04 10.1080/10705511.2016.1247646 10.1073/pnas.82.18.6186 10.2147/JPR.S191183 10.1037/0021-843X.112.4.526 10.1037/0012-1649.44.2.446 10.1136/bmjopen-2017-020683 10.1186/s12874-018-0620-9 10.1007/s11121-011-0201-1 10.1186/s12913-015-0857-5 10.1097/j.pain.0000000000000281 10.1111/1467-9868.00090 10.1080/10705510701575602 10.1016/j.drugalcdep.2011.03.030 10.1111/j.1751-9004.2007.00054.x 10.1007/s40865-018-0085-x 10.1177/0165025409343765 10.1146/annurev.clinpsy.121208.131413 10.3389/fpsyg.2018.00675 10.1023/A:1022137429115 10.1037/1082-989X.4.2.139 10.3389/fpsyg.2014.00343 10.1177/0049124101029003005 10.1177/0013164417719111 10.1016/j.lindif.2017.11.001 10.1111/j.0006-341X.1999.00463.x 10.1146/annurev.psych.53.100901.135239 10.1002/sim.5819 10.20982/tqmp.11.2.p063 10.1177/0013164415588946 10.1097/BRS.0000000000000975 10.1046/j.1360-0443.91.12s1.10.x 10.1186/s13229-019-0264-6 10.20982/tqmp.05.1.p011 10.1086/681962 10.1093/jpepsy/jst085 10.1016/j.jpainsymman.2016.08.018 10.1037/0012-1649.44.2.457 10.14301/llcs.v8i2.415 10.1007/s10654-020-00615-6 10.1016/j.puhe.2018.01.007 10.1016/j.invent.2015.02.003 10.1111/dmcn.13913 10.1016/j.joca.2014.09.026 10.1093/ageing/afw127 10.1111/bjc.12237 10.1207/S15328007SEM0904_8 10.1097/JCN.0b013e3182834191 10.1186/s12913-020-5030-0 10.1002/sim.7241 10.1002/pst.1541 10.1093/jpepsy/jst084 10.1037/a0025328 10.1016/j.joca.2014.03.009 10.1016/j.ssmph.2016.11.008 10.1007/978-3-642-38326-7_37 10.1016/j.joca.2016.01.989 10.1177/1536867X1601600303 10.1080/10705511.2019.1590146 10.1111/jftr.12120 10.1016/j.jpain.2013.09.005 |
ContentType | Journal Article |
Copyright | 2020 Nguena Nguefack et al. COPYRIGHT 2020 Dove Medical Press Limited 2020. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Nguena Nguefack et al. 2020 Nguena Nguefack et al. |
Copyright_xml | – notice: 2020 Nguena Nguefack et al. – notice: COPYRIGHT 2020 Dove Medical Press Limited – notice: 2020. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Nguena Nguefack et al. 2020 Nguena Nguefack et al. |
DBID | AAYXX CITATION NPM 3V. 7XB 8C1 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.2147/CLEP.S265287 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Public Health Database ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Public Health ProQuest Central Basic ProQuest One Academic Eastern Edition Health Research Premium Collection (Alumni) ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
DocumentTitleAlternate | Nguena Nguefack et al |
EISSN | 1179-1349 |
EndPage | 1222 |
ExternalDocumentID | oai_doaj_org_article_cf0b087d0f3f45f8be233bd7653c9620 PMC7608582 A641907643 33154677 10_2147_CLEP_S265287 |
Genre | Journal Article Review |
GeographicLocations | Canada Quebec |
GeographicLocations_xml | – name: Quebec – name: Canada |
GroupedDBID | --- 0YH 29B 2WC 53G 5VS 8C1 8G5 AAYXX ABUWG ADBBV ADRAZ AFKRA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ C1A CCPQU CITATION DIK DWQXO E3Z EBD FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HYE IAO IHR IHW IPNFZ ITC KQ8 M2O M48 M~E O5R O5S OK1 P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RIG RPM TDBHL TR2 UKHRP VDV NPM PMFND 3V. 7XB 8FK MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c576t-b9e8e5c88c0e37d07b3c43646f09bc0970043e88079a335436fbb7246721299d3 |
IEDL.DBID | M48 |
ISSN | 1179-1349 |
IngestDate | Wed Aug 27 01:14:37 EDT 2025 Thu Aug 21 18:25:40 EDT 2025 Thu Jul 10 19:31:40 EDT 2025 Fri Jul 25 22:51:57 EDT 2025 Tue Jun 17 21:18:23 EDT 2025 Tue Jun 10 20:21:27 EDT 2025 Thu May 22 21:21:04 EDT 2025 Thu Jan 02 22:42:00 EST 2025 Tue Jul 01 02:28:42 EDT 2025 Thu Apr 24 22:54:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | latent transition analysis group-based trajectory modelling growth mixture modelling modelling techniques sequence analysis latent class analysis cluster analysis |
Language | English |
License | http://creativecommons.org/licenses/by-nc/3.0 2020 Nguena Nguefack et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c576t-b9e8e5c88c0e37d07b3c43646f09bc0970043e88079a335436fbb7246721299d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8686-447X 0000-0001-9593-8883 0000-0002-3992-5145 0000-0002-7742-2717 |
OpenAccessLink | https://doaj.org/article/cf0b087d0f3f45f8be233bd7653c9620 |
PMID | 33154677 |
PQID | 2461111203 |
PQPubID | 3933188 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cf0b087d0f3f45f8be233bd7653c9620 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7608582 proquest_miscellaneous_2458037187 proquest_journals_2461111203 gale_infotracmisc_A641907643 gale_infotracacademiconefile_A641907643 gale_healthsolutions_A641907643 pubmed_primary_33154677 crossref_primary_10_2147_CLEP_S265287 crossref_citationtrail_10_2147_CLEP_S265287 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Zealand |
PublicationPlace_xml | – name: New Zealand – name: Macclesfield |
PublicationTitle | Clinical epidemiology |
PublicationTitleAlternate | Clin Epidemiol |
PublicationYear | 2020 |
Publisher | Dove Medical Press Limited Taylor & Francis Ltd Dove Dove Medical Press |
Publisher_xml | – name: Dove Medical Press Limited – name: Taylor & Francis Ltd – name: Dove – name: Dove Medical Press |
References | Pagé (ref54) 2017; 21 Haviland (ref94) 2011; 40 Kaplan (ref82) 2008; 44 (ref111) 1998 Nylund-Gibson (ref96) 2019; 26 Karlin (ref113) 1985; 82 Sotres-Alvarez (ref67) 2013; 177 Liao (ref105) 2016; 17 Linzer (ref79) 2011; 42 Le Meur (ref115) 2015; 15 Dupéré (ref32) 2007; 95 Lee (ref136) 2013; 25 (ref102) 2017 Jones (ref55) 2001; 29 Zhang (ref74) 2004; 5 Tan (ref100) 2006; 8 Curran (ref16) 1999; 27 Berlin (ref39) 2014; 39 Collins (ref23) 2014; 22 Curran (ref6) 2003; 112 Barban (ref4) 2012; 61 (ref53) 2019 Frankfurt (ref46) 2016; 44 (ref89) 2008 Barnett (ref134) 2008; 5 Ryoo (ref63) 2018; 9 Rebora (ref128) 2012; 11 Panken (ref29) 2016 Bussu (ref47) 2019; 10 Schreiber (ref86) 2016; 13 Li (ref132) 2019; 12 Langford (ref28) 2015; 156 Leroy (ref103) 2017 Ram (ref2) 2009; 33 Velicer (ref66) 1996; 91 Lanza (ref69) 2007; 14 Lesnard (ref129) 2006 Arling (ref133) 2015; 8 Baumgartner (ref59) 2014; 65 Andruff (ref57) 2009; 5 Vanasse (ref124) 2020; 20 Wurpts (ref72) 2012 Muthén (ref37) 2000; 24 Losina (ref93) 2016; 24 Pat-Horenczyk (ref83) 2016; 8 Huh (ref85) 2011; 19 Bollen (ref19) 2002; 53 Robette (ref122) 2008; 63 (ref50) 2010 Studer (ref119) 2016; 179 Nicholls (ref25) 2014; 22 Connell (ref42) 2006; 15 Gabadinho (ref125) 2011; 40 Su (ref127) 2017; 36 van de Schoot (ref95) 2017; 24 Asparouhov (ref70) 2017; 24 (ref36) 1987 Asparouhov (ref97) 2014; 21 Sivarathri (ref98) 2014; 2 Muthén (ref78) 2011; 13 Esplin (ref104) 2015; 213 Visser (ref80) 2010; 36 Kongsted (ref24) 2016; 14 Park (ref71) 2018; 78 (ref38) 2015 Harvey (ref65) 2015; 11 Robette (ref121) 2011 Shi (ref30) 2013; 22 Han (ref18) 2017; 8 Fonseca (ref107) 2012 Gottfredson (ref92) 2014; 21 Enthoven (ref10) 2016; 45 Vasilenko (ref90) 2015; 44 Kantardzic (ref99) 2019 Defossez (ref114) 2014; 14 Lanza (ref34) 2016; 10 Seaton (ref135) 2012; 48 Arrandale (ref8) 2006 Elmer (ref5) 2018; 18 Li (ref137) 2016; 76 Nagin (ref22) 1999; 4 Muthén (ref40) 2006; 15 Hesser (ref131) 2015; 2 (ref15) 2004 Lanza (ref35) 2008; 44 Jones (ref61) 2012; 10 Warren (ref33) 2015; 120 Cumsille (ref138) 2009; 80 Deyo (ref11) 2015; 40 Maione (ref108) 2019; 15 Herle (ref14) 2020; 35 ref139 (ref101) 2018 Cravedi (ref106) 2018; 60 ref88 Rabbitts (ref26) 2015; 156 Nielsen (ref60) 2014; 43 Flint (ref62) 2017; 53 Mikolai (ref126) 2017; 8 Langeheine (ref64) 1994 Ray (ref91) 2018; 4 Gauthier (ref120) 2010; 40 (ref31) 1991 Lanza (ref75) 2013; 14 Martin (ref51) 2015; 7 Lanza (ref73) 2015 Nagin (ref9) 2010; 6 Kuramoto (ref87) 2011; 118 McDevitt-Petrovic (ref48) 2020; 59 ref77 Pagé (ref12) 2015; 156 (ref7) 2011 Muthén (ref49) 2002; 9 Masterson Creber (ref45) 2014; 29 Muthén (ref41) 1999; 55 Halpin (ref130) 2016; 16 Reinecke (ref3) 2011; 95 Muthén (ref20) 1984; 49 Jung (ref1) 2008; 2 Sammel (ref44) 1997; 59 Roux (ref116) 2018 Chung (ref76) 2005; 24 ref118 (ref58) 2015 Amatya (ref110) 2013; 32 (ref84) 1995 Vanasse (ref112) 2018; 157 (ref21) 1994 Sieberg (ref27) 2013; 14 Heggeseth (ref17) 2013 McNeish (ref43) 2018; 50 Guo (ref68) 2000; 61 Proust-Lima (ref52) 2015 (ref123) 2018 Haenssgen (ref117) 2017; 3 Jones (ref56) 2007 Bolin (ref109) 2014; 5 Lennon (ref13) 2018; 8 Hickendorff (ref81) 2018; 66 |
References_xml | – volume-title: Latent Class Analysis year: 1987 ident: ref36 – volume: 44 start-page: 705 year: 2015 ident: ref90 publication-title: Arch Sex Behav doi: 10.1007/s10508-014-0258-6 – volume: 17 start-page: 25 year: 2016 ident: ref105 publication-title: BMC Nephrol doi: 10.1186/s12882-016-0238-2 – year: 2015 ident: ref52 publication-title: arXiv e-Prints – volume: 156 start-page: 371 year: 2015 ident: ref28 publication-title: PAIN doi: 10.1097/01.j.pain.0000460319.87643.11 – volume: 5 start-page: 697 year: 2004 ident: ref74 publication-title: J Machine Learning Res – volume: 15 start-page: 153 year: 2019 ident: ref108 publication-title: Applied Computing Informatics doi: 10.1016/j.aci.2018.02.003 – volume: 13 start-page: 1196 year: 2016 ident: ref86 publication-title: Research Social Administrative Pharmacy doi: 10.1016/j.sapharm.2016.11.011 – volume: 8 start-page: 319 year: 2017 ident: ref18 publication-title: Longit Life Course Stud doi: 10.14301/llcs.v8i4.409 – volume: 8 start-page: S131 year: 2015 ident: ref133 publication-title: Circ Cardiovasc Qual Outcomes doi: 10.1161/CIRCOUTCOMES.115.002068 – start-page: 90 year: 2006 ident: ref129 publication-title: Bulletin de méthodologie sociologique – volume: 14 start-page: 24 year: 2014 ident: ref114 publication-title: BMC Med Inform Decis Mak doi: 10.1186/1472-6947-14-24 – start-page: 170 year: 1994 ident: ref64 publication-title: Analyzing Social and Political Change: A Casebook of Methods – volume: 49 start-page: 115 year: 1984 ident: ref20 publication-title: Psychometrika doi: 10.1007/BF02294210 – volume: 213 start-page: 429 e421429 year: 2015 ident: ref104 publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2015.06.011 – volume: 40 start-page: 1 year: 2010 ident: ref120 publication-title: Sociol Methodol doi: 10.1111/j.1467-9531.2010.01227.x – volume-title: Latent Variable Models in Clinical Psychology year: 2019 ident: ref53 – volume: 36 start-page: 1 year: 2010 ident: ref80 publication-title: J Stat Softw doi: 10.18637/jss.v036.i07 – volume: 5 start-page: 57 year: 2008 ident: ref134 publication-title: Int J Behavioral Nutrition Physical Activity doi: 10.1186/1479-5868-5-57 – volume: 15 start-page: 609 year: 2006 ident: ref42 publication-title: Infant Child Dev doi: 10.1002/icd.481 – year: 2012 ident: ref107 publication-title: Int J Soc Res Methodol – volume: 8 start-page: 487 year: 2006 ident: ref100 publication-title: Introduction Data Mining – volume: 15 start-page: 623 year: 2006 ident: ref40 publication-title: Infant Child Dev doi: 10.1002/icd.482 – volume: 25 start-page: 1137 year: 2013 ident: ref136 publication-title: Dev Psychopathol doi: 10.1017/S0954579413000424 – volume: 8 start-page: 541 year: 2016 ident: ref83 publication-title: Psychological Trauma: Theory, Research, Practice, and Policy doi: 10.1037/tra0000094 – volume: 44 start-page: 622 year: 2016 ident: ref46 publication-title: Couns Psychol doi: 10.1177/0011000016658097 – volume: 24 start-page: 882 year: 2000 ident: ref37 publication-title: Alcohol Clin Exp Res doi: 10.1111/j.1530-0277.2000.tb02070.x – volume: 61 start-page: 799 year: 2000 ident: ref68 publication-title: J Stud Alcohol doi: 10.15288/jsa.2000.61.799 – volume: 24 start-page: 2895 year: 2005 ident: ref76 publication-title: Stat Med doi: 10.1002/sim.2148 – volume: 42 start-page: 10 year: 2011 ident: ref79 publication-title: J Stat Softw doi: 10.18637/jss.v042.i10 – volume: 63 start-page: 621 year: 2008 ident: ref122 publication-title: Population doi: 10.3917/popu.804.0621 – volume: 40 start-page: 367 year: 2011 ident: ref94 publication-title: Sociol Methods Res doi: 10.1177/0049124111400041 – year: 2007 ident: ref56 publication-title: Carnegie Mellon University – volume: 95 start-page: 26 year: 2007 ident: ref32 publication-title: Bulletin de méthodologie sociologique doi: 10.1177/075910630709500104 – volume: 177 start-page: 852 year: 2013 ident: ref67 publication-title: Am J Epidemiol doi: 10.1093/aje/kws303 – volume: 19 start-page: 652 year: 2011 ident: ref85 publication-title: Obesity doi: 10.1038/oby.2010.228 – volume-title: New Developments in Statistics for Psychology and the Social Sciences year: 1991 ident: ref31 – volume: 65 start-page: 797 year: 2014 ident: ref59 publication-title: J Association Information Sci Technol doi: 10.1002/asi.23009 – volume: 24 start-page: 257 year: 2017 ident: ref70 publication-title: Structural Equation Modeling: A Multidisciplinary J doi: 10.1080/10705511.2016.1253479 – volume: 21 start-page: 965 year: 2017 ident: ref54 publication-title: European J Pain doi: 10.1002/ejp.998 – volume: 21 start-page: 196 year: 2014 ident: ref92 publication-title: Structural Equation Modeling: A Multidisciplinary J doi: 10.1080/10705511.2014.882666 – start-page: 520 year: 2016 ident: ref29 publication-title: Scand J Work Environ Health doi: 10.5271/sjweh.3584 – volume: 22 start-page: 2331 year: 2013 ident: ref30 publication-title: Quality Life Res doi: 10.1007/s11136-013-0380-2 – volume: 43 start-page: 4337 year: 2014 ident: ref60 publication-title: Communications Stat Theory Methods doi: 10.1080/03610926.2012.719986 – start-page: 295 year: 2019 ident: ref99 publication-title: Data Mining – volume: 50 start-page: 1398 year: 2018 ident: ref43 publication-title: Behav Res Methods doi: 10.3758/s13428-017-0976-5 – volume: 156 start-page: 460 year: 2015 ident: ref12 publication-title: PAIN doi: 10.1097/01.j.pain.0000460327.10515.2d – volume: 95 start-page: 415 year: 2011 ident: ref3 publication-title: AStA doi: 10.1007/s10182-011-0171-4 – volume: 179 start-page: 481 year: 2016 ident: ref119 publication-title: J Royal Stat Society doi: 10.1111/rssa.12125 – volume: 80 start-page: 418 year: 2009 ident: ref138 publication-title: Child Dev doi: 10.1111/j.1467-8624.2009.01269.x – volume-title: A Bayesian Zero-Inflated Generalized Growth Mixture Model for Adolescent Health Risk Behaviors year: 2015 ident: ref38 – volume: 61 start-page: 765 year: 2012 ident: ref4 publication-title: J Royal Statistical Society – volume: 10 start-page: 59 year: 2016 ident: ref34 publication-title: Child Dev Perspect doi: 10.1111/cdep.12163 – volume: 21 start-page: 329 year: 2014 ident: ref97 publication-title: Structural Equation Modeling: A Multidisciplinary J doi: 10.1080/10705511.2014.915181 – volume: 40 start-page: 1 year: 2011 ident: ref125 publication-title: J Stat Softw doi: 10.18637/jss.v040.i04 – volume: 24 start-page: 451 year: 2017 ident: ref95 publication-title: Structural Equation Modeling: A Multidisciplinary J doi: 10.1080/10705511.2016.1247646 – volume: 82 start-page: 6186 year: 1985 ident: ref113 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.82.18.6186 – volume: 12 start-page: 1673 year: 2019 ident: ref132 publication-title: J Pain Res doi: 10.2147/JPR.S191183 – volume: 112 start-page: 526 year: 2003 ident: ref6 publication-title: J Abnorm Psychol doi: 10.1037/0021-843X.112.4.526 – volume: 44 start-page: 446 year: 2008 ident: ref35 publication-title: Dev Psychol doi: 10.1037/0012-1649.44.2.446 – ident: ref88 – volume: 8 start-page: e020683 year: 2018 ident: ref13 publication-title: BMJ Open doi: 10.1136/bmjopen-2017-020683 – volume: 18 start-page: 152 year: 2018 ident: ref5 publication-title: BMC Med Res Methodol doi: 10.1186/s12874-018-0620-9 – volume-title: Group-Based Trajectory Modeling for Longitudinal Data of Healthcare Financial Charges in Patients with Inflammatory Bowel Disease year: 2015 ident: ref58 – volume: 14 start-page: 157 year: 2013 ident: ref75 publication-title: Society Prevention Res doi: 10.1007/s11121-011-0201-1 – volume: 15 start-page: 200 year: 2015 ident: ref115 publication-title: BMC Health Serv Res doi: 10.1186/s12913-015-0857-5 – ident: ref77 – volume-title: Introduction to Data Mining year: 2018 ident: ref101 – volume: 156 start-page: 2383 year: 2015 ident: ref26 publication-title: Pain doi: 10.1097/j.pain.0000000000000281 – volume: 59 start-page: 667 year: 1997 ident: ref44 publication-title: J Royal Stat Society Series B doi: 10.1111/1467-9868.00090 – volume: 14 start-page: 671 year: 2007 ident: ref69 publication-title: Structural Equation Modeling doi: 10.1080/10705510701575602 – volume: 118 start-page: 237 year: 2011 ident: ref87 publication-title: Drug Alcohol Depend doi: 10.1016/j.drugalcdep.2011.03.030 – volume: 2 start-page: 302 year: 2008 ident: ref1 publication-title: Soc Personal Psychol Compass doi: 10.1111/j.1751-9004.2007.00054.x – volume: 4 start-page: 276 year: 2018 ident: ref91 publication-title: J Developmental Life-Course Criminology doi: 10.1007/s40865-018-0085-x – volume: 33 start-page: 565 year: 2009 ident: ref2 publication-title: Int J Behav Dev doi: 10.1177/0165025409343765 – volume: 6 start-page: 109 year: 2010 ident: ref9 publication-title: Annu Rev Clin Psychol doi: 10.1146/annurev.clinpsy.121208.131413 – year: 2012 ident: ref72 publication-title: Arizona State Univ Master Arts – volume: 13 start-page: 1 year: 2011 ident: ref78 publication-title: Mplus Web Notes – volume: 9 start-page: 675 year: 2018 ident: ref63 publication-title: Front Psychol doi: 10.3389/fpsyg.2018.00675 – volume: 27 start-page: 567 year: 1999 ident: ref16 publication-title: Am J Community Psychol doi: 10.1023/A:1022137429115 – volume: 4 start-page: 139 year: 1999 ident: ref22 publication-title: Psychol Methods doi: 10.1037/1082-989X.4.2.139 – volume: 5 start-page: 343 year: 2014 ident: ref109 publication-title: Front Psychol doi: 10.3389/fpsyg.2014.00343 – volume: 29 start-page: 374 year: 2001 ident: ref55 publication-title: Sociological Methods Res doi: 10.1177/0049124101029003005 – volume: 78 start-page: 737 year: 2018 ident: ref71 publication-title: Educ Psychol Meas doi: 10.1177/0013164417719111 – volume: 66 start-page: 4 year: 2018 ident: ref81 publication-title: Learn Individ Differ doi: 10.1016/j.lindif.2017.11.001 – volume: 55 start-page: 463 year: 1999 ident: ref41 publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.00463.x – start-page: 1 year: 2017 ident: ref103 publication-title: Revue de médecine périnatale – volume: 10 start-page: 2015 year: 2012 ident: ref61 publication-title: Research Showcase@ CMU Carnegie Mellon University Retrieved on July – volume: 53 start-page: 605 year: 2002 ident: ref19 publication-title: Ann Rev Psychol doi: 10.1146/annurev.psych.53.100901.135239 – volume: 32 start-page: 4162 year: 2013 ident: ref110 publication-title: Stat Med doi: 10.1002/sim.5819 – volume: 11 start-page: 2 year: 2015 ident: ref65 publication-title: Quantitative Methods Psychol doi: 10.20982/tqmp.11.2.p063 – volume: 14 start-page: 1 year: 2016 ident: ref24 publication-title: BMC Musculoskelet Disord – volume: 76 start-page: 181 year: 2016 ident: ref137 publication-title: Educ Psychol Meas doi: 10.1177/0013164415588946 – volume: 40 start-page: 1352 year: 2015 ident: ref11 publication-title: SPINE doi: 10.1097/BRS.0000000000000975 – year: 2015 ident: ref73 publication-title: University Park: The Methodology Center, Penn State – volume-title: Latent Variables Analysis: Applications for Developmental Research year: 1994 ident: ref21 – volume: 91 start-page: 197 year: 1996 ident: ref66 publication-title: Addiction doi: 10.1046/j.1360-0443.91.12s1.10.x – volume: 10 start-page: 13 year: 2019 ident: ref47 publication-title: Mol Autism doi: 10.1186/s13229-019-0264-6 – volume-title: Mplus Users’ Guide, Technical Appendix year: 2008 ident: ref89 – volume: 5 start-page: 11 year: 2009 ident: ref57 publication-title: Tutor Quant Methods Psychol doi: 10.20982/tqmp.05.1.p011 – volume: 120 start-page: 1809 year: 2015 ident: ref33 publication-title: Am J Sociol doi: 10.1086/681962 – volume: 39 start-page: 188 year: 2014 ident: ref39 publication-title: J Pediatr Psychol doi: 10.1093/jpepsy/jst085 – year: 2011 ident: ref121 publication-title: Collections Du CEPED – volume-title: Handbook of Quantitative Methodology for the Social Sciences year: 2004 ident: ref15 – volume: 53 start-page: 224 year: 2017 ident: ref62 publication-title: J Pain Symptom Manage doi: 10.1016/j.jpainsymman.2016.08.018 – volume-title: Numerical Ecology year: 1998 ident: ref111 – volume: 44 start-page: 457 year: 2008 ident: ref82 publication-title: Dev Psychol doi: 10.1037/0012-1649.44.2.457 – volume: 8 start-page: 191 year: 2017 ident: ref126 publication-title: Longit Life Course Stud doi: 10.14301/llcs.v8i2.415 – volume-title: Handbook of Statistical Modeling for the Social and Behavioral Sciences year: 1995 ident: ref84 – volume: 35 start-page: 205 year: 2020 ident: ref14 publication-title: Eur J Epidemiol doi: 10.1007/s10654-020-00615-6 – year: 2013 ident: ref17 publication-title: Univ California, Berkeley – volume: 157 start-page: 53 year: 2018 ident: ref112 publication-title: Public Health doi: 10.1016/j.puhe.2018.01.007 – volume: 2 start-page: 110 year: 2015 ident: ref131 publication-title: Internet Interventions doi: 10.1016/j.invent.2015.02.003 – volume: 60 start-page: 942 year: 2018 ident: ref106 publication-title: Dev Med Child Neurol doi: 10.1111/dmcn.13913 – volume: 22 start-page: 2041 year: 2014 ident: ref25 publication-title: Osteoarthritis Cartilage doi: 10.1016/j.joca.2014.09.026 – volume: 45 start-page: 878 year: 2016 ident: ref10 publication-title: Age Ageing doi: 10.1093/ageing/afw127 – volume: 59 start-page: 169 year: 2020 ident: ref48 publication-title: British J Clin Psychol doi: 10.1111/bjc.12237 – volume-title: Practical Guide to Cluster Analysis in R: Unsupervised Machine Learning year: 2017 ident: ref102 – volume: 9 start-page: 599 year: 2002 ident: ref49 publication-title: Structural Equation Modeling doi: 10.1207/S15328007SEM0904_8 – volume: 29 start-page: 209 year: 2014 ident: ref45 publication-title: J Cardiovasc Nurs doi: 10.1097/JCN.0b013e3182834191 – volume: 20 start-page: 1 year: 2020 ident: ref124 publication-title: BMC Health Serv Res doi: 10.1186/s12913-020-5030-0 – volume: 36 start-page: 1823 year: 2017 ident: ref127 publication-title: Stat Med doi: 10.1002/sim.7241 – volume-title: Cluster Analysis year: 2011 ident: ref7 – volume: 11 start-page: 494 year: 2012 ident: ref128 publication-title: Pharm Stat doi: 10.1002/pst.1541 – ident: ref139 doi: 10.1093/jpepsy/jst084 – start-page: 962280218772068 year: 2018 ident: ref116 publication-title: Stat Methods Med Res – volume: 48 start-page: 448 year: 2012 ident: ref135 publication-title: Dev Psychol doi: 10.1037/a0025328 – volume: 22 start-page: 622 year: 2014 ident: ref23 publication-title: Osteoarthritis Cartilage doi: 10.1016/j.joca.2014.03.009 – volume: 3 start-page: 37 year: 2017 ident: ref117 publication-title: SSM Popul Health doi: 10.1016/j.ssmph.2016.11.008 – ident: ref118 doi: 10.1007/978-3-642-38326-7_37 – volume: 2 start-page: 2590 year: 2014 ident: ref98 publication-title: Int J Recent Innovation Trends Computing Communication – volume: 24 start-page: 765 year: 2016 ident: ref93 publication-title: Osteoarthritis Cartilage doi: 10.1016/j.joca.2016.01.989 – start-page: 1 year: 2006 ident: ref8 publication-title: UBC Faculty Res Publications – volume-title: Handbook of Quantitative Criminology year: 2010 ident: ref50 – volume: 16 start-page: 590 year: 2016 ident: ref130 publication-title: Stata J doi: 10.1177/1536867X1601600303 – volume-title: Sequence Analysis and Related Approaches: Innovative Methods and Applications year: 2018 ident: ref123 – volume: 26 start-page: 967 year: 2019 ident: ref96 publication-title: Structural Equation Modeling: A Multidisciplinary J doi: 10.1080/10705511.2019.1590146 – volume: 7 start-page: 482 year: 2015 ident: ref51 publication-title: J Fam Theory Rev doi: 10.1111/jftr.12120 – volume: 14 start-page: 1694 year: 2013 ident: ref27 publication-title: J Pain doi: 10.1016/j.jpain.2013.09.005 |
SSID | ssj0000331770 |
Score | 2.6194682 |
SecondaryResourceType | review_article |
Snippet | Trajectory modelling techniques have been developed to determine subgroups within a given population and are increasingly used to better understand intra- and... Hermine Lore Nguena Nguefack,1 M Gabrielle Pagé,2,3 Joel Katz,4 Manon Choinière,2,3 Alain Vanasse,5,6 Marc Dorais,7 Oumar Mallé Samb,1 Anaïs Lacasse1... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1205 |
SubjectTerms | Clinical medicine cluster analysis Epidemiology Estimates group-based trajectory modelling growth mixture modelling Health aspects Latent class analysis latent transition analysis modelling techniques Pain Population Random variables Review sequence analysis Terminology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA_SJ0HE-nlaNYLig6zdJpsv387jShEtgj3oW7hkE6qUvdK7e-h_70yS2-4i4ov3dNzMwWY-MpnZyW8IeXsEYaZ13les8ZCgRKEqF1tRQRLnTJMg27A08O1UniyaL-fifDDqC3vCMjxwFtyhj7WrtWrryGMjonaBce5aJQX3RrKUrUPMGyRTaQ_mEBfTpDiEPKsQgy93veNYnsPZ1_n3jz-YFAw76QbxKMH2_7k5D6LTuHNyEIqOH5D75QxJp_nZ98md0D0k93IBjuZ7RY_IFUShX6kkf0Nx4FnC3qZnO8jWNV2sQ9xe0s2Kzm-nxKLK6K4b7xOd0tktOjg9XV6Xb_mNAl1FOi2Y5GH9mCyO52ezk6qMV6g8JBmbypmgg_Ba-zpwELBy3DdcNjLWxvnaIPA9D-Dfyiw5F0CKzikGOyuEO2Na_oTsdasuPCNUNM4Ir0wwOiVoLtQmQHanj-oQlJIT8mEnZOsL9jiOwLi0kIOgSiyqxBaVTMi7nvsqY278he8z6qvnQaTs9APYjy32Y_9lPxPyGrVt87XT3t_tVDZwVlJwYJuQ94kDPR4e2i_LxQVYOmJnjTgPRpzgqX5M3lmULTvF2iKeH3xYDeQ3PRn_id1vXVhtkUdohFbEJT_NBtgvGgxdgEqAokamOZLKmNL9vEg44krCeVuz5_9DjC_IXYaViFScOiB7m-tteAnHtY17lTzzN4xHObo priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge0FCiO-FDTASiAcU5sVxbPOCuqrThKCaYJX2ZtWOzYempGvaB_577hI3bYQgT1XuKsW5L9_l_DtCXp9AmCmtc2mWO0hQgpCpDaVIIYmzOm8h27A08GVanM_yT1fiKhbcmthWufGJraMua4c18mPEPYMrY_zj4ibFqVH4dTWO0LhN9sEFK0i-9k8n04uvfZWFcYiPknUd7ziS53j8eXLx_ltWiAy76HZiUQvZ_7dj3olMw67JnTB0dp_ci_tHOuoE_oDc8tVDcrcrvtHuTNEjsoAI9Kstx_-mOOysxd2mlxu41obOGh_W13RV08l2QiyKi2468T7QER1vkcHpdL6Mv7qvCbQOdBTxyH3zmMzOJpfj8zSOVkgdJBir1GqvvHBKOea5LJm03OW8yIvAtHVMI-g992DbUs85F0AK1kqQASSMEMBK_oTsVXXlDwgVudXCSe21apMz65n2kNmpE-a9lEVC3m1esnERdxzHX1wbyD9QJAZFYqJIEvKm5150eBv_4DtFefU8iJLd3qiX3000OuMCs0zB8gIPuQjK-oxzW8pCcKeLjCXkJUrbdEdOe1s3oyKHfZKEzVpC3rYcaO3w0G4eDy3A0hE3a8B5NOAEK3VD8kajTPQSjdnqdEJe9WT8J3a-Vb5eI49QCKuIS37aKWC_aFBuASIBihyo5uCtDCnVzx8thrgsYK-tsmf_f6xDcifD-kJbcjoie6vl2j-HTdjKvoiW9gdMYzB- priority: 102 providerName: ProQuest |
Title | Trajectory Modelling Techniques Useful to Epidemiological Research: A Comparative Narrative Review of Approaches |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33154677 https://www.proquest.com/docview/2461111203 https://www.proquest.com/docview/2458037187 https://pubmed.ncbi.nlm.nih.gov/PMC7608582 https://doaj.org/article/cf0b087d0f3f45f8be233bd7653c9620 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rixMxEA_3-CKI-LZ61giKH2Tv0s1mkwgivdKjiFcOvcL5aWmyid5Rds8-wPvvnck-7pZTsB9K6UxLk5nJPDr5DSFvBuBmcmNtFCcWEhQvZGR8LiJI4oxOAmQblgaOp-lklnw-E2dbpJk2Wm_g6q-pHc6Tmi0X-79_XX0Cg_-IbcyDRB6MvoxP9r_FqYDof5vsgk-SaKLHdaAfzmQOfjJMjkMItAgx-aou-Ftf0PFPAcb_9mF9w1t1OylvuKaj--ReHVPSYaUED8iWKx6Su1VBjlb3jB6RS_BKF6FEf0VxAFrA4qanDYTris5Wzm8WdF3S8fXUWBQhbbrzPtAhHV2jhdPpfFm_qv5hoKWnwxqj3K0ek9nR-HQ0iepxC5GFpGMdGe2UE1YpyxyXOZOG24SnSeqZNpZpBMLnDuxd6jnnAkjeGBnDSQvuT-ucPyE7RVm4Z4SKxGhhpXZahYTNOKYdZHtqwJyTMu2R980mZ7bGIseRGIsMchIUSYYiyWqR9MjblvuywuD4B98hyqvlQeTs8Ea5_JHVhphZzwxTsDzPfSK8Mi7m3OQyFdzqNGY98gqlnVXXUFv7z4ZpArGThACuR94FDtRJ-NF2Xl9kgKUjllaHc6_DCZZru-RGo7JG8TPE94NHzID8uiXjJ7EbrnDlBnmEQqhFXPLTSgHbRYOiCxAJUGRHNTu70qUU5z8DrrhMIf5W8fP_Xt8LcifG8kOoSO2RnfVy415CjLY2fbLNvk_gWY0GfbJ7OJ6efO2Hekc_GOYf1u87zw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9gASQnwTGMxITDygbF4cxzESQl3p1LGumqCV9mZqx9lAU1L6IbR_ir-Ru3y1EYK39amKr03sO99Xzr8j5M0BmJnEWOsHoYUAJRXSN2kifAjijAoLyDZMDZwOo_44_HwuzjfI7_osDJZV1jqxUNRJbjFHvo-4Z_AJGP84_elj1yh8u1q30CjF4sRd_4KQbf7h-BPwdzcIjnqjbt-vugr4FnzrhW-Ui52wcWyZ4zJh0nAb8iiMUqaMZQrx3rkDsZZqwrmAodQYCbeHWAl0d8Lhf2-RLbjOQBFsHfaGZ1-arA7jYI8lKyvssQXQfnfQO9v7GkQiwKq9NdtXtAj42xCsWcJ2leaa2Tu6T-5V_irtlAL2gGy47CG5Wyb7aHmG6RGZgsX7UaT_ryk2Vytwvumohoed0_Hcpcsrushpb9WRFsWD1pV_72mHdldI5HQ4mVXfyrcXNE9pp8I_d_PHZHwji_6EbGZ55p4RKkKjhJXKqbgIBo1jykEkGR8w56SMPPKuXmRtK5xzbLdxpSHeQZZoZImuWOKR3YZ6WuJ7_IPuEPnV0CAqd3Ehn13oapNrmzLDYpheytNQpLFxAecmkZHgVkUB88gOcluXR1wb3aI7UQh-mQTn0CNvCwrULvDQdlIdkoCpI05Xi3K7RQlawbaHa4nSlVaa69Ue8sjrZhh_iZV2mcuXSCNihHHEKT8tBbCZNAi3AJbAiGyJZmtV2iPZ98sCs1xG4NvHwfP_P9YOud0fnQ704Hh48oLcCTC3UaS7tsnmYrZ0L8EBXJhX1a6j5NtNb_Q_DFFrFQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwELfGkBASQrwJDGYkJj6grK4dxwkSQqVrtbFRTWKV9s3UjsNDKCltJ7R_jb-OO-fRRgi-rZ-i-lrZvvO9cv4dIS_7YGYyY23IIwsBSi5VaPJMhhDEmTTykG2YGvg4iQ-n0Ydzeb5Ffjd3YbCsstGJXlFnpcUceQ9xz-DDmejldVnE6cH43fxniB2k8E1r006jEpFjd_kLwrfl26MD4PUe5-PR2fAwrDsMhBb87FVoUpc4aZPEMidUxpQRNhJxFOcsNZaliP0uHIi4SmdCSBjKjVEwFYibQI9nAv73GrmuBNhZvKU-7Lf5HSbAMitW1dpjM6De8GR0uv-Jx5Jj_d6GFfTNAv42CRs2sVuvuWEAx3fI7dpzpYNK1O6SLVfcI7eqtB-tbjPdJ3Owfd_9i4BLim3WPOI3PWuAYpd0unSwsXRV0tG6Ny0KCm1qAN_QAR2uMcnpZLaon6r3GLTM6aBGQnfLB2R6JVv-kGwXZeEeEyojk0qrUpcmPiw0jqUOYsqkz5xTKg7I62aTta0Rz7Hxxg8NkQ-yRCNLdM2SgOy11PMK6eMfdO-RXy0N4nP7L8rFF10fd21zZlgCy8tFHsk8MY4LYTIVS2HTmLOA7CK3dXXZtdUyehBH4KEpcBMD8spToJ6BSdtZfV0Clo6IXR3KnQ4l6AfbHW4kStf6aanXpykgL9ph_CXW3BWuvEAamSCgIy75USWA7aJBuCWwBEZURzQ7u9IdKb599ejlKgYvP-FP_j-tXXIDjrc-OZocPyU3OSY5fN5rh2yvFhfuGXiCK_PcHzlKPl_1Gf8Dq4xtuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trajectory+Modelling+Techniques+Useful+to+Epidemiological+Research%3A+A+Comparative+Narrative+Review+of+Approaches&rft.jtitle=Clinical+epidemiology&rft.au=Lore%2C+Hermine&rft.au=Nguefack%2C+Nguena&rft.au=Page%2C+M+Gabrielle&rft.au=Katz%2C+Joel&rft.date=2020-01-01&rft.pub=Dove+Medical+Press+Limited&rft.issn=1179-1349&rft.eissn=1179-1349&rft.volume=12&rft.spage=1205&rft_id=info:doi/10.2147%2FCLEP.S265287&rft.externalDocID=A641907643 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1179-1349&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1179-1349&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1179-1349&client=summon |