qPRF: A system to accelerate population receptive field modeling
BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 306; p. 120994 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2025
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2024.120994 |
Cover
Abstract | BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce the qPRF (“quick PRF”), a system for accelerated PRF modeling that reduced the computation time by a factor >1,000 without losing goodness-of-fit when compared to another widely available PRF modeling package (Kay et al., 2013) on a benchmark of data from the Human Connectome Project (HCP; Van Essen et al. (2013). The system achieves this level of acceleration by pre-computing a tree-like data structure, which it rapidly searches during the fitting step for an optimal parameter combination. We tested the method on a constrained four-parameter version of the PRF model (Strategy 1 herein) and an unconstrained five-parameter PRF model, which the qPRF fitted at comparable speed (Strategy 2). We show how an additional search step can guarantee optimality of qPRF solutions with little additional time cost (Strategy 3). To assess the quality of qPRF solutions, we compared our Strategy 1 solutions to those provided by Benson et al. (2018) who performed a similar four-parameter fit. Both hemispheres of the 181 subjects in the HCP dataset (a total of 10,753,572 vertices, each with a unique BOLD time series of 1800 frames) were analyzed by qPRF in 12.82 h on an ordinary CPU. The absolute difference in R2 achieved by the qPRF compared to Benson et al. (2018) was negligible, with a median of 0.025% (R2 units being between 0% and 100%). In general, the qPRF yielded a slightly better fitting solution, achieving a greater R2 on 70.2% of vertices. We also assess the qPRF method’s model-recovery ability using a simulated dataset. The qPRF may facilitate the development and use of more elaborate models based on the PRF framework and may pave the way for novel clinical applications.
•We describe a system to perform PRF modeling up to 1,500 times faster than others.•The system achieves equivalent goodness-of-fit as others.•A pre-computed tree and similarity-based search strategy underlie the acceleration. |
---|---|
AbstractList | BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce the qPRF (“quick PRF”), a system for accelerated PRF modeling that reduced the computation time by a factor >1,000 without losing goodness-of-fit when compared to another widely available PRF modeling package (Kay et al., 2013) on a benchmark of data from the Human Connectome Project (HCP; Van Essen et al. (2013). The system achieves this level of acceleration by pre-computing a tree-like data structure, which it rapidly searches during the fitting step for an optimal parameter combination. We tested the method on a constrained four-parameter version of the PRF model (Strategy 1 herein) and an unconstrained five-parameter PRF model, which the qPRF fitted at comparable speed (Strategy 2). We show how an additional search step can guarantee optimality of qPRF solutions with little additional time cost (Strategy 3). To assess the quality of qPRF solutions, we compared our Strategy 1 solutions to those provided by Benson et al. (2018) who performed a similar four-parameter fit. Both hemispheres of the 181 subjects in the HCP dataset (a total of 10,753,572 vertices, each with a unique BOLD time series of 1800 frames) were analyzed by qPRF in 12.82 h on an ordinary CPU. The absolute difference in R2 achieved by the qPRF compared to Benson et al. (2018) was negligible, with a median of 0.025% (R2 units being between 0% and 100%). In general, the qPRF yielded a slightly better fitting solution, achieving a greater R2 on 70.2% of vertices. We also assess the qPRF method’s model-recovery ability using a simulated dataset. The qPRF may facilitate the development and use of more elaborate models based on the PRF framework and may pave the way for novel clinical applications. BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce the qPRF (“quick PRF”), a system for accelerated PRF modeling that reduced the computation time by a factor >1,000 without losing goodness-of-fit when compared to another widely available PRF modeling package (Kay et al., 2013) on a benchmark of data from the Human Connectome Project (HCP; Van Essen et al. (2013). The system achieves this level of acceleration by pre-computing a tree-like data structure, which it rapidly searches during the fitting step for an optimal parameter combination. We tested the method on a constrained four-parameter version of the PRF model (Strategy 1 herein) and an unconstrained five-parameter PRF model, which the qPRF fitted at comparable speed (Strategy 2). We show how an additional search step can guarantee optimality of qPRF solutions with little additional time cost (Strategy 3). To assess the quality of qPRF solutions, we compared our Strategy 1 solutions to those provided by Benson et al. (2018) who performed a similar four-parameter fit. Both hemispheres of the 181 subjects in the HCP dataset (a total of 10,753,572 vertices, each with a unique BOLD time series of 1800 frames) were analyzed by qPRF in 12.82 h on an ordinary CPU. The absolute difference in R2 achieved by the qPRF compared to Benson et al. (2018) was negligible, with a median of 0.025% (R2 units being between 0% and 100%). In general, the qPRF yielded a slightly better fitting solution, achieving a greater R2 on 70.2% of vertices. We also assess the qPRF method’s model-recovery ability using a simulated dataset. The qPRF may facilitate the development and use of more elaborate models based on the PRF framework and may pave the way for novel clinical applications. •We describe a system to perform PRF modeling up to 1,500 times faster than others.•The system achieves equivalent goodness-of-fit as others.•A pre-computed tree and similarity-based search strategy underlie the acceleration. BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex ( Dumoulin and Wandell, 2008 ). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce the qPRF (“quick PRF”), a system for accelerated PRF modeling that reduced the computation time by a factor > 1,000 without losing goodness-of-fit when compared to another widely available PRF modeling package ( Kay et al., 2013 ) on a benchmark of data from the Human Connectome Project (HCP; Van Essen et al. (2013) . The system achieves this level of acceleration by pre-computing a tree-like data structure, which it rapidly searches during the fitting step for an optimal parameter combination. We tested the method on a constrained four-parameter version of the PRF model (Strategy 1 herein) and an unconstrained five-parameter PRF model, which the qPRF fitted at comparable speed (Strategy 2). We show how an additional search step can guarantee optimality of qPRF solutions with little additional time cost (Strategy 3). To assess the quality of qPRF solutions, we compared our Strategy 1 solutions to those provided by Benson et al. (2018) who performed a similar four-parameter fit. Both hemispheres of the 181 subjects in the HCP dataset (a total of 10,753,572 vertices, each with a unique BOLD time series of 1800 frames) were analyzed by qPRF in 12.82 h on an ordinary CPU. The absolute difference in R 2 achieved by the qPRF compared to Benson et al. (2018) was negligible, with a median of 0.025% ( R 2 units being between 0% and 100%). In general, the qPRF yielded a slightly better fitting solution, achieving a greater R 2 on 70.2% of vertices. We also assess the qPRF method’s model-recovery ability using a simulated dataset. The qPRF may facilitate the development and use of more elaborate models based on the PRF framework and may pave the way for novel clinical applications. BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce the qPRF (“quick PRF”), a system for accelerated PRF modeling that reduced the computation time by a factor > 1 , 000 without losing goodness-of-fit when compared to another widely available PRF modeling package (Kay et al., 2013) on a benchmark of data from the Human Connectome Project (HCP; Van Essen et al. (2013). The system achieves this level of acceleration by pre-computing a tree-like data structure, which it rapidly searches during the fitting step for an optimal parameter combination. We tested the method on a constrained four-parameter version of the PRF model (Strategy 1 herein) and an unconstrained five-parameter PRF model, which the qPRF fitted at comparable speed (Strategy 2). We show how an additional search step can guarantee optimality of qPRF solutions with little additional time cost (Strategy 3). To assess the quality of qPRF solutions, we compared our Strategy 1 solutions to those provided by Benson et al. (2018) who performed a similar four-parameter fit. Both hemispheres of the 181 subjects in the HCP dataset (a total of 10,753,572 vertices, each with a unique BOLD time series of 1800 frames) were analyzed by qPRF in 12.82 h on an ordinary CPU. The absolute difference in R 2 achieved by the qPRF compared to Benson et al. (2018) was negligible, with a median of 0.025% ( R 2 units being between 0% and 100%). In general, the qPRF yielded a slightly better fitting solution, achieving a greater R 2 on 70.2% of vertices. We also assess the qPRF method’s model-recovery ability using a simulated dataset. The qPRF may facilitate the development and use of more elaborate models based on the PRF framework and may pave the way for novel clinical applications. BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce the qPRF ("quick PRF"), a system for accelerated PRF modeling that reduced the computation time by a factor >1,000 without losing goodness-of-fit when compared to another widely available PRF modeling package (Kay et al., 2013) on a benchmark of data from the Human Connectome Project (HCP; Van Essen et al. (2013). The system achieves this level of acceleration by pre-computing a tree-like data structure, which it rapidly searches during the fitting step for an optimal parameter combination. We tested the method on a constrained four-parameter version of the PRF model (Strategy 1 herein) and an unconstrained five-parameter PRF model, which the qPRF fitted at comparable speed (Strategy 2). We show how an additional search step can guarantee optimality of qPRF solutions with little additional time cost (Strategy 3). To assess the quality of qPRF solutions, we compared our Strategy 1 solutions to those provided by Benson et al. (2018) who performed a similar four-parameter fit. Both hemispheres of the 181 subjects in the HCP dataset (a total of 10,753,572 vertices, each with a unique BOLD time series of 1800 frames) were analyzed by qPRF in 12.82 h on an ordinary CPU. The absolute difference in R2 achieved by the qPRF compared to Benson et al. (2018) was negligible, with a median of 0.025% (R2 units being between 0% and 100%). In general, the qPRF yielded a slightly better fitting solution, achieving a greater R2 on 70.2% of vertices. We also assess the qPRF method's model-recovery ability using a simulated dataset. The qPRF may facilitate the development and use of more elaborate models based on the PRF framework and may pave the way for novel clinical applications.BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce the qPRF ("quick PRF"), a system for accelerated PRF modeling that reduced the computation time by a factor >1,000 without losing goodness-of-fit when compared to another widely available PRF modeling package (Kay et al., 2013) on a benchmark of data from the Human Connectome Project (HCP; Van Essen et al. (2013). The system achieves this level of acceleration by pre-computing a tree-like data structure, which it rapidly searches during the fitting step for an optimal parameter combination. We tested the method on a constrained four-parameter version of the PRF model (Strategy 1 herein) and an unconstrained five-parameter PRF model, which the qPRF fitted at comparable speed (Strategy 2). We show how an additional search step can guarantee optimality of qPRF solutions with little additional time cost (Strategy 3). To assess the quality of qPRF solutions, we compared our Strategy 1 solutions to those provided by Benson et al. (2018) who performed a similar four-parameter fit. Both hemispheres of the 181 subjects in the HCP dataset (a total of 10,753,572 vertices, each with a unique BOLD time series of 1800 frames) were analyzed by qPRF in 12.82 h on an ordinary CPU. The absolute difference in R2 achieved by the qPRF compared to Benson et al. (2018) was negligible, with a median of 0.025% (R2 units being between 0% and 100%). In general, the qPRF yielded a slightly better fitting solution, achieving a greater R2 on 70.2% of vertices. We also assess the qPRF method's model-recovery ability using a simulated dataset. The qPRF may facilitate the development and use of more elaborate models based on the PRF framework and may pave the way for novel clinical applications. BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce the qPRF ("quick PRF"), a system for accelerated PRF modeling that reduced the computation time by a factor >1,000 without losing goodness-of-fit when compared to another widely available PRF modeling package (Kay et al., 2013) on a benchmark of data from the Human Connectome Project (HCP; Van Essen et al. (2013). The system achieves this level of acceleration by pre-computing a tree-like data structure, which it rapidly searches during the fitting step for an optimal parameter combination. We tested the method on a constrained four-parameter version of the PRF model (Strategy 1 herein) and an unconstrained five-parameter PRF model, which the qPRF fitted at comparable speed (Strategy 2). We show how an additional search step can guarantee optimality of qPRF solutions with little additional time cost (Strategy 3). To assess the quality of qPRF solutions, we compared our Strategy 1 solutions to those provided by Benson et al. (2018) who performed a similar four-parameter fit. Both hemispheres of the 181 subjects in the HCP dataset (a total of 10,753,572 vertices, each with a unique BOLD time series of 1800 frames) were analyzed by qPRF in 12.82 h on an ordinary CPU. The absolute difference in R achieved by the qPRF compared to Benson et al. (2018) was negligible, with a median of 0.025% (R units being between 0% and 100%). In general, the qPRF yielded a slightly better fitting solution, achieving a greater R on 70.2% of vertices. We also assess the qPRF method's model-recovery ability using a simulated dataset. The qPRF may facilitate the development and use of more elaborate models based on the PRF framework and may pave the way for novel clinical applications. |
ArticleNumber | 120994 |
Author | Waz, Sebastian Wang, Yalin Lu, Zhong-Lin |
AuthorAffiliation | b School of Computing and Augmented Intelligence, Arizona State University, 699 S. Mill Avenue, Tempe, 85281, AZ, USA d NYU-ECNU Institute of Brain and Cognitive Science, 3663 Zhongshan Road North, Putuo District, 200062, Shanghai, China c Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Pudong New District, 200124, Shanghai, China a Center for Neural Science, New York University, 4 Washington Place, NY, 10003, NY, USA |
AuthorAffiliation_xml | – name: c Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Pudong New District, 200124, Shanghai, China – name: d NYU-ECNU Institute of Brain and Cognitive Science, 3663 Zhongshan Road North, Putuo District, 200062, Shanghai, China – name: a Center for Neural Science, New York University, 4 Washington Place, NY, 10003, NY, USA – name: b School of Computing and Augmented Intelligence, Arizona State University, 699 S. Mill Avenue, Tempe, 85281, AZ, USA |
Author_xml | – sequence: 1 givenname: Sebastian surname: Waz fullname: Waz, Sebastian organization: Center for Neural Science, New York University, 4 Washington Place, NY, 10003, NY, USA – sequence: 2 givenname: Yalin orcidid: 0000-0002-6241-735X surname: Wang fullname: Wang, Yalin organization: School of Computing and Augmented Intelligence, Arizona State University, 699 S. Mill Avenue, Tempe, 85281, AZ, USA – sequence: 3 givenname: Zhong-Lin orcidid: 0000-0002-7295-727X surname: Lu fullname: Lu, Zhong-Lin email: zhonglin@nyu.edu organization: Center for Neural Science, New York University, 4 Washington Place, NY, 10003, NY, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39761863$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkltv1DAQhSNURC_wF1AkXnjZxXZ85YVeREulSiAEz5YzmSwOSby1k5X23-PtlkL71Cdb9plPM3POcXEwhhGLoqRkSQmVH7rliHMMfnArXDLC-JIyYgx_URxRYsTCCMUOdndRLTSl5rA4TqkjhBjK9avisDJKUi2ro-L09tv3y4_lWZm2acKhnELpALDH6CYs12E9927yYSwjAq4nv8Gy9dg35RAa7P24el28bF2f8M39eVL8vPz84-LL4ubr1fXF2c0ChJLTQrvaqFpSQSrOeK3yKQRrhJOqyRMhaKBSMtCyhlbkkaBhhtCWklZDXavqpLjec5vgOruOefa4tcF5e_cQ4sq6OHno0RJh6raGRlUMOKtQc8GBCdaiYpoBzaxPe9Z6rgdsAMcpuv4R9PHP6H_ZVdhYSrVSFWWZ8P6eEMPtjGmyg095bb0bMczJVlRwyhWVu8bfPZF2YY5j3tVOpQyXXFVZ9fb_lh56-etUFui9AGJIKWL7IKHE7kJhO_svFHYXCrsPRS4935di9mfjMdoEHkfAxmdXp7xA_xzI6RMIZPs9uP43bp-H-AMKV9i8 |
Cites_doi | 10.1523/JNEUROSCI.3476-04.2005 10.1016/j.neuroimage.2013.05.012 10.1167/18.13.23 10.1038/s41586-023-06377-x 10.1016/j.neuroimage.2021.118671 10.1016/j.tics.2011.02.005 10.1167/3.10.1 10.1093/brain/awp119 10.1159/000486645 10.1016/j.neuroimage.2017.09.008 10.1523/JNEUROSCI.0690-21.2022 10.1038/eye.2010.166 10.1038/s41467-021-26345-1 10.1523/JNEUROSCI.2717-17.2018 10.1038/nature18933 10.3390/cancers13102439 10.1016/j.neuroimage.2012.10.037 10.1371/journal.pone.0204566 10.1016/j.media.2021.102230 10.1073/pnas.93.6.2382 10.1523/JNEUROSCI.07-03-00913.1987 10.1038/s41467-023-37280-8 10.1016/j.neuroimage.2013.05.041 10.1523/JNEUROSCI.3052-20.2021 10.1038/369525a0 10.1093/brain/39.1-2.34 10.1371/journal.pcbi.1009216 10.1167/14.1.17 10.1016/j.tics.2009.08.005 10.1126/science.7754376 10.1002/hbm.24909 10.3389/fpsyg.2014.00074 10.1113/jphysiol.1961.sp006803 10.1167/iovs.06-0773 10.1152/jn.00105.2013 10.1016/j.neuroimage.2007.09.034 10.1016/S1053-8119(02)00058-7 10.1093/cercor/11.12.1182 10.1038/323806a0 |
ContentType | Journal Article |
Copyright | 2025 The Authors Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. 2025. The Authors |
Copyright_xml | – notice: 2025 The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2025. The Authors |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM DOA |
DOI | 10.1016/j.neuroimage.2024.120994 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) PML(ProQuest Medical Library) ProQuest Psychology Database (NC LIVE) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 120994 |
ExternalDocumentID | oai_doaj_org_article_059bfbcd732c423e8454c252fe7282c1 PMC11877312 39761863 10_1016_j_neuroimage_2024_120994 S1053811924004919 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Eye Institute, United States grantid: R01 EY032125 funderid: http://dx.doi.org/10.13039/100000053 – fundername: NEI NIH HHS grantid: R01 EY032125 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SEW SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 0SF 6I. AACTN AAFTH AFKWA AJOXV ALIPV AMFUW C45 NCXOZ 29N 53G AAQFI AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HMQ HVGLF HZ~ R2- RIG SNS WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c576t-8ab97b61503424b7503552d5a67d016ec8c1662c86bcf5202cd2901f10f8cbb73 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:23:38 EDT 2025 Thu Aug 21 18:27:19 EDT 2025 Fri Sep 05 14:51:25 EDT 2025 Wed Aug 13 07:09:27 EDT 2025 Mon Jul 21 05:23:21 EDT 2025 Tue Jul 01 05:27:40 EDT 2025 Sat Feb 15 15:51:30 EST 2025 Tue Aug 26 17:21:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Retinotopic mapping Data structures Population receptive field model Vision Optimization |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c576t-8ab97b61503424b7503552d5a67d016ec8c1662c86bcf5202cd2901f10f8cbb73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6241-735X 0000-0002-7295-727X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811924004919 |
PMID | 39761863 |
PQID | 3157946473 |
PQPubID | 2031077 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_059bfbcd732c423e8454c252fe7282c1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11877312 proquest_miscellaneous_3154147167 proquest_journals_3157946473 pubmed_primary_39761863 crossref_primary_10_1016_j_neuroimage_2024_120994 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2024_120994 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2024_120994 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2025 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Hense, Plank, Wendl, Dodoo-Schittko, Bumes, Greenlee, Schmidt, Proescholdt, Rosengarth (b25) 2021; 13 Bhat, Lührs, Goebel, Senden (b5) 2021; 245 Duncan, Sample, Weinreb, Bowd, Zangwill (b15) 2007; 48 Lauro, Lee, Ahn, Barborica, Asaad (b30) 2018; 96 Nuyujukian, Sanabria, Saab, Pandarinath, Jarosiewicz, Blabe, Franco, Mernoff, Eskandar, Simeral, Hochberg, Shenoy, Henderson (b33) 2018; 13 Brewer, Barton (b7) 2014; 5 Bridge (b9) 2011; 25 Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson, Smith, Van Essen (b22) 2016; 536 Brewer, Barton, Brewer, Barton (b8) 2016 Dumoulin, Wandell (b14) 2008; 39 Zeidman, Silson, Schwarzkopf, Baker, Penny (b49) 2018; 180 Baker, Peli, Knouf, Kanwisher (b1) 2005; 25 Boucard, Hernowo, Maguire, Jansonius, Roerdink, Hooymans, Cornelissen (b6) 2009; 132 Tu, Ta, Lu, Wang (b42) 2021; 17 Dumoulin, Hoge, Baker, Jr., Hess, Achtman, Evans (b13) 2003; 18 DeYoe, Carman, Bandettini, Glickman, Wieser, Cox, Miller, Neitz (b11) 1996; 93 Thielen, Güçlü, Güçlütürk, Ambrogioni, Bosch, Gerven (b41) 2019 Fox, Miezin, Allman, Van Essen, Raichle (b19) 1987; 7 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (b44) 2013; 80 Lerma-Usabiaga, Winawer, Wandell (b31) 2021; 41 Dougherty, Koch, Brewer, Fischer, Modersitzki, Wandell (b12) 2003; 3 Holmes, Lister (b27) 1916; 39 Merkel, Hopf, Schoenfeld (b32) 2019; 41 Silver, Kastner (b38) 2009; 13 Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson, Smith, Van Essen (b21) 2016; 536 Waz, Wang, Lu (b45) 2024 Haak, Winawer, Harvey, Renken, Dumoulin, Wandell, Cornelissen (b24) 2013; 66 Purves, Augustine, Fitzpatrick, Katz, LaMantia, McNamara, Williams (b34) 2001 Benson, Jamison, Arcaro, Vu, Glasser, Coalson, Van Essen, Yacoub, Ugurbil, Winawer, Kay (b3) 2018; 18 Ribeiro, Benson, Puckett (b35) 2024 Xiong, Tu, Lu, Wang (b48) 2023; vol. 12464 Barbot, Das, Melnick, Cavanaugh, Merriam, Heeger, Huxlin (b2) 2021; 12 Engel, Glover, Wandell (b17) 1997; 7 Ta, Tu, Lu, Wang (b40) 2022; 75 Elshout, Bergsma, van den Berg, Haak (b16) 2021; 31 Kay, Winawer, Mezer, Wandell (b29) 2013; 110 Sereno, Dale, Reppas, Kwong, Belliveau, Brady, Rosen, Tootell (b36) 1995; 268 Inouye (b28) 1909 Daniel, Whitteridge (b10) 1961; 159 Whitney, Levi (b46) 2011; 15 Greene, Dumoulin, Harvey, Ress (b23) 2014; 14 Benson, Yoon, Forenzo, Engel, Kay, Winawer (b4) 2022; 42 Fox, Mintun, Raichle, Miezin, Allman, Van Essen (b20) 1986; 323 Himmelberg, Tünçok, Gomez, Grill-Spector, Carrasco, Winawer (b26) 2023; 14 Uğurbil, Xu, Auerbach, Moeller, Vu, Duarte-Carvajalino, Lenglet, Wu, Schmitter, Van de Moortele, Strupp, Sapiro, De Martino, Wang, Harel, Garwood, Chen, Feinberg, Smith, Miller, Sotiropoulos, Jbabdi, Andersson, Behrens, Glasser, Van Essen, Yacoub (b43) 2013; 80 Smith, Singh, Williams, Greenlee (b39) 2001; 11 Willett, Kunz, Fan, Avansino, Wilson, Choi, Kamdar, Glasser, Hochberg, Druckmann, Shenoy, Henderson (b47) 2023; 620 Silson, Reynolds, Kravitz, Baker (b37) 2018; 38 Engel, Rumelhart, Wandell, Lee, Glover, Chichilnisky, Shadlen (b18) 1994; 369 Baker (10.1016/j.neuroimage.2024.120994_b1) 2005; 25 Ribeiro (10.1016/j.neuroimage.2024.120994_b35) 2024 Ta (10.1016/j.neuroimage.2024.120994_b40) 2022; 75 Duncan (10.1016/j.neuroimage.2024.120994_b15) 2007; 48 Glasser (10.1016/j.neuroimage.2024.120994_b22) 2016; 536 Silver (10.1016/j.neuroimage.2024.120994_b38) 2009; 13 Kay (10.1016/j.neuroimage.2024.120994_b29) 2013; 110 Silson (10.1016/j.neuroimage.2024.120994_b37) 2018; 38 Merkel (10.1016/j.neuroimage.2024.120994_b32) 2019; 41 Barbot (10.1016/j.neuroimage.2024.120994_b2) 2021; 12 Engel (10.1016/j.neuroimage.2024.120994_b17) 1997; 7 Boucard (10.1016/j.neuroimage.2024.120994_b6) 2009; 132 Holmes (10.1016/j.neuroimage.2024.120994_b27) 1916; 39 Benson (10.1016/j.neuroimage.2024.120994_b4) 2022; 42 Daniel (10.1016/j.neuroimage.2024.120994_b10) 1961; 159 Tu (10.1016/j.neuroimage.2024.120994_b42) 2021; 17 Waz (10.1016/j.neuroimage.2024.120994_b45) 2024 DeYoe (10.1016/j.neuroimage.2024.120994_b11) 1996; 93 Purves (10.1016/j.neuroimage.2024.120994_b34) 2001 Brewer (10.1016/j.neuroimage.2024.120994_b8) 2016 Smith (10.1016/j.neuroimage.2024.120994_b39) 2001; 11 Glasser (10.1016/j.neuroimage.2024.120994_b21) 2016; 536 Lauro (10.1016/j.neuroimage.2024.120994_b30) 2018; 96 Bridge (10.1016/j.neuroimage.2024.120994_b9) 2011; 25 Engel (10.1016/j.neuroimage.2024.120994_b18) 1994; 369 Dumoulin (10.1016/j.neuroimage.2024.120994_b14) 2008; 39 Dumoulin (10.1016/j.neuroimage.2024.120994_b13) 2003; 18 Zeidman (10.1016/j.neuroimage.2024.120994_b49) 2018; 180 Hense (10.1016/j.neuroimage.2024.120994_b25) 2021; 13 Lerma-Usabiaga (10.1016/j.neuroimage.2024.120994_b31) 2021; 41 Willett (10.1016/j.neuroimage.2024.120994_b47) 2023; 620 Nuyujukian (10.1016/j.neuroimage.2024.120994_b33) 2018; 13 Whitney (10.1016/j.neuroimage.2024.120994_b46) 2011; 15 Inouye (10.1016/j.neuroimage.2024.120994_b28) 1909 Benson (10.1016/j.neuroimage.2024.120994_b3) 2018; 18 Van Essen (10.1016/j.neuroimage.2024.120994_b44) 2013; 80 Fox (10.1016/j.neuroimage.2024.120994_b19) 1987; 7 Thielen (10.1016/j.neuroimage.2024.120994_b41) 2019 Haak (10.1016/j.neuroimage.2024.120994_b24) 2013; 66 Uğurbil (10.1016/j.neuroimage.2024.120994_b43) 2013; 80 Brewer (10.1016/j.neuroimage.2024.120994_b7) 2014; 5 Greene (10.1016/j.neuroimage.2024.120994_b23) 2014; 14 Fox (10.1016/j.neuroimage.2024.120994_b20) 1986; 323 Xiong (10.1016/j.neuroimage.2024.120994_b48) 2023; vol. 12464 Himmelberg (10.1016/j.neuroimage.2024.120994_b26) 2023; 14 Dougherty (10.1016/j.neuroimage.2024.120994_b12) 2003; 3 Bhat (10.1016/j.neuroimage.2024.120994_b5) 2021; 245 Sereno (10.1016/j.neuroimage.2024.120994_b36) 1995; 268 Elshout (10.1016/j.neuroimage.2024.120994_b16) 2021; 31 39185219 - bioRxiv. 2024 Aug 15:2024.08.13.607805. doi: 10.1101/2024.08.13.607805. |
References_xml | – volume: 132 start-page: 1898 year: 2009 end-page: 1906 ident: b6 article-title: Changes in cortical grey matter density associated with long-standing retinal visual field defects publication-title: Brain – volume: 13 start-page: 488 year: 2009 end-page: 495 ident: b38 article-title: Topographic maps in human frontal and parietal cortex publication-title: Trends in Cognitive Sciences – volume: vol. 12464 start-page: 464 year: 2023 end-page: 472 ident: b48 article-title: Characterizing visual cortical magnification with topological smoothing and optimal transportation publication-title: Medical Imaging 2023: Image Processing – volume: 245 year: 2021 ident: b5 article-title: Extremely fast pRF mapping for real-time applications publication-title: NeuroImage – volume: 7 start-page: 181 year: 1997 end-page: 192 ident: b17 article-title: Retinotopic organization in human visual cortex and the spatial precision of functional MRI publication-title: Cereb. Cortex (New York, N. Y.: 1991) – volume: 41 start-page: 2420 year: 2021 end-page: 2427 ident: b31 article-title: Population receptive field shapes in early visual cortex are nearly circular publication-title: J. Neurosci.: Off. J. Soc. for Neurosci. – volume: 80 start-page: 80 year: 2013 end-page: 104 ident: b43 article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project publication-title: NeuroImage – volume: 15 start-page: 160 year: 2011 end-page: 168 ident: b46 article-title: Visual crowding: A fundamental limit on conscious perception and object recognition publication-title: Trends in Cognitive Sciences – volume: 323 start-page: 806 year: 1986 end-page: 809 ident: b20 article-title: Mapping human visual cortex with positron emission tomography publication-title: Nature – volume: 110 start-page: 481 year: 2013 end-page: 494 ident: b29 article-title: Compressive spatial summation in human visual cortex publication-title: J. Neurophysiol. – year: 2016 ident: b8 article-title: Changes in visual cortex in healthy aging and dementia publication-title: Update on Dementia – volume: 3 start-page: 1 year: 2003 ident: b12 article-title: Visual field representations and locations of visual areas V1/2/3 in human visual cortex publication-title: J. Vis. – volume: 369 year: 1994 ident: b18 article-title: fMRI of human visual cortex publication-title: Nature – volume: 13 start-page: 2439 year: 2021 ident: b25 article-title: fMRI retinotopic mapping in patients with brain tumors and space-occupying brain lesions in the area of the occipital lobe publication-title: Cancers – volume: 536 start-page: 171 year: 2016 end-page: 178 ident: b21 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature – volume: 620 start-page: 1031 year: 2023 end-page: 1036 ident: b47 article-title: A high-performance speech neuroprosthesis publication-title: Nature – volume: 14 start-page: 1561 year: 2023 ident: b26 article-title: Comparing retinotopic maps of children and adults reveals a late-stage change in how V1 samples the visual field publication-title: Nature Commun. – volume: 180 start-page: 173 year: 2018 end-page: 187 ident: b49 article-title: Bayesian population receptive field modelling publication-title: Neuroimage – volume: 17 year: 2021 ident: b42 article-title: Topology-preserving smoothing of retinotopic maps publication-title: PLoS Comput. Biol. – volume: 48 start-page: 733 year: 2007 end-page: 744 ident: b15 article-title: Retinotopic organization of primary visual cortex in glaucoma: a method for comparing cortical function with damage to the optic disk publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 536 start-page: 171 year: 2016 end-page: 178 ident: b22 article-title: Supplementary material: A multi-modal parcellation of human cerebral cortex publication-title: Nature – volume: 268 start-page: 889 year: 1995 end-page: 893 ident: b36 article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging publication-title: Science – volume: 38 start-page: 2294 year: 2018 ident: b37 article-title: Differential sampling of visual space in ventral and dorsal early visual cortex publication-title: J. Neurosci. – volume: 31 year: 2021 ident: b16 article-title: Functional MRI of visual cortex predicts training-induced recovery in stroke patients with homonymous visual field defects publication-title: NeuroImage: Clin. – volume: 13 year: 2018 ident: b33 article-title: Cortical control of a tablet computer by people with paralysis publication-title: PLoS One – volume: 18 start-page: 576 year: 2003 end-page: 587 ident: b13 article-title: Automatic volumetric segmentation of human visual retinotopic cortex publication-title: Neuroimage – volume: 11 start-page: 1182 year: 2001 end-page: 1190 ident: b39 article-title: Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex publication-title: Cerebral Cortex – volume: 25 start-page: 614 year: 2005 end-page: 618 ident: b1 article-title: Reorganization of visual processing in macular degeneration publication-title: J. Neurosci. – volume: 25 start-page: 291 year: 2011 end-page: 296 ident: b9 article-title: Mapping the visual brain: how and why publication-title: Eye – volume: 39 start-page: 34 year: 1916 end-page: 73 ident: b27 article-title: Disturbances of vision from cerebral lesions, with special reference to the cortical representation of the macula publication-title: Brain – volume: 42 start-page: 8629 year: 2022 end-page: 8646 ident: b4 article-title: Variability of the surface area of the V1, V2, and V3 maps in a large sample of human observers publication-title: J. Neurosci. – volume: 159 start-page: 203 year: 1961 end-page: 221 ident: b10 article-title: The representation of the visual field on the cerebral cortex in monkeys publication-title: J. Physiol. – volume: 12 start-page: 6102 year: 2021 ident: b2 article-title: Spared perilesional V1 activity underlies training-induced recovery of luminance detection sensitivity in cortically-blind patients publication-title: Nature Commun. – volume: 41 start-page: 1765 year: 2019 ident: b32 article-title: Modulating the global orientation bias of the visual system changes population receptive field elongations publication-title: Hum. Brain Mapp. – volume: 18 start-page: 23 year: 2018 ident: b3 article-title: The Human Connectome Project 7 Tesla retinotopy dataset: Description and Population Receptive Field Analysis publication-title: J. Vis. – year: 2024 ident: b35 article-title: Human Retinotopic Mapping: from Empirical to Computational Models of Retinotopy – volume: 93 start-page: 2382 year: 1996 end-page: 2386 ident: b11 article-title: Mapping striate and extrastriate visual areas in human cerebral cortex. publication-title: Proc. Natl. Acad. Sci. USA – volume: 96 start-page: 13 year: 2018 end-page: 21 ident: b30 article-title: DBStar: An open-source tool kit for imaging analysis with patient-customized deep brain stimulation platforms publication-title: Stereotact. Funct. Neurosurg. – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: b44 article-title: The WU-Minn Human Connectome Project: An Overview publication-title: NeuroImage – year: 2019 ident: b41 article-title: DeepRF: Ultrafast population receptive field mapping with deep learning – year: 2024 ident: b45 article-title: qPRF recovers center-surround properties of population receptive fields publication-title: Meeting of the Society for Neuroscience – volume: 75 year: 2022 ident: b40 article-title: Quantitative characterization of the human retinotopic map based on quasiconformal mapping publication-title: Med. Image Anal. – volume: 66 start-page: 376 year: 2013 end-page: 384 ident: b24 article-title: Connective field modeling publication-title: NeuroImage – year: 1909 ident: b28 article-title: Die Sehstörungen bei Schussverletzungen der kortikalen Sehsphäre: nach Beobachtungen an Verwundeten der letzten japanischen Kriege – volume: 14 start-page: 17 year: 2014 ident: b23 article-title: Measurement of population receptive fields in human early visual cortex using back-projection tomography publication-title: J. Vis. – year: 2001 ident: b34 article-title: Retinal circuits for detecting differences in luminance publication-title: Neuroscience. 2nd Edition – volume: 5 year: 2014 ident: b7 article-title: Visual cortex in aging and Alzheimer’s disease: changes in visual field maps and population receptive fields publication-title: Front. Psychol. – volume: 7 start-page: 913 year: 1987 end-page: 922 ident: b19 article-title: Retinotopic organization of human visual cortex mapped with positron-emission tomography publication-title: J. Neurosci. – volume: 39 start-page: 647 year: 2008 end-page: 660 ident: b14 article-title: Population receptive field estimates in human visual cortex publication-title: NeuroImage – volume: 25 start-page: 614 issue: 3 year: 2005 ident: 10.1016/j.neuroimage.2024.120994_b1 article-title: Reorganization of visual processing in macular degeneration publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3476-04.2005 – volume: 31 year: 2021 ident: 10.1016/j.neuroimage.2024.120994_b16 article-title: Functional MRI of visual cortex predicts training-induced recovery in stroke patients with homonymous visual field defects publication-title: NeuroImage: Clin. – volume: 80 start-page: 80 year: 2013 ident: 10.1016/j.neuroimage.2024.120994_b43 article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.012 – volume: 18 start-page: 23 issue: 13 year: 2018 ident: 10.1016/j.neuroimage.2024.120994_b3 article-title: The Human Connectome Project 7 Tesla retinotopy dataset: Description and Population Receptive Field Analysis publication-title: J. Vis. doi: 10.1167/18.13.23 – volume: 620 start-page: 1031 issue: 7976 year: 2023 ident: 10.1016/j.neuroimage.2024.120994_b47 article-title: A high-performance speech neuroprosthesis publication-title: Nature doi: 10.1038/s41586-023-06377-x – year: 2016 ident: 10.1016/j.neuroimage.2024.120994_b8 article-title: Changes in visual cortex in healthy aging and dementia – volume: 7 start-page: 181 issue: 2 year: 1997 ident: 10.1016/j.neuroimage.2024.120994_b17 article-title: Retinotopic organization in human visual cortex and the spatial precision of functional MRI publication-title: Cereb. Cortex (New York, N. Y.: 1991) – year: 2001 ident: 10.1016/j.neuroimage.2024.120994_b34 article-title: Retinal circuits for detecting differences in luminance – volume: 245 year: 2021 ident: 10.1016/j.neuroimage.2024.120994_b5 article-title: Extremely fast pRF mapping for real-time applications publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.118671 – volume: 15 start-page: 160 issue: 4 year: 2011 ident: 10.1016/j.neuroimage.2024.120994_b46 article-title: Visual crowding: A fundamental limit on conscious perception and object recognition publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2011.02.005 – year: 1909 ident: 10.1016/j.neuroimage.2024.120994_b28 – year: 2024 ident: 10.1016/j.neuroimage.2024.120994_b45 article-title: qPRF recovers center-surround properties of population receptive fields – volume: 3 start-page: 1 issue: 10 year: 2003 ident: 10.1016/j.neuroimage.2024.120994_b12 article-title: Visual field representations and locations of visual areas V1/2/3 in human visual cortex publication-title: J. Vis. doi: 10.1167/3.10.1 – volume: 132 start-page: 1898 issue: 7 year: 2009 ident: 10.1016/j.neuroimage.2024.120994_b6 article-title: Changes in cortical grey matter density associated with long-standing retinal visual field defects publication-title: Brain doi: 10.1093/brain/awp119 – volume: 96 start-page: 13 issue: 1 year: 2018 ident: 10.1016/j.neuroimage.2024.120994_b30 article-title: DBStar: An open-source tool kit for imaging analysis with patient-customized deep brain stimulation platforms publication-title: Stereotact. Funct. Neurosurg. doi: 10.1159/000486645 – volume: 180 start-page: 173 issue: Pt A year: 2018 ident: 10.1016/j.neuroimage.2024.120994_b49 article-title: Bayesian population receptive field modelling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.09.008 – volume: 42 start-page: 8629 issue: 46 year: 2022 ident: 10.1016/j.neuroimage.2024.120994_b4 article-title: Variability of the surface area of the V1, V2, and V3 maps in a large sample of human observers publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0690-21.2022 – volume: 25 start-page: 291 issue: 3 year: 2011 ident: 10.1016/j.neuroimage.2024.120994_b9 article-title: Mapping the visual brain: how and why publication-title: Eye doi: 10.1038/eye.2010.166 – volume: 12 start-page: 6102 issue: 1 year: 2021 ident: 10.1016/j.neuroimage.2024.120994_b2 article-title: Spared perilesional V1 activity underlies training-induced recovery of luminance detection sensitivity in cortically-blind patients publication-title: Nature Commun. doi: 10.1038/s41467-021-26345-1 – volume: 38 start-page: 2294 issue: 9 year: 2018 ident: 10.1016/j.neuroimage.2024.120994_b37 article-title: Differential sampling of visual space in ventral and dorsal early visual cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2717-17.2018 – volume: 536 start-page: 171 issue: 7615 year: 2016 ident: 10.1016/j.neuroimage.2024.120994_b21 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature doi: 10.1038/nature18933 – volume: 13 start-page: 2439 issue: 10 year: 2021 ident: 10.1016/j.neuroimage.2024.120994_b25 article-title: fMRI retinotopic mapping in patients with brain tumors and space-occupying brain lesions in the area of the occipital lobe publication-title: Cancers doi: 10.3390/cancers13102439 – volume: 66 start-page: 376 year: 2013 ident: 10.1016/j.neuroimage.2024.120994_b24 article-title: Connective field modeling publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.10.037 – volume: 13 issue: 11 year: 2018 ident: 10.1016/j.neuroimage.2024.120994_b33 article-title: Cortical control of a tablet computer by people with paralysis publication-title: PLoS One doi: 10.1371/journal.pone.0204566 – year: 2024 ident: 10.1016/j.neuroimage.2024.120994_b35 – volume: 75 year: 2022 ident: 10.1016/j.neuroimage.2024.120994_b40 article-title: Quantitative characterization of the human retinotopic map based on quasiconformal mapping publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102230 – volume: 93 start-page: 2382 issue: 6 year: 1996 ident: 10.1016/j.neuroimage.2024.120994_b11 article-title: Mapping striate and extrastriate visual areas in human cerebral cortex. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.6.2382 – year: 2019 ident: 10.1016/j.neuroimage.2024.120994_b41 – volume: 7 start-page: 913 issue: 3 year: 1987 ident: 10.1016/j.neuroimage.2024.120994_b19 article-title: Retinotopic organization of human visual cortex mapped with positron-emission tomography publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.07-03-00913.1987 – volume: 14 start-page: 1561 issue: 1 year: 2023 ident: 10.1016/j.neuroimage.2024.120994_b26 article-title: Comparing retinotopic maps of children and adults reveals a late-stage change in how V1 samples the visual field publication-title: Nature Commun. doi: 10.1038/s41467-023-37280-8 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2024.120994_b44 article-title: The WU-Minn Human Connectome Project: An Overview publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 41 start-page: 2420 issue: 11 year: 2021 ident: 10.1016/j.neuroimage.2024.120994_b31 article-title: Population receptive field shapes in early visual cortex are nearly circular publication-title: J. Neurosci.: Off. J. Soc. for Neurosci. doi: 10.1523/JNEUROSCI.3052-20.2021 – volume: 369 issue: 6481 year: 1994 ident: 10.1016/j.neuroimage.2024.120994_b18 article-title: fMRI of human visual cortex publication-title: Nature doi: 10.1038/369525a0 – volume: 39 start-page: 34 issue: 1–2 year: 1916 ident: 10.1016/j.neuroimage.2024.120994_b27 article-title: Disturbances of vision from cerebral lesions, with special reference to the cortical representation of the macula publication-title: Brain doi: 10.1093/brain/39.1-2.34 – volume: 17 issue: 8 year: 2021 ident: 10.1016/j.neuroimage.2024.120994_b42 article-title: Topology-preserving smoothing of retinotopic maps publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1009216 – volume: 14 start-page: 17 issue: 1 year: 2014 ident: 10.1016/j.neuroimage.2024.120994_b23 article-title: Measurement of population receptive fields in human early visual cortex using back-projection tomography publication-title: J. Vis. doi: 10.1167/14.1.17 – volume: 13 start-page: 488 issue: 11 year: 2009 ident: 10.1016/j.neuroimage.2024.120994_b38 article-title: Topographic maps in human frontal and parietal cortex publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2009.08.005 – volume: 268 start-page: 889 issue: 5212 year: 1995 ident: 10.1016/j.neuroimage.2024.120994_b36 article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging publication-title: Science doi: 10.1126/science.7754376 – volume: 41 start-page: 1765 issue: 7 year: 2019 ident: 10.1016/j.neuroimage.2024.120994_b32 article-title: Modulating the global orientation bias of the visual system changes population receptive field elongations publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24909 – volume: 5 year: 2014 ident: 10.1016/j.neuroimage.2024.120994_b7 article-title: Visual cortex in aging and Alzheimer’s disease: changes in visual field maps and population receptive fields publication-title: Front. Psychol. doi: 10.3389/fpsyg.2014.00074 – volume: 159 start-page: 203 issue: 2 year: 1961 ident: 10.1016/j.neuroimage.2024.120994_b10 article-title: The representation of the visual field on the cerebral cortex in monkeys publication-title: J. Physiol. doi: 10.1113/jphysiol.1961.sp006803 – volume: 48 start-page: 733 issue: 2 year: 2007 ident: 10.1016/j.neuroimage.2024.120994_b15 article-title: Retinotopic organization of primary visual cortex in glaucoma: a method for comparing cortical function with damage to the optic disk publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.06-0773 – volume: 110 start-page: 481 issue: 2 year: 2013 ident: 10.1016/j.neuroimage.2024.120994_b29 article-title: Compressive spatial summation in human visual cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.00105.2013 – volume: 39 start-page: 647 issue: 2 year: 2008 ident: 10.1016/j.neuroimage.2024.120994_b14 article-title: Population receptive field estimates in human visual cortex publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.09.034 – volume: vol. 12464 start-page: 464 year: 2023 ident: 10.1016/j.neuroimage.2024.120994_b48 article-title: Characterizing visual cortical magnification with topological smoothing and optimal transportation – volume: 18 start-page: 576 issue: 3 year: 2003 ident: 10.1016/j.neuroimage.2024.120994_b13 article-title: Automatic volumetric segmentation of human visual retinotopic cortex publication-title: Neuroimage doi: 10.1016/S1053-8119(02)00058-7 – volume: 536 start-page: 171 issue: 7615 year: 2016 ident: 10.1016/j.neuroimage.2024.120994_b22 article-title: Supplementary material: A multi-modal parcellation of human cerebral cortex publication-title: Nature doi: 10.1038/nature18933 – volume: 11 start-page: 1182 issue: 12 year: 2001 ident: 10.1016/j.neuroimage.2024.120994_b39 article-title: Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex publication-title: Cerebral Cortex doi: 10.1093/cercor/11.12.1182 – volume: 323 start-page: 806 issue: 6091 year: 1986 ident: 10.1016/j.neuroimage.2024.120994_b20 article-title: Mapping human visual cortex with positron emission tomography publication-title: Nature doi: 10.1038/323806a0 – reference: 39185219 - bioRxiv. 2024 Aug 15:2024.08.13.607805. doi: 10.1101/2024.08.13.607805. |
SSID | ssj0009148 |
Score | 2.4746778 |
Snippet | BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell,... BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex ( Dumoulin and Wandell,... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 120994 |
SubjectTerms | Brain Connectome - methods Data structures Datasets Estimates Humans Magnetic Resonance Imaging - methods Models, Neurological Neurosurgery Optimization Population receptive field model Receptive field Retinotopic mapping Time series Vision |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JT90wELYqDlUvFdCFsMmVeg2NdwcuUNQnVImqqkDiZsWOLR4SeSwPfj9jO0lJeyiH3qLYjqJvPJ4ZzfgbhD57UCLihC8bKpuSc3iyugolbT2TwdaEiXh3-PSHPDnn3y_ExbNWX7EmLNMDZ-C-gPm3wbpWMerA9HvNBXdU0OAVRAsuBT5VXQ3B1EC3C15-X7eTq7kSO-T8GnQUYkLK99KVUT4xRomzf2KT_vY5_yydfGaLZqvobe9E4qP882vole_W0evTPk3-Dh3e_vw128dHOPM04-UCN86BgYm8EPhm7NmF4biLVS2PHqdKNpz64oAxe4_OZ9_Ojk_KvlVC6SBgWJa6sbWykdydccptTE4KQVvRSNUCAN5pR6SkTkvrggAEXBsTqIFUQTtrFfuAVrpF5zcQBv9AO-3rIJTlEJ3pqraKBECLN0zxpkBkwMzcZEYMM5SKXZnfOJuIs8k4F-hrBHecHzmt0wuQtOklbf4l6QLVg2jMcG0UDjr40PwFP3Awru1di-wyvHD19rATTK_i94YREcn5uWIF-jQOg3LGjEvT-cVDmsMJmH-pCvQxb5wRg-gIEi1htZ5sqQlI05FufpkIwGOLeMUI3fwfsG6hNzT2NE6V6NtoZXn34HfA0Vra3aRTTzDpJd8 priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqrYS4oPJOKchIXMOu3w5cWCpWC6gVAir1ZsWODUEiu5Qtv5-x46QELpW4RYmdxxeP57M88w1CzzwYEXHClzWVdck5HFm9CCVtPJPBVoSJmDt8cirXZ_zduTjfQ8dDLkwMq8xzfz-np9k6n5lnNOfbtp1_AmYAz4kLiEhzo_TnPmWVFDO0v3z7fn16pb1LeJ8RJ1gZO-SAnj7MK8lGtt_BeGGxSPnzlEvKJ14qiflPnNW_ZPTvmMo_nNTqAN3K7BIv-w-4jfZ8dwfdOMn753fRqx8fPq5e4CXuBZzxboNr58DzRMEIvB2LeWHAJIa7_PI4hbjhVDAHvNw9dLZ68_l4XeYaCqWDlcSu1LWtlI2q74xTbuOupRC0EbVUDQDgnXZESuq0tC4IQMA1cWc1kEXQzlrF7qNZt-n8Q4SBOGinfRWEshxQ14vKKhIALV4zxesCkQEzs-2lMswQQ_bNXOFsIs6mx7lAryO4Y_sodp1ObC6-mPy3DTBAG6xrFKMO2J_XXHBHBQ1ewYLRkQJVw68xQz4pzIBwo_YaL_By7DsZd9fsfTSMBJNt_6dhRETVfq5YgZ6Ol8Fq41ZM3fnNZWrDCfACqQr0oB84IwaRIRItobeeDKkJSNMrXfs1KYPH2vGKEXr4X1_1CN2kscpxik0_QrPdxaV_DNRrZ59k0_oNKLEsHQ priority: 102 providerName: Elsevier |
Title | qPRF: A system to accelerate population receptive field modeling |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811924004919 https://dx.doi.org/10.1016/j.neuroimage.2024.120994 https://www.ncbi.nlm.nih.gov/pubmed/39761863 https://www.proquest.com/docview/3157946473 https://www.proquest.com/docview/3154147167 https://pubmed.ncbi.nlm.nih.gov/PMC11877312 https://doaj.org/article/059bfbcd732c423e8454c252fe7282c1 |
Volume | 306 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLXYJiFeEOMzsFVG4jWj_ood9rB1aFUBrZomJvXNih0HikTSbR2P_PZdO05KQEJ7atTYUXRyr33se30uQu8cOBGxwqUFzYqUc7gyalyltHQsq0xOmPBnh8_m2eySf16IRdxwu4lpld2YGAbqsrF-j_w9I8JroXPJjlZXqa8a5aOrsYTGFtoJ0mVgz3IhN6K7hLdH4QRLFTSImTxtflfQi1z-BK-FVSLlB-EQKR9MT0HFfzBL_ctC_06m_GN2mj5BjyOtxJPWDnbRA1c_RQ_PYuD8GTq-Or-YfsAT3Co343WDC2thyvFKEXjVV_HCMAD6PJdfDofcNhwq5cD09hxdTk-_fpylsXhCamEJsU5VYXJpvNw745QbH64UgpaiyGQJADirLMkyalVmbCUAAVv6kGpFxpWyxkj2Am3XTe1eIQyMQVnl8kpIw2G9psa5kaQCtHjBJC8SRDrM9KrVyNBd8tgPvcFZe5x1i3OCTjy4fXuvch3-aK6_6eg0GqifqYwtJaMWaJ9TXHBLBa2chJWiJQnKu0-ju4OkMPTBg5b3eIHDvm8kGy2JuGfvvc4SdHT6G70x0QS97W-Du_oYTFG75ja04QQIQSYT9LI1nB4DTw2JyqC3GpjUAKThnXr5PUiC-6LxkhH6-v_v9QY9or5-ccg630Pb6-tbtw-kam1GaOvgNxkF_xmhncmnL7M5_J6czs8vRmGj4g5H6SSu |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEG8CBYwEx8DasWMHhKCFrra0u6qqVurNjR2HbiWSbbsF8af4jYzzWgIS6qW3KImjaDKPz5mZbwBeOjQiaoULUxanIed4ZNQwD1nmojg3CY2E7x2eTOPxAf9yKA5X4FfbC-PLKlufWDnqrLT-H_mbiArPhc5l9GF-GvqpUT672o7QqNVi2_38gVu28_dbn_H7vmJstLn_aRw2UwVCi9h6EarUJNJ4HvSIM258Hk8Ilok0lhniH2eVpXHMrIqNzQUbMpv5XGNOh7myxsgIn3sNVrnvaB3A6sbmdHdvSfNLed18J6JQUZo0tUN1RVnFUDn7hn4C96WMv67aVnkvIFZzA3px8V_c-3f55h_xcHQbbjVAlqzXmncHVlxxF65PmlT9Pfh4urs3ekvWSc0VTRYlSa3FIOe5Kci8mxtG0OX6yprvjlTVdKSazYMB9T4cXIlgH8CgKAv3CAhiFGWVS3IhDccdohomRtIcpcXTSPI0ANrKTM9rVg7dlqud6KWctZezruUcwIYXbne_59WuTpRnX3VjphrBpsmNzWTELAJNp7jglgmWO4l7U0sDSNpPo9vWVXS2-KDZJV7gXbe2gTc1bLnk6rVWE3TjZs710igCeNFdRgfhsz5p4cqL6h5OEYLEMoCHteJ0MvBglKoYV6ueSvWE1L9SzI4rEnI_pl5GlD3-_3s9hxvj_cmO3tmabj-Bm8xPT65q3tdgsDi7cE8R0i3Ms8aOCBxdten-Bn7tXG4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anTTxgrgTGGAkeAyrHTt2QAg2tmpjrKomJu3Nix0bikTTbR2Iv8av4zi3EpDQXvYWJXEUfTmXzzk3gOcOlYha4eKcpXnMOR4ZNfQxK1ySepPRRITa4YNxunvEPxyL4xX41dbChLTK1iZWhroobfhHvpFQEXqhc5ls-CYtYrI9ejs_jcMEqRBpbcdp1CKy737-wO3b-Zu9bfzWLxgb7Xx6vxs3EwZiizx7EavcZNKEnugJZ9yEmJ4QrBB5KgvkQs4qS9OUWZUa6wUbMluEuKOnQ6-sMTLB516DVYlekQ9gdWtnPDlctvylvC7EE0msKM2aPKI6u6zqVjn9hjYD96iMv6xKWHnPOVYzBHo-8l8O_Hcq5x--cXQTbjSklmzWUngLVtzsNqwdNGH7O_DudHI4ekU2Sd03mixKkluLDi_0qSDzboYYQfMbsmy-O1Jl1pFqTg8617twdCXA3oPBrJy5B0CQryirXOaFNBx3i2qYGUk9osXzRPI8Atpipud1hw7dpq591UucdcBZ1zhHsBXA7e4PPbarE-XZZ92orEbiabyxhUyYRdLpFBfcMsG8k7hPtTSCrP00ui1jRcOLD5pe4gVed2sbqlNTmEuuXm8lQTcm51wvFSSCZ91lNBYhApTPXHlR3cMp0pFURnC_FpwOg0BMqUpxteqJVA-k_pXZ9EvVkDyMrJcJZQ___15PYQ1VVn_cG-8_gussDFKufmetw2BxduEeI7tbmCeNGhE4uWrN_Q29K2Ce |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=qPRF%3A+A+system+to+accelerate+population+receptive+field+modeling&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Waz%2C+Sebastian&rft.au=Wang%2C+Yalin&rft.au=Zhong-Lin%2C+Lu&rft.date=2025-02-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=306&rft_id=info:doi/10.1016%2Fj.neuroimage.2024.120994&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |