Distribution of Phototrophic Purple Nonsulfur Bacteria in Massive Blooms in Coastal and Wastewater Ditch Environments
The biodiversity of phototrophic purple nonsulfur bacteria (PNSB) in comparison with purple sulfur bacteria (PSB) in colored blooms and microbial mats that developed in coastal mudflats and pools and wastewater ditches was investigated. For this, a combination of photopigment and quinone profiling,...
Saved in:
Published in | Microorganisms (Basel) Vol. 8; no. 2; p. 150 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
22.01.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The biodiversity of phototrophic purple nonsulfur bacteria (PNSB) in comparison with purple sulfur bacteria (PSB) in colored blooms and microbial mats that developed in coastal mudflats and pools and wastewater ditches was investigated. For this, a combination of photopigment and quinone profiling, pufM gene-targeted quantitative PCR, and pufM gene clone library analysis was used in addition to conventional microscopic and cultivation methods. Red and pink blooms in the coastal environments contained PSB as the major populations, and smaller but significant densities of PNSB, with members of Rhodovulum predominating. On the other hand, red-pink blooms and mats in the wastewater ditches exclusively yielded PNSB, with Rhodobacter, Rhodopseudomonas, and/or Pararhodospirillum as the major constituents. The important environmental factors affecting PNSB populations were organic matter and sulfide concentrations and oxidation–reduction potential (ORP). Namely, light-exposed, sulfide-deficient water bodies with high-strength organic matter and in a limited range of ORP provide favorable conditions for the massive growth of PNSB over co-existing PSB. We also report high-quality genome sequences of Rhodovulum sp. strain MB263, previously isolated from a pink mudflat, and Rhodovulum sulfidophilum DSM 1374T, which would enhance our understanding of how PNSB respond to various environmental factors in the natural ecosystem. |
---|---|
AbstractList | The biodiversity of phototrophic purple nonsulfur bacteria (PNSB) in comparison with purple sulfur bacteria (PSB) in colored blooms and microbial mats that developed in coastal mudflats and pools and wastewater ditches was investigated. For this, a combination of photopigment and quinone profiling,
pufM
gene-targeted quantitative PCR, and
pufM
gene clone library analysis was used in addition to conventional microscopic and cultivation methods. Red and pink blooms in the coastal environments contained PSB as the major populations, and smaller but significant densities of PNSB, with members of
Rhodovulum
predominating. On the other hand, red-pink blooms and mats in the wastewater ditches exclusively yielded PNSB, with
Rhodobacter
,
Rhodopseudomonas
, and/or
Pararhodospirillum
as the major constituents. The important environmental factors affecting PNSB populations were organic matter and sulfide concentrations and oxidation–reduction potential (ORP). Namely, light-exposed, sulfide-deficient water bodies with high-strength organic matter and in a limited range of ORP provide favorable conditions for the massive growth of PNSB over co-existing PSB. We also report high-quality genome sequences of
Rhodovulum
sp. strain MB263, previously isolated from a pink mudflat, and
Rhodovulum sulfidophilum
DSM 1374
T
, which would enhance our understanding of how PNSB respond to various environmental factors in the natural ecosystem. The biodiversity of phototrophic purple nonsulfur bacteria (PNSB) in comparison with purple sulfur bacteria (PSB) in colored blooms and microbial mats that developed in coastal mudflats and pools and wastewater ditches was investigated. For this, a combination of photopigment and quinone profiling, pufM gene-targeted quantitative PCR, and pufM gene clone library analysis was used in addition to conventional microscopic and cultivation methods. Red and pink blooms in the coastal environments contained PSB as the major populations, and smaller but significant densities of PNSB, with members of Rhodovulum predominating. On the other hand, red-pink blooms and mats in the wastewater ditches exclusively yielded PNSB, with Rhodobacter, Rhodopseudomonas, and/or Pararhodospirillum as the major constituents. The important environmental factors affecting PNSB populations were organic matter and sulfide concentrations and oxidation‒reduction potential (ORP). Namely, light-exposed, sulfide-deficient water bodies with high-strength organic matter and in a limited range of ORP provide favorable conditions for the massive growth of PNSB over co-existing PSB. We also report high-quality genome sequences of Rhodovulum sp. strain MB263, previously isolated from a pink mudflat, and Rhodovulum sulfidophilum DSM 1374T, which would enhance our understanding of how PNSB respond to various environmental factors in the natural ecosystem.The biodiversity of phototrophic purple nonsulfur bacteria (PNSB) in comparison with purple sulfur bacteria (PSB) in colored blooms and microbial mats that developed in coastal mudflats and pools and wastewater ditches was investigated. For this, a combination of photopigment and quinone profiling, pufM gene-targeted quantitative PCR, and pufM gene clone library analysis was used in addition to conventional microscopic and cultivation methods. Red and pink blooms in the coastal environments contained PSB as the major populations, and smaller but significant densities of PNSB, with members of Rhodovulum predominating. On the other hand, red-pink blooms and mats in the wastewater ditches exclusively yielded PNSB, with Rhodobacter, Rhodopseudomonas, and/or Pararhodospirillum as the major constituents. The important environmental factors affecting PNSB populations were organic matter and sulfide concentrations and oxidation‒reduction potential (ORP). Namely, light-exposed, sulfide-deficient water bodies with high-strength organic matter and in a limited range of ORP provide favorable conditions for the massive growth of PNSB over co-existing PSB. We also report high-quality genome sequences of Rhodovulum sp. strain MB263, previously isolated from a pink mudflat, and Rhodovulum sulfidophilum DSM 1374T, which would enhance our understanding of how PNSB respond to various environmental factors in the natural ecosystem. The biodiversity of phototrophic purple nonsulfur bacteria (PNSB) in comparison with purple sulfur bacteria (PSB) in colored blooms and microbial mats that developed in coastal mudflats and pools and wastewater ditches was investigated. For this, a combination of photopigment and quinone profiling, pufM gene-targeted quantitative PCR, and pufM gene clone library analysis was used in addition to conventional microscopic and cultivation methods. Red and pink blooms in the coastal environments contained PSB as the major populations, and smaller but significant densities of PNSB, with members of Rhodovulum predominating. On the other hand, red-pink blooms and mats in the wastewater ditches exclusively yielded PNSB, with Rhodobacter, Rhodopseudomonas, and/or Pararhodospirillum as the major constituents. The important environmental factors affecting PNSB populations were organic matter and sulfide concentrations and oxidation–reduction potential (ORP). Namely, light-exposed, sulfide-deficient water bodies with high-strength organic matter and in a limited range of ORP provide favorable conditions for the massive growth of PNSB over co-existing PSB. We also report high-quality genome sequences of Rhodovulum sp. strain MB263, previously isolated from a pink mudflat, and Rhodovulum sulfidophilum DSM 1374ᵀ, which would enhance our understanding of how PNSB respond to various environmental factors in the natural ecosystem. The biodiversity of phototrophic purple nonsulfur bacteria (PNSB) in comparison with purple sulfur bacteria (PSB) in colored blooms and microbial mats that developed in coastal mudflats and pools and wastewater ditches was investigated. For this, a combination of photopigment and quinone profiling, pufM gene-targeted quantitative PCR, and pufM gene clone library analysis was used in addition to conventional microscopic and cultivation methods. Red and pink blooms in the coastal environments contained PSB as the major populations, and smaller but significant densities of PNSB, with members of Rhodovulum predominating. On the other hand, red-pink blooms and mats in the wastewater ditches exclusively yielded PNSB, with Rhodobacter, Rhodopseudomonas, and/or Pararhodospirillum as the major constituents. The important environmental factors affecting PNSB populations were organic matter and sulfide concentrations and oxidation–reduction potential (ORP). Namely, light-exposed, sulfide-deficient water bodies with high-strength organic matter and in a limited range of ORP provide favorable conditions for the massive growth of PNSB over co-existing PSB. We also report high-quality genome sequences of Rhodovulum sp. strain MB263, previously isolated from a pink mudflat, and Rhodovulum sulfidophilum DSM 1374T, which would enhance our understanding of how PNSB respond to various environmental factors in the natural ecosystem. The biodiversity of phototrophic purple nonsulfur bacteria (PNSB) in comparison with purple sulfur bacteria (PSB) in colored blooms and microbial mats that developed in coastal mudflats and pools and wastewater ditches was investigated. For this, a combination of photopigment and quinone profiling, pufM gene-targeted quantitative PCR, and pufM gene clone library analysis was used in addition to conventional microscopic and cultivation methods. Red and pink blooms in the coastal environments contained PSB as the major populations, and smaller but significant densities of PNSB, with members of Rhodovulum predominating. On the other hand, red-pink blooms and mats in the wastewater ditches exclusively yielded PNSB, with Rhodobacter, Rhodopseudomonas, and/or Pararhodospirillum as the major constituents. The important environmental factors affecting PNSB populations were organic matter and sulfide concentrations and oxidation−reduction potential (ORP). Namely, light-exposed, sulfide-deficient water bodies with high-strength organic matter and in a limited range of ORP provide favorable conditions for the massive growth of PNSB over co-existing PSB. We also report high-quality genome sequences of Rhodovulum sp. strain MB263, previously isolated from a pink mudflat, and Rhodovulum sulfidophilum DSM 1374T, which would enhance our understanding of how PNSB respond to various environmental factors in the natural ecosystem. The biodiversity of phototrophic purple nonsulfur bacteria (PNSB) in comparison with purple sulfur bacteria (PSB) in colored blooms and microbial mats that developed in coastal mudflats and pools and wastewater ditches was investigated. For this, a combination of photopigment and quinone profiling, gene-targeted quantitative PCR, and gene clone library analysis was used in addition to conventional microscopic and cultivation methods. Red and pink blooms in the coastal environments contained PSB as the major populations, and smaller but significant densities of PNSB, with members of predominating. On the other hand, red-pink blooms and mats in the wastewater ditches exclusively yielded PNSB, with , , and/or as the major constituents. The important environmental factors affecting PNSB populations were organic matter and sulfide concentrations and oxidation‒reduction potential (ORP). Namely, light-exposed, sulfide-deficient water bodies with high-strength organic matter and in a limited range of ORP provide favorable conditions for the massive growth of PNSB over co-existing PSB. We also report high-quality genome sequences of sp. strain MB263, previously isolated from a pink mudflat, and DSM 1374 , which would enhance our understanding of how PNSB respond to various environmental factors in the natural ecosystem. |
Author | Hiraishi, Akira Umekage, So Kikuchi, Yo Nagao, Nobuyoshi Hirose, Yuu Yonekawa, Chinatsu Eki, Toshihiko |
AuthorAffiliation | 1 Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi 441-8580, Japan; velvetschild@gmail.com (N.N.); hgm.cnt@gmail.com (C.Y.); soumekage@gmail.com (S.U.); kikuchi@tut.jp (Y.K.); eki@chem.tut.ac.jp (T.E.) 2 Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan |
AuthorAffiliation_xml | – name: 2 Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan – name: 1 Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi 441-8580, Japan; velvetschild@gmail.com (N.N.); hgm.cnt@gmail.com (C.Y.); soumekage@gmail.com (S.U.); kikuchi@tut.jp (Y.K.); eki@chem.tut.ac.jp (T.E.) |
Author_xml | – sequence: 1 givenname: Akira surname: Hiraishi fullname: Hiraishi, Akira – sequence: 2 givenname: Nobuyoshi surname: Nagao fullname: Nagao, Nobuyoshi – sequence: 3 givenname: Chinatsu surname: Yonekawa fullname: Yonekawa, Chinatsu – sequence: 4 givenname: So surname: Umekage fullname: Umekage, So – sequence: 5 givenname: Yo surname: Kikuchi fullname: Kikuchi, Yo – sequence: 6 givenname: Toshihiko surname: Eki fullname: Eki, Toshihiko – sequence: 7 givenname: Yuu orcidid: 0000-0003-1116-8979 surname: Hirose fullname: Hirose, Yuu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31979033$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1rVDEQhg9SsbX2Jyi59GY13zlBEOy2aqFqLxQvQzZnTjclJ1mTnIr_3qxbSytCc5Nh8s7DzOR92u3FFKHrnhP8ijGNX0_e5ZTypY2-TKXHFBOBH3UHFCu5oBKrvTvxfndUyhVuRxPWC_Kk22dEK40ZO-jmE19q9qu5-hRRGtHFOtVUc9qsvUMXc94EQJ9TLHMY54yOrauQvUU-ok-2FH8N6DikNJVtZplsqTYgGwf0vYXw0zY1OvHVrdFpvPY5xQliLc-6x6MNBY5u7sPu2_vTr8uPi_MvH86W784XTihZF5wS4rjFmPeS2BUBcFQxB0PPRyJkj5W2mio5COUcHpztCVFSwUqAAiExO-zOdtwh2SuzyX6y-ZdJ1ps_ibZBY3P1LoAZmCaaOE0kVZw2sBspiIErJXpOQDfW2x1rM68mGFybI9twD3r_Jfq1uUzXRmHFe8Eb4OUNIKcfM5RqJl8chGAjpLkYKpnkglBMH5YyLgRWuCdN-uJuW7f9_P3iJhA7QbNMKRnGWwnBZusm8183tbo3_9Q5X-3WJm06Hx6o_g16F9c8 |
CitedBy_id | crossref_primary_10_1038_s43705_022_00201_9 crossref_primary_10_3390_d15020273 crossref_primary_10_3390_microorganisms9102119 crossref_primary_10_15407_microbiolj83_05_019 crossref_primary_10_1016_j_rhisph_2021_100456 crossref_primary_10_1007_s11274_023_03729_7 crossref_primary_10_1515_opag_2022_0353 crossref_primary_10_1007_s10123_024_00526_6 crossref_primary_10_1016_j_watres_2021_116941 crossref_primary_10_2965_jswe_44_27 crossref_primary_10_3390_microorganisms10081615 crossref_primary_10_1007_s12649_021_01598_5 crossref_primary_10_1061_JOEEDU_EEENG_7617 crossref_primary_10_1080_01490451_2024_2433202 |
Cites_doi | 10.1128/genomeA.00385-15 10.1007/0-306-47954-0 10.1264/jsme2.ME14052 10.1128/genomeA.00577-13 10.1099/ijsem.0.002120 10.2134/jeq2015.03.0128 10.2323/jgam.30.197 10.1007/BF00689344 10.1073/pnas.1400295111 10.1128/AEM.00796-06 10.1002/0471142727.mb0204s56 10.1016/0922-338X(89)90028-7 10.1016/0006-3002(63)90618-8 10.2323/jgam.30.435 10.2331/suisan.50.1929 10.1016/0167-7012(84)90018-6 10.3739/rikusui.39.103 10.1128/JB.01848-12 10.2307/2408678 10.1038/nature03959 10.1111/j.1574-6976.2009.00187.x 10.1111/j.1574-6968.1987.tb02411.x 10.1111/j.1574-6941.2011.01175.x 10.1264/jsme2.ME11306 10.1128/genomeA.01475-14 10.3389/fmicb.2019.02480 10.1007/s00792-019-01098-4 10.1128/JB.183.20.6107-6118.2001 10.1007/s12275-018-8014-6 10.1073/pnas.0906412106 10.4319/lo.1998.43.6.1262 10.1093/bioinformatics/btu033 10.3389/fmicb.2017.02679 10.1007/s00253-012-3931-5 10.1016/0167-7012(94)90046-9 10.1007/s00253-009-2031-7 10.1007/s13762-012-0163-2 10.1016/S1389-1723(00)87658-6 10.1111/j.1574-6968.1984.tb01381.x 10.1264/jsme2.20.216 10.1264/jsme2.19.61 10.1093/nar/gkw569 10.1128/genomeA.00388-15 10.1046/j.1462-2920.2003.00517.x 10.1128/aem.41.2.381-385.1981 10.4319/lo.1991.36.5.0846 10.1038/s41467-017-02018-w 10.3390/microorganisms4020019 10.1016/S1389-1723(00)80102-4 10.4319/lo.1968.13.4.0644 10.1016/0076-6879(63)06240-6 10.1128/JB.01695-12 10.1111/j.1574-6941.2010.00966.x 10.1128/AEM.67.7.2922-2926.2001 10.1371/journal.pone.0057923 10.1007/PL00006212 10.1099/00207713-44-1-15 10.1111/j.1472-765X.2009.02683.x 10.1111/1758-2229.12363 10.1093/nar/25.17.3389 10.1099/00207713-45-2-319 10.3390/microorganisms7110576 10.2323/jgam.42.457 10.1007/978-3-319-46261-5 10.1093/molbev/msw054 10.1099/ijsem.0.001755 10.1099/ijs.0.64483-0 10.1007/BF00409510 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/microorganisms8020150 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2076-2607 |
ExternalDocumentID | oai_doaj_org_article_d39191c916274279acf2e5d4775841e9 PMC7074854 31979033 10_3390_microorganisms8020150 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ACPRK AFKRA AFPKN AFRAH AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ GS5 GX1 HCIFZ HYE IAO KQ8 LK8 M48 M7P MODMG M~E OK1 PATMY PGMZT PHGZM PHGZT PIMPY PROAC PYCSY RNS RPM NPM 7X8 PQGLB 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c576t-4211c4a004861ab1eec273ced84f1568079a9276d57cc0dca811767eb5e7e5603 |
IEDL.DBID | M48 |
ISSN | 2076-2607 |
IngestDate | Wed Aug 27 01:29:42 EDT 2025 Thu Aug 21 18:26:44 EDT 2025 Fri Jul 11 11:56:12 EDT 2025 Thu Jul 10 23:24:27 EDT 2025 Thu Jan 02 22:59:35 EST 2025 Thu Apr 24 23:08:44 EDT 2025 Tue Jul 01 01:05:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | anoxygenic phototrophic bacteria massive blooms purple nonsulfur bacteria Rhodovulum phylogenomics pufM gene |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c576t-4211c4a004861ab1eec273ced84f1568079a9276d57cc0dca811767eb5e7e5603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1116-8979 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/microorganisms8020150 |
PMID | 31979033 |
PQID | 2345507081 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d39191c916274279acf2e5d4775841e9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7074854 proquest_miscellaneous_2636451202 proquest_miscellaneous_2345507081 pubmed_primary_31979033 crossref_primary_10_3390_microorganisms8020150 crossref_citationtrail_10_3390_microorganisms8020150 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200122 |
PublicationDateYYYYMMDD | 2020-01-22 |
PublicationDate_xml | – month: 1 year: 2020 text: 20200122 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Microorganisms (Basel) |
PublicationTitleAlternate | Microorganisms |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Sletten (ref_12) 1971; 43 Zeng (ref_57) 2014; 111 Brown (ref_70) 2015; 3 Nagashima (ref_59) 1997; 45 Okubo (ref_19) 2006; 72 Hiraishi (ref_30) 1984; 30 Zeng (ref_58) 2016; 8 Biebl (ref_35) 1978; 117 Hiraishi (ref_73) 1989; 68 Altschul (ref_40) 1997; 25 Matsuyama (ref_3) 1978; 39 Minnikin (ref_29) 1984; 2 Yoshida (ref_32) 2004; 19 Imhoff (ref_56) 2018; 8 Hansen (ref_64) 1973; 92 Wenke (ref_14) 1981; 41 Suzuki (ref_74) 2009; 84 Schanz (ref_5) 1998; 43 Wilson (ref_47) 2001; 56 Hirose (ref_48) 2015; 3 McGarvey (ref_15) 2009; 49 Hiraishi (ref_23) 1996; 42 Nakajima (ref_6) 2003; 5 ref_60 Nicholson (ref_9) 1987; 45 Cooper (ref_13) 1975; 47 Hiraishi (ref_22) 1999; 88 Belila (ref_17) 2013; 10 Hiraishi (ref_36) 1994; 19 Caumette (ref_7) 1986; 38 Goris (ref_52) 2007; 57 Richter (ref_68) 2009; 106 Hiraishi (ref_65) 1994; 44 Little (ref_66) 2001; 183 Korponai (ref_11) 2019; 23 Kumar (ref_45) 2016; 33 Yoon (ref_39) 2017; 67 Stamatakis (ref_54) 2014; 30 Clayton (ref_28) 1963; 75 ref_27 Thiel (ref_10) 2010; 74 ref_26 Brooks (ref_69) 2017; 8 Felsenstein (ref_46) 1985; 39 Dungan (ref_18) 2015; 44 Hirose (ref_25) 2012; 27 Hiraishi (ref_41) 2000; 90 Masuda (ref_62) 2013; 1 ref_72 Hiraishi (ref_33) 2017; 67 Na (ref_53) 2018; 56 Suresh (ref_61) 2019; 10 Ohtsubo (ref_49) 2012; 194 Hanada (ref_38) 2014; 29 ref_34 Marmur (ref_42) 1963; 6 Ghosh (ref_67) 2009; 33 Overmann (ref_4) 1991; 36 Imhoff (ref_55) 1984; 25 ref_37 Hiraishi (ref_21) 1995; 45 Margulies (ref_50) 2005; 437 Nagao (ref_63) 2015; 3 ref_44 Hiraishi (ref_31) 1984; 30 Takahashi (ref_2) 1968; 13 Tank (ref_8) 2011; 78 Tatusova (ref_51) 2016; 44 ref_1 Belila (ref_16) 2013; 97 Khatri (ref_71) 2012; 194 Hiraishi (ref_20) 1984; 50 Achenbach (ref_24) 2001; 67 Hiraishi (ref_43) 2005; 20 |
References_xml | – volume: 3 start-page: e00385-15 year: 2015 ident: ref_48 article-title: Complete genome sequence of cyanobacterium Geminocystis sp. strain NIES-3709, which harbors a phycoerythrin-rich phycobilisome publication-title: Genome Announc. doi: 10.1128/genomeA.00385-15 – ident: ref_72 doi: 10.1007/0-306-47954-0 – volume: 38 start-page: 113 year: 1986 ident: ref_7 article-title: Phototrophic sulfur bacteria and sulfate-reducing bacteria causing red waters in a shallow brackish coastal lagoon (Prévost Lagoon, France) publication-title: FEMS Microbiol. Lett. – volume: 29 start-page: 353 year: 2014 ident: ref_38 article-title: Bacteria of the candidate phylum TM7 are prevalent in acidophilic nitrifying sequencing-batch reactors publication-title: Microbes Environ. doi: 10.1264/jsme2.ME14052 – volume: 1 start-page: e00577-13 year: 2013 ident: ref_62 article-title: Whole-genome sequence of the purple photosynthetic bacterium Rhodovulum sulfidophilum strain W4 publication-title: Genome Announc. doi: 10.1128/genomeA.00577-13 – volume: 67 start-page: 3369 year: 2017 ident: ref_33 article-title: Rhodopseudomonas telluris sp. nov., a phototrophic alphaproteobacterium isolated from paddy soil publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijsem.0.002120 – volume: 44 start-page: 1550 year: 2015 ident: ref_18 article-title: Detection of purple sulfur bacteria in purple and non-purple dairy wastewaters publication-title: J. Environ. Qual. doi: 10.2134/jeq2015.03.0128 – volume: 30 start-page: 197 year: 1984 ident: ref_30 article-title: Isoprenoid quinone composition in the classification of Rhodospirillaceae publication-title: J. Gen. Appl. Microbiol. doi: 10.2323/jgam.30.197 – volume: 117 start-page: 9 year: 1978 ident: ref_35 article-title: Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria publication-title: Arch. Microbiol. doi: 10.1007/BF00689344 – volume: 111 start-page: 7795 year: 2014 ident: ref_57 article-title: Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadates publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1400295111 – volume: 72 start-page: 6225 year: 2006 ident: ref_19 article-title: Characterization of phototrophic purple nonsulfur bacteria forming colored microbial mats in a swine wastewater ditch publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00796-06 – volume: 56 start-page: 2 year: 2001 ident: ref_47 article-title: Preparation of genomic DNA from bacteria publication-title: Curr. Protoc. Mol. Biol. doi: 10.1002/0471142727.mb0204s56 – volume: 68 start-page: 269 year: 1989 ident: ref_73 article-title: Effects of organic nutrient strength on the purple nonsulfur bacterial content and metabolic activity of photosynthetic sludge for wastewater treatment publication-title: J. Ferment. Bioeng. doi: 10.1016/0922-338X(89)90028-7 – volume: 75 start-page: 312 year: 1963 ident: ref_28 article-title: Toward the isolation of a photochemical reaction center in Rhodopseudomonas sphaeroides publication-title: Biochim. Biophys. Acta doi: 10.1016/0006-3002(63)90618-8 – volume: 30 start-page: 435 year: 1984 ident: ref_31 article-title: Distribution of rhodoquinone in Rhodospirillaceae and its taxonomic implications publication-title: J. Gen. Appl. Microbiol. doi: 10.2323/jgam.30.435 – volume: 50 start-page: 1929 year: 1984 ident: ref_20 article-title: Distribution of phototrophic purple nonsulfur bacteria in activated sludge systems and other aquatic environments publication-title: Bull. Jpn. Soc. Sci. Fish. doi: 10.2331/suisan.50.1929 – volume: 2 start-page: 233 year: 1984 ident: ref_29 article-title: An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids publication-title: J. Microbiol. Methods doi: 10.1016/0167-7012(84)90018-6 – volume: 39 start-page: 103 year: 1978 ident: ref_3 article-title: Importance of photosynthetic sulfur bacteria, Chromatium sp. as an organic matter producer in Lake Kaiike publication-title: Jpn. J. Limnol. doi: 10.3739/rikusui.39.103 – volume: 194 start-page: 6970 year: 2012 ident: ref_49 article-title: Complete genome sequence of Acidovorax sp. strain KKS102, a polychlorinated-biphenyl degrader publication-title: J. Bacteriol. doi: 10.1128/JB.01848-12 – volume: 39 start-page: 783 year: 1985 ident: ref_46 article-title: Confidence limits on phylogenies: An approach using the bootstrap publication-title: Evolution doi: 10.2307/2408678 – volume: 437 start-page: 376 year: 2005 ident: ref_50 article-title: Genome sequencing in microfabricated high-density picolitre reactors publication-title: Nature doi: 10.1038/nature03959 – volume: 33 start-page: 999 year: 2009 ident: ref_67 article-title: Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2009.00187.x – ident: ref_27 – volume: 47 start-page: 2088 year: 1975 ident: ref_13 article-title: Sulfide reduction in fellmongery effluent by red sulfur bacteria publication-title: J. Water Pollut. Control Fed. – volume: 45 start-page: 343 year: 1987 ident: ref_9 article-title: Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6968.1987.tb02411.x – volume: 78 start-page: 428 year: 2011 ident: ref_8 article-title: Communities of purple sulfur bacteria in a Baltic Sea coastal lagoon analyzed by pufLM gene libraries and the impact of temperature and NaCl concentration in experimental enrichment cultures publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2011.01175.x – volume: 27 start-page: 327 year: 2012 ident: ref_25 article-title: Diversity of purple phototrophic bacteria, Inferred from pufM gene, within epilithic Biofilm in Tama River, Japan publication-title: Microbes Environ. doi: 10.1264/jsme2.ME11306 – volume: 3 start-page: e01475-14 year: 2015 ident: ref_70 article-title: Draft genome sequence of Rhodovulum sp. strain NI22, a naphthalene-degrading marine bacterium publication-title: Genome Announc. doi: 10.1128/genomeA.01475-14 – volume: 10 start-page: 2840 year: 2019 ident: ref_61 article-title: Taxogenomics resolves conflict in the genus Rhodobacter: A two and half decades pending thought to reclassify the genus Rhodobacter publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.02480 – volume: 23 start-page: 467 year: 2019 ident: ref_11 article-title: Dual bloom of green algae and purple bacteria in an extremely shallow soda pan publication-title: Extremophiles doi: 10.1007/s00792-019-01098-4 – volume: 183 start-page: 6107 year: 2001 ident: ref_66 article-title: Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulum sulfidophilum publication-title: J. Bacteriol. doi: 10.1128/JB.183.20.6107-6118.2001 – volume: 56 start-page: 280 year: 2018 ident: ref_53 article-title: UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction publication-title: J. Microbiol. doi: 10.1007/s12275-018-8014-6 – volume: 106 start-page: 19126 year: 2009 ident: ref_68 article-title: Shifting the genomic gold standard for the prokaryotic species definition publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0906412106 – volume: 43 start-page: 1262 year: 1998 ident: ref_5 article-title: Photosynthetic production and photoadaptation of phototrophic sulfur bacteria in Lake Cadagno (Switzerland) publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1998.43.6.1262 – volume: 30 start-page: 1312 year: 2014 ident: ref_54 article-title: RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu033 – volume: 8 start-page: 2679 year: 2018 ident: ref_56 article-title: Photosynthesis is widely distributed among Proteobacteria as demonstrated by the phylogeny of PufLM reaction center proteins publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.02679 – volume: 97 start-page: 379 year: 2013 ident: ref_16 article-title: Sulfur bacteria in wastewater stabilization ponds periodically affected by the red-water phenomenon publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-012-3931-5 – volume: 19 start-page: 145 year: 1994 ident: ref_36 article-title: Automated sequencing of PCR-amplified 16S rDNA on “Hydrolink” gels publication-title: J. Microbiol. Methods doi: 10.1016/0167-7012(94)90046-9 – volume: 43 start-page: 2118 year: 1971 ident: ref_12 article-title: Sulfur bacteria in red lagoons publication-title: J. Water Pollut. Control Fed. – ident: ref_34 – volume: 84 start-page: 349 year: 2009 ident: ref_74 article-title: Characterization of extracellular DNA production and flocculation of the marine photosynthetic bacterium Rhodovulum sulfidophilum publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-2031-7 – volume: 10 start-page: 837 year: 2013 ident: ref_17 article-title: Anoxygenic phototrophic bacterial diversity within wastewater stabilization plant during red water phenomenon publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-012-0163-2 – volume: 88 start-page: 449 year: 1999 ident: ref_22 article-title: Isoprenoid quinones as biomarkers of microbial populations in the environment publication-title: J. Biosci. Bioeng. doi: 10.1016/S1389-1723(00)87658-6 – volume: 25 start-page: 85 year: 1984 ident: ref_55 article-title: Quinones of phototrophic purple bacteria publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.1984.tb01381.x – volume: 20 start-page: 216 year: 2005 ident: ref_43 article-title: Estimation of “Dehalococcoides” populations in lake sediment contaminated with low levels of polychlorinated dioxins publication-title: Microbes Environ. doi: 10.1264/jsme2.20.216 – volume: 19 start-page: 61 year: 2004 ident: ref_32 article-title: An improved redox dye-staining method using 5-cyano-2, 3-ditoryl tetrazolium chloride for detection of metabolically active bacteria in activated sludge publication-title: Microbes Environ. doi: 10.1264/jsme2.19.61 – volume: 44 start-page: 6614 year: 2016 ident: ref_51 article-title: NCBI prokaryotic genome annotation pipeline publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw569 – volume: 3 start-page: e00388-15 year: 2015 ident: ref_63 article-title: Complete genome sequence of Rhodovulum sulfidophilum DSM 2351, an extracellular nucleic acid-producing bacterium publication-title: Genome Announc. doi: 10.1128/genomeA.00388-15 – volume: 5 start-page: 1103 year: 2003 ident: ref_6 article-title: Distribution of chloropigments in suspended particulate matter and benthic microbial mat of a meromictic lake, Lake Kaiike, Japan publication-title: Environ. Microbiol. doi: 10.1046/j.1462-2920.2003.00517.x – volume: 41 start-page: 381 year: 1981 ident: ref_14 article-title: Temporal changes in a pink feedlot lagoon publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.41.2.381-385.1981 – ident: ref_37 – volume: 36 start-page: 846 year: 1991 ident: ref_4 article-title: Characterization of a dense, purple sulfur bacterial layer in a meromictic salt lake publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1991.36.5.0846 – volume: 8 start-page: 1814 year: 2017 ident: ref_69 article-title: Strain-resolved analysis of hospital rooms and infants reveals overlap between the human and room microbiome publication-title: Nat. Commun. doi: 10.1038/s41467-017-02018-w – ident: ref_26 doi: 10.3390/microorganisms4020019 – volume: 90 start-page: 148 year: 2000 ident: ref_41 article-title: Terminal restriction pattern analysis of 16S rRNA genes for the characterization of bacterial communities of activated sludge publication-title: J. Biosci. Bioeng. doi: 10.1016/S1389-1723(00)80102-4 – volume: 13 start-page: 644 year: 1968 ident: ref_2 article-title: Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1968.13.4.0644 – volume: 6 start-page: 726 year: 1963 ident: ref_42 article-title: A procedure for the isolation of deoxyribonucleic acid from microorganisms publication-title: Methods Enzymol. doi: 10.1016/0076-6879(63)06240-6 – volume: 194 start-page: 6363 year: 2012 ident: ref_71 article-title: Draft genome sequence of Rhodovulum sp. strain PH10, a phototrophic alphaproteobacterium isolated from a soil sample of mangrove of Namkhana, India publication-title: J. Bacteriol. doi: 10.1128/JB.01695-12 – volume: 74 start-page: 510 year: 2010 ident: ref_10 article-title: Unique communities of anoxygenic phototrophic bacteria in saline lakes of Salar de Atacama (Chile): Evidence for a new phylogenetic lineage of phototrophic Gammaproteobacteria from pufLM gene analyses publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2010.00966.x – volume: 67 start-page: 2922 year: 2001 ident: ref_24 article-title: Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.67.7.2922-2926.2001 – ident: ref_44 doi: 10.1371/journal.pone.0057923 – volume: 45 start-page: 131 year: 1997 ident: ref_59 article-title: Horizontal transfer of genes coding for the photosynthetic reaction centers of purple bacteria publication-title: J. Mol. Evol. doi: 10.1007/PL00006212 – volume: 44 start-page: 15 year: 1994 ident: ref_65 article-title: Intrageneric structure of the genus Rhodobacter: Transfer of Rhodobacter sulfidophilus and related marine species to the genus Rhodovulum gen. nov publication-title: Int. J. Syst. Bacteriol. doi: 10.1099/00207713-44-1-15 – volume: 49 start-page: 427 year: 2009 ident: ref_15 article-title: Induction of purple sulfur bacterial growth in dairy wastewater lagoons by circulation publication-title: Lett. Appl. Microbiol. doi: 10.1111/j.1472-765X.2009.02683.x – volume: 8 start-page: 139 year: 2016 ident: ref_58 article-title: Metagenomic evidence for the presence of phototrophic Gemmatimonadetes bacteria in diverse environments publication-title: Environ. Microbiol. Rep. doi: 10.1111/1758-2229.12363 – volume: 25 start-page: 3389 year: 1997 ident: ref_40 article-title: Gapped BLAST and PSI-BLAST: A new generation of protein database search programs publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.17.3389 – volume: 45 start-page: 319 year: 1995 ident: ref_21 article-title: Isolation and characterization of Rhodovulum strictum sp. nov. and some other members of purple nonsulfur bacteria from colored blooms in tidal and seawater pools publication-title: Int. J. Syst. Bacteriol. doi: 10.1099/00207713-45-2-319 – ident: ref_60 doi: 10.3390/microorganisms7110576 – volume: 42 start-page: 457 year: 1996 ident: ref_23 article-title: Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection publication-title: J. Gen. Appl. Microbiol. doi: 10.2323/jgam.42.457 – ident: ref_1 doi: 10.1007/978-3-319-46261-5 – volume: 33 start-page: 1870 year: 2016 ident: ref_45 article-title: MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msw054 – volume: 67 start-page: 1613 year: 2017 ident: ref_39 article-title: Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijsem.0.001755 – volume: 57 start-page: 81 year: 2007 ident: ref_52 article-title: DNA-DNA hybridization values and their relation to whole genome sequence publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.64483-0 – volume: 92 start-page: 45 year: 1973 ident: ref_64 article-title: Rhodopseudomonas sulfidophila, nov. spec., a new species of the purple nonsulfur bacteria publication-title: Arch. Mikrobiol. doi: 10.1007/BF00409510 |
SSID | ssj0000913851 |
Score | 2.1884558 |
Snippet | The biodiversity of phototrophic purple nonsulfur bacteria (PNSB) in comparison with purple sulfur bacteria (PSB) in colored blooms and microbial mats that... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 150 |
SubjectTerms | anoxygenic phototrophic bacteria biodiversity ecosystems genes massive blooms organic matter phylogenomics pufm gene purple nonsulfur bacteria quantitative polymerase chain reaction quinones redox potential Rhodobacter Rhodopseudomonas rhodovulum Rhodovulum sulfidophilum sulfides sulfur wastewater |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F33hQq9urFk2bKP3TwIhYQcGpqbkUdadsGxw9pL6b_vJ8tZvCU0l96MLNnyzEj6xtJ8w9gXW-fC5kUSK1kXMUYixhwmwthltgCCKLNkzDx3fpGfXanv19n1LNWXPxMW6IGD4A5tWsKlIKAYv6moS0NLiQcpDaCrhBtD97DmzZypcQ4uRQosEUJ2Uvj1hzf-fFvIlNTf9AVQkvCx9rPFaOTsvw9o_n1ecrYAnT5jTyfkyL-FHj9nj1z7gj0OuSR_v2TbY0-BO2Wv4t2SX666oRs23e1qTfwS8mwcv_ABl81yu-GLwNJs-Lrl5wDQmPT4ogGK7n3JUWeAGhtuWst_4tL9AiTd8OM1dMxPZrFxr9jV6cmPo7N4yqkQEzyLASoRgpQZmfaEqYVzBABDzhZqCVeuSCDhUurcZpoosWR8IGquXZ057YCO0tfsoO1a95Zx0qQsCVWX5OClmZKIaimdU7nxfmDE1J1wK5oIx33ei6aC4-F1Ut2rk4h93TW7DYwbDzVYeM3tKnvC7LEAFavJjKqHzChin-_0jrf0ftfEtK7b9pVMfeC3BnT6R53c7-YKmciIvQm2susO5jhdJmkaMb1nRXv93b_Trlcj0bcGvisy9e5_fOB79kT6XwUYh1J-YAfDZus-Ak8N9adx6PwBffMhbw priority: 102 providerName: Directory of Open Access Journals |
Title | Distribution of Phototrophic Purple Nonsulfur Bacteria in Massive Blooms in Coastal and Wastewater Ditch Environments |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31979033 https://www.proquest.com/docview/2345507081 https://www.proquest.com/docview/2636451202 https://pubmed.ncbi.nlm.nih.gov/PMC7074854 https://doaj.org/article/d39191c916274279acf2e5d4775841e9 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1da9swFBWlZbCX0X1nH0GDvbqzZNmyH8ZY2pQySAhjYX0zsqyQgGt3tkPXf78j2QnNyLq-BUe2Zd17pXMs33MJ-ZhnEcuj2PcEz2IPkYiYw0TomTCPgSCS0HeV5ybT6GIuvl2GlwdkI6jQD2Czl9rZelLzujj5_ev2CwL-s2WcoOyfruyna10RpOaqiQGAHIs_wuIkbaxOesTvJueEBbErysjB4D2gednl9fz7SjsrlhP234dG__6o8s4qdX5MnvTwkn7t_OEpOTDlM_KoKzh5-5ysz6xObl_iilYLOltWbdXW1fVypekMg14YOrVZmcViXdNRJ-Ws6KqkE6BszIx0VABqN_bIaaUALQuqypz-xE9zA9xa07MVHIGO7yTQvSDz8_GP0wuvL7zgadCPFnZjTAvl5PiYypgxGihHmzwWC_C92JeJSriM8lBq7eda2WzVSJosNNIAQgUvyWFZleY1oVpqkWsmskQbUDmVaK0zzo0RkbJkcUDEZnBT3auS2-IYRQp2Ym2S7rXJgJxsT7vuZDn-d8LIWm7b2KpquwNomPZBmuZBAvqqgZjtBjYeUi84nFZIkCrBDDr7YWN33KWxWyuqNNW6SXlgs8Ml8NU9bSK75cu4zwfkVecr2-5gIpSJHwQDIne8aKe_u_-Uq6VTA5cAgXEo3jygb2_JY25fFyAWOX9HDtt6bd4DU7XZkByNxtPZ96F7JzF0MfMHtaInSA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distribution+of+Phototrophic+Purple+Nonsulfur+Bacteria+in+Massive+Blooms+in+Coastal+and+Wastewater+Ditch+Environments&rft.jtitle=Microorganisms+%28Basel%29&rft.au=Hiraishi%2C+Akira&rft.au=Nagao%2C+Nobuyoshi&rft.au=Yonekawa%2C+Chinatsu&rft.au=Umekage%2C+So&rft.date=2020-01-22&rft.issn=2076-2607&rft.eissn=2076-2607&rft.volume=8&rft.issue=2&rft_id=info:doi/10.3390%2Fmicroorganisms8020150&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-2607&client=summon |