Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease
The hippocampus is one of the most affected areas in Alzheimer’s disease (AD) 1 . Moreover, this structure hosts one of the most unique phenomena of the adult mammalian brain, namely, the addition of new neurons throughout life 2 . This process, called adult hippocampal neurogenesis (AHN), confers a...
Saved in:
Published in | Nature medicine Vol. 25; no. 4; pp. 554 - 560 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.04.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The hippocampus is one of the most affected areas in Alzheimer’s disease (AD)
1
. Moreover, this structure hosts one of the most unique phenomena of the adult mammalian brain, namely, the addition of new neurons throughout life
2
. This process, called adult hippocampal neurogenesis (AHN), confers an unparalleled degree of plasticity to the entire hippocampal circuitry
3
,
4
. Nonetheless, direct evidence of AHN in humans has remained elusive. Thus, determining whether new neurons are continuously incorporated into the human dentate gyrus (DG) during physiological and pathological aging is a crucial question with outstanding therapeutic potential. By combining human brain samples obtained under tightly controlled conditions and state-of-the-art tissue processing methods, we identified thousands of immature neurons in the DG of neurologically healthy human subjects up to the ninth decade of life. These neurons exhibited variable degrees of maturation along differentiation stages of AHN. In sharp contrast, the number and maturation of these neurons progressively declined as AD advanced. These results demonstrate the persistence of AHN during both physiological and pathological aging in humans and provide evidence for impaired neurogenesis as a potentially relevant mechanism underlying memory deficits in AD that might be amenable to novel therapeutic strategies.
Newborn neurons are continuously incorporated into the healthy adult human hippocampus up to the ninth decade of life. However, robust adult hippocampal neurogenesis sharply declines during the progression of Alzheimer’s disease. |
---|---|
AbstractList | The hippocampus is one of the most affected areas in Alzheimer's disease (AD).sup.1. Moreover, this structure hosts one of the most unique phenomena of the adult mammalian brain, namely, the addition of new neurons throughout life.sup.2. This process, called adult hippocampal neurogenesis (AHN), confers an unparalleled degree of plasticity to the entire hippocampal circuitry.sup.3,4. Nonetheless, direct evidence of AHN in humans has remained elusive. Thus, determining whether new neurons are continuously incorporated into the human dentate gyrus (DG) during physiological and pathological aging is a crucial question with outstanding therapeutic potential. By combining human brain samples obtained under tightly controlled conditions and state-of-the-art tissue processing methods, we identified thousands of immature neurons in the DG of neurologically healthy human subjects up to the ninth decade of life. These neurons exhibited variable degrees of maturation along differentiation stages of AHN. In sharp contrast, the number and maturation of these neurons progressively declined as AD advanced. These results demonstrate the persistence of AHN during both physiological and pathological aging in humans and provide evidence for impaired neurogenesis as a potentially relevant mechanism underlying memory deficits in AD that might be amenable to novel therapeutic strategies. Newborn neurons are continuously incorporated into the healthy adult human hippocampus up to the ninth decade of life. However, robust adult hippocampal neurogenesis sharply declines during the progression of Alzheimer's disease. The hippocampus is one of the most affected areas in Alzheimer's disease (AD).sup.1. Moreover, this structure hosts one of the most unique phenomena of the adult mammalian brain, namely, the addition of new neurons throughout life.sup.2. This process, called adult hippocampal neurogenesis (AHN), confers an unparalleled degree of plasticity to the entire hippocampal circuitry.sup.3,4. Nonetheless, direct evidence of AHN in humans has remained elusive. Thus, determining whether new neurons are continuously incorporated into the human dentate gyrus (DG) during physiological and pathological aging is a crucial question with outstanding therapeutic potential. By combining human brain samples obtained under tightly controlled conditions and state-of-the-art tissue processing methods, we identified thousands of immature neurons in the DG of neurologically healthy human subjects up to the ninth decade of life. These neurons exhibited variable degrees of maturation along differentiation stages of AHN. In sharp contrast, the number and maturation of these neurons progressively declined as AD advanced. These results demonstrate the persistence of AHN during both physiological and pathological aging in humans and provide evidence for impaired neurogenesis as a potentially relevant mechanism underlying memory deficits in AD that might be amenable to novel therapeutic strategies. The hippocampus is one of the most affected areas in Alzheimer's disease (AD) . Moreover, this structure hosts one of the most unique phenomena of the adult mammalian brain, namely, the addition of new neurons throughout life . This process, called adult hippocampal neurogenesis (AHN), confers an unparalleled degree of plasticity to the entire hippocampal circuitry . Nonetheless, direct evidence of AHN in humans has remained elusive. Thus, determining whether new neurons are continuously incorporated into the human dentate gyrus (DG) during physiological and pathological aging is a crucial question with outstanding therapeutic potential. By combining human brain samples obtained under tightly controlled conditions and state-of-the-art tissue processing methods, we identified thousands of immature neurons in the DG of neurologically healthy human subjects up to the ninth decade of life. These neurons exhibited variable degrees of maturation along differentiation stages of AHN. In sharp contrast, the number and maturation of these neurons progressively declined as AD advanced. These results demonstrate the persistence of AHN during both physiological and pathological aging in humans and provide evidence for impaired neurogenesis as a potentially relevant mechanism underlying memory deficits in AD that might be amenable to novel therapeutic strategies. The hippocampus is one of the most affected areas in Alzheimer’s disease (AD) 1 . Moreover, this structure hosts one of the most unique phenomena of the adult mammalian brain, namely, the addition of new neurons throughout life 2 . This process, called adult hippocampal neurogenesis (AHN), confers an unparalleled degree of plasticity to the entire hippocampal circuitry 3 , 4 . Nonetheless, direct evidence of AHN in humans has remained elusive. Thus, determining whether new neurons are continuously incorporated into the human dentate gyrus (DG) during physiological and pathological aging is a crucial question with outstanding therapeutic potential. By combining human brain samples obtained under tightly controlled conditions and state-of-the-art tissue processing methods, we identified thousands of immature neurons in the DG of neurologically healthy human subjects up to the ninth decade of life. These neurons exhibited variable degrees of maturation along differentiation stages of AHN. In sharp contrast, the number and maturation of these neurons progressively declined as AD advanced. These results demonstrate the persistence of AHN during both physiological and pathological aging in humans and provide evidence for impaired neurogenesis as a potentially relevant mechanism underlying memory deficits in AD that might be amenable to novel therapeutic strategies. Newborn neurons are continuously incorporated into the healthy adult human hippocampus up to the ninth decade of life. However, robust adult hippocampal neurogenesis sharply declines during the progression of Alzheimer’s disease. The hippocampus is one of the most affected areas in Alzheimer's disease (AD)1. Moreover, this structure hosts one of the most unique phenomena of the adult mammalian brain, namely, the addition of new neurons throughout life2. This process, called adult hippocampal neurogenesis (AHN), confers an unparalleled degree of plasticity to the entire hippocampal circuitry3,4. Nonetheless, direct evidence of AHN in humans has remained elusive. Thus, determining whether new neurons are continuously incorporated into the human dentate gyrus (DG) during physiological and pathological aging is a crucial question with outstanding therapeutic potential. By combining human brain samples obtained under tightly controlled conditions and state-of-the-art tissue processing methods, we identified thousands of immature neurons in the DG of neurologically healthy human subjects up to the ninth decade of life. These neurons exhibited variable degrees of maturation along differentiation stages of AHN. In sharp contrast, the number and maturation of these neurons progressively declined as AD advanced. These results demonstrate the persistence of AHN during both physiological and pathological aging in humans and provide evidence for impaired neurogenesis as a potentially relevant mechanism underlying memory deficits in AD that might be amenable to novel therapeutic strategies.The hippocampus is one of the most affected areas in Alzheimer's disease (AD)1. Moreover, this structure hosts one of the most unique phenomena of the adult mammalian brain, namely, the addition of new neurons throughout life2. This process, called adult hippocampal neurogenesis (AHN), confers an unparalleled degree of plasticity to the entire hippocampal circuitry3,4. Nonetheless, direct evidence of AHN in humans has remained elusive. Thus, determining whether new neurons are continuously incorporated into the human dentate gyrus (DG) during physiological and pathological aging is a crucial question with outstanding therapeutic potential. By combining human brain samples obtained under tightly controlled conditions and state-of-the-art tissue processing methods, we identified thousands of immature neurons in the DG of neurologically healthy human subjects up to the ninth decade of life. These neurons exhibited variable degrees of maturation along differentiation stages of AHN. In sharp contrast, the number and maturation of these neurons progressively declined as AD advanced. These results demonstrate the persistence of AHN during both physiological and pathological aging in humans and provide evidence for impaired neurogenesis as a potentially relevant mechanism underlying memory deficits in AD that might be amenable to novel therapeutic strategies. The hippocampus is one of the most affected areas in Alzheimer’s disease (AD)1. Moreover, this structure hosts one of the most unique phenomena of the adult mammalian brain, namely, the addition of new neurons throughout life2. This process, called adult hippocampal neurogenesis (AHN), confers an unparalleled degree of plasticity to the entire hippocampal circuitry3,4. Nonetheless, direct evidence of AHN in humans has remained elusive. Thus, determining whether new neurons are continuously incorporated into the human dentate gyrus (DG) during physiological and pathological aging is a crucial question with outstanding therapeutic potential. By combining human brain samples obtained under tightly controlled conditions and state-of-the-art tissue processing methods, we identified thousands of immature neurons in the DG of neurologically healthy human subjects up to the ninth decade of life. These neurons exhibited variable degrees of maturation along differentiation stages of AHN. In sharp contrast, the number and maturation of these neurons progressively declined as AD advanced. These results demonstrate the persistence of AHN during both physiological and pathological aging in humans and provide evidence for impaired neurogenesis as a potentially relevant mechanism underlying memory deficits in AD that might be amenable to novel therapeutic strategies.Newborn neurons are continuously incorporated into the healthy adult human hippocampus up to the ninth decade of life. However, robust adult hippocampal neurogenesis sharply declines during the progression of Alzheimer’s disease. |
Audience | Academic |
Author | Llorens-Martín, María Flor-García, Miguel Terreros-Roncal, Julia Rábano, Alberto Moreno-Jiménez, Elena P. Cafini, Fabio Ávila, Jesús Pallas-Bazarra, Noemí |
Author_xml | – sequence: 1 givenname: Elena P. surname: Moreno-Jiménez fullname: Moreno-Jiménez, Elena P. organization: Department of Molecular Neuropathology, Centro de Biología Molecular ‘Severo Ochoa’, CBMSO, CSIC-UAM, Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) – sequence: 2 givenname: Miguel surname: Flor-García fullname: Flor-García, Miguel organization: Department of Molecular Neuropathology, Centro de Biología Molecular ‘Severo Ochoa’, CBMSO, CSIC-UAM, Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) – sequence: 3 givenname: Julia surname: Terreros-Roncal fullname: Terreros-Roncal, Julia organization: Department of Molecular Neuropathology, Centro de Biología Molecular ‘Severo Ochoa’, CBMSO, CSIC-UAM, Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) – sequence: 4 givenname: Alberto surname: Rábano fullname: Rábano, Alberto organization: Neuropathology Department, CIEN Foundation – sequence: 5 givenname: Fabio surname: Cafini fullname: Cafini, Fabio organization: Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences – sequence: 6 givenname: Noemí orcidid: 0000-0002-0175-5080 surname: Pallas-Bazarra fullname: Pallas-Bazarra, Noemí organization: Department of Molecular Neuropathology, Centro de Biología Molecular ‘Severo Ochoa’, CBMSO, CSIC-UAM, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) – sequence: 7 givenname: Jesús surname: Ávila fullname: Ávila, Jesús organization: Department of Molecular Neuropathology, Centro de Biología Molecular ‘Severo Ochoa’, CBMSO, CSIC-UAM, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) – sequence: 8 givenname: María orcidid: 0000-0001-9129-5198 surname: Llorens-Martín fullname: Llorens-Martín, María email: m.llorens@csic.es organization: Department of Molecular Neuropathology, Centro de Biología Molecular ‘Severo Ochoa’, CBMSO, CSIC-UAM, Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30911133$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt1qFDEUxwep2Hb1AbyRAaHoxdRkMh_J5VL8KBQKfuFdyCRnd1IyyZhk0PXKK9_B1_NJzDLVumUVSSAh-f3PSc75H2cH1lnIsocYnWJE6LNQ4ZrhAmFWINLWBbuTHeG6agrcog8HaY9aWlBWN4fZcQhXCCGCanYvOySIYYwJOcq-LdVkYt7rcXRSDKMwuYXJuzVYCDrkaYpuskrYmGs73xm31lIYs8l7ECb2mzxM3RXImFircuXdGPLQCz8mJIlGETXYdPtJxz5fmi896AH8j6_fQ650ABHgfnZ3JUyAB9frInv34vnbs1fFxeXL87PlRSHrtolFw4hYkfSNDkpoFGaSkY6o9EXWMdUh2ihKSga4qSRgWsmqBkorVCkGqqoRWWRP5rijdx8nCJEPOkgwRlhwU-AlZi1lLSZtQh_fQq_c5G16HS9LRHBZMVTfUGthgGu7ctELuQ3KlzVNJaY0PXqRFXuobY29MKmnK52Od_jTPXwaCgYt9wqe7ggSE-FzXIspBH7-5vX_s5fvd9mTP9i53cGZKWpnwy746LpaUzeA4qPXg_Ab_stpCcAzIL0LwcPqN4IR37qZz27myc1862a-Ddre0kgdxTZ3Koc2_1SWszKkLHYN_qZ5fxf9BHw0Bpg |
CitedBy_id | crossref_primary_10_3390_cells9102230 crossref_primary_10_1007_s12031_024_02244_0 crossref_primary_10_1016_j_celrep_2022_111451 crossref_primary_10_1039_D3SC03035K crossref_primary_10_1002_brb3_2365 crossref_primary_10_1016_j_bbrc_2022_03_025 crossref_primary_10_1016_j_arr_2021_101447 crossref_primary_10_1038_s41467_021_23337_z crossref_primary_10_1038_s42003_023_05367_z crossref_primary_10_1111_apha_13587 crossref_primary_10_1007_s00018_019_03404_x crossref_primary_10_1126_science_aax5186 crossref_primary_10_1007_s00429_019_01917_6 crossref_primary_10_3390_biom12101409 crossref_primary_10_1007_s10529_022_03274_7 crossref_primary_10_1016_j_biopsych_2020_02_1181 crossref_primary_10_1093_stmcls_sxac027 crossref_primary_10_1038_s41598_020_72362_3 crossref_primary_10_1016_j_stemcr_2020_12_003 crossref_primary_10_1016_j_jgr_2020_07_003 crossref_primary_10_1111_nan_12711 crossref_primary_10_2147_DDDT_S405963 crossref_primary_10_4103_1673_5374_391308 crossref_primary_10_1002_npr2_70001 crossref_primary_10_1016_j_neuron_2023_03_010 crossref_primary_10_1038_s41593_022_01192_5 crossref_primary_10_1089_cell_2020_0034 crossref_primary_10_1080_27697061_2022_2144540 crossref_primary_10_1016_j_isci_2023_107068 crossref_primary_10_1016_j_stem_2023_03_012 crossref_primary_10_1186_s40035_024_00414_z crossref_primary_10_4155_fmc_2021_0036 crossref_primary_10_1186_s13287_021_02399_2 crossref_primary_10_1016_j_tma_2024_12_003 crossref_primary_10_1371_journal_pbio_3000585 crossref_primary_10_1021_acschemneuro_9b00196 crossref_primary_10_1038_s42255_023_00786_y crossref_primary_10_1016_j_expneurol_2025_115205 crossref_primary_10_1007_s00018_023_04874_w crossref_primary_10_1038_s41380_023_02296_5 crossref_primary_10_1093_cercor_bhaa213 crossref_primary_10_3389_fcell_2020_00860 crossref_primary_10_1039_D1BM00696G crossref_primary_10_1111_acel_13499 crossref_primary_10_1002_ajpa_24718 crossref_primary_10_1038_s12276_022_00841_w crossref_primary_10_1016_j_neuron_2020_05_008 crossref_primary_10_1016_j_pneurobio_2020_101961 crossref_primary_10_1097_TA_0000000000002510 crossref_primary_10_1016_j_neuron_2019_09_026 crossref_primary_10_1186_s40035_022_00333_x crossref_primary_10_3390_cancers13030367 crossref_primary_10_1101_cshperspect_a041193 crossref_primary_10_1016_j_tox_2024_153947 crossref_primary_10_3389_fnagi_2021_791604 crossref_primary_10_3390_nu13093166 crossref_primary_10_4103_1673_5374_380874 crossref_primary_10_3389_fnmol_2022_937133 crossref_primary_10_1111_cpr_13027 crossref_primary_10_1007_s12017_022_08708_z crossref_primary_10_3390_biom10020225 crossref_primary_10_1016_j_ijbiomac_2024_138432 crossref_primary_10_4103_1673_5374_274330 crossref_primary_10_1016_j_bioorg_2024_107769 crossref_primary_10_4103_1673_5374_274332 crossref_primary_10_1038_s41598_021_04600_1 crossref_primary_10_1016_j_mad_2021_111452 crossref_primary_10_3390_cells9010210 crossref_primary_10_1039_D2BM02059A crossref_primary_10_1016_j_stem_2020_06_013 crossref_primary_10_1016_j_nbas_2020_100004 crossref_primary_10_3389_fgene_2021_706986 crossref_primary_10_1038_s41380_021_01314_8 crossref_primary_10_1038_s41380_022_01520_y crossref_primary_10_1007_s11064_020_02965_9 crossref_primary_10_1038_s41598_022_13071_x crossref_primary_10_1016_j_stem_2023_02_006 crossref_primary_10_3389_fnmol_2021_708004 crossref_primary_10_1007_s12035_020_02191_y crossref_primary_10_18632_aging_102504 crossref_primary_10_4103_NRR_NRR_D_23_01993 crossref_primary_10_1016_j_arr_2020_101114 crossref_primary_10_31857_S0320972521060117 crossref_primary_10_1073_pnas_2007439117 crossref_primary_10_1523_JNEUROSCI_0744_19_2019 crossref_primary_10_1111_acel_13007 crossref_primary_10_7554_eLife_72195 crossref_primary_10_1016_j_actbio_2019_11_032 crossref_primary_10_1038_s41380_024_02815_y crossref_primary_10_1098_rsob_240035 crossref_primary_10_3390_cancers12123842 crossref_primary_10_3389_fncom_2022_954847 crossref_primary_10_1038_s41598_020_73401_9 crossref_primary_10_1016_j_neuron_2023_11_010 crossref_primary_10_1002_glia_23849 crossref_primary_10_3390_ijms21103501 crossref_primary_10_1038_s41380_021_01249_0 crossref_primary_10_1101_cshperspect_a040907 crossref_primary_10_4103_1673_5374_285001 crossref_primary_10_1371_journal_pgen_1009918 crossref_primary_10_1002_ana_25741 crossref_primary_10_12677_HJBM_2022_124035 crossref_primary_10_4102_jan_v3i1_11 crossref_primary_10_7554_eLife_90893_3 crossref_primary_10_1038_s41392_022_01233_2 crossref_primary_10_1016_j_neuroscience_2020_11_015 crossref_primary_10_1016_j_pneurobio_2019_101695 crossref_primary_10_1124_jpet_119_259986 crossref_primary_10_3389_fnins_2021_621076 crossref_primary_10_3390_cells12232679 crossref_primary_10_1016_j_tins_2024_07_004 crossref_primary_10_3390_cells11203234 crossref_primary_10_3390_ijms24065712 crossref_primary_10_4103_NRR_NRR_D_23_01775 crossref_primary_10_1016_j_xgen_2024_100642 crossref_primary_10_1093_nsr_nwad248 crossref_primary_10_3390_biomedicines10061297 crossref_primary_10_1016_j_biopsych_2022_04_019 crossref_primary_10_14336_AD_2021_0409 crossref_primary_10_1002_glia_24128 crossref_primary_10_1038_s41398_024_02968_y crossref_primary_10_1016_j_neuint_2024_105853 crossref_primary_10_1016_j_pneurobio_2019_101662 crossref_primary_10_3390_pharmaceutics13030429 crossref_primary_10_2174_1570159X21666230314142505 crossref_primary_10_1002_hipo_23474 crossref_primary_10_1002_hipo_23475 crossref_primary_10_1016_j_lssr_2022_07_007 crossref_primary_10_1016_j_stem_2020_07_002 crossref_primary_10_3390_ijms23094653 crossref_primary_10_4103_1673_5374_389635 crossref_primary_10_3389_fnins_2022_918616 crossref_primary_10_3389_fncel_2020_00053 crossref_primary_10_1016_j_semcdb_2019_07_002 crossref_primary_10_1016_j_jbc_2024_107698 crossref_primary_10_1002_iub_2589 crossref_primary_10_1186_s13041_019_0522_8 crossref_primary_10_1016_j_stemcr_2021_01_019 crossref_primary_10_1016_j_biopha_2022_113500 crossref_primary_10_1038_s41593_019_0484_2 crossref_primary_10_3233_BPL_230157 crossref_primary_10_1016_j_ejphar_2021_174695 crossref_primary_10_1016_j_omtn_2020_12_014 crossref_primary_10_3389_fphar_2022_820210 crossref_primary_10_1016_j_neubiorev_2022_104556 crossref_primary_10_3390_biom10030484 crossref_primary_10_2174_1570159X22999240209102116 crossref_primary_10_1007_s00330_023_09582_4 crossref_primary_10_4103_1673_5374_350189 crossref_primary_10_1016_j_stem_2021_01_003 crossref_primary_10_1073_pnas_2107596118 crossref_primary_10_1007_s12035_022_03102_z crossref_primary_10_1126_science_abm7468 crossref_primary_10_3389_fnut_2020_00094 crossref_primary_10_3390_brainsci11010055 crossref_primary_10_3390_ijms20174240 crossref_primary_10_1038_s41380_019_0563_5 crossref_primary_10_3390_nu12061777 crossref_primary_10_1016_j_stemcr_2023_01_004 crossref_primary_10_1016_j_celrep_2020_107699 crossref_primary_10_1155_2022_6298786 crossref_primary_10_1073_pnas_2206704119 crossref_primary_10_1016_j_medntd_2022_100182 crossref_primary_10_3390_antiox10020207 crossref_primary_10_7554_eLife_68000 crossref_primary_10_37349_ent_2023_00044 crossref_primary_10_1002_jcp_30092 crossref_primary_10_1016_j_expneurol_2020_113249 crossref_primary_10_3390_ijms21144977 crossref_primary_10_3390_cells11071069 crossref_primary_10_3389_fnagi_2022_1002281 crossref_primary_10_1126_science_abn7270 crossref_primary_10_1016_j_bpsc_2020_06_006 crossref_primary_10_2174_0929867329666220509114232 crossref_primary_10_1002_ptr_7022 crossref_primary_10_1038_s41598_019_56483_y crossref_primary_10_7554_eLife_90893 crossref_primary_10_3389_fphys_2021_656455 crossref_primary_10_1007_s10571_019_00733_0 crossref_primary_10_1016_j_neubiorev_2019_03_024 crossref_primary_10_1038_s41593_020_00759_4 crossref_primary_10_1111_jnc_16258 crossref_primary_10_1016_j_biocel_2024_106695 crossref_primary_10_1155_2021_5586052 crossref_primary_10_1016_j_xpro_2024_103313 crossref_primary_10_3389_fncel_2020_00016 crossref_primary_10_1016_j_bcp_2024_116064 crossref_primary_10_1016_j_archger_2024_105642 crossref_primary_10_1002_brb3_1878 crossref_primary_10_1021_acs_jafc_3c03894 crossref_primary_10_3389_fnmol_2020_578211 crossref_primary_10_3389_fphar_2022_926123 crossref_primary_10_3389_fendo_2024_1347802 crossref_primary_10_1126_science_abn7083 crossref_primary_10_1152_japplphysiol_00751_2021 crossref_primary_10_3233_JAD_220559 crossref_primary_10_1371_journal_pcbi_1008267 crossref_primary_10_1177_10738584241252581 crossref_primary_10_1007_s12264_021_00660_5 crossref_primary_10_1186_s13578_019_0337_4 crossref_primary_10_1590_1980_5764_dn_2024_0147 crossref_primary_10_1007_s00406_019_01066_1 crossref_primary_10_1016_j_neuro_2023_09_009 crossref_primary_10_1093_brain_awab460 crossref_primary_10_3389_fendo_2020_00283 crossref_primary_10_3389_fcell_2020_00654 crossref_primary_10_1271_kagakutoseibutsu_60_199 crossref_primary_10_1002_adbi_202200119 crossref_primary_10_1523_JNEUROSCI_0993_19_2019 crossref_primary_10_3389_fnins_2020_549772 crossref_primary_10_1016_j_tem_2019_07_001 crossref_primary_10_1038_s41598_024_65185_z crossref_primary_10_1186_s13041_022_00926_7 crossref_primary_10_1249_MSS_0000000000003144 crossref_primary_10_1016_j_mad_2020_111323 crossref_primary_10_1111_apha_13316 crossref_primary_10_1186_s13195_020_00705_3 crossref_primary_10_1093_cercor_bhaa247 crossref_primary_10_1016_j_arr_2023_102067 crossref_primary_10_1089_andro_2021_0016 crossref_primary_10_1159_000540032 crossref_primary_10_3233_ADR_230171 crossref_primary_10_3390_nu14153125 crossref_primary_10_1038_s41598_022_10947_w crossref_primary_10_1016_j_stem_2019_06_001 crossref_primary_10_1016_j_biocel_2021_105969 crossref_primary_10_1080_00207454_2022_2130297 crossref_primary_10_3390_photonics6030077 crossref_primary_10_2174_1389201022666210405142611 crossref_primary_10_1007_s12015_024_10788_2 crossref_primary_10_1038_s41398_020_01187_5 crossref_primary_10_3389_fnins_2021_682259 crossref_primary_10_1002_nep3_25 crossref_primary_10_1111_ejn_14640 crossref_primary_10_1002_nep3_31 crossref_primary_10_1016_j_jsbmb_2024_106485 crossref_primary_10_3389_fnagi_2022_759159 crossref_primary_10_3390_ijms21030701 crossref_primary_10_26508_lsa_202302083 crossref_primary_10_1126_science_aav6885 crossref_primary_10_1038_s41593_020_00728_x crossref_primary_10_3390_brainsci15010052 crossref_primary_10_1016_j_neuron_2020_07_039 crossref_primary_10_1016_j_lfs_2024_123225 crossref_primary_10_55453_rjmm_2024_127_6_1 crossref_primary_10_4103_1673_5374_272571 crossref_primary_10_1002_adhm_202300154 crossref_primary_10_1016_j_ynstr_2020_100223 crossref_primary_10_1002_nep3_40 crossref_primary_10_1177_1535759719868186 crossref_primary_10_1038_s41380_024_02833_w crossref_primary_10_3389_fncel_2021_746631 crossref_primary_10_1007_s13311_019_00746_z crossref_primary_10_1016_j_jshs_2023_07_003 crossref_primary_10_1155_2022_9959044 crossref_primary_10_1002_jcp_30944 crossref_primary_10_3390_ijms21113915 crossref_primary_10_1038_s12276_023_01073_2 crossref_primary_10_1093_braincomms_fcab114 crossref_primary_10_3390_ijms232112873 crossref_primary_10_1016_j_phymed_2024_155802 crossref_primary_10_1093_brain_awac472 crossref_primary_10_3389_fpsyt_2023_1162179 crossref_primary_10_1080_17568919_2025_2463310 crossref_primary_10_1093_cercor_bhab093 crossref_primary_10_1007_s13365_021_01012_9 crossref_primary_10_3389_fphar_2022_1058358 crossref_primary_10_1038_s41422_022_00678_y crossref_primary_10_3390_cells11111807 crossref_primary_10_15616_BSL_2020_26_2_57 crossref_primary_10_1038_s41536_020_00114_y crossref_primary_10_1007_s13311_023_01427_8 crossref_primary_10_3389_fphar_2022_927419 crossref_primary_10_1242_dev_201835 crossref_primary_10_1016_j_mad_2019_111120 crossref_primary_10_1126_sciadv_abb1654 crossref_primary_10_1186_s40478_019_0810_7 crossref_primary_10_3233_JAD_210739 crossref_primary_10_1016_j_nbd_2020_105219 crossref_primary_10_1016_j_stem_2019_05_003 crossref_primary_10_3390_molecules26030728 crossref_primary_10_1177_1535759719874813 crossref_primary_10_15252_embj_2021110409 crossref_primary_10_1007_s12035_021_02620_6 crossref_primary_10_1016_j_yfrne_2020_100877 crossref_primary_10_3389_fnagi_2020_00247 crossref_primary_10_1093_brain_awad303 crossref_primary_10_1016_j_bbi_2023_06_013 crossref_primary_10_1016_j_biopsych_2021_01_010 crossref_primary_10_1523_ENEURO_0391_19_2019 crossref_primary_10_1186_s13148_019_0672_7 crossref_primary_10_1007_s11427_020_1810_y crossref_primary_10_1007_s12035_023_03261_7 crossref_primary_10_1016_j_biopsych_2023_04_009 crossref_primary_10_3389_fncel_2020_571071 crossref_primary_10_1002_wsbm_1526 crossref_primary_10_3390_cells10102542 crossref_primary_10_1371_journal_pone_0296280 crossref_primary_10_1007_s00018_019_03430_9 crossref_primary_10_1538_expanim_22_0164 crossref_primary_10_1016_j_neulet_2021_136071 crossref_primary_10_3233_BPL_220141 crossref_primary_10_1186_s12993_024_00230_5 crossref_primary_10_1016_j_molmed_2020_03_010 crossref_primary_10_26508_lsa_202302029 crossref_primary_10_1080_14728222_2024_2342517 crossref_primary_10_3390_ijms231710136 crossref_primary_10_3390_cells10102748 crossref_primary_10_1016_j_bbr_2020_112917 crossref_primary_10_1093_stmcls_sxae074 crossref_primary_10_3390_stresses4040055 crossref_primary_10_4103_1673_5374_259616 crossref_primary_10_1016_j_jpsychires_2024_09_005 crossref_primary_10_1038_s41467_020_17405_z crossref_primary_10_1038_s41593_023_01393_6 crossref_primary_10_1016_j_celrep_2019_09_037 crossref_primary_10_3390_ijms222111489 crossref_primary_10_4103_1673_5374_327354 crossref_primary_10_1111_acel_13924 crossref_primary_10_1038_s41598_023_39846_4 crossref_primary_10_1177_1745691620950696 crossref_primary_10_7554_eLife_70685 crossref_primary_10_1038_s41421_023_00583_7 crossref_primary_10_3389_fcell_2020_573487 crossref_primary_10_1038_s41583_021_00548_3 crossref_primary_10_1134_S1819712420040054 crossref_primary_10_1016_j_celrep_2021_109751 crossref_primary_10_1371_journal_pgen_1009363 crossref_primary_10_1523_JNEUROSCI_0676_20_2020 crossref_primary_10_1016_j_stemcr_2023_05_015 crossref_primary_10_1093_stmcls_sxae091 crossref_primary_10_1007_s11062_021_09904_6 crossref_primary_10_1038_s41380_021_01287_8 crossref_primary_10_1111_apha_13967 crossref_primary_10_3389_fnmol_2024_1516119 crossref_primary_10_1016_j_nlm_2022_107648 crossref_primary_10_3390_pr9040716 crossref_primary_10_1126_scitranslmed_aax1726 crossref_primary_10_1146_annurev_psych_122216_011613 crossref_primary_10_1038_s41598_022_05012_5 crossref_primary_10_4103_1673_5374_272610 crossref_primary_10_1007_s00018_022_04587_6 crossref_primary_10_3233_JAD_220721 crossref_primary_10_1038_s41419_022_04784_y crossref_primary_10_1080_10408398_2023_2203762 crossref_primary_10_1007_s10433_022_00710_5 crossref_primary_10_1111_bpa_13225 crossref_primary_10_1016_j_stemcr_2023_05_021 crossref_primary_10_1016_j_bbr_2019_112032 crossref_primary_10_1016_j_biopsych_2020_07_018 crossref_primary_10_1016_j_bbr_2019_112035 crossref_primary_10_3390_cells11040676 crossref_primary_10_1002_stem_3121 crossref_primary_10_3390_ijms221910744 crossref_primary_10_1016_j_nbd_2022_105879 crossref_primary_10_1038_s41380_021_01301_z crossref_primary_10_3390_cells13080669 crossref_primary_10_3389_fncel_2021_709291 crossref_primary_10_1038_s41583_021_00433_z crossref_primary_10_1172_JCI146095 crossref_primary_10_3390_brainsci14111133 crossref_primary_10_1016_j_emcon_2023_100259 crossref_primary_10_1016_j_expneurol_2024_114930 crossref_primary_10_3390_brainsci13030511 crossref_primary_10_1007_s13659_022_00354_z crossref_primary_10_1016_j_celrep_2024_114339 crossref_primary_10_1038_s41580_022_00510_w crossref_primary_10_1111_nyas_14436 crossref_primary_10_1016_j_celrep_2021_109127 crossref_primary_10_3390_antiox12101873 crossref_primary_10_3390_ijms21031115 crossref_primary_10_1016_j_expneurol_2022_114142 crossref_primary_10_1126_sciadv_aaz9691 crossref_primary_10_1016_j_stem_2023_01_002 crossref_primary_10_1038_d41586_019_01461_7 crossref_primary_10_2139_ssrn_4189450 crossref_primary_10_3390_brainsci13030520 crossref_primary_10_1016_j_jconrel_2020_09_019 crossref_primary_10_1016_j_neuroscience_2019_12_021 crossref_primary_10_3389_fnagi_2022_998292 crossref_primary_10_1016_j_pnpbp_2024_111148 crossref_primary_10_1016_j_neuropharm_2019_107851 crossref_primary_10_3390_pharmaceutics14010200 crossref_primary_10_3233_JAD_240500 crossref_primary_10_1038_s42003_020_0844_1 crossref_primary_10_3389_fnagi_2024_1466328 crossref_primary_10_3389_fonc_2021_714709 crossref_primary_10_1016_j_arr_2022_101667 crossref_primary_10_1111_jnc_14987 crossref_primary_10_1002_advs_202307971 crossref_primary_10_3390_biom11010051 crossref_primary_10_3389_fcell_2019_00096 crossref_primary_10_1016_j_conb_2020_10_013 crossref_primary_10_1038_s41380_021_01149_3 crossref_primary_10_1016_j_smrv_2019_101223 crossref_primary_10_1016_j_bbi_2024_01_005 crossref_primary_10_1080_15548627_2023_2277634 crossref_primary_10_3389_fnmol_2019_00096 crossref_primary_10_3390_ijms23063349 crossref_primary_10_1360_SSV_2022_0139 crossref_primary_10_1038_s41467_019_14026_z crossref_primary_10_1093_stmcls_sxae065 crossref_primary_10_1016_j_neubiorev_2019_11_006 crossref_primary_10_1126_scitranslmed_aay7896 crossref_primary_10_1016_j_pharmthera_2020_107515 crossref_primary_10_1016_j_arr_2022_101655 crossref_primary_10_1016_j_expneurol_2022_114124 crossref_primary_10_4049_jimmunol_2100737 crossref_primary_10_1186_s13195_023_01337_z crossref_primary_10_1016_j_xcrm_2021_100231 crossref_primary_10_1523_JNEUROSCI_1295_24_2024 crossref_primary_10_3390_ijms222312697 crossref_primary_10_1038_s43587_023_00370_9 crossref_primary_10_1038_s41398_024_02904_0 crossref_primary_10_70322_ldmh_2025_10005 crossref_primary_10_1038_s41598_020_71493_x crossref_primary_10_1016_j_celrep_2019_07_014 crossref_primary_10_1042_BST20221527 crossref_primary_10_3390_ijms20123030 crossref_primary_10_1002_ctm2_243 crossref_primary_10_1038_s12276_021_00587_x crossref_primary_10_1186_s40478_020_01030_4 crossref_primary_10_1016_j_stem_2019_03_023 crossref_primary_10_3389_fnhum_2020_00350 crossref_primary_10_3389_fncel_2021_781434 crossref_primary_10_1016_j_stem_2020_04_002 crossref_primary_10_1007_s00018_023_04832_6 crossref_primary_10_1007_s11011_021_00864_8 crossref_primary_10_1186_s40478_022_01431_7 crossref_primary_10_1126_sciadv_abf5606 crossref_primary_10_7554_eLife_53777 crossref_primary_10_1016_j_neuroscience_2024_04_001 crossref_primary_10_3390_molecules25020347 crossref_primary_10_1016_j_jchemneu_2020_101795 crossref_primary_10_1016_j_ajpath_2024_12_013 crossref_primary_10_3389_fnmol_2023_1114015 crossref_primary_10_3390_cancers13164177 crossref_primary_10_1016_j_celrep_2021_109324 crossref_primary_10_1016_j_nrl_2021_04_017 crossref_primary_10_1093_schbul_sbac036 crossref_primary_10_3390_biomedicines10112993 crossref_primary_10_1021_acschemneuro_9b00661 crossref_primary_10_1002_dad2_12195 crossref_primary_10_1038_s41586_023_06981_x crossref_primary_10_1016_j_phro_2021_11_008 crossref_primary_10_1038_s41591_019_0408_4 crossref_primary_10_1016_j_drudis_2022_01_016 crossref_primary_10_1016_j_arr_2021_101372 crossref_primary_10_1016_j_neubiorev_2021_09_030 crossref_primary_10_1002_stem_3102 crossref_primary_10_1038_s41380_021_01136_8 crossref_primary_10_1038_s41598_022_10457_9 crossref_primary_10_1186_s13195_020_00656_9 crossref_primary_10_1021_acschemneuro_1c00831 crossref_primary_10_3389_fnmol_2023_1185883 crossref_primary_10_1021_acschemneuro_0c00615 crossref_primary_10_1177_1535759720951799 crossref_primary_10_1016_j_celrep_2024_114100 crossref_primary_10_1016_j_neuron_2021_10_036 crossref_primary_10_1159_000540976 crossref_primary_10_1038_s41398_019_0618_z crossref_primary_10_3233_JAD_190872 crossref_primary_10_1016_j_neuroscience_2024_05_009 crossref_primary_10_1007_s11064_022_03530_2 crossref_primary_10_1016_j_biopha_2023_114433 crossref_primary_10_3233_JAD_190636 crossref_primary_10_4103_1673_5374_297057 crossref_primary_10_1109_ACCESS_2020_3003424 crossref_primary_10_1177_0963689720960185 crossref_primary_10_1109_TCDS_2020_3015131 crossref_primary_10_1093_jnen_nlz108 crossref_primary_10_1016_j_phrs_2021_105795 crossref_primary_10_1089_scd_2020_0100 crossref_primary_10_1016_j_brainres_2019_146619 crossref_primary_10_3389_fcell_2019_00062 crossref_primary_10_1523_ENEURO_0030_20_2020 crossref_primary_10_5604_01_3001_0015_6436 crossref_primary_10_3389_fpsyg_2022_889001 crossref_primary_10_1111_acel_13161 crossref_primary_10_3233_JAD_201567 crossref_primary_10_3233_JAD_200234 crossref_primary_10_1038_s41593_022_01238_8 crossref_primary_10_1038_s41593_022_01073_x crossref_primary_10_1084_jem_20220391 crossref_primary_10_1515_revneuro_2023_0049 crossref_primary_10_3389_fonc_2020_602217 crossref_primary_10_1016_j_bbi_2023_09_002 crossref_primary_10_1002_hipo_23504 crossref_primary_10_1016_j_isci_2021_103275 crossref_primary_10_1002_hipo_23505 crossref_primary_10_1111_jnc_16184 crossref_primary_10_3389_fnins_2023_1244118 crossref_primary_10_3389_fneur_2020_00148 crossref_primary_10_3389_fnins_2024_1434508 crossref_primary_10_1038_s41380_020_0823_4 crossref_primary_10_1242_dmm_050375 crossref_primary_10_3390_ijms222111826 crossref_primary_10_1016_j_jneumeth_2020_108616 crossref_primary_10_3390_ijms22073342 crossref_primary_10_1002_hipo_23502 crossref_primary_10_1016_j_dscb_2023_100094 crossref_primary_10_3390_ijms21186875 crossref_primary_10_3389_fneur_2021_610330 crossref_primary_10_1016_j_celrep_2020_108615 crossref_primary_10_1038_s41583_019_0174_9 crossref_primary_10_1038_s12276_024_01329_5 crossref_primary_10_1038_s41387_022_00205_3 crossref_primary_10_1007_s11418_020_01388_8 crossref_primary_10_1016_j_celrep_2019_05_101 crossref_primary_10_3233_JAD_200238 crossref_primary_10_3389_fnagi_2021_650103 crossref_primary_10_1111_adb_12886 crossref_primary_10_3390_molecules25235508 crossref_primary_10_1016_j_neuron_2022_01_004 crossref_primary_10_1016_j_neuroscience_2023_07_003 crossref_primary_10_1038_s41467_020_18046_y crossref_primary_10_1093_jnen_nlab014 crossref_primary_10_1134_S1022795420040092 crossref_primary_10_1002_mco2_70114 crossref_primary_10_1073_pnas_2023784119 crossref_primary_10_1016_j_arr_2022_101828 crossref_primary_10_1038_s41596_019_0267_y crossref_primary_10_1016_j_nutres_2020_12_003 crossref_primary_10_2174_1570159X21666221031103909 crossref_primary_10_1016_j_npbr_2019_05_004 crossref_primary_10_1134_S0362119723600546 crossref_primary_10_1042_EBC20210024 crossref_primary_10_3389_fimmu_2024_1347415 crossref_primary_10_1016_j_arr_2020_101062 crossref_primary_10_1038_s41588_020_0696_0 crossref_primary_10_3389_fnins_2021_700297 crossref_primary_10_3389_fphar_2019_01346 crossref_primary_10_1038_s41380_024_02827_8 crossref_primary_10_3389_fphar_2021_613211 crossref_primary_10_1186_s13041_019_0525_5 crossref_primary_10_3390_cells12091285 crossref_primary_10_1007_s00018_022_04397_w crossref_primary_10_1038_s41380_021_01172_4 crossref_primary_10_3390_ijms20112778 crossref_primary_10_1016_j_bbi_2021_05_009 crossref_primary_10_3390_ijms23010462 crossref_primary_10_14336_AD_2023_10918 crossref_primary_10_1002_jnr_24897 crossref_primary_10_1016_j_neuroscience_2023_06_004 crossref_primary_10_4103_NRR_NRR_D_23_01865 crossref_primary_10_1016_j_biopsych_2024_11_007 crossref_primary_10_1186_s13041_021_00889_1 crossref_primary_10_1038_s41573_021_00367_2 crossref_primary_10_3390_cells11193002 crossref_primary_10_3390_ijms23031172 crossref_primary_10_3389_fnmol_2020_00051 crossref_primary_10_1016_j_intimp_2021_107653 crossref_primary_10_1007_s12035_020_02200_0 crossref_primary_10_3389_fneur_2020_00344 crossref_primary_10_1007_s00429_023_02717_9 crossref_primary_10_1002_ame2_12212 crossref_primary_10_1007_s00429_020_02038_1 crossref_primary_10_1007_s11064_019_02856_8 crossref_primary_10_3390_cells9020383 crossref_primary_10_1016_j_euroneuro_2020_10_008 crossref_primary_10_1186_s40035_024_00428_7 crossref_primary_10_3390_ijms21197309 crossref_primary_10_3390_ph15030293 crossref_primary_10_3390_md21120643 crossref_primary_10_1016_j_nlm_2020_107268 crossref_primary_10_1038_s41419_023_05650_1 crossref_primary_10_1016_j_arr_2022_101636 crossref_primary_10_1016_j_stemcr_2021_05_007 crossref_primary_10_1038_s41418_019_0409_3 crossref_primary_10_30629_2618_6667_2021_19_2_87_103 crossref_primary_10_1016_j_bbadis_2019_06_020 crossref_primary_10_3233_JAD_220269 crossref_primary_10_1038_s41398_020_01011_0 crossref_primary_10_1038_s42003_022_03299_8 crossref_primary_10_1515_tnsci_2020_0198 crossref_primary_10_1038_s41598_019_54684_z crossref_primary_10_3389_fncel_2024_1520253 crossref_primary_10_1016_j_bbadis_2024_167197 crossref_primary_10_1186_s13195_019_0569_x crossref_primary_10_7554_eLife_89507 crossref_primary_10_1016_j_bbi_2021_07_021 crossref_primary_10_1038_s41598_025_91689_3 crossref_primary_10_2174_1874609815666220304195049 crossref_primary_10_1016_j_neuron_2024_12_007 crossref_primary_10_1155_2024_5554538 crossref_primary_10_1016_j_bbi_2021_06_014 crossref_primary_10_1369_00221554211032003 crossref_primary_10_1007_s11626_024_00948_6 crossref_primary_10_1007_s10072_022_06479_w crossref_primary_10_1038_s41467_024_54680_6 crossref_primary_10_3389_fnins_2022_853911 crossref_primary_10_3390_ijms23147726 crossref_primary_10_1002_hipo_23568 crossref_primary_10_3390_ijms25063090 crossref_primary_10_1073_pnas_2203038119 crossref_primary_10_1038_s41380_024_02666_7 crossref_primary_10_3390_cells11020286 crossref_primary_10_1084_jem_20202304 crossref_primary_10_1016_j_tins_2021_02_003 crossref_primary_10_1038_s41467_023_39873_9 crossref_primary_10_3390_biom14030335 crossref_primary_10_1016_j_biopsych_2023_06_026 crossref_primary_10_3389_fnins_2020_00839 crossref_primary_10_1016_j_biopsych_2024_12_018 crossref_primary_10_3390_cells10113047 crossref_primary_10_1016_j_nbd_2024_106604 crossref_primary_10_1523_ENEURO_0468_19_2020 crossref_primary_10_3390_ijms21176419 crossref_primary_10_3390_molecules24071350 crossref_primary_10_3390_ijms22115911 crossref_primary_10_3389_fnagi_2020_591601 crossref_primary_10_1093_brain_awz371 crossref_primary_10_1523_JNEUROSCI_0675_20_2020 crossref_primary_10_1016_j_arr_2023_102133 crossref_primary_10_3390_cells10051145 crossref_primary_10_1093_braincomms_fcae101 crossref_primary_10_1021_acsbiomedchemau_1c00017 crossref_primary_10_3389_fnins_2023_1125376 crossref_primary_10_1002_med_21960 crossref_primary_10_1242_jcs_231258 crossref_primary_10_3389_fnagi_2020_561504 crossref_primary_10_1002_med_21722 crossref_primary_10_1007_s00018_019_03193_3 crossref_primary_10_1016_j_biopha_2024_116219 crossref_primary_10_1016_j_stem_2024_11_002 crossref_primary_10_1038_s41380_023_02386_4 crossref_primary_10_1016_j_neuron_2019_11_029 crossref_primary_10_1111_jnc_15265 crossref_primary_10_4103_1673_5374_270292 crossref_primary_10_1007_s12035_022_03016_w crossref_primary_10_3390_ijms21113879 crossref_primary_10_1016_j_pnpbp_2020_109943 crossref_primary_10_1038_s41380_024_02490_z crossref_primary_10_1016_j_xpro_2020_100238 crossref_primary_10_18632_aging_203373 crossref_primary_10_1002_glia_24468 crossref_primary_10_1172_jci_insight_129375 crossref_primary_10_1111_ejn_14969 crossref_primary_10_1016_j_freeradbiomed_2020_12_454 crossref_primary_10_1016_j_neulet_2021_136109 crossref_primary_10_1016_j_expneurol_2020_113372 crossref_primary_10_1002_alz_12428 crossref_primary_10_1111_ejn_14720 crossref_primary_10_3390_ijms25105123 crossref_primary_10_1016_j_brs_2023_12_006 crossref_primary_10_1016_j_conb_2023_102693 crossref_primary_10_1016_j_mattod_2024_06_017 crossref_primary_10_1016_j_bbadis_2020_165778 crossref_primary_10_1038_s41591_024_03150_z crossref_primary_10_1186_s12974_023_02910_x crossref_primary_10_1186_s13020_023_00813_w crossref_primary_10_3389_fphar_2022_1086540 crossref_primary_10_3389_fncel_2020_00189 crossref_primary_10_1016_j_mam_2022_101141 crossref_primary_10_3389_fcell_2020_00116 crossref_primary_10_1038_s41398_024_03104_6 crossref_primary_10_1038_s41582_019_0182_4 crossref_primary_10_1155_2024_6633510 crossref_primary_10_1016_j_arr_2025_102725 crossref_primary_10_2174_1570159X21999221111102343 crossref_primary_10_1038_s41380_019_0542_x crossref_primary_10_3233_JAD_220248 crossref_primary_10_1016_j_advnut_2023_04_005 crossref_primary_10_1016_j_stem_2019_12_015 crossref_primary_10_20517_and_2024_32 crossref_primary_10_2174_1570159X19666210823110004 crossref_primary_10_1038_s41398_023_02658_1 crossref_primary_10_3389_fcell_2020_00114 crossref_primary_10_3390_cancers12010146 crossref_primary_10_1016_j_tem_2023_05_008 crossref_primary_10_3389_fncel_2024_1456253 crossref_primary_10_2174_1570159X20666220624111855 crossref_primary_10_1007_s12035_024_04117_4 crossref_primary_10_1177_15333175221078418 crossref_primary_10_3389_fcell_2020_00525 crossref_primary_10_1038_s41539_022_00133_y crossref_primary_10_3389_fnins_2020_00875 crossref_primary_10_1016_j_expneurol_2025_115142 crossref_primary_10_1038_s42255_021_00438_z crossref_primary_10_1038_s41398_021_01742_8 crossref_primary_10_1016_j_arr_2022_101804 crossref_primary_10_1002_alz_12012 crossref_primary_10_1002_ana_27181 crossref_primary_10_3390_ijms22073546 crossref_primary_10_1016_j_arr_2023_102177 crossref_primary_10_3233_JAD_210400 crossref_primary_10_1016_j_pneurobio_2024_102601 crossref_primary_10_1134_S0006297921060110 crossref_primary_10_3389_fneur_2021_628045 crossref_primary_10_3389_fcell_2020_00533 crossref_primary_10_1007_s11010_023_04857_2 crossref_primary_10_1016_j_nbd_2024_106417 crossref_primary_10_3389_fimmu_2022_826091 crossref_primary_10_1016_j_cmet_2022_01_005 crossref_primary_10_1126_science_abl5163 crossref_primary_10_1016_j_bbr_2019_112458 crossref_primary_10_1038_s41598_021_01977_x crossref_primary_10_3390_brainsci11050658 crossref_primary_10_5483_BMBRep_2023_0149 crossref_primary_10_1016_j_biopha_2025_117839 crossref_primary_10_3389_fnagi_2021_682308 crossref_primary_10_1016_j_neuint_2022_105309 crossref_primary_10_1007_s11696_024_03591_3 crossref_primary_10_1038_s41591_020_0985_2 crossref_primary_10_1126_sciadv_aaz5424 crossref_primary_10_3389_fcell_2020_00548 crossref_primary_10_3390_ijms25094621 crossref_primary_10_1016_j_bbi_2024_05_019 crossref_primary_10_1017_S1355617722000492 crossref_primary_10_1002_glia_24662 crossref_primary_10_3389_fnbeh_2020_00109 crossref_primary_10_1093_jb_mvae006 crossref_primary_10_3389_fcell_2022_871757 crossref_primary_10_3389_fnbeh_2020_564184 crossref_primary_10_1038_s41380_019_0440_2 crossref_primary_10_1038_s41392_020_00305_5 crossref_primary_10_2496_hbfr_42_258 crossref_primary_10_1016_j_bpr_2022_100061 crossref_primary_10_4103_1673_5374_293138 crossref_primary_10_3389_fnagi_2021_617733 crossref_primary_10_3389_fnagi_2023_1147420 crossref_primary_10_3233_BPL_190094 crossref_primary_10_3389_fnins_2019_00923 crossref_primary_10_1007_s12015_023_10600_7 crossref_primary_10_1089_scd_2024_0043 crossref_primary_10_1093_brain_awaa222 crossref_primary_10_1038_s41380_024_02504_w crossref_primary_10_1016_j_nlm_2025_108036 crossref_primary_10_3233_JAD_240488 crossref_primary_10_3389_fncel_2019_00561 crossref_primary_10_1080_03008207_2019_1624734 crossref_primary_10_3389_fcell_2019_00158 crossref_primary_10_1016_j_nlm_2022_107589 crossref_primary_10_1515_revneuro_2021_0156 crossref_primary_10_1016_j_yhbeh_2019_104651 crossref_primary_10_1073_pnas_1908658117 crossref_primary_10_1016_j_bbi_2021_10_016 crossref_primary_10_1212_WNL_0000000000207421 crossref_primary_10_1021_acsami_2c03299 crossref_primary_10_3389_fnmol_2022_1041009 crossref_primary_10_1016_j_neures_2020_05_011 crossref_primary_10_1134_S0006297920140060 crossref_primary_10_1016_j_bbamcr_2020_118664 crossref_primary_10_3390_brainsci14010046 crossref_primary_10_3390_ijerph21121553 crossref_primary_10_3390_cells9030649 crossref_primary_10_1016_j_bja_2019_08_019 crossref_primary_10_1111_imr_13267 crossref_primary_10_1038_s41514_025_00209_0 crossref_primary_10_1016_j_neuroscience_2019_09_012 crossref_primary_10_7554_eLife_55456 crossref_primary_10_1186_s13024_024_00719_7 crossref_primary_10_3389_fcell_2021_778345 crossref_primary_10_1016_j_matdes_2023_111916 crossref_primary_10_3389_fnagi_2022_926485 crossref_primary_10_4103_1673_5374_315227 crossref_primary_10_1002_ptr_7430 crossref_primary_10_1016_j_stemcr_2021_11_003 crossref_primary_10_1038_s41574_024_01061_0 crossref_primary_10_1126_sciadv_aba0682 crossref_primary_10_3390_jcm8050685 crossref_primary_10_3390_ijms22042153 crossref_primary_10_1016_j_bpsgos_2024_100419 crossref_primary_10_1007_s43152_021_00028_x crossref_primary_10_1016_j_neurot_2024_e00500 crossref_primary_10_3390_ijms22094628 crossref_primary_10_3390_ijms23052514 crossref_primary_10_4103_1673_5374_284991 crossref_primary_10_1016_j_coph_2019_11_003 crossref_primary_10_1016_j_molmed_2019_07_002 crossref_primary_10_3233_JAD_210607 crossref_primary_10_1016_j_coph_2019_11_004 crossref_primary_10_1016_j_nbd_2021_105406 crossref_primary_10_1038_s41588_023_01425_8 crossref_primary_10_3390_cancers15123193 crossref_primary_10_1007_s12264_023_01092_z crossref_primary_10_15252_embr_202357269 crossref_primary_10_1016_j_ibror_2020_08_003 crossref_primary_10_1038_s41380_021_01122_0 crossref_primary_10_3233_JAD_220643 crossref_primary_10_1042_NS20180208 crossref_primary_10_1016_j_bbr_2019_112118 crossref_primary_10_1089_ars_2020_8238 crossref_primary_10_5483_BMBRep_2023_0167 crossref_primary_10_1016_j_coph_2019_11_009 crossref_primary_10_3390_biology9120426 crossref_primary_10_3390_life11020153 crossref_primary_10_1038_s41586_022_04912_w crossref_primary_10_1097_JBR_0000000000000107 crossref_primary_10_1016_j_bbr_2019_112180 crossref_primary_10_3390_cells12121570 crossref_primary_10_1007_s10072_019_04111_y crossref_primary_10_1016_j_coph_2019_10_006 crossref_primary_10_1177_1759091419892692 crossref_primary_10_1016_j_coph_2019_10_005 crossref_primary_10_3389_fnins_2021_594448 crossref_primary_10_1111_jar_12959 crossref_primary_10_1111_cns_14160 crossref_primary_10_1186_s11658_023_00504_2 crossref_primary_10_3389_fncel_2023_1219847 crossref_primary_10_1016_j_coph_2019_10_002 crossref_primary_10_3390_biom14091104 crossref_primary_10_3390_brainsci10110833 crossref_primary_10_1016_j_freeradbiomed_2022_11_020 crossref_primary_10_3390_cells14050347 crossref_primary_10_1038_s41418_021_00857_1 crossref_primary_10_3233_JAD_215016 crossref_primary_10_3233_ADR_200218 crossref_primary_10_3389_fnins_2023_1047778 crossref_primary_10_4103_1673_5374_375317 crossref_primary_10_1038_s41593_022_01044_2 crossref_primary_10_1016_j_cell_2023_08_042 crossref_primary_10_1038_s41536_023_00311_5 crossref_primary_10_14283_jpad_2022_46 crossref_primary_10_7554_eLife_89507_4 crossref_primary_10_1093_jnen_nlz058 crossref_primary_10_1016_j_jneumeth_2024_110359 crossref_primary_10_3389_fcell_2020_600575 crossref_primary_10_3390_genes15050569 crossref_primary_10_3390_ijms25073658 crossref_primary_10_3390_ijms22115719 crossref_primary_10_1111_acel_12958 crossref_primary_10_3390_ijms24065259 crossref_primary_10_1016_j_apsb_2023_10_007 crossref_primary_10_1016_j_intimp_2022_109548 crossref_primary_10_1016_j_celrep_2023_113022 crossref_primary_10_3390_antiox12081628 crossref_primary_10_7554_eLife_91263_2 crossref_primary_10_2147_DDDT_S380612 crossref_primary_10_1007_s12035_022_03145_2 crossref_primary_10_1177_1759091419884859 crossref_primary_10_1158_0008_5472_CAN_20_3290 crossref_primary_10_1007_s43440_022_00444_2 crossref_primary_10_3390_genes15121599 crossref_primary_10_1002_alz_14379 crossref_primary_10_3390_ijms25137122 crossref_primary_10_1186_s13195_020_00686_3 crossref_primary_10_3233_ADR_210299 crossref_primary_10_1093_brain_awac138 crossref_primary_10_1016_j_tcb_2022_10_004 crossref_primary_10_1007_s12031_021_01887_7 crossref_primary_10_1016_j_cell_2019_07_043 crossref_primary_10_1016_j_pharmthera_2024_108641 crossref_primary_10_1186_s13578_023_01131_2 crossref_primary_10_3233_JAD_230874 crossref_primary_10_1155_2019_2367075 crossref_primary_10_3389_fncel_2021_636176 crossref_primary_10_3389_fnimg_2022_903531 crossref_primary_10_33920_med_03_2412_06 crossref_primary_10_1177_1179069519856876 crossref_primary_10_1016_j_molcel_2022_08_005 crossref_primary_10_1016_j_phymed_2023_155009 crossref_primary_10_3389_fncel_2020_576444 crossref_primary_10_7554_eLife_74940 crossref_primary_10_3389_fnins_2024_1420601 crossref_primary_10_1007_s11064_021_03514_8 crossref_primary_10_1016_j_bioana_2024_04_001 crossref_primary_10_7554_eLife_91263 crossref_primary_10_3389_fnins_2020_588356 crossref_primary_10_3390_cells12162086 crossref_primary_10_3390_ijms252312872 crossref_primary_10_1016_j_stem_2021_03_018 crossref_primary_10_3390_ijms25021241 crossref_primary_10_1016_j_bbr_2019_112154 crossref_primary_10_1155_2022_2998301 crossref_primary_10_1186_s12906_021_03437_5 crossref_primary_10_1016_j_neubiorev_2023_105147 crossref_primary_10_1016_j_stem_2021_05_001 crossref_primary_10_3390_jdad1020008 crossref_primary_10_1016_j_celrep_2019_12_005 crossref_primary_10_1016_j_phymed_2024_155531 crossref_primary_10_1039_D2FO03191D crossref_primary_10_4306_jknpa_2021_60_1_28 crossref_primary_10_1177_25424823241307617 crossref_primary_10_26508_lsa_202000703 crossref_primary_10_1186_s12868_020_00602_3 crossref_primary_10_1016_j_heliyon_2024_e26650 crossref_primary_10_3389_fnins_2022_891713 crossref_primary_10_3390_brainsci11101299 crossref_primary_10_3389_fnbeh_2025_1543122 crossref_primary_10_1016_j_brs_2023_04_022 crossref_primary_10_1016_j_acthis_2024_152194 crossref_primary_10_1038_s41398_023_02456_9 crossref_primary_10_1590_1414_431x2024e13447 crossref_primary_10_1523_ENEURO_0359_22_2023 crossref_primary_10_1042_BST20220762 crossref_primary_10_3389_fnins_2019_01000 crossref_primary_10_18632_aging_103510 crossref_primary_10_3389_fnagi_2022_980636 crossref_primary_10_1016_j_arr_2022_101559 crossref_primary_10_1111_jne_13377 crossref_primary_10_1039_D1FO00286D crossref_primary_10_1007_s12035_021_02367_0 crossref_primary_10_1136_bmjopen_2020_039767 crossref_primary_10_3390_ijms21186906 crossref_primary_10_1016_j_encep_2021_09_001 crossref_primary_10_1186_s13293_025_00694_8 crossref_primary_10_1007_s42250_023_00673_9 crossref_primary_10_3390_ijms24065613 crossref_primary_10_4103_1673_5374_268891 crossref_primary_10_1093_brain_awae127 crossref_primary_10_4103_1673_5374_268896 crossref_primary_10_3390_genes10090640 crossref_primary_10_3390_cells11111770 crossref_primary_10_3390_ijms22179570 crossref_primary_10_3390_ijms24054758 crossref_primary_10_1007_s12035_022_02784_9 crossref_primary_10_1016_j_neuroscience_2023_05_018 crossref_primary_10_21769_BioProtoc_3869 crossref_primary_10_1002_advs_202202475 crossref_primary_10_1007_s13311_020_00874_x crossref_primary_10_3389_fnagi_2022_782932 crossref_primary_10_1111_ejn_15373 crossref_primary_10_1177_10738584211041574 crossref_primary_10_1210_clinem_dgab333 crossref_primary_10_1093_ageing_afae042 crossref_primary_10_1038_s41467_023_43728_8 crossref_primary_10_3390_toxics8020021 crossref_primary_10_1007_s11620_023_00770_4 crossref_primary_10_1097_01_wnt_0001098728_45853_d3 crossref_primary_10_3389_fnana_2021_727883 crossref_primary_10_31857_S0131164624020017 crossref_primary_10_1001_jamanetworkopen_2024_24519 crossref_primary_10_1016_j_nlm_2022_107710 crossref_primary_10_1111_cns_14394 crossref_primary_10_3390_biology13090698 crossref_primary_10_1016_j_expneurol_2023_114543 crossref_primary_10_3390_ijms22179358 crossref_primary_10_1016_j_jchemneu_2019_101667 crossref_primary_10_1016_j_nrleng_2023_07_007 crossref_primary_10_1186_s12916_024_03682_8 crossref_primary_10_1111_ger_12510 crossref_primary_10_1080_21655979_2021_1999549 crossref_primary_10_1016_j_brainresbull_2024_111170 crossref_primary_10_1021_acs_jafc_2c08493 crossref_primary_10_3390_cells9112517 crossref_primary_10_3390_ijms22115795 crossref_primary_10_1016_j_ejmech_2023_115817 crossref_primary_10_1126_science_aaw2622 crossref_primary_10_3389_fnins_2019_00588 crossref_primary_10_1016_j_psep_2023_01_050 crossref_primary_10_1016_j_bbr_2019_111934 crossref_primary_10_3389_fnins_2020_00075 crossref_primary_10_1111_ejn_16242 crossref_primary_10_3390_cancers13112693 crossref_primary_10_1002_stem_3444 crossref_primary_10_1016_j_neurobiolaging_2020_04_003 crossref_primary_10_3390_brainsci14090950 crossref_primary_10_1016_j_cmet_2019_09_001 crossref_primary_10_1038_s41593_022_01251_x crossref_primary_10_1038_s41598_024_72096_6 crossref_primary_10_3390_ijms24032514 crossref_primary_10_1016_j_tox_2019_06_004 crossref_primary_10_3233_JAD_190779 crossref_primary_10_1242_dmm_040386 crossref_primary_10_3390_cells11050765 crossref_primary_10_3233_BPL_200098 crossref_primary_10_15252_embr_202051534 crossref_primary_10_1016_j_neures_2023_02_005 crossref_primary_10_1089_vim_2019_0082 crossref_primary_10_1016_j_brainres_2024_148814 crossref_primary_10_3390_ijms24076587 crossref_primary_10_3389_fnagi_2021_672077 crossref_primary_10_2174_1574888X17666220831105257 crossref_primary_10_1007_s12264_023_01020_1 crossref_primary_10_3389_fncel_2020_620379 crossref_primary_10_1186_s13024_019_0323_7 crossref_primary_10_1002_dneu_22674 crossref_primary_10_1212_WNL_0000000000010728 crossref_primary_10_4049_jimmunol_2000037 crossref_primary_10_1186_s40035_023_00355_z crossref_primary_10_3389_fpsyt_2021_780095 crossref_primary_10_1186_s13287_020_02126_3 crossref_primary_10_3389_fnins_2020_568930 crossref_primary_10_3389_fnins_2024_1416738 crossref_primary_10_1016_j_bbr_2021_113114 crossref_primary_10_1186_s13287_024_03818_w crossref_primary_10_26599_JNR_2020_9040004 crossref_primary_10_3390_ijms22147339 crossref_primary_10_1016_j_molmet_2019_09_002 crossref_primary_10_1186_s41232_022_00216_8 crossref_primary_10_1038_s41467_024_50699_x crossref_primary_10_1016_j_nbd_2022_105746 crossref_primary_10_12688_f1000research_20642_1 crossref_primary_10_1126_science_abo0920 crossref_primary_10_1007_s00401_022_02467_8 crossref_primary_10_1016_j_biomaterials_2020_120160 crossref_primary_10_1186_s13287_024_03805_1 crossref_primary_10_1111_acer_14207 crossref_primary_10_3389_fnins_2023_1186256 crossref_primary_10_1016_j_coph_2019_12_002 crossref_primary_10_1016_j_coph_2019_12_003 crossref_primary_10_1016_j_neulet_2021_135978 crossref_primary_10_3390_cells10040721 crossref_primary_10_1016_j_crneur_2023_100102 crossref_primary_10_1073_pnas_2113835118 crossref_primary_10_1007_s12035_023_03282_2 |
Cites_doi | 10.3233/JAD-2012-112057 10.1371/journal.pone.0008809 10.1016/0197-4580(95)00021-6 10.1016/j.stem.2018.03.015 10.1002/ar.1091450409 10.1073/pnas.1017099108 10.1016/j.cell.2013.05.002 10.1038/3305 10.1007/s00401-006-0127-z 10.3233/JAD-2010-101149 10.1038/nature25975 10.1016/S1474-4422(15)70016-5 10.1038/mp.2013.4 10.1186/alzrt250 10.1186/1471-2202-7-77 10.1016/j.tins.2010.09.003 10.1038/s41586-018-0262-4 10.1093/cercor/bhy096 10.1016/S1044-7431(03)00207-0 10.1186/s13024-017-0200-1 10.1038/tp.2014.92 10.1073/pnas.1013456108 10.1523/JNEUROSCI.3648-05.2006 10.1002/hipo.20175 10.1038/nn0307-273 10.1038/nature09817 10.1126/science.1214956 10.1016/j.tins.2004.05.013 10.1016/j.stem.2010.08.014 10.1016/j.stem.2018.04.004 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 COPYRIGHT 2019 Nature Publishing Group 2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 – notice: COPYRIGHT 2019 Nature Publishing Group – notice: 2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U7 7U9 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M2P M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 |
DOI | 10.1038/s41591-019-0375-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1546-170X |
EndPage | 560 |
ExternalDocumentID | A581338869 30911133 10_1038_s41591_019_0375_9 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .-4 .55 .GJ 0R~ 123 1CY 29M 2FS 36B 39C 3O- 3V. 4.4 53G 5BI 5M7 5RE 5S5 70F 7X7 85S 88A 88E 88I 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AARCD AAYOK AAYZH AAZLF ABAWZ ABCQX ABDBF ABDPE ABEFU ABJNI ABLJU ABOCM ABUWG ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGCDD AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAO IEA IH2 IHR IHW INH INR IOF IOV ISR ITC J5H L7B LGEZI LK8 LOTEE M0L M1P M2O M2P M7P MK0 N9A NADUK NNMJJ NXXTH O9- ODYON P2P PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT RVV SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TSG TUS UKHRP UQL X7M XJT YHZ ZGI ~8M AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT AETEA CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QG 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U7 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c576t-693af3003be2e6d19c93b3d8959b9db086d8329e164ce184c45e88404d9ed4503 |
IEDL.DBID | 7X7 |
ISSN | 1078-8956 1546-170X |
IngestDate | Mon Jul 21 11:15:41 EDT 2025 Sat Aug 23 13:10:42 EDT 2025 Tue Jun 17 21:07:30 EDT 2025 Thu Jun 12 23:45:30 EDT 2025 Tue Jun 10 20:20:03 EDT 2025 Fri Jun 27 04:22:27 EDT 2025 Fri Jun 27 04:05:09 EDT 2025 Thu May 22 21:14:11 EDT 2025 Mon Jul 21 05:46:10 EDT 2025 Tue Jul 01 03:53:41 EDT 2025 Thu Apr 24 23:03:40 EDT 2025 Fri Feb 21 02:37:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c576t-693af3003be2e6d19c93b3d8959b9db086d8329e164ce184c45e88404d9ed4503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9129-5198 0000-0002-0175-5080 |
PMID | 30911133 |
PQID | 2203124905 |
PQPubID | 33975 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2197897137 proquest_journals_2203124905 gale_infotracmisc_A581338869 gale_infotracgeneralonefile_A581338869 gale_infotracacademiconefile_A581338869 gale_incontextgauss_ISR_A581338869 gale_incontextgauss_IOV_A581338869 gale_healthsolutions_A581338869 pubmed_primary_30911133 crossref_primary_10_1038_s41591_019_0375_9 crossref_citationtrail_10_1038_s41591_019_0375_9 springer_journals_10_1038_s41591_019_0375_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature medicine |
PublicationTitleAbbrev | Nat Med |
PublicationTitleAlternate | Nat Med |
PublicationYear | 2019 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Sierra (CR21) 2010; 7 Plumpe (CR13) 2006; 7 Wesnes, Annas, Basun, Edgar, Blennow (CR24) 2014; 6 Bischofberger (CR23) 2007; 10 Zhao, Teng, Summers, Ming, Gage (CR16) 2006; 26 Braak, Alafuzoff, Arzberger, Kretzschmar, Del Tredici (CR29) 2006; 112 Altman (CR2) 1963; 145 Diez-Fraile, Van Hecke, Guérin, D’Herde (CR33) 2012; 1 Sorrells (CR9) 2018; 555 Kohler, Williams, Stanton, Cameron, Greenough (CR17) 2011; 108 Llorens-Martin (CR18) 2013; 18 Boldrini (CR7) 2018; 22 Braak, Braak (CR20) 1995; 16 Brandt (CR15) 2003; 24 Kempermann (CR11) 2018; 23 Knoth (CR8) 2010; 5 Cipriani (CR10) 2018; 28 Lazarov, Mattson, Peterson, Pimplikar, van Praag (CR19) 2010; 33 Kempermann, Jessberger, Steiner, Kronenberg (CR12) 2004; 27 Bolos (CR30) 2017; 12 CR28 Sahay (CR3) 2011; 472 Spalding (CR6) 2013; 153 CR26 Marin-Burgin, Mongiat, Pardi, Schinder (CR22) 2012; 335 Anacker (CR4) 2018; 559 Eriksson (CR5) 1998; 4 Karalay (CR14) 2011; 108 Llorens-Martin (CR32) 2014; 4 Heneka (CR25) 2015; 14 Braak, Braak (CR1) 1990; 108 Martinez-Martin, Avila (CR27) 2010; 21 Llorens-Martin, Torres-Aleman, Trejo (CR34) 2006; 16 Llorens-Martin (CR31) 2012; 29 M Boldrini (375_CR7) 2018; 22 H Braak (375_CR1) 1990; 108 G Kempermann (375_CR12) 2004; 27 A Sierra (375_CR21) 2010; 7 A Marin-Burgin (375_CR22) 2012; 335 J Bischofberger (375_CR23) 2007; 10 M Bolos (375_CR30) 2017; 12 PS Eriksson (375_CR5) 1998; 4 A Sahay (375_CR3) 2011; 472 S Cipriani (375_CR10) 2018; 28 A Diez-Fraile (375_CR33) 2012; 1 J Altman (375_CR2) 1963; 145 M Llorens-Martin (375_CR31) 2012; 29 G Kempermann (375_CR11) 2018; 23 R Knoth (375_CR8) 2010; 5 SJ Kohler (375_CR17) 2011; 108 O Karalay (375_CR14) 2011; 108 O Lazarov (375_CR19) 2010; 33 M Llorens-Martin (375_CR34) 2006; 16 MD Brandt (375_CR15) 2003; 24 P Martinez-Martin (375_CR27) 2010; 21 KL Spalding (375_CR6) 2013; 153 C Anacker (375_CR4) 2018; 559 T Plumpe (375_CR13) 2006; 7 SF Sorrells (375_CR9) 2018; 555 KA Wesnes (375_CR24) 2014; 6 H Braak (375_CR20) 1995; 16 M Llorens-Martin (375_CR32) 2014; 4 M Llorens-Martin (375_CR18) 2013; 18 H Braak (375_CR29) 2006; 112 MT Heneka (375_CR25) 2015; 14 375_CR26 C Zhao (375_CR16) 2006; 26 375_CR28 31514645 - Neuroscientist. 2019 Aug;25(4):285 30911138 - Nat Med. 2019 Apr;25(4):542-543 31007011 - ACS Chem Neurosci. 2019 May 15;10(5):2091-2093 31271749 - Cell Stem Cell. 2019 Jul 3;25(1):7-8 30953034 - Nat Rev Neurol. 2019 May;15(5):245 |
References_xml | – volume: 29 start-page: 921 year: 2012 end-page: 930 ident: CR31 article-title: Tau isoform with three microtubule binding domains is a marker of new axons generated from the subgranular zone in the hippocampal dentate gyrus: implications for Alzheimer’s disease publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2012-112057 – volume: 5 start-page: e8809 year: 2010 ident: CR8 article-title: Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years publication-title: PLoS ONE doi: 10.1371/journal.pone.0008809 – volume: 16 start-page: 271 year: 1995 end-page: 278 ident: CR20 article-title: Staging of Alzheimer’s disease–related neurofibrillary changes publication-title: Neurobiol. Aging doi: 10.1016/0197-4580(95)00021-6 – volume: 22 start-page: 589 year: 2018 end-page: 599 ident: CR7 article-title: Human hippocampal neurogenesis persists throughout aging publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.03.015 – volume: 145 start-page: 573 year: 1963 end-page: 591 ident: CR2 article-title: Autoradiographic investigation of cell proliferation in the brains of rats and cats publication-title: Anat. Rec. doi: 10.1002/ar.1091450409 – volume: 108 start-page: 10326 year: 2011 end-page: 10331 ident: CR17 article-title: Maturation time of new granule cells in the dentate gyrus of adult macaque monkeys exceeds six months publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1017099108 – volume: 153 start-page: 1219 year: 2013 end-page: 1227 ident: CR6 article-title: Dynamics of hippocampal neurogenesis in adult humans publication-title: Cell doi: 10.1016/j.cell.2013.05.002 – volume: 4 start-page: 1313 year: 1998 end-page: 1317 ident: CR5 article-title: Neurogenesis in the adult human hippocampus publication-title: Nat. Med. doi: 10.1038/3305 – volume: 112 start-page: 389 year: 2006 end-page: 404 ident: CR29 article-title: Staging of Alzheimer disease–associated neurofibrillary pathology using paraffin sections and immunocytochemistry publication-title: Acta Neuropathol. doi: 10.1007/s00401-006-0127-z – volume: 108 start-page: 621 year: 1990 end-page: 624 ident: CR1 article-title: Morphology of Alzheimer disease publication-title: Fortschr. Med. – volume: 21 start-page: 337 year: 2010 end-page: 348 ident: CR27 article-title: Alzheimer Center Reina Sofia Foundation: fighting the disease and providing overall solutions publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2010-101149 – volume: 555 start-page: 377 year: 2018 end-page: 381 ident: CR9 article-title: Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults publication-title: Nature doi: 10.1038/nature25975 – volume: 14 start-page: 388 year: 2015 end-page: 405 ident: CR25 article-title: Neuroinflammation in Alzheimer’s disease publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(15)70016-5 – volume: 18 start-page: 451 year: 2013 end-page: 460 ident: CR18 article-title: GSK-3β overexpression causes reversible alterations on postsynaptic densities and dendritic morphology of hippocampal granule neurons in vivo publication-title: Mol. Psychiatry doi: 10.1038/mp.2013.4 – volume: 6 start-page: 20 year: 2014 ident: CR24 article-title: Performance on a pattern separation task by Alzheimer’s patients shows possible links between disrupted dentate gyrus activity and apolipoprotein E4 in status and cerebrospinal fluid amyloid-β42 levels publication-title: Alzheimers Res. Ther. doi: 10.1186/alzrt250 – volume: 7 year: 2006 ident: CR13 article-title: Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation publication-title: BMC Neurosci. doi: 10.1186/1471-2202-7-77 – volume: 33 start-page: 569 year: 2010 end-page: 579 ident: CR19 article-title: When neurogenesis encounters aging and disease publication-title: Trends Neurosci. doi: 10.1016/j.tins.2010.09.003 – volume: 559 start-page: 98 year: 2018 end-page: 102 ident: CR4 article-title: Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus publication-title: Nature doi: 10.1038/s41586-018-0262-4 – volume: 28 start-page: 2458 year: 2018 end-page: 2478 ident: CR10 article-title: Hippocampal radial glial subtypes and their neurogenic potential in human fetuses and healthy and Alzheimer’s disease adults publication-title: Cereb. Cortex doi: 10.1093/cercor/bhy096 – volume: 24 start-page: 603 year: 2003 end-page: 613 ident: CR15 article-title: Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice publication-title: Mol. Cell. Neurosci. doi: 10.1016/S1044-7431(03)00207-0 – volume: 12 start-page: 59 year: 2017 ident: CR30 article-title: Absence of CX3CR1 impairs the internalization of tau by microglia publication-title: Mol. Neurodegener. doi: 10.1186/s13024-017-0200-1 – volume: 4 year: 2014 ident: CR32 article-title: Peripherally triggered and GSK-3β-driven brain inflammation differentially skew adult hippocampal neurogenesis, behavioral pattern separation and microglial activation in response to ibuprofen publication-title: Transl. Psychiatry doi: 10.1038/tp.2014.92 – volume: 108 start-page: 5807 year: 2011 end-page: 5812 ident: CR14 article-title: Prospero-related homeobox 1 gene ( ) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1013456108 – volume: 26 start-page: 3 year: 2006 end-page: 11 ident: CR16 article-title: Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3648-05.2006 – volume: 16 start-page: 480 year: 2006 end-page: 490 ident: CR34 article-title: Pronounced individual variation in the response to the stimulatory action of exercise on immature hippocampal neurons publication-title: Hippocampus doi: 10.1002/hipo.20175 – volume: 10 start-page: 273 year: 2007 end-page: 275 ident: CR23 article-title: Young and excitable: new neurons in memory networks publication-title: Nat. Neurosci. doi: 10.1038/nn0307-273 – volume: 1 start-page: 320 year: 2012 ident: CR33 article-title: Applications of immunocytochemistry publication-title: InTechOpen – volume: 472 start-page: 466 year: 2011 end-page: 470 ident: CR3 article-title: Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation publication-title: Nature doi: 10.1038/nature09817 – volume: 335 start-page: 1238 year: 2012 end-page: 1242 ident: CR22 article-title: Unique processing during a period of high excitation/inhibition balance in adult-born neurons publication-title: Science doi: 10.1126/science.1214956 – ident: CR28 – ident: CR26 – volume: 27 start-page: 447 year: 2004 end-page: 452 ident: CR12 article-title: Milestones of neuronal development in the adult hippocampus publication-title: Trends Neurosci. doi: 10.1016/j.tins.2004.05.013 – volume: 7 start-page: 483 year: 2010 end-page: 495 ident: CR21 article-title: Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.08.014 – volume: 23 start-page: 25 year: 2018 end-page: 30 ident: CR11 article-title: Human adult neurogenesis: evidence and remaining questions publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.04.004 – volume: 472 start-page: 466 year: 2011 ident: 375_CR3 publication-title: Nature doi: 10.1038/nature09817 – volume: 33 start-page: 569 year: 2010 ident: 375_CR19 publication-title: Trends Neurosci. doi: 10.1016/j.tins.2010.09.003 – volume: 559 start-page: 98 year: 2018 ident: 375_CR4 publication-title: Nature doi: 10.1038/s41586-018-0262-4 – volume: 16 start-page: 271 year: 1995 ident: 375_CR20 publication-title: Neurobiol. Aging doi: 10.1016/0197-4580(95)00021-6 – ident: 375_CR26 – volume: 145 start-page: 573 year: 1963 ident: 375_CR2 publication-title: Anat. Rec. doi: 10.1002/ar.1091450409 – volume: 26 start-page: 3 year: 2006 ident: 375_CR16 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3648-05.2006 – volume: 22 start-page: 589 year: 2018 ident: 375_CR7 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.03.015 – volume: 7 start-page: 483 year: 2010 ident: 375_CR21 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.08.014 – volume: 14 start-page: 388 year: 2015 ident: 375_CR25 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(15)70016-5 – ident: 375_CR28 – volume: 335 start-page: 1238 year: 2012 ident: 375_CR22 publication-title: Science doi: 10.1126/science.1214956 – volume: 18 start-page: 451 year: 2013 ident: 375_CR18 publication-title: Mol. Psychiatry doi: 10.1038/mp.2013.4 – volume: 6 start-page: 20 year: 2014 ident: 375_CR24 publication-title: Alzheimers Res. Ther. doi: 10.1186/alzrt250 – volume: 16 start-page: 480 year: 2006 ident: 375_CR34 publication-title: Hippocampus doi: 10.1002/hipo.20175 – volume: 555 start-page: 377 year: 2018 ident: 375_CR9 publication-title: Nature doi: 10.1038/nature25975 – volume: 1 start-page: 320 year: 2012 ident: 375_CR33 publication-title: InTechOpen – volume: 4 start-page: 1313 year: 1998 ident: 375_CR5 publication-title: Nat. Med. doi: 10.1038/3305 – volume: 21 start-page: 337 year: 2010 ident: 375_CR27 publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2010-101149 – volume: 27 start-page: 447 year: 2004 ident: 375_CR12 publication-title: Trends Neurosci. doi: 10.1016/j.tins.2004.05.013 – volume: 12 start-page: 59 year: 2017 ident: 375_CR30 publication-title: Mol. Neurodegener. doi: 10.1186/s13024-017-0200-1 – volume: 10 start-page: 273 year: 2007 ident: 375_CR23 publication-title: Nat. Neurosci. doi: 10.1038/nn0307-273 – volume: 108 start-page: 5807 year: 2011 ident: 375_CR14 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1013456108 – volume: 24 start-page: 603 year: 2003 ident: 375_CR15 publication-title: Mol. Cell. Neurosci. doi: 10.1016/S1044-7431(03)00207-0 – volume: 112 start-page: 389 year: 2006 ident: 375_CR29 publication-title: Acta Neuropathol. doi: 10.1007/s00401-006-0127-z – volume: 108 start-page: 621 year: 1990 ident: 375_CR1 publication-title: Fortschr. Med. – volume: 7 year: 2006 ident: 375_CR13 publication-title: BMC Neurosci. doi: 10.1186/1471-2202-7-77 – volume: 5 start-page: e8809 year: 2010 ident: 375_CR8 publication-title: PLoS ONE doi: 10.1371/journal.pone.0008809 – volume: 153 start-page: 1219 year: 2013 ident: 375_CR6 publication-title: Cell doi: 10.1016/j.cell.2013.05.002 – volume: 4 year: 2014 ident: 375_CR32 publication-title: Transl. Psychiatry doi: 10.1038/tp.2014.92 – volume: 108 start-page: 10326 year: 2011 ident: 375_CR17 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1017099108 – volume: 23 start-page: 25 year: 2018 ident: 375_CR11 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.04.004 – volume: 29 start-page: 921 year: 2012 ident: 375_CR31 publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2012-112057 – volume: 28 start-page: 2458 year: 2018 ident: 375_CR10 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhy096 – reference: 30953034 - Nat Rev Neurol. 2019 May;15(5):245 – reference: 31007011 - ACS Chem Neurosci. 2019 May 15;10(5):2091-2093 – reference: 31271749 - Cell Stem Cell. 2019 Jul 3;25(1):7-8 – reference: 30911138 - Nat Med. 2019 Apr;25(4):542-543 – reference: 31514645 - Neuroscientist. 2019 Aug;25(4):285 |
SSID | ssj0003059 |
Score | 2.7123256 |
Snippet | The hippocampus is one of the most affected areas in Alzheimer’s disease (AD)
1
. Moreover, this structure hosts one of the most unique phenomena of the adult... The hippocampus is one of the most affected areas in Alzheimer's disease (AD) . Moreover, this structure hosts one of the most unique phenomena of the adult... The hippocampus is one of the most affected areas in Alzheimer's disease (AD).sup.1. Moreover, this structure hosts one of the most unique phenomena of the... The hippocampus is one of the most affected areas in Alzheimer’s disease (AD)1. Moreover, this structure hosts one of the most unique phenomena of the adult... The hippocampus is one of the most affected areas in Alzheimer's disease (AD)1. Moreover, this structure hosts one of the most unique phenomena of the adult... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 554 |
SubjectTerms | 631/378/1689/1283 631/378/368/2431 692/617/375/365/1283 Adult Adults Advertising executives Aging Alzheimer Disease - pathology Alzheimer's disease Biomarkers - metabolism Biomedical and Life Sciences Biomedicine Brain Cancer Research Care and treatment Cell Differentiation Controlled conditions Dentate gyrus Dentate Gyrus - pathology Development and progression Doublecortin Domain Proteins Hippocampal plasticity Hippocampus Hippocampus - pathology Humans Identification methods Infectious Diseases Letter Maturation Metabolic Diseases Microtubule-Associated Proteins - metabolism Molecular Medicine Neurogenesis Neurons Neuropeptides - metabolism Neurosciences Novels Physiology Psychological aspects Resveratrol |
Title | Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease |
URI | https://link.springer.com/article/10.1038/s41591-019-0375-9 https://www.ncbi.nlm.nih.gov/pubmed/30911133 https://www.proquest.com/docview/2203124905 https://www.proquest.com/docview/2197897137 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dbtMwFLZgE4gbBOOvYwyDEEhM0ZI4aeIrlKJVA2kFDYZ6ZyW201YqaVa3F-WKK96B1-NJOCdxMjLBhFSpF_5cNcfnJ5_P8TEhL6RmXqg86UgFdDXIc-mkfpg6uWYQIFLgPyluDZyM-sdnwftxOLYbbsaWVTY-sXLUaiFxj_zQ90H9gCu44Zvy3MFbozC7aq_QuE62sXUZanU0bgkX6jKvaw5jJwYi0GQ1WXxoIHBhzQ8e4WFR6PBOXLrsnf8IT5fypVUYGt4ht-37I03qBb9Lrulih9yob5Tc7JCbJzZXfo_8SLC1Bp3OyhLiFVj9nFbNKyfo3WaGwifN8BxIsaKzoh6zjnC-ofX5yA016wx3agBbKKqWi9JQM02XJUBgku3Kaihu59Jk_m2qZ1_18tf3n4ba1M99cjY8-vz22LG3LjgSuMfK6XOW5gyEl2lf95XHJWcZUyA_nnGVAQVS4AW4Bp4lNfBDGYQ6BpoYKK5VELrsAdkqFoV-RKjv5nmgWJQz7J0eqSxicZaBkwljpj1f9ojbyFxI25Icb8aYiyo1zmJRL5OAZRK4TIL3yOt2Sln347gK_BQXUtQia21ZJGGM1DzuA-J5hcBOGAWW2kzStTHi3Ycv_wH6dNoBvbKgfAHPIFN7vAEkgR22OsiXHeSk7i_-N-BeBwiGL7vDjX4K63iMuDCTHnnWDuNMLKYr9GINGI9HMY88FvXIw1qvW1kyF6MfYz1y0Cj6xY__U9C7V_-Vx-SWX1kaFjztka3Vcq2fwLvcKtuvDHafbCfDwWAE34Oj0cfT3xryR6w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbGED83CMZfYTCDgEmgaEmcNPEFQhUwtWwdEmyodyaxnbZSSUPdCpUrrngHXoKH4kk4J046MsHEzaTe-bOV-hyf4-PzR8gjqZkXKk86UoG5GmSZdBI_TJxMM1AQCdg_CT4N9A_a3aPgzSAcrJGfdS4MhlXWMrEU1Goq8Y18x_eB_cBWcMMXxWcHu0ahd7VuoWHZYk8vv4DJZp73XgF9H_v-7uvDl12n6irgSLhbz502Z0nGgJlT7eu28rjkLGUq5iFPuUrhiq-Ay7kGO0JqsH9kEOoYzKBAca2C0GWw7jlyHhSvi8ZeNFgZeHh2uI1xjB1Yr117UVm8Y0BRYowRpgyxKHR4Qw-e1AZ_qMMT_tlS7e1eJVeq-yrtWAa7RtZ0vkEu2A6Wyw1ysV_55q-T7x0s5UFH46IA_QhSZkLLYplDlKZjQ-GXpJh3ks_pOLdjleCdLKnNx1xSs0jxZQiwuaJqNi0MNaNkVgAEJlVVYA3F52PamXwd6fEnPfv17YehlavpBjk6E3rcJOv5NNe3CfXdLAsUizKGtdojlUYsTlMQamHMtOfLFnHrPReyKoGOnTgmonTFs1hYMgkgk0AyCd4iT1dTClv_4zTwFhJS2C1byQ7RCWN8CojbgHhYIrDyRo6hPcNkYYzovf3wH6D37xqg7QqUTeE_yKRKp4CdwIpeDeSTBnJo65n_DbjZAIKgkc3hmj9FJeiMOD6WLfJgNYwzMXgv19MFYDwexTzyWNQityxfr_aSuahtGWuRZzWjHy_-z42-c_qnbJFL3cP-vtjvHezdJZf98tRhsNUmWZ_PFvoe3CPn6f3y8FLy8aylxW8r2YBT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJyZeEIx_hcEM4o8EitrESRM_IFTYqpWxMQ2G9mYS22krlTTUrVB54onvwFfh4_BJuEucjkww8TKpb_7ZSn3n3_l85zMhD6VmbqBc6UgF7qqfptKJvSB2Us3AQMTg_8R4NLC339k58l8fB8cr5Gd1FwbTKitOLIhaTSSekbc8D9QPfIV20EptWsTBVu9F_tnBF6Qw0lo9p1GqyK5efAH3zTzvb4GsH3leb_v9qx3HvjDgSNhnz5wOZ3HKQLET7emOcrnkLGEq4gFPuEpgu69A47kGn0Jq8IWkH-gIXCJfca38oM1g3AtkNUSvqEFWX27vHxwu7QCsJF5mPEYOjNipYqosahkwm5hxhBeIWBg4vGYVT9uGP4zjqWhtYQR7V8hlu3ul3VLdrpIVna2Ti-V7lot1srZnI_XXyPcuFvagw1Geg7UEzhnTonTmALl1ZCj84gRvoWQzOsrKNkvD4wUtb2cuqJkneE4E2ExRNZ3khpphPM0BAp1sTVhD8TCZdsdfh3r0SU9_ffthqA08XSdH5yKRG6SRTTJ9i1Cvnaa-YmHKsHJ7qJKQRUkCFBdETLuebJJ2NedC2oLo-C7HWBSBeRaJUkwCxCRQTII3ydNll7ysBnIWeBMFKcopWzKJ6AYRHgxEHUA8KBBYhyNDjR7Ec2NE_-2H_wC9O6yBnlhQOoH_IGN7uQJmAut71ZCPa8hBWd38b8CNGhBoR9abK_0UlvaMOFmkTXJ_2Yw9MZUv05M5YFweRjx0WdgkN0u9Xs4la6PtZaxJnlWKfjL4Pyf69tmfsknWgCnEm_7-7h1yySsWHWZebZDGbDrXd2FTOUvu2dVLycfzJozfCUuF7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adult+hippocampal+neurogenesis+is+abundant+in+neurologically+healthy+subjects+and+drops+sharply+in+patients+with+Alzheimer%27s+disease&rft.jtitle=Nature+medicine&rft.au=Moreno-Jim%C3%A9nez%2C+Elena+P&rft.au=Flor-Garc%C3%ADa%2C+Miguel&rft.au=Terreros-Roncal%2C+Julia&rft.au=R%C3%A1bano%2C+Alberto&rft.date=2019-04-01&rft.pub=Nature+Publishing+Group&rft.issn=1078-8956&rft.volume=25&rft.issue=4&rft.spage=554&rft_id=info:doi/10.1038%2Fs41591-019-0375-9&rft.externalDocID=A581338869 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon |