Molecular interactions and inhibition of the staphylococcal biofilm-forming protein SdrC

Staphylococcus aureus forms biofilms on indwelling medical devices using a variety of cell-surface proteins. There is growing evidence that specific homophilic interactions between these proteins represent an important mechanism of cell accumulation during biofilm formation, but the underlying molec...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 14; pp. 3738 - 3743
Main Authors Feuillie, Cécile, Formosa-Dague, Cécile, Hays, Leanne M. C., Vervaeck, Ophélie, Derclaye, Sylvie, Brennan, Marian P., Foster, Timothy J., Geoghegan, Joan A., Dufrêne, Yves F.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 04.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Staphylococcus aureus forms biofilms on indwelling medical devices using a variety of cell-surface proteins. There is growing evidence that specific homophilic interactions between these proteins represent an important mechanism of cell accumulation during biofilm formation, but the underlying molecular mechanisms are still not well-understood. Here we report the direct measurement of homophilic binding forces by the serine-aspartate repeat protein SdrC and their inhibition by a peptide. Using single-cell and single-molecule force measurements, we find that SdrC is engaged in low-affinity homophilic bonds that promote cell–cell adhesion. Low-affinity intercellular adhesion may play a role in favoring biofilm dynamics. We show that SdrC also mediates strong cellular interactions with hydrophobic surfaces, which are likely to be involved in the initial attachment to biomaterials, the first stage of biofilm formation. Furthermore, we demonstrate that a peptide derived from β-neurexin is a powerful competitive inhibitor capable of efficiently blocking surface attachment, homophilic adhesion, and biofilm accumulation. Molecular modeling suggests that this blocking activity may originate from binding of the peptide to a sequence of SdrC involved in homophilic interactions. Our study opens up avenues for understanding the role of homophilic interactions in staphylococcal adhesion, and for the design of new molecules to prevent biofilm formation during infection.
AbstractList Staphylococcus aureus forms biofilms on indwelling medical devices using a variety of cell-surface proteins. There is growing evidence that specific homophilic interactions between these proteins represent an important mechanism of cell accumulation during biofilm formation, but the underlying molecular mechanisms are still not well-understood. Here we report the direct measurement of homophilic binding forces by the serine-aspartate repeat protein SdrC and their inhibition by a peptide. Using single-cell and single-molecule force measurements, we find that SdrC is engaged in low-affinity homophilic bonds that promote cell-cell adhesion. Low-affinity intercellular adhesion may play a role in favoring biofilm dynamics. We show that SdrC also mediates strong cellular interactions with hydrophobic surfaces, which are likely to be involved in the initial attachment to biomaterials, the first stage of biofilm formation. Furthermore, we demonstrate that a peptide derived from β-neurexin is a powerful competitive inhibitor capable of efficiently blocking surface attachment, homophilic adhesion, and biofilm accumulation. Molecular modeling suggests that this blocking activity may originate from binding of the peptide to a sequence of SdrC involved in homophilic interactions. Our study opens up avenues for understanding the role of homophilic interactions in staphylococcal adhesion, and for the design of new molecules to prevent biofilm formation during infection.
forms biofilms on indwelling medical devices using a variety of cell-surface proteins. There is growing evidence that specific homophilic interactions between these proteins represent an important mechanism of cell accumulation during biofilm formation, but the underlying molecular mechanisms are still not well-understood. Here we report the direct measurement of homophilic binding forces by the serine-aspartate repeat protein SdrC and their inhibition by a peptide. Using single-cell and single-molecule force measurements, we find that SdrC is engaged in low-affinity homophilic bonds that promote cell-cell adhesion. Low-affinity intercellular adhesion may play a role in favoring biofilm dynamics. We show that SdrC also mediates strong cellular interactions with hydrophobic surfaces, which are likely to be involved in the initial attachment to biomaterials, the first stage of biofilm formation. Furthermore, we demonstrate that a peptide derived from β-neurexin is a powerful competitive inhibitor capable of efficiently blocking surface attachment, homophilic adhesion, and biofilm accumulation. Molecular modeling suggests that this blocking activity may originate from binding of the peptide to a sequence of SdrC involved in homophilic interactions. Our study opens up avenues for understanding the role of homophilic interactions in staphylococcal adhesion, and for the design of new molecules to prevent biofilm formation during infection.
Significance The bacterial pathogen Staphylococcus aureus shows a remarkable ability to aggregate, thereby contributing to the formation of cellular communities that are difficult to eradicate. In this study, we dissect the homophilic interactions at play during S. aureus cell–cell adhesion, focusing on the key surface protein SdrC. We discover that SdrC is engaged in low-affinity homophilic bonds that promote intercellular adhesion, and that it also favors strong hydrophobic interactions with surfaces, emphasizing that this protein is a multifunctional adhesin. We also show that SdrC-dependent cell-surface attachment, cell–cell adhesion, and biofilm formation can be efficiently blocked by a peptide, thus suggesting this approach could be used for antibiofilm therapy. Staphylococcus aureus forms biofilms on indwelling medical devices using a variety of cell-surface proteins. There is growing evidence that specific homophilic interactions between these proteins represent an important mechanism of cell accumulation during biofilm formation, but the underlying molecular mechanisms are still not well-understood. Here we report the direct measurement of homophilic binding forces by the serine-aspartate repeat protein SdrC and their inhibition by a peptide. Using single-cell and single-molecule force measurements, we find that SdrC is engaged in low-affinity homophilic bonds that promote cell–cell adhesion. Low-affinity intercellular adhesion may play a role in favoring biofilm dynamics. We show that SdrC also mediates strong cellular interactions with hydrophobic surfaces, which are likely to be involved in the initial attachment to biomaterials, the first stage of biofilm formation. Furthermore, we demonstrate that a peptide derived from β-neurexin is a powerful competitive inhibitor capable of efficiently blocking surface attachment, homophilic adhesion, and biofilm accumulation. Molecular modeling suggests that this blocking activity may originate from binding of the peptide to a sequence of SdrC involved in homophilic interactions. Our study opens up avenues for understanding the role of homophilic interactions in staphylococcal adhesion, and for the design of new molecules to prevent biofilm formation during infection.
Staphylococcus aureus forms biofilms on indwelling medical devices using a variety of cell-surface proteins. There is growing evidence that specific homophilic interactions between these proteins represent an important mechanism of cell accumulation during biofilm formation, but the underlying molecular mechanisms are still not well-understood. Here we report the direct measurement of homophilic binding forces by the serine-aspartate repeat protein SdrC and their inhibition by a peptide. Using single-cell and single-molecule force measurements, we find that SdrC is engaged in low-affinity homophilic bonds that promote cell-cell adhesion. Low-affinity intercellular adhesion may play a role in favoring biofilm dynamics. We show that SdrC also mediates strong cellular interactions with hydrophobic surfaces, which are likely to be involved in the initial attachment to biomaterials, the first stage of biofilm formation. Furthermore, we demonstrate that a peptide derived from beta -neurexin is a powerful competitive inhibitor capable of efficiently blocking surface attachment, homophilic adhesion, and biofilm accumulation. Molecular modeling suggests that this blocking activity may originate from binding of the peptide to a sequence of SdrC involved in homophilic interactions. Our study opens up avenues for understanding the role of homophilic interactions in staphylococcal adhesion, and for the design of new molecules to prevent biofilm formation during infection.
The bacterial pathogen Staphylococcus aureus shows a remarkable ability to aggregate, thereby contributing to the formation of cellular communities that are difficult to eradicate. In this study, we dissect the homophilic interactions at play during S. aureus cell–cell adhesion, focusing on the key surface protein SdrC. We discover that SdrC is engaged in low-affinity homophilic bonds that promote intercellular adhesion, and that it also favors strong hydrophobic interactions with surfaces, emphasizing that this protein is a multifunctional adhesin. We also show that SdrC-dependent cell-surface attachment, cell–cell adhesion, and biofilm formation can be efficiently blocked by a peptide, thus suggesting this approach could be used for antibiofilm therapy. Staphylococcus aureus forms biofilms on indwelling medical devices using a variety of cell-surface proteins. There is growing evidence that specific homophilic interactions between these proteins represent an important mechanism of cell accumulation during biofilm formation, but the underlying molecular mechanisms are still not well-understood. Here we report the direct measurement of homophilic binding forces by the serine-aspartate repeat protein SdrC and their inhibition by a peptide. Using single-cell and single-molecule force measurements, we find that SdrC is engaged in low-affinity homophilic bonds that promote cell–cell adhesion. Low-affinity intercellular adhesion may play a role in favoring biofilm dynamics. We show that SdrC also mediates strong cellular interactions with hydrophobic surfaces, which are likely to be involved in the initial attachment to biomaterials, the first stage of biofilm formation. Furthermore, we demonstrate that a peptide derived from β-neurexin is a powerful competitive inhibitor capable of efficiently blocking surface attachment, homophilic adhesion, and biofilm accumulation. Molecular modeling suggests that this blocking activity may originate from binding of the peptide to a sequence of SdrC involved in homophilic interactions. Our study opens up avenues for understanding the role of homophilic interactions in staphylococcal adhesion, and for the design of new molecules to prevent biofilm formation during infection.
Author Hays, Leanne M. C.
Formosa-Dague, Cécile
Geoghegan, Joan A.
Feuillie, Cécile
Dufrêne, Yves F.
Vervaeck, Ophélie
Foster, Timothy J.
Derclaye, Sylvie
Brennan, Marian P.
Author_xml – sequence: 1
  givenname: Cécile
  surname: Feuillie
  fullname: Feuillie, Cécile
  organization: Institute of Life Sciences, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
– sequence: 2
  givenname: Cécile
  surname: Formosa-Dague
  fullname: Formosa-Dague, Cécile
  organization: Institute of Life Sciences, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
– sequence: 3
  givenname: Leanne M. C.
  surname: Hays
  fullname: Hays, Leanne M. C.
  organization: Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
– sequence: 4
  givenname: Ophélie
  surname: Vervaeck
  fullname: Vervaeck, Ophélie
  organization: Institute of Life Sciences, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
– sequence: 5
  givenname: Sylvie
  surname: Derclaye
  fullname: Derclaye, Sylvie
  organization: Institute of Life Sciences, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
– sequence: 6
  givenname: Marian P.
  surname: Brennan
  fullname: Brennan, Marian P.
  organization: Molecular and Cellular Therapeutics, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin 2, Ireland
– sequence: 7
  givenname: Timothy J.
  surname: Foster
  fullname: Foster, Timothy J.
  organization: Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
– sequence: 8
  givenname: Joan A.
  surname: Geoghegan
  fullname: Geoghegan, Joan A.
  organization: Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
– sequence: 9
  givenname: Yves F.
  surname: Dufrêne
  fullname: Dufrêne, Yves F.
  organization: Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28320940$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03454438$$DView record in HAL
BookMark eNqNks9v1TAMxyM0xN4GZ06gSlzGoZvT_GhyQZqeGEN6iAMgcYvSNFnz1CYlaSftv6fVGxvsxCVW7I-_tmyfoKMQg0XoNYZzDDW5GIPO55hjLoBhTJ-hDQaJS04lHKENQFWXglb0GJ3kvAcAyQS8QMeVIBVIChv080vsrZl7nQofJpu0mXwMudChXRydb_z6L6Irps4WedJjd9dHE43RfdH46Hw_lC6mwYebYkxxsj4U39q0fYmeO91n--renqIfVx-_b6_L3ddPn7eXu9Kwmk8lw43lLYOGEdcQAdyQmmnrWtCisYK5qsKmFQ4aWJ-WM2gJoa0ltZOiMeQUfTjojnMz2NbYMCXdqzH5Qac7FbVX_0aC79RNvFWMCFmJehF4fxDonqRdX-7U6gNCGaVE3OKFPbsvluKv2eZJDT4b2_c62DhnhYWsiYSa8_9Aa8k5BbZ28O4Juo9zCsvUFkoIybCs1toXB8qkmHOy7qFZDGo9BrUeg3o8hiXj7d-jeeD_bH8B3hyAfZ5ieoxzuixCYvIbZ9G8gw
CitedBy_id crossref_primary_10_1016_j_micpath_2019_03_030
crossref_primary_10_1093_femsre_fuae002
crossref_primary_10_1159_000530385
crossref_primary_10_1089_fpd_2022_0075
crossref_primary_10_1128_microbiolspec_PSIB_0004_2018
crossref_primary_10_1016_j_ibiod_2018_03_018
crossref_primary_10_1128_aem_00453_24
crossref_primary_10_1038_s43586_021_00062_x
crossref_primary_10_1172_JCI95823
crossref_primary_10_1128_mSphereDirect_00350_17
crossref_primary_10_4236_aim_2017_76039
crossref_primary_10_1016_j_str_2022_02_009
crossref_primary_10_1128_CMR_00205_20
crossref_primary_10_1039_C9NH00438F
crossref_primary_10_3390_ijms23115958
crossref_primary_10_1128_MMBR_00026_19
crossref_primary_10_3390_pathogens13010025
crossref_primary_10_3389_fcimb_2022_1003033
crossref_primary_10_1021_acscombsci_8b00147
crossref_primary_10_1002_jbm_b_34701
crossref_primary_10_1039_D0NR03134H
crossref_primary_10_1016_j_cobme_2019_08_001
crossref_primary_10_1039_D0NR07492F
crossref_primary_10_1128_mBio_02359_17
crossref_primary_10_1186_s12864_017_4276_3
crossref_primary_10_1021_acsnano_7b07247
crossref_primary_10_3390_microorganisms10101909
crossref_primary_10_3390_antibiotics12010012
crossref_primary_10_1021_acs_biochem_0c00124
crossref_primary_10_1016_j_tim_2019_06_007
crossref_primary_10_1128_microbiolspec_GPP3_0046_2018
crossref_primary_10_1007_s12274_018_2260_0
crossref_primary_10_1016_j_coisb_2017_11_006
crossref_primary_10_1111_omi_12277
crossref_primary_10_1016_j_micpath_2017_07_013
crossref_primary_10_3389_fmicb_2020_01693
crossref_primary_10_1039_C8NR10338K
crossref_primary_10_1128_Spectrum_00471_21
crossref_primary_10_3389_fmicb_2020_01457
crossref_primary_10_1016_j_algal_2021_102506
crossref_primary_10_1039_C7NR07023C
crossref_primary_10_1126_science_aat3764
crossref_primary_10_1016_j_cocis_2019_12_010
crossref_primary_10_1128_IAI_00549_17
crossref_primary_10_1128_mSphere_00059_21
crossref_primary_10_1007_s00253_020_10589_w
crossref_primary_10_1186_s12866_022_02535_9
crossref_primary_10_1021_acsabm_4c00175
crossref_primary_10_1016_j_tim_2017_04_002
crossref_primary_10_1016_j_tibtech_2018_07_006
crossref_primary_10_1038_s41529_022_00234_4
crossref_primary_10_1128_JB_00008_20
crossref_primary_10_1111_1348_0421_13025
crossref_primary_10_3390_ijms20153794
crossref_primary_10_1016_j_tcsw_2019_100018
crossref_primary_10_1080_22221751_2021_1914516
crossref_primary_10_1002_cbdv_202200494
crossref_primary_10_1073_pnas_1718104115
crossref_primary_10_1016_j_colsurfa_2019_123963
crossref_primary_10_1016_j_tcsw_2021_100048
crossref_primary_10_1128_JB_00125_20
crossref_primary_10_1107_S2053230X21000741
crossref_primary_10_3390_nano11020271
crossref_primary_10_3892_etm_2018_6403
crossref_primary_10_1016_j_semcdb_2017_06_022
crossref_primary_10_1021_acsnano_3c01185
crossref_primary_10_3390_polym14153198
crossref_primary_10_15616_BSL_2021_27_4_195
crossref_primary_10_1039_C9NA00582J
crossref_primary_10_3390_foods11213438
crossref_primary_10_1007_s10096_023_04709_3
crossref_primary_10_1111_nyas_14807
Cites_doi 10.1002/jcc.20084
10.1126/science.288.5463.143
10.1038/nprot.2015.053
10.1111/mmi.12750
10.1371/journal.ppat.1000726
10.1111/j.1574-6968.2007.00688.x
10.1128/IAI.69.5.3423-3426.2001
10.1111/mmi.12663
10.1073/pnas.0807717105
10.1128/mBio.01363-14
10.1128/mBio.00413-15
10.1073/pnas.95.21.12283
10.1016/S0092-8674(03)00809-2
10.1128/IAI.01542-14
10.1038/nmicrobiol.2016.186
10.1002/jcc.21334
10.1073/pnas.1109071108
10.1021/la801824c
10.1007/978-1-61779-564-0_5
10.3389/fcimb.2014.00171
10.1128/jb.178.1.175-183.1996
10.1371/journal.ppat.1004169
10.1021/acsnano.5b07515
10.4161/viru.24606
10.1073/pnas.1208134110
10.1073/pnas.1011247107
10.1128/MMBR.68.3.538-559.2004
10.1128/mBio.00277-11
10.1038/nmeth.3479
10.1586/eri.12.145
10.1371/journal.pone.0007567
10.1073/pnas.0402521101
10.1016/j.bpj.2010.08.063
10.1039/C6NH00057F
10.1038/nrmicro3161
10.1128/JB.00628-10
10.1073/pnas.0811350106
10.1073/pnas.1735343100
10.1073/pnas.1519265113
10.1073/pnas.070052697
10.1111/mmi.12301
10.1046/j.1365-2958.2002.02935.x
10.1128/IAI.00364-10
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Apr 4, 2017
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Apr 4, 2017
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
5PM
DOI 10.1073/pnas.1616805114
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE

CrossRef
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Adhesion and inhibition of SdrC
EISSN 1091-6490
EndPage 3743
ExternalDocumentID oai_HAL_hal_03454438v1
4321779795
10_1073_pnas_1616805114
28320940
26480691
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Fonds De La Recherche Scientifique - FNRS (Belgian National Fund for Scientific Research)
  grantid: WELBIO-CR-2015A-05
– fundername: Irish Research Council
  grantid: -
– fundername: EC | European Research Council (ERC)
  grantid: 693630
– fundername: Fonds De La Recherche Scientifique - FNRS (Belgian National Fund for Scientific Research)
  grantid: -
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ADQXQ
1XC
5PM
ID FETCH-LOGICAL-c576t-51be6d50b53fb3806c375aefd0a8be85f221cd8f0b08f0bd650d334de37f98bc3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 20:53:32 EDT 2024
Fri Sep 06 12:42:51 EDT 2024
Fri Aug 16 09:16:27 EDT 2024
Sat Aug 17 05:44:56 EDT 2024
Fri Sep 13 03:20:02 EDT 2024
Thu Aug 22 11:27:42 EDT 2024
Tue Aug 27 13:47:57 EDT 2024
Fri Feb 02 08:05:06 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords inhibition
adhesion
SdrC
biofilms
Staphylococcus aureus
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Freely available online through the PNAS open access option.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-51be6d50b53fb3806c375aefd0a8be85f221cd8f0b08f0bd650d334de37f98bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC5389287
1C.F., C.F.-D., and L.M.C.H. contributed equally to his work.
Author contributions: C.F., C.F.-D., L.M.C.H., O.V., S.D., M.B., T.J.F., J.A.G., and Y.F.D. designed research; C.F., C.F.-D., L.M.C.H., O.V., and S.D. performed research; C.F., C.F.-D., L.M.C.H., O.V., S.D., M.B., T.J.F., J.A.G., and Y.F.D. analyzed data; and C.F., C.F.-D., L.M.C.H., O.V., S.D., M.B., T.J.F., J.A.G., and Y.F.D. wrote the paper.
Edited by Richard P. Novick, New York University School of Medicine, New York, NY, and approved February 27, 2017 (received for review October 11, 2016)
ORCID 0000-0002-7289-4248
OpenAccessLink https://www.pnas.org/content/pnas/114/14/3738.full.pdf
PMID 28320940
PQID 1888951921
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5389287
hal_primary_oai_HAL_hal_03454438v1
proquest_miscellaneous_1897390766
proquest_miscellaneous_1879664057
proquest_journals_1888951921
crossref_primary_10_1073_pnas_1616805114
pubmed_primary_28320940
jstor_primary_26480691
PublicationCentury 2000
PublicationDate 2017-04-04
PublicationDateYYYYMMDD 2017-04-04
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
Trott O (e_1_3_3_44_2) 2010; 31
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
Otto M (e_1_3_3_1_2) 2008; 322
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_45_2
  doi: 10.1002/jcc.20084
– ident: e_1_3_3_27_2
  doi: 10.1126/science.288.5463.143
– ident: e_1_3_3_42_2
  doi: 10.1038/nprot.2015.053
– ident: e_1_3_3_24_2
  doi: 10.1111/mmi.12750
– ident: e_1_3_3_25_2
  doi: 10.1371/journal.ppat.1000726
– ident: e_1_3_3_5_2
  doi: 10.1111/j.1574-6968.2007.00688.x
– ident: e_1_3_3_35_2
  doi: 10.1128/IAI.69.5.3423-3426.2001
– ident: e_1_3_3_19_2
  doi: 10.1111/mmi.12663
– ident: e_1_3_3_6_2
  doi: 10.1073/pnas.0807717105
– ident: e_1_3_3_14_2
  doi: 10.1128/mBio.01363-14
– ident: e_1_3_3_20_2
  doi: 10.1128/mBio.00413-15
– ident: e_1_3_3_33_2
  doi: 10.1073/pnas.95.21.12283
– ident: e_1_3_3_34_2
  doi: 10.1016/S0092-8674(03)00809-2
– ident: e_1_3_3_8_2
  doi: 10.1128/IAI.01542-14
– ident: e_1_3_3_15_2
  doi: 10.1038/nmicrobiol.2016.186
– volume: 31
  start-page: 455
  year: 2010
  ident: e_1_3_3_44_2
  article-title: AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21334
  contributor:
    fullname: Trott O
– ident: e_1_3_3_18_2
  doi: 10.1073/pnas.1109071108
– ident: e_1_3_3_26_2
  doi: 10.1021/la801824c
– ident: e_1_3_3_39_2
  doi: 10.1007/978-1-61779-564-0_5
– ident: e_1_3_3_3_2
  doi: 10.3389/fcimb.2014.00171
– ident: e_1_3_3_4_2
  doi: 10.1128/jb.178.1.175-183.1996
– ident: e_1_3_3_9_2
  doi: 10.1371/journal.ppat.1004169
– ident: e_1_3_3_22_2
  doi: 10.1021/acsnano.5b07515
– ident: e_1_3_3_11_2
  doi: 10.4161/viru.24606
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.1208134110
– ident: e_1_3_3_29_2
  doi: 10.1073/pnas.1011247107
– ident: e_1_3_3_13_2
  doi: 10.1128/MMBR.68.3.538-559.2004
– ident: e_1_3_3_41_2
  doi: 10.1128/mBio.00277-11
– ident: e_1_3_3_31_2
  doi: 10.1038/nmeth.3479
– ident: e_1_3_3_12_2
  doi: 10.1586/eri.12.145
– ident: e_1_3_3_37_2
  doi: 10.1371/journal.pone.0007567
– ident: e_1_3_3_40_2
  doi: 10.1073/pnas.0402521101
– ident: e_1_3_3_17_2
  doi: 10.1016/j.bpj.2010.08.063
– ident: e_1_3_3_23_2
  doi: 10.1039/C6NH00057F
– ident: e_1_3_3_2_2
  doi: 10.1038/nrmicro3161
– ident: e_1_3_3_7_2
  doi: 10.1128/JB.00628-10
– ident: e_1_3_3_28_2
  doi: 10.1073/pnas.0811350106
– volume: 322
  start-page: 207
  year: 2008
  ident: e_1_3_3_1_2
  article-title: Staphylococcal biofilms
  publication-title: Curr Top Microbiol Immunol
  contributor:
    fullname: Otto M
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.1735343100
– ident: e_1_3_3_21_2
  doi: 10.1073/pnas.1519265113
– ident: e_1_3_3_30_2
  doi: 10.1073/pnas.070052697
– ident: e_1_3_3_32_2
  doi: 10.1111/mmi.12301
– ident: e_1_3_3_43_2
– ident: e_1_3_3_38_2
  doi: 10.1046/j.1365-2958.2002.02935.x
– ident: e_1_3_3_36_2
  doi: 10.1128/IAI.00364-10
SSID ssj0009580
Score 2.5148919
Snippet Staphylococcus aureus forms biofilms on indwelling medical devices using a variety of cell-surface proteins. There is growing evidence that specific homophilic...
forms biofilms on indwelling medical devices using a variety of cell-surface proteins. There is growing evidence that specific homophilic interactions between...
Significance The bacterial pathogen Staphylococcus aureus shows a remarkable ability to aggregate, thereby contributing to the formation of cellular...
The bacterial pathogen Staphylococcus aureus shows a remarkable ability to aggregate, thereby contributing to the formation of cellular communities that are...
SourceID pubmedcentral
hal
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3738
SubjectTerms Bacterial Adhesion
Bacterial Proteins - antagonists & inhibitors
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Binding Sites
Biochemistry, Molecular Biology
Biofilms
Biological Sciences
Biophysics
Hydrophobic and Hydrophilic Interactions
Life Sciences
Models, Molecular
Molecules
Nerve Tissue Proteins - chemistry
Peptides - chemistry
Peptides - pharmacology
Protein Binding
Proteins
Single-Cell Analysis
Staphylococcus aureus
Staphylococcus aureus - physiology
Staphylococcus infections
Title Molecular interactions and inhibition of the staphylococcal biofilm-forming protein SdrC
URI https://www.jstor.org/stable/26480691
https://www.ncbi.nlm.nih.gov/pubmed/28320940
https://www.proquest.com/docview/1888951921/abstract/
https://search.proquest.com/docview/1879664057
https://search.proquest.com/docview/1897390766
https://hal.science/hal-03454438
https://pubmed.ncbi.nlm.nih.gov/PMC5389287
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbiTF2Kpmla5QW26JAOsilRfGgMjAbuw0WBNoA3gRQpWEAsG7aT3587SnLqouiQRYNICzLvTvcd-PE7Qj5CVrYGYG0stBRx5oyPtWAGDGI4S-GjnIf2bdMfcnKbfZ2J2QER_VmYQNovbT1s7hbDpp4HbuVqUY56ntjo53QMQZoD0h8NyEBx3pfoO6Vd3Z47SeHzm6VZr-ej-GjVmM0QII7U4IoJtuTBRj2oILeXlQZz5ES29MR_Ac-_-ZN_JKSbV-RlhyTpdfvGR-TAN6_JURerG3rVCUp_Oiazad8Dl6I6xLo9y7ChpnFwY17bQNuiy4oCGqQAF2HpIcctYdnvqK2xqfciRnALaY4GYYe6ob_cevyG3N58_j2exF1HhbiEumIbi8R66QSzgleWayZLroTxlWNGW69FlaZJ6XTFLMOLA_jmOM-c56rKtS35CTlslo1_R2hljLWAFQARAUJwuNuKYEpqDSGdlCIiV_2KFqtWOKMIG96KF2iH4skOEfkAK76bhYLXk-vvBd5jPEOBPv2QROQkGGQ3Dal5TOYwcN5bqOjiDx4OhT1gxzyF4fe7YYgc3A4xjV_e4xwFtR4C1v_NyRXPmZIyIm9boz-9QOc7EVF77rD3R_ZHwKGDgnfnwKfP_uUZeZEivggsonNyuF3f-wtAR1t7CXXBl2-XISYeAdJ5DkU
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH7axgEujAGDjAEGcRiHpE4cJ85xqpgKtBMSG-otsuNErVjTqj848NfznpN0dEJIcKmq2K1ifc9-n-XP3wN4h1nZaKS1vlSJ9GOrS19JrhEQLXiEi3LmyreNLpPBdfxpLMd7ILu7ME60X5hpUN_Mgno6cdrKxazodTqx3pdRHydphky_tw_38GuUdpv0rdeuam6eRLgAx1HcOfqkoreo9SpAkpMoDMaQivJQqR7ykNvJS_sTUkU2AsU_Uc-7CsrfUtLFIXzrBtMoUb4Hm7UJip93fB7_ebSP4GFLUtl503wEe2X9GI7aZWDFzlqv6vdPYDzqyusyMp5YNtckVkzXFh9MpsYpwti8Ykg0GTJRRBXT5xwRvWFmSvXCZz7xZsygzHlGTGv21S77T-H64sNVf-C3xRr8Arcsa1-Gpkys5EaKygjFk0KkUpeV5VqZUskqisLCqoobTh8WmaEVIralSKtMmUIcw0E9r8vnwCqtjUEagmQLyYelg1ziaYlSuFqEhfTgrIMqXzSeHLk7S09FTgDntwB78Bah3PYiL-3B-TCnZ1zE5P2nfoQeHDukt91I9ceTDBtOO-jzdmrjnyt8D0k2ch682TbjpKSTFl2X8w31SXEbSVz4b32yVGQ8TRIPnjXRdPsCbVB6kO7E2c5Adlswepw5eBstJ__9y9dwf3A1GubDj5efX8CDiGiMEyudwsF6uSlfIglbm1duyv0CbM4vTg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3RIiEuQIGWQAGDOJRDPh0nzrFaWC3QrSpBpRWXyI4TbUQ3u9oPDvx6Zpxk260Qh14iJZ5EtmbseZZf3gB8wKysFcJaV8hEuLFRpStFoNAhigcRLsqZLd82Pk9Gl_HXiZjcKPVlSfuFrr3mauY19dRyKxezwu95Yv7FeICTNEOk7y9M5e_BfbyNsn6jvtXble3fJxEuwnEU96o-KfcXjVp5CHQSiQEZUmEeKtdDOnI7uWlvSszIlqT4L_h5m0V5Iy0NH8PPfkAtG-WXt1lrr_hzS-vxTiN-Ao86sMpOW5MDuFc2T-GgWw5W7KTTrP74DCbjvswuIwGKZfu7xIqpxuCDaa0tM4zNK4aAkyEiRe9iGp2jZ6-Yrqlu-Mwl_IyZlFntiLph381y8Bwuh59_DEZuV7TBLXDrsnZFqMvEiEALXmkug6TgqVBlZQIldSlFFUVhYWQV6IAuBhGi4Tw2JU-rTOqCH8J-M2_KF8AqpbRGOIKgC0GIoQNdwmuJlLhqhIVw4KR3V75otTlye6ae8pycnF872YH36M6tFWlqj07PcnoW8Jg0AOXv0IFD6-2tGbH_giTDhuPe_Xk3xfHjEvshSE7OgXfbZpycdOKimnK-IZsUt5OEif9nk6U8C9IkceCojajrDnSB6UC6E2s7A9ltwQiyIuFdxLy885tv4cHFp2F-9uX82yt4GBGasZylY9hfLzfla8Ria_3Gzrq_6VIxzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+interactions+and+inhibition+of+the+staphylococcal+biofilm-forming+protein+SdrC&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Feuillie%2C+C%C3%A9cile&rft.au=Formosa-Dague%2C+C%C3%A9cile&rft.au=Hays%2C+Leanne+M+C&rft.au=Vervaeck%2C+Oph%C3%A9lie&rft.date=2017-04-04&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=14&rft.spage=3738&rft.epage=3743&rft_id=info:doi/10.1073%2Fpnas.1616805114&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03454438v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon