Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation

In this paper, we present a novel technique, based on compressive sensing principles, for reconstruction and enhancement of multi-dimensional image data. Our method is a major improvement and generalization of the multi-scale sparsity based tomographic denoising (MSBTD) algorithm we recently introdu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 32; no. 11; pp. 2034 - 2049
Main Authors Leyuan Fang, Shutao Li, McNabb, Ryan P., Qing Nie, Kuo, Anthony N., Toth, Cynthia A., Izatt, Joseph A., Farsiu, Sina
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we present a novel technique, based on compressive sensing principles, for reconstruction and enhancement of multi-dimensional image data. Our method is a major improvement and generalization of the multi-scale sparsity based tomographic denoising (MSBTD) algorithm we recently introduced for reducing speckle noise. Our new technique exhibits several advantages over MSBTD, including its capability to simultaneously reduce noise and interpolate missing data. Unlike MSBTD, our new method does not require an a priori high-quality image from the target imaging subject and thus offers the potential to shorten clinical imaging sessions. This novel image restoration method, which we termed sparsity based simultaneous denoising and interpolation (SBSDI), utilizes sparse representation dictionaries constructed from previously collected datasets. We tested the SBSDI algorithm on retinal spectral domain optical coherence tomography images captured in the clinic. Experiments showed that the SBSDI algorithm qualitatively and quantitatively outperforms other state-of-the-art methods.
AbstractList In this paper, we present a novel technique, based on compressive sensing principles, for reconstruction and enhancement of multi-dimensional image data. Our method is a major improvement and generalization of the multi-scale sparsity based tomographic denoising (MSBTD) algorithm we recently introduced for reducing speckle noise. Our new technique exhibits several advantages over MSBTD, including its capability to simultaneously reduce noise and interpolate missing data. Unlike MSBTD, our new method does not require an a priori high-quality image from the target imaging subject and thus offers the potential to shorten clinical imaging sessions. This novel image restoration method, which we termed sparsity based simultaneous denoising and interpolation (SBSDI), utilizes sparse representation dictionaries constructed from previously collected datasets. We tested the SBSDI algorithm on retinal spectral domain optical coherence tomography images captured in the clinic. Experiments showed that the SBSDI algorithm qualitatively and quantitatively outperforms other state-of-the-art methods.
In this paper, we present a novel technique, based on compressive sensing principles, for reconstruction and enhancement of multi-dimensional image data. Our method is a major improvement and generalization of the multi-scale sparsity based tomographic denoising (MSBTD) algorithm we recently introduced for reducing speckle noise. Our new technique exhibits several advantages over MSBTD, including its capability to simultaneously reduce noise and interpolate missing data. Unlike MSBTD, our new method does not require an a priori high-quality image from the target imaging subject and thus offers the potential to shorten clinical imaging sessions. This novel image restoration method, which we termed sparsity based simultaneous denoising and interpolation (SBSDI), utilizes sparse representation dictionaries constructed from previously collected datasets. We tested the SBSDI algorithm on retinal spectral domain optical coherence tomography images captured in the clinic. Experiments showed that the SBSDI algorithm qualitatively and quantitatively outperforms other state-of-the-art methods.
Author Kuo, Anthony N.
Leyuan Fang
Shutao Li
Farsiu, Sina
Qing Nie
Toth, Cynthia A.
McNabb, Ryan P.
Izatt, Joseph A.
Author_xml – sequence: 1
  surname: Leyuan Fang
  fullname: Leyuan Fang
  email: fangleyuan@gmail.com
  organization: Coll. of Electr. & Inf. Eng., Hunan Univ., Changsha, China
– sequence: 2
  surname: Shutao Li
  fullname: Shutao Li
  email: shutao_li@hnu.edu.cn
  organization: Coll. of Electr. & Inf. Eng., Hunan Univ., Changsha, China
– sequence: 3
  givenname: Ryan P.
  surname: McNabb
  fullname: McNabb, Ryan P.
  email: rpm10@duke.edu
  organization: Dept. of Biomed. Eng., Duke Univ., Durham, NC, USA
– sequence: 4
  surname: Qing Nie
  fullname: Qing Nie
  email: qing.nie@duke.edu
  organization: Dept. of Ophthalmology, Duke Univ. Med. Center, Durham, NC, USA
– sequence: 5
  givenname: Anthony N.
  surname: Kuo
  fullname: Kuo, Anthony N.
  email: anthony.kuo@duke.edu
  organization: Dept. of Ophthalmology, Duke Univ. Med. Center, Durham, NC, USA
– sequence: 6
  givenname: Cynthia A.
  surname: Toth
  fullname: Toth, Cynthia A.
  email: cynthia.toth@duke.edu
  organization: Dept. of Ophthalmology, Duke Univ. Med. Center, Durham, NC, USA
– sequence: 7
  givenname: Joseph A.
  surname: Izatt
  fullname: Izatt, Joseph A.
  email: jizatt@duke.edu
  organization: Dept. of Ophthalmology, Duke Univ. Med. Center, Durham, NC, USA
– sequence: 8
  givenname: Sina
  surname: Farsiu
  fullname: Farsiu, Sina
  email: sina.farsiu@duke.edu
  organization: Dept. of Ophthalmology, Duke Univ. Med. Center, Durham, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23846467$$D View this record in MEDLINE/PubMed
BookMark eNqNks-LEzEUx4OsuN3VuyDIgBcvU5PJ74uwFFcLKwtawVtIM69tlmkym8ws7H9vxtaiXvQUyPu8b9775nuBzkIMgNBLgueEYP1u9Xk5bzCh86aRRGP2BM0I56puOPt-hma4karGWDTn6CLnO4wJ41g_Q-cNVUwwIWeovbZ5qK7c_eizH3wMlQ1t9QVcDHlIo_t5FTfVbT94Z7tqEXeQIDioVnEft8n2u8dqubdbyNWDt9XX3qYMRaBPkCEMdhJ4jp5ubJfhxfG8RN-uP6wWn-qb24_LxdVN7bgUQ60AVAtCiTW0RIsyN2FqA4yvKSdWcym1dkKsy3bWUcvKMoxioNRqJaRQ9BK9P-j243oPrSvvJ9uZPvm9TY8mWm_-rAS_M9v4YBjGmHNdBN4eBVK8HyEPZu-zg66zAeKYDRGyWKgUU_9GC8epVrL5D5Tp6f8IKeibv9C7OKZQTJsoKQUXZBoTHyiXYs4JNqcVCTZTMEwJhpmCYY7BKC2vf7fm1PArCQV4dQA8AJzKgnNKWEN_AMBsvcI
CODEN ITMID4
CitedBy_id crossref_primary_10_1117_1_JBO_23_3_036014
crossref_primary_10_1016_j_bspc_2019_04_033
crossref_primary_10_1109_ACCESS_2023_3289162
crossref_primary_10_1016_j_optlastec_2021_107298
crossref_primary_10_1002_mp_16550
crossref_primary_10_1016_j_neucom_2020_03_022
crossref_primary_10_1364_BOE_421848
crossref_primary_10_1364_BOE_521453
crossref_primary_10_1016_j_sigpro_2022_108866
crossref_primary_10_1109_TIM_2021_3077988
crossref_primary_10_1364_BOE_481870
crossref_primary_10_1007_s11042_017_4920_6
crossref_primary_10_1117_1_JBO_25_12_123702
crossref_primary_10_1016_j_compbiomed_2019_01_010
crossref_primary_10_1109_TIP_2020_2984896
crossref_primary_10_1364_BOE_503868
crossref_primary_10_1109_TIP_2015_2389629
crossref_primary_10_1117_1_JBO_23_3_036011
crossref_primary_10_1364_BOE_8_003903
crossref_primary_10_1364_BOE_7_002912
crossref_primary_10_1002_jbio_202000282
crossref_primary_10_1117_1_JBO_21_7_076015
crossref_primary_10_1002_mp_15848
crossref_primary_10_1364_OSAC_408712
crossref_primary_10_1364_BOE_9_003354
crossref_primary_10_1364_OE_26_011804
crossref_primary_10_3390_rs9101085
crossref_primary_10_3788_AOS230720
crossref_primary_10_3390_mi13122039
crossref_primary_10_1007_s11042_023_17035_9
crossref_primary_10_1186_1471_2342_14_37
crossref_primary_10_1109_JBHI_2021_3071421
crossref_primary_10_1109_TIP_2017_2789323
crossref_primary_10_1109_TMI_2022_3184529
crossref_primary_10_1109_JSTARS_2015_2477364
crossref_primary_10_1109_TMI_2014_2374354
crossref_primary_10_1109_JSTQE_2023_3240729
crossref_primary_10_1049_iet_ipr_2018_5139
crossref_primary_10_1364_BOE_6_001172
crossref_primary_10_1016_j_compbiomed_2023_106658
crossref_primary_10_1016_j_ijleo_2016_03_078
crossref_primary_10_1038_s41598_021_98832_w
crossref_primary_10_1364_OE_510696
crossref_primary_10_1038_s41377_021_00506_9
crossref_primary_10_1016_j_artmed_2020_101871
crossref_primary_10_1364_BOE_9_001545
crossref_primary_10_1109_TGRS_2018_2849881
crossref_primary_10_1016_j_optcom_2021_126807
crossref_primary_10_1364_BOE_8_001926
crossref_primary_10_1002_jbio_201960135
crossref_primary_10_1088_1361_6560_ac2267
crossref_primary_10_1109_TMI_2021_3073174
crossref_primary_10_1117_1_OE_54_11_113110
crossref_primary_10_1364_OL_41_000994
crossref_primary_10_1109_TIM_2020_3017036
crossref_primary_10_1364_OL_39_001189
crossref_primary_10_1109_TIM_2020_3017037
crossref_primary_10_1088_1361_6560_ac944a
crossref_primary_10_1007_s00034_015_0202_6
crossref_primary_10_1016_j_bspc_2019_101632
crossref_primary_10_1007_s00034_016_0296_5
crossref_primary_10_1109_TBIOM_2022_3196916
crossref_primary_10_1097_IAE_0000000000000534
crossref_primary_10_1007_s00340_021_07682_x
crossref_primary_10_1080_09500340_2015_1068392
crossref_primary_10_1109_TGRS_2014_2318058
crossref_primary_10_3390_photonics9080543
crossref_primary_10_1364_BOE_5_000348
crossref_primary_10_1364_OE_485097
crossref_primary_10_3390_electronics9050784
crossref_primary_10_1016_j_optcom_2017_09_072
crossref_primary_10_1109_TGRS_2015_2445767
crossref_primary_10_1364_BOE_402847
crossref_primary_10_1080_09500340_2023_2197520
crossref_primary_10_1016_j_bspc_2022_104231
crossref_primary_10_2139_ssrn_3974940
crossref_primary_10_1109_TGRS_2017_2686444
crossref_primary_10_1109_TIM_2024_3381655
crossref_primary_10_1109_TMI_2016_2556080
crossref_primary_10_1109_TMI_2019_2948867
crossref_primary_10_1364_BOE_8_005160
crossref_primary_10_1007_s13246_019_00811_z
crossref_primary_10_1038_s41597_023_02675_1
crossref_primary_10_1109_TMI_2018_2851607
crossref_primary_10_1016_j_jbiomech_2017_05_004
crossref_primary_10_1364_BOE_515520
crossref_primary_10_1038_s41598_022_06099_6
crossref_primary_10_1109_ACCESS_2020_3036837
crossref_primary_10_1109_TMI_2024_3369176
crossref_primary_10_1007_s00371_017_1456_8
crossref_primary_10_1016_j_optlaseng_2022_107314
crossref_primary_10_1109_TMI_2020_3045207
crossref_primary_10_4103_jmss_jmss_32_23
crossref_primary_10_1016_j_compbiomed_2024_108591
crossref_primary_10_1109_TBME_2022_3175670
crossref_primary_10_1364_BOE_504861
crossref_primary_10_1109_JSEN_2020_2985131
crossref_primary_10_1088_0031_9155_60_17_6901
crossref_primary_10_1364_OE_27_012289
crossref_primary_10_1364_BOE_8_004061
crossref_primary_10_1364_BOE_9_004481
crossref_primary_10_1016_j_ijleo_2020_165227
crossref_primary_10_1016_j_media_2017_02_002
crossref_primary_10_1016_j_neucom_2016_12_019
crossref_primary_10_1016_j_ijleo_2020_165864
crossref_primary_10_1109_TMI_2016_2611503
crossref_primary_10_1109_TMI_2023_3309813
crossref_primary_10_1016_j_compmedimag_2021_101997
crossref_primary_10_1109_TMI_2014_2387336
crossref_primary_10_1364_JOSAA_503212
crossref_primary_10_1109_TGRS_2015_2392755
crossref_primary_10_1364_BOE_9_000962
crossref_primary_10_1109_TMI_2015_2450197
crossref_primary_10_1016_j_neucom_2017_09_093
crossref_primary_10_1109_TCI_2022_3183396
crossref_primary_10_1109_TMI_2020_3024097
crossref_primary_10_1016_j_image_2018_06_001
crossref_primary_10_1007_s11760_022_02361_6
crossref_primary_10_1364_BOE_377021
crossref_primary_10_1088_1612_202X_aaaeb0
crossref_primary_10_1364_OE_495530
crossref_primary_10_1016_j_ijleo_2016_05_088
crossref_primary_10_1364_OSAC_2_000677
crossref_primary_10_1016_j_sigpro_2016_05_002
crossref_primary_10_1007_s10043_018_0457_9
crossref_primary_10_1088_1612_202X_aa5690
crossref_primary_10_1117_1_JBO_22_1_016012
crossref_primary_10_3390_jimaging9110237
crossref_primary_10_1117_1_JBO_22_8_086011
crossref_primary_10_1364_OE_459477
crossref_primary_10_1088_1612_202X_aa7b96
crossref_primary_10_1109_TIP_2018_2881838
crossref_primary_10_1109_TMI_2020_3040270
crossref_primary_10_1364_BOE_471497
crossref_primary_10_1364_BOE_451029
crossref_primary_10_1016_j_bspc_2021_102463
crossref_primary_10_1109_TSP_2015_2408558
crossref_primary_10_1016_j_optlaseng_2018_10_019
crossref_primary_10_1080_09500340_2014_966793
crossref_primary_10_3389_fneur_2019_00647
crossref_primary_10_4103_jmss_jmss_58_22
crossref_primary_10_1109_JBHI_2018_2791624
crossref_primary_10_1109_TIM_2015_2427893
crossref_primary_10_21307_ijssis_2017_224
crossref_primary_10_1016_j_heliyon_2023_e17735
crossref_primary_10_1109_JBHI_2018_2795545
Cites_doi 10.1109/TBME.2012.2217493
10.1364/BOE.3.002050
10.1109/TASSP.1981.1163711
10.1109/TSP.2009.2036477
10.1167/iovs.11-7640
10.1364/OE.18.001024
10.1109/CVPR.2011.5995478
10.1109/TIP.2010.2050625
10.1109/TIP.2007.896644
10.1364/OE.18.021003
10.1126/science.1957169
10.1364/OE.18.008338
10.1364/OE.18.019413
10.1109/ACSSC.2007.4487198
10.1109/TPAMI.2008.222
10.1364/OL.37.003075
10.1364/OPEX.13.000444
10.1109/78.258082
10.1364/OE.21.000329
10.1109/MSP.2011.2179329
10.1364/BOE.3.000927
10.1109/TMI.2009.2027116
10.1109/TPAMI.2012.95
10.1109/TSP.2006.873365
10.1364/OE.16.012313
10.1016/j.ajo.2008.08.010
10.1109/TMI.2006.887375
10.1136/bjo.2004.045989
10.1016/j.sigpro.2005.05.030
10.1109/5.993400
10.1109/TMI.2007.907324
10.1109/TIT.2006.885507
10.1364/OE.18.022010
10.1109/TIP.2005.852206
10.1145/1553374.1553463
10.1109/83.650848
10.1364/BOE.2.002690
10.1109/TMI.2009.2038576
10.1109/TMI.2012.2195669
10.1109/TIP.2006.888330
10.1109/TIP.2011.2108306
10.1109/79.799930
10.1109/TBME.2011.2173935
10.1109/TIP.2012.2192127
10.1109/TIP.2011.2160072
10.1109/TMI.2003.816958
10.1007/978-3-642-27413-8_47
10.1109/TMI.2010.2097275
10.1109/TBME.2012.2199489
10.1364/OL.37.004209
10.1109/TMI.2012.2202245
10.1364/OE.11.002183
10.1109/42.938244
10.1109/TSP.2006.881199
10.1001/archophthalmol.2008.550
10.1109/MSP.2007.914730
10.1109/5.488702
10.1109/TMI.2010.2090538
10.1109/TIP.2010.2050107
10.1088/0266-5611/23/3/008
10.1109/TIP.2007.901238
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2013
2013 IEEE 2013
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2013
– notice: 2013 IEEE 2013
DBID 97E
RIA
RIE
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2013.2271904
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Engineering Research Database


MEDLINE
Materials Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 2049
ExternalDocumentID 3115426951
10_1109_TMI_2013_2271904
23846467
6553142
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY022691
– fundername: NEI NIH HHS
  grantid: P30 EY005722
– fundername: NEI NIH HHS
  grantid: P30 EY-005722
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AASAJ
AAYOK
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIG
RNS
RXW
TAE
TN5
VH1
XFK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c576t-8ee8de686bed196062148fe45b351a957799c66b254ac3a4450430e33a9867683
IEDL.DBID RIE
ISSN 0278-0062
IngestDate Tue Sep 17 21:31:08 EDT 2024
Fri Aug 16 04:15:44 EDT 2024
Wed Jul 24 16:49:18 EDT 2024
Sat Aug 17 00:29:33 EDT 2024
Thu Oct 10 18:50:43 EDT 2024
Fri Aug 23 03:15:35 EDT 2024
Sat Sep 28 08:02:21 EDT 2024
Wed Jun 26 19:27:55 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-8ee8de686bed196062148fe45b351a957799c66b254ac3a4450430e33a9867683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://europepmc.org/articles/pmc4000559?pdf=render
PMID 23846467
PQID 1447765619
PQPubID 85460
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4000559
pubmed_primary_23846467
proquest_miscellaneous_1671458848
proquest_miscellaneous_1458539872
proquest_journals_1447765619
crossref_primary_10_1109_TMI_2013_2271904
ieee_primary_6553142
proquest_miscellaneous_1449271911
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2013
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References 22614516 - IEEE Trans Biomed Eng. 2013 Feb;60(2):470-8
20941102 - Opt Express. 2010 Oct 11;18(21):22010-9
21693421 - IEEE Trans Image Process. 2012 Jan;21(1):130-44
18267377 - IEEE Trans Image Process. 1998;7(1):27-41
22859090 - Opt Lett. 2012 Aug 1;37(15):3075-7
20940995 - Opt Express. 2010 Sep 27;18(20):21003-12
19762924 - IEEE Trans Pattern Anal Mach Intell. 2009 Nov;31(11):1955-67
19466106 - Opt Express. 2003 Sep 8;11(18):2183-9
20940837 - Opt Express. 2010 Aug 30;18(18):19413-28
19139336 - Arch Ophthalmol. 2009 Jan;127(1):37-44
16238062 - IEEE Trans Image Process. 2005 Oct;14(10):1570-82
17269630 - IEEE Trans Image Process. 2007 Feb;16(2):349-66
21047708 - IEEE Trans Med Imaging. 2011 May;30(5):1028-41
15665354 - Br J Ophthalmol. 2005 Feb;89(2):207-12
22049358 - IEEE Trans Biomed Eng. 2012 Feb;59(2):417-27
22529324 - IEEE Trans Pattern Anal Mach Intell. 2013 Feb;35(2):367-80
21991557 - Biomed Opt Express. 2011 Sep 1;2(9):2690-7
18848317 - Am J Ophthalmol. 2009 Feb;147(2):364-373.e2
17547137 - IEEE Trans Image Process. 2007 Jun;16(6):1596-610
20483687 - IEEE Trans Image Process. 2010 Nov;19(11):2861-73
20129854 - IEEE Trans Med Imaging. 2010 Feb;29(2):543-58
12956264 - IEEE Trans Med Imaging. 2003 Sep;22(9):1089-99
20588679 - Opt Express. 2010 Apr 12;18(8):8338-52
1957169 - Science. 1991 Nov 22;254(5035):1178-81
19488371 - Opt Express. 2005 Jan 24;13(2):444-52
11513027 - IEEE Trans Med Imaging. 2001 Aug;20(8):764-71
20173923 - Opt Express. 2010 Jan 18;18(2):1024-32
22542666 - IEEE Trans Med Imaging. 2012 Sep;31(9):1682-97
21278019 - IEEE Trans Image Process. 2011 Jul;20(7):1838-57
22039246 - Invest Ophthalmol Vis Sci. 2012 Jan;53(1):53-61
23073413 - Opt Lett. 2012 Oct 15;37(20):4209-11
18334432 - IEEE Trans Med Imaging. 2008 Mar;27(3):370-7
21138799 - IEEE Trans Med Imaging. 2011 May;30(5):1076-89
20460208 - IEEE Trans Image Process. 2010 Oct;19(10):2669-81
22481818 - IEEE Trans Image Process. 2012 Aug;21(8):3467-78
23024900 - Biomed Opt Express. 2012 Sep 1;3(9):2050-65
17688213 - IEEE Trans Image Process. 2007 Aug;16(8):2080-95
18679509 - Opt Express. 2008 Aug 4;16(16):12313-33
17679327 - IEEE Trans Med Imaging. 2007 Jun;26(6):761-71
19628454 - IEEE Trans Med Imaging. 2009 Dec;28(12):1997-2006
23388927 - Opt Express. 2013 Jan 14;21(1):329-44
22968202 - IEEE Trans Biomed Eng. 2012 Dec;59(12):3450-9
22567586 - Biomed Opt Express. 2012 May 1;3(5):927-42
22692897 - IEEE Trans Med Imaging. 2012 Nov;31(11):1993-2005
huang (ref1) 1991; 254
ref13
ref56
friedman (ref54) 2001; 1
ref12
ref59
ref15
ref58
ref14
ref53
ref55
ref11
ref10
ref17
ref16
ref19
ref18
lee (ref43) 2011; 30
ref51
ref50
ref46
ref45
ref48
ref47
ref41
ref44
xu (ref42) 2012; 31
ref8
ref7
ref9
zhang (ref20) 0
ref3
ref6
ref5
ref35
ref34
mairal (ref61) 2010; 11
ref37
ref36
ref31
ref30
ref32
ref2
ref39
lee (ref49) 2007; 19
ref38
ref70
ref24
ref67
ref23
ref26
ref25
ref64
ref63
wang (ref52) 2012
ref66
ref22
zeyde (ref33) 2012
ref65
ref21
ref28
gibbons (ref68) 2003; 168
ref27
ref29
rosenthal (ref40) 2009; 28
mallat (ref69) 1999
ref60
robinson (ref4) 2010
ref62
chen (ref57) 2011
References_xml – ident: ref59
  doi: 10.1109/TBME.2012.2217493
– start-page: 2216
  year: 2012
  ident: ref52
  article-title: Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis
  publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit
  contributor:
    fullname: wang
– ident: ref3
  doi: 10.1364/BOE.3.002050
– ident: ref10
  doi: 10.1109/TASSP.1981.1163711
– ident: ref58
  doi: 10.1109/TSP.2009.2036477
– ident: ref31
  doi: 10.1167/iovs.11-7640
– ident: ref6
  doi: 10.1364/OE.18.001024
– year: 1999
  ident: ref69
  publication-title: A Wavelet Tour of Signal Processing
  contributor:
    fullname: mallat
– ident: ref56
  doi: 10.1109/CVPR.2011.5995478
– ident: ref32
  doi: 10.1109/TIP.2010.2050625
– ident: ref35
  doi: 10.1109/TIP.2007.896644
– ident: ref24
  doi: 10.1364/OE.18.021003
– volume: 254
  start-page: 1178
  year: 1991
  ident: ref1
  article-title: Optical coherence tomography
  publication-title: Science
  doi: 10.1126/science.1957169
  contributor:
    fullname: huang
– ident: ref7
  doi: 10.1364/OE.18.008338
– ident: ref70
  doi: 10.1364/OE.18.019413
– ident: ref45
  doi: 10.1109/ACSSC.2007.4487198
– ident: ref36
  doi: 10.1109/TPAMI.2008.222
– ident: ref23
  doi: 10.1364/OL.37.003075
– ident: ref51
  doi: 10.1364/OPEX.13.000444
– ident: ref48
  doi: 10.1109/78.258082
– ident: ref27
  doi: 10.1364/OE.21.000329
– ident: ref9
  doi: 10.1109/MSP.2011.2179329
– ident: ref38
  doi: 10.1364/BOE.3.000927
– volume: 19
  start-page: 801
  year: 2007
  ident: ref49
  article-title: Efficient sparse coding algorithms
  publication-title: Adv Neural Inform Process Syst
  contributor:
    fullname: lee
– volume: 28
  start-page: 1997
  year: 2009
  ident: ref40
  article-title: Quantitative optoacoustic signal extraction using sparse signal representation
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2009.2027116
  contributor:
    fullname: rosenthal
– ident: ref53
  doi: 10.1109/TPAMI.2012.95
– ident: ref16
  doi: 10.1109/TSP.2006.873365
– ident: ref5
  doi: 10.1364/OE.16.012313
– ident: ref37
  doi: 10.1016/j.ajo.2008.08.010
– year: 0
  ident: ref20
  article-title: Image denoising and zooming under the LMMSE framework
  publication-title: IET Image Process
  contributor:
    fullname: zhang
– ident: ref8
  doi: 10.1109/TMI.2006.887375
– ident: ref39
  doi: 10.1136/bjo.2004.045989
– ident: ref60
  doi: 10.1016/j.sigpro.2005.05.030
– ident: ref13
  doi: 10.1109/5.993400
– ident: ref12
  doi: 10.1109/TMI.2007.907324
– ident: ref29
  doi: 10.1109/TIT.2006.885507
– ident: ref21
  doi: 10.1364/OE.18.022010
– ident: ref44
  doi: 10.1109/TIP.2005.852206
– ident: ref47
  doi: 10.1145/1553374.1553463
– ident: ref65
  doi: 10.1109/83.650848
– ident: ref26
  doi: 10.1364/BOE.2.002690
– ident: ref14
  doi: 10.1109/TMI.2009.2038576
– volume: 31
  start-page: 1682
  year: 2012
  ident: ref42
  article-title: Low-dose X-ray CT reconstruction via dictionary learning
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2012.2195669
  contributor:
    fullname: xu
– ident: ref15
  doi: 10.1109/TIP.2006.888330
– ident: ref17
  doi: 10.1109/TIP.2011.2108306
– start-page: 313
  year: 2011
  ident: ref57
  article-title: Large scale spectral clustering with landmark-based representation
  publication-title: Proc AAAI Conf Artif Intell
  contributor:
    fullname: chen
– ident: ref11
  doi: 10.1109/79.799930
– start-page: 383
  year: 2010
  ident: ref4
  publication-title: Super-Resolution Imaging
  contributor:
    fullname: robinson
– ident: ref55
  doi: 10.1109/TBME.2011.2173935
– ident: ref50
  doi: 10.1109/TIP.2012.2192127
– ident: ref28
  doi: 10.1109/TIP.2011.2160072
– ident: ref67
  doi: 10.1109/TMI.2003.816958
– start-page: 711
  year: 2012
  ident: ref33
  article-title: On single image scale-up using sparse-representations
  publication-title: in Curves and Surfaces
  doi: 10.1007/978-3-642-27413-8_47
  contributor:
    fullname: zeyde
– volume: 30
  start-page: 1076
  year: 2011
  ident: ref43
  article-title: A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2010.2097275
  contributor:
    fullname: lee
– ident: ref25
  doi: 10.1109/TBME.2012.2199489
– ident: ref22
  doi: 10.1364/OL.37.004209
– ident: ref34
  doi: 10.1109/TMI.2012.2202245
– ident: ref2
  doi: 10.1364/OE.11.002183
– ident: ref66
  doi: 10.1109/42.938244
– ident: ref46
  doi: 10.1109/TSP.2006.881199
– ident: ref63
  doi: 10.1001/archophthalmol.2008.550
– ident: ref30
  doi: 10.1109/MSP.2007.914730
– volume: 168
  year: 2003
  ident: ref68
  publication-title: Nonparametric Statistical Inference
  contributor:
    fullname: gibbons
– ident: ref18
  doi: 10.1109/5.488702
– volume: 11
  start-page: 19
  year: 2010
  ident: ref61
  article-title: Online learning for matrix factorization and sparse coding
  publication-title: J Mach Learn Res
  contributor:
    fullname: mairal
– ident: ref41
  doi: 10.1109/TMI.2010.2090538
– ident: ref19
  doi: 10.1109/TIP.2010.2050107
– ident: ref62
  doi: 10.1088/0266-5611/23/3/008
– ident: ref64
  doi: 10.1109/TIP.2007.901238
– volume: 1
  year: 2001
  ident: ref54
  publication-title: The Elements of Statistical Learning
  contributor:
    fullname: friedman
SSID ssj0014509
Score 2.575006
Snippet In this paper, we present a novel technique, based on compressive sensing principles, for reconstruction and enhancement of multi-dimensional image data. Our...
In this paper, we present a novel technique, based on compressive sensing principles, for reconstruction and enhancement of multi-dimensional image data. Our...
SourceID pubmedcentral
proquest
crossref
pubmed
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2034
SubjectTerms Algorithms
Animals
Dictionaries
Fast retina scanning
Humans
image enhancement
Image Processing, Computer-Assisted - methods
Image reconstruction
Image resolution
Imaging
Interpolation
Macular Degeneration - pathology
Mice
Noise reduction
Optic Nerve - anatomy & histology
Optical Coherence Tomography
Reconstruction
Representations
Retina - anatomy & histology
Retina - pathology
simultaneous denoising and interpolation
sparse representation
Sparsity
Tomography
Tomography, Optical Coherence - methods
Training
Title Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation
URI https://ieeexplore.ieee.org/document/6553142
https://www.ncbi.nlm.nih.gov/pubmed/23846467
https://www.proquest.com/docview/1447765619
https://search.proquest.com/docview/1449271911
https://search.proquest.com/docview/1458539872
https://search.proquest.com/docview/1671458848
https://pubmed.ncbi.nlm.nih.gov/PMC4000559
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SHEp7aNOkD7dpUaGXQr3xQw_rGEKWpLDtoRvIzUjymC4h9pbd7aG_viP5sUkIITeDBmFpRp75PDOfAL54hnJXKR1rlHXMU5vFuqgFYR6ZSqyMqBLfjTz7Ic8u-PdLcbkD38ZeGEQMxWc48Y8hl1-1buN_lR1JQRbD6YP7ROmi69UaMwZcdOUcmWeMTWQ2pCQTfTSfnfsarnySZYr8n7-KhxwVl93l8ltvFK5XuS_SvFswecMDTV_CbHj3rvDkarJZ24n7d4fW8bGL24MXfSjKjjvbeQU72OzD8xsEhfvwdNan3g-gmprVmh27P5tFV-bFTFMxj163HLSsrdnPZfg7znzfR-gkZPP2uufFZufX9Plasb8Lw34tCVIjTbDcNkA1r-Fiejo_OYv7KxpiR0BlHReIRYWykBar1IOhjOBVjVzYXKRGC6W0dlJagqHG5YZzT5iWYJ4bXUhCOvkb2G3aBt8BS7hDYSQKpwyvrdO8NpasSFpyrs5WEXwdVFUuOyaOMiCYRJek4dJruOw1HMGB3-BRrt_bCA4H3Zb9UV0R9uFKUVSb6gg-j8N0yHzmxDTYboKM9jOn6UMyhLxyXajsARmp0tAaXETwtjOp8R0Hk4xA3TK2UcATgd8eaRa_AyE495G30O_vX_UHeOb3pmugPIRdsgn8SJHU2n4KR-g_oKYacg
link.rule.ids 230,315,782,786,798,887,27931,27932,54765
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRQJ64NFCGyhgJC5IZJuHH_GxQqx2oSkHtlJvke046go12Wp3e-ivZ-w8tq2qilskjyzbM_b4y8x8BvjiGMpNKWQoLa9CGusklFnFEPPwmNtSsTJy1cj5KZ-c0Z_n7HwLvg21MNZan3xmR-7Tx_LLxqzdr7IjztBiKB64TxgVnLXVWkPMgLI2oSNxnLERT_qgZCSPZvnUZXGloyQR6AHdYzzoqihvn5ff-CP_wMpDd837KZO3fND4JeT96NvUk7-j9UqPzM09Ysf_nd4reNFdRslxaz2vYcvWu7Bzi6JwF57mXfB9D8qxWq7Isblaz9tEL6Lqkjj8umGhJU1Ffi_8_3HiKj98LSGZNZcdMzaZXuIBtiTXc0X-LBBUW-xgsSmBqt_A2fjH7Psk7B5pCA1ClVWYWZuVlmdc2zJ2cChBgFVZynTKYiWZEFIazjUCUWVSRamjTItsmiqZccQ66VvYrpvaHgCJqLFMccuMULTSRtJKabQjrtG9Gl0G8LVXVbFouTgKj2EiWaCGC6fhotNwAHtugQe5bm0DOOx1W3SbdYnohwo0J4SSAXwemnGbudiJqm2z9jLS9RzHj8kg9kplJpJHZLiIfXFwFsB-a1LDGHuTDEDcMbZBwFGB322p5xeeEpy6uzeT7x6e9Sd4NpnlJ8XJ9PTXe3ju1qktpzyEbbQP-wHvVSv90W-nf4lmHcE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Acquisition+and+Reconstruction+of+Optical+Coherence+Tomography+Images+via+Sparse+Representation&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Fang%2C+Leyuan&rft.au=Li%2C+Shutao&rft.au=McNabb%2C+Ryan+P&rft.au=Nie%2C+Qing&rft.date=2013-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=32&rft.issue=11&rft.spage=2034&rft_id=info:doi/10.1109%2FTMI.2013.2271904&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3115426951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon