Three-Dimensional Carotid Ultrasound Segmentation Variability Dependence on Signal Difference and Boundary Orientation
Quantitative measurements of the progression (or regression) of carotid plaque burden are important in monitoring patients and evaluating new treatment options. We previously developed a quantitative metric to analyze changes in carotid plaque morphology from 3-D ultrasound (US) on a point-by-point...
Saved in:
Published in | Ultrasound in medicine & biology Vol. 36; no. 1; pp. 95 - 110 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0301-5629 1879-291X 1879-291X |
DOI | 10.1016/j.ultrasmedbio.2009.08.005 |
Cover
Loading…
Abstract | Quantitative measurements of the progression (or regression) of carotid plaque burden are important in monitoring patients and evaluating new treatment options. We previously developed a quantitative metric to analyze changes in carotid plaque morphology from 3-D ultrasound (US) on a point-by-point basis. This method requires multiple segmentations of the arterial wall and lumen boundaries to obtain the
local standard deviation (SD) of vessel-wall-plus-plaque thickness (VWT) so that
t-tests could be used to determine whether a change in VWT is statistically significant. However, the requirement for multiple segmentations makes clinical trials laborious and time-consuming. Therefore, this study was designed to establish the relationship between
local segmentation SD and local signal difference on the arterial wall and lumen boundaries. We propose metrics to quantify segmentation SD and signal difference on a point-by-point basis, and studied whether the signal difference at arterial wall or lumen boundaries could be used to predict local segmentation SD. The ability to predict the local segmentation SD could eliminate the need of repeated segmentations of a 2-D transverse image to obtain the local segmentation standard deviation, thereby making clinical trials less laborious and saving time. Six subjects involved in this study were associated with different degrees of atherosclerosis: three carotid stenosis subjects with mean plaque area >3 cm
2 and >60% carotid stenosis were involved in a clinical study evaluating the effect of atorvastatin, a cholesterol-lowering and plaque-stabilizing drug; and three subjects with carotid plaque area >0.5 cm
2 were subjects with moderate atherosclerosis. Our results suggest that when local signal difference is higher than 8 greyscale value (GSV), the local segmentation SD stabilizes at 0.05 mm and is thus predictable. This information provides a target value of local signal difference on the arterial boundaries that should be achieved to obtain an accurate prediction of local segmentation SD. (E-mail:
bcychiu@alumni.uwo.ca) |
---|---|
AbstractList | Quantitative measurements of the progression (or regression) of carotid plaque burden are important in monitoring patients and evaluating new treatment options. We previously developed a quantitative metric to analyze changes in carotid plaque morphology from 3-D ultrasound (US) on a point-by-point basis. This method requires multiple segmentations of the arterial wall and lumen boundaries to obtain the local standard deviation (SD) of vessel-wall-plus-plaque thickness (VWT) so that t-tests could be used to determine whether a change in VWT is statistically significant. However, the requirement for multiple segmentations makes clinical trials laborious and time-consuming. Therefore, this study was designed to establish the relationship between local segmentation SD and local signal difference on the arterial wall and lumen boundaries. We propose metrics to quantify segmentation SD and signal difference on a point-by-point basis, and studied whether the signal difference at arterial wall or lumen boundaries could be used to predict local segmentation SD. The ability to predict the local segmentation SD could eliminate the need of repeated segmentations of a 2-D transverse image to obtain the local segmentation standard deviation, thereby making clinical trials less laborious and saving time. Six subjects involved in this study were associated with different degrees of atherosclerosis: three carotid stenosis subjects with mean plaque area >3 cm(2) and >60% carotid stenosis were involved in a clinical study evaluating the effect of atorvastatin, a cholesterol-lowering and plaque-stabilizing drug; and three subjects with carotid plaque area >0.5 cm(2) were subjects with moderate atherosclerosis. Our results suggest that when local signal difference is higher than 8 greyscale value (GSV), the local segmentation SD stabilizes at 0.05 mm and is thus predictable. This information provides a target value of local signal difference on the arterial boundaries that should be achieved to obtain an accurate prediction of local segmentation SD. (E-mail: bcychiu@alumni.uwo.ca).Quantitative measurements of the progression (or regression) of carotid plaque burden are important in monitoring patients and evaluating new treatment options. We previously developed a quantitative metric to analyze changes in carotid plaque morphology from 3-D ultrasound (US) on a point-by-point basis. This method requires multiple segmentations of the arterial wall and lumen boundaries to obtain the local standard deviation (SD) of vessel-wall-plus-plaque thickness (VWT) so that t-tests could be used to determine whether a change in VWT is statistically significant. However, the requirement for multiple segmentations makes clinical trials laborious and time-consuming. Therefore, this study was designed to establish the relationship between local segmentation SD and local signal difference on the arterial wall and lumen boundaries. We propose metrics to quantify segmentation SD and signal difference on a point-by-point basis, and studied whether the signal difference at arterial wall or lumen boundaries could be used to predict local segmentation SD. The ability to predict the local segmentation SD could eliminate the need of repeated segmentations of a 2-D transverse image to obtain the local segmentation standard deviation, thereby making clinical trials less laborious and saving time. Six subjects involved in this study were associated with different degrees of atherosclerosis: three carotid stenosis subjects with mean plaque area >3 cm(2) and >60% carotid stenosis were involved in a clinical study evaluating the effect of atorvastatin, a cholesterol-lowering and plaque-stabilizing drug; and three subjects with carotid plaque area >0.5 cm(2) were subjects with moderate atherosclerosis. Our results suggest that when local signal difference is higher than 8 greyscale value (GSV), the local segmentation SD stabilizes at 0.05 mm and is thus predictable. This information provides a target value of local signal difference on the arterial boundaries that should be achieved to obtain an accurate prediction of local segmentation SD. (E-mail: bcychiu@alumni.uwo.ca). Quantitative measurements of the progression (or regression) of carotid plaque burden are important in monitoring patients and evaluating new treatment options. We previously developed a quantitative metric to analyze changes in carotid plaque morphology from 3-D ultrasound (US) on a point-by-point basis. This method requires multiple segmentations of the arterial wall and lumen boundaries to obtain the local standard deviation (SD) of vessel-wall-plus-plaque thickness (VWT) so that t-tests could be used to determine whether a change in VWT is statistically significant. However, the requirement for multiple segmentations makes clinical trials laborious and time-consuming. Therefore, this study was designed to establish the relationship between local segmentation SD and local signal difference on the arterial wall and lumen boundaries. We propose metrics to quantify segmentation SD and signal difference on a point-by-point basis, and studied whether the signal difference at arterial wall or lumen boundaries could be used to predict local segmentation SD. The ability to predict the local segmentation SD could eliminate the need of repeated segmentations of a 2-D transverse image to obtain the local segmentation standard deviation, thereby making clinical trials less laborious and saving time. Six subjects involved in this study were associated with different degrees of atherosclerosis: three carotid stenosis subjects with mean plaque area >3 cm(2) and >60% carotid stenosis were involved in a clinical study evaluating the effect of atorvastatin, a cholesterol-lowering and plaque-stabilizing drug; and three subjects with carotid plaque area >0.5 cm(2) were subjects with moderate atherosclerosis. Our results suggest that when local signal difference is higher than 8 greyscale value (GSV), the local segmentation SD stabilizes at 0.05 mm and is thus predictable. This information provides a target value of local signal difference on the arterial boundaries that should be achieved to obtain an accurate prediction of local segmentation SD. (E-mail: bcychiu@alumni.uwo.ca). Quantitative measurements of the progression (or regression) of carotid plaque burden are important in monitoring patients and evaluating new treatment options. We previously developed a quantitative metric to analyze changes in carotid plaque morphology from 3-D ultrasound (US) on a point-by-point basis. This method requires multiple segmentations of the arterial wall and lumen boundaries to obtain the local standard deviation (SD) of vessel-wall-plus-plaque thickness (VWT) so that t-tests could be used to determine whether a change in VWT is statistically significant. However, the requirement for multiple segmentations makes clinical trials laborious and time-consuming. Therefore, this study was designed to establish the relationship between local segmentation SD and local signal difference on the arterial wall and lumen boundaries. We propose metrics to quantify segmentation SD and signal difference on a point-by-point basis, and studied whether the signal difference at arterial wall or lumen boundaries could be used to predict local segmentation SD. The ability to predict the local segmentation SD could eliminate the need of repeated segmentations of a 2-D transverse image to obtain the local segmentation standard deviation, thereby making clinical trials less laborious and saving time. Six subjects involved in this study were associated with different degrees of atherosclerosis: three carotid stenosis subjects with mean plaque area >3 cm 2 and >60% carotid stenosis were involved in a clinical study evaluating the effect of atorvastatin, a cholesterol-lowering and plaque-stabilizing drug; and three subjects with carotid plaque area >0.5 cm 2 were subjects with moderate atherosclerosis. Our results suggest that when local signal difference is higher than 8 greyscale value (GSV), the local segmentation SD stabilizes at 0.05 mm and is thus predictable. This information provides a target value of local signal difference on the arterial boundaries that should be achieved to obtain an accurate prediction of local segmentation SD. (E-mail: bcychiu@alumni.uwo.ca) Abstract Quantitative measurements of the progression (or regression) of carotid plaque burden are important in monitoring patients and evaluating new treatment options. We previously developed a quantitative metric to analyze changes in carotid plaque morphology from 3-D ultrasound (US) on a point-by-point basis. This method requires multiple segmentations of the arterial wall and lumen boundaries to obtain the local standard deviation (SD) of vessel-wall-plus-plaque thickness (VWT) so that t -tests could be used to determine whether a change in VWT is statistically significant. However, the requirement for multiple segmentations makes clinical trials laborious and time-consuming. Therefore, this study was designed to establish the relationship between local segmentation SD and local signal difference on the arterial wall and lumen boundaries. We propose metrics to quantify segmentation SD and signal difference on a point-by-point basis, and studied whether the signal difference at arterial wall or lumen boundaries could be used to predict local segmentation SD. The ability to predict the local segmentation SD could eliminate the need of repeated segmentations of a 2-D transverse image to obtain the local segmentation standard deviation, thereby making clinical trials less laborious and saving time. Six subjects involved in this study were associated with different degrees of atherosclerosis: three carotid stenosis subjects with mean plaque area >3 cm2 and >60% carotid stenosis were involved in a clinical study evaluating the effect of atorvastatin, a cholesterol-lowering and plaque-stabilizing drug; and three subjects with carotid plaque area >0.5 cm2 were subjects with moderate atherosclerosis. Our results suggest that when local signal difference is higher than 8 greyscale value (GSV), the local segmentation SD stabilizes at 0.05 mm and is thus predictable. This information provides a target value of local signal difference on the arterial boundaries that should be achieved to obtain an accurate prediction of local segmentation SD. (E-mail: bcychiu@alumni.uwo.ca ) Quantitative measurements of the progression (or regression) of carotid plaque burden are important in monitoring patients and evaluating new treatment options. We previously developed a quantitative metric to analyze changes in carotid plaque morphology from 3-D ultrasound (US) on a point-by-point basis. This method requires multiple segmentations of the arterial wall and lumen boundaries to obtain the local standard deviation (SD) of vessel-wall-plus-plaque thickness (VWT) so that t-tests could be used to determine whether a change in VWT is statistically significant. However, the requirement for multiple segmentations makes clinical trials laborious and time-consuming. Therefore, this study was designed to establish the relationship between local segmentation SD and local signal difference on the arterial wall and lumen boundaries. We propose metrics to quantify segmentation SD and signal difference on a point-by-point basis, and studied whether the signal difference at arterial wall or lumen boundaries could be used to predict local segmentation SD. The ability to predict the local segmentation SD could eliminate the need of repeated segmentations of a 2-D transverse image to obtain the local segmentation standard deviation, thereby making clinical trials less laborious and saving time. Six subjects involved in this study were associated with different degrees of atherosclerosis: three carotid stenosis subjects with mean plaque area >3 cm super(2) and >60% carotid stenosis were involved in a clinical study evaluating the effect of atorvastatin, a cholesterol-lowering and plaque-stabilizing drug; and three subjects with carotid plaque area >0.5 cm super(2) were subjects with moderate atherosclerosis. Our results suggest that when local signal difference is higher than 8 greyscale value (GSV), the local segmentation SD stabilizes at 0.05 mm and is thus predictable. This information provides a target value of local signal difference on the arterial boundaries that should be achieved to obtain an accurate prediction of local segmentation SD. |
Author | Spence, J. David Parraga, Grace Chiu, Bernard Fenster, Aaron Krasinski, Adam |
Author_xml | – sequence: 1 givenname: Bernard surname: Chiu fullname: Chiu, Bernard email: bcychiu@alumni.uwo.ca organization: Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada – sequence: 2 givenname: Adam surname: Krasinski fullname: Krasinski, Adam organization: Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada – sequence: 3 givenname: J. David surname: Spence fullname: Spence, J. David organization: Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada – sequence: 4 givenname: Grace surname: Parraga fullname: Parraga, Grace organization: Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada – sequence: 5 givenname: Aaron surname: Fenster fullname: Fenster, Aaron organization: Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19900751$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktvEzEUhS1URNPCX0AjFrCa4dqeh80ClSa8pEpdpEXsLMe-Uxwm42DPVMq_x9O0AlUCZWXL95zPvvf4hBz1vkdCXlEoKND67boYuyHouEG7cr5gALIAUQBUT8iMikbmTNLvR2QGHGhe1Uwek5MY1wDQ1Lx5Ro6plGlf0Rm5vfoREPOF22Afne91l8118IOz2fXdJX7sbbbEm1Qf9JAU2TcdnF65zg27bIFb7C32BrNUWbqbCbBwbYvh7lAn8_mE0GGXXQb3AHlOnra6i_jifj0l158-Xs2_5BeXn7_OP1zkpmrqIRelbUtTCqFNbQ2rNEBZNWXLeVkhUpSNFmVqy4qWoZR6JQ0YU1Urzlte1Zafkjd77jb4XyPGQW1cNNh1ukc_RtVwXjMGTCTl6_8qGWW84YIm4ct74bhKCahtcJvUnXqYaRK82wtM8DEGbP9IQE0BqrX6O0A1BahAqBRgMp89Mhu3H1kyuO4wxGKPwDTYW4dBReOmNKwLaAZlvTsM8_4RxnSud0Z3P3GHce3HkMKOiqrIFKjl9NmmvwYSaFlSSIDzfwMOfcVvgbrufg |
CitedBy_id | crossref_primary_10_1093_ehjci_jet254 crossref_primary_10_1088_0031_9155_58_11_3671 crossref_primary_10_1016_j_compbiomed_2019_103586 crossref_primary_10_1109_TUFFC_2021_3090461 crossref_primary_10_1016_j_compbiomed_2018_01_002 crossref_primary_10_1016_j_compbiomed_2017_12_006 |
Cites_doi | 10.1161/01.STR.28.11.2201 10.1016/j.ultrasmedbio.2007.01.013 10.1109/CVPR.1996.517107 10.1161/01.STR.0000178543.19433.20 10.1109/TMI.2003.809057 10.1161/01.STR.0000121161.61324.ab 10.1118/1.1510130 10.1109/TMI.2002.801163 10.1117/12.653554 10.1114/1.1540102 10.1118/1.1584043 10.2174/1568006043336311 10.1016/S0002-9149(02)02957-0 10.1002/mrm.1191 10.1056/NEJM199901073400103 10.1016/S0301-5629(00)00311-2 10.1007/s11910-007-0020-8 10.1016/j.ultrasmedbio.2005.02.011 10.1161/01.CIR.97.1.34 10.1109/IEMBS.2005.1616166 10.1016/S0301-5629(97)00210-X 10.1016/0031-3203(92)90121-X 10.1161/01.CIR.0000050626.25057.51 10.1023/A:1021738111273 10.1007/s11548-008-0158-0 10.1177/10528402012003006 10.1016/S1078-5884(98)80224-4 10.1161/01.CIR.96.5.1432 10.1001/jama.291.5.565 10.1016/j.ultras.2006.06.027 10.1161/01.STR.25.1.220 10.7863/jum.2000.19.6.399 10.1161/CIRCULATIONAHA.105.171600 10.1097/00004872-199715010-00004 10.1109/42.730398 10.1109/TPAMI.1986.4767851 10.1016/j.ultrasmedbio.2007.07.004 10.1118/1.1287111 10.1088/0031-9155/46/5/201 10.1161/01.STR.0000185929.38534.f3 10.1118/1.2955550 10.1109/42.640755 |
ContentType | Journal Article |
Copyright | 2010 World Federation for Ultrasound in Medicine & Biology World Federation for Ultrasound in Medicine & Biology |
Copyright_xml | – notice: 2010 World Federation for Ultrasound in Medicine & Biology – notice: World Federation for Ultrasound in Medicine & Biology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 |
DOI | 10.1016/j.ultrasmedbio.2009.08.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology Physics |
EISSN | 1879-291X |
EndPage | 110 |
ExternalDocumentID | 19900751 10_1016_j_ultrasmedbio_2009_08_005 S0301562909014410 1_s2_0_S0301562909014410 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research |
GroupedDBID | --- --K -DZ .1- .55 .FO .GJ 0R~ 123 1B1 1P~ 1RT 1~5 29Q 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 AAEDT AAEDW AALRI AAQFI AAQXK AAWTL AAXUO AAYWO ABDPE ABJNI ABLJU ABMAC ABNEU ABOCM ABWVN ACGFS ACIUM ACRPL ACVFH ADBBV ADCNI ADMUD ADNMO AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AGCQF AGQPQ AHHHB AIGII AITUG AJUYK AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP ASPBG AVWKF AZFZN BELOY C5W CS3 DU5 EBS EFJIC EFKBS EJD F5P FDB FEDTE FGOYB FIRID G-2 GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W K-O KOM L7B M29 M41 MO0 NQ- O9- OI~ OU0 P2P R2- ROL RPZ SAE SDG SEL SES SEW SSZ WUQ X7M XH2 Z5R ZGI ZXP ZY4 ~S- AACTN ABTAH ADPAM AFCTW RIG AAIAV AGZHU AHPSJ ALXNB G8K ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c576t-84df4c488ac6dc25a004574f3345ee1e97a84000d8f2e99ab9c0cc55b33f356d3 |
ISSN | 0301-5629 1879-291X |
IngestDate | Thu Sep 04 22:53:29 EDT 2025 Fri Sep 05 10:31:30 EDT 2025 Mon Jul 21 05:49:27 EDT 2025 Tue Jul 01 04:13:35 EDT 2025 Thu Apr 24 22:58:09 EDT 2025 Fri Feb 23 02:28:28 EST 2024 Sun Feb 23 10:19:21 EST 2025 Tue Aug 26 17:15:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Gabor filter-based edge detector Boundary orientation Signal difference Local segmentation standard deviation 3-D Carotid ultrasound image |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c576t-84df4c488ac6dc25a004574f3345ee1e97a84000d8f2e99ab9c0cc55b33f356d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://ir.lib.uwo.ca/biophysicspub/216 |
PMID | 19900751 |
PQID | 21237381 |
PQPubID | 23462 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_733622028 proquest_miscellaneous_21237381 pubmed_primary_19900751 crossref_primary_10_1016_j_ultrasmedbio_2009_08_005 crossref_citationtrail_10_1016_j_ultrasmedbio_2009_08_005 elsevier_sciencedirect_doi_10_1016_j_ultrasmedbio_2009_08_005 elsevier_clinicalkeyesjournals_1_s2_0_S0301562909014410 elsevier_clinicalkey_doi_10_1016_j_ultrasmedbio_2009_08_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010 2010-1-00 2010-Jan 20100101 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – year: 2010 text: 2010 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Ultrasound in medicine & biology |
PublicationTitleAlternate | Ultrasound Med Biol |
PublicationYear | 2010 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Thom, Haase, Rosamond, Howard, Rumsfeld, Manolio, Zheng, Flegal, O'Donnell, Kittner, Lloyd-Jones, Goff, Hong, Adams, Friday, Furie, Gorelick, Kissela, Marler, Meigs, Roger, Sidney, Sorlie, Steinberger, Wasserthiel-Smoller, Wilson, Wolf (bib39) 2006; 113 Fenster, Downey, Cardinal (bib16) 2001; 46 Batschelet (bib3) 1981 Landry, Fenster (bib23) 2002; 29 Spence, Bang, Chambless, Stampfer (bib37) 2005; 36 Toole, Malinow, Chambless, Spence, Pettigrew, Howard, Sides, Wang, Stampfer (bib42) 2004; 291 Gronholdt, Nordestgaard, Wiebe, Wilhjelm, Sillesen (bib19) 1998; 97 Canny (bib6) 1986; 8 Gorelick (bib18) 1994; 25 Landry, Spence, Fenster (bib24) 2004; 35 Papademetris, Sinusas, Dione, Constable, Duncan (bib31) 2002; 21 Schminke, Hilker, Motsch, Griewing, Kessler (bib34) 2002; 12 Landry, Spence, Fenster (bib25) 2005; 31 Chiu, Egger, Spence, Parraga, Fenster (bib8) 2006; 6143 Joakimsen, Bonaa, Stensland-Bugge (bib21) 1997; 28 Barnett, Spence, Manuck, Jennings (bib2) 1997; 15 Egger, Spence, Fenster, Parraga (bib12) 2007; 33 Mao, Gill, Downey, Fenster (bib27) 2000; 27 Chiu, Egger, Spence, Parraga, Fenster (bib10) 2008; 35 Salonen, Nyyssonen, Kaikkonen, Porkkala-Sarataho, Voutilainen, Rissanen, Tuomainen, Valkonen, Ristonmaa, Lakka, Vanharanta, Salonen, Poulsen (bib33) 2003; 107 Spence (bib36) 2007; 7 Chiu, Egger, Spence, Parraga, Fenster (bib9) 2008; 3 O'Leary, Polak, Kronmal, Manolio, Burke, Wolfson (bib30) 1999; 340 Egger, Chiu, Spence, Fenster, Parraga (bib11) 2008; 34 Ma WY, Manjunath BS. Texture features and learning similarity. Proc IEEE Conf Comput Vision Pattern Recogn, San Francisco, California, 1996:425–430. Rohling, Gee, Berman (bib32) 1998; 24 Bots, Hoes, Koudstaal, Hofman, Grobbee (bib5) 1997; 96 Fenster, Blake, Gyacskov, Landry, Spence (bib14) 2006; 44 Thomas, Rutt, Ladak, Steinman (bib41) 2001; 46 Ainsworth, Blake, Tamayo, Beletsky, Fenster, Spence (bib1) 2005; 36 Fenster A, Chiu B. Evaluation of segmentation algorithms for medical imaging. In: Proceedings of the 27th International Conference IEEE/EMBS, Shanghai, China, 2005:7186–7189. O'Leary, Polak (bib29) 2002; 90 Tegos, Sabetai, Nicolaides, Pare, Elatrozy, Dhanjil, Griffin (bib38) 2000; 19 Thomas, Milner, Rutt, Steinman (bib40) 2003; 31 Chalana, Kim (bib7) 1997; 16 Jespersen, Wilhjelm, Sillesen (bib20) 2000; 26 Mehrotra, Namuduri, Ranganathan (bib28) 1992; 25 Shen, Zhan, Davatzikos (bib35) 2003; 22 Bots, Grobbee (bib4) 2002; 16 Elatrozy, Nicolaides, Tegos, Griffin (bib13) 1998; 16 Zong, Laine, Geiser (bib43) 1998; 17 Fenster, Landry, Downey, Hegele, Spence (bib17) 2004; 4 Ladak, Wang, Downey, Fenster (bib22) 2003; 30 Bots (10.1016/j.ultrasmedbio.2009.08.005_bib4) 2002; 16 Bots (10.1016/j.ultrasmedbio.2009.08.005_bib5) 1997; 96 Ladak (10.1016/j.ultrasmedbio.2009.08.005_bib22) 2003; 30 Tegos (10.1016/j.ultrasmedbio.2009.08.005_bib38) 2000; 19 Chiu (10.1016/j.ultrasmedbio.2009.08.005_bib8) 2006; 6143 Barnett (10.1016/j.ultrasmedbio.2009.08.005_bib2) 1997; 15 Landry (10.1016/j.ultrasmedbio.2009.08.005_bib23) 2002; 29 Batschelet (10.1016/j.ultrasmedbio.2009.08.005_bib3) 1981 Chalana (10.1016/j.ultrasmedbio.2009.08.005_bib7) 1997; 16 Thomas (10.1016/j.ultrasmedbio.2009.08.005_bib41) 2001; 46 Zong (10.1016/j.ultrasmedbio.2009.08.005_bib43) 1998; 17 O'Leary (10.1016/j.ultrasmedbio.2009.08.005_bib30) 1999; 340 Fenster (10.1016/j.ultrasmedbio.2009.08.005_bib17) 2004; 4 Elatrozy (10.1016/j.ultrasmedbio.2009.08.005_bib13) 1998; 16 Mao (10.1016/j.ultrasmedbio.2009.08.005_bib27) 2000; 27 Schminke (10.1016/j.ultrasmedbio.2009.08.005_bib34) 2002; 12 10.1016/j.ultrasmedbio.2009.08.005_bib26 Thomas (10.1016/j.ultrasmedbio.2009.08.005_bib40) 2003; 31 Ainsworth (10.1016/j.ultrasmedbio.2009.08.005_bib1) 2005; 36 Canny (10.1016/j.ultrasmedbio.2009.08.005_bib6) 1986; 8 Egger (10.1016/j.ultrasmedbio.2009.08.005_bib11) 2008; 34 Gronholdt (10.1016/j.ultrasmedbio.2009.08.005_bib19) 1998; 97 Spence (10.1016/j.ultrasmedbio.2009.08.005_bib36) 2007; 7 Fenster (10.1016/j.ultrasmedbio.2009.08.005_bib14) 2006; 44 Landry (10.1016/j.ultrasmedbio.2009.08.005_bib25) 2005; 31 Papademetris (10.1016/j.ultrasmedbio.2009.08.005_bib31) 2002; 21 Rohling (10.1016/j.ultrasmedbio.2009.08.005_bib32) 1998; 24 Thom (10.1016/j.ultrasmedbio.2009.08.005_bib39) 2006; 113 Egger (10.1016/j.ultrasmedbio.2009.08.005_bib12) 2007; 33 Shen (10.1016/j.ultrasmedbio.2009.08.005_bib35) 2003; 22 Landry (10.1016/j.ultrasmedbio.2009.08.005_bib24) 2004; 35 Spence (10.1016/j.ultrasmedbio.2009.08.005_bib37) 2005; 36 Jespersen (10.1016/j.ultrasmedbio.2009.08.005_bib20) 2000; 26 Gorelick (10.1016/j.ultrasmedbio.2009.08.005_bib18) 1994; 25 10.1016/j.ultrasmedbio.2009.08.005_bib15 O'Leary (10.1016/j.ultrasmedbio.2009.08.005_bib29) 2002; 90 Chiu (10.1016/j.ultrasmedbio.2009.08.005_bib10) 2008; 35 Joakimsen (10.1016/j.ultrasmedbio.2009.08.005_bib21) 1997; 28 Salonen (10.1016/j.ultrasmedbio.2009.08.005_bib33) 2003; 107 Chiu (10.1016/j.ultrasmedbio.2009.08.005_bib9) 2008; 3 Mehrotra (10.1016/j.ultrasmedbio.2009.08.005_bib28) 1992; 25 Toole (10.1016/j.ultrasmedbio.2009.08.005_bib42) 2004; 291 Fenster (10.1016/j.ultrasmedbio.2009.08.005_bib16) 2001; 46 |
References_xml | – volume: 19 start-page: 399 year: 2000 end-page: 407 ident: bib38 article-title: Comparability of the ultrasonic tissue characteristics of carotid plaques publication-title: J Ultrasound Med – reference: Fenster A, Chiu B. Evaluation of segmentation algorithms for medical imaging. In: Proceedings of the 27th International Conference IEEE/EMBS, Shanghai, China, 2005:7186–7189. – volume: 96 start-page: 1432 year: 1997 end-page: 1437 ident: bib5 article-title: Common carotid intima-media thickness and risk of stroke and myocardial infarction: The Rotterdam study publication-title: Circulation – volume: 46 start-page: 299 year: 2001 end-page: 304 ident: bib41 article-title: Effect of black blood MR image quality on vessel wall segmentation publication-title: Magn Reson Med – year: 1981 ident: bib3 article-title: Circular Statistics in Biology – volume: 24 start-page: 841 year: 1998 end-page: 854 ident: bib32 article-title: Automatic registration of 3-D ultrasound images publication-title: Ultrasound Med Biol – volume: 33 start-page: 905 year: 2007 end-page: 914 ident: bib12 article-title: Validation of 3D ultrasound vessel wall volume: An imaging phenotype of carotid atherosclerosis publication-title: Ultrasound Med Biol – volume: 3 start-page: 1 year: 2008 end-page: 10 ident: bib9 article-title: Development of 3D ultrasound techniques for carotid artery disease assessment and monitoring publication-title: Int J Comput Assist Radiol Surg – volume: 29 start-page: 2319 year: 2002 end-page: 2327 ident: bib23 article-title: Theoretical and experimental quantification of carotid plaque volume measurements made by three-dimensional ultrasound using test phantoms publication-title: Med Phys – volume: 36 start-page: 1904 year: 2005 end-page: 1909 ident: bib1 article-title: 3D ultrasound measurement of change in carotid plaque volume: a tool for rapid evaluation of new therapies publication-title: Stroke – volume: 27 start-page: 1961 year: 2000 end-page: 1970 ident: bib27 article-title: Segmentation of carotid artery in ultrasound images: Method development and evaluation technique publication-title: Med Phys – volume: 17 start-page: 532 year: 1998 end-page: 540 ident: bib43 article-title: Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing publication-title: IEEE Trans Med Imaging – volume: 28 start-page: 2201 year: 1997 end-page: 2207 ident: bib21 article-title: Reproducibility of ultrasound assessment of carotid plaque occurrence, thickness, and morphology. The Tromso study publication-title: Stroke – volume: 7 start-page: 42 year: 2007 end-page: 48 ident: bib36 article-title: Intensive management of risk factors for accelerated atherosclerosis: The role of multiple interventions publication-title: Curr Neurol Neurosci Rep – volume: 31 start-page: 132 year: 2003 end-page: 141 ident: bib40 article-title: Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation publication-title: Ann Biomed Eng – volume: 34 start-page: 64 year: 2008 end-page: 72 ident: bib11 article-title: Mapping spatial and temporal changes in carotid atherosclerosis from three-dimensional ultrasound images publication-title: Ultrasound Med Biol – volume: 25 start-page: 220 year: 1994 end-page: 224 ident: bib18 article-title: Stroke prevention. An opportunity for efficient utilization of health care resources during the coming decade publication-title: Stroke – volume: 6143 start-page: 61430B year: 2006 ident: bib8 article-title: Quantification of carotid vessel atherosclerosis publication-title: Proc SPIE – volume: 15 start-page: 49 year: 1997 end-page: 55 ident: bib2 article-title: Psychological stress and the progression of carotid artery disease publication-title: J. Hypertens – volume: 30 start-page: 1637 year: 2003 end-page: 1647 ident: bib22 article-title: Testing and optimization of a semiautomatic prostate boundary segmentation algorithm using virtual operators publication-title: Med Phys – volume: 22 start-page: 539 year: 2003 end-page: 551 ident: bib35 article-title: Segmentation of prostate boundaries from ultrasound images using statistical shape model publication-title: IEEE Trans Med Imaging – volume: 16 start-page: 642 year: 1997 end-page: 652 ident: bib7 article-title: A methodology for evaluation of boundary detection algorithms on medical images publication-title: IEEE Trans Med Imaging – volume: 16 start-page: 341 year: 2002 end-page: 351 ident: bib4 article-title: Intima media thickness as a surrogate marker for generalised atherosclerosis publication-title: Cardiovasc. Drugs Ther – volume: 35 start-page: 864 year: 2004 end-page: 869 ident: bib24 article-title: Measurement of carotid plaque volume by 3-dimensional ultrasound publication-title: Stroke – volume: 97 start-page: 34 year: 1998 end-page: 40 ident: bib19 article-title: Echo-lucency of computerized ultrasound images of carotid atherosclerotic plaques are associated with increased levels of triglyceride-rich lipoproteins as well as increased plaque lipid content publication-title: Circulation – reference: Ma WY, Manjunath BS. Texture features and learning similarity. Proc IEEE Conf Comput Vision Pattern Recogn, San Francisco, California, 1996:425–430. – volume: 107 start-page: 947 year: 2003 end-page: 953 ident: bib33 article-title: Six-year effect of combined vitamin C and E supplementation on atherosclerotic progression: The antioxidant supplementation in atherosclerosis prevention (ASAP) study publication-title: Circulation – volume: 25 start-page: 1479 year: 1992 end-page: 1494 ident: bib28 article-title: Gabor filter-based edge detection publication-title: Pattern Recogn – volume: 291 start-page: 565 year: 2004 end-page: 575 ident: bib42 article-title: Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: The vitamin intervention for stroke prevention (VISP) randomized controlled trial publication-title: JAMA – volume: 44 start-page: e153 year: 2006 end-page: e157 ident: bib14 article-title: 3D ultrasound analysis of carotid plaque volume and surface morphology publication-title: Ultrasonics – volume: 340 start-page: 14 year: 1999 end-page: 22 ident: bib30 article-title: Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group publication-title: N Engl J Med – volume: 16 start-page: 223 year: 1998 end-page: 230 ident: bib13 article-title: The objective characterisation of ultrasonic carotid plaque features publication-title: Eur J Vasc Endovasc Surg – volume: 12 start-page: 245 year: 2002 end-page: 251 ident: bib34 article-title: Volumetric assessment of plaque progression with 3-dimensional ultrasonography under statin therapy publication-title: J Neuroimaging – volume: 8 start-page: 679 year: 1986 end-page: 698 ident: bib6 article-title: A computational approach to edge detection publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 35 start-page: 3691 year: 2008 end-page: 3710 ident: bib10 article-title: Quantification of carotid vessel wall and plaque thickness change using 3D ultrasound images publication-title: Med Phys – volume: 21 start-page: 786 year: 2002 end-page: 800 ident: bib31 article-title: Estimation of 3-D left ventricular deformation from medical images using biomechanical models publication-title: IEEE Trans Med Imaging – volume: 90 start-page: 18L year: 2002 end-page: 21L ident: bib29 article-title: Intima-media thickness: A tool for atherosclerosis imaging and event prediction publication-title: Am J Cardiol – volume: 4 start-page: 161 year: 2004 end-page: 175 ident: bib17 article-title: 3D ultrasound imaging of the carotid arteries publication-title: Curr Drug Targets Cardiovasc Haematol Disord – volume: 31 start-page: 751 year: 2005 end-page: 762 ident: bib25 article-title: Quantification of carotid plaque volume measurements using 3D ultrasound imaging publication-title: Ultrasound Med Biol – volume: 36 start-page: 2404 year: 2005 end-page: 2409 ident: bib37 article-title: Vitamin intervention for stroke prevention trial: An efficacy analysis publication-title: Stroke – volume: 26 start-page: 1357 year: 2000 end-page: 1362 ident: bib20 article-title: In vitro spatial compound scanning for improved visualization of atherosclerosis publication-title: Ultrasound Med Biol – volume: 46 start-page: R67 year: 2001 end-page: R99 ident: bib16 article-title: Three-dimensional ultrasound imaging publication-title: Phys Med Biol – volume: 113 start-page: e85 year: 2006 end-page: e151 ident: bib39 article-title: Heart disease and stroke statistics—2006 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee publication-title: Circulation – volume: 28 start-page: 2201 year: 1997 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib21 article-title: Reproducibility of ultrasound assessment of carotid plaque occurrence, thickness, and morphology. The Tromso study publication-title: Stroke doi: 10.1161/01.STR.28.11.2201 – volume: 33 start-page: 905 year: 2007 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib12 article-title: Validation of 3D ultrasound vessel wall volume: An imaging phenotype of carotid atherosclerosis publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2007.01.013 – ident: 10.1016/j.ultrasmedbio.2009.08.005_bib26 doi: 10.1109/CVPR.1996.517107 – volume: 36 start-page: 1904 year: 2005 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib1 article-title: 3D ultrasound measurement of change in carotid plaque volume: a tool for rapid evaluation of new therapies publication-title: Stroke doi: 10.1161/01.STR.0000178543.19433.20 – volume: 22 start-page: 539 year: 2003 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib35 article-title: Segmentation of prostate boundaries from ultrasound images using statistical shape model publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2003.809057 – volume: 35 start-page: 864 year: 2004 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib24 article-title: Measurement of carotid plaque volume by 3-dimensional ultrasound publication-title: Stroke doi: 10.1161/01.STR.0000121161.61324.ab – volume: 29 start-page: 2319 year: 2002 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib23 article-title: Theoretical and experimental quantification of carotid plaque volume measurements made by three-dimensional ultrasound using test phantoms publication-title: Med Phys doi: 10.1118/1.1510130 – volume: 21 start-page: 786 year: 2002 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib31 article-title: Estimation of 3-D left ventricular deformation from medical images using biomechanical models publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2002.801163 – volume: 6143 start-page: 61430B year: 2006 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib8 article-title: Quantification of carotid vessel atherosclerosis publication-title: Proc SPIE doi: 10.1117/12.653554 – volume: 31 start-page: 132 year: 2003 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib40 article-title: Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation publication-title: Ann Biomed Eng doi: 10.1114/1.1540102 – volume: 30 start-page: 1637 year: 2003 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib22 article-title: Testing and optimization of a semiautomatic prostate boundary segmentation algorithm using virtual operators publication-title: Med Phys doi: 10.1118/1.1584043 – volume: 4 start-page: 161 year: 2004 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib17 article-title: 3D ultrasound imaging of the carotid arteries publication-title: Curr Drug Targets Cardiovasc Haematol Disord doi: 10.2174/1568006043336311 – volume: 90 start-page: 18L year: 2002 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib29 article-title: Intima-media thickness: A tool for atherosclerosis imaging and event prediction publication-title: Am J Cardiol doi: 10.1016/S0002-9149(02)02957-0 – volume: 46 start-page: 299 year: 2001 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib41 article-title: Effect of black blood MR image quality on vessel wall segmentation publication-title: Magn Reson Med doi: 10.1002/mrm.1191 – volume: 340 start-page: 14 year: 1999 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib30 article-title: Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group publication-title: N Engl J Med doi: 10.1056/NEJM199901073400103 – volume: 26 start-page: 1357 year: 2000 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib20 article-title: In vitro spatial compound scanning for improved visualization of atherosclerosis publication-title: Ultrasound Med Biol doi: 10.1016/S0301-5629(00)00311-2 – volume: 7 start-page: 42 year: 2007 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib36 article-title: Intensive management of risk factors for accelerated atherosclerosis: The role of multiple interventions publication-title: Curr Neurol Neurosci Rep doi: 10.1007/s11910-007-0020-8 – volume: 31 start-page: 751 year: 2005 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib25 article-title: Quantification of carotid plaque volume measurements using 3D ultrasound imaging publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2005.02.011 – volume: 97 start-page: 34 year: 1998 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib19 article-title: Echo-lucency of computerized ultrasound images of carotid atherosclerotic plaques are associated with increased levels of triglyceride-rich lipoproteins as well as increased plaque lipid content publication-title: Circulation doi: 10.1161/01.CIR.97.1.34 – ident: 10.1016/j.ultrasmedbio.2009.08.005_bib15 doi: 10.1109/IEMBS.2005.1616166 – volume: 24 start-page: 841 year: 1998 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib32 article-title: Automatic registration of 3-D ultrasound images publication-title: Ultrasound Med Biol doi: 10.1016/S0301-5629(97)00210-X – volume: 25 start-page: 1479 year: 1992 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib28 article-title: Gabor filter-based edge detection publication-title: Pattern Recogn doi: 10.1016/0031-3203(92)90121-X – volume: 107 start-page: 947 year: 2003 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib33 article-title: Six-year effect of combined vitamin C and E supplementation on atherosclerotic progression: The antioxidant supplementation in atherosclerosis prevention (ASAP) study publication-title: Circulation doi: 10.1161/01.CIR.0000050626.25057.51 – year: 1981 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib3 – volume: 16 start-page: 341 year: 2002 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib4 article-title: Intima media thickness as a surrogate marker for generalised atherosclerosis publication-title: Cardiovasc. Drugs Ther doi: 10.1023/A:1021738111273 – volume: 3 start-page: 1 year: 2008 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib9 article-title: Development of 3D ultrasound techniques for carotid artery disease assessment and monitoring publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-008-0158-0 – volume: 12 start-page: 245 year: 2002 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib34 article-title: Volumetric assessment of plaque progression with 3-dimensional ultrasonography under statin therapy publication-title: J Neuroimaging doi: 10.1177/10528402012003006 – volume: 16 start-page: 223 year: 1998 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib13 article-title: The objective characterisation of ultrasonic carotid plaque features publication-title: Eur J Vasc Endovasc Surg doi: 10.1016/S1078-5884(98)80224-4 – volume: 96 start-page: 1432 year: 1997 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib5 article-title: Common carotid intima-media thickness and risk of stroke and myocardial infarction: The Rotterdam study publication-title: Circulation doi: 10.1161/01.CIR.96.5.1432 – volume: 291 start-page: 565 year: 2004 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib42 article-title: Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: The vitamin intervention for stroke prevention (VISP) randomized controlled trial publication-title: JAMA doi: 10.1001/jama.291.5.565 – volume: 44 start-page: e153 issue: Suppl 1 year: 2006 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib14 article-title: 3D ultrasound analysis of carotid plaque volume and surface morphology publication-title: Ultrasonics doi: 10.1016/j.ultras.2006.06.027 – volume: 25 start-page: 220 year: 1994 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib18 article-title: Stroke prevention. An opportunity for efficient utilization of health care resources during the coming decade publication-title: Stroke doi: 10.1161/01.STR.25.1.220 – volume: 19 start-page: 399 year: 2000 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib38 article-title: Comparability of the ultrasonic tissue characteristics of carotid plaques publication-title: J Ultrasound Med doi: 10.7863/jum.2000.19.6.399 – volume: 113 start-page: e85 year: 2006 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib39 article-title: Heart disease and stroke statistics—2006 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.105.171600 – volume: 15 start-page: 49 year: 1997 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib2 article-title: Psychological stress and the progression of carotid artery disease publication-title: J. Hypertens doi: 10.1097/00004872-199715010-00004 – volume: 17 start-page: 532 year: 1998 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib43 article-title: Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing publication-title: IEEE Trans Med Imaging doi: 10.1109/42.730398 – volume: 8 start-page: 679 year: 1986 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib6 article-title: A computational approach to edge detection publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.1986.4767851 – volume: 34 start-page: 64 year: 2008 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib11 article-title: Mapping spatial and temporal changes in carotid atherosclerosis from three-dimensional ultrasound images publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2007.07.004 – volume: 27 start-page: 1961 year: 2000 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib27 article-title: Segmentation of carotid artery in ultrasound images: Method development and evaluation technique publication-title: Med Phys doi: 10.1118/1.1287111 – volume: 46 start-page: R67 year: 2001 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib16 article-title: Three-dimensional ultrasound imaging publication-title: Phys Med Biol doi: 10.1088/0031-9155/46/5/201 – volume: 36 start-page: 2404 year: 2005 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib37 article-title: Vitamin intervention for stroke prevention trial: An efficacy analysis publication-title: Stroke doi: 10.1161/01.STR.0000185929.38534.f3 – volume: 35 start-page: 3691 year: 2008 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib10 article-title: Quantification of carotid vessel wall and plaque thickness change using 3D ultrasound images publication-title: Med Phys doi: 10.1118/1.2955550 – volume: 16 start-page: 642 year: 1997 ident: 10.1016/j.ultrasmedbio.2009.08.005_bib7 article-title: A methodology for evaluation of boundary detection algorithms on medical images publication-title: IEEE Trans Med Imaging doi: 10.1109/42.640755 |
SSID | ssj0007637 |
Score | 1.9688555 |
Snippet | Quantitative measurements of the progression (or regression) of carotid plaque burden are important in monitoring patients and evaluating new treatment... Abstract Quantitative measurements of the progression (or regression) of carotid plaque burden are important in monitoring patients and evaluating new... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 95 |
SubjectTerms | 3-D Carotid ultrasound image Aged Aged, 80 and over Anticholesteremic Agents - therapeutic use Atherosclerosis - diagnostic imaging Atherosclerosis - drug therapy Atherosclerosis - pathology Atorvastatin Calcium Biometry - methods Boundary orientation Carotid Arteries - diagnostic imaging Carotid Arteries - pathology Carotid Stenosis - diagnostic imaging Carotid Stenosis - drug therapy Carotid Stenosis - pathology Female Gabor filter-based edge detector Heptanoic Acids - therapeutic use Humans Imaging, Three-Dimensional - methods Local segmentation standard deviation Male Middle Aged Pattern Recognition, Automated - methods Pyrroles - therapeutic use Radiology Reproducibility of Results Sensitivity and Specificity Signal difference Surface Properties Ultrasonography |
Title | Three-Dimensional Carotid Ultrasound Segmentation Variability Dependence on Signal Difference and Boundary Orientation |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0301562909014410 https://www.clinicalkey.es/playcontent/1-s2.0-S0301562909014410 https://dx.doi.org/10.1016/j.ultrasmedbio.2009.08.005 https://www.ncbi.nlm.nih.gov/pubmed/19900751 https://www.proquest.com/docview/21237381 https://www.proquest.com/docview/733622028 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZKJxAvE4xbx80PvFWp0iROYiEeynViGkiwwt4sx3amTluGkhSp_Cf-I8eXXKauUoGXqEp7Ytfny7n5-ByEXugiX5Tryo9-zj3Qx8rjMqNeEEgSpz4R3ATcjj7FB_Po4wk5GQx-97KWlnU2Eb-uPVfyL1yFe8BXfUr2LzjbPhRuwGfgL1yBw3DdkselUt5bXaDfFtcw-Rv1Qo7n53XJK90yCaTB6YU7YFSMv4FrbCtzr0DU2P638GZrobE4LYwIzJvKszqk_tp0XSpX48_lonlI357tjbMo2o16gydX3qnLH1gsDZh0ALKUraAH8rZ59kzyi247X0_CgGzSz7w3B7VLbuPBH0rukOkCFy551cTRmrM0V1I9tW_mgTVmBaiy4jhNADbUNNVp5bUtmHIFl1b42m6dTo1P7YBrGsIGK84mS7M-sC6wGq5sqc6qJZ1ebLMVv-qp6Zn51Pif_g20EyTJlAzRzuzwy_fDVvWDsE7stpX9K02VW5NQuGnETRbRJo_HWD7Hd9Cuc1nwzOLvLhqoYg_dtE1MV3vo1pHjOtw0-cSiuod-rkETO2jiDjK4D03cgybuoInhGwtN3EETAzRxA03cg-Z9NH__7vjNgedafHgCHN3aSyOZRwKUCBexFAHh2sVIojwMI6LUVNGEp6BlfJnmgaKUZ1T4QhCShWEekliGD9CwuCzUI4QVyf0szHU1pjxK0iiTNJSJHwc8jGWW8xGizTIz4erf6zYs56xJdDxjfRbpBq2U6R6tPhmhsKX9YavAbEX1suEma845g2ZmAMWtqJPrqFXlBFDFpqwKmM_W4DlCr1pKZ0db-3jrkZ830GOgbPQOIi_U5bJi2s5NwMYfIbzhF7q6ahCA0zJCDy1ouwUDwxcclOn-f07vMbptU3h0HPQJGtblUj0Fz6DOnrn38Q-BHBbf |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-Dimensional+Carotid+Ultrasound+Segmentation+Variability+Dependence+on+Signal+Difference+and+Boundary+Orientation&rft.jtitle=Ultrasound+in+medicine+%26+biology&rft.au=Chiu%2C+Bernard&rft.au=Krasinski%2C+Adam&rft.au=Spence%2C+J.+David&rft.au=Parraga%2C+Grace&rft.date=2010&rft.pub=Elsevier+Inc&rft.issn=0301-5629&rft.eissn=1879-291X&rft.volume=36&rft.issue=1&rft.spage=95&rft.epage=110&rft_id=info:doi/10.1016%2Fj.ultrasmedbio.2009.08.005&rft.externalDocID=S0301562909014410 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F03015629%2FS0301562909X00128%2Fcov150h.gif |