Detection of novel coltivirus-related sequences in Haemaphysalis megaspinosa ticks collected from Kanagawa Prefecture, Japan

Coltiviruses, belonging to the genus Coltivirus within the family Spinareoviridae, are predominantly tick-borne viruses. Some of these species have been implicated in human diseases; however, their diversity, geographical distribution, and evolutionary dynamics remain inadequately. Therefore, this s...

Full description

Saved in:
Bibliographic Details
Published inJournal of Veterinary Medical Science Vol. 86; no. 8; pp. 866 - 871
Main Authors MATSUMURA, Ryo, KOBAYASHI, Daisuke, ITOYAMA, Kyo, ISAWA, Haruhiko
Format Journal Article
LanguageEnglish
Published Japan JAPANESE SOCIETY OF VETERINARY SCIENCE 2024
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coltiviruses, belonging to the genus Coltivirus within the family Spinareoviridae, are predominantly tick-borne viruses. Some of these species have been implicated in human diseases; however, their diversity, geographical distribution, and evolutionary dynamics remain inadequately. Therefore, this study was undertaken to explore the phylogenetic evolution of coltiviruses and related viruses. Our results revealed the detection of novel coltivirus-related sequences in adult female Haemaphysalis megaspinosa ticks collected from Kanagawa Prefecture, Japan. Molecular phylogenetic analysis revealed a close association between the sequences and the genome sequences of known coltivirus-related viruses, namely Qinghe tick reovirus and Fennes virus. The putative coltivirus-related virus was tentatively designated the Nakatsu tick virus. This study provides insights into the phylogenetic evolution of coltiviruses and related viruses.
AbstractList Coltiviruses, belonging to the genus Coltivirus within the family Spinareoviridae, are predominantly tick-borne viruses. Some of these species have been implicated in human diseases; however, their diversity, geographical distribution, and evolutionary dynamics remain inadequately. Therefore, this study was undertaken to explore the phylogenetic evolution of coltiviruses and related viruses. Our results revealed the detection of novel coltivirus-related sequences in adult female Haemaphysalis megaspinosa ticks collected from Kanagawa Prefecture, Japan. Molecular phylogenetic analysis revealed a close association between the sequences and the genome sequences of known coltivirus-related viruses, namely Qinghe tick reovirus and Fennes virus. The putative coltivirus-related virus was tentatively designated the Nakatsu tick virus. This study provides insights into the phylogenetic evolution of coltiviruses and related viruses.Coltiviruses, belonging to the genus Coltivirus within the family Spinareoviridae, are predominantly tick-borne viruses. Some of these species have been implicated in human diseases; however, their diversity, geographical distribution, and evolutionary dynamics remain inadequately. Therefore, this study was undertaken to explore the phylogenetic evolution of coltiviruses and related viruses. Our results revealed the detection of novel coltivirus-related sequences in adult female Haemaphysalis megaspinosa ticks collected from Kanagawa Prefecture, Japan. Molecular phylogenetic analysis revealed a close association between the sequences and the genome sequences of known coltivirus-related viruses, namely Qinghe tick reovirus and Fennes virus. The putative coltivirus-related virus was tentatively designated the Nakatsu tick virus. This study provides insights into the phylogenetic evolution of coltiviruses and related viruses.
Coltiviruses, belonging to the genus Coltivirus within the family Spinareoviridae, are predominantly tick-borne viruses. Some of these species have been implicated in human diseases; however, their diversity, geographical distribution, and evolutionary dynamics remain inadequately. Therefore, this study was undertaken to explore the phylogenetic evolution of coltiviruses and related viruses. Our results revealed the detection of novel coltivirus-related sequences in adult female Haemaphysalis megaspinosa ticks collected from Kanagawa Prefecture, Japan. Molecular phylogenetic analysis revealed a close association between the sequences and the genome sequences of known coltivirus-related viruses, namely Qinghe tick reovirus and Fennes virus. The putative coltivirus-related virus was tentatively designated the Nakatsu tick virus. This study provides insights into the phylogenetic evolution of coltiviruses and related viruses.
Coltiviruses, belonging to the genus Coltivirus within the family Spinareoviridae , are predominantly tick-borne viruses. Some of these species have been implicated in human diseases; however, their diversity, geographical distribution, and evolutionary dynamics remain inadequately. Therefore, this study was undertaken to explore the phylogenetic evolution of coltiviruses and related viruses. Our results revealed the detection of novel coltivirus-related sequences in adult female Haemaphysalis megaspinosa ticks collected from Kanagawa Prefecture, Japan. Molecular phylogenetic analysis revealed a close association between the sequences and the genome sequences of known coltivirus-related viruses, namely Qinghe tick reovirus and Fennes virus. The putative coltivirus-related virus was tentatively designated the Nakatsu tick virus. This study provides insights into the phylogenetic evolution of coltiviruses and related viruses.
ArticleNumber 24-0124
Author KOBAYASHI, Daisuke
ISAWA, Haruhiko
MATSUMURA, Ryo
ITOYAMA, Kyo
Author_xml – sequence: 1
  fullname: MATSUMURA, Ryo
  organization: Graduate School of Agriculture, Meiji University, Kanagawa, Japan
– sequence: 2
  fullname: KOBAYASHI, Daisuke
  organization: Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
– sequence: 3
  fullname: ITOYAMA, Kyo
  organization: Graduate School of Agriculture, Meiji University, Kanagawa, Japan
– sequence: 4
  fullname: ISAWA, Haruhiko
  organization: Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38880612$$D View this record in MEDLINE/PubMed
BookMark eNpdkc1vEzEQxS1URNPCjTOyxIVDt_gra-8JQVsoUAkOcLZmvZPEYddO7d2gSvzxOEqIgItH8vzmaea9M3ISYkBCnnN2yUUjXq-3Q74UqmJcqEdkxqXSlVayOSEz1vC60mLOTslZzmvGBFd184ScSmMMq7mYkV_XOKIbfQw0LmiIW-ypi_3otz5NuUrYw4gdzXg_YXCYqQ_0FnCAzeohQ-8zHXAJeeNDzEBH737k3XxfNMvYIsWBfoYAS_gJ9GvCRfmfEl7QT7CB8JQ8XkCf8dmhnpPv72--Xd1Wd18-fLx6e1e5ua7HSpuady3qxrSta1ulGMw18LnsVNeZrtxhnJGStwspJRNC8k5j0zJ0Urpa1_KcvNnrbqZ2wM5hGBP0dpP8AOnBRvD2307wK7uMW8u5ZMVXUxReHRRSLE7k0Q4-O-x7CBinbCWrG655o3hBX_6HruOUQrnPSs6UVmouWKFe_L3ScZc_yRTgYg-4FHMuzh0RzuwueLsL3gpld8EX_N0eX-cRlniEIZVMetzDprZm9xyGjk23gmQxyN_wN7sO
Cites_doi 10.1093/nar/gki198
10.1056/NEJMoa1010095
10.3390/diseases9040092
10.1093/oxfordjournals.molbev.a026334
10.1093/ve/veab066
10.1007/BF01311160
10.1128/JVI.00106-19
10.1093/molbev/msy096
10.1128/JVI.01358-18
10.1016/j.virusres.2022.198739
10.1016/j.virusres.2017.09.017
10.1084/jem.80.3.165
10.1038/s41564-022-01275-w
10.3390/v14050929
10.1016/j.virusres.2020.198254
10.1371/journal.pntd.0007818
10.1016/j.ttbdis.2019.101364
10.1111/tbed.14581
10.1099/mgen.0.000315
10.1038/s41396-020-0643-1
10.1128/JVI.01858-14
10.1186/s12985-017-0843-0
10.1093/bib/bbx108
10.3390/v13071396
10.1073/pnas.2105334118
10.1038/s41598-017-12047-6
10.1128/JVI.78.10.5528-5530.2004
10.1093/ve/veaa020
10.1016/S0025-7125(03)00096-8
10.1038/s41467-021-25857-0
10.1038/emi.2017.69
10.1128/spectrum.01115-22
ContentType Journal Article
Copyright 2024 by the Japanese Society of Veterinary Science
2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 The Japanese Society of Veterinary Science 2024
Copyright_xml – notice: 2024 by the Japanese Society of Veterinary Science
– notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 The Japanese Society of Veterinary Science 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
DOI 10.1292/jvms.24-0124
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1347-7439
EndPage 871
ExternalDocumentID PMC11300128
38880612
10_1292_jvms_24_0124
article_jvms_86_8_86_24_0124_article_char_en
Genre Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID 29L
2WC
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B.T
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
HYE
JSF
JSH
KQ8
M48
M~E
N5S
OK1
P2P
PGMZT
RJT
RNS
RPM
RYR
RZJ
TKC
TR2
VH1
XSB
AAYXX
CITATION
OVT
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-c576t-7861dbe798bbcbb440a57a153d4dd8d6128c8331bf33302231d7e9b0ec33c6763
IEDL.DBID M48
ISSN 0916-7250
1347-7439
IngestDate Thu Aug 21 18:31:59 EDT 2025
Fri Jul 11 00:10:04 EDT 2025
Mon Jun 30 16:30:14 EDT 2025
Thu Apr 03 06:59:17 EDT 2025
Tue Jul 01 00:31:13 EDT 2025
Thu Sep 05 14:11:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords tick-borne virus
virome
coltivirus
tick
Haemaphysalis megaspinosa
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-7861dbe798bbcbb440a57a153d4dd8d6128c8331bf33302231d7e9b0ec33c6763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.24-0124
PMID 38880612
PQID 3104744520
PQPubID 2028964
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11300128
proquest_miscellaneous_3069171941
proquest_journals_3104744520
pubmed_primary_38880612
crossref_primary_10_1292_jvms_24_0124
jstage_primary_article_jvms_86_8_86_24_0124_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Veterinary Medical Science
PublicationTitleAlternate J. Vet. Med. Sci.
PublicationYear 2024
Publisher JAPANESE SOCIETY OF VETERINARY SCIENCE
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Publisher_xml – name: JAPANESE SOCIETY OF VETERINARY SCIENCE
– name: Japan Science and Technology Agency
– name: The Japanese Society of Veterinary Science
References 12. Katoh K, Kuma K, Toh H, Miyata T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33: 511–518.
27. Vanmechelen B, Merino M, Vergote V, Laenen L, Thijssen M, Martí-Carreras J, Claerebout E, Maes P. 2021. Exploration of the Ixodes ricinus virosphere unveils an extensive virus diversity including novel coltiviruses and other reoviruses. Virus Evol 7: veab06.
22. Ni XB, Cui XM, Liu JY, Ye RZ, Wu YQ, Jiang JF, Sun Y, Wang Q, Shum MH, Chang QC, Zhao L, Han XH, Ma K, Shen SJ, Zhang MZ, Guo WB, Zhu JG, Zhan L, Li LJ, Ding SJ, Zhu DY, Zhang J, Xia LY, Oong XY, Ruan XD, Shao HZ, Que TC, Liu GY, Du CH, Huang EJ, Wang X, Du LF, Wang CC, Shi WQ, Pan YS, Zhou YH, Qu JL, Ma J, Gong CW, Chen QQ, Qin Q, Lam TT, Jia N, Cao WC. Tick Genome and Microbiome Consortium (TIGMIC). 2023. Metavirome of 31 tick species provides a compendium of 1,801 RNA virus genomes. Nat Microbiol 8: 162–173.
34. Zakham F, Albalawi AE, Alanazi AD, Truong Nguyen P, Alouffi AS, Alaoui A, Sironen T, Smura T, Vapalahti O. 2021. Viral RNA metagenomics of Hyalomma ticks collected from dromedary camels in Makkah province, Saudi Arabia. Viruses 13: 1396.
25. Takada N, Takahashi M, Fujita H, Natsuaki M. 2019. Key to species of mature ticks & specific descriptions. pp. 118–147. In: Medical Acarology in Japan, 1st ed. (Takada N ed.), Hokuryukan (in Japanese).
9. Harvey E, Rose K, Eden JS, Lo N, Abeyasuriya T, Shi M, Doggett SL, Holmes EC. 2019. Extensive diversity of RNA viruses in Australian ticks. J Virol 93: e01358–e18.
10. Hughes HR, Velez JO, Fitzpatrick K, Davis EH, Russell BJ, Lambert AJ, Staples JE, Brault AC. 2021. Genomic evaluation of the genus Coltivirus indicates genetic diversity among Colorado tick fever virus strains and demarcation of a new species. Diseases 9: 92.
14. Klasco R. 2002. Colorado tick fever. Med Clin North Am 86: 435–440, ix.
31. Yadav PD, Whitmer SLM, Sarkale P, Fei Fan Ng T, Goldsmith CS, Nyayanit DA, Esona MD, Shrivastava-Ranjan P, Lakra R, Pardeshi P, Majumdar TD, Francis A, Klena JD, Nichol ST, Ströher U, Mourya D. 2019. Characterization of novel reoviruses Wad Medani Virus (Orbivirus) and Kundal Virus (Coltivirus) collected from Hyalomma anatolicum ticks in India during surveillance for Crimean Congo hemorrhagic fever. J Virol 93: e00106–e00119.
7. Gofton AW, Blasdell KR, Taylor C, Banks PB, Michie M, Roy-Dufresne E, Poldy J, Wang J, Dunn M, Tachedjian M, Smith I. 2022. Metatranscriptomic profiling reveals diverse tick-borne bacteria, protozoans and viruses in ticks and wildlife from Australia. Transbound Emerg Dis 69: e2389–e2407.
4. Chastel C, Main AJ, Couatarmanac’h A, Le Lay G, Knudson DL, Quillien MC, Beaucournu JC. 1984. Isolation of Eyach virus (Reoviridae, Colorado tick fever group) from Ixodes ricinus and I. ventalloi ticks in France. Arch Virol 82: 161–171.
15. Kobayashi D, Komatsu N, Faizah AN, Amoa-Bosompem M, Sawabe K, Isawa H. 2021. A novel nyavirus lacking matrix and glycoprotein genes from Argas japonicus ticks. Virus Res 292: 198254.
33. Yu XJ, Liang MF, Zhang SY, Liu Y, Li JD, Sun YL, Zhang L, Zhang QF, Popov VL, Li C, Qu J, Li Q, Zhang YP, Hai R, Wu W, Wang Q, Zhan FX, Wang XJ, Kan B, Wang SW, Wan KL, Jing HQ, Lu JX, Yin WW, Zhou H, Guan XH, Liu JF, Bi ZQ, Liu GH, Ren J, Wang H, Zhao Z, Song JD, He JR, Wan T, Zhang JS, Fu XP, Sun LN, Dong XP, Feng ZJ, Yang WZ, Hong T, Zhang Y, Walker DH, Wang Y, Li DX. 2011. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med 364: 1523–1532.
2. Bouquet J, Melgar M, Swei A, Delwart E, Lane RS, Chiu CY. 2017. Metagenomic-based surveillance of Pacific Coast tick Dermacentor occidentalis identifies two novel bunyaviruses and an emerging human ricksettsial pathogen. Sci Rep 7: 12234.
28. Weiss S, Dabrowski PW, Kurth A, Leendertz SAJ, Leendertz FH. 2017. A novel Coltivirus-related virus isolated from free-tailed bats from Côte d’Ivoire is able to infect human cells in vitro. Virol J 14: 181.
1. Balinandi S, Hayer J, Cholleti H, Wille M, Lutwama JJ, Malmberg M, Mugisha L. 2022. Identification and molecular characterization of highly divergent RNA viruses in cattle, Uganda. Virus Res 313: 198739.
6. Fujita R, Ejiri H, Lim CK, Noda S, Yamauchi T, Watanabe M, Kobayashi D, Takayama-Ito M, Murota K, Posadas-Herrera G, Minami S, Kuwata R, Yamaguchi Y, Horiya M, Katayama Y, Shimoda H, Saijo M, Maeda K, Mizutani T, Isawa H, Sawabe K. 2017. Isolation and characterization of Tarumizu tick virus: A new coltivirus from Haemaphysalis flava ticks in Japan. Virus Res 242: 131–140.
30. Wille M, Harvey E, Shi M, Gonzalez-Acuña D, Holmes EC, Hurt AC. 2020. Sustained RNA virome diversity in Antarctic penguins and their ticks. ISME J 14: 1768–1782.
32. Yoshii K, Song JY, Park SB, Yang J, Schmitt HJ. 2017. Tick-borne encephalitis in Japan, Republic of Korea and China. Emerg Microbes Infect 6: e82.
8. Gao WH, Lin XD, Chen YM, Xie CG, Tan ZZ, Zhou JJ, Chen S, Holmes EC, Zhang YZ. 2020. Newly identified viral genomes in pangolins with fatal disease. Virus Evol 6: veaa020.
17. Kodama F, Yamaguchi H, Park E, Tatemoto K, Sashika M, Nakao R, Terauchi Y, Mizuma K, Orba Y, Kariwa H, Hagiwara K, Okazaki K, Goto A, Komagome R, Miyoshi M, Ito T, Yamano K, Yoshii K, Funaki C, Ishizuka M, Shigeno A, Itakura Y, Bell-Sakyi L, Edagawa S, Nagasaka A, Sakoda Y, Sawa H, Maeda K, Saijo M, Matsuno K. 2021. A novel nairovirus associated with acute febrile illness in Hokkaido, Japan. Nat Commun 12: 5539.
29. Wilcox AH, Delwart E, Díaz-Muñoz SL. 2019. Next-generation sequencing of dsRNA is greatly improved by treatment with the inexpensive denaturing reagent DMSO. Microb Genom 5: e00315.
3. Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17: 540–552.
20. Málková D, Holubová J, Kolman JM, Marhoul Z, Hanzal F, Kulková H, Markvart K, Simková L. 1980. Antibodies against some arboviruses in persons with various neuropathies. Acta Virol 24: 298.
11. Itokawa K, Sekizuka T, Maekawa Y, Yatsu K, Komagata O, Sugiura M, Sasaki T, Tomita T, Kuroda M, Sawabe K, Kasai S. 2019. High-throughput genotyping of a full voltage-gated sodium channel gene via genomic DNA using target capture sequencing and analytical pipeline MoNaS to discover novel insecticide resistance mutations. PLoS Negl Trop Dis 13: e0007818.
18. Kong Y, Zhang G, Jiang L, Wang P, Zhang S, Zheng X, Li Y. 2022. Metatranscriptomics reveals the diversity of the tick virome in northwest China. Microbiol Spectr 10: e0111522.
16. Kobayashi D, Murota K, Itokawa K, Ejiri H, Amoa-Bosompem M, Faizah AN, Watanabe M, Maekawa Y, Hayashi T, Noda S, Yamauchi T, Komagata O, Sawabe K, Isawa H. 2020. RNA virome analysis of questing ticks from Hokuriku District, Japan, and the evolutionary dynamics of tick-borne phleboviruses. Ticks Tick Borne Dis 11: 101364.
19. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018–1549. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35: 1547–1549.
23. Nouda R, Minami S, Kanai Y, Kawagishi T, Nurdin JA, Yamasaki M, Kuwata R, Shimoda H, Maeda K, Kobayashi T. 2021. Development of an entirely plasmid-based reverse genetics system for 12-segmented double-stranded RNA viruses. Proc Natl Acad Sci USA 118: e2105334118.
24. Sameroff S, Tokarz R, Vucelja M, Jain K, Oleynik A, Boljfetić M, Bjedov L, Yates RA, Margaletić J, Oura CAL, Lipkin WI, Cvetko Krajinović L, Markotić A. 2022. Virome of Ixodes ricinus, Dermacentor reticulatus, and Haemaphysalis concinna Ticks from Croatia. Viruses 14: 929.
5. Florio L, Stewart MO, Mugrage ER. 1944. The experimental transmission of Colorado tick fever virus. J Exp Med 80: 165–188.
13. Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20: 1160–1166.
21. Nibert ML, Kim J. 2004. Conserved sequence motifs for nucleoside triphosphate binding unique to turreted reoviridae members and coltiviruses. J Virol 78: 5528–5530.
26. Tokarz R, Williams SH, Sameroff S, Sanchez Leon M, Jain K, Lipkin WI. 2014. Virome analysis of Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis ticks reveals novel highly divergent vertebrate and invertebrate viruses. J Virol 88: 11480–11492.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 14. Klasco R. 2002. Colorado tick fever. Med Clin North Am 86: 435–440, ix.
– reference: 26. Tokarz R, Williams SH, Sameroff S, Sanchez Leon M, Jain K, Lipkin WI. 2014. Virome analysis of Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis ticks reveals novel highly divergent vertebrate and invertebrate viruses. J Virol 88: 11480–11492.
– reference: 8. Gao WH, Lin XD, Chen YM, Xie CG, Tan ZZ, Zhou JJ, Chen S, Holmes EC, Zhang YZ. 2020. Newly identified viral genomes in pangolins with fatal disease. Virus Evol 6: veaa020.
– reference: 4. Chastel C, Main AJ, Couatarmanac’h A, Le Lay G, Knudson DL, Quillien MC, Beaucournu JC. 1984. Isolation of Eyach virus (Reoviridae, Colorado tick fever group) from Ixodes ricinus and I. ventalloi ticks in France. Arch Virol 82: 161–171.
– reference: 25. Takada N, Takahashi M, Fujita H, Natsuaki M. 2019. Key to species of mature ticks & specific descriptions. pp. 118–147. In: Medical Acarology in Japan, 1st ed. (Takada N ed.), Hokuryukan (in Japanese).
– reference: 28. Weiss S, Dabrowski PW, Kurth A, Leendertz SAJ, Leendertz FH. 2017. A novel Coltivirus-related virus isolated from free-tailed bats from Côte d’Ivoire is able to infect human cells in vitro. Virol J 14: 181.
– reference: 3. Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17: 540–552.
– reference: 18. Kong Y, Zhang G, Jiang L, Wang P, Zhang S, Zheng X, Li Y. 2022. Metatranscriptomics reveals the diversity of the tick virome in northwest China. Microbiol Spectr 10: e0111522.
– reference: 27. Vanmechelen B, Merino M, Vergote V, Laenen L, Thijssen M, Martí-Carreras J, Claerebout E, Maes P. 2021. Exploration of the Ixodes ricinus virosphere unveils an extensive virus diversity including novel coltiviruses and other reoviruses. Virus Evol 7: veab06.
– reference: 15. Kobayashi D, Komatsu N, Faizah AN, Amoa-Bosompem M, Sawabe K, Isawa H. 2021. A novel nyavirus lacking matrix and glycoprotein genes from Argas japonicus ticks. Virus Res 292: 198254.
– reference: 33. Yu XJ, Liang MF, Zhang SY, Liu Y, Li JD, Sun YL, Zhang L, Zhang QF, Popov VL, Li C, Qu J, Li Q, Zhang YP, Hai R, Wu W, Wang Q, Zhan FX, Wang XJ, Kan B, Wang SW, Wan KL, Jing HQ, Lu JX, Yin WW, Zhou H, Guan XH, Liu JF, Bi ZQ, Liu GH, Ren J, Wang H, Zhao Z, Song JD, He JR, Wan T, Zhang JS, Fu XP, Sun LN, Dong XP, Feng ZJ, Yang WZ, Hong T, Zhang Y, Walker DH, Wang Y, Li DX. 2011. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med 364: 1523–1532.
– reference: 20. Málková D, Holubová J, Kolman JM, Marhoul Z, Hanzal F, Kulková H, Markvart K, Simková L. 1980. Antibodies against some arboviruses in persons with various neuropathies. Acta Virol 24: 298.
– reference: 5. Florio L, Stewart MO, Mugrage ER. 1944. The experimental transmission of Colorado tick fever virus. J Exp Med 80: 165–188.
– reference: 22. Ni XB, Cui XM, Liu JY, Ye RZ, Wu YQ, Jiang JF, Sun Y, Wang Q, Shum MH, Chang QC, Zhao L, Han XH, Ma K, Shen SJ, Zhang MZ, Guo WB, Zhu JG, Zhan L, Li LJ, Ding SJ, Zhu DY, Zhang J, Xia LY, Oong XY, Ruan XD, Shao HZ, Que TC, Liu GY, Du CH, Huang EJ, Wang X, Du LF, Wang CC, Shi WQ, Pan YS, Zhou YH, Qu JL, Ma J, Gong CW, Chen QQ, Qin Q, Lam TT, Jia N, Cao WC. Tick Genome and Microbiome Consortium (TIGMIC). 2023. Metavirome of 31 tick species provides a compendium of 1,801 RNA virus genomes. Nat Microbiol 8: 162–173.
– reference: 29. Wilcox AH, Delwart E, Díaz-Muñoz SL. 2019. Next-generation sequencing of dsRNA is greatly improved by treatment with the inexpensive denaturing reagent DMSO. Microb Genom 5: e00315.
– reference: 6. Fujita R, Ejiri H, Lim CK, Noda S, Yamauchi T, Watanabe M, Kobayashi D, Takayama-Ito M, Murota K, Posadas-Herrera G, Minami S, Kuwata R, Yamaguchi Y, Horiya M, Katayama Y, Shimoda H, Saijo M, Maeda K, Mizutani T, Isawa H, Sawabe K. 2017. Isolation and characterization of Tarumizu tick virus: A new coltivirus from Haemaphysalis flava ticks in Japan. Virus Res 242: 131–140.
– reference: 17. Kodama F, Yamaguchi H, Park E, Tatemoto K, Sashika M, Nakao R, Terauchi Y, Mizuma K, Orba Y, Kariwa H, Hagiwara K, Okazaki K, Goto A, Komagome R, Miyoshi M, Ito T, Yamano K, Yoshii K, Funaki C, Ishizuka M, Shigeno A, Itakura Y, Bell-Sakyi L, Edagawa S, Nagasaka A, Sakoda Y, Sawa H, Maeda K, Saijo M, Matsuno K. 2021. A novel nairovirus associated with acute febrile illness in Hokkaido, Japan. Nat Commun 12: 5539.
– reference: 21. Nibert ML, Kim J. 2004. Conserved sequence motifs for nucleoside triphosphate binding unique to turreted reoviridae members and coltiviruses. J Virol 78: 5528–5530.
– reference: 32. Yoshii K, Song JY, Park SB, Yang J, Schmitt HJ. 2017. Tick-borne encephalitis in Japan, Republic of Korea and China. Emerg Microbes Infect 6: e82.
– reference: 12. Katoh K, Kuma K, Toh H, Miyata T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33: 511–518.
– reference: 34. Zakham F, Albalawi AE, Alanazi AD, Truong Nguyen P, Alouffi AS, Alaoui A, Sironen T, Smura T, Vapalahti O. 2021. Viral RNA metagenomics of Hyalomma ticks collected from dromedary camels in Makkah province, Saudi Arabia. Viruses 13: 1396.
– reference: 13. Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20: 1160–1166.
– reference: 31. Yadav PD, Whitmer SLM, Sarkale P, Fei Fan Ng T, Goldsmith CS, Nyayanit DA, Esona MD, Shrivastava-Ranjan P, Lakra R, Pardeshi P, Majumdar TD, Francis A, Klena JD, Nichol ST, Ströher U, Mourya D. 2019. Characterization of novel reoviruses Wad Medani Virus (Orbivirus) and Kundal Virus (Coltivirus) collected from Hyalomma anatolicum ticks in India during surveillance for Crimean Congo hemorrhagic fever. J Virol 93: e00106–e00119.
– reference: 23. Nouda R, Minami S, Kanai Y, Kawagishi T, Nurdin JA, Yamasaki M, Kuwata R, Shimoda H, Maeda K, Kobayashi T. 2021. Development of an entirely plasmid-based reverse genetics system for 12-segmented double-stranded RNA viruses. Proc Natl Acad Sci USA 118: e2105334118.
– reference: 7. Gofton AW, Blasdell KR, Taylor C, Banks PB, Michie M, Roy-Dufresne E, Poldy J, Wang J, Dunn M, Tachedjian M, Smith I. 2022. Metatranscriptomic profiling reveals diverse tick-borne bacteria, protozoans and viruses in ticks and wildlife from Australia. Transbound Emerg Dis 69: e2389–e2407.
– reference: 10. Hughes HR, Velez JO, Fitzpatrick K, Davis EH, Russell BJ, Lambert AJ, Staples JE, Brault AC. 2021. Genomic evaluation of the genus Coltivirus indicates genetic diversity among Colorado tick fever virus strains and demarcation of a new species. Diseases 9: 92.
– reference: 2. Bouquet J, Melgar M, Swei A, Delwart E, Lane RS, Chiu CY. 2017. Metagenomic-based surveillance of Pacific Coast tick Dermacentor occidentalis identifies two novel bunyaviruses and an emerging human ricksettsial pathogen. Sci Rep 7: 12234.
– reference: 16. Kobayashi D, Murota K, Itokawa K, Ejiri H, Amoa-Bosompem M, Faizah AN, Watanabe M, Maekawa Y, Hayashi T, Noda S, Yamauchi T, Komagata O, Sawabe K, Isawa H. 2020. RNA virome analysis of questing ticks from Hokuriku District, Japan, and the evolutionary dynamics of tick-borne phleboviruses. Ticks Tick Borne Dis 11: 101364.
– reference: 30. Wille M, Harvey E, Shi M, Gonzalez-Acuña D, Holmes EC, Hurt AC. 2020. Sustained RNA virome diversity in Antarctic penguins and their ticks. ISME J 14: 1768–1782.
– reference: 1. Balinandi S, Hayer J, Cholleti H, Wille M, Lutwama JJ, Malmberg M, Mugisha L. 2022. Identification and molecular characterization of highly divergent RNA viruses in cattle, Uganda. Virus Res 313: 198739.
– reference: 11. Itokawa K, Sekizuka T, Maekawa Y, Yatsu K, Komagata O, Sugiura M, Sasaki T, Tomita T, Kuroda M, Sawabe K, Kasai S. 2019. High-throughput genotyping of a full voltage-gated sodium channel gene via genomic DNA using target capture sequencing and analytical pipeline MoNaS to discover novel insecticide resistance mutations. PLoS Negl Trop Dis 13: e0007818.
– reference: 9. Harvey E, Rose K, Eden JS, Lo N, Abeyasuriya T, Shi M, Doggett SL, Holmes EC. 2019. Extensive diversity of RNA viruses in Australian ticks. J Virol 93: e01358–e18.
– reference: 19. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018–1549. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35: 1547–1549.
– reference: 24. Sameroff S, Tokarz R, Vucelja M, Jain K, Oleynik A, Boljfetić M, Bjedov L, Yates RA, Margaletić J, Oura CAL, Lipkin WI, Cvetko Krajinović L, Markotić A. 2022. Virome of Ixodes ricinus, Dermacentor reticulatus, and Haemaphysalis concinna Ticks from Croatia. Viruses 14: 929.
– ident: 12
  doi: 10.1093/nar/gki198
– ident: 33
  doi: 10.1056/NEJMoa1010095
– ident: 10
  doi: 10.3390/diseases9040092
– ident: 3
  doi: 10.1093/oxfordjournals.molbev.a026334
– ident: 27
  doi: 10.1093/ve/veab066
– ident: 4
  doi: 10.1007/BF01311160
– ident: 31
  doi: 10.1128/JVI.00106-19
– ident: 19
  doi: 10.1093/molbev/msy096
– ident: 9
  doi: 10.1128/JVI.01358-18
– ident: 1
  doi: 10.1016/j.virusres.2022.198739
– ident: 6
  doi: 10.1016/j.virusres.2017.09.017
– ident: 5
  doi: 10.1084/jem.80.3.165
– ident: 22
  doi: 10.1038/s41564-022-01275-w
– ident: 24
  doi: 10.3390/v14050929
– ident: 15
  doi: 10.1016/j.virusres.2020.198254
– ident: 11
  doi: 10.1371/journal.pntd.0007818
– ident: 20
– ident: 16
  doi: 10.1016/j.ttbdis.2019.101364
– ident: 7
  doi: 10.1111/tbed.14581
– ident: 29
  doi: 10.1099/mgen.0.000315
– ident: 30
  doi: 10.1038/s41396-020-0643-1
– ident: 26
  doi: 10.1128/JVI.01858-14
– ident: 28
  doi: 10.1186/s12985-017-0843-0
– ident: 13
  doi: 10.1093/bib/bbx108
– ident: 34
  doi: 10.3390/v13071396
– ident: 23
  doi: 10.1073/pnas.2105334118
– ident: 2
  doi: 10.1038/s41598-017-12047-6
– ident: 21
  doi: 10.1128/JVI.78.10.5528-5530.2004
– ident: 8
  doi: 10.1093/ve/veaa020
– ident: 14
  doi: 10.1016/S0025-7125(03)00096-8
– ident: 17
  doi: 10.1038/s41467-021-25857-0
– ident: 32
  doi: 10.1038/emi.2017.69
– ident: 25
– ident: 18
  doi: 10.1128/spectrum.01115-22
SSID ssj0021469
Score 2.3549132
Snippet Coltiviruses, belonging to the genus Coltivirus within the family Spinareoviridae, are predominantly tick-borne viruses. Some of these species have been...
Coltiviruses, belonging to the genus Coltivirus within the family Spinareoviridae , are predominantly tick-borne viruses. Some of these species have been...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 866
SubjectTerms Animals
coltivirus
Coltivirus - classification
Coltivirus - genetics
Coltivirus - isolation & purification
Female
Genome, Viral
Genomic analysis
Geographical distribution
Haemaphysalis
Haemaphysalis megaspinosa
Ixodidae - virology
Japan
Phylogeny
tick
tick-borne virus
Virology
virome
Viruses
Title Detection of novel coltivirus-related sequences in Haemaphysalis megaspinosa ticks collected from Kanagawa Prefecture, Japan
URI https://www.jstage.jst.go.jp/article/jvms/86/8/86_24-0124/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/38880612
https://www.proquest.com/docview/3104744520
https://www.proquest.com/docview/3069171941
https://pubmed.ncbi.nlm.nih.gov/PMC11300128
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Veterinary Medical Science, 2024, Vol.86(8), pp.866-871
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NwQMvCMZXYExGgjc8EttNbCGEEDCVTUU8ULS3yE6c0bE6o2kHSPzx3CVpRKc9IFV58VlpfHe53-W-AJ5JF8usEoZbbTxXaKK59qnkKnGxKAmwjqg4efIpHU_V4fHoeAvW00b7A2yudO1ontR0cbb_68fvN6jwr9veCEa8PL2YN_uCkimEugbX0SZlpKITNcQTaHp113UvSXmGVr9Pgb-8e8M43ThFfHbir4KelzMo_zFJB7fhVo8l2duO-Xdgy4cd2PlKCS5tlS2b9IHzu_DnvV-2SVeB1RUL9YU_YygCNDpisWp4W9HiSzYkVrNZYGPr59TNuqEeiWzuT2xzPgt1Yxne73tD--mbP26jGhV2RIk09qdln2l0SRuZeMEO0RaHezA9-PDl3Zj3gxd4ge7Hkmc6TUrnM6OdK5xTKrajzOK7sVRlqZGDQhdaysRVUkoEATIpM29c7AspixTfWPdhO9TBPwRmSpEJQaCvqCj47JTRhU1N5dH1LlwawfP1iefnXX-NnPwS5ExOnMmFyokzEbzq2DFQ9ZrVUek013TpqYdFKl1D_Y9gd83DfC1iuaQuFSidIo7g6bCM2kUhExt8vUKaOEV_NjEqieBBx_LhD0h8AgKIEegNYRgIqHP35kqYfWs7eCcURMRTfPSfT_8Yboq4lVH87cL2crHyTxAMLd0eugEfj_Zaaf8Ln34NQg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+novel+coltivirus-related+sequences+in+Haemaphysalis+megaspinosa+ticks+collected+from+Kanagawa+Prefecture%2C+Japan&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=MATSUMURA%2C+Ryo&rft.au=KOBAYASHI%2C+Daisuke&rft.au=ITOYAMA%2C+Kyo&rft.au=ISAWA%2C+Haruhiko&rft.date=2024&rft.issn=0916-7250&rft.eissn=1347-7439&rft.volume=86&rft.issue=8&rft.spage=866&rft.epage=871&rft_id=info:doi/10.1292%2Fjvms.24-0124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1292_jvms_24_0124
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon