qPRF: A system to accelerate population receptive field modeling

BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 306; p. 120994
Main Authors Waz, Sebastian, Wang, Yalin, Lu, Zhong-Lin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2025
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2024.120994

Cover

Abstract BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce the qPRF (“quick PRF”), a system for accelerated PRF modeling that reduced the computation time by a factor >1,000 without losing goodness-of-fit when compared to another widely available PRF modeling package (Kay et al., 2013) on a benchmark of data from the Human Connectome Project (HCP; Van Essen et al. (2013). The system achieves this level of acceleration by pre-computing a tree-like data structure, which it rapidly searches during the fitting step for an optimal parameter combination. We tested the method on a constrained four-parameter version of the PRF model (Strategy 1 herein) and an unconstrained five-parameter PRF model, which the qPRF fitted at comparable speed (Strategy 2). We show how an additional search step can guarantee optimality of qPRF solutions with little additional time cost (Strategy 3). To assess the quality of qPRF solutions, we compared our Strategy 1 solutions to those provided by Benson et al. (2018) who performed a similar four-parameter fit. Both hemispheres of the 181 subjects in the HCP dataset (a total of 10,753,572 vertices, each with a unique BOLD time series of 1800 frames) were analyzed by qPRF in 12.82 h on an ordinary CPU. The absolute difference in R2 achieved by the qPRF compared to Benson et al. (2018) was negligible, with a median of 0.025% (R2 units being between 0% and 100%). In general, the qPRF yielded a slightly better fitting solution, achieving a greater R2 on 70.2% of vertices. We also assess the qPRF method’s model-recovery ability using a simulated dataset. The qPRF may facilitate the development and use of more elaborate models based on the PRF framework and may pave the way for novel clinical applications. •We describe a system to perform PRF modeling up to 1,500 times faster than others.•The system achieves equivalent goodness-of-fit as others.•A pre-computed tree and similarity-based search strategy underlie the acceleration.
AbstractList BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce the qPRF (“quick PRF”), a system for accelerated PRF modeling that reduced the computation time by a factor >1,000 without losing goodness-of-fit when compared to another widely available PRF modeling package (Kay et al., 2013) on a benchmark of data from the Human Connectome Project (HCP; Van Essen et al. (2013). The system achieves this level of acceleration by pre-computing a tree-like data structure, which it rapidly searches during the fitting step for an optimal parameter combination. We tested the method on a constrained four-parameter version of the PRF model (Strategy 1 herein) and an unconstrained five-parameter PRF model, which the qPRF fitted at comparable speed (Strategy 2). We show how an additional search step can guarantee optimality of qPRF solutions with little additional time cost (Strategy 3). To assess the quality of qPRF solutions, we compared our Strategy 1 solutions to those provided by Benson et al. (2018) who performed a similar four-parameter fit. Both hemispheres of the 181 subjects in the HCP dataset (a total of 10,753,572 vertices, each with a unique BOLD time series of 1800 frames) were analyzed by qPRF in 12.82 h on an ordinary CPU. The absolute difference in R2 achieved by the qPRF compared to Benson et al. (2018) was negligible, with a median of 0.025% (R2 units being between 0% and 100%). In general, the qPRF yielded a slightly better fitting solution, achieving a greater R2 on 70.2% of vertices. We also assess the qPRF method’s model-recovery ability using a simulated dataset. The qPRF may facilitate the development and use of more elaborate models based on the PRF framework and may pave the way for novel clinical applications.
BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce the qPRF (“quick PRF”), a system for accelerated PRF modeling that reduced the computation time by a factor >1,000 without losing goodness-of-fit when compared to another widely available PRF modeling package (Kay et al., 2013) on a benchmark of data from the Human Connectome Project (HCP; Van Essen et al. (2013). The system achieves this level of acceleration by pre-computing a tree-like data structure, which it rapidly searches during the fitting step for an optimal parameter combination. We tested the method on a constrained four-parameter version of the PRF model (Strategy 1 herein) and an unconstrained five-parameter PRF model, which the qPRF fitted at comparable speed (Strategy 2). We show how an additional search step can guarantee optimality of qPRF solutions with little additional time cost (Strategy 3). To assess the quality of qPRF solutions, we compared our Strategy 1 solutions to those provided by Benson et al. (2018) who performed a similar four-parameter fit. Both hemispheres of the 181 subjects in the HCP dataset (a total of 10,753,572 vertices, each with a unique BOLD time series of 1800 frames) were analyzed by qPRF in 12.82 h on an ordinary CPU. The absolute difference in R2 achieved by the qPRF compared to Benson et al. (2018) was negligible, with a median of 0.025% (R2 units being between 0% and 100%). In general, the qPRF yielded a slightly better fitting solution, achieving a greater R2 on 70.2% of vertices. We also assess the qPRF method’s model-recovery ability using a simulated dataset. The qPRF may facilitate the development and use of more elaborate models based on the PRF framework and may pave the way for novel clinical applications. •We describe a system to perform PRF modeling up to 1,500 times faster than others.•The system achieves equivalent goodness-of-fit as others.•A pre-computed tree and similarity-based search strategy underlie the acceleration.
BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex ( Dumoulin and Wandell, 2008 ). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce the qPRF (“quick PRF”), a system for accelerated PRF modeling that reduced the computation time by a factor > 1,000 without losing goodness-of-fit when compared to another widely available PRF modeling package ( Kay et al., 2013 ) on a benchmark of data from the Human Connectome Project (HCP; Van Essen et al. (2013) . The system achieves this level of acceleration by pre-computing a tree-like data structure, which it rapidly searches during the fitting step for an optimal parameter combination. We tested the method on a constrained four-parameter version of the PRF model (Strategy 1 herein) and an unconstrained five-parameter PRF model, which the qPRF fitted at comparable speed (Strategy 2). We show how an additional search step can guarantee optimality of qPRF solutions with little additional time cost (Strategy 3). To assess the quality of qPRF solutions, we compared our Strategy 1 solutions to those provided by Benson et al. (2018) who performed a similar four-parameter fit. Both hemispheres of the 181 subjects in the HCP dataset (a total of 10,753,572 vertices, each with a unique BOLD time series of 1800 frames) were analyzed by qPRF in 12.82 h on an ordinary CPU. The absolute difference in R 2 achieved by the qPRF compared to Benson et al. (2018) was negligible, with a median of 0.025% ( R 2 units being between 0% and 100%). In general, the qPRF yielded a slightly better fitting solution, achieving a greater R 2 on 70.2% of vertices. We also assess the qPRF method’s model-recovery ability using a simulated dataset. The qPRF may facilitate the development and use of more elaborate models based on the PRF framework and may pave the way for novel clinical applications.
BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce the qPRF (“quick PRF”), a system for accelerated PRF modeling that reduced the computation time by a factor > 1 , 000 without losing goodness-of-fit when compared to another widely available PRF modeling package (Kay et al., 2013) on a benchmark of data from the Human Connectome Project (HCP; Van Essen et al. (2013). The system achieves this level of acceleration by pre-computing a tree-like data structure, which it rapidly searches during the fitting step for an optimal parameter combination. We tested the method on a constrained four-parameter version of the PRF model (Strategy 1 herein) and an unconstrained five-parameter PRF model, which the qPRF fitted at comparable speed (Strategy 2). We show how an additional search step can guarantee optimality of qPRF solutions with little additional time cost (Strategy 3). To assess the quality of qPRF solutions, we compared our Strategy 1 solutions to those provided by Benson et al. (2018) who performed a similar four-parameter fit. Both hemispheres of the 181 subjects in the HCP dataset (a total of 10,753,572 vertices, each with a unique BOLD time series of 1800 frames) were analyzed by qPRF in 12.82 h on an ordinary CPU. The absolute difference in R 2 achieved by the qPRF compared to Benson et al. (2018) was negligible, with a median of 0.025% ( R 2 units being between 0% and 100%). In general, the qPRF yielded a slightly better fitting solution, achieving a greater R 2 on 70.2% of vertices. We also assess the qPRF method’s model-recovery ability using a simulated dataset. The qPRF may facilitate the development and use of more elaborate models based on the PRF framework and may pave the way for novel clinical applications.
BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce the qPRF ("quick PRF"), a system for accelerated PRF modeling that reduced the computation time by a factor >1,000 without losing goodness-of-fit when compared to another widely available PRF modeling package (Kay et al., 2013) on a benchmark of data from the Human Connectome Project (HCP; Van Essen et al. (2013). The system achieves this level of acceleration by pre-computing a tree-like data structure, which it rapidly searches during the fitting step for an optimal parameter combination. We tested the method on a constrained four-parameter version of the PRF model (Strategy 1 herein) and an unconstrained five-parameter PRF model, which the qPRF fitted at comparable speed (Strategy 2). We show how an additional search step can guarantee optimality of qPRF solutions with little additional time cost (Strategy 3). To assess the quality of qPRF solutions, we compared our Strategy 1 solutions to those provided by Benson et al. (2018) who performed a similar four-parameter fit. Both hemispheres of the 181 subjects in the HCP dataset (a total of 10,753,572 vertices, each with a unique BOLD time series of 1800 frames) were analyzed by qPRF in 12.82 h on an ordinary CPU. The absolute difference in R2 achieved by the qPRF compared to Benson et al. (2018) was negligible, with a median of 0.025% (R2 units being between 0% and 100%). In general, the qPRF yielded a slightly better fitting solution, achieving a greater R2 on 70.2% of vertices. We also assess the qPRF method's model-recovery ability using a simulated dataset. The qPRF may facilitate the development and use of more elaborate models based on the PRF framework and may pave the way for novel clinical applications.BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce the qPRF ("quick PRF"), a system for accelerated PRF modeling that reduced the computation time by a factor >1,000 without losing goodness-of-fit when compared to another widely available PRF modeling package (Kay et al., 2013) on a benchmark of data from the Human Connectome Project (HCP; Van Essen et al. (2013). The system achieves this level of acceleration by pre-computing a tree-like data structure, which it rapidly searches during the fitting step for an optimal parameter combination. We tested the method on a constrained four-parameter version of the PRF model (Strategy 1 herein) and an unconstrained five-parameter PRF model, which the qPRF fitted at comparable speed (Strategy 2). We show how an additional search step can guarantee optimality of qPRF solutions with little additional time cost (Strategy 3). To assess the quality of qPRF solutions, we compared our Strategy 1 solutions to those provided by Benson et al. (2018) who performed a similar four-parameter fit. Both hemispheres of the 181 subjects in the HCP dataset (a total of 10,753,572 vertices, each with a unique BOLD time series of 1800 frames) were analyzed by qPRF in 12.82 h on an ordinary CPU. The absolute difference in R2 achieved by the qPRF compared to Benson et al. (2018) was negligible, with a median of 0.025% (R2 units being between 0% and 100%). In general, the qPRF yielded a slightly better fitting solution, achieving a greater R2 on 70.2% of vertices. We also assess the qPRF method's model-recovery ability using a simulated dataset. The qPRF may facilitate the development and use of more elaborate models based on the PRF framework and may pave the way for novel clinical applications.
BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce the qPRF ("quick PRF"), a system for accelerated PRF modeling that reduced the computation time by a factor >1,000 without losing goodness-of-fit when compared to another widely available PRF modeling package (Kay et al., 2013) on a benchmark of data from the Human Connectome Project (HCP; Van Essen et al. (2013). The system achieves this level of acceleration by pre-computing a tree-like data structure, which it rapidly searches during the fitting step for an optimal parameter combination. We tested the method on a constrained four-parameter version of the PRF model (Strategy 1 herein) and an unconstrained five-parameter PRF model, which the qPRF fitted at comparable speed (Strategy 2). We show how an additional search step can guarantee optimality of qPRF solutions with little additional time cost (Strategy 3). To assess the quality of qPRF solutions, we compared our Strategy 1 solutions to those provided by Benson et al. (2018) who performed a similar four-parameter fit. Both hemispheres of the 181 subjects in the HCP dataset (a total of 10,753,572 vertices, each with a unique BOLD time series of 1800 frames) were analyzed by qPRF in 12.82 h on an ordinary CPU. The absolute difference in R achieved by the qPRF compared to Benson et al. (2018) was negligible, with a median of 0.025% (R units being between 0% and 100%). In general, the qPRF yielded a slightly better fitting solution, achieving a greater R on 70.2% of vertices. We also assess the qPRF method's model-recovery ability using a simulated dataset. The qPRF may facilitate the development and use of more elaborate models based on the PRF framework and may pave the way for novel clinical applications.
ArticleNumber 120994
Author Waz, Sebastian
Wang, Yalin
Lu, Zhong-Lin
AuthorAffiliation b School of Computing and Augmented Intelligence, Arizona State University, 699 S. Mill Avenue, Tempe, 85281, AZ, USA
d NYU-ECNU Institute of Brain and Cognitive Science, 3663 Zhongshan Road North, Putuo District, 200062, Shanghai, China
c Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Pudong New District, 200124, Shanghai, China
a Center for Neural Science, New York University, 4 Washington Place, NY, 10003, NY, USA
AuthorAffiliation_xml – name: c Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Pudong New District, 200124, Shanghai, China
– name: d NYU-ECNU Institute of Brain and Cognitive Science, 3663 Zhongshan Road North, Putuo District, 200062, Shanghai, China
– name: a Center for Neural Science, New York University, 4 Washington Place, NY, 10003, NY, USA
– name: b School of Computing and Augmented Intelligence, Arizona State University, 699 S. Mill Avenue, Tempe, 85281, AZ, USA
Author_xml – sequence: 1
  givenname: Sebastian
  surname: Waz
  fullname: Waz, Sebastian
  organization: Center for Neural Science, New York University, 4 Washington Place, NY, 10003, NY, USA
– sequence: 2
  givenname: Yalin
  orcidid: 0000-0002-6241-735X
  surname: Wang
  fullname: Wang, Yalin
  organization: School of Computing and Augmented Intelligence, Arizona State University, 699 S. Mill Avenue, Tempe, 85281, AZ, USA
– sequence: 3
  givenname: Zhong-Lin
  orcidid: 0000-0002-7295-727X
  surname: Lu
  fullname: Lu, Zhong-Lin
  email: zhonglin@nyu.edu
  organization: Center for Neural Science, New York University, 4 Washington Place, NY, 10003, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39761863$$D View this record in MEDLINE/PubMed
BookMark eNqNkltv1DAQhSNURC_wF1AkXnjZxXZ85YVeREulSiAEz5YzmSwOSby1k5X23-PtlkL71Cdb9plPM3POcXEwhhGLoqRkSQmVH7rliHMMfnArXDLC-JIyYgx_URxRYsTCCMUOdndRLTSl5rA4TqkjhBjK9avisDJKUi2ro-L09tv3y4_lWZm2acKhnELpALDH6CYs12E9927yYSwjAq4nv8Gy9dg35RAa7P24el28bF2f8M39eVL8vPz84-LL4ubr1fXF2c0ChJLTQrvaqFpSQSrOeK3yKQRrhJOqyRMhaKBSMtCyhlbkkaBhhtCWklZDXavqpLjec5vgOruOefa4tcF5e_cQ4sq6OHno0RJh6raGRlUMOKtQc8GBCdaiYpoBzaxPe9Z6rgdsAMcpuv4R9PHP6H_ZVdhYSrVSFWWZ8P6eEMPtjGmyg095bb0bMczJVlRwyhWVu8bfPZF2YY5j3tVOpQyXXFVZ9fb_lh56-etUFui9AGJIKWL7IKHE7kJhO_svFHYXCrsPRS4935di9mfjMdoEHkfAxmdXp7xA_xzI6RMIZPs9uP43bp-H-AMKV9i8
Cites_doi 10.1523/JNEUROSCI.3476-04.2005
10.1016/j.neuroimage.2013.05.012
10.1167/18.13.23
10.1038/s41586-023-06377-x
10.1016/j.neuroimage.2021.118671
10.1016/j.tics.2011.02.005
10.1167/3.10.1
10.1093/brain/awp119
10.1159/000486645
10.1016/j.neuroimage.2017.09.008
10.1523/JNEUROSCI.0690-21.2022
10.1038/eye.2010.166
10.1038/s41467-021-26345-1
10.1523/JNEUROSCI.2717-17.2018
10.1038/nature18933
10.3390/cancers13102439
10.1016/j.neuroimage.2012.10.037
10.1371/journal.pone.0204566
10.1016/j.media.2021.102230
10.1073/pnas.93.6.2382
10.1523/JNEUROSCI.07-03-00913.1987
10.1038/s41467-023-37280-8
10.1016/j.neuroimage.2013.05.041
10.1523/JNEUROSCI.3052-20.2021
10.1038/369525a0
10.1093/brain/39.1-2.34
10.1371/journal.pcbi.1009216
10.1167/14.1.17
10.1016/j.tics.2009.08.005
10.1126/science.7754376
10.1002/hbm.24909
10.3389/fpsyg.2014.00074
10.1113/jphysiol.1961.sp006803
10.1167/iovs.06-0773
10.1152/jn.00105.2013
10.1016/j.neuroimage.2007.09.034
10.1016/S1053-8119(02)00058-7
10.1093/cercor/11.12.1182
10.1038/323806a0
ContentType Journal Article
Copyright 2025 The Authors
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
2025. The Authors
Copyright_xml – notice: 2025 The Authors
– notice: Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2025. The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOA
DOI 10.1016/j.neuroimage.2024.120994
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
ProQuest Psychology Database (NC LIVE)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


ProQuest One Psychology
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 120994
ExternalDocumentID oai_doaj_org_article_059bfbcd732c423e8454c252fe7282c1
PMC11877312
39761863
10_1016_j_neuroimage_2024_120994
S1053811924004919
Genre Journal Article
GrantInformation_xml – fundername: National Eye Institute, United States
  grantid: R01 EY032125
  funderid: http://dx.doi.org/10.13039/100000053
– fundername: NEI NIH HHS
  grantid: R01 EY032125
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
0SF
6I.
AACTN
AAFTH
AFKWA
AJOXV
ALIPV
AMFUW
C45
NCXOZ
29N
53G
AAQFI
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HMQ
HVGLF
HZ~
R2-
RIG
SNS
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c576t-8ab97b61503424b7503552d5a67d016ec8c1662c86bcf5202cd2901f10f8cbb73
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:23:38 EDT 2025
Thu Aug 21 18:27:19 EDT 2025
Fri Sep 05 14:51:25 EDT 2025
Wed Aug 13 07:09:27 EDT 2025
Mon Jul 21 05:23:21 EDT 2025
Tue Jul 01 05:27:40 EDT 2025
Sat Feb 15 15:51:30 EST 2025
Tue Aug 26 17:21:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Retinotopic mapping
Data structures
Population receptive field model
Vision
Optimization
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-8ab97b61503424b7503552d5a67d016ec8c1662c86bcf5202cd2901f10f8cbb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6241-735X
0000-0002-7295-727X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811924004919
PMID 39761863
PQID 3157946473
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_059bfbcd732c423e8454c252fe7282c1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11877312
proquest_miscellaneous_3154147167
proquest_journals_3157946473
pubmed_primary_39761863
crossref_primary_10_1016_j_neuroimage_2024_120994
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2024_120994
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2024_120994
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2025
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Hense, Plank, Wendl, Dodoo-Schittko, Bumes, Greenlee, Schmidt, Proescholdt, Rosengarth (b25) 2021; 13
Bhat, Lührs, Goebel, Senden (b5) 2021; 245
Duncan, Sample, Weinreb, Bowd, Zangwill (b15) 2007; 48
Lauro, Lee, Ahn, Barborica, Asaad (b30) 2018; 96
Nuyujukian, Sanabria, Saab, Pandarinath, Jarosiewicz, Blabe, Franco, Mernoff, Eskandar, Simeral, Hochberg, Shenoy, Henderson (b33) 2018; 13
Brewer, Barton (b7) 2014; 5
Bridge (b9) 2011; 25
Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson, Smith, Van Essen (b22) 2016; 536
Brewer, Barton, Brewer, Barton (b8) 2016
Dumoulin, Wandell (b14) 2008; 39
Zeidman, Silson, Schwarzkopf, Baker, Penny (b49) 2018; 180
Baker, Peli, Knouf, Kanwisher (b1) 2005; 25
Boucard, Hernowo, Maguire, Jansonius, Roerdink, Hooymans, Cornelissen (b6) 2009; 132
Tu, Ta, Lu, Wang (b42) 2021; 17
Dumoulin, Hoge, Baker, Jr., Hess, Achtman, Evans (b13) 2003; 18
DeYoe, Carman, Bandettini, Glickman, Wieser, Cox, Miller, Neitz (b11) 1996; 93
Thielen, Güçlü, Güçlütürk, Ambrogioni, Bosch, Gerven (b41) 2019
Fox, Miezin, Allman, Van Essen, Raichle (b19) 1987; 7
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (b44) 2013; 80
Lerma-Usabiaga, Winawer, Wandell (b31) 2021; 41
Dougherty, Koch, Brewer, Fischer, Modersitzki, Wandell (b12) 2003; 3
Holmes, Lister (b27) 1916; 39
Merkel, Hopf, Schoenfeld (b32) 2019; 41
Silver, Kastner (b38) 2009; 13
Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson, Smith, Van Essen (b21) 2016; 536
Waz, Wang, Lu (b45) 2024
Haak, Winawer, Harvey, Renken, Dumoulin, Wandell, Cornelissen (b24) 2013; 66
Purves, Augustine, Fitzpatrick, Katz, LaMantia, McNamara, Williams (b34) 2001
Benson, Jamison, Arcaro, Vu, Glasser, Coalson, Van Essen, Yacoub, Ugurbil, Winawer, Kay (b3) 2018; 18
Ribeiro, Benson, Puckett (b35) 2024
Xiong, Tu, Lu, Wang (b48) 2023; vol. 12464
Barbot, Das, Melnick, Cavanaugh, Merriam, Heeger, Huxlin (b2) 2021; 12
Engel, Glover, Wandell (b17) 1997; 7
Ta, Tu, Lu, Wang (b40) 2022; 75
Elshout, Bergsma, van den Berg, Haak (b16) 2021; 31
Kay, Winawer, Mezer, Wandell (b29) 2013; 110
Sereno, Dale, Reppas, Kwong, Belliveau, Brady, Rosen, Tootell (b36) 1995; 268
Inouye (b28) 1909
Daniel, Whitteridge (b10) 1961; 159
Whitney, Levi (b46) 2011; 15
Greene, Dumoulin, Harvey, Ress (b23) 2014; 14
Benson, Yoon, Forenzo, Engel, Kay, Winawer (b4) 2022; 42
Fox, Mintun, Raichle, Miezin, Allman, Van Essen (b20) 1986; 323
Himmelberg, Tünçok, Gomez, Grill-Spector, Carrasco, Winawer (b26) 2023; 14
Uğurbil, Xu, Auerbach, Moeller, Vu, Duarte-Carvajalino, Lenglet, Wu, Schmitter, Van de Moortele, Strupp, Sapiro, De Martino, Wang, Harel, Garwood, Chen, Feinberg, Smith, Miller, Sotiropoulos, Jbabdi, Andersson, Behrens, Glasser, Van Essen, Yacoub (b43) 2013; 80
Smith, Singh, Williams, Greenlee (b39) 2001; 11
Willett, Kunz, Fan, Avansino, Wilson, Choi, Kamdar, Glasser, Hochberg, Druckmann, Shenoy, Henderson (b47) 2023; 620
Silson, Reynolds, Kravitz, Baker (b37) 2018; 38
Engel, Rumelhart, Wandell, Lee, Glover, Chichilnisky, Shadlen (b18) 1994; 369
Baker (10.1016/j.neuroimage.2024.120994_b1) 2005; 25
Ribeiro (10.1016/j.neuroimage.2024.120994_b35) 2024
Ta (10.1016/j.neuroimage.2024.120994_b40) 2022; 75
Duncan (10.1016/j.neuroimage.2024.120994_b15) 2007; 48
Glasser (10.1016/j.neuroimage.2024.120994_b22) 2016; 536
Silver (10.1016/j.neuroimage.2024.120994_b38) 2009; 13
Kay (10.1016/j.neuroimage.2024.120994_b29) 2013; 110
Silson (10.1016/j.neuroimage.2024.120994_b37) 2018; 38
Merkel (10.1016/j.neuroimage.2024.120994_b32) 2019; 41
Barbot (10.1016/j.neuroimage.2024.120994_b2) 2021; 12
Engel (10.1016/j.neuroimage.2024.120994_b17) 1997; 7
Boucard (10.1016/j.neuroimage.2024.120994_b6) 2009; 132
Holmes (10.1016/j.neuroimage.2024.120994_b27) 1916; 39
Benson (10.1016/j.neuroimage.2024.120994_b4) 2022; 42
Daniel (10.1016/j.neuroimage.2024.120994_b10) 1961; 159
Tu (10.1016/j.neuroimage.2024.120994_b42) 2021; 17
Waz (10.1016/j.neuroimage.2024.120994_b45) 2024
DeYoe (10.1016/j.neuroimage.2024.120994_b11) 1996; 93
Purves (10.1016/j.neuroimage.2024.120994_b34) 2001
Brewer (10.1016/j.neuroimage.2024.120994_b8) 2016
Smith (10.1016/j.neuroimage.2024.120994_b39) 2001; 11
Glasser (10.1016/j.neuroimage.2024.120994_b21) 2016; 536
Lauro (10.1016/j.neuroimage.2024.120994_b30) 2018; 96
Bridge (10.1016/j.neuroimage.2024.120994_b9) 2011; 25
Engel (10.1016/j.neuroimage.2024.120994_b18) 1994; 369
Dumoulin (10.1016/j.neuroimage.2024.120994_b14) 2008; 39
Dumoulin (10.1016/j.neuroimage.2024.120994_b13) 2003; 18
Zeidman (10.1016/j.neuroimage.2024.120994_b49) 2018; 180
Hense (10.1016/j.neuroimage.2024.120994_b25) 2021; 13
Lerma-Usabiaga (10.1016/j.neuroimage.2024.120994_b31) 2021; 41
Willett (10.1016/j.neuroimage.2024.120994_b47) 2023; 620
Nuyujukian (10.1016/j.neuroimage.2024.120994_b33) 2018; 13
Whitney (10.1016/j.neuroimage.2024.120994_b46) 2011; 15
Inouye (10.1016/j.neuroimage.2024.120994_b28) 1909
Benson (10.1016/j.neuroimage.2024.120994_b3) 2018; 18
Van Essen (10.1016/j.neuroimage.2024.120994_b44) 2013; 80
Fox (10.1016/j.neuroimage.2024.120994_b19) 1987; 7
Thielen (10.1016/j.neuroimage.2024.120994_b41) 2019
Haak (10.1016/j.neuroimage.2024.120994_b24) 2013; 66
Uğurbil (10.1016/j.neuroimage.2024.120994_b43) 2013; 80
Brewer (10.1016/j.neuroimage.2024.120994_b7) 2014; 5
Greene (10.1016/j.neuroimage.2024.120994_b23) 2014; 14
Fox (10.1016/j.neuroimage.2024.120994_b20) 1986; 323
Xiong (10.1016/j.neuroimage.2024.120994_b48) 2023; vol. 12464
Himmelberg (10.1016/j.neuroimage.2024.120994_b26) 2023; 14
Dougherty (10.1016/j.neuroimage.2024.120994_b12) 2003; 3
Bhat (10.1016/j.neuroimage.2024.120994_b5) 2021; 245
Sereno (10.1016/j.neuroimage.2024.120994_b36) 1995; 268
Elshout (10.1016/j.neuroimage.2024.120994_b16) 2021; 31
39185219 - bioRxiv. 2024 Aug 15:2024.08.13.607805. doi: 10.1101/2024.08.13.607805.
References_xml – volume: 132
  start-page: 1898
  year: 2009
  end-page: 1906
  ident: b6
  article-title: Changes in cortical grey matter density associated with long-standing retinal visual field defects
  publication-title: Brain
– volume: 13
  start-page: 488
  year: 2009
  end-page: 495
  ident: b38
  article-title: Topographic maps in human frontal and parietal cortex
  publication-title: Trends in Cognitive Sciences
– volume: vol. 12464
  start-page: 464
  year: 2023
  end-page: 472
  ident: b48
  article-title: Characterizing visual cortical magnification with topological smoothing and optimal transportation
  publication-title: Medical Imaging 2023: Image Processing
– volume: 245
  year: 2021
  ident: b5
  article-title: Extremely fast pRF mapping for real-time applications
  publication-title: NeuroImage
– volume: 7
  start-page: 181
  year: 1997
  end-page: 192
  ident: b17
  article-title: Retinotopic organization in human visual cortex and the spatial precision of functional MRI
  publication-title: Cereb. Cortex (New York, N. Y.: 1991)
– volume: 41
  start-page: 2420
  year: 2021
  end-page: 2427
  ident: b31
  article-title: Population receptive field shapes in early visual cortex are nearly circular
  publication-title: J. Neurosci.: Off. J. Soc. for Neurosci.
– volume: 80
  start-page: 80
  year: 2013
  end-page: 104
  ident: b43
  article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project
  publication-title: NeuroImage
– volume: 15
  start-page: 160
  year: 2011
  end-page: 168
  ident: b46
  article-title: Visual crowding: A fundamental limit on conscious perception and object recognition
  publication-title: Trends in Cognitive Sciences
– volume: 323
  start-page: 806
  year: 1986
  end-page: 809
  ident: b20
  article-title: Mapping human visual cortex with positron emission tomography
  publication-title: Nature
– volume: 110
  start-page: 481
  year: 2013
  end-page: 494
  ident: b29
  article-title: Compressive spatial summation in human visual cortex
  publication-title: J. Neurophysiol.
– year: 2016
  ident: b8
  article-title: Changes in visual cortex in healthy aging and dementia
  publication-title: Update on Dementia
– volume: 3
  start-page: 1
  year: 2003
  ident: b12
  article-title: Visual field representations and locations of visual areas V1/2/3 in human visual cortex
  publication-title: J. Vis.
– volume: 369
  year: 1994
  ident: b18
  article-title: fMRI of human visual cortex
  publication-title: Nature
– volume: 13
  start-page: 2439
  year: 2021
  ident: b25
  article-title: fMRI retinotopic mapping in patients with brain tumors and space-occupying brain lesions in the area of the occipital lobe
  publication-title: Cancers
– volume: 536
  start-page: 171
  year: 2016
  end-page: 178
  ident: b21
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
– volume: 620
  start-page: 1031
  year: 2023
  end-page: 1036
  ident: b47
  article-title: A high-performance speech neuroprosthesis
  publication-title: Nature
– volume: 14
  start-page: 1561
  year: 2023
  ident: b26
  article-title: Comparing retinotopic maps of children and adults reveals a late-stage change in how V1 samples the visual field
  publication-title: Nature Commun.
– volume: 180
  start-page: 173
  year: 2018
  end-page: 187
  ident: b49
  article-title: Bayesian population receptive field modelling
  publication-title: Neuroimage
– volume: 17
  year: 2021
  ident: b42
  article-title: Topology-preserving smoothing of retinotopic maps
  publication-title: PLoS Comput. Biol.
– volume: 48
  start-page: 733
  year: 2007
  end-page: 744
  ident: b15
  article-title: Retinotopic organization of primary visual cortex in glaucoma: a method for comparing cortical function with damage to the optic disk
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 536
  start-page: 171
  year: 2016
  end-page: 178
  ident: b22
  article-title: Supplementary material: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
– volume: 268
  start-page: 889
  year: 1995
  end-page: 893
  ident: b36
  article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging
  publication-title: Science
– volume: 38
  start-page: 2294
  year: 2018
  ident: b37
  article-title: Differential sampling of visual space in ventral and dorsal early visual cortex
  publication-title: J. Neurosci.
– volume: 31
  year: 2021
  ident: b16
  article-title: Functional MRI of visual cortex predicts training-induced recovery in stroke patients with homonymous visual field defects
  publication-title: NeuroImage: Clin.
– volume: 13
  year: 2018
  ident: b33
  article-title: Cortical control of a tablet computer by people with paralysis
  publication-title: PLoS One
– volume: 18
  start-page: 576
  year: 2003
  end-page: 587
  ident: b13
  article-title: Automatic volumetric segmentation of human visual retinotopic cortex
  publication-title: Neuroimage
– volume: 11
  start-page: 1182
  year: 2001
  end-page: 1190
  ident: b39
  article-title: Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex
  publication-title: Cerebral Cortex
– volume: 25
  start-page: 614
  year: 2005
  end-page: 618
  ident: b1
  article-title: Reorganization of visual processing in macular degeneration
  publication-title: J. Neurosci.
– volume: 25
  start-page: 291
  year: 2011
  end-page: 296
  ident: b9
  article-title: Mapping the visual brain: how and why
  publication-title: Eye
– volume: 39
  start-page: 34
  year: 1916
  end-page: 73
  ident: b27
  article-title: Disturbances of vision from cerebral lesions, with special reference to the cortical representation of the macula
  publication-title: Brain
– volume: 42
  start-page: 8629
  year: 2022
  end-page: 8646
  ident: b4
  article-title: Variability of the surface area of the V1, V2, and V3 maps in a large sample of human observers
  publication-title: J. Neurosci.
– volume: 159
  start-page: 203
  year: 1961
  end-page: 221
  ident: b10
  article-title: The representation of the visual field on the cerebral cortex in monkeys
  publication-title: J. Physiol.
– volume: 12
  start-page: 6102
  year: 2021
  ident: b2
  article-title: Spared perilesional V1 activity underlies training-induced recovery of luminance detection sensitivity in cortically-blind patients
  publication-title: Nature Commun.
– volume: 41
  start-page: 1765
  year: 2019
  ident: b32
  article-title: Modulating the global orientation bias of the visual system changes population receptive field elongations
  publication-title: Hum. Brain Mapp.
– volume: 18
  start-page: 23
  year: 2018
  ident: b3
  article-title: The Human Connectome Project 7 Tesla retinotopy dataset: Description and Population Receptive Field Analysis
  publication-title: J. Vis.
– year: 2024
  ident: b35
  article-title: Human Retinotopic Mapping: from Empirical to Computational Models of Retinotopy
– volume: 93
  start-page: 2382
  year: 1996
  end-page: 2386
  ident: b11
  article-title: Mapping striate and extrastriate visual areas in human cerebral cortex.
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 96
  start-page: 13
  year: 2018
  end-page: 21
  ident: b30
  article-title: DBStar: An open-source tool kit for imaging analysis with patient-customized deep brain stimulation platforms
  publication-title: Stereotact. Funct. Neurosurg.
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: b44
  article-title: The WU-Minn Human Connectome Project: An Overview
  publication-title: NeuroImage
– year: 2019
  ident: b41
  article-title: DeepRF: Ultrafast population receptive field mapping with deep learning
– year: 2024
  ident: b45
  article-title: qPRF recovers center-surround properties of population receptive fields
  publication-title: Meeting of the Society for Neuroscience
– volume: 75
  year: 2022
  ident: b40
  article-title: Quantitative characterization of the human retinotopic map based on quasiconformal mapping
  publication-title: Med. Image Anal.
– volume: 66
  start-page: 376
  year: 2013
  end-page: 384
  ident: b24
  article-title: Connective field modeling
  publication-title: NeuroImage
– year: 1909
  ident: b28
  article-title: Die Sehstörungen bei Schussverletzungen der kortikalen Sehsphäre: nach Beobachtungen an Verwundeten der letzten japanischen Kriege
– volume: 14
  start-page: 17
  year: 2014
  ident: b23
  article-title: Measurement of population receptive fields in human early visual cortex using back-projection tomography
  publication-title: J. Vis.
– year: 2001
  ident: b34
  article-title: Retinal circuits for detecting differences in luminance
  publication-title: Neuroscience. 2nd Edition
– volume: 5
  year: 2014
  ident: b7
  article-title: Visual cortex in aging and Alzheimer’s disease: changes in visual field maps and population receptive fields
  publication-title: Front. Psychol.
– volume: 7
  start-page: 913
  year: 1987
  end-page: 922
  ident: b19
  article-title: Retinotopic organization of human visual cortex mapped with positron-emission tomography
  publication-title: J. Neurosci.
– volume: 39
  start-page: 647
  year: 2008
  end-page: 660
  ident: b14
  article-title: Population receptive field estimates in human visual cortex
  publication-title: NeuroImage
– volume: 25
  start-page: 614
  issue: 3
  year: 2005
  ident: 10.1016/j.neuroimage.2024.120994_b1
  article-title: Reorganization of visual processing in macular degeneration
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3476-04.2005
– volume: 31
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120994_b16
  article-title: Functional MRI of visual cortex predicts training-induced recovery in stroke patients with homonymous visual field defects
  publication-title: NeuroImage: Clin.
– volume: 80
  start-page: 80
  year: 2013
  ident: 10.1016/j.neuroimage.2024.120994_b43
  article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.012
– volume: 18
  start-page: 23
  issue: 13
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120994_b3
  article-title: The Human Connectome Project 7 Tesla retinotopy dataset: Description and Population Receptive Field Analysis
  publication-title: J. Vis.
  doi: 10.1167/18.13.23
– volume: 620
  start-page: 1031
  issue: 7976
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120994_b47
  article-title: A high-performance speech neuroprosthesis
  publication-title: Nature
  doi: 10.1038/s41586-023-06377-x
– year: 2016
  ident: 10.1016/j.neuroimage.2024.120994_b8
  article-title: Changes in visual cortex in healthy aging and dementia
– volume: 7
  start-page: 181
  issue: 2
  year: 1997
  ident: 10.1016/j.neuroimage.2024.120994_b17
  article-title: Retinotopic organization in human visual cortex and the spatial precision of functional MRI
  publication-title: Cereb. Cortex (New York, N. Y.: 1991)
– year: 2001
  ident: 10.1016/j.neuroimage.2024.120994_b34
  article-title: Retinal circuits for detecting differences in luminance
– volume: 245
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120994_b5
  article-title: Extremely fast pRF mapping for real-time applications
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118671
– volume: 15
  start-page: 160
  issue: 4
  year: 2011
  ident: 10.1016/j.neuroimage.2024.120994_b46
  article-title: Visual crowding: A fundamental limit on conscious perception and object recognition
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2011.02.005
– year: 1909
  ident: 10.1016/j.neuroimage.2024.120994_b28
– year: 2024
  ident: 10.1016/j.neuroimage.2024.120994_b45
  article-title: qPRF recovers center-surround properties of population receptive fields
– volume: 3
  start-page: 1
  issue: 10
  year: 2003
  ident: 10.1016/j.neuroimage.2024.120994_b12
  article-title: Visual field representations and locations of visual areas V1/2/3 in human visual cortex
  publication-title: J. Vis.
  doi: 10.1167/3.10.1
– volume: 132
  start-page: 1898
  issue: 7
  year: 2009
  ident: 10.1016/j.neuroimage.2024.120994_b6
  article-title: Changes in cortical grey matter density associated with long-standing retinal visual field defects
  publication-title: Brain
  doi: 10.1093/brain/awp119
– volume: 96
  start-page: 13
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120994_b30
  article-title: DBStar: An open-source tool kit for imaging analysis with patient-customized deep brain stimulation platforms
  publication-title: Stereotact. Funct. Neurosurg.
  doi: 10.1159/000486645
– volume: 180
  start-page: 173
  issue: Pt A
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120994_b49
  article-title: Bayesian population receptive field modelling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.09.008
– volume: 42
  start-page: 8629
  issue: 46
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120994_b4
  article-title: Variability of the surface area of the V1, V2, and V3 maps in a large sample of human observers
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0690-21.2022
– volume: 25
  start-page: 291
  issue: 3
  year: 2011
  ident: 10.1016/j.neuroimage.2024.120994_b9
  article-title: Mapping the visual brain: how and why
  publication-title: Eye
  doi: 10.1038/eye.2010.166
– volume: 12
  start-page: 6102
  issue: 1
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120994_b2
  article-title: Spared perilesional V1 activity underlies training-induced recovery of luminance detection sensitivity in cortically-blind patients
  publication-title: Nature Commun.
  doi: 10.1038/s41467-021-26345-1
– volume: 38
  start-page: 2294
  issue: 9
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120994_b37
  article-title: Differential sampling of visual space in ventral and dorsal early visual cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2717-17.2018
– volume: 536
  start-page: 171
  issue: 7615
  year: 2016
  ident: 10.1016/j.neuroimage.2024.120994_b21
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
  doi: 10.1038/nature18933
– volume: 13
  start-page: 2439
  issue: 10
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120994_b25
  article-title: fMRI retinotopic mapping in patients with brain tumors and space-occupying brain lesions in the area of the occipital lobe
  publication-title: Cancers
  doi: 10.3390/cancers13102439
– volume: 66
  start-page: 376
  year: 2013
  ident: 10.1016/j.neuroimage.2024.120994_b24
  article-title: Connective field modeling
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.10.037
– volume: 13
  issue: 11
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120994_b33
  article-title: Cortical control of a tablet computer by people with paralysis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0204566
– year: 2024
  ident: 10.1016/j.neuroimage.2024.120994_b35
– volume: 75
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120994_b40
  article-title: Quantitative characterization of the human retinotopic map based on quasiconformal mapping
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102230
– volume: 93
  start-page: 2382
  issue: 6
  year: 1996
  ident: 10.1016/j.neuroimage.2024.120994_b11
  article-title: Mapping striate and extrastriate visual areas in human cerebral cortex.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.6.2382
– year: 2019
  ident: 10.1016/j.neuroimage.2024.120994_b41
– volume: 7
  start-page: 913
  issue: 3
  year: 1987
  ident: 10.1016/j.neuroimage.2024.120994_b19
  article-title: Retinotopic organization of human visual cortex mapped with positron-emission tomography
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.07-03-00913.1987
– volume: 14
  start-page: 1561
  issue: 1
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120994_b26
  article-title: Comparing retinotopic maps of children and adults reveals a late-stage change in how V1 samples the visual field
  publication-title: Nature Commun.
  doi: 10.1038/s41467-023-37280-8
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2024.120994_b44
  article-title: The WU-Minn Human Connectome Project: An Overview
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 41
  start-page: 2420
  issue: 11
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120994_b31
  article-title: Population receptive field shapes in early visual cortex are nearly circular
  publication-title: J. Neurosci.: Off. J. Soc. for Neurosci.
  doi: 10.1523/JNEUROSCI.3052-20.2021
– volume: 369
  issue: 6481
  year: 1994
  ident: 10.1016/j.neuroimage.2024.120994_b18
  article-title: fMRI of human visual cortex
  publication-title: Nature
  doi: 10.1038/369525a0
– volume: 39
  start-page: 34
  issue: 1–2
  year: 1916
  ident: 10.1016/j.neuroimage.2024.120994_b27
  article-title: Disturbances of vision from cerebral lesions, with special reference to the cortical representation of the macula
  publication-title: Brain
  doi: 10.1093/brain/39.1-2.34
– volume: 17
  issue: 8
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120994_b42
  article-title: Topology-preserving smoothing of retinotopic maps
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1009216
– volume: 14
  start-page: 17
  issue: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120994_b23
  article-title: Measurement of population receptive fields in human early visual cortex using back-projection tomography
  publication-title: J. Vis.
  doi: 10.1167/14.1.17
– volume: 13
  start-page: 488
  issue: 11
  year: 2009
  ident: 10.1016/j.neuroimage.2024.120994_b38
  article-title: Topographic maps in human frontal and parietal cortex
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2009.08.005
– volume: 268
  start-page: 889
  issue: 5212
  year: 1995
  ident: 10.1016/j.neuroimage.2024.120994_b36
  article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging
  publication-title: Science
  doi: 10.1126/science.7754376
– volume: 41
  start-page: 1765
  issue: 7
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120994_b32
  article-title: Modulating the global orientation bias of the visual system changes population receptive field elongations
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24909
– volume: 5
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120994_b7
  article-title: Visual cortex in aging and Alzheimer’s disease: changes in visual field maps and population receptive fields
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2014.00074
– volume: 159
  start-page: 203
  issue: 2
  year: 1961
  ident: 10.1016/j.neuroimage.2024.120994_b10
  article-title: The representation of the visual field on the cerebral cortex in monkeys
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1961.sp006803
– volume: 48
  start-page: 733
  issue: 2
  year: 2007
  ident: 10.1016/j.neuroimage.2024.120994_b15
  article-title: Retinotopic organization of primary visual cortex in glaucoma: a method for comparing cortical function with damage to the optic disk
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.06-0773
– volume: 110
  start-page: 481
  issue: 2
  year: 2013
  ident: 10.1016/j.neuroimage.2024.120994_b29
  article-title: Compressive spatial summation in human visual cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00105.2013
– volume: 39
  start-page: 647
  issue: 2
  year: 2008
  ident: 10.1016/j.neuroimage.2024.120994_b14
  article-title: Population receptive field estimates in human visual cortex
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.09.034
– volume: vol. 12464
  start-page: 464
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120994_b48
  article-title: Characterizing visual cortical magnification with topological smoothing and optimal transportation
– volume: 18
  start-page: 576
  issue: 3
  year: 2003
  ident: 10.1016/j.neuroimage.2024.120994_b13
  article-title: Automatic volumetric segmentation of human visual retinotopic cortex
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(02)00058-7
– volume: 536
  start-page: 171
  issue: 7615
  year: 2016
  ident: 10.1016/j.neuroimage.2024.120994_b22
  article-title: Supplementary material: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
  doi: 10.1038/nature18933
– volume: 11
  start-page: 1182
  issue: 12
  year: 2001
  ident: 10.1016/j.neuroimage.2024.120994_b39
  article-title: Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/11.12.1182
– volume: 323
  start-page: 806
  issue: 6091
  year: 1986
  ident: 10.1016/j.neuroimage.2024.120994_b20
  article-title: Mapping human visual cortex with positron emission tomography
  publication-title: Nature
  doi: 10.1038/323806a0
– reference: 39185219 - bioRxiv. 2024 Aug 15:2024.08.13.607805. doi: 10.1101/2024.08.13.607805.
SSID ssj0009148
Score 2.4746778
Snippet BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell,...
BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex ( Dumoulin and Wandell,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 120994
SubjectTerms Brain
Connectome - methods
Data structures
Datasets
Estimates
Humans
Magnetic Resonance Imaging - methods
Models, Neurological
Neurosurgery
Optimization
Population receptive field model
Receptive field
Retinotopic mapping
Time series
Vision
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JT90wELYqDlUvFdCFsMmVeg2NdwcuUNQnVImqqkDiZsWOLR4SeSwPfj9jO0lJeyiH3qLYjqJvPJ4ZzfgbhD57UCLihC8bKpuSc3iyugolbT2TwdaEiXh3-PSHPDnn3y_ExbNWX7EmLNMDZ-C-gPm3wbpWMerA9HvNBXdU0OAVRAsuBT5VXQ3B1EC3C15-X7eTq7kSO-T8GnQUYkLK99KVUT4xRomzf2KT_vY5_yydfGaLZqvobe9E4qP882vole_W0evTPk3-Dh3e_vw128dHOPM04-UCN86BgYm8EPhm7NmF4biLVS2PHqdKNpz64oAxe4_OZ9_Ojk_KvlVC6SBgWJa6sbWykdydccptTE4KQVvRSNUCAN5pR6SkTkvrggAEXBsTqIFUQTtrFfuAVrpF5zcQBv9AO-3rIJTlEJ3pqraKBECLN0zxpkBkwMzcZEYMM5SKXZnfOJuIs8k4F-hrBHecHzmt0wuQtOklbf4l6QLVg2jMcG0UDjr40PwFP3Awru1di-wyvHD19rATTK_i94YREcn5uWIF-jQOg3LGjEvT-cVDmsMJmH-pCvQxb5wRg-gIEi1htZ5sqQlI05FufpkIwGOLeMUI3fwfsG6hNzT2NE6V6NtoZXn34HfA0Vra3aRTTzDpJd8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqrYS4oPJOKchIXMOu3w5cWCpWC6gVAir1ZsWODUEiu5Qtv5-x46QELpW4RYmdxxeP57M88w1CzzwYEXHClzWVdck5HFm9CCVtPJPBVoSJmDt8cirXZ_zduTjfQ8dDLkwMq8xzfz-np9k6n5lnNOfbtp1_AmYAz4kLiEhzo_TnPmWVFDO0v3z7fn16pb1LeJ8RJ1gZO-SAnj7MK8lGtt_BeGGxSPnzlEvKJ14qiflPnNW_ZPTvmMo_nNTqAN3K7BIv-w-4jfZ8dwfdOMn753fRqx8fPq5e4CXuBZzxboNr58DzRMEIvB2LeWHAJIa7_PI4hbjhVDAHvNw9dLZ68_l4XeYaCqWDlcSu1LWtlI2q74xTbuOupRC0EbVUDQDgnXZESuq0tC4IQMA1cWc1kEXQzlrF7qNZt-n8Q4SBOGinfRWEshxQ14vKKhIALV4zxesCkQEzs-2lMswQQ_bNXOFsIs6mx7lAryO4Y_sodp1ObC6-mPy3DTBAG6xrFKMO2J_XXHBHBQ1ewYLRkQJVw68xQz4pzIBwo_YaL_By7DsZd9fsfTSMBJNt_6dhRETVfq5YgZ6Ol8Fq41ZM3fnNZWrDCfACqQr0oB84IwaRIRItobeeDKkJSNMrXfs1KYPH2vGKEXr4X1_1CN2kscpxik0_QrPdxaV_DNRrZ59k0_oNKLEsHQ
  priority: 102
  providerName: Elsevier
Title qPRF: A system to accelerate population receptive field modeling
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811924004919
https://dx.doi.org/10.1016/j.neuroimage.2024.120994
https://www.ncbi.nlm.nih.gov/pubmed/39761863
https://www.proquest.com/docview/3157946473
https://www.proquest.com/docview/3154147167
https://pubmed.ncbi.nlm.nih.gov/PMC11877312
https://doaj.org/article/059bfbcd732c423e8454c252fe7282c1
Volume 306
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLXYJiFeEOMzsFVG4jWj_ood9rB1aFUBrZomJvXNih0HikTSbR2P_PZdO05KQEJ7atTYUXRyr33se30uQu8cOBGxwqUFzYqUc7gyalyltHQsq0xOmPBnh8_m2eySf16IRdxwu4lpld2YGAbqsrF-j_w9I8JroXPJjlZXqa8a5aOrsYTGFtoJ0mVgz3IhN6K7hLdH4QRLFTSImTxtflfQi1z-BK-FVSLlB-EQKR9MT0HFfzBL_ctC_06m_GN2mj5BjyOtxJPWDnbRA1c_RQ_PYuD8GTq-Or-YfsAT3Co343WDC2thyvFKEXjVV_HCMAD6PJdfDofcNhwq5cD09hxdTk-_fpylsXhCamEJsU5VYXJpvNw745QbH64UgpaiyGQJADirLMkyalVmbCUAAVv6kGpFxpWyxkj2Am3XTe1eIQyMQVnl8kpIw2G9psa5kaQCtHjBJC8SRDrM9KrVyNBd8tgPvcFZe5x1i3OCTjy4fXuvch3-aK6_6eg0GqifqYwtJaMWaJ9TXHBLBa2chJWiJQnKu0-ju4OkMPTBg5b3eIHDvm8kGy2JuGfvvc4SdHT6G70x0QS97W-Du_oYTFG75ja04QQIQSYT9LI1nB4DTw2JyqC3GpjUAKThnXr5PUiC-6LxkhH6-v_v9QY9or5-ccg630Pb6-tbtw-kam1GaOvgNxkF_xmhncmnL7M5_J6czs8vRmGj4g5H6SSu
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEG8CBYwEx8DasWMHhKCFrra0u6qqVurNjR2HbiWSbbsF8af4jYzzWgIS6qW3KImjaDKPz5mZbwBeOjQiaoULUxanIed4ZNQwD1nmojg3CY2E7x2eTOPxAf9yKA5X4FfbC-PLKlufWDnqrLT-H_mbiArPhc5l9GF-GvqpUT672o7QqNVi2_38gVu28_dbn_H7vmJstLn_aRw2UwVCi9h6EarUJNJ4HvSIM258Hk8Ilok0lhniH2eVpXHMrIqNzQUbMpv5XGNOh7myxsgIn3sNVrnvaB3A6sbmdHdvSfNLed18J6JQUZo0tUN1RVnFUDn7hn4C96WMv67aVnkvIFZzA3px8V_c-3f55h_xcHQbbjVAlqzXmncHVlxxF65PmlT9Pfh4urs3ekvWSc0VTRYlSa3FIOe5Kci8mxtG0OX6yprvjlTVdKSazYMB9T4cXIlgH8CgKAv3CAhiFGWVS3IhDccdohomRtIcpcXTSPI0ANrKTM9rVg7dlqud6KWctZezruUcwIYXbne_59WuTpRnX3VjphrBpsmNzWTELAJNp7jglgmWO4l7U0sDSNpPo9vWVXS2-KDZJV7gXbe2gTc1bLnk6rVWE3TjZs710igCeNFdRgfhsz5p4cqL6h5OEYLEMoCHteJ0MvBglKoYV6ueSvWE1L9SzI4rEnI_pl5GlD3-_3s9hxvj_cmO3tmabj-Bm8xPT65q3tdgsDi7cE8R0i3Ms8aOCBxdten-Bn7tXG4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anTTxgrgTGGAkeAyrHTt2QAg2tmpjrKomJu3Nix0bikTTbR2Iv8av4zi3EpDQXvYWJXEUfTmXzzk3gOcOlYha4eKcpXnMOR4ZNfQxK1ySepPRRITa4YNxunvEPxyL4xX41dbChLTK1iZWhroobfhHvpFQEXqhc5ls-CYtYrI9ejs_jcMEqRBpbcdp1CKy737-wO3b-Zu9bfzWLxgb7Xx6vxs3EwZiizx7EavcZNKEnugJZ9yEmJ4QrBB5KgvkQs4qS9OUWZUa6wUbMluEuKOnQ6-sMTLB516DVYlekQ9gdWtnPDlctvylvC7EE0msKM2aPKI6u6zqVjn9hjYD96iMv6xKWHnPOVYzBHo-8l8O_Hcq5x--cXQTbjSklmzWUngLVtzsNqwdNGH7O_DudHI4ekU2Sd03mixKkluLDi_0qSDzboYYQfMbsmy-O1Jl1pFqTg8617twdCXA3oPBrJy5B0CQryirXOaFNBx3i2qYGUk9osXzRPI8Atpipud1hw7dpq591UucdcBZ1zhHsBXA7e4PPbarE-XZZ92orEbiabyxhUyYRdLpFBfcMsG8k7hPtTSCrP00ui1jRcOLD5pe4gVed2sbqlNTmEuuXm8lQTcm51wvFSSCZ91lNBYhApTPXHlR3cMp0pFURnC_FpwOg0BMqUpxteqJVA-k_pXZ9EvVkDyMrJcJZQ___15PYQ1VVn_cG-8_gussDFKufmetw2BxduEeI7tbmCeNGhE4uWrN_Q29K2Ce
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=qPRF%3A+A+system+to+accelerate+population+receptive+field+modeling&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Waz%2C+Sebastian&rft.au=Wang%2C+Yalin&rft.au=Zhong-Lin%2C+Lu&rft.date=2025-02-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=306&rft_id=info:doi/10.1016%2Fj.neuroimage.2024.120994&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon