Origins of the 2009 H1N1 influenza pandemic in swine in Mexico

Asia is considered an important source of influenza A virus (IAV) pandemics, owing to large, diverse viral reservoirs in poultry and swine. However, the zoonotic origins of the 2009 A/H1N1 influenza pandemic virus (pdmH1N1) remain unclear, due to conflicting evidence from swine and humans. There is...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 5
Main Authors Mena, Ignacio, Nelson, Martha I, Quezada-Monroy, Francisco, Dutta, Jayeeta, Cortes-Fernández, Refugio, Lara-Puente, J Horacio, Castro-Peralta, Felipa, Cunha, Luis F, Trovão, Nídia S, Lozano-Dubernard, Bernardo, Rambaut, Andrew, van Bakel, Harm, García-Sastre, Adolfo
Format Journal Article
LanguageEnglish
Published England eLife Science Publications, Ltd 28.06.2016
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Asia is considered an important source of influenza A virus (IAV) pandemics, owing to large, diverse viral reservoirs in poultry and swine. However, the zoonotic origins of the 2009 A/H1N1 influenza pandemic virus (pdmH1N1) remain unclear, due to conflicting evidence from swine and humans. There is strong evidence that the first human outbreak of pdmH1N1 occurred in Mexico in early 2009. However, no related swine viruses have been detected in Mexico or any part of the Americas, and to date the most closely related ancestor viruses were identified in Asian swine. Here, we use 58 new whole-genome sequences from IAVs collected in Mexican swine to establish that the swine virus responsible for the 2009 pandemic evolved in central Mexico. This finding highlights how the 2009 pandemic arose from a region not considered a pandemic risk, owing to an expansion of IAV diversity in swine resulting from long-distance live swine trade. In 2009 a new influenza virus jumped from pigs to humans and spread very rapidly, causing an initial outbreak in Mexico and becoming a global pandemic in just a few months. Although the most straightforward explanation is that the virus originated in swine in Mexico, several studies suggested that this was unlikely because key genetic components of the virus had never been detected in the Americas. Determining the source of the disease is critical for predicting and preparing for future influenza pandemics. Mena, Nelson et al. sought to better characterize the genetic diversity of influenza viruses in Mexican swine by obtaining the entire genetic sequences of 58 viruses collected from swine in Mexico, including some from previously unsampled regions in central Mexico. The sequences revealed extensive diversity among the influenza viruses circulating in Mexican swine. Several viruses included genetic segments that originated from viruses from Eurasia (the landmass containing Europe and Asia) and had not previously been detected in the Americas. The new sequences contained key genetic components of the 2009 pandemic virus. Furthermore, the sequences suggest that viruses with a similar genetic composition to the 2009 pandemic virus have been circulating in pigs in central-west Mexico for more than a decade. Thus, this region is the most likely source of the virus that started the 2009 pandemic. Mena, Nelson et al. also found that the movement of viruses from Eurasia and the United States into Mexico closely follows the direction of the global trade of live swine. This highlights the critical role that animal trading plays in bringing together diverse viruses from different continents, which can then combine and generate new pandemic viruses. A potential next step is to perform experiments that investigate how well the swine viruses can replicate and pass between different animal models. Comparing the results of such experiments with the findings presented by Mena, Nelson et al. could identify factors that make the viruses more likely to spread to humans and produce a pandemic.
AbstractList Asia is considered an important source of influenza A virus (IAV) pandemics, owing to large, diverse viral reservoirs in poultry and swine. However, the zoonotic origins of the 2009 A/H1N1 influenza pandemic virus (pdmH1N1) remain unclear, due to conflicting evidence from swine and humans. There is strong evidence that the first human outbreak of pdmH1N1 occurred in Mexico in early 2009. However, no related swine viruses have been detected in Mexico or any part of the Americas, and to date the most closely related ancestor viruses were identified in Asian swine. Here, we use 58 new whole-genome sequences from IAVs collected in Mexican swine to establish that the swine virus responsible for the 2009 pandemic evolved in central Mexico. This finding highlights how the 2009 pandemic arose from a region not considered a pandemic risk, owing to an expansion of IAV diversity in swine resulting from long-distance live swine trade.
Asia is considered an important source of influenza A virus (IAV) pandemics, owing to large, diverse viral reservoirs in poultry and swine. However, the zoonotic origins of the 2009 A/H1N1 influenza pandemic virus (pdmH1N1) remain unclear, due to conflicting evidence from swine and humans. There is strong evidence that the first human outbreak of pdmH1N1 occurred in Mexico in early 2009. However, no related swine viruses have been detected in Mexico or any part of the Americas, and to date the most closely related ancestor viruses were identified in Asian swine. Here, we use 58 new whole-genome sequences from IAVs collected in Mexican swine to establish that the swine virus responsible for the 2009 pandemic evolved in central Mexico. This finding highlights how the 2009 pandemic arose from a region not considered a pandemic risk, owing to an expansion of IAV diversity in swine resulting from long-distance live swine trade.DOI: http://dx.doi.org/10.7554/eLife.16777.001
Asia is considered an important source of influenza A virus (IAV) pandemics, owing to large, diverse viral reservoirs in poultry and swine. However, the zoonotic origins of the 2009 A/H1N1 influenza pandemic virus (pdmH1N1) remain unclear, due to conflicting evidence from swine and humans. There is strong evidence that the first human outbreak of pdmH1N1 occurred in Mexico in early 2009. However, no related swine viruses have been detected in Mexico or any part of the Americas, and to date the most closely related ancestor viruses were identified in Asian swine. Here, we use 58 new whole-genome sequences from IAVs collected in Mexican swine to establish that the swine virus responsible for the 2009 pandemic evolved in central Mexico. This finding highlights how the 2009 pandemic arose from a region not considered a pandemic risk, owing to an expansion of IAV diversity in swine resulting from long-distance live swine trade. In 2009 a new influenza virus jumped from pigs to humans and spread very rapidly, causing an initial outbreak in Mexico and becoming a global pandemic in just a few months. Although the most straightforward explanation is that the virus originated in swine in Mexico, several studies suggested that this was unlikely because key genetic components of the virus had never been detected in the Americas. Determining the source of the disease is critical for predicting and preparing for future influenza pandemics. Mena, Nelson et al. sought to better characterize the genetic diversity of influenza viruses in Mexican swine by obtaining the entire genetic sequences of 58 viruses collected from swine in Mexico, including some from previously unsampled regions in central Mexico. The sequences revealed extensive diversity among the influenza viruses circulating in Mexican swine. Several viruses included genetic segments that originated from viruses from Eurasia (the landmass containing Europe and Asia) and had not previously been detected in the Americas. The new sequences contained key genetic components of the 2009 pandemic virus. Furthermore, the sequences suggest that viruses with a similar genetic composition to the 2009 pandemic virus have been circulating in pigs in central-west Mexico for more than a decade. Thus, this region is the most likely source of the virus that started the 2009 pandemic. Mena, Nelson et al. also found that the movement of viruses from Eurasia and the United States into Mexico closely follows the direction of the global trade of live swine. This highlights the critical role that animal trading plays in bringing together diverse viruses from different continents, which can then combine and generate new pandemic viruses. A potential next step is to perform experiments that investigate how well the swine viruses can replicate and pass between different animal models. Comparing the results of such experiments with the findings presented by Mena, Nelson et al. could identify factors that make the viruses more likely to spread to humans and produce a pandemic.
Asia is considered an important source of influenza A virus (IAV) pandemics, owing to large, diverse viral reservoirs in poultry and swine. However, the zoonotic origins of the 2009 A/H1N1 influenza pandemic virus (pdmH1N1) remain unclear, due to conflicting evidence from swine and humans. There is strong evidence that the first human outbreak of pdmH1N1 occurred in Mexico in early 2009. However, no related swine viruses have been detected in Mexico or any part of the Americas, and to date the most closely related ancestor viruses were identified in Asian swine. Here, we use 58 new whole-genome sequences from IAVs collected in Mexican swine to establish that the swine virus responsible for the 2009 pandemic evolved in central Mexico. This finding highlights how the 2009 pandemic arose from a region not considered a pandemic risk, owing to an expansion of IAV diversity in swine resulting from long-distance live swine trade. DOI: http://dx.doi.org/10.7554/eLife.16777.001 In 2009 a new influenza virus jumped from pigs to humans and spread very rapidly, causing an initial outbreak in Mexico and becoming a global pandemic in just a few months. Although the most straightforward explanation is that the virus originated in swine in Mexico, several studies suggested that this was unlikely because key genetic components of the virus had never been detected in the Americas. Determining the source of the disease is critical for predicting and preparing for future influenza pandemics. Mena, Nelson et al. sought to better characterize the genetic diversity of influenza viruses in Mexican swine by obtaining the entire genetic sequences of 58 viruses collected from swine in Mexico, including some from previously unsampled regions in central Mexico. The sequences revealed extensive diversity among the influenza viruses circulating in Mexican swine. Several viruses included genetic segments that originated from viruses from Eurasia (the landmass containing Europe and Asia) and had not previously been detected in the Americas. The new sequences contained key genetic components of the 2009 pandemic virus. Furthermore, the sequences suggest that viruses with a similar genetic composition to the 2009 pandemic virus have been circulating in pigs in central-west Mexico for more than a decade. Thus, this region is the most likely source of the virus that started the 2009 pandemic. Mena, Nelson et al. also found that the movement of viruses from Eurasia and the United States into Mexico closely follows the direction of the global trade of live swine. This highlights the critical role that animal trading plays in bringing together diverse viruses from different continents, which can then combine and generate new pandemic viruses. A potential next step is to perform experiments that investigate how well the swine viruses can replicate and pass between different animal models. Comparing the results of such experiments with the findings presented by Mena, Nelson et al. could identify factors that make the viruses more likely to spread to humans and produce a pandemic. DOI: http://dx.doi.org/10.7554/eLife.16777.002
Asia is considered an important source of influenza A virus (IAV) pandemics, owing to large, diverse viral reservoirs in poultry and swine. However, the zoonotic origins of the 2009 A/H1N1 influenza pandemic virus (pdmH1N1) remain unclear, due to conflicting evidence from swine and humans. There is strong evidence that the first human outbreak of pdmH1N1 occurred in Mexico in early 2009. However, no related swine viruses have been detected in Mexico or any part of the Americas, and to date the most closely related ancestor viruses were identified in Asian swine. Here, we use 58 new whole-genome sequences from IAVs collected in Mexican swine to establish that the swine virus responsible for the 2009 pandemic evolved in central Mexico. This finding highlights how the 2009 pandemic arose from a region not considered a pandemic risk, owing to an expansion of IAV diversity in swine resulting from long-distance live swine trade.Asia is considered an important source of influenza A virus (IAV) pandemics, owing to large, diverse viral reservoirs in poultry and swine. However, the zoonotic origins of the 2009 A/H1N1 influenza pandemic virus (pdmH1N1) remain unclear, due to conflicting evidence from swine and humans. There is strong evidence that the first human outbreak of pdmH1N1 occurred in Mexico in early 2009. However, no related swine viruses have been detected in Mexico or any part of the Americas, and to date the most closely related ancestor viruses were identified in Asian swine. Here, we use 58 new whole-genome sequences from IAVs collected in Mexican swine to establish that the swine virus responsible for the 2009 pandemic evolved in central Mexico. This finding highlights how the 2009 pandemic arose from a region not considered a pandemic risk, owing to an expansion of IAV diversity in swine resulting from long-distance live swine trade.
Asia is considered an important source of influenza A virus (IAV) pandemics, owing to large, diverse viral reservoirs in poultry and swine. However, the zoonotic origins of the 2009 A/H1N1 influenza pandemic virus (pdmH1N1) remain unclear, due to conflicting evidence from swine and humans. There is strong evidence that the first human outbreak of pdmH1N1 occurred in Mexico in early 2009. However, no related swine viruses have been detected in Mexico or any part of the Americas, and to date the most closely related ancestor viruses were identified in Asian swine. Here, we use 58 new whole-genome sequences from IAVs collected in Mexican swine to establish that the swine virus responsible for the 2009 pandemic evolved in central Mexico. This finding highlights how the 2009 pandemic arose from a region not considered a pandemic risk, owing to an expansion of IAV diversity in swine resulting from long-distance live swine trade. DOI: eLife digest In 2009 a new influenza virus jumped from pigs to humans and spread very rapidly, causing an initial outbreak in Mexico and becoming a global pandemic in just a few months. Although the most straightforward explanation is that the virus originated in swine in Mexico, several studies suggested that this was unlikely because key genetic components of the virus had never been detected in the Americas. Determining the source of the disease is critical for predicting and preparing for future influenza pandemics. Mena, Nelson et al. sought to better characterize the genetic diversity of influenza viruses in Mexican swine by obtaining the entire genetic sequences of 58 viruses collected from swine in Mexico, including some from previously unsampled regions in central Mexico. The sequences revealed extensive diversity among the influenza viruses circulating in Mexican swine. Several viruses included genetic segments that originated from viruses from Eurasia (the landmass containing Europe and Asia) and had not previously been detected in the Americas. The new sequences contained key genetic components of the 2009 pandemic virus. Furthermore, the sequences suggest that viruses with a similar genetic composition to the 2009 pandemic virus have been circulating in pigs in central-west Mexico for more than a decade. Thus, this region is the most likely source of the virus that started the 2009 pandemic. Mena, Nelson et al. also found that the movement of viruses from Eurasia and the United States into Mexico closely follows the direction of the global trade of live swine. This highlights the critical role that animal trading plays in bringing together diverse viruses from different continents, which can then combine and generate new pandemic viruses. A potential next step is to perform experiments that investigate how well the swine viruses can replicate and pass between different animal models. Comparing the results of such experiments with the findings presented by Mena, Nelson et al. could identify factors that make the viruses more likely to spread to humans and produce a pandemic. DOI:
Audience Academic
Author García-Sastre, Adolfo
Cortes-Fernández, Refugio
Rambaut, Andrew
Lara-Puente, J Horacio
Trovão, Nídia S
Quezada-Monroy, Francisco
Nelson, Martha I
Cunha, Luis F
Dutta, Jayeeta
Lozano-Dubernard, Bernardo
van Bakel, Harm
Castro-Peralta, Felipa
Mena, Ignacio
Author_xml – sequence: 1
  givenname: Ignacio
  surname: Mena
  fullname: Mena, Ignacio
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, United States
– sequence: 2
  givenname: Martha I
  surname: Nelson
  fullname: Nelson, Martha I
  organization: Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, United States
– sequence: 3
  givenname: Francisco
  surname: Quezada-Monroy
  fullname: Quezada-Monroy, Francisco
  organization: Laboratorio Avi-Mex, Mexico City, Mexico
– sequence: 4
  givenname: Jayeeta
  surname: Dutta
  fullname: Dutta, Jayeeta
  organization: Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
– sequence: 5
  givenname: Refugio
  surname: Cortes-Fernández
  fullname: Cortes-Fernández, Refugio
  organization: Laboratorio Avi-Mex, Mexico City, Mexico
– sequence: 6
  givenname: J Horacio
  surname: Lara-Puente
  fullname: Lara-Puente, J Horacio
  organization: Laboratorio Avi-Mex, Mexico City, Mexico
– sequence: 7
  givenname: Felipa
  surname: Castro-Peralta
  fullname: Castro-Peralta, Felipa
  organization: Laboratorio Avi-Mex, Mexico City, Mexico
– sequence: 8
  givenname: Luis F
  surname: Cunha
  fullname: Cunha, Luis F
  organization: Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
– sequence: 9
  givenname: Nídia S
  orcidid: 0000-0002-2106-1166
  surname: Trovão
  fullname: Trovão, Nídia S
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, United States, Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, United States, Department of Microbiology and Immunology, Rega Institute, University of Leuven, Leuven, Belgium
– sequence: 10
  givenname: Bernardo
  surname: Lozano-Dubernard
  fullname: Lozano-Dubernard, Bernardo
  organization: Laboratorio Avi-Mex, Mexico City, Mexico
– sequence: 11
  givenname: Andrew
  surname: Rambaut
  fullname: Rambaut, Andrew
  organization: Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, United States, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom, Centre for Immunology, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
– sequence: 12
  givenname: Harm
  surname: van Bakel
  fullname: van Bakel, Harm
  organization: Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
– sequence: 13
  givenname: Adolfo
  orcidid: 0000-0002-6551-1827
  surname: García-Sastre
  fullname: García-Sastre, Adolfo
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, United States, Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27350259$$D View this record in MEDLINE/PubMed
BookMark eNptkt1rFDEUxQep2Fr75LsM-KLIrkkmH5OXQilqF1YLfoBv4W7mZptlNlknM1r9683OttotTR4Sbn73hJycp8VBiAGL4jklUyUEf4tz73BKpVLqUXHEiCATUvPvB3f2h8VJSiuSh-J1TfWT4pCpShAm9FFxetn5pQ-pjK7sr7BkhOjygn6ipQ-uHTD8gXIDocG1t7lUpl8-4HbzEa-9jc-Kxw7ahCc363Hx7f27r-cXk_nlh9n52XxihZL9RABwtWjQaloRSh1jYBdVLakEbZ2upGCiQeI41k5zCguFjknUUtaMcqDVcTHb6TYRVmbT-TV0v00Eb8ZC7JYGut7bFg2XUklhWSUEcCHdomkAmCC1tVwSxbLW6U5rMyzW2FgMfQftnuj-SfBXZhl_Gq6F0jXJAq9uBLr4Y8DUm7VPFtsWAsYhGVoTyTkVI_ryHrqKQxeyVYZqUVU6_wP_Ty0hPyAbH_O9ditqzriqGBOCyUxNH6DyHD8nx8L5XN9reL3XkJker_slDCmZ2ZfP--yLu6b8c-M2KRmgO8B2MaUOnbG-h97HrUe-NZSYbSDNGEgzBjL3vLnXcyv7EP0XOXXb6g
CitedBy_id crossref_primary_10_1002_jcla_22638
crossref_primary_10_1038_s41586_021_04111_z
crossref_primary_10_3390_v13040547
crossref_primary_10_7554_eLife_60940
crossref_primary_10_1128_mBio_03617_20
crossref_primary_10_2196_13090
crossref_primary_10_3390_vaccines9070787
crossref_primary_10_1128_spectrum_02878_22
crossref_primary_10_1111_tbed_13826
crossref_primary_10_1128_jvi_00365_23
crossref_primary_10_3390_vaccines11020450
crossref_primary_10_1016_j_epidem_2019_100362
crossref_primary_10_1093_cid_cix823
crossref_primary_10_1128_msphere_00119_23
crossref_primary_10_1038_s41598_017_11272_3
crossref_primary_10_3390_microorganisms11081961
crossref_primary_10_3390_pathogens9050355
crossref_primary_10_1128_mSphere_00958_20
crossref_primary_10_1186_s13567_024_01406_7
crossref_primary_10_1128_JVI_00433_18
crossref_primary_10_1016_j_molimm_2021_03_014
crossref_primary_10_1128_mBio_02459_18
crossref_primary_10_3201_eid2503_180779
crossref_primary_10_1128_mbio_01804_24
crossref_primary_10_1093_ofid_ofae064
crossref_primary_10_1093_aje_kwy150
crossref_primary_10_1038_s41426_018_0190_2
crossref_primary_10_1073_pnas_2301926120
crossref_primary_10_1080_22221751_2025_2455598
crossref_primary_10_3389_fmed_2023_1161268
crossref_primary_10_3389_fvets_2018_00347
crossref_primary_10_1016_j_meegid_2021_104885
crossref_primary_10_1128_JVI_00056_17
crossref_primary_10_2196_24432
crossref_primary_10_3201_eid2909_230067
crossref_primary_10_4103_jfmpc_jfmpc_2320_20
crossref_primary_10_3389_fimmu_2022_978824
crossref_primary_10_1016_j_vetmic_2016_11_026
crossref_primary_10_3201_eid2810_220649
crossref_primary_10_1007_s41055_020_00075_4
crossref_primary_10_1038_emi_2017_66
crossref_primary_10_1016_j_eclinm_2022_101386
crossref_primary_10_3390_ijgi10060395
crossref_primary_10_1128_JVI_01185_20
crossref_primary_10_3389_fpubh_2021_649240
crossref_primary_10_3390_v15010046
crossref_primary_10_1016_j_pt_2018_07_004
crossref_primary_10_1016_j_medj_2020_11_004
crossref_primary_10_1128_jvi_01480_22
crossref_primary_10_1126_sciimmunol_adj9534
crossref_primary_10_1016_j_virol_2019_03_016
crossref_primary_10_1159_000508654
crossref_primary_10_1093_infdis_jiz286
crossref_primary_10_1111_1468_2427_13080
crossref_primary_10_1186_s12916_018_1184_6
crossref_primary_10_3390_vaccines9091032
crossref_primary_10_1038_s41467_025_57338_z
crossref_primary_10_1098_rstb_2019_0017
crossref_primary_10_1038_s44298_023_00009_x
crossref_primary_10_1128_jvi_01091_22
crossref_primary_10_1101_cshperspect_a038737
crossref_primary_10_1177_1040638720933875
crossref_primary_10_3390_v12020248
crossref_primary_10_1111_tbed_14667
crossref_primary_10_1128_spectrum_03386_23
crossref_primary_10_54097_hset_v54i_9802
crossref_primary_10_1128_JVI_01413_18
crossref_primary_10_3389_fcimb_2023_1222805
crossref_primary_10_1128_mbio_00583_23
crossref_primary_10_3389_fvets_2022_983304
crossref_primary_10_1007_s12250_021_00392_w
crossref_primary_10_1128_JVI_00403_21
crossref_primary_10_1128_JVI_01091_20
crossref_primary_10_1002_rmv_2171
crossref_primary_10_1089_hs_2022_0026
crossref_primary_10_3390_v15091959
crossref_primary_10_1016_j_ijid_2023_01_028
crossref_primary_10_1038_s41426_018_0088_z
crossref_primary_10_1038_s41426_018_0050_0
crossref_primary_10_3390_bios11030066
crossref_primary_10_1111_zph_12948
crossref_primary_10_1080_22221751_2024_2368202
crossref_primary_10_3201_eid2504_180779
crossref_primary_10_1016_j_tim_2021_03_013
crossref_primary_10_1128_JVI_00960_17
crossref_primary_10_3390_vaccines11111699
crossref_primary_10_1016_j_immuni_2020_10_005
crossref_primary_10_1111_tbed_13791
crossref_primary_10_3389_fmicb_2023_1243567
crossref_primary_10_1128_JVI_02011_18
crossref_primary_10_1128_JVI_01453_20
crossref_primary_10_3390_v13112250
crossref_primary_10_1079_cabireviews202217060
crossref_primary_10_1177_10406387211068023
crossref_primary_10_3390_ani13203281
crossref_primary_10_1111_zph_12972
crossref_primary_10_1016_S0140_6736_23_01064_4
crossref_primary_10_1128_JVI_00745_17
crossref_primary_10_1038_s41426_018_0086_1
crossref_primary_10_1111_ina_13027
crossref_primary_10_1017_S1466252321000050
crossref_primary_10_1093_cid_ciaa1781
crossref_primary_10_1016_j_ymeth_2023_10_010
crossref_primary_10_1038_s41426_018_0109_y
crossref_primary_10_3390_v16060883
crossref_primary_10_1177_0840470420901532
crossref_primary_10_1371_journal_ppat_1011838
crossref_primary_10_1128_jvi_00332_22
crossref_primary_10_1038_s41541_024_00923_y
crossref_primary_10_3390_vaccines12020157
crossref_primary_10_1007_s00508_021_01816_z
crossref_primary_10_1074_jbc_REV120_013309
crossref_primary_10_3390_v16060839
crossref_primary_10_1128_mBio_00909_18
crossref_primary_10_1016_j_ijmm_2024_151598
crossref_primary_10_1016_j_chom_2020_07_006
crossref_primary_10_1016_S2542_5196_20_30123_6
crossref_primary_10_1093_ve_veae102
crossref_primary_10_3390_v13050746
crossref_primary_10_1126_scitranslmed_adj2379
crossref_primary_10_1146_annurev_virology_101416_041726
crossref_primary_10_3201_eid2805_211965
crossref_primary_10_1099_jgv_0_000989
crossref_primary_10_3390_v16111728
crossref_primary_10_1128_JVI_00316_18
crossref_primary_10_1038_s41467_024_49117_z
crossref_primary_10_1093_infdis_jiab122
crossref_primary_10_1126_scitranslmed_abg4535
crossref_primary_10_1016_j_ijid_2019_08_002
crossref_primary_10_3390_vaccines9070800
crossref_primary_10_1039_D4AY00508B
crossref_primary_10_7189_jogh_10_020317
crossref_primary_10_3201_eid2312_170246
crossref_primary_10_1186_s12862_019_1567_0
crossref_primary_10_3390_v14010047
crossref_primary_10_1016_j_str_2024_05_001
crossref_primary_10_1111_zph_12378
crossref_primary_10_1126_scitranslmed_aau5485
crossref_primary_10_1002_ece3_5232
crossref_primary_10_1016_j_vetmic_2020_108968
crossref_primary_10_1093_ve_veab099
crossref_primary_10_1016_j_virusres_2020_198118
crossref_primary_10_3390_v14102257
crossref_primary_10_1128_spectrum_02181_23
crossref_primary_10_1371_journal_pone_0217607
crossref_primary_10_1128_JVI_01969_19
crossref_primary_10_1016_j_coviro_2023_101314
crossref_primary_10_3390_v15081638
crossref_primary_10_1186_s40813_022_00251_4
crossref_primary_10_3390_microorganisms11030580
crossref_primary_10_1371_journal_ppat_1011476
crossref_primary_10_3389_fcimb_2024_1497278
crossref_primary_10_3390_v15020483
crossref_primary_10_7589_2019_03_065
crossref_primary_10_1093_ve_vey043
crossref_primary_10_3390_bios12080590
crossref_primary_10_1371_journal_pone_0197600
crossref_primary_10_1038_s41564_018_0296_2
crossref_primary_10_1186_s40659_024_00570_6
crossref_primary_10_1111_zph_12673
crossref_primary_10_3390_v13010127
crossref_primary_10_1038_s41598_019_55254_z
crossref_primary_10_3390_ani12121593
crossref_primary_10_1093_ve_veac001
crossref_primary_10_1177_1473325020973333
crossref_primary_10_1096_fj_202101703R
crossref_primary_10_1093_pnasnexus_pgae306
crossref_primary_10_1007_s11262_021_01873_6
crossref_primary_10_1080_23779497_2021_1917304
crossref_primary_10_1084_jem_20181624
crossref_primary_10_1016_j_cell_2024_07_025
crossref_primary_10_1128_spectrum_01781_22
crossref_primary_10_7554_eLife_83470
crossref_primary_10_1128_JVI_01009_20
crossref_primary_10_1186_s40813_022_00274_x
crossref_primary_10_1128_mSphere_00362_16
crossref_primary_10_3390_v12070762
crossref_primary_10_1080_01436597_2024_2309241
crossref_primary_10_3390_v13081633
crossref_primary_10_1016_j_isci_2023_107830
crossref_primary_10_1128_mbio_02649_23
crossref_primary_10_3390_pathogens11080927
crossref_primary_10_1186_s40813_023_00304_2
crossref_primary_10_1111_tbed_14255
crossref_primary_10_1007_s11262_022_01904_w
crossref_primary_10_1038_s41598_019_51097_w
crossref_primary_10_3390_vaccines9080897
crossref_primary_10_3390_vetsci10030220
crossref_primary_10_1186_s12917_022_03494_z
crossref_primary_10_3390_v15091893
crossref_primary_10_1371_journal_ppat_1010106
crossref_primary_10_1038_s41598_019_50170_8
crossref_primary_10_1080_22221751_2024_2387449
crossref_primary_10_3390_vaccines9070739
Cites_doi 10.1016/j.tim.2014.12.002
10.1101/gr.229202
10.1007/82_2011_179
10.1038/ncomms7696
10.1093/bioinformatics/btp324
10.1128/JVI.00840-15
10.20506/rst.28.1.1879
10.1371/journal.pone.0102429
10.1371/currents.RRN1031
10.1371/journal.ppat.1003932
10.1371/journal.pmed.1000436
10.1093/bioinformatics/btl446
10.1128/JVI.73.10.8851-8856.1999
10.1111/j.1750-2659.2011.00267.x
10.1126/science.1176225
10.1073/pnas.1522643113
10.1038/nature08182
10.1128/JVI.05262-11
10.1128/JVI.01327-14
10.1038/nature10004
10.1128/JVI.02005-07
10.1093/molbev/mss075
10.1093/bioinformatics/btp244
10.1038/nature14348
10.1128/JVI.00459-15
10.1111/j.1750-2659.2011.00246.x
10.1099/vir.0.036590-0
10.1371/journal.ppat.1002443
10.1126/science.1245200
10.1098/rstb.2008.0176
10.1111/j.1750-2659.2008.00062.x
10.1007/s00285-007-0120-8
10.1126/science.1213362
10.3201/eid2108.141891
10.1016/j.vetmic.2013.09.007
10.1111/irv.12329
10.1111/irv.12193
10.3201/eid0901.020047
10.1093/infdis/jiv474
10.1101/gr.9.9.868
10.1128/JVI.63.11.4603-4608.1989
10.14806/ej.17.1.200
10.1126/science.1154137
10.1371/journal.ppat.1002077
10.1093/bioinformatics/bts635
10.1093/nar/gkm354
10.1073/pnas.1111000108
10.1073/pnas.0900877106
10.1093/nar/gkh340
10.3201/eid1903.120945
10.1038/nbt.1883
10.1038/emi.2012.33
10.1128/JVI.01080-14
10.1128/mBio.00919-13
10.1371/currents.outbreaks.c8b3207c9bad98474eca3013fa933ca6
ContentType Journal Article
Copyright COPYRIGHT 2016 eLife Science Publications, Ltd.
2016. This work is licensed under the Creative Commons Public Domain Dedication ( https://creativecommons.org/publicdomain/zero/1.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2016 eLife Science Publications, Ltd.
– notice: 2016. This work is licensed under the Creative Commons Public Domain Dedication ( https://creativecommons.org/publicdomain/zero/1.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.16777
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database (subscription)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Publicly Available Content Database
CrossRef



MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Medicine
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_466765c2355a456fbddaa2508cc46072
PMC4957980
A473225526
27350259
10_7554_eLife_16777
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Mexico
Hong Kong China
United States--US
Asia
GeographicLocations_xml – name: Mexico
– name: Asia
– name: Hong Kong China
– name: United States--US
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: HHSN272201400008C
– fundername: ;
  grantid: Multinational Influenza Seasonal Mortality Study
– fundername: ;
  grantid: Centers of Excellence for Influenza Research and Surveillance, Contract No.HHSN272201400008C
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
3V.
CGR
CUY
CVF
ECM
EIF
FRP
NPM
RHF
PMFND
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c576t-5aa47bdec913011f22acb38616a9cf936525de0f4e8f941ab7ef26e9668214a13
IEDL.DBID M48
ISSN 2050-084X
IngestDate Wed Aug 27 01:11:43 EDT 2025
Thu Aug 21 18:25:42 EDT 2025
Thu Jul 10 21:28:59 EDT 2025
Fri Jul 25 10:12:04 EDT 2025
Tue Jun 17 21:35:38 EDT 2025
Tue Jun 10 20:52:19 EDT 2025
Fri Jun 27 03:40:37 EDT 2025
Thu Jan 02 22:59:04 EST 2025
Tue Jul 01 03:37:31 EDT 2025
Thu Apr 24 23:06:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords global health
swine
epidemiology
infectious disease
2009 pandemic
microbiology
evolution
virus
zoonosis
influenza A virus
phylogeography
Language English
License http://creativecommons.org/publicdomain/zero/1.0
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-5aa47bdec913011f22acb38616a9cf936525de0f4e8f941ab7ef26e9668214a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-6551-1827
0000-0002-2106-1166
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.16777
PMID 27350259
PQID 1953393504
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_466765c2355a456fbddaa2508cc46072
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4957980
proquest_miscellaneous_1806441580
proquest_journals_1953393504
gale_infotracmisc_A473225526
gale_infotracacademiconefile_A473225526
gale_incontextgauss_ISR_A473225526
pubmed_primary_27350259
crossref_citationtrail_10_7554_eLife_16777
crossref_primary_10_7554_eLife_16777
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-28
PublicationDateYYYYMMDD 2016-06-28
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-28
  day: 28
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2016
Publisher eLife Science Publications, Ltd
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Science Publications, Ltd
– name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Lemey (bib22) 2014; 10
Perera (bib38) 2013; 19
Huang (bib15) 1999; 9
Martin (bib26) 2011; 17
Yang (bib52) 2016; 113
Suchard (bib44) 2009; 25
Nelson (bib30) 2014; 88
Poonsuk (bib39) 2013; 167
Garten (bib12) 2009; 325
Ma (bib25) 2014; 5
Drummond (bib9) 2012; 29
Minin (bib27) 2008; 56
Bao (bib2) 2007; 35
Nelson (bib31) 2015; 23
Lemey (bib21) 2009; 1
Brockmann (bib5) 2013; 342
Frank (bib11) 2016; 213
Sorrell (bib42) 2009; 106
Bowman (bib4) 2012; 1
Cappuccio (bib6) 2011; 92
Russell (bib40) 2008; 320
Kent (bib17) 2002; 12
Dobin (bib8) 2013; 29
Lam (bib19) 2011; 85
Liang (bib24) 2014; 88
Yen (bib53) 2011; 108
Lam (bib20) 2015; 522
Takemae (bib45) 2008; 2
Edgar (bib10) 2004; 32
Tinoco (bib47) 2016; 10
Stamatakis (bib43) 2006; 22
Pereda (bib37) 2011; 5
Watson (bib50) 2015; 89
Lakdawala (bib18) 2011; 7
Bao (bib3) 2008; 82
Viboud (bib48) 2014; 9
Nelson (bib35) 2015; 89
Kawaoka (bib16) 1989; 63
Taubenberger (bib46) 2009; 28
Nelson (bib29) 2011; 7
Nelson (bib32) 2015; 7
Smith (bib41) 2009; 459
Zhu (bib55) 2013; 370
Vijaykrishna (bib49) 2011; 473
Weinberg (bib51) 2003; 9
Nelson (bib33) 2015; 21
Anderson (bib1) 2013; 7
Li (bib23) 2009; 25
Grabherr (bib13) 2011; 29
Nelson (bib34) 2015; 6
Chowell (bib7) 2011; 8
Minin (bib28) 2008; 363
Herfst (bib14) 2012; 336
Ngo (bib36) 2012; 6
Zhou (bib54) 1999; 73
References_xml – volume: 23
  start-page: 142
  year: 2015
  ident: bib31
  article-title: Reverse zoonosis of influenza to swine: new perspectives on the human-animal interface
  publication-title: Trends in Microbiology
  doi: 10.1016/j.tim.2014.12.002
– volume: 12
  start-page: 656
  year: 2002
  ident: bib17
  article-title: BLAT--the BLAST-like alignment tool
  publication-title: Genome Research
  doi: 10.1101/gr.229202
– volume: 370
  start-page: 57
  year: 2013
  ident: bib55
  article-title: History of Swine influenza viruses in Asia
  publication-title: Current Topics in Microbiology and Immunology
  doi: 10.1007/82_2011_179
– volume: 6
  start-page: 6696
  year: 2015
  ident: bib34
  article-title: Global migration of influenza A viruses in swine
  publication-title: Nature Communications
  doi: 10.1038/ncomms7696
– volume: 25
  start-page: 1754
  year: 2009
  ident: bib23
  article-title: Fast and accurate short read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 89
  start-page: 9920
  year: 2015
  ident: bib50
  article-title: Molecular epidemiology and evolution of influenza viruses circulating within European swine between 2009 and 2013
  publication-title: Journal of Virology
  doi: 10.1128/JVI.00840-15
– volume: 28
  start-page: 187
  year: 2009
  ident: bib46
  article-title: Pandemic influenza--including a risk assessment of H5N1
  publication-title: Revue Scientifique Et Technique
  doi: 10.20506/rst.28.1.1879
– volume: 9
  start-page: e102429
  year: 2014
  ident: bib48
  article-title: Demonstrating the use of high-volume electronic medical claims data to monitor local and regional influenza activity in the US
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0102429
– volume: 1
  start-page: RRN1031
  year: 2009
  ident: bib21
  article-title: Reconstructing the initial global spread of a human influenza pandemic: A Bayesian spatial-temporal model for the global spread of H1N1pdm
  publication-title: PLOS Currents
  doi: 10.1371/currents.RRN1031
– volume: 10
  start-page: e1003932
  year: 2014
  ident: bib22
  article-title: Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2
  publication-title: PLOS Pathogens
  doi: 10.1371/journal.ppat.1003932
– volume: 8
  start-page: e1000436
  year: 2011
  ident: bib7
  article-title: Characterizing the epidemiology of the 2009 influenza A/H1N1 pandemic in Mexico
  publication-title: PLOS Medicine
  doi: 10.1371/journal.pmed.1000436
– volume: 22
  start-page: 2688
  year: 2006
  ident: bib43
  article-title: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl446
– volume: 73
  start-page: 8851
  year: 1999
  ident: bib54
  article-title: Genetic reassortment of avian, swine, and human influenza A viruses in American pigs
  publication-title: Journal of Virology
  doi: 10.1128/JVI.73.10.8851-8856.1999
– volume: 6
  start-page: 6
  year: 2012
  ident: bib36
  article-title: Isolation of novel triple-reassortant swine H3N2 influenza viruses possessing the hemagglutinin and neuraminidase genes of a seasonal influenza virus in Vietnam in 2010
  publication-title: Influenza and Other Respiratory Viruses
  doi: 10.1111/j.1750-2659.2011.00267.x
– volume: 325
  start-page: 197
  year: 2009
  ident: bib12
  article-title: Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans
  publication-title: Science
  doi: 10.1126/science.1176225
– volume: 113
  start-page: 392
  year: 2016
  ident: bib52
  article-title: Prevalence, genetics, and transmissibility in ferrets of Eurasian avian-like H1N1 swine influenza viruses
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1522643113
– volume: 459
  start-page: 1122
  year: 2009
  ident: bib41
  article-title: Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic
  publication-title: Nature
  doi: 10.1038/nature08182
– volume: 85
  start-page: 10279
  year: 2011
  ident: bib19
  article-title: Reassortment events among swine influenza A viruses in China: implications for the origin of the 2009 influenza pandemic
  publication-title: Journal of Virology
  doi: 10.1128/JVI.05262-11
– volume: 88
  start-page: 10864
  year: 2014
  ident: bib24
  article-title: Expansion of genotypic diversity and establishment of 2009 H1N1 pandemic-origin internal genes in pigs in China
  publication-title: Journal of Virology
  doi: 10.1128/JVI.01327-14
– volume: 473
  start-page: 519
  year: 2011
  ident: bib49
  article-title: Long-term evolution and transmission dynamics of swine influenza A virus
  publication-title: Nature
  doi: 10.1038/nature10004
– volume: 82
  start-page: 596
  year: 2008
  ident: bib3
  article-title: The influenza virus resource at the National Center for Biotechnology Information
  publication-title: Journal of Virology
  doi: 10.1128/JVI.02005-07
– volume: 29
  start-page: 1969
  year: 2012
  ident: bib9
  article-title: Bayesian phylogenetics with BEAUti and the BEAST 1.7
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/mss075
– volume: 25
  start-page: 1370
  year: 2009
  ident: bib44
  article-title: Many-core algorithms for statistical phylogenetics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp244
– volume: 522
  start-page: 102
  year: 2015
  ident: bib20
  article-title: Dissemination, divergence and establishment of H7N9 influenza viruses in China
  publication-title: Nature
  doi: 10.1038/nature14348
– volume: 89
  start-page: 6218
  year: 2015
  ident: bib35
  article-title: Continual reintroduction of human pandemic H1N1 influenza a viruses into swine in the United States, 2009 to 2014
  publication-title: Journal of Virology
  doi: 10.1128/JVI.00459-15
– volume: 5
  start-page: 409
  year: 2011
  ident: bib37
  article-title: Evidence of reassortment of pandemic H1N1 influenza virus in swine in Argentina: are we facing the expansion of potential epicenters of influenza emergence?
  publication-title: Influenza and Other Respiratory Viruses
  doi: 10.1111/j.1750-2659.2011.00246.x
– volume: 92
  start-page: 2871
  year: 2011
  ident: bib6
  article-title: Outbreak of swine influenza in Argentina reveals a non-contemporary human H3N2 virus highly transmissible among pigs
  publication-title: Journal of General Virology
  doi: 10.1099/vir.0.036590-0
– volume: 7
  start-page: e1002443
  year: 2011
  ident: bib18
  article-title: Eurasian-origin gene segments contribute to the transmissibility, aerosol release, and morphology of the 2009 pandemic H1N1 influenza virus
  publication-title: PLOS Pathogens
  doi: 10.1371/journal.ppat.1002443
– volume: 342
  start-page: 1337
  year: 2013
  ident: bib5
  article-title: The hidden geometry of complex, network-driven contagion phenomena
  publication-title: Science
  doi: 10.1126/science.1245200
– volume: 363
  start-page: 3985
  year: 2008
  ident: bib28
  article-title: Fast, accurate and simulation-free stochastic mapping
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
  doi: 10.1098/rstb.2008.0176
– volume: 2
  start-page: 181
  year: 2008
  ident: bib45
  article-title: Genetic diversity of swine influenza viruses isolated from pigs during 2000 to 2005 in Thailand
  publication-title: Influenza and Other Respiratory Viruses
  doi: 10.1111/j.1750-2659.2008.00062.x
– volume: 56
  start-page: 391
  year: 2008
  ident: bib27
  article-title: Counting labeled transitions in continuous-time Markov models of evolution
  publication-title: Journal of Mathematical Biology
  doi: 10.1007/s00285-007-0120-8
– volume: 336
  start-page: 1534
  year: 2012
  ident: bib14
  article-title: Airborne transmission of influenza A/H5N1 virus between ferrets
  publication-title: Science
  doi: 10.1126/science.1213362
– volume: 21
  start-page: 1339
  year: 2015
  ident: bib33
  article-title: Influenza A viruses of human origin in swine, Brazil
  publication-title: Emerg Infect Diseases
  doi: 10.3201/eid2108.141891
– volume: 167
  start-page: 314
  year: 2013
  ident: bib39
  article-title: Genesis and genetic constellations of swine influenza viruses in Thailand
  publication-title: Veterinary Microbiology
  doi: 10.1016/j.vetmic.2013.09.007
– volume: 10
  start-page: 47
  year: 2016
  ident: bib47
  article-title: Transmission dynamics of pandemic influenza A(H1N1)pdm09 virus in humans and swine in backyard farms in Tumbes, Peru
  publication-title: Influenza and Other Respiratory Viruses
  doi: 10.1111/irv.12329
– volume: 7
  start-page: 42
  year: 2013
  ident: bib1
  article-title: Population dynamics of cocirculating swine influenza A viruses in the United States from 2009 to 2012
  publication-title: Influenza and Other Respiratory Viruses
  doi: 10.1111/irv.12193
– volume: 9
  start-page: 97
  year: 2003
  ident: bib51
  article-title: The U.S.-Mexico Border Infectious Disease Surveillance project: establishing bi-national border surveillance
  publication-title: Emerging Infectious Diseases
  doi: 10.3201/eid0901.020047
– volume: 213
  start-page: 1359
  year: 2016
  ident: bib11
  article-title: Infectious diseases society of America and gain-of-function experiments with pathogens having pandemic potential
  publication-title: Journal of Infectious Diseases
  doi: 10.1093/infdis/jiv474
– volume: 9
  start-page: 868
  year: 1999
  ident: bib15
  article-title: CAP3: A DNA sequence assembly program
  publication-title: Genome Research
  doi: 10.1101/gr.9.9.868
– volume: 63
  start-page: 4603
  year: 1989
  ident: bib16
  article-title: Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics
  publication-title: Journal of Virology
  doi: 10.1128/JVI.63.11.4603-4608.1989
– volume: 17
  start-page: 10
  year: 2011
  ident: bib26
  article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads
  publication-title: EMBnet.journal
  doi: 10.14806/ej.17.1.200
– volume: 320
  start-page: 340
  year: 2008
  ident: bib40
  article-title: The global circulation of seasonal influenza A (H3N2) viruses
  publication-title: Science
  doi: 10.1126/science.1154137
– volume: 7
  start-page: e1002077
  year: 2011
  ident: bib29
  article-title: Spatial dynamics of human-origin H1 influenza A virus in North American swine
  publication-title: PLOS Path
  doi: 10.1371/journal.ppat.1002077
– volume: 29
  start-page: 15
  year: 2013
  ident: bib8
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 35
  start-page: W280
  year: 2007
  ident: bib2
  article-title: FLAN: a web server for influenza virus genome annotation
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkm354
– volume: 108
  start-page: 14264
  year: 2011
  ident: bib53
  article-title: Hemagglutinin-neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1111000108
– volume: 106
  start-page: 7565
  year: 2009
  ident: bib42
  article-title: Minimal molecular constraints for respiratory droplet transmission of an avian-human H9N2 influenza A virus
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0900877106
– volume: 32
  start-page: 1792
  year: 2004
  ident: bib10
  article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkh340
– volume: 19
  start-page: 481
  year: 2013
  ident: bib38
  article-title: Swine influenza in Sri Lanka
  publication-title: Emerging Infectious Diseases
  doi: 10.3201/eid1903.120945
– volume: 29
  start-page: 644
  year: 2011
  ident: bib13
  article-title: Full-length transcriptome assembly from RNA-Seq data without a reference genome
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.1883
– volume: 1
  start-page: e33
  year: 2012
  ident: bib4
  article-title: Molecular evidence for interspecies transmission of H3N2pM/H3N2v influenza A viruses at an Ohio agricultural fair, July 2012
  publication-title: Emerging Microbes & Infections
  doi: 10.1038/emi.2012.33
– volume: 88
  start-page: 10110
  year: 2014
  ident: bib30
  article-title: Introductions and evolution of human-origin seasonal influenza a viruses in multinational swine populations
  publication-title: Journal of Virology
  doi: 10.1128/JVI.01080-14
– volume: 5
  start-page: e00919-13
  year: 2014
  ident: bib25
  article-title: North American triple reassortant and Eurasian H1N1 swine influenza viruses do not readily reassort to generate a 2009 pandemic H1N1-like virus
  publication-title: mBio
  doi: 10.1128/mBio.00919-13
– volume: 7
  year: 2015
  ident: bib32
  article-title: Novel human-like influenza a viruses circulate in swine in Mexico and Chile
  publication-title: PLOS Currents
  doi: 10.1371/currents.outbreaks.c8b3207c9bad98474eca3013fa933ca6
SSID ssj0000748819
Score 2.54806
Snippet Asia is considered an important source of influenza A virus (IAV) pandemics, owing to large, diverse viral reservoirs in poultry and swine. However, the...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms 2009 pandemic
Animals
Diseases
Epidemics
Epidemiology
Epidemiology and Global Health
evolution
Evolution, Molecular
Fisheries
Genetic diversity
Genomes
Genotype & phenotype
Health surveillance
Hogs
Humans
Immunology
Influenza A
influenza A virus
Influenza A Virus, H1N1 Subtype - classification
Influenza A Virus, H1N1 Subtype - genetics
Influenza A Virus, H1N1 Subtype - isolation & purification
Influenza viruses
Influenza, Human - epidemiology
Influenza, Human - virology
Medicine
Mexico
Microbiology and Infectious Disease
Origin
Orthomyxoviridae Infections - veterinary
Orthomyxoviridae Infections - virology
Pandemics
phylogeography
Rural development
Sequence Analysis, DNA
Swine
Swine Diseases - epidemiology
Swine Diseases - virology
Swine flu
Viruses
Zoonoses
Zoonoses - epidemiology
Zoonoses - virology
zoonosis
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SKPgitn6tVolSEIS1STZf-yJUsZxiK6iFvoVsNtED3SvdO9T-9Z3Jbo9bFHzxbUlmIfvLJDOzmfyGkH0jfPAVYyWWMS9lw2xplZYlq0Trk7CB5etixyd6dirfn6mzjVJfmBM20AMPwB1ITMJUQYBd9GDsU9O23oPdtiFIzUzefcHmbQRTeQ82oJi8Hi7kGTCZB_HDPMWXXBtjJiYoM_X_uR9vGKRpsuSG9Tm6TW6NbiM9HIa7Q27EbpdsD4Ukf98hrz7m-lY9XSQKHh3Fwwg64yeczociJJeenuPv4h_zAE20_wnOJT4cx1-gCnfJ6dHbL29m5VgZoQwQHyxL5b00TRtDzXGBJgGIN5XVXPs6pLrSSqg2siSjTbXkvjExCR0htLGCS8-re2SrW3TxAaHgHoDbE9okmlbKzFsskwmhShpCjUoU5MU1WC6MtOFYveK7g_ABkXUZWZeRLcj-Wvh8YMv4u9hrRH0tghTXuQEm3o0T7_418QV5hnPmkMSiwyyZr37V9-7d50_uUBrcp5TQBXk-CqUFjDr48dIBfDvyXk0k9yaSsMrCtPtaNdy4ynuHR5B4tZnJgjxdd-ObmLnWxcUKZCxDl1NZVpD7gyatvxtcRwXg1wUxEx2bADPt6ebfMge4xONVyx7-DyQfkZvgBmpMgBN2j2wtL1bxMbhay-ZJXlVXOtgh_Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96ovgien5VT6lyIAj10jRN0hflFI9V3BPUg30LaZqcC9qu1138-OudSbP1iuJbSSaQTmYyv2QmM4TsS2asKSjNsIx5xmuqMlUKntGCNcYzZWl4LjY_FrMT_nZRLuKFWx_DKrd7Ytiom87iHfkBunvwGSnlL1bfMqwahd7VWELjIrmEqctQquVCjncsYB4VWLzhWZ4Ew3ng3i29e5YLKeXEEIV8_X_vyufM0jRk8pwNOrpOrkXwmB4Oq32DXHDtLrk8lJP8uUuuzKOj_CZ5_j4UvOrTzqcA8VL0TqSz_DhPl0NVkl8mXeH98delhaa0_w7D8GPufoBs3CInR68_vZplsVRCZuHAsM5KY7isG2erHDXWM1iCulAiF6ayvipEycrGUc-d8hXPTS2dZ8LBWUexnJu8uE122q51d0kKeAFwkG08qxvOQyJj7qW1hRdw9ihYQp5u-aZtzCOO5Sy-aDhPIJN1YLIOTE7I_ki8GtJn_JvsJS7ASII5r0NDd3aqowppjuG4pWWAkAzAPl83jTGA4JS1XFAJE3uMy6cxq0WLYTOnZtP3-s3HD_qQS9y4SiYS8iQS-Q5mbU18hQD_jomwJpR7E0pQOzvt3kqJjmrf6z9CmpBHYzeOxFC21nUboFEUMWipaELuDEI1_jdgyRKYXyVETsRtwphpT7v8HJKCc_S3Knrv_9O6T64C4hMY68bUHtlZn23cA0BV6_phUJ3f1C8dag
  priority: 102
  providerName: ProQuest
Title Origins of the 2009 H1N1 influenza pandemic in swine in Mexico
URI https://www.ncbi.nlm.nih.gov/pubmed/27350259
https://www.proquest.com/docview/1953393504
https://www.proquest.com/docview/1806441580
https://pubmed.ncbi.nlm.nih.gov/PMC4957980
https://doaj.org/article/466765c2355a456fbddaa2508cc46072
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3db9MwELf28cILAvGVMaqAJiEhpTiOYzsvoA1tKogWNKjUN8tx7FFppKNpxeCv585NqgXGWxRfouRy5_tdfP4dIUeSGWsyShNsY57wkqpE5YInNGOV8UxZGraLjSdiNOUfZvlsh3TNOFsFNremdthParq8HF7_-PUWHB7w61BCNHztPs69G6ZCSrlL9iEkSWxlMG5xfpiSJdhpWmz25_19DfIByyyH4F_0glPg8P93pr4RqvpllDfi0tk9crcFlPHxxgLukx1XPyBvPoV-V0288DEgvBgXJ-JROknj-aYpyW8TX-Hv4-9zC6fi5ieATTwYu2swjYdkenb69d0oaTslJBbyhVWSG8NlWTlbpOiwnsEXKDMlUmEK64tM5CyvHPXcKV_w1JTSeSYcpDqKpdyk2SOyVy9q94TEABdAE7byrKw4DzzG3EtrMy8g9chYRF51KtK2pRHHbhaXGtIJVK0OqtVBtRE52gpfbdgzbhc7QV1vRZDyOpxYLC9060GaYzVubhkAJAOoz5dVZQwAOGUtF1TCg73AL6WR1KLGqpkLs24a_f7LuT7mEuetnImIvGyF_AKe2pp2EwK8O_Jg9SQPe5LgdbY_3BmE7oxW45IkbnWmPCLPt8N4JVay1W6xBhlFEYLmikbk8cZ-tu_dmWFEZM-yeorpj9Tzb4ETnONyq6IH_73nU3IHsJ7AKjemDsnearl2zwBPrcoB2ZUzOSD7J6eTz-eD8FdiEPznD9nnHQo
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEB8vCMZXYEBAQ0hIYY7j2O4DoPExtawtEtukvhnHsUclSMrSaow_ir-RuyQti0C87a2KL5VzPvt-5_siZEsyY01CaYRtzCOeURWpVPCIJiw3nilL63Sx0Vj0D_mHSTpZI7-WuTAYVrk8E-uDOi8t3pFvo7sH00gpfz37HmHXKPSuLltoNGKx505PwGSrXg7ewfo-ZWz3_cHbftR2FYgsYOt5lBrDZZY724tRuD2D2WaJErEwPet7iUhZmjvquVO-x2OTSeeZcGAWKBZzEyfwvxfIRVC8FI09OZGrOx1Qxwo0bJMGKEFRb7vh1LsXsZBSdhRf3R_gby1wRg12QzTP6Lzd6-RaC1bDnUa6bpA1V2yQS037ytMNcnnUOuZvklcf6wZbVVj6ECBliN6QsB-P43DadEH5acIZ3ld_m1p4FFYn8Br-GLkfIIu3yOG5MPE2WS_Kwt0lIeATwF029yzLOa8LJ3MvrU28AFsnYQF5vuSbtm3dcmyf8VWD_YJM1jWTdc3kgGytiGdNuY5_k73BBViRYI3t-kF5fKTbLas5hv-mlgEiMwAzfZbnxgBiVNZyQSVM7Akun8YqGgWG6RyZRVXpwf4nvcMlHpQpEwF51hL5EmZtTZv1AN-Ohbc6lJsdStjmtju8lBLdHjOV_rMpAvJ4NYxvYuhc4coF0CiKmDdVNCB3GqFafTdg1xSY3wuI7IhbhzHdkWL6pS5CztG_q-i9_0_rEbnSPxgN9XAw3rtPrgLaFHgxzugmWZ8fL9wDQHTz7GG9jULy-bz37W8WPloM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJyZeEIx_gQEBDSEhhSaOY7sPgDa2qmVrmTYm7c04jj0qQVKWVmN8ND4dd0laFoF421sVXyrnfOf7ne98R8imoNroOAwDbGMesDSUgUw4C8KYZtpRacLquthozAfH7MNJcrJCfi3uwmBa5WJPrDbqrDB4Rt7FcA9eIw1Z1zVpEQc7_XfT7wF2kMJI66KdRi0ie_biHNy38s1wB9b6BaX93U_vB0HTYSAwgLNnQaI1E2lmTS9CQXcUZp7Gkkdc94zrxTyhSWZDx6x0PRbpVFhHuQUXQdKI6SiG_71GVgV6RR2yur07PjhcnvCAcZZgb-tLgQLMdtfuT5x9HXEhRMsMVt0C_rYJl4xiO2HzkgXs3yI3G-jqb9Wydpus2HydXK-bWV6sk7VRE6a_Q95-rNptlX7hfACYPsZG_EE0jvxJ3RPlp_aneHr9bWLgkV-ew2v4Y2R_gGTeJcdXwsZ7pJMXuX1AfEArgMJM5miaMVaVUWZOGBM7Dp5PTD3yasE3ZZoq5thM46sCbwaZrComq4rJHtlcEk_r4h3_JtvGBViSYMXt6kFxdqoaBVYMk4ETQwGfaQCdLs0yrQE_SmMYDwVM7Dkun8KaGjlK56mel6UaHh2qLSZw20wo98jLhsgVMGujmzsQ8O1YhqtFudGiBKU37eGFlKhm0ynVHxXxyLPlML6JiXS5LeZAI0NEwIkMPXK_FqrldwOSTYD5PY-Ilri1GNMeySdfqpLkDKO9Mnz4_2k9JWugs2p_ON57RG4A9OSYdEflBunMzub2McC7Wfqk0SOffL5q1f0NUZtfrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Origins+of+the+2009+H1N1+influenza+pandemic+in+swine+in+Mexico&rft.jtitle=eLife&rft.au=Mena%2C+Ignacio&rft.au=Nelson%2C+Martha+I&rft.au=Quezada-Monroy%2C+Francisco&rft.au=Dutta%2C+Jayeeta&rft.date=2016-06-28&rft.eissn=2050-084X&rft.volume=5&rft_id=info:doi/10.7554%2FeLife.16777&rft_id=info%3Apmid%2F27350259&rft.externalDocID=27350259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon