Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease

The hippocampus is one of the most affected areas in Alzheimer’s disease (AD) 1 . Moreover, this structure hosts one of the most unique phenomena of the adult mammalian brain, namely, the addition of new neurons throughout life 2 . This process, called adult hippocampal neurogenesis (AHN), confers a...

Full description

Saved in:
Bibliographic Details
Published inNature medicine Vol. 25; no. 4; pp. 554 - 560
Main Authors Moreno-Jiménez, Elena P., Flor-García, Miguel, Terreros-Roncal, Julia, Rábano, Alberto, Cafini, Fabio, Pallas-Bazarra, Noemí, Ávila, Jesús, Llorens-Martín, María
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.04.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The hippocampus is one of the most affected areas in Alzheimer’s disease (AD) 1 . Moreover, this structure hosts one of the most unique phenomena of the adult mammalian brain, namely, the addition of new neurons throughout life 2 . This process, called adult hippocampal neurogenesis (AHN), confers an unparalleled degree of plasticity to the entire hippocampal circuitry 3 , 4 . Nonetheless, direct evidence of AHN in humans has remained elusive. Thus, determining whether new neurons are continuously incorporated into the human dentate gyrus (DG) during physiological and pathological aging is a crucial question with outstanding therapeutic potential. By combining human brain samples obtained under tightly controlled conditions and state-of-the-art tissue processing methods, we identified thousands of immature neurons in the DG of neurologically healthy human subjects up to the ninth decade of life. These neurons exhibited variable degrees of maturation along differentiation stages of AHN. In sharp contrast, the number and maturation of these neurons progressively declined as AD advanced. These results demonstrate the persistence of AHN during both physiological and pathological aging in humans and provide evidence for impaired neurogenesis as a potentially relevant mechanism underlying memory deficits in AD that might be amenable to novel therapeutic strategies. Newborn neurons are continuously incorporated into the healthy adult human hippocampus up to the ninth decade of life. However, robust adult hippocampal neurogenesis sharply declines during the progression of Alzheimer’s disease.
AbstractList The hippocampus is one of the most affected areas in Alzheimer's disease (AD).sup.1. Moreover, this structure hosts one of the most unique phenomena of the adult mammalian brain, namely, the addition of new neurons throughout life.sup.2. This process, called adult hippocampal neurogenesis (AHN), confers an unparalleled degree of plasticity to the entire hippocampal circuitry.sup.3,4. Nonetheless, direct evidence of AHN in humans has remained elusive. Thus, determining whether new neurons are continuously incorporated into the human dentate gyrus (DG) during physiological and pathological aging is a crucial question with outstanding therapeutic potential. By combining human brain samples obtained under tightly controlled conditions and state-of-the-art tissue processing methods, we identified thousands of immature neurons in the DG of neurologically healthy human subjects up to the ninth decade of life. These neurons exhibited variable degrees of maturation along differentiation stages of AHN. In sharp contrast, the number and maturation of these neurons progressively declined as AD advanced. These results demonstrate the persistence of AHN during both physiological and pathological aging in humans and provide evidence for impaired neurogenesis as a potentially relevant mechanism underlying memory deficits in AD that might be amenable to novel therapeutic strategies. Newborn neurons are continuously incorporated into the healthy adult human hippocampus up to the ninth decade of life. However, robust adult hippocampal neurogenesis sharply declines during the progression of Alzheimer's disease.
The hippocampus is one of the most affected areas in Alzheimer's disease (AD).sup.1. Moreover, this structure hosts one of the most unique phenomena of the adult mammalian brain, namely, the addition of new neurons throughout life.sup.2. This process, called adult hippocampal neurogenesis (AHN), confers an unparalleled degree of plasticity to the entire hippocampal circuitry.sup.3,4. Nonetheless, direct evidence of AHN in humans has remained elusive. Thus, determining whether new neurons are continuously incorporated into the human dentate gyrus (DG) during physiological and pathological aging is a crucial question with outstanding therapeutic potential. By combining human brain samples obtained under tightly controlled conditions and state-of-the-art tissue processing methods, we identified thousands of immature neurons in the DG of neurologically healthy human subjects up to the ninth decade of life. These neurons exhibited variable degrees of maturation along differentiation stages of AHN. In sharp contrast, the number and maturation of these neurons progressively declined as AD advanced. These results demonstrate the persistence of AHN during both physiological and pathological aging in humans and provide evidence for impaired neurogenesis as a potentially relevant mechanism underlying memory deficits in AD that might be amenable to novel therapeutic strategies.
The hippocampus is one of the most affected areas in Alzheimer's disease (AD) . Moreover, this structure hosts one of the most unique phenomena of the adult mammalian brain, namely, the addition of new neurons throughout life . This process, called adult hippocampal neurogenesis (AHN), confers an unparalleled degree of plasticity to the entire hippocampal circuitry . Nonetheless, direct evidence of AHN in humans has remained elusive. Thus, determining whether new neurons are continuously incorporated into the human dentate gyrus (DG) during physiological and pathological aging is a crucial question with outstanding therapeutic potential. By combining human brain samples obtained under tightly controlled conditions and state-of-the-art tissue processing methods, we identified thousands of immature neurons in the DG of neurologically healthy human subjects up to the ninth decade of life. These neurons exhibited variable degrees of maturation along differentiation stages of AHN. In sharp contrast, the number and maturation of these neurons progressively declined as AD advanced. These results demonstrate the persistence of AHN during both physiological and pathological aging in humans and provide evidence for impaired neurogenesis as a potentially relevant mechanism underlying memory deficits in AD that might be amenable to novel therapeutic strategies.
The hippocampus is one of the most affected areas in Alzheimer’s disease (AD) 1 . Moreover, this structure hosts one of the most unique phenomena of the adult mammalian brain, namely, the addition of new neurons throughout life 2 . This process, called adult hippocampal neurogenesis (AHN), confers an unparalleled degree of plasticity to the entire hippocampal circuitry 3 , 4 . Nonetheless, direct evidence of AHN in humans has remained elusive. Thus, determining whether new neurons are continuously incorporated into the human dentate gyrus (DG) during physiological and pathological aging is a crucial question with outstanding therapeutic potential. By combining human brain samples obtained under tightly controlled conditions and state-of-the-art tissue processing methods, we identified thousands of immature neurons in the DG of neurologically healthy human subjects up to the ninth decade of life. These neurons exhibited variable degrees of maturation along differentiation stages of AHN. In sharp contrast, the number and maturation of these neurons progressively declined as AD advanced. These results demonstrate the persistence of AHN during both physiological and pathological aging in humans and provide evidence for impaired neurogenesis as a potentially relevant mechanism underlying memory deficits in AD that might be amenable to novel therapeutic strategies. Newborn neurons are continuously incorporated into the healthy adult human hippocampus up to the ninth decade of life. However, robust adult hippocampal neurogenesis sharply declines during the progression of Alzheimer’s disease.
The hippocampus is one of the most affected areas in Alzheimer's disease (AD)1. Moreover, this structure hosts one of the most unique phenomena of the adult mammalian brain, namely, the addition of new neurons throughout life2. This process, called adult hippocampal neurogenesis (AHN), confers an unparalleled degree of plasticity to the entire hippocampal circuitry3,4. Nonetheless, direct evidence of AHN in humans has remained elusive. Thus, determining whether new neurons are continuously incorporated into the human dentate gyrus (DG) during physiological and pathological aging is a crucial question with outstanding therapeutic potential. By combining human brain samples obtained under tightly controlled conditions and state-of-the-art tissue processing methods, we identified thousands of immature neurons in the DG of neurologically healthy human subjects up to the ninth decade of life. These neurons exhibited variable degrees of maturation along differentiation stages of AHN. In sharp contrast, the number and maturation of these neurons progressively declined as AD advanced. These results demonstrate the persistence of AHN during both physiological and pathological aging in humans and provide evidence for impaired neurogenesis as a potentially relevant mechanism underlying memory deficits in AD that might be amenable to novel therapeutic strategies.The hippocampus is one of the most affected areas in Alzheimer's disease (AD)1. Moreover, this structure hosts one of the most unique phenomena of the adult mammalian brain, namely, the addition of new neurons throughout life2. This process, called adult hippocampal neurogenesis (AHN), confers an unparalleled degree of plasticity to the entire hippocampal circuitry3,4. Nonetheless, direct evidence of AHN in humans has remained elusive. Thus, determining whether new neurons are continuously incorporated into the human dentate gyrus (DG) during physiological and pathological aging is a crucial question with outstanding therapeutic potential. By combining human brain samples obtained under tightly controlled conditions and state-of-the-art tissue processing methods, we identified thousands of immature neurons in the DG of neurologically healthy human subjects up to the ninth decade of life. These neurons exhibited variable degrees of maturation along differentiation stages of AHN. In sharp contrast, the number and maturation of these neurons progressively declined as AD advanced. These results demonstrate the persistence of AHN during both physiological and pathological aging in humans and provide evidence for impaired neurogenesis as a potentially relevant mechanism underlying memory deficits in AD that might be amenable to novel therapeutic strategies.
The hippocampus is one of the most affected areas in Alzheimer’s disease (AD)1. Moreover, this structure hosts one of the most unique phenomena of the adult mammalian brain, namely, the addition of new neurons throughout life2. This process, called adult hippocampal neurogenesis (AHN), confers an unparalleled degree of plasticity to the entire hippocampal circuitry3,4. Nonetheless, direct evidence of AHN in humans has remained elusive. Thus, determining whether new neurons are continuously incorporated into the human dentate gyrus (DG) during physiological and pathological aging is a crucial question with outstanding therapeutic potential. By combining human brain samples obtained under tightly controlled conditions and state-of-the-art tissue processing methods, we identified thousands of immature neurons in the DG of neurologically healthy human subjects up to the ninth decade of life. These neurons exhibited variable degrees of maturation along differentiation stages of AHN. In sharp contrast, the number and maturation of these neurons progressively declined as AD advanced. These results demonstrate the persistence of AHN during both physiological and pathological aging in humans and provide evidence for impaired neurogenesis as a potentially relevant mechanism underlying memory deficits in AD that might be amenable to novel therapeutic strategies.Newborn neurons are continuously incorporated into the healthy adult human hippocampus up to the ninth decade of life. However, robust adult hippocampal neurogenesis sharply declines during the progression of Alzheimer’s disease.
Audience Academic
Author Llorens-Martín, María
Flor-García, Miguel
Terreros-Roncal, Julia
Rábano, Alberto
Moreno-Jiménez, Elena P.
Cafini, Fabio
Ávila, Jesús
Pallas-Bazarra, Noemí
Author_xml – sequence: 1
  givenname: Elena P.
  surname: Moreno-Jiménez
  fullname: Moreno-Jiménez, Elena P.
  organization: Department of Molecular Neuropathology, Centro de Biología Molecular ‘Severo Ochoa’, CBMSO, CSIC-UAM, Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)
– sequence: 2
  givenname: Miguel
  surname: Flor-García
  fullname: Flor-García, Miguel
  organization: Department of Molecular Neuropathology, Centro de Biología Molecular ‘Severo Ochoa’, CBMSO, CSIC-UAM, Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)
– sequence: 3
  givenname: Julia
  surname: Terreros-Roncal
  fullname: Terreros-Roncal, Julia
  organization: Department of Molecular Neuropathology, Centro de Biología Molecular ‘Severo Ochoa’, CBMSO, CSIC-UAM, Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)
– sequence: 4
  givenname: Alberto
  surname: Rábano
  fullname: Rábano, Alberto
  organization: Neuropathology Department, CIEN Foundation
– sequence: 5
  givenname: Fabio
  surname: Cafini
  fullname: Cafini, Fabio
  organization: Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences
– sequence: 6
  givenname: Noemí
  orcidid: 0000-0002-0175-5080
  surname: Pallas-Bazarra
  fullname: Pallas-Bazarra, Noemí
  organization: Department of Molecular Neuropathology, Centro de Biología Molecular ‘Severo Ochoa’, CBMSO, CSIC-UAM, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)
– sequence: 7
  givenname: Jesús
  surname: Ávila
  fullname: Ávila, Jesús
  organization: Department of Molecular Neuropathology, Centro de Biología Molecular ‘Severo Ochoa’, CBMSO, CSIC-UAM, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)
– sequence: 8
  givenname: María
  orcidid: 0000-0001-9129-5198
  surname: Llorens-Martín
  fullname: Llorens-Martín, María
  email: m.llorens@csic.es
  organization: Department of Molecular Neuropathology, Centro de Biología Molecular ‘Severo Ochoa’, CBMSO, CSIC-UAM, Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30911133$$D View this record in MEDLINE/PubMed
BookMark eNqNkt1qFDEUxwep2Hb1AbyRAaHoxdRkMh_J5VL8KBQKfuFdyCRnd1IyyZhk0PXKK9_B1_NJzDLVumUVSSAh-f3PSc75H2cH1lnIsocYnWJE6LNQ4ZrhAmFWINLWBbuTHeG6agrcog8HaY9aWlBWN4fZcQhXCCGCanYvOySIYYwJOcq-LdVkYt7rcXRSDKMwuYXJuzVYCDrkaYpuskrYmGs73xm31lIYs8l7ECb2mzxM3RXImFircuXdGPLQCz8mJIlGETXYdPtJxz5fmi896AH8j6_fQ650ABHgfnZ3JUyAB9frInv34vnbs1fFxeXL87PlRSHrtolFw4hYkfSNDkpoFGaSkY6o9EXWMdUh2ihKSga4qSRgWsmqBkorVCkGqqoRWWRP5rijdx8nCJEPOkgwRlhwU-AlZi1lLSZtQh_fQq_c5G16HS9LRHBZMVTfUGthgGu7ctELuQ3KlzVNJaY0PXqRFXuobY29MKmnK52Od_jTPXwaCgYt9wqe7ggSE-FzXIspBH7-5vX_s5fvd9mTP9i53cGZKWpnwy746LpaUzeA4qPXg_Ab_stpCcAzIL0LwcPqN4IR37qZz27myc1862a-Ddre0kgdxTZ3Koc2_1SWszKkLHYN_qZ5fxf9BHw0Bpg
CitedBy_id crossref_primary_10_3390_cells9102230
crossref_primary_10_1007_s12031_024_02244_0
crossref_primary_10_1016_j_celrep_2022_111451
crossref_primary_10_1039_D3SC03035K
crossref_primary_10_1002_brb3_2365
crossref_primary_10_1016_j_bbrc_2022_03_025
crossref_primary_10_1016_j_arr_2021_101447
crossref_primary_10_1038_s41467_021_23337_z
crossref_primary_10_1038_s42003_023_05367_z
crossref_primary_10_1111_apha_13587
crossref_primary_10_1007_s00018_019_03404_x
crossref_primary_10_1126_science_aax5186
crossref_primary_10_1007_s00429_019_01917_6
crossref_primary_10_3390_biom12101409
crossref_primary_10_1007_s10529_022_03274_7
crossref_primary_10_1016_j_biopsych_2020_02_1181
crossref_primary_10_1093_stmcls_sxac027
crossref_primary_10_1038_s41598_020_72362_3
crossref_primary_10_1016_j_stemcr_2020_12_003
crossref_primary_10_1016_j_jgr_2020_07_003
crossref_primary_10_1111_nan_12711
crossref_primary_10_2147_DDDT_S405963
crossref_primary_10_4103_1673_5374_391308
crossref_primary_10_1002_npr2_70001
crossref_primary_10_1016_j_neuron_2023_03_010
crossref_primary_10_1038_s41593_022_01192_5
crossref_primary_10_1089_cell_2020_0034
crossref_primary_10_1080_27697061_2022_2144540
crossref_primary_10_1016_j_isci_2023_107068
crossref_primary_10_1016_j_stem_2023_03_012
crossref_primary_10_1186_s40035_024_00414_z
crossref_primary_10_4155_fmc_2021_0036
crossref_primary_10_1186_s13287_021_02399_2
crossref_primary_10_1016_j_tma_2024_12_003
crossref_primary_10_1371_journal_pbio_3000585
crossref_primary_10_1021_acschemneuro_9b00196
crossref_primary_10_1038_s42255_023_00786_y
crossref_primary_10_1016_j_expneurol_2025_115205
crossref_primary_10_1007_s00018_023_04874_w
crossref_primary_10_1038_s41380_023_02296_5
crossref_primary_10_1093_cercor_bhaa213
crossref_primary_10_3389_fcell_2020_00860
crossref_primary_10_1039_D1BM00696G
crossref_primary_10_1111_acel_13499
crossref_primary_10_1002_ajpa_24718
crossref_primary_10_1038_s12276_022_00841_w
crossref_primary_10_1016_j_neuron_2020_05_008
crossref_primary_10_1016_j_pneurobio_2020_101961
crossref_primary_10_1097_TA_0000000000002510
crossref_primary_10_1016_j_neuron_2019_09_026
crossref_primary_10_1186_s40035_022_00333_x
crossref_primary_10_3390_cancers13030367
crossref_primary_10_1101_cshperspect_a041193
crossref_primary_10_1016_j_tox_2024_153947
crossref_primary_10_3389_fnagi_2021_791604
crossref_primary_10_3390_nu13093166
crossref_primary_10_4103_1673_5374_380874
crossref_primary_10_3389_fnmol_2022_937133
crossref_primary_10_1111_cpr_13027
crossref_primary_10_1007_s12017_022_08708_z
crossref_primary_10_3390_biom10020225
crossref_primary_10_1016_j_ijbiomac_2024_138432
crossref_primary_10_4103_1673_5374_274330
crossref_primary_10_1016_j_bioorg_2024_107769
crossref_primary_10_4103_1673_5374_274332
crossref_primary_10_1038_s41598_021_04600_1
crossref_primary_10_1016_j_mad_2021_111452
crossref_primary_10_3390_cells9010210
crossref_primary_10_1039_D2BM02059A
crossref_primary_10_1016_j_stem_2020_06_013
crossref_primary_10_1016_j_nbas_2020_100004
crossref_primary_10_3389_fgene_2021_706986
crossref_primary_10_1038_s41380_021_01314_8
crossref_primary_10_1038_s41380_022_01520_y
crossref_primary_10_1007_s11064_020_02965_9
crossref_primary_10_1038_s41598_022_13071_x
crossref_primary_10_1016_j_stem_2023_02_006
crossref_primary_10_3389_fnmol_2021_708004
crossref_primary_10_1007_s12035_020_02191_y
crossref_primary_10_18632_aging_102504
crossref_primary_10_4103_NRR_NRR_D_23_01993
crossref_primary_10_1016_j_arr_2020_101114
crossref_primary_10_31857_S0320972521060117
crossref_primary_10_1073_pnas_2007439117
crossref_primary_10_1523_JNEUROSCI_0744_19_2019
crossref_primary_10_1111_acel_13007
crossref_primary_10_7554_eLife_72195
crossref_primary_10_1016_j_actbio_2019_11_032
crossref_primary_10_1038_s41380_024_02815_y
crossref_primary_10_1098_rsob_240035
crossref_primary_10_3390_cancers12123842
crossref_primary_10_3389_fncom_2022_954847
crossref_primary_10_1038_s41598_020_73401_9
crossref_primary_10_1016_j_neuron_2023_11_010
crossref_primary_10_1002_glia_23849
crossref_primary_10_3390_ijms21103501
crossref_primary_10_1038_s41380_021_01249_0
crossref_primary_10_1101_cshperspect_a040907
crossref_primary_10_4103_1673_5374_285001
crossref_primary_10_1371_journal_pgen_1009918
crossref_primary_10_1002_ana_25741
crossref_primary_10_12677_HJBM_2022_124035
crossref_primary_10_4102_jan_v3i1_11
crossref_primary_10_7554_eLife_90893_3
crossref_primary_10_1038_s41392_022_01233_2
crossref_primary_10_1016_j_neuroscience_2020_11_015
crossref_primary_10_1016_j_pneurobio_2019_101695
crossref_primary_10_1124_jpet_119_259986
crossref_primary_10_3389_fnins_2021_621076
crossref_primary_10_3390_cells12232679
crossref_primary_10_1016_j_tins_2024_07_004
crossref_primary_10_3390_cells11203234
crossref_primary_10_3390_ijms24065712
crossref_primary_10_4103_NRR_NRR_D_23_01775
crossref_primary_10_1016_j_xgen_2024_100642
crossref_primary_10_1093_nsr_nwad248
crossref_primary_10_3390_biomedicines10061297
crossref_primary_10_1016_j_biopsych_2022_04_019
crossref_primary_10_14336_AD_2021_0409
crossref_primary_10_1002_glia_24128
crossref_primary_10_1038_s41398_024_02968_y
crossref_primary_10_1016_j_neuint_2024_105853
crossref_primary_10_1016_j_pneurobio_2019_101662
crossref_primary_10_3390_pharmaceutics13030429
crossref_primary_10_2174_1570159X21666230314142505
crossref_primary_10_1002_hipo_23474
crossref_primary_10_1002_hipo_23475
crossref_primary_10_1016_j_lssr_2022_07_007
crossref_primary_10_1016_j_stem_2020_07_002
crossref_primary_10_3390_ijms23094653
crossref_primary_10_4103_1673_5374_389635
crossref_primary_10_3389_fnins_2022_918616
crossref_primary_10_3389_fncel_2020_00053
crossref_primary_10_1016_j_semcdb_2019_07_002
crossref_primary_10_1016_j_jbc_2024_107698
crossref_primary_10_1002_iub_2589
crossref_primary_10_1186_s13041_019_0522_8
crossref_primary_10_1016_j_stemcr_2021_01_019
crossref_primary_10_1016_j_biopha_2022_113500
crossref_primary_10_1038_s41593_019_0484_2
crossref_primary_10_3233_BPL_230157
crossref_primary_10_1016_j_ejphar_2021_174695
crossref_primary_10_1016_j_omtn_2020_12_014
crossref_primary_10_3389_fphar_2022_820210
crossref_primary_10_1016_j_neubiorev_2022_104556
crossref_primary_10_3390_biom10030484
crossref_primary_10_2174_1570159X22999240209102116
crossref_primary_10_1007_s00330_023_09582_4
crossref_primary_10_4103_1673_5374_350189
crossref_primary_10_1016_j_stem_2021_01_003
crossref_primary_10_1073_pnas_2107596118
crossref_primary_10_1007_s12035_022_03102_z
crossref_primary_10_1126_science_abm7468
crossref_primary_10_3389_fnut_2020_00094
crossref_primary_10_3390_brainsci11010055
crossref_primary_10_3390_ijms20174240
crossref_primary_10_1038_s41380_019_0563_5
crossref_primary_10_3390_nu12061777
crossref_primary_10_1016_j_stemcr_2023_01_004
crossref_primary_10_1016_j_celrep_2020_107699
crossref_primary_10_1155_2022_6298786
crossref_primary_10_1073_pnas_2206704119
crossref_primary_10_1016_j_medntd_2022_100182
crossref_primary_10_3390_antiox10020207
crossref_primary_10_7554_eLife_68000
crossref_primary_10_37349_ent_2023_00044
crossref_primary_10_1002_jcp_30092
crossref_primary_10_1016_j_expneurol_2020_113249
crossref_primary_10_3390_ijms21144977
crossref_primary_10_3390_cells11071069
crossref_primary_10_3389_fnagi_2022_1002281
crossref_primary_10_1126_science_abn7270
crossref_primary_10_1016_j_bpsc_2020_06_006
crossref_primary_10_2174_0929867329666220509114232
crossref_primary_10_1002_ptr_7022
crossref_primary_10_1038_s41598_019_56483_y
crossref_primary_10_7554_eLife_90893
crossref_primary_10_3389_fphys_2021_656455
crossref_primary_10_1007_s10571_019_00733_0
crossref_primary_10_1016_j_neubiorev_2019_03_024
crossref_primary_10_1038_s41593_020_00759_4
crossref_primary_10_1111_jnc_16258
crossref_primary_10_1016_j_biocel_2024_106695
crossref_primary_10_1155_2021_5586052
crossref_primary_10_1016_j_xpro_2024_103313
crossref_primary_10_3389_fncel_2020_00016
crossref_primary_10_1016_j_bcp_2024_116064
crossref_primary_10_1016_j_archger_2024_105642
crossref_primary_10_1002_brb3_1878
crossref_primary_10_1021_acs_jafc_3c03894
crossref_primary_10_3389_fnmol_2020_578211
crossref_primary_10_3389_fphar_2022_926123
crossref_primary_10_3389_fendo_2024_1347802
crossref_primary_10_1126_science_abn7083
crossref_primary_10_1152_japplphysiol_00751_2021
crossref_primary_10_3233_JAD_220559
crossref_primary_10_1371_journal_pcbi_1008267
crossref_primary_10_1177_10738584241252581
crossref_primary_10_1007_s12264_021_00660_5
crossref_primary_10_1186_s13578_019_0337_4
crossref_primary_10_1590_1980_5764_dn_2024_0147
crossref_primary_10_1007_s00406_019_01066_1
crossref_primary_10_1016_j_neuro_2023_09_009
crossref_primary_10_1093_brain_awab460
crossref_primary_10_3389_fendo_2020_00283
crossref_primary_10_3389_fcell_2020_00654
crossref_primary_10_1271_kagakutoseibutsu_60_199
crossref_primary_10_1002_adbi_202200119
crossref_primary_10_1523_JNEUROSCI_0993_19_2019
crossref_primary_10_3389_fnins_2020_549772
crossref_primary_10_1016_j_tem_2019_07_001
crossref_primary_10_1038_s41598_024_65185_z
crossref_primary_10_1186_s13041_022_00926_7
crossref_primary_10_1249_MSS_0000000000003144
crossref_primary_10_1016_j_mad_2020_111323
crossref_primary_10_1111_apha_13316
crossref_primary_10_1186_s13195_020_00705_3
crossref_primary_10_1093_cercor_bhaa247
crossref_primary_10_1016_j_arr_2023_102067
crossref_primary_10_1089_andro_2021_0016
crossref_primary_10_1159_000540032
crossref_primary_10_3233_ADR_230171
crossref_primary_10_3390_nu14153125
crossref_primary_10_1038_s41598_022_10947_w
crossref_primary_10_1016_j_stem_2019_06_001
crossref_primary_10_1016_j_biocel_2021_105969
crossref_primary_10_1080_00207454_2022_2130297
crossref_primary_10_3390_photonics6030077
crossref_primary_10_2174_1389201022666210405142611
crossref_primary_10_1007_s12015_024_10788_2
crossref_primary_10_1038_s41398_020_01187_5
crossref_primary_10_3389_fnins_2021_682259
crossref_primary_10_1002_nep3_25
crossref_primary_10_1111_ejn_14640
crossref_primary_10_1002_nep3_31
crossref_primary_10_1016_j_jsbmb_2024_106485
crossref_primary_10_3389_fnagi_2022_759159
crossref_primary_10_3390_ijms21030701
crossref_primary_10_26508_lsa_202302083
crossref_primary_10_1126_science_aav6885
crossref_primary_10_1038_s41593_020_00728_x
crossref_primary_10_3390_brainsci15010052
crossref_primary_10_1016_j_neuron_2020_07_039
crossref_primary_10_1016_j_lfs_2024_123225
crossref_primary_10_55453_rjmm_2024_127_6_1
crossref_primary_10_4103_1673_5374_272571
crossref_primary_10_1002_adhm_202300154
crossref_primary_10_1016_j_ynstr_2020_100223
crossref_primary_10_1002_nep3_40
crossref_primary_10_1177_1535759719868186
crossref_primary_10_1038_s41380_024_02833_w
crossref_primary_10_3389_fncel_2021_746631
crossref_primary_10_1007_s13311_019_00746_z
crossref_primary_10_1016_j_jshs_2023_07_003
crossref_primary_10_1155_2022_9959044
crossref_primary_10_1002_jcp_30944
crossref_primary_10_3390_ijms21113915
crossref_primary_10_1038_s12276_023_01073_2
crossref_primary_10_1093_braincomms_fcab114
crossref_primary_10_3390_ijms232112873
crossref_primary_10_1016_j_phymed_2024_155802
crossref_primary_10_1093_brain_awac472
crossref_primary_10_3389_fpsyt_2023_1162179
crossref_primary_10_1080_17568919_2025_2463310
crossref_primary_10_1093_cercor_bhab093
crossref_primary_10_1007_s13365_021_01012_9
crossref_primary_10_3389_fphar_2022_1058358
crossref_primary_10_1038_s41422_022_00678_y
crossref_primary_10_3390_cells11111807
crossref_primary_10_15616_BSL_2020_26_2_57
crossref_primary_10_1038_s41536_020_00114_y
crossref_primary_10_1007_s13311_023_01427_8
crossref_primary_10_3389_fphar_2022_927419
crossref_primary_10_1242_dev_201835
crossref_primary_10_1016_j_mad_2019_111120
crossref_primary_10_1126_sciadv_abb1654
crossref_primary_10_1186_s40478_019_0810_7
crossref_primary_10_3233_JAD_210739
crossref_primary_10_1016_j_nbd_2020_105219
crossref_primary_10_1016_j_stem_2019_05_003
crossref_primary_10_3390_molecules26030728
crossref_primary_10_1177_1535759719874813
crossref_primary_10_15252_embj_2021110409
crossref_primary_10_1007_s12035_021_02620_6
crossref_primary_10_1016_j_yfrne_2020_100877
crossref_primary_10_3389_fnagi_2020_00247
crossref_primary_10_1093_brain_awad303
crossref_primary_10_1016_j_bbi_2023_06_013
crossref_primary_10_1016_j_biopsych_2021_01_010
crossref_primary_10_1523_ENEURO_0391_19_2019
crossref_primary_10_1186_s13148_019_0672_7
crossref_primary_10_1007_s11427_020_1810_y
crossref_primary_10_1007_s12035_023_03261_7
crossref_primary_10_1016_j_biopsych_2023_04_009
crossref_primary_10_3389_fncel_2020_571071
crossref_primary_10_1002_wsbm_1526
crossref_primary_10_3390_cells10102542
crossref_primary_10_1371_journal_pone_0296280
crossref_primary_10_1007_s00018_019_03430_9
crossref_primary_10_1538_expanim_22_0164
crossref_primary_10_1016_j_neulet_2021_136071
crossref_primary_10_3233_BPL_220141
crossref_primary_10_1186_s12993_024_00230_5
crossref_primary_10_1016_j_molmed_2020_03_010
crossref_primary_10_26508_lsa_202302029
crossref_primary_10_1080_14728222_2024_2342517
crossref_primary_10_3390_ijms231710136
crossref_primary_10_3390_cells10102748
crossref_primary_10_1016_j_bbr_2020_112917
crossref_primary_10_1093_stmcls_sxae074
crossref_primary_10_3390_stresses4040055
crossref_primary_10_4103_1673_5374_259616
crossref_primary_10_1016_j_jpsychires_2024_09_005
crossref_primary_10_1038_s41467_020_17405_z
crossref_primary_10_1038_s41593_023_01393_6
crossref_primary_10_1016_j_celrep_2019_09_037
crossref_primary_10_3390_ijms222111489
crossref_primary_10_4103_1673_5374_327354
crossref_primary_10_1111_acel_13924
crossref_primary_10_1038_s41598_023_39846_4
crossref_primary_10_1177_1745691620950696
crossref_primary_10_7554_eLife_70685
crossref_primary_10_1038_s41421_023_00583_7
crossref_primary_10_3389_fcell_2020_573487
crossref_primary_10_1038_s41583_021_00548_3
crossref_primary_10_1134_S1819712420040054
crossref_primary_10_1016_j_celrep_2021_109751
crossref_primary_10_1371_journal_pgen_1009363
crossref_primary_10_1523_JNEUROSCI_0676_20_2020
crossref_primary_10_1016_j_stemcr_2023_05_015
crossref_primary_10_1093_stmcls_sxae091
crossref_primary_10_1007_s11062_021_09904_6
crossref_primary_10_1038_s41380_021_01287_8
crossref_primary_10_1111_apha_13967
crossref_primary_10_3389_fnmol_2024_1516119
crossref_primary_10_1016_j_nlm_2022_107648
crossref_primary_10_3390_pr9040716
crossref_primary_10_1126_scitranslmed_aax1726
crossref_primary_10_1146_annurev_psych_122216_011613
crossref_primary_10_1038_s41598_022_05012_5
crossref_primary_10_4103_1673_5374_272610
crossref_primary_10_1007_s00018_022_04587_6
crossref_primary_10_3233_JAD_220721
crossref_primary_10_1038_s41419_022_04784_y
crossref_primary_10_1080_10408398_2023_2203762
crossref_primary_10_1007_s10433_022_00710_5
crossref_primary_10_1111_bpa_13225
crossref_primary_10_1016_j_stemcr_2023_05_021
crossref_primary_10_1016_j_bbr_2019_112032
crossref_primary_10_1016_j_biopsych_2020_07_018
crossref_primary_10_1016_j_bbr_2019_112035
crossref_primary_10_3390_cells11040676
crossref_primary_10_1002_stem_3121
crossref_primary_10_3390_ijms221910744
crossref_primary_10_1016_j_nbd_2022_105879
crossref_primary_10_1038_s41380_021_01301_z
crossref_primary_10_3390_cells13080669
crossref_primary_10_3389_fncel_2021_709291
crossref_primary_10_1038_s41583_021_00433_z
crossref_primary_10_1172_JCI146095
crossref_primary_10_3390_brainsci14111133
crossref_primary_10_1016_j_emcon_2023_100259
crossref_primary_10_1016_j_expneurol_2024_114930
crossref_primary_10_3390_brainsci13030511
crossref_primary_10_1007_s13659_022_00354_z
crossref_primary_10_1016_j_celrep_2024_114339
crossref_primary_10_1038_s41580_022_00510_w
crossref_primary_10_1111_nyas_14436
crossref_primary_10_1016_j_celrep_2021_109127
crossref_primary_10_3390_antiox12101873
crossref_primary_10_3390_ijms21031115
crossref_primary_10_1016_j_expneurol_2022_114142
crossref_primary_10_1126_sciadv_aaz9691
crossref_primary_10_1016_j_stem_2023_01_002
crossref_primary_10_1038_d41586_019_01461_7
crossref_primary_10_2139_ssrn_4189450
crossref_primary_10_3390_brainsci13030520
crossref_primary_10_1016_j_jconrel_2020_09_019
crossref_primary_10_1016_j_neuroscience_2019_12_021
crossref_primary_10_3389_fnagi_2022_998292
crossref_primary_10_1016_j_pnpbp_2024_111148
crossref_primary_10_1016_j_neuropharm_2019_107851
crossref_primary_10_3390_pharmaceutics14010200
crossref_primary_10_3233_JAD_240500
crossref_primary_10_1038_s42003_020_0844_1
crossref_primary_10_3389_fnagi_2024_1466328
crossref_primary_10_3389_fonc_2021_714709
crossref_primary_10_1016_j_arr_2022_101667
crossref_primary_10_1111_jnc_14987
crossref_primary_10_1002_advs_202307971
crossref_primary_10_3390_biom11010051
crossref_primary_10_3389_fcell_2019_00096
crossref_primary_10_1016_j_conb_2020_10_013
crossref_primary_10_1038_s41380_021_01149_3
crossref_primary_10_1016_j_smrv_2019_101223
crossref_primary_10_1016_j_bbi_2024_01_005
crossref_primary_10_1080_15548627_2023_2277634
crossref_primary_10_3389_fnmol_2019_00096
crossref_primary_10_3390_ijms23063349
crossref_primary_10_1360_SSV_2022_0139
crossref_primary_10_1038_s41467_019_14026_z
crossref_primary_10_1093_stmcls_sxae065
crossref_primary_10_1016_j_neubiorev_2019_11_006
crossref_primary_10_1126_scitranslmed_aay7896
crossref_primary_10_1016_j_pharmthera_2020_107515
crossref_primary_10_1016_j_arr_2022_101655
crossref_primary_10_1016_j_expneurol_2022_114124
crossref_primary_10_4049_jimmunol_2100737
crossref_primary_10_1186_s13195_023_01337_z
crossref_primary_10_1016_j_xcrm_2021_100231
crossref_primary_10_1523_JNEUROSCI_1295_24_2024
crossref_primary_10_3390_ijms222312697
crossref_primary_10_1038_s43587_023_00370_9
crossref_primary_10_1038_s41398_024_02904_0
crossref_primary_10_70322_ldmh_2025_10005
crossref_primary_10_1038_s41598_020_71493_x
crossref_primary_10_1016_j_celrep_2019_07_014
crossref_primary_10_1042_BST20221527
crossref_primary_10_3390_ijms20123030
crossref_primary_10_1002_ctm2_243
crossref_primary_10_1038_s12276_021_00587_x
crossref_primary_10_1186_s40478_020_01030_4
crossref_primary_10_1016_j_stem_2019_03_023
crossref_primary_10_3389_fnhum_2020_00350
crossref_primary_10_3389_fncel_2021_781434
crossref_primary_10_1016_j_stem_2020_04_002
crossref_primary_10_1007_s00018_023_04832_6
crossref_primary_10_1007_s11011_021_00864_8
crossref_primary_10_1186_s40478_022_01431_7
crossref_primary_10_1126_sciadv_abf5606
crossref_primary_10_7554_eLife_53777
crossref_primary_10_1016_j_neuroscience_2024_04_001
crossref_primary_10_3390_molecules25020347
crossref_primary_10_1016_j_jchemneu_2020_101795
crossref_primary_10_1016_j_ajpath_2024_12_013
crossref_primary_10_3389_fnmol_2023_1114015
crossref_primary_10_3390_cancers13164177
crossref_primary_10_1016_j_celrep_2021_109324
crossref_primary_10_1016_j_nrl_2021_04_017
crossref_primary_10_1093_schbul_sbac036
crossref_primary_10_3390_biomedicines10112993
crossref_primary_10_1021_acschemneuro_9b00661
crossref_primary_10_1002_dad2_12195
crossref_primary_10_1038_s41586_023_06981_x
crossref_primary_10_1016_j_phro_2021_11_008
crossref_primary_10_1038_s41591_019_0408_4
crossref_primary_10_1016_j_drudis_2022_01_016
crossref_primary_10_1016_j_arr_2021_101372
crossref_primary_10_1016_j_neubiorev_2021_09_030
crossref_primary_10_1002_stem_3102
crossref_primary_10_1038_s41380_021_01136_8
crossref_primary_10_1038_s41598_022_10457_9
crossref_primary_10_1186_s13195_020_00656_9
crossref_primary_10_1021_acschemneuro_1c00831
crossref_primary_10_3389_fnmol_2023_1185883
crossref_primary_10_1021_acschemneuro_0c00615
crossref_primary_10_1177_1535759720951799
crossref_primary_10_1016_j_celrep_2024_114100
crossref_primary_10_1016_j_neuron_2021_10_036
crossref_primary_10_1159_000540976
crossref_primary_10_1038_s41398_019_0618_z
crossref_primary_10_3233_JAD_190872
crossref_primary_10_1016_j_neuroscience_2024_05_009
crossref_primary_10_1007_s11064_022_03530_2
crossref_primary_10_1016_j_biopha_2023_114433
crossref_primary_10_3233_JAD_190636
crossref_primary_10_4103_1673_5374_297057
crossref_primary_10_1109_ACCESS_2020_3003424
crossref_primary_10_1177_0963689720960185
crossref_primary_10_1109_TCDS_2020_3015131
crossref_primary_10_1093_jnen_nlz108
crossref_primary_10_1016_j_phrs_2021_105795
crossref_primary_10_1089_scd_2020_0100
crossref_primary_10_1016_j_brainres_2019_146619
crossref_primary_10_3389_fcell_2019_00062
crossref_primary_10_1523_ENEURO_0030_20_2020
crossref_primary_10_5604_01_3001_0015_6436
crossref_primary_10_3389_fpsyg_2022_889001
crossref_primary_10_1111_acel_13161
crossref_primary_10_3233_JAD_201567
crossref_primary_10_3233_JAD_200234
crossref_primary_10_1038_s41593_022_01238_8
crossref_primary_10_1038_s41593_022_01073_x
crossref_primary_10_1084_jem_20220391
crossref_primary_10_1515_revneuro_2023_0049
crossref_primary_10_3389_fonc_2020_602217
crossref_primary_10_1016_j_bbi_2023_09_002
crossref_primary_10_1002_hipo_23504
crossref_primary_10_1016_j_isci_2021_103275
crossref_primary_10_1002_hipo_23505
crossref_primary_10_1111_jnc_16184
crossref_primary_10_3389_fnins_2023_1244118
crossref_primary_10_3389_fneur_2020_00148
crossref_primary_10_3389_fnins_2024_1434508
crossref_primary_10_1038_s41380_020_0823_4
crossref_primary_10_1242_dmm_050375
crossref_primary_10_3390_ijms222111826
crossref_primary_10_1016_j_jneumeth_2020_108616
crossref_primary_10_3390_ijms22073342
crossref_primary_10_1002_hipo_23502
crossref_primary_10_1016_j_dscb_2023_100094
crossref_primary_10_3390_ijms21186875
crossref_primary_10_3389_fneur_2021_610330
crossref_primary_10_1016_j_celrep_2020_108615
crossref_primary_10_1038_s41583_019_0174_9
crossref_primary_10_1038_s12276_024_01329_5
crossref_primary_10_1038_s41387_022_00205_3
crossref_primary_10_1007_s11418_020_01388_8
crossref_primary_10_1016_j_celrep_2019_05_101
crossref_primary_10_3233_JAD_200238
crossref_primary_10_3389_fnagi_2021_650103
crossref_primary_10_1111_adb_12886
crossref_primary_10_3390_molecules25235508
crossref_primary_10_1016_j_neuron_2022_01_004
crossref_primary_10_1016_j_neuroscience_2023_07_003
crossref_primary_10_1038_s41467_020_18046_y
crossref_primary_10_1093_jnen_nlab014
crossref_primary_10_1134_S1022795420040092
crossref_primary_10_1002_mco2_70114
crossref_primary_10_1073_pnas_2023784119
crossref_primary_10_1016_j_arr_2022_101828
crossref_primary_10_1038_s41596_019_0267_y
crossref_primary_10_1016_j_nutres_2020_12_003
crossref_primary_10_2174_1570159X21666221031103909
crossref_primary_10_1016_j_npbr_2019_05_004
crossref_primary_10_1134_S0362119723600546
crossref_primary_10_1042_EBC20210024
crossref_primary_10_3389_fimmu_2024_1347415
crossref_primary_10_1016_j_arr_2020_101062
crossref_primary_10_1038_s41588_020_0696_0
crossref_primary_10_3389_fnins_2021_700297
crossref_primary_10_3389_fphar_2019_01346
crossref_primary_10_1038_s41380_024_02827_8
crossref_primary_10_3389_fphar_2021_613211
crossref_primary_10_1186_s13041_019_0525_5
crossref_primary_10_3390_cells12091285
crossref_primary_10_1007_s00018_022_04397_w
crossref_primary_10_1038_s41380_021_01172_4
crossref_primary_10_3390_ijms20112778
crossref_primary_10_1016_j_bbi_2021_05_009
crossref_primary_10_3390_ijms23010462
crossref_primary_10_14336_AD_2023_10918
crossref_primary_10_1002_jnr_24897
crossref_primary_10_1016_j_neuroscience_2023_06_004
crossref_primary_10_4103_NRR_NRR_D_23_01865
crossref_primary_10_1016_j_biopsych_2024_11_007
crossref_primary_10_1186_s13041_021_00889_1
crossref_primary_10_1038_s41573_021_00367_2
crossref_primary_10_3390_cells11193002
crossref_primary_10_3390_ijms23031172
crossref_primary_10_3389_fnmol_2020_00051
crossref_primary_10_1016_j_intimp_2021_107653
crossref_primary_10_1007_s12035_020_02200_0
crossref_primary_10_3389_fneur_2020_00344
crossref_primary_10_1007_s00429_023_02717_9
crossref_primary_10_1002_ame2_12212
crossref_primary_10_1007_s00429_020_02038_1
crossref_primary_10_1007_s11064_019_02856_8
crossref_primary_10_3390_cells9020383
crossref_primary_10_1016_j_euroneuro_2020_10_008
crossref_primary_10_1186_s40035_024_00428_7
crossref_primary_10_3390_ijms21197309
crossref_primary_10_3390_ph15030293
crossref_primary_10_3390_md21120643
crossref_primary_10_1016_j_nlm_2020_107268
crossref_primary_10_1038_s41419_023_05650_1
crossref_primary_10_1016_j_arr_2022_101636
crossref_primary_10_1016_j_stemcr_2021_05_007
crossref_primary_10_1038_s41418_019_0409_3
crossref_primary_10_30629_2618_6667_2021_19_2_87_103
crossref_primary_10_1016_j_bbadis_2019_06_020
crossref_primary_10_3233_JAD_220269
crossref_primary_10_1038_s41398_020_01011_0
crossref_primary_10_1038_s42003_022_03299_8
crossref_primary_10_1515_tnsci_2020_0198
crossref_primary_10_1038_s41598_019_54684_z
crossref_primary_10_3389_fncel_2024_1520253
crossref_primary_10_1016_j_bbadis_2024_167197
crossref_primary_10_1186_s13195_019_0569_x
crossref_primary_10_7554_eLife_89507
crossref_primary_10_1016_j_bbi_2021_07_021
crossref_primary_10_1038_s41598_025_91689_3
crossref_primary_10_2174_1874609815666220304195049
crossref_primary_10_1016_j_neuron_2024_12_007
crossref_primary_10_1155_2024_5554538
crossref_primary_10_1016_j_bbi_2021_06_014
crossref_primary_10_1369_00221554211032003
crossref_primary_10_1007_s11626_024_00948_6
crossref_primary_10_1007_s10072_022_06479_w
crossref_primary_10_1038_s41467_024_54680_6
crossref_primary_10_3389_fnins_2022_853911
crossref_primary_10_3390_ijms23147726
crossref_primary_10_1002_hipo_23568
crossref_primary_10_3390_ijms25063090
crossref_primary_10_1073_pnas_2203038119
crossref_primary_10_1038_s41380_024_02666_7
crossref_primary_10_3390_cells11020286
crossref_primary_10_1084_jem_20202304
crossref_primary_10_1016_j_tins_2021_02_003
crossref_primary_10_1038_s41467_023_39873_9
crossref_primary_10_3390_biom14030335
crossref_primary_10_1016_j_biopsych_2023_06_026
crossref_primary_10_3389_fnins_2020_00839
crossref_primary_10_1016_j_biopsych_2024_12_018
crossref_primary_10_3390_cells10113047
crossref_primary_10_1016_j_nbd_2024_106604
crossref_primary_10_1523_ENEURO_0468_19_2020
crossref_primary_10_3390_ijms21176419
crossref_primary_10_3390_molecules24071350
crossref_primary_10_3390_ijms22115911
crossref_primary_10_3389_fnagi_2020_591601
crossref_primary_10_1093_brain_awz371
crossref_primary_10_1523_JNEUROSCI_0675_20_2020
crossref_primary_10_1016_j_arr_2023_102133
crossref_primary_10_3390_cells10051145
crossref_primary_10_1093_braincomms_fcae101
crossref_primary_10_1021_acsbiomedchemau_1c00017
crossref_primary_10_3389_fnins_2023_1125376
crossref_primary_10_1002_med_21960
crossref_primary_10_1242_jcs_231258
crossref_primary_10_3389_fnagi_2020_561504
crossref_primary_10_1002_med_21722
crossref_primary_10_1007_s00018_019_03193_3
crossref_primary_10_1016_j_biopha_2024_116219
crossref_primary_10_1016_j_stem_2024_11_002
crossref_primary_10_1038_s41380_023_02386_4
crossref_primary_10_1016_j_neuron_2019_11_029
crossref_primary_10_1111_jnc_15265
crossref_primary_10_4103_1673_5374_270292
crossref_primary_10_1007_s12035_022_03016_w
crossref_primary_10_3390_ijms21113879
crossref_primary_10_1016_j_pnpbp_2020_109943
crossref_primary_10_1038_s41380_024_02490_z
crossref_primary_10_1016_j_xpro_2020_100238
crossref_primary_10_18632_aging_203373
crossref_primary_10_1002_glia_24468
crossref_primary_10_1172_jci_insight_129375
crossref_primary_10_1111_ejn_14969
crossref_primary_10_1016_j_freeradbiomed_2020_12_454
crossref_primary_10_1016_j_neulet_2021_136109
crossref_primary_10_1016_j_expneurol_2020_113372
crossref_primary_10_1002_alz_12428
crossref_primary_10_1111_ejn_14720
crossref_primary_10_3390_ijms25105123
crossref_primary_10_1016_j_brs_2023_12_006
crossref_primary_10_1016_j_conb_2023_102693
crossref_primary_10_1016_j_mattod_2024_06_017
crossref_primary_10_1016_j_bbadis_2020_165778
crossref_primary_10_1038_s41591_024_03150_z
crossref_primary_10_1186_s12974_023_02910_x
crossref_primary_10_1186_s13020_023_00813_w
crossref_primary_10_3389_fphar_2022_1086540
crossref_primary_10_3389_fncel_2020_00189
crossref_primary_10_1016_j_mam_2022_101141
crossref_primary_10_3389_fcell_2020_00116
crossref_primary_10_1038_s41398_024_03104_6
crossref_primary_10_1038_s41582_019_0182_4
crossref_primary_10_1155_2024_6633510
crossref_primary_10_1016_j_arr_2025_102725
crossref_primary_10_2174_1570159X21999221111102343
crossref_primary_10_1038_s41380_019_0542_x
crossref_primary_10_3233_JAD_220248
crossref_primary_10_1016_j_advnut_2023_04_005
crossref_primary_10_1016_j_stem_2019_12_015
crossref_primary_10_20517_and_2024_32
crossref_primary_10_2174_1570159X19666210823110004
crossref_primary_10_1038_s41398_023_02658_1
crossref_primary_10_3389_fcell_2020_00114
crossref_primary_10_3390_cancers12010146
crossref_primary_10_1016_j_tem_2023_05_008
crossref_primary_10_3389_fncel_2024_1456253
crossref_primary_10_2174_1570159X20666220624111855
crossref_primary_10_1007_s12035_024_04117_4
crossref_primary_10_1177_15333175221078418
crossref_primary_10_3389_fcell_2020_00525
crossref_primary_10_1038_s41539_022_00133_y
crossref_primary_10_3389_fnins_2020_00875
crossref_primary_10_1016_j_expneurol_2025_115142
crossref_primary_10_1038_s42255_021_00438_z
crossref_primary_10_1038_s41398_021_01742_8
crossref_primary_10_1016_j_arr_2022_101804
crossref_primary_10_1002_alz_12012
crossref_primary_10_1002_ana_27181
crossref_primary_10_3390_ijms22073546
crossref_primary_10_1016_j_arr_2023_102177
crossref_primary_10_3233_JAD_210400
crossref_primary_10_1016_j_pneurobio_2024_102601
crossref_primary_10_1134_S0006297921060110
crossref_primary_10_3389_fneur_2021_628045
crossref_primary_10_3389_fcell_2020_00533
crossref_primary_10_1007_s11010_023_04857_2
crossref_primary_10_1016_j_nbd_2024_106417
crossref_primary_10_3389_fimmu_2022_826091
crossref_primary_10_1016_j_cmet_2022_01_005
crossref_primary_10_1126_science_abl5163
crossref_primary_10_1016_j_bbr_2019_112458
crossref_primary_10_1038_s41598_021_01977_x
crossref_primary_10_3390_brainsci11050658
crossref_primary_10_5483_BMBRep_2023_0149
crossref_primary_10_1016_j_biopha_2025_117839
crossref_primary_10_3389_fnagi_2021_682308
crossref_primary_10_1016_j_neuint_2022_105309
crossref_primary_10_1007_s11696_024_03591_3
crossref_primary_10_1038_s41591_020_0985_2
crossref_primary_10_1126_sciadv_aaz5424
crossref_primary_10_3389_fcell_2020_00548
crossref_primary_10_3390_ijms25094621
crossref_primary_10_1016_j_bbi_2024_05_019
crossref_primary_10_1017_S1355617722000492
crossref_primary_10_1002_glia_24662
crossref_primary_10_3389_fnbeh_2020_00109
crossref_primary_10_1093_jb_mvae006
crossref_primary_10_3389_fcell_2022_871757
crossref_primary_10_3389_fnbeh_2020_564184
crossref_primary_10_1038_s41380_019_0440_2
crossref_primary_10_1038_s41392_020_00305_5
crossref_primary_10_2496_hbfr_42_258
crossref_primary_10_1016_j_bpr_2022_100061
crossref_primary_10_4103_1673_5374_293138
crossref_primary_10_3389_fnagi_2021_617733
crossref_primary_10_3389_fnagi_2023_1147420
crossref_primary_10_3233_BPL_190094
crossref_primary_10_3389_fnins_2019_00923
crossref_primary_10_1007_s12015_023_10600_7
crossref_primary_10_1089_scd_2024_0043
crossref_primary_10_1093_brain_awaa222
crossref_primary_10_1038_s41380_024_02504_w
crossref_primary_10_1016_j_nlm_2025_108036
crossref_primary_10_3233_JAD_240488
crossref_primary_10_3389_fncel_2019_00561
crossref_primary_10_1080_03008207_2019_1624734
crossref_primary_10_3389_fcell_2019_00158
crossref_primary_10_1016_j_nlm_2022_107589
crossref_primary_10_1515_revneuro_2021_0156
crossref_primary_10_1016_j_yhbeh_2019_104651
crossref_primary_10_1073_pnas_1908658117
crossref_primary_10_1016_j_bbi_2021_10_016
crossref_primary_10_1212_WNL_0000000000207421
crossref_primary_10_1021_acsami_2c03299
crossref_primary_10_3389_fnmol_2022_1041009
crossref_primary_10_1016_j_neures_2020_05_011
crossref_primary_10_1134_S0006297920140060
crossref_primary_10_1016_j_bbamcr_2020_118664
crossref_primary_10_3390_brainsci14010046
crossref_primary_10_3390_ijerph21121553
crossref_primary_10_3390_cells9030649
crossref_primary_10_1016_j_bja_2019_08_019
crossref_primary_10_1111_imr_13267
crossref_primary_10_1038_s41514_025_00209_0
crossref_primary_10_1016_j_neuroscience_2019_09_012
crossref_primary_10_7554_eLife_55456
crossref_primary_10_1186_s13024_024_00719_7
crossref_primary_10_3389_fcell_2021_778345
crossref_primary_10_1016_j_matdes_2023_111916
crossref_primary_10_3389_fnagi_2022_926485
crossref_primary_10_4103_1673_5374_315227
crossref_primary_10_1002_ptr_7430
crossref_primary_10_1016_j_stemcr_2021_11_003
crossref_primary_10_1038_s41574_024_01061_0
crossref_primary_10_1126_sciadv_aba0682
crossref_primary_10_3390_jcm8050685
crossref_primary_10_3390_ijms22042153
crossref_primary_10_1016_j_bpsgos_2024_100419
crossref_primary_10_1007_s43152_021_00028_x
crossref_primary_10_1016_j_neurot_2024_e00500
crossref_primary_10_3390_ijms22094628
crossref_primary_10_3390_ijms23052514
crossref_primary_10_4103_1673_5374_284991
crossref_primary_10_1016_j_coph_2019_11_003
crossref_primary_10_1016_j_molmed_2019_07_002
crossref_primary_10_3233_JAD_210607
crossref_primary_10_1016_j_coph_2019_11_004
crossref_primary_10_1016_j_nbd_2021_105406
crossref_primary_10_1038_s41588_023_01425_8
crossref_primary_10_3390_cancers15123193
crossref_primary_10_1007_s12264_023_01092_z
crossref_primary_10_15252_embr_202357269
crossref_primary_10_1016_j_ibror_2020_08_003
crossref_primary_10_1038_s41380_021_01122_0
crossref_primary_10_3233_JAD_220643
crossref_primary_10_1042_NS20180208
crossref_primary_10_1016_j_bbr_2019_112118
crossref_primary_10_1089_ars_2020_8238
crossref_primary_10_5483_BMBRep_2023_0167
crossref_primary_10_1016_j_coph_2019_11_009
crossref_primary_10_3390_biology9120426
crossref_primary_10_3390_life11020153
crossref_primary_10_1038_s41586_022_04912_w
crossref_primary_10_1097_JBR_0000000000000107
crossref_primary_10_1016_j_bbr_2019_112180
crossref_primary_10_3390_cells12121570
crossref_primary_10_1007_s10072_019_04111_y
crossref_primary_10_1016_j_coph_2019_10_006
crossref_primary_10_1177_1759091419892692
crossref_primary_10_1016_j_coph_2019_10_005
crossref_primary_10_3389_fnins_2021_594448
crossref_primary_10_1111_jar_12959
crossref_primary_10_1111_cns_14160
crossref_primary_10_1186_s11658_023_00504_2
crossref_primary_10_3389_fncel_2023_1219847
crossref_primary_10_1016_j_coph_2019_10_002
crossref_primary_10_3390_biom14091104
crossref_primary_10_3390_brainsci10110833
crossref_primary_10_1016_j_freeradbiomed_2022_11_020
crossref_primary_10_3390_cells14050347
crossref_primary_10_1038_s41418_021_00857_1
crossref_primary_10_3233_JAD_215016
crossref_primary_10_3233_ADR_200218
crossref_primary_10_3389_fnins_2023_1047778
crossref_primary_10_4103_1673_5374_375317
crossref_primary_10_1038_s41593_022_01044_2
crossref_primary_10_1016_j_cell_2023_08_042
crossref_primary_10_1038_s41536_023_00311_5
crossref_primary_10_14283_jpad_2022_46
crossref_primary_10_7554_eLife_89507_4
crossref_primary_10_1093_jnen_nlz058
crossref_primary_10_1016_j_jneumeth_2024_110359
crossref_primary_10_3389_fcell_2020_600575
crossref_primary_10_3390_genes15050569
crossref_primary_10_3390_ijms25073658
crossref_primary_10_3390_ijms22115719
crossref_primary_10_1111_acel_12958
crossref_primary_10_3390_ijms24065259
crossref_primary_10_1016_j_apsb_2023_10_007
crossref_primary_10_1016_j_intimp_2022_109548
crossref_primary_10_1016_j_celrep_2023_113022
crossref_primary_10_3390_antiox12081628
crossref_primary_10_7554_eLife_91263_2
crossref_primary_10_2147_DDDT_S380612
crossref_primary_10_1007_s12035_022_03145_2
crossref_primary_10_1177_1759091419884859
crossref_primary_10_1158_0008_5472_CAN_20_3290
crossref_primary_10_1007_s43440_022_00444_2
crossref_primary_10_3390_genes15121599
crossref_primary_10_1002_alz_14379
crossref_primary_10_3390_ijms25137122
crossref_primary_10_1186_s13195_020_00686_3
crossref_primary_10_3233_ADR_210299
crossref_primary_10_1093_brain_awac138
crossref_primary_10_1016_j_tcb_2022_10_004
crossref_primary_10_1007_s12031_021_01887_7
crossref_primary_10_1016_j_cell_2019_07_043
crossref_primary_10_1016_j_pharmthera_2024_108641
crossref_primary_10_1186_s13578_023_01131_2
crossref_primary_10_3233_JAD_230874
crossref_primary_10_1155_2019_2367075
crossref_primary_10_3389_fncel_2021_636176
crossref_primary_10_3389_fnimg_2022_903531
crossref_primary_10_33920_med_03_2412_06
crossref_primary_10_1177_1179069519856876
crossref_primary_10_1016_j_molcel_2022_08_005
crossref_primary_10_1016_j_phymed_2023_155009
crossref_primary_10_3389_fncel_2020_576444
crossref_primary_10_7554_eLife_74940
crossref_primary_10_3389_fnins_2024_1420601
crossref_primary_10_1007_s11064_021_03514_8
crossref_primary_10_1016_j_bioana_2024_04_001
crossref_primary_10_7554_eLife_91263
crossref_primary_10_3389_fnins_2020_588356
crossref_primary_10_3390_cells12162086
crossref_primary_10_3390_ijms252312872
crossref_primary_10_1016_j_stem_2021_03_018
crossref_primary_10_3390_ijms25021241
crossref_primary_10_1016_j_bbr_2019_112154
crossref_primary_10_1155_2022_2998301
crossref_primary_10_1186_s12906_021_03437_5
crossref_primary_10_1016_j_neubiorev_2023_105147
crossref_primary_10_1016_j_stem_2021_05_001
crossref_primary_10_3390_jdad1020008
crossref_primary_10_1016_j_celrep_2019_12_005
crossref_primary_10_1016_j_phymed_2024_155531
crossref_primary_10_1039_D2FO03191D
crossref_primary_10_4306_jknpa_2021_60_1_28
crossref_primary_10_1177_25424823241307617
crossref_primary_10_26508_lsa_202000703
crossref_primary_10_1186_s12868_020_00602_3
crossref_primary_10_1016_j_heliyon_2024_e26650
crossref_primary_10_3389_fnins_2022_891713
crossref_primary_10_3390_brainsci11101299
crossref_primary_10_3389_fnbeh_2025_1543122
crossref_primary_10_1016_j_brs_2023_04_022
crossref_primary_10_1016_j_acthis_2024_152194
crossref_primary_10_1038_s41398_023_02456_9
crossref_primary_10_1590_1414_431x2024e13447
crossref_primary_10_1523_ENEURO_0359_22_2023
crossref_primary_10_1042_BST20220762
crossref_primary_10_3389_fnins_2019_01000
crossref_primary_10_18632_aging_103510
crossref_primary_10_3389_fnagi_2022_980636
crossref_primary_10_1016_j_arr_2022_101559
crossref_primary_10_1111_jne_13377
crossref_primary_10_1039_D1FO00286D
crossref_primary_10_1007_s12035_021_02367_0
crossref_primary_10_1136_bmjopen_2020_039767
crossref_primary_10_3390_ijms21186906
crossref_primary_10_1016_j_encep_2021_09_001
crossref_primary_10_1186_s13293_025_00694_8
crossref_primary_10_1007_s42250_023_00673_9
crossref_primary_10_3390_ijms24065613
crossref_primary_10_4103_1673_5374_268891
crossref_primary_10_1093_brain_awae127
crossref_primary_10_4103_1673_5374_268896
crossref_primary_10_3390_genes10090640
crossref_primary_10_3390_cells11111770
crossref_primary_10_3390_ijms22179570
crossref_primary_10_3390_ijms24054758
crossref_primary_10_1007_s12035_022_02784_9
crossref_primary_10_1016_j_neuroscience_2023_05_018
crossref_primary_10_21769_BioProtoc_3869
crossref_primary_10_1002_advs_202202475
crossref_primary_10_1007_s13311_020_00874_x
crossref_primary_10_3389_fnagi_2022_782932
crossref_primary_10_1111_ejn_15373
crossref_primary_10_1177_10738584211041574
crossref_primary_10_1210_clinem_dgab333
crossref_primary_10_1093_ageing_afae042
crossref_primary_10_1038_s41467_023_43728_8
crossref_primary_10_3390_toxics8020021
crossref_primary_10_1007_s11620_023_00770_4
crossref_primary_10_1097_01_wnt_0001098728_45853_d3
crossref_primary_10_3389_fnana_2021_727883
crossref_primary_10_31857_S0131164624020017
crossref_primary_10_1001_jamanetworkopen_2024_24519
crossref_primary_10_1016_j_nlm_2022_107710
crossref_primary_10_1111_cns_14394
crossref_primary_10_3390_biology13090698
crossref_primary_10_1016_j_expneurol_2023_114543
crossref_primary_10_3390_ijms22179358
crossref_primary_10_1016_j_jchemneu_2019_101667
crossref_primary_10_1016_j_nrleng_2023_07_007
crossref_primary_10_1186_s12916_024_03682_8
crossref_primary_10_1111_ger_12510
crossref_primary_10_1080_21655979_2021_1999549
crossref_primary_10_1016_j_brainresbull_2024_111170
crossref_primary_10_1021_acs_jafc_2c08493
crossref_primary_10_3390_cells9112517
crossref_primary_10_3390_ijms22115795
crossref_primary_10_1016_j_ejmech_2023_115817
crossref_primary_10_1126_science_aaw2622
crossref_primary_10_3389_fnins_2019_00588
crossref_primary_10_1016_j_psep_2023_01_050
crossref_primary_10_1016_j_bbr_2019_111934
crossref_primary_10_3389_fnins_2020_00075
crossref_primary_10_1111_ejn_16242
crossref_primary_10_3390_cancers13112693
crossref_primary_10_1002_stem_3444
crossref_primary_10_1016_j_neurobiolaging_2020_04_003
crossref_primary_10_3390_brainsci14090950
crossref_primary_10_1016_j_cmet_2019_09_001
crossref_primary_10_1038_s41593_022_01251_x
crossref_primary_10_1038_s41598_024_72096_6
crossref_primary_10_3390_ijms24032514
crossref_primary_10_1016_j_tox_2019_06_004
crossref_primary_10_3233_JAD_190779
crossref_primary_10_1242_dmm_040386
crossref_primary_10_3390_cells11050765
crossref_primary_10_3233_BPL_200098
crossref_primary_10_15252_embr_202051534
crossref_primary_10_1016_j_neures_2023_02_005
crossref_primary_10_1089_vim_2019_0082
crossref_primary_10_1016_j_brainres_2024_148814
crossref_primary_10_3390_ijms24076587
crossref_primary_10_3389_fnagi_2021_672077
crossref_primary_10_2174_1574888X17666220831105257
crossref_primary_10_1007_s12264_023_01020_1
crossref_primary_10_3389_fncel_2020_620379
crossref_primary_10_1186_s13024_019_0323_7
crossref_primary_10_1002_dneu_22674
crossref_primary_10_1212_WNL_0000000000010728
crossref_primary_10_4049_jimmunol_2000037
crossref_primary_10_1186_s40035_023_00355_z
crossref_primary_10_3389_fpsyt_2021_780095
crossref_primary_10_1186_s13287_020_02126_3
crossref_primary_10_3389_fnins_2020_568930
crossref_primary_10_3389_fnins_2024_1416738
crossref_primary_10_1016_j_bbr_2021_113114
crossref_primary_10_1186_s13287_024_03818_w
crossref_primary_10_26599_JNR_2020_9040004
crossref_primary_10_3390_ijms22147339
crossref_primary_10_1016_j_molmet_2019_09_002
crossref_primary_10_1186_s41232_022_00216_8
crossref_primary_10_1038_s41467_024_50699_x
crossref_primary_10_1016_j_nbd_2022_105746
crossref_primary_10_12688_f1000research_20642_1
crossref_primary_10_1126_science_abo0920
crossref_primary_10_1007_s00401_022_02467_8
crossref_primary_10_1016_j_biomaterials_2020_120160
crossref_primary_10_1186_s13287_024_03805_1
crossref_primary_10_1111_acer_14207
crossref_primary_10_3389_fnins_2023_1186256
crossref_primary_10_1016_j_coph_2019_12_002
crossref_primary_10_1016_j_coph_2019_12_003
crossref_primary_10_1016_j_neulet_2021_135978
crossref_primary_10_3390_cells10040721
crossref_primary_10_1016_j_crneur_2023_100102
crossref_primary_10_1073_pnas_2113835118
crossref_primary_10_1007_s12035_023_03282_2
Cites_doi 10.3233/JAD-2012-112057
10.1371/journal.pone.0008809
10.1016/0197-4580(95)00021-6
10.1016/j.stem.2018.03.015
10.1002/ar.1091450409
10.1073/pnas.1017099108
10.1016/j.cell.2013.05.002
10.1038/3305
10.1007/s00401-006-0127-z
10.3233/JAD-2010-101149
10.1038/nature25975
10.1016/S1474-4422(15)70016-5
10.1038/mp.2013.4
10.1186/alzrt250
10.1186/1471-2202-7-77
10.1016/j.tins.2010.09.003
10.1038/s41586-018-0262-4
10.1093/cercor/bhy096
10.1016/S1044-7431(03)00207-0
10.1186/s13024-017-0200-1
10.1038/tp.2014.92
10.1073/pnas.1013456108
10.1523/JNEUROSCI.3648-05.2006
10.1002/hipo.20175
10.1038/nn0307-273
10.1038/nature09817
10.1126/science.1214956
10.1016/j.tins.2004.05.013
10.1016/j.stem.2010.08.014
10.1016/j.stem.2018.04.004
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
COPYRIGHT 2019 Nature Publishing Group
2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
– notice: COPYRIGHT 2019 Nature Publishing Group
– notice: 2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U7
7U9
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M2P
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
DOI 10.1038/s41591-019-0375-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE


MEDLINE - Academic


Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1546-170X
EndPage 560
ExternalDocumentID A581338869
30911133
10_1038_s41591_019_0375_9
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.-4
.55
.GJ
0R~
123
1CY
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
88I
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABUWG
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IEA
IH2
IHR
IHW
INH
INR
IOF
IOV
ISR
ITC
J5H
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
MK0
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
UQL
X7M
XJT
YHZ
ZGI
~8M
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
AETEA
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QG
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U7
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c576t-693af3003be2e6d19c93b3d8959b9db086d8329e164ce184c45e88404d9ed4503
IEDL.DBID 7X7
ISSN 1078-8956
1546-170X
IngestDate Mon Jul 21 11:15:41 EDT 2025
Sat Aug 23 13:10:42 EDT 2025
Tue Jun 17 21:07:30 EDT 2025
Thu Jun 12 23:45:30 EDT 2025
Tue Jun 10 20:20:03 EDT 2025
Fri Jun 27 04:22:27 EDT 2025
Fri Jun 27 04:05:09 EDT 2025
Thu May 22 21:14:11 EDT 2025
Mon Jul 21 05:46:10 EDT 2025
Tue Jul 01 03:53:41 EDT 2025
Thu Apr 24 23:03:40 EDT 2025
Fri Feb 21 02:37:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-693af3003be2e6d19c93b3d8959b9db086d8329e164ce184c45e88404d9ed4503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9129-5198
0000-0002-0175-5080
PMID 30911133
PQID 2203124905
PQPubID 33975
PageCount 7
ParticipantIDs proquest_miscellaneous_2197897137
proquest_journals_2203124905
gale_infotracmisc_A581338869
gale_infotracgeneralonefile_A581338869
gale_infotracacademiconefile_A581338869
gale_incontextgauss_ISR_A581338869
gale_incontextgauss_IOV_A581338869
gale_healthsolutions_A581338869
pubmed_primary_30911133
crossref_primary_10_1038_s41591_019_0375_9
crossref_citationtrail_10_1038_s41591_019_0375_9
springer_journals_10_1038_s41591_019_0375_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature medicine
PublicationTitleAbbrev Nat Med
PublicationTitleAlternate Nat Med
PublicationYear 2019
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Sierra (CR21) 2010; 7
Plumpe (CR13) 2006; 7
Wesnes, Annas, Basun, Edgar, Blennow (CR24) 2014; 6
Bischofberger (CR23) 2007; 10
Zhao, Teng, Summers, Ming, Gage (CR16) 2006; 26
Braak, Alafuzoff, Arzberger, Kretzschmar, Del Tredici (CR29) 2006; 112
Altman (CR2) 1963; 145
Diez-Fraile, Van Hecke, Guérin, D’Herde (CR33) 2012; 1
Sorrells (CR9) 2018; 555
Kohler, Williams, Stanton, Cameron, Greenough (CR17) 2011; 108
Llorens-Martin (CR18) 2013; 18
Boldrini (CR7) 2018; 22
Braak, Braak (CR20) 1995; 16
Brandt (CR15) 2003; 24
Kempermann (CR11) 2018; 23
Knoth (CR8) 2010; 5
Cipriani (CR10) 2018; 28
Lazarov, Mattson, Peterson, Pimplikar, van Praag (CR19) 2010; 33
Kempermann, Jessberger, Steiner, Kronenberg (CR12) 2004; 27
Bolos (CR30) 2017; 12
CR28
Sahay (CR3) 2011; 472
Spalding (CR6) 2013; 153
CR26
Marin-Burgin, Mongiat, Pardi, Schinder (CR22) 2012; 335
Anacker (CR4) 2018; 559
Eriksson (CR5) 1998; 4
Karalay (CR14) 2011; 108
Llorens-Martin (CR32) 2014; 4
Heneka (CR25) 2015; 14
Braak, Braak (CR1) 1990; 108
Martinez-Martin, Avila (CR27) 2010; 21
Llorens-Martin, Torres-Aleman, Trejo (CR34) 2006; 16
Llorens-Martin (CR31) 2012; 29
M Boldrini (375_CR7) 2018; 22
H Braak (375_CR1) 1990; 108
G Kempermann (375_CR12) 2004; 27
A Sierra (375_CR21) 2010; 7
A Marin-Burgin (375_CR22) 2012; 335
J Bischofberger (375_CR23) 2007; 10
M Bolos (375_CR30) 2017; 12
PS Eriksson (375_CR5) 1998; 4
A Sahay (375_CR3) 2011; 472
S Cipriani (375_CR10) 2018; 28
A Diez-Fraile (375_CR33) 2012; 1
J Altman (375_CR2) 1963; 145
M Llorens-Martin (375_CR31) 2012; 29
G Kempermann (375_CR11) 2018; 23
R Knoth (375_CR8) 2010; 5
SJ Kohler (375_CR17) 2011; 108
O Karalay (375_CR14) 2011; 108
O Lazarov (375_CR19) 2010; 33
M Llorens-Martin (375_CR34) 2006; 16
MD Brandt (375_CR15) 2003; 24
P Martinez-Martin (375_CR27) 2010; 21
KL Spalding (375_CR6) 2013; 153
C Anacker (375_CR4) 2018; 559
T Plumpe (375_CR13) 2006; 7
SF Sorrells (375_CR9) 2018; 555
KA Wesnes (375_CR24) 2014; 6
H Braak (375_CR20) 1995; 16
M Llorens-Martin (375_CR32) 2014; 4
M Llorens-Martin (375_CR18) 2013; 18
H Braak (375_CR29) 2006; 112
MT Heneka (375_CR25) 2015; 14
375_CR26
C Zhao (375_CR16) 2006; 26
375_CR28
31514645 - Neuroscientist. 2019 Aug;25(4):285
30911138 - Nat Med. 2019 Apr;25(4):542-543
31007011 - ACS Chem Neurosci. 2019 May 15;10(5):2091-2093
31271749 - Cell Stem Cell. 2019 Jul 3;25(1):7-8
30953034 - Nat Rev Neurol. 2019 May;15(5):245
References_xml – volume: 29
  start-page: 921
  year: 2012
  end-page: 930
  ident: CR31
  article-title: Tau isoform with three microtubule binding domains is a marker of new axons generated from the subgranular zone in the hippocampal dentate gyrus: implications for Alzheimer’s disease
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2012-112057
– volume: 5
  start-page: e8809
  year: 2010
  ident: CR8
  article-title: Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0008809
– volume: 16
  start-page: 271
  year: 1995
  end-page: 278
  ident: CR20
  article-title: Staging of Alzheimer’s disease–related neurofibrillary changes
  publication-title: Neurobiol. Aging
  doi: 10.1016/0197-4580(95)00021-6
– volume: 22
  start-page: 589
  year: 2018
  end-page: 599
  ident: CR7
  article-title: Human hippocampal neurogenesis persists throughout aging
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.03.015
– volume: 145
  start-page: 573
  year: 1963
  end-page: 591
  ident: CR2
  article-title: Autoradiographic investigation of cell proliferation in the brains of rats and cats
  publication-title: Anat. Rec.
  doi: 10.1002/ar.1091450409
– volume: 108
  start-page: 10326
  year: 2011
  end-page: 10331
  ident: CR17
  article-title: Maturation time of new granule cells in the dentate gyrus of adult macaque monkeys exceeds six months
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1017099108
– volume: 153
  start-page: 1219
  year: 2013
  end-page: 1227
  ident: CR6
  article-title: Dynamics of hippocampal neurogenesis in adult humans
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.002
– volume: 4
  start-page: 1313
  year: 1998
  end-page: 1317
  ident: CR5
  article-title: Neurogenesis in the adult human hippocampus
  publication-title: Nat. Med.
  doi: 10.1038/3305
– volume: 112
  start-page: 389
  year: 2006
  end-page: 404
  ident: CR29
  article-title: Staging of Alzheimer disease–associated neurofibrillary pathology using paraffin sections and immunocytochemistry
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-006-0127-z
– volume: 108
  start-page: 621
  year: 1990
  end-page: 624
  ident: CR1
  article-title: Morphology of Alzheimer disease
  publication-title: Fortschr. Med.
– volume: 21
  start-page: 337
  year: 2010
  end-page: 348
  ident: CR27
  article-title: Alzheimer Center Reina Sofia Foundation: fighting the disease and providing overall solutions
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2010-101149
– volume: 555
  start-page: 377
  year: 2018
  end-page: 381
  ident: CR9
  article-title: Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults
  publication-title: Nature
  doi: 10.1038/nature25975
– volume: 14
  start-page: 388
  year: 2015
  end-page: 405
  ident: CR25
  article-title: Neuroinflammation in Alzheimer’s disease
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(15)70016-5
– volume: 18
  start-page: 451
  year: 2013
  end-page: 460
  ident: CR18
  article-title: GSK-3β overexpression causes reversible alterations on postsynaptic densities and dendritic morphology of hippocampal granule neurons in vivo
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2013.4
– volume: 6
  start-page: 20
  year: 2014
  ident: CR24
  article-title: Performance on a pattern separation task by Alzheimer’s patients shows possible links between disrupted dentate gyrus activity and apolipoprotein E4 in status and cerebrospinal fluid amyloid-β42 levels
  publication-title: Alzheimers Res. Ther.
  doi: 10.1186/alzrt250
– volume: 7
  year: 2006
  ident: CR13
  article-title: Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-7-77
– volume: 33
  start-page: 569
  year: 2010
  end-page: 579
  ident: CR19
  article-title: When neurogenesis encounters aging and disease
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2010.09.003
– volume: 559
  start-page: 98
  year: 2018
  end-page: 102
  ident: CR4
  article-title: Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus
  publication-title: Nature
  doi: 10.1038/s41586-018-0262-4
– volume: 28
  start-page: 2458
  year: 2018
  end-page: 2478
  ident: CR10
  article-title: Hippocampal radial glial subtypes and their neurogenic potential in human fetuses and healthy and Alzheimer’s disease adults
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhy096
– volume: 24
  start-page: 603
  year: 2003
  end-page: 613
  ident: CR15
  article-title: Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice
  publication-title: Mol. Cell. Neurosci.
  doi: 10.1016/S1044-7431(03)00207-0
– volume: 12
  start-page: 59
  year: 2017
  ident: CR30
  article-title: Absence of CX3CR1 impairs the internalization of tau by microglia
  publication-title: Mol. Neurodegener.
  doi: 10.1186/s13024-017-0200-1
– volume: 4
  year: 2014
  ident: CR32
  article-title: Peripherally triggered and GSK-3β-driven brain inflammation differentially skew adult hippocampal neurogenesis, behavioral pattern separation and microglial activation in response to ibuprofen
  publication-title: Transl. Psychiatry
  doi: 10.1038/tp.2014.92
– volume: 108
  start-page: 5807
  year: 2011
  end-page: 5812
  ident: CR14
  article-title: Prospero-related homeobox 1 gene ( ) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1013456108
– volume: 26
  start-page: 3
  year: 2006
  end-page: 11
  ident: CR16
  article-title: Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3648-05.2006
– volume: 16
  start-page: 480
  year: 2006
  end-page: 490
  ident: CR34
  article-title: Pronounced individual variation in the response to the stimulatory action of exercise on immature hippocampal neurons
  publication-title: Hippocampus
  doi: 10.1002/hipo.20175
– volume: 10
  start-page: 273
  year: 2007
  end-page: 275
  ident: CR23
  article-title: Young and excitable: new neurons in memory networks
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn0307-273
– volume: 1
  start-page: 320
  year: 2012
  ident: CR33
  article-title: Applications of immunocytochemistry
  publication-title: InTechOpen
– volume: 472
  start-page: 466
  year: 2011
  end-page: 470
  ident: CR3
  article-title: Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation
  publication-title: Nature
  doi: 10.1038/nature09817
– volume: 335
  start-page: 1238
  year: 2012
  end-page: 1242
  ident: CR22
  article-title: Unique processing during a period of high excitation/inhibition balance in adult-born neurons
  publication-title: Science
  doi: 10.1126/science.1214956
– ident: CR28
– ident: CR26
– volume: 27
  start-page: 447
  year: 2004
  end-page: 452
  ident: CR12
  article-title: Milestones of neuronal development in the adult hippocampus
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2004.05.013
– volume: 7
  start-page: 483
  year: 2010
  end-page: 495
  ident: CR21
  article-title: Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.08.014
– volume: 23
  start-page: 25
  year: 2018
  end-page: 30
  ident: CR11
  article-title: Human adult neurogenesis: evidence and remaining questions
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.04.004
– volume: 472
  start-page: 466
  year: 2011
  ident: 375_CR3
  publication-title: Nature
  doi: 10.1038/nature09817
– volume: 33
  start-page: 569
  year: 2010
  ident: 375_CR19
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2010.09.003
– volume: 559
  start-page: 98
  year: 2018
  ident: 375_CR4
  publication-title: Nature
  doi: 10.1038/s41586-018-0262-4
– volume: 16
  start-page: 271
  year: 1995
  ident: 375_CR20
  publication-title: Neurobiol. Aging
  doi: 10.1016/0197-4580(95)00021-6
– ident: 375_CR26
– volume: 145
  start-page: 573
  year: 1963
  ident: 375_CR2
  publication-title: Anat. Rec.
  doi: 10.1002/ar.1091450409
– volume: 26
  start-page: 3
  year: 2006
  ident: 375_CR16
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3648-05.2006
– volume: 22
  start-page: 589
  year: 2018
  ident: 375_CR7
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.03.015
– volume: 7
  start-page: 483
  year: 2010
  ident: 375_CR21
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.08.014
– volume: 14
  start-page: 388
  year: 2015
  ident: 375_CR25
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(15)70016-5
– ident: 375_CR28
– volume: 335
  start-page: 1238
  year: 2012
  ident: 375_CR22
  publication-title: Science
  doi: 10.1126/science.1214956
– volume: 18
  start-page: 451
  year: 2013
  ident: 375_CR18
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2013.4
– volume: 6
  start-page: 20
  year: 2014
  ident: 375_CR24
  publication-title: Alzheimers Res. Ther.
  doi: 10.1186/alzrt250
– volume: 16
  start-page: 480
  year: 2006
  ident: 375_CR34
  publication-title: Hippocampus
  doi: 10.1002/hipo.20175
– volume: 555
  start-page: 377
  year: 2018
  ident: 375_CR9
  publication-title: Nature
  doi: 10.1038/nature25975
– volume: 1
  start-page: 320
  year: 2012
  ident: 375_CR33
  publication-title: InTechOpen
– volume: 4
  start-page: 1313
  year: 1998
  ident: 375_CR5
  publication-title: Nat. Med.
  doi: 10.1038/3305
– volume: 21
  start-page: 337
  year: 2010
  ident: 375_CR27
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2010-101149
– volume: 27
  start-page: 447
  year: 2004
  ident: 375_CR12
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2004.05.013
– volume: 12
  start-page: 59
  year: 2017
  ident: 375_CR30
  publication-title: Mol. Neurodegener.
  doi: 10.1186/s13024-017-0200-1
– volume: 10
  start-page: 273
  year: 2007
  ident: 375_CR23
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn0307-273
– volume: 108
  start-page: 5807
  year: 2011
  ident: 375_CR14
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1013456108
– volume: 24
  start-page: 603
  year: 2003
  ident: 375_CR15
  publication-title: Mol. Cell. Neurosci.
  doi: 10.1016/S1044-7431(03)00207-0
– volume: 112
  start-page: 389
  year: 2006
  ident: 375_CR29
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-006-0127-z
– volume: 108
  start-page: 621
  year: 1990
  ident: 375_CR1
  publication-title: Fortschr. Med.
– volume: 7
  year: 2006
  ident: 375_CR13
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-7-77
– volume: 5
  start-page: e8809
  year: 2010
  ident: 375_CR8
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0008809
– volume: 153
  start-page: 1219
  year: 2013
  ident: 375_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.002
– volume: 4
  year: 2014
  ident: 375_CR32
  publication-title: Transl. Psychiatry
  doi: 10.1038/tp.2014.92
– volume: 108
  start-page: 10326
  year: 2011
  ident: 375_CR17
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1017099108
– volume: 23
  start-page: 25
  year: 2018
  ident: 375_CR11
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.04.004
– volume: 29
  start-page: 921
  year: 2012
  ident: 375_CR31
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2012-112057
– volume: 28
  start-page: 2458
  year: 2018
  ident: 375_CR10
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhy096
– reference: 30953034 - Nat Rev Neurol. 2019 May;15(5):245
– reference: 31007011 - ACS Chem Neurosci. 2019 May 15;10(5):2091-2093
– reference: 31271749 - Cell Stem Cell. 2019 Jul 3;25(1):7-8
– reference: 30911138 - Nat Med. 2019 Apr;25(4):542-543
– reference: 31514645 - Neuroscientist. 2019 Aug;25(4):285
SSID ssj0003059
Score 2.7123256
Snippet The hippocampus is one of the most affected areas in Alzheimer’s disease (AD) 1 . Moreover, this structure hosts one of the most unique phenomena of the adult...
The hippocampus is one of the most affected areas in Alzheimer's disease (AD) . Moreover, this structure hosts one of the most unique phenomena of the adult...
The hippocampus is one of the most affected areas in Alzheimer's disease (AD).sup.1. Moreover, this structure hosts one of the most unique phenomena of the...
The hippocampus is one of the most affected areas in Alzheimer’s disease (AD)1. Moreover, this structure hosts one of the most unique phenomena of the adult...
The hippocampus is one of the most affected areas in Alzheimer's disease (AD)1. Moreover, this structure hosts one of the most unique phenomena of the adult...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 554
SubjectTerms 631/378/1689/1283
631/378/368/2431
692/617/375/365/1283
Adult
Adults
Advertising executives
Aging
Alzheimer Disease - pathology
Alzheimer's disease
Biomarkers - metabolism
Biomedical and Life Sciences
Biomedicine
Brain
Cancer Research
Care and treatment
Cell Differentiation
Controlled conditions
Dentate gyrus
Dentate Gyrus - pathology
Development and progression
Doublecortin Domain Proteins
Hippocampal plasticity
Hippocampus
Hippocampus - pathology
Humans
Identification methods
Infectious Diseases
Letter
Maturation
Metabolic Diseases
Microtubule-Associated Proteins - metabolism
Molecular Medicine
Neurogenesis
Neurons
Neuropeptides - metabolism
Neurosciences
Novels
Physiology
Psychological aspects
Resveratrol
Title Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease
URI https://link.springer.com/article/10.1038/s41591-019-0375-9
https://www.ncbi.nlm.nih.gov/pubmed/30911133
https://www.proquest.com/docview/2203124905
https://www.proquest.com/docview/2197897137
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dbtMwFLZgE4gbBOOvYwyDEEhM0ZI4aeIrlKJVA2kFDYZ6ZyW201YqaVa3F-WKK96B1-NJOCdxMjLBhFSpF_5cNcfnJ5_P8TEhL6RmXqg86UgFdDXIc-mkfpg6uWYQIFLgPyluDZyM-sdnwftxOLYbbsaWVTY-sXLUaiFxj_zQ90H9gCu44Zvy3MFbozC7aq_QuE62sXUZanU0bgkX6jKvaw5jJwYi0GQ1WXxoIHBhzQ8e4WFR6PBOXLrsnf8IT5fypVUYGt4ht-37I03qBb9Lrulih9yob5Tc7JCbJzZXfo_8SLC1Bp3OyhLiFVj9nFbNKyfo3WaGwifN8BxIsaKzoh6zjnC-ofX5yA016wx3agBbKKqWi9JQM02XJUBgku3Kaihu59Jk_m2qZ1_18tf3n4ba1M99cjY8-vz22LG3LjgSuMfK6XOW5gyEl2lf95XHJWcZUyA_nnGVAQVS4AW4Bp4lNfBDGYQ6BpoYKK5VELrsAdkqFoV-RKjv5nmgWJQz7J0eqSxicZaBkwljpj1f9ojbyFxI25Icb8aYiyo1zmJRL5OAZRK4TIL3yOt2Sln347gK_BQXUtQia21ZJGGM1DzuA-J5hcBOGAWW2kzStTHi3Ycv_wH6dNoBvbKgfAHPIFN7vAEkgR22OsiXHeSk7i_-N-BeBwiGL7vDjX4K63iMuDCTHnnWDuNMLKYr9GINGI9HMY88FvXIw1qvW1kyF6MfYz1y0Cj6xY__U9C7V_-Vx-SWX1kaFjztka3Vcq2fwLvcKtuvDHafbCfDwWAE34Oj0cfT3xryR6w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbGED83CMZfYTCDgEmgaEmcNPEFQhUwtWwdEmyodyaxnbZSSUPdCpUrrngHXoKH4kk4J046MsHEzaTe-bOV-hyf4-PzR8gjqZkXKk86UoG5GmSZdBI_TJxMM1AQCdg_CT4N9A_a3aPgzSAcrJGfdS4MhlXWMrEU1Goq8Y18x_eB_cBWcMMXxWcHu0ahd7VuoWHZYk8vv4DJZp73XgF9H_v-7uvDl12n6irgSLhbz502Z0nGgJlT7eu28rjkLGUq5iFPuUrhiq-Ay7kGO0JqsH9kEOoYzKBAca2C0GWw7jlyHhSvi8ZeNFgZeHh2uI1xjB1Yr117UVm8Y0BRYowRpgyxKHR4Qw-e1AZ_qMMT_tlS7e1eJVeq-yrtWAa7RtZ0vkEu2A6Wyw1ysV_55q-T7x0s5UFH46IA_QhSZkLLYplDlKZjQ-GXpJh3ks_pOLdjleCdLKnNx1xSs0jxZQiwuaJqNi0MNaNkVgAEJlVVYA3F52PamXwd6fEnPfv17YehlavpBjk6E3rcJOv5NNe3CfXdLAsUizKGtdojlUYsTlMQamHMtOfLFnHrPReyKoGOnTgmonTFs1hYMgkgk0AyCd4iT1dTClv_4zTwFhJS2C1byQ7RCWN8CojbgHhYIrDyRo6hPcNkYYzovf3wH6D37xqg7QqUTeE_yKRKp4CdwIpeDeSTBnJo65n_DbjZAIKgkc3hmj9FJeiMOD6WLfJgNYwzMXgv19MFYDwexTzyWNQityxfr_aSuahtGWuRZzWjHy_-z42-c_qnbJFL3cP-vtjvHezdJZf98tRhsNUmWZ_PFvoe3CPn6f3y8FLy8aylxW8r2YBT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJyZeEIx_hcEM4o8EitrESRM_IFTYqpWxMQ2G9mYS22krlTTUrVB54onvwFfh4_BJuEucjkww8TKpb_7ZSn3n3_l85zMhD6VmbqBc6UgF7qqfptKJvSB2Us3AQMTg_8R4NLC339k58l8fB8cr5Gd1FwbTKitOLIhaTSSekbc8D9QPfIV20EptWsTBVu9F_tnBF6Qw0lo9p1GqyK5efAH3zTzvb4GsH3leb_v9qx3HvjDgSNhnz5wOZ3HKQLET7emOcrnkLGEq4gFPuEpgu69A47kGn0Jq8IWkH-gIXCJfca38oM1g3AtkNUSvqEFWX27vHxwu7QCsJF5mPEYOjNipYqosahkwm5hxhBeIWBg4vGYVT9uGP4zjqWhtYQR7V8hlu3ul3VLdrpIVna2Ti-V7lot1srZnI_XXyPcuFvagw1Geg7UEzhnTonTmALl1ZCj84gRvoWQzOsrKNkvD4wUtb2cuqJkneE4E2ExRNZ3khpphPM0BAp1sTVhD8TCZdsdfh3r0SU9_ffthqA08XSdH5yKRG6SRTTJ9i1Cvnaa-YmHKsHJ7qJKQRUkCFBdETLuebJJ2NedC2oLo-C7HWBSBeRaJUkwCxCRQTII3ydNll7ysBnIWeBMFKcopWzKJ6AYRHgxEHUA8KBBYhyNDjR7Ec2NE_-2H_wC9O6yBnlhQOoH_IGN7uQJmAut71ZCPa8hBWd38b8CNGhBoR9abK_0UlvaMOFmkTXJ_2Yw9MZUv05M5YFweRjx0WdgkN0u9Xs4la6PtZaxJnlWKfjL4Pyf69tmfsknWgCnEm_7-7h1yySsWHWZebZDGbDrXd2FTOUvu2dVLycfzJozfCUuF7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adult+hippocampal+neurogenesis+is+abundant+in+neurologically+healthy+subjects+and+drops+sharply+in+patients+with+Alzheimer%27s+disease&rft.jtitle=Nature+medicine&rft.au=Moreno-Jim%C3%A9nez%2C+Elena+P&rft.au=Flor-Garc%C3%ADa%2C+Miguel&rft.au=Terreros-Roncal%2C+Julia&rft.au=R%C3%A1bano%2C+Alberto&rft.date=2019-04-01&rft.pub=Nature+Publishing+Group&rft.issn=1078-8956&rft.volume=25&rft.issue=4&rft.spage=554&rft_id=info:doi/10.1038%2Fs41591-019-0375-9&rft.externalDocID=A581338869
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon