Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity
Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-c...
Saved in:
Published in | Cell research Vol. 26; no. 1; pp. 83 - 102 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.01.2016
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1001-0602 1748-7838 1748-7838 |
DOI | 10.1038/cr.2015.149 |
Cover
Loading…
Abstract | Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 ±1 218 genes per neuron) and neuron size-based hierarchical clustering. Moreover, single DRG neurons responding to cutaneous stimuli are recorded using an in vivo whole-cell patch clamp technique and classified by neuron-type genetic markers. Small diameter DRG neurons are classified into one type of low-threshold mechanoreceptor and five types of mechanoheat nociceptors (MHNs). Each of the MHN types is further categorized into two subtypes. Large DRG neurons are categorized into four types, including neurexophilin 1-expressing MHNs and mechanical nociceptors (MNs) expressing BAil-associated protein 2-like I (Baiap211). Mechanoreceptors expressing trafficking protein particle complex 3-like and Baiap211-marked MNs are subdivided into two subtypes each. These results provide a new system for cataloging somatosensory neurons and their transcriptome databases. |
---|---|
AbstractList | Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 ± 1 218 genes per neuron) and neuron size-based hierarchical clustering. Moreover, single DRG neurons responding to cutaneous stimuli are recorded using an in vivo whole-cell patch clamp technique and classified by neuron-type genetic markers. Small diameter DRG neurons are classified into one type of low-threshold mechanoreceptor and five types of mechanoheat nociceptors (MHNs). Each of the MHN types is further categorized into two subtypes. Large DRG neurons are categorized into four types, including neurexophilin 1-expressing MHNs and mechanical nociceptors (MNs) expressing BAI1-associated protein 2-like 1 (Baiap2l1). Mechanoreceptors expressing trafficking protein particle complex 3-like and Baiap2l1-marked MNs are subdivided into two subtypes each. These results provide a new system for cataloging somatosensory neurons and their transcriptome databases. Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 ± 1 218 genes per neuron) and neuron size-based hierarchical clustering. Moreover, single DRG neurons responding to cutaneous stimuli are recorded using an in vivo whole-cell patch clamp technique and classified by neuron-type genetic markers. Small diameter DRG neurons are classified into one type of low-threshold mechanoreceptor and five types of mechanoheat nociceptors (MHNs). Each of the MHN types is further categorized into two subtypes. Large DRG neurons are categorized into four types, including neurexophilin 1-expressing MHNs and mechanical nociceptors (MNs) expressing BAI1-associated protein 2-like 1 (Baiap2l1). Mechanoreceptors expressing trafficking protein particle complex 3-like and Baiap2l1-marked MNs are subdivided into two subtypes each. These results provide a new system for cataloging somatosensory neurons and their transcriptome databases. Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 plus or minus 1 218 genes per neuron) and neuron size-based hierarchical clustering. Moreover, single DRG neurons responding to cutaneous stimuli are recorded using an in vivo whole-cell patch clamp technique and classified by neuron-type genetic markers. Small diameter DRG neurons are classified into one type of low-threshold mechanoreceptor and five types of mechanoheat nociceptors (MHNs). Each of the MHN types is further categorized into two subtypes. Large DRG neurons are categorized into four types, including neurexophilin 1-expressing MHNs and mechanical nociceptors (MNs) expressing BAI1-associated protein 2-like 1 (Baiap2l1). Mechanoreceptors expressing trafficking protein particle complex 3-like and Baiap2l1-marked MNs are subdivided into two subtypes each. These results provide a new system for cataloging somatosensory neurons and their transcriptome databases. Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 ± 1 218 genes per neuron) and neuron size-based hierarchical clustering. Moreover, single DRG neurons responding to cutaneous stimuli are recorded using an in vivo whole-cell patch clamp technique and classified by neuron-type genetic markers. Small diameter DRG neurons are classified into one type of low-threshold mechanoreceptor and five types of mechanoheat nociceptors (MHNs). Each of the MHN types is further categorized into two subtypes. Large DRG neurons are categorized into four types, including neurexophilin 1-expressing MHNs and mechanical nociceptors (MNs) expressing BAI1-associated protein 2-like 1 (Baiap2l1). Mechanoreceptors expressing trafficking protein particle complex 3-like and Baiap2l1-marked MNs are subdivided into two subtypes each. These results provide a new system for cataloging somatosensory neurons and their transcriptome databases.Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 ± 1 218 genes per neuron) and neuron size-based hierarchical clustering. Moreover, single DRG neurons responding to cutaneous stimuli are recorded using an in vivo whole-cell patch clamp technique and classified by neuron-type genetic markers. Small diameter DRG neurons are classified into one type of low-threshold mechanoreceptor and five types of mechanoheat nociceptors (MHNs). Each of the MHN types is further categorized into two subtypes. Large DRG neurons are categorized into four types, including neurexophilin 1-expressing MHNs and mechanical nociceptors (MNs) expressing BAI1-associated protein 2-like 1 (Baiap2l1). Mechanoreceptors expressing trafficking protein particle complex 3-like and Baiap2l1-marked MNs are subdivided into two subtypes each. These results provide a new system for cataloging somatosensory neurons and their transcriptome databases. Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 ±1 218 genes per neuron) and neuron size-based hierarchical clustering. Moreover, single DRG neurons responding to cutaneous stimuli are recorded using an in vivo whole-cell patch clamp technique and classified by neuron-type genetic markers. Small diameter DRG neurons are classified into one type of low-threshold mechanoreceptor and five types of mechanoheat nociceptors (MHNs). Each of the MHN types is further categorized into two subtypes. Large DRG neurons are categorized into four types, including neurexophilin 1-expressing MHNs and mechanical nociceptors (MNs) expressing BAil-associated protein 2-like I (Baiap211). Mechanoreceptors expressing trafficking protein particle complex 3-like and Baiap211-marked MNs are subdivided into two subtypes each. These results provide a new system for cataloging somatosensory neurons and their transcriptome databases. |
Author | Chang-Lin Li Kai-Cheng Li Dan Wu Yan Chen Hao Luo Jing-Rong Zhao Sa-Shuang Wang Ming-Ming Sun Ying-Jin Lu Yan-Qing Zhong Xu-Ye Hu Rui Hou Bei-Bei Zhou Lan Bao Hua-Sheng Xiao Xu Zhang |
AuthorAffiliation | Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 20031, China National Engineering Center for Biochip at Shanghai, Shanghai China State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences School of Life Science and Technology, ShanghaiTec University, Shanghai 200031, China Shanghai Clinical Center, Chinese Academy of Sciences/XuHui Central Hospital, Shanghai China |
Author_xml | – sequence: 1 givenname: Chang-Lin surname: Li fullname: Li, Chang-Lin organization: Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 2 givenname: Kai-Cheng surname: Li fullname: Li, Kai-Cheng organization: Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 3 givenname: Dan surname: Wu fullname: Wu, Dan organization: Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 4 givenname: Yan surname: Chen fullname: Chen, Yan organization: Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 5 givenname: Hao surname: Luo fullname: Luo, Hao organization: School of Life Science and Technology, ShanghaiTec University – sequence: 6 givenname: Jing-Rong surname: Zhao fullname: Zhao, Jing-Rong organization: Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 7 givenname: Sa-Shuang surname: Wang fullname: Wang, Sa-Shuang organization: School of Life Science and Technology, ShanghaiTec University – sequence: 8 givenname: Ming-Ming surname: Sun fullname: Sun, Ming-Ming organization: National Engineering Center for Biochip at Shanghai – sequence: 9 givenname: Ying-Jin surname: Lu fullname: Lu, Ying-Jin organization: Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 10 givenname: Yan-Qing surname: Zhong fullname: Zhong, Yan-Qing organization: Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 11 givenname: Xu-Ye surname: Hu fullname: Hu, Xu-Ye organization: Shanghai Clinical Center, Chinese Academy of Sciences/XuHui Central Hospital – sequence: 12 givenname: Rui surname: Hou fullname: Hou, Rui organization: National Engineering Center for Biochip at Shanghai – sequence: 13 givenname: Bei-Bei surname: Zhou fullname: Zhou, Bei-Bei organization: National Engineering Center for Biochip at Shanghai – sequence: 14 givenname: Lan surname: Bao fullname: Bao, Lan organization: State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, School of Life Science and Technology, ShanghaiTec University – sequence: 15 givenname: Hua-Sheng surname: Xiao fullname: Xiao, Hua-Sheng organization: National Engineering Center for Biochip at Shanghai – sequence: 16 givenname: Xu surname: Zhang fullname: Zhang, Xu email: xu.zhang@ion.ac.cn organization: Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, School of Life Science and Technology, ShanghaiTec University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26691752$$D View this record in MEDLINE/PubMed |
BookMark | eNqNktuL1DAUxousuBd98l2KvgjaMZfm0hdhWXZVWBS8PIc0Oe1k6SSzSbvQ_97UGYd1UfApIfmdL9_J-U6LIx88FMVzjFYYUfnOxBVBmK1w3TwqTrCoZSUklUd5jxCuEEfkuDhN6QYhwmqGnxTHhPMGC0ZOCv8tbPQYEvgU4lx6mGLw5ThvIZXOgh9d58CW7VyuXb-uTLiDqHsok_P9AJWBYSi_fj6vEtxO4E0-LbW3ZTd5M7rg9VCuYYQYevDgxvlp8bjTQ4Jn-_Ws-HF1-f3iY3X95cOni_PryjDBx4pIIw2ljFPZSdxhYmUjaiIwYGaFES2ytuWMMtvUCAlsGcmFTLeGWsmJpGfF-53udmo3YE1uJOpBbaPb6DiroJ3688a7terDnaol5pjyLPB6LxBD7iyNauPS0q32EKaksBBUEi4o-Q-U1aihDC22Xj1Ab8IU8y_9oighnDRNpl7cN39w_XtqGXizA0wMKUXoDghGasmEMlEtmVA5E5nGD2jjRr1MJ3fuhn_UvN3VpKzse4j3jP4Vf7l_Yh18f5srDo44l3VOY0PoTzqB1C0 |
CitedBy_id | crossref_primary_10_1038_s41593_018_0119_z crossref_primary_10_1371_journal_pone_0185543 crossref_primary_10_1523_ENEURO_0066_22_2022 crossref_primary_10_1098_rstb_2019_0291 crossref_primary_10_1186_s13059_016_0941_0 crossref_primary_10_1007_s12264_017_0147_9 crossref_primary_10_1038_s41598_019_56911_z crossref_primary_10_3389_fncel_2022_885569 crossref_primary_10_3389_fnana_2023_1162049 crossref_primary_10_1007_s00429_016_1191_3 crossref_primary_10_1038_s41593_022_01181_8 crossref_primary_10_1016_j_neulet_2024_138061 crossref_primary_10_3390_ijms21155206 crossref_primary_10_1152_jn_00763_2016 crossref_primary_10_1186_s13023_023_02781_8 crossref_primary_10_1002_glia_23785 crossref_primary_10_1369_00221554241251904 crossref_primary_10_1113_JP279203 crossref_primary_10_1016_j_nlm_2016_06_006 crossref_primary_10_1038_srep31851 crossref_primary_10_1016_j_neuroscience_2017_06_033 crossref_primary_10_1097_j_pain_0000000000000778 crossref_primary_10_1242_dev_200180 crossref_primary_10_1016_j_it_2017_12_003 crossref_primary_10_1097_j_pain_0000000000001506 crossref_primary_10_1016_j_bcp_2024_116091 crossref_primary_10_1002_advs_202207732 crossref_primary_10_1016_j_pneurobio_2018_05_002 crossref_primary_10_3389_fphar_2024_1448253 crossref_primary_10_1089_cmb_2018_0236 crossref_primary_10_12688_f1000research_17084_1 crossref_primary_10_1097_j_pain_0000000000002156 crossref_primary_10_1038_s41467_023_37187_4 crossref_primary_10_1016_j_jpain_2023_11_018 crossref_primary_10_1097_j_pain_0000000000002831 crossref_primary_10_1016_j_jare_2024_07_028 crossref_primary_10_1096_fj_201902270R crossref_primary_10_1016_j_neuron_2017_01_009 crossref_primary_10_1093_jmcb_mjw050 crossref_primary_10_1016_j_jpain_2023_06_006 crossref_primary_10_1146_annurev_immunol_101921_042929 crossref_primary_10_1016_j_fhfh_2024_100190 crossref_primary_10_1038_s41419_024_06480_5 crossref_primary_10_3389_fnins_2023_1098612 crossref_primary_10_1172_jci_insight_171275 crossref_primary_10_1371_journal_pbio_3002888 crossref_primary_10_1097_j_pain_0000000000001416 crossref_primary_10_1016_j_neuron_2019_09_018 crossref_primary_10_1016_j_tins_2022_05_005 crossref_primary_10_1038_s41422_021_00479_9 crossref_primary_10_1016_j_conb_2022_102573 crossref_primary_10_1038_s41598_017_08865_3 crossref_primary_10_1523_ENEURO_0246_17_2017 crossref_primary_10_15252_embr_201540983 crossref_primary_10_1016_j_isci_2021_102721 crossref_primary_10_1016_j_neuron_2019_05_039 crossref_primary_10_1093_bfgp_elx044 crossref_primary_10_1111_imr_13375 crossref_primary_10_1016_j_biocel_2018_05_005 crossref_primary_10_1186_s12974_020_1703_1 crossref_primary_10_1016_j_npep_2016_10_004 crossref_primary_10_1007_s00415_017_8641_6 crossref_primary_10_1016_j_compbiomed_2024_108457 crossref_primary_10_2337_db18_1233 crossref_primary_10_1016_j_pneurobio_2018_09_006 crossref_primary_10_1038_s41422_022_00616_y crossref_primary_10_7554_eLife_20487 crossref_primary_10_1016_j_jaci_2024_02_006 crossref_primary_10_4103_1673_5374_330623 crossref_primary_10_1186_s12864_019_5512_9 crossref_primary_10_3389_fnmol_2018_00024 crossref_primary_10_7554_eLife_92046_2 crossref_primary_10_2147_ITT_S262566 crossref_primary_10_3389_fnmol_2023_1117065 crossref_primary_10_3389_fnins_2023_1176654 crossref_primary_10_1002_cne_25563 crossref_primary_10_1016_j_jaci_2017_12_1002 crossref_primary_10_1126_science_aaf8933 crossref_primary_10_1177_1744806917693003 crossref_primary_10_1523_JNEUROSCI_3048_18_2019 crossref_primary_10_1093_bioinformatics_btz295 crossref_primary_10_1016_j_canlet_2025_217539 crossref_primary_10_1111_exd_14685 crossref_primary_10_7554_eLife_49679 crossref_primary_10_1016_j_conb_2016_11_001 crossref_primary_10_1186_s12918_016_0370_4 crossref_primary_10_1016_j_celrep_2022_110328 crossref_primary_10_1016_j_jpain_2020_12_006 crossref_primary_10_3389_fphys_2020_554195 crossref_primary_10_1088_1741_2552_ac7078 crossref_primary_10_1097_j_pain_0000000000001395 crossref_primary_10_1016_j_isci_2025_111831 crossref_primary_10_1073_pnas_2022874118 crossref_primary_10_1007_s11427_017_9061_y crossref_primary_10_3390_ijms22169062 crossref_primary_10_1177_0333102421989261 crossref_primary_10_1016_j_cell_2023_07_006 crossref_primary_10_1097_j_pain_0000000000001025 crossref_primary_10_1016_j_cophys_2019_05_015 crossref_primary_10_1016_j_jpain_2016_12_011 crossref_primary_10_1515_mr_2022_0013 crossref_primary_10_1016_j_biopha_2021_112273 crossref_primary_10_2147_JIR_S379093 crossref_primary_10_1007_s12264_021_00748_y crossref_primary_10_1172_jci_insight_98601 crossref_primary_10_1016_j_ceb_2020_08_006 crossref_primary_10_1177_1744806918769492 crossref_primary_10_4049_jimmunol_2000315 crossref_primary_10_1111_imcb_12644 crossref_primary_10_1016_j_neuron_2021_12_007 crossref_primary_10_1016_j_tins_2023_05_005 crossref_primary_10_1016_j_tins_2018_02_010 crossref_primary_10_1111_bph_14952 crossref_primary_10_1016_j_expneurol_2021_113607 crossref_primary_10_1016_j_omtm_2021_07_009 crossref_primary_10_1177_17448069211023230 crossref_primary_10_21769_BioProtoc_1010323 crossref_primary_10_1016_j_celrep_2018_02_003 crossref_primary_10_7554_eLife_48431 crossref_primary_10_3389_fcell_2021_642212 crossref_primary_10_1084_jem_20190945 crossref_primary_10_1177_0333102417720216 crossref_primary_10_7554_eLife_59323 crossref_primary_10_1097_j_pain_0000000000002934 crossref_primary_10_1016_j_neuron_2017_09_026 crossref_primary_10_1186_s13075_018_1560_9 crossref_primary_10_1016_j_ejphar_2021_174034 crossref_primary_10_1146_annurev_cellbio_120320_032429 crossref_primary_10_1038_s41467_023_36014_0 crossref_primary_10_1038_s41583_021_00489_x crossref_primary_10_1007_s12264_020_00486_7 crossref_primary_10_1016_j_trsl_2021_05_003 crossref_primary_10_1016_j_neuron_2021_12_015 crossref_primary_10_1016_j_pneurobio_2018_06_012 crossref_primary_10_1016_j_trsl_2022_07_004 crossref_primary_10_1038_s41598_018_19532_6 crossref_primary_10_1016_j_smim_2024_101928 crossref_primary_10_1097_j_pain_0000000000001911 crossref_primary_10_1016_j_pneurobio_2020_101790 crossref_primary_10_1007_s00429_018_1629_x crossref_primary_10_1177_1744806919884496 crossref_primary_10_1038_s41598_017_19093_0 crossref_primary_10_1016_j_jtos_2017_05_002 crossref_primary_10_3390_brainsci15030255 crossref_primary_10_3390_genes11010021 crossref_primary_10_4103_1673_5374_384067 crossref_primary_10_3389_fnmol_2022_974007 crossref_primary_10_1016_j_celrep_2019_02_089 crossref_primary_10_1007_s00359_020_01414_w crossref_primary_10_1016_j_isci_2024_109396 crossref_primary_10_3389_fncir_2023_1007755 crossref_primary_10_1096_fj_202101678R crossref_primary_10_1177_01926233231213851 crossref_primary_10_1002_cam4_6752 crossref_primary_10_1523_JNEUROSCI_3055_19_2020 crossref_primary_10_1016_j_cell_2024_02_006 crossref_primary_10_1016_j_tins_2020_03_004 crossref_primary_10_3389_fnmol_2022_1002842 crossref_primary_10_1016_j_neuron_2022_03_031 crossref_primary_10_1073_pnas_1814132115 crossref_primary_10_1093_nar_gkx681 crossref_primary_10_1007_s44164_022_00036_7 crossref_primary_10_7554_eLife_74964 crossref_primary_10_1016_j_conb_2018_04_021 crossref_primary_10_1016_j_cophys_2020_11_001 crossref_primary_10_1186_s13073_023_01193_4 crossref_primary_10_1016_j_omtm_2022_12_012 crossref_primary_10_1038_s41467_018_03282_0 crossref_primary_10_1186_s12915_023_01742_8 crossref_primary_10_1172_JCI120913 crossref_primary_10_1523_JNEUROSCI_1427_21_2022 crossref_primary_10_1016_j_cell_2019_07_012 crossref_primary_10_1038_s41467_020_17936_5 crossref_primary_10_1007_s11596_022_2640_2 crossref_primary_10_1111_exd_14222 crossref_primary_10_1146_annurev_immunol_101719_113805 crossref_primary_10_1186_s12974_018_1222_5 crossref_primary_10_1097_j_pain_0000000000001499 crossref_primary_10_1523_JNEUROSCI_0094_17_2017 crossref_primary_10_7554_eLife_92046 crossref_primary_10_1242_dev_199711 crossref_primary_10_1177_1744806921992249 crossref_primary_10_1073_pnas_2118501119 crossref_primary_10_1007_s12035_019_01782_8 crossref_primary_10_1038_s41593_018_0141_1 crossref_primary_10_1126_science_aax6452 crossref_primary_10_3389_fnmol_2017_00304 crossref_primary_10_1007_s11427_017_9063_5 crossref_primary_10_3389_fnmol_2022_856299 crossref_primary_10_1097_j_pain_0000000000002452 crossref_primary_10_1080_19336950_2020_1870086 crossref_primary_10_1093_braincomms_fcad007 crossref_primary_10_1038_s41368_023_00246_z crossref_primary_10_1016_j_jaci_2022_03_010 crossref_primary_10_1007_s00221_018_5299_y crossref_primary_10_3389_fncel_2018_00304 crossref_primary_10_1016_j_crmeth_2021_100004 crossref_primary_10_1177_01926233231179707 crossref_primary_10_1002_ejp_1606 crossref_primary_10_1016_j_isci_2025_112194 crossref_primary_10_1152_ajpgi_00398_2017 crossref_primary_10_1177_10738584221074350 crossref_primary_10_2147_JPR_S322372 crossref_primary_10_1007_s00424_022_02707_6 crossref_primary_10_1136_gutjnl_2017_315631 crossref_primary_10_1016_j_cell_2024_10_023 crossref_primary_10_15252_embr_202154313 crossref_primary_10_1016_j_celrep_2023_113551 crossref_primary_10_1016_j_ynpai_2021_100071 crossref_primary_10_7554_eLife_32036 crossref_primary_10_1016_j_bbi_2023_08_005 crossref_primary_10_3389_frspt_2023_1162268 crossref_primary_10_1016_j_cophys_2019_06_001 crossref_primary_10_1016_j_isci_2024_109973 crossref_primary_10_1016_j_jpain_2022_04_003 crossref_primary_10_1038_nn_4366 crossref_primary_10_1038_s41593_017_0060_6 crossref_primary_10_1016_j_conb_2019_03_002 crossref_primary_10_1002_glia_23585 crossref_primary_10_1016_j_brainres_2024_149227 crossref_primary_10_1080_14728222_2023_2247563 crossref_primary_10_1016_j_celrep_2017_07_010 crossref_primary_10_1016_j_neures_2020_06_004 crossref_primary_10_1016_j_celrep_2022_110972 crossref_primary_10_1021_acs_est_2c01098 crossref_primary_10_1038_s41380_024_02810_3 crossref_primary_10_1016_j_bbrc_2022_09_011 crossref_primary_10_1177_1744806918763646 crossref_primary_10_1016_j_neuroscience_2025_02_005 crossref_primary_10_1016_j_nbd_2024_106624 crossref_primary_10_1016_j_neuron_2020_07_026 crossref_primary_10_1523_JNEUROSCI_1930_17_2018 crossref_primary_10_1097_j_pain_0000000000001217 crossref_primary_10_1002_advs_202404342 crossref_primary_10_1093_nar_gky308 crossref_primary_10_1016_j_conb_2016_07_007 crossref_primary_10_1007_s00221_021_06170_0 crossref_primary_10_1016_j_celrep_2021_109914 crossref_primary_10_1523_JNEUROSCI_1184_23_2023 crossref_primary_10_1523_JNEUROSCI_0599_20_2020 crossref_primary_10_1038_s41422_020_00448_8 crossref_primary_10_1186_s13075_022_02825_7 crossref_primary_10_2139_ssrn_4002757 crossref_primary_10_1016_j_jtos_2024_12_006 crossref_primary_10_1016_j_neuroscience_2017_03_037 crossref_primary_10_1016_j_tvjl_2018_05_004 crossref_primary_10_1038_s41467_021_21725_z crossref_primary_10_1016_j_celrep_2019_04_096 crossref_primary_10_1113_JP278292 crossref_primary_10_1177_1744806916646111 crossref_primary_10_1111_bph_16296 crossref_primary_10_1016_j_jid_2020_03_935 crossref_primary_10_3389_fcell_2020_587699 crossref_primary_10_1021_acschemneuro_2c00012 crossref_primary_10_1073_pnas_2121989119 crossref_primary_10_1016_j_neuropharm_2018_09_014 crossref_primary_10_1097_j_pain_0000000000003189 crossref_primary_10_1186_s13041_022_00927_6 crossref_primary_10_1038_nrn_2017_85 |
Cites_doi | 10.1016/j.neuron.2011.01.022 10.1523/JNEUROSCI.0657-10.2010 10.1038/nature13980 10.1186/1471-2105-9-559 10.1126/science.1233765 10.1016/0166-2236(87)90056-7 10.1007/s12565-012-0163-9 10.1038/nn1937 10.1172/JCI25437 10.1021/cn100094b 10.1016/0306-4522(94)90387-5 10.1038/39807 10.1046/j.1460-9568.2000.00967.x 10.1016/j.brainresrev.2004.07.015 10.1371/journal.pone.0029852 10.1073/pnas.94.2.729 10.1038/nmeth.2694 10.1038/nbt.2967 10.1126/science.1254257 10.1016/S0092-8674(01)00483-4 10.1016/j.jaci.2013.10.048 10.1038/cr.2015.12 10.1016/S0092-8674(03)00158-2 10.1038/nature11810 10.1038/nbt.2282 10.1016/S0165-6147(00)01585-6 10.1146/annurev-biophys-051013-022826 10.1523/JNEUROSCI.1057-09.2009 10.1016/j.cell.2011.11.027 10.1038/nature13173 10.1073/pnas.122231899 10.1038/nbt.2642 10.1146/annurev.neuro.29.051605.112958 10.1016/S0169-328X(02)00584-3 10.1523/JNEUROSCI.4472-07.2008 10.1016/j.jpain.2014.09.010 10.1038/nn.3881 10.1016/j.neuron.2012.04.023 10.1126/science.1247651 10.1371/journal.pone.0079523 10.3389/fnmol.2014.00087 10.1016/0306-4522(90)90091-H 10.1016/j.celrep.2013.09.013 10.1038/nature13437 10.1038/nn.3111 10.1007/BF00218323 10.1016/B0-443-07287-6/50006-0 10.7554/eLife.04660.034 10.1007/978-1-4615-0037-7_2 |
ContentType | Journal Article |
Copyright | Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2016 Copyright Nature Publishing Group Jan 2016 Copyright © 2016 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2016 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences |
Copyright_xml | – notice: Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2016 – notice: Copyright Nature Publishing Group Jan 2016 – notice: Copyright © 2016 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2016 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences |
DBID | 2RA 92L CQIGP W94 WU4 ~WA AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
DOI | 10.1038/cr.2015.149 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库-自然科学-生物科学 中文科技期刊数据库- 镜像站点 CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Nucleic Acids Abstracts MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity Types of primary sensory neurons |
EISSN | 1748-7838 |
EndPage | 102 |
ExternalDocumentID | PMC4816136 3911538121 26691752 10_1038_cr_2015_149 668483892 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -01 -0A -Q- -SA -S~ 0R~ 29B 2B. 2C. 2RA 2WC 36B 39C 3V. 4.4 406 53G 5GY 5VR 5XA 5XB 5XL 6J9 70F 7X7 88E 8FE 8FH 8FI 8FJ 92E 92I 92L 92M 92Q 93N 9D9 9DA AADWK AANZL AATNV AAWBL AAYFA AAYJO AAZLF ABAWZ ABGIJ ABJNI ABUWG ACAOD ACBMV ACBRV ACBYP ACGFO ACGFS ACIGE ACIWK ACKTT ACPRK ACRQY ACTTH ACVWB ACZOJ ADBBV ADFRT ADHDB ADMDM ADQMX ADYYL AEDAW AEFTE AEJRE AENEX AESKC AEVLU AEXYK AFKRA AFNRJ AFRAH AFSHS AFUIB AGEZK AGGBP AGHAI AHMBA AHSBF AILAN AJCLW AJDOV AJRNO ALFFA ALMA_UNASSIGNED_HOLDINGS AMRJV AMYLF AOIJS AXYYD BAWUL BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI C1A CAG CAJEA CAJUS CCEZO CCPQU CCVFK CHBEP COF CQIGP CS3 CW9 DIK DNIVK DPUIP DU5 E3Z EBLON EBS EE. EIOEI EJD EMB EMOBN F5P FA0 FDQFY FERAY FIZPM FSGXE FYUFA GX1 HCIFZ HMCUK HYE HZ~ IWAJR JSO JUIAU JZLTJ KQ8 LK8 M1P M7P NAO NQJWS NXXTH NYICJ O9- OK1 P2P PQQKQ PROAC PSQYO Q-- Q-0 R-A RNS RNT RNTTT RPM RT1 S.. SNX SNYQT SOHCF SRMVM SV3 SWTZT T8Q TAOOD TBHMF TCJ TDRGL TGP TR2 U1F U1G U5A U5K UKHRP W94 WFFXF WU4 XSB ~88 ~WA AACDK AAHBH AASML AAXDM AAYZH ABAKF ABZZP ACMJI AEFQL AEMSY AEUYN AFBBN AGQEE AIGIU ALIPV FIGPU LGEZI LOTEE NADUK ROL SOJ AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c576t-28c8c335638f81f12d8974271e15d7c7b0ddb6535d940071d52c575abc3d86283 |
IEDL.DBID | 7X7 |
ISSN | 1001-0602 1748-7838 |
IngestDate | Thu Aug 21 17:11:23 EDT 2025 Thu Sep 04 17:20:45 EDT 2025 Fri Sep 05 06:48:17 EDT 2025 Fri Jul 25 09:06:44 EDT 2025 Wed Feb 19 02:41:19 EST 2025 Thu Apr 24 23:03:12 EDT 2025 Tue Jul 01 03:41:33 EDT 2025 Fri Feb 21 02:38:07 EST 2025 Wed Feb 14 10:19:48 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | single-cell RNA sequencing somatosensation neuron type primary sensory neuron |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c576t-28c8c335638f81f12d8974271e15d7c7b0ddb6535d940071d52c575abc3d86283 |
Notes | 31-1568 Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 ±1 218 genes per neuron) and neuron size-based hierarchical clustering. Moreover, single DRG neurons responding to cutaneous stimuli are recorded using an in vivo whole-cell patch clamp technique and classified by neuron-type genetic markers. Small diameter DRG neurons are classified into one type of low-threshold mechanoreceptor and five types of mechanoheat nociceptors (MHNs). Each of the MHN types is further categorized into two subtypes. Large DRG neurons are categorized into four types, including neurexophilin 1-expressing MHNs and mechanical nociceptors (MNs) expressing BAil-associated protein 2-like I (Baiap211). Mechanoreceptors expressing trafficking protein particle complex 3-like and Baiap211-marked MNs are subdivided into two subtypes each. These results provide a new system for cataloging somatosensory neurons and their transcriptome databases. primary sensory neuron; neuron type; single-cell RNA sequencing; somatosensation ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These two authors contributed equally to this work. |
OpenAccessLink | https://www.nature.com/articles/cr2015149.pdf |
PMID | 26691752 |
PQID | 1753226299 |
PQPubID | 536307 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4816136 proquest_miscellaneous_1773826732 proquest_miscellaneous_1754093508 proquest_journals_1753226299 pubmed_primary_26691752 crossref_primary_10_1038_cr_2015_149 crossref_citationtrail_10_1038_cr_2015_149 springer_journals_10_1038_cr_2015_149 chongqing_primary_668483892 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Cell research |
PublicationTitleAbbrev | Cell Res |
PublicationTitleAlternate | Cell Research |
PublicationYear | 2016 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Wang, Rivero-Melian, Robertson, Grant (CR4) 1994; 62 Treutlein, Brownfield, Wu (CR32) 2014; 509 Zhang, Shi, Holmberg (CR7) 1997; 94 Li, Rutlin, Abraira (CR2) 2011; 147 Wang, Cai, Li (CR21) 2015; 25 Dhaka, Viswanath, Patapoutian (CR12) 2006; 29 Diveu, Lak-Hal, Froger (CR37) 2004; 15 Li, Zhang, Li (CR20) 2011; 69 Rau, McIlwrath, Wang (CR48) 2009; 29 Delfini, Mantilleri, Gaillard (CR49) 2013; 5 Liu, Yang, Okuda (CR9) 2008; 28 Liu, Vrontou, Rice, Zylka, Dong, Anderson (CR46) 2007; 10 Vrontou, Wong, Rau, Koerber, Anderson (CR47) 2013; 493 Liu, Wan, Huo (CR45) 2014; 10 Ranade, Woo, Dubin (CR50) 2014; 516 CR6 Wills, Livak, Tipping (CR27) 2013; 31 CR5 Manteniotis, Lehmann, Flegel (CR18) 2013; 8 Zhang, Liu, Gong (CR19) 2010; 30 Ramskold, Luo, Wang (CR26) 2012; 30 Jaitin, Kenigsberg, Keren-Shaul (CR28) 2014; 343 Kobayashi, Yamanaka, Noguchi (CR13) 2013; 88 Patel, Tirosh, Trombetta (CR29) 2014; 344 Geffeney, Goodman (CR15) 2012; 74 Wu, Neff, Kalisky (CR33) 2014; 11 Shalek, Satija, Shuga (CR31) 2014; 510 Story, Peier, Reeve (CR39) 2003; 112 Usoskin, Furlan, Islam (CR34) 2015; 18 Obata, Katsura, Mizushima (CR40) 2005; 115 Cho, Yang, Lee (CR42) 2012; 15 Celio (CR38) 1990; 35 Kerr, Cafferty, Gupta (CR41) 2000; 12 Dong, Han, Zylka, Simon, Anderson (CR8) 2001; 106 Mishra, Hoon (CR43) 2013; 340 Baker, Wood (CR10) 2001; 22 Han, Dong (CR44) 2014; 43 Ju, Hökfelt, Brodin (CR3) 1987; 247 Djouhri, Lawson (CR51) 2004; 46 Venteo, Bourane, Mechaly (CR22) 2012; 7 Thakur, Crow, Richards (CR24) 2014; 7 Goswami, Mishra, Maric (CR23) 2014; 15 Pollen, Nowakowski, Shuga (CR30) 2014; 32 Caterina, Schumacher, Tominaga, Rosen, Levine, Julius (CR11) 1997; 389 Cevikbas, Wang, Akiyama (CR36) 2014; 133 Li, Xu (CR14) 2011; 2 CR25 Maxwell, Réthelyi (CR1) 1987; 10 Xiao, Huang, Zhang (CR17) 2002; 99 Kashiba, Uchida, Senba (CR16) 2003; 110 Langfelder, Horvath (CR35) 2008; 9 B Treutlein (BFcr2015149_CR32) 2014; 509 X Dong (BFcr2015149_CR8) 2001; 106 XY Liu (BFcr2015149_CR45) 2014; 10 K Kobayashi (BFcr2015149_CR13) 2013; 88 SS Ranade (BFcr2015149_CR50) 2014; 516 HS Xiao (BFcr2015149_CR17) 2002; 99 KC Li (BFcr2015149_CR20) 2011; 69 SL Geffeney (BFcr2015149_CR15) 2012; 74 AP Patel (BFcr2015149_CR29) 2014; 344 G Ju (BFcr2015149_CR3) 1987; 247 S Manteniotis (BFcr2015149_CR18) 2013; 8 X Zhang (BFcr2015149_CR7) 1997; 94 H Kashiba (BFcr2015149_CR16) 2003; 110 FX Zhang (BFcr2015149_CR19) 2010; 30 BFcr2015149_CR25 QF Wills (BFcr2015149_CR27) 2013; 31 S Venteo (BFcr2015149_CR22) 2012; 7 AK Shalek (BFcr2015149_CR31) 2014; 510 L Djouhri (BFcr2015149_CR51) 2004; 46 A Dhaka (BFcr2015149_CR12) 2006; 29 H Cho (BFcr2015149_CR42) 2012; 15 SK Mishra (BFcr2015149_CR43) 2013; 340 MJ Caterina (BFcr2015149_CR11) 1997; 389 KK Rau (BFcr2015149_CR48) 2009; 29 L Li (BFcr2015149_CR2) 2011; 147 Q Liu (BFcr2015149_CR46) 2007; 10 L Han (BFcr2015149_CR44) 2014; 43 P Langfelder (BFcr2015149_CR35) 2008; 9 H Wang (BFcr2015149_CR4) 1994; 62 AA Pollen (BFcr2015149_CR30) 2014; 32 AR Wu (BFcr2015149_CR33) 2014; 11 MD Baker (BFcr2015149_CR10) 2001; 22 GM Story (BFcr2015149_CR39) 2003; 112 Y Liu (BFcr2015149_CR9) 2008; 28 D Ramskold (BFcr2015149_CR26) 2012; 30 MR Celio (BFcr2015149_CR38) 1990; 35 K Obata (BFcr2015149_CR40) 2005; 115 SC Goswami (BFcr2015149_CR23) 2014; 15 M Thakur (BFcr2015149_CR24) 2014; 7 BFcr2015149_CR5 F Cevikbas (BFcr2015149_CR36) 2014; 133 C Diveu (BFcr2015149_CR37) 2004; 15 BFcr2015149_CR6 BJ Kerr (BFcr2015149_CR41) 2000; 12 DJ Maxwell (BFcr2015149_CR1) 1987; 10 F Wang (BFcr2015149_CR21) 2015; 25 MC Delfini (BFcr2015149_CR49) 2013; 5 WG Li (BFcr2015149_CR14) 2011; 2 DA Jaitin (BFcr2015149_CR28) 2014; 343 D Usoskin (BFcr2015149_CR34) 2015; 18 S Vrontou (BFcr2015149_CR47) 2013; 493 24438367 - Mol Pain. 2014;10:4 11551509 - Cell. 2001 Sep 7;106(5):619-32 24139797 - Cell Rep. 2013 Oct 31;5(2):378-88 24531970 - Science. 2014 Feb 14;343(6172):776-9 2199841 - Neuroscience. 1990;35(2):375-475 23873083 - Nat Biotechnol. 2013 Aug;31(8):748-52 24739965 - Nature. 2014 May 15;509(7500):371-5 11165669 - Trends Pharmacol Sci. 2001 Jan;22(1):27-31 25420068 - Nat Neurosci. 2015 Jan;18(1):145-53 21382556 - Neuron. 2011 Mar 10;69(5):974-87 19571152 - J Neurosci. 2009 Jul 1;29(26):8612-9 12654248 - Cell. 2003 Mar 21;112(6):819-29 24925914 - Science. 2014 Jun 20;344(6190):1396-401 9012853 - Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):729-34 25086649 - Nat Biotechnol. 2014 Oct;32(10):1053-8 25633594 - Cell Res. 2015 Mar;25(3):318-34 22820318 - Nat Biotechnol. 2012 Aug;30(8):777-82 16110328 - J Clin Invest. 2005 Sep;115(9):2393-401 22196735 - Cell. 2011 Dec 23;147(7):1615-27 17618277 - Nat Neurosci. 2007 Aug;10(8):946-8 12573533 - Brain Res Mol Brain Res. 2003 Jan 31;110(1):52-62 16776582 - Annu Rev Neurosci. 2006;29:135-61 19114008 - BMC Bioinformatics. 2008;9:559 12060780 - Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8360-5 22632719 - Neuron. 2012 May 24;74(4):609-19 25281809 - J Pain. 2014 Dec;15(12):1338-59 24260241 - PLoS One. 2013;8(11):e79523 2434236 - Cell Tissue Res. 1987 Feb;247(2):417-31 20702721 - J Neurosci. 2010 Aug 11;30(32):10927-38 24819620 - Annu Rev Biophys. 2014;43:331-55 25525749 - Elife. 2014;3. doi: 10.7554/eLife.04660 24919153 - Nature. 2014 Jun 19;510(7505):363-9 15464202 - Brain Res Brain Res Rev. 2004 Oct;46(2):131-45 23179910 - Anat Sci Int. 2013 Jan;88(1):10-6 18171930 - J Neurosci. 2008 Jan 2;28(1):125-32 15627637 - Eur Cytokine Netw. 2004 Oct-Dec;15(4):291-302 23364746 - Nature. 2013 Jan 31;493(7434):669-73 7530347 - Neuroscience. 1994 Sep;62(2):539-51 25471886 - Nature. 2014 Dec 4;516(7529):121-5 22634729 - Nat Neurosci. 2012 Jul;15(7):1015-21 27481604 - Cell Res. 2016 Aug;26(8):967 10762308 - Eur J Neurosci. 2000 Mar;12(3):793-802 22778854 - ACS Chem Neurosci. 2011 Jan 19;2(1):26-37 23704570 - Science. 2013 May 24;340(6135):968-71 24373353 - J Allergy Clin Immunol. 2014 Feb;133(2):448-60 9349813 - Nature. 1997 Oct 23;389(6653):816-24 24141493 - Nat Methods. 2014 Jan;11(1):41-6 22253804 - PLoS One. 2012;7(1):e29852 25426020 - Front Mol Neurosci. 2014 Nov 11;7:87 |
References_xml | – volume: 69 start-page: 974 year: 2011 end-page: 987 ident: CR20 article-title: Follistatin-like 1 suppresses sensory afferent transmission by activating Na ,K -ATPase publication-title: Neuron doi: 10.1016/j.neuron.2011.01.022 – volume: 30 start-page: 10927 year: 2010 end-page: 10938 ident: CR19 article-title: Inhibition of inflammatory pain by activating B-type natriuretic peptide signal pathway in nociceptive sensory neurons publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0657-10.2010 – volume: 516 start-page: 121 year: 2014 end-page: 125 ident: CR50 article-title: Piezo2 is the major transducer of mechanical forces for touch sensation in mice publication-title: Nature doi: 10.1038/nature13980 – volume: 9 start-page: 559 year: 2008 ident: CR35 article-title: WGCNA: an R package for weighted correlation network analysis publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-559 – volume: 340 start-page: 968 year: 2013 end-page: 971 ident: CR43 article-title: The cells and circuitry for itch responses in mice publication-title: Science doi: 10.1126/science.1233765 – ident: CR25 – volume: 10 start-page: 117 year: 1987 end-page: 123 ident: CR1 article-title: Ultrastructure and synaptic connections of cutaneius afferent fibres in the spinal cord publication-title: Trends Neurosci doi: 10.1016/0166-2236(87)90056-7 – volume: 88 start-page: 10 year: 2013 end-page: 16 ident: CR13 article-title: Expression of ATP receptors in the rat dorsal root ganglion and spinal cord publication-title: Anat Sci Int doi: 10.1007/s12565-012-0163-9 – volume: 10 start-page: 946 year: 2007 end-page: 948 ident: CR46 article-title: Molecular genetic visualization of a rare subset of unmyelinated sensory neurons that may detect gentle touch publication-title: Nat Neurosci doi: 10.1038/nn1937 – volume: 115 start-page: 2393 year: 2005 end-page: 2401 ident: CR40 article-title: TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury publication-title: J Clin Invest doi: 10.1172/JCI25437 – volume: 2 start-page: 26 year: 2011 end-page: 37 ident: CR14 article-title: ASIC3 channels in multimodal sensory perception publication-title: ACS Chem Neurosci doi: 10.1021/cn100094b – volume: 62 start-page: 539 year: 1994 end-page: 551 ident: CR4 article-title: Transganglionic transport and binding of the isolectin B4 from Griffonia simplicifolia I in rat primary sensory neurons publication-title: Neuroscience doi: 10.1016/0306-4522(94)90387-5 – volume: 389 start-page: 816 year: 1997 end-page: 824 ident: CR11 article-title: The capsaicin receptor: a heat-activated ion channel in the pain pathway publication-title: Nature doi: 10.1038/39807 – volume: 12 start-page: 793 year: 2000 end-page: 802 ident: CR41 article-title: Galanin knockout mice reveal nociceptive deficits following peripheral nerve injury publication-title: Eur J Neurosci doi: 10.1046/j.1460-9568.2000.00967.x – volume: 46 start-page: 131 year: 2004 end-page: 145 ident: CR51 article-title: Abeta-fiber nociceptive primary afferent neurons: a review of incidence and properties in relation to other afferent A-fiber neurons in mammals publication-title: Brain Res Brain Res Rev doi: 10.1016/j.brainresrev.2004.07.015 – ident: CR5 – volume: 7 start-page: e29852 year: 2012 ident: CR22 article-title: Regulation of the Na,K-ATPase gamma-subunit FXYD2 by Runx1 and Ret signaling in normal and injured non-peptidergic nociceptive sensory neurons publication-title: PLoS One doi: 10.1371/journal.pone.0029852 – volume: 94 start-page: 729 year: 1997 end-page: 734 ident: CR7 article-title: Expression and regulation of the neuropeptide Y Y2 receptor in sensory and autonomic ganglia publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.2.729 – volume: 11 start-page: 41 year: 2014 end-page: 46 ident: CR33 article-title: Quantitative assessment of single-cell RNA-sequencing methods publication-title: Nat Methods doi: 10.1038/nmeth.2694 – volume: 32 start-page: 1053 year: 2014 end-page: 1058 ident: CR30 article-title: Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex publication-title: Nat Biotechnol doi: 10.1038/nbt.2967 – volume: 344 start-page: 1396 year: 2014 end-page: 1401 ident: CR29 article-title: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma publication-title: Science doi: 10.1126/science.1254257 – volume: 106 start-page: 619 year: 2001 end-page: 632 ident: CR8 article-title: A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons publication-title: Cell doi: 10.1016/S0092-8674(01)00483-4 – volume: 133 start-page: 448 year: 2014 end-page: 460 ident: CR36 article-title: A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1 publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2013.10.048 – volume: 25 start-page: 318 year: 2015 end-page: 334 ident: CR21 article-title: FXYD2, a gamma subunit of Na , K -ATPase, maintains persistent mechanical allodynia induced by inflammation publication-title: Cell Res doi: 10.1038/cr.2015.12 – volume: 112 start-page: 819 year: 2003 end-page: 829 ident: CR39 article-title: ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures publication-title: Cell doi: 10.1016/S0092-8674(03)00158-2 – volume: 493 start-page: 669 year: 2013 end-page: 673 ident: CR47 article-title: Genetic identification of C fibres that detect massage-like stroking of hairy skin publication-title: Nature doi: 10.1038/nature11810 – volume: 15 start-page: 291 year: 2004 end-page: 302 ident: CR37 article-title: Predominant expression of the long isoform of GP130-like (GPL) receptor is required for interleukin-31 signaling publication-title: Eur Cytokine Netw – volume: 30 start-page: 777 year: 2012 end-page: 782 ident: CR26 article-title: Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells publication-title: Nat Biotechnol doi: 10.1038/nbt.2282 – volume: 10 start-page: 4 year: 2014 ident: CR45 article-title: B-type natriuretic peptide is neither itch-specific nor functions upstream of the GRP-GRPR signaling pathway publication-title: Mol Pain – ident: CR6 – volume: 22 start-page: 27 year: 2001 end-page: 31 ident: CR10 article-title: Involvement of Na channels in pain pathways publication-title: Trends Pharmacol Sci doi: 10.1016/S0165-6147(00)01585-6 – volume: 43 start-page: 331 year: 2014 end-page: 355 ident: CR44 article-title: Itch mechanisms and circuits publication-title: Annu Rev Biophys doi: 10.1146/annurev-biophys-051013-022826 – volume: 29 start-page: 8612 year: 2009 end-page: 8619 ident: CR48 article-title: Mrgprd enhances excitability in specific populations of cutaneous murine polymodal nociceptors publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1057-09.2009 – volume: 147 start-page: 1615 year: 2011 end-page: 1627 ident: CR2 article-title: The functional organization of cutaneous low-threshold mechanosensory neurons publication-title: Cell doi: 10.1016/j.cell.2011.11.027 – volume: 509 start-page: 371 year: 2014 end-page: 375 ident: CR32 article-title: Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq publication-title: Nature doi: 10.1038/nature13173 – volume: 99 start-page: 8360 year: 2002 end-page: 8365 ident: CR17 article-title: Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.122231899 – volume: 31 start-page: 748 year: 2013 end-page: 752 ident: CR27 article-title: Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments publication-title: Nat Biotechnol doi: 10.1038/nbt.2642 – volume: 29 start-page: 135 year: 2006 end-page: 161 ident: CR12 article-title: Trp ion channels and temperature sensation publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.29.051605.112958 – volume: 110 start-page: 52 year: 2003 end-page: 62 ident: CR16 article-title: Distribution and colocalization of NGF and GDNF family ligand receptor mRNAs in dorsal root and nodose ganglion neurons of adult rats publication-title: Brain Res Mol Brain Res doi: 10.1016/S0169-328X(02)00584-3 – volume: 28 start-page: 125 year: 2008 end-page: 132 ident: CR9 article-title: Mechanisms of compartmentalized expression of Mrg class G-protein-coupled sensory receptors publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4472-07.2008 – volume: 15 start-page: 1338 year: 2014 end-page: 1359 ident: CR23 article-title: Molecular signatures of mouse TRPV1-lineage neurons revealed by RNA-Seq transcriptome analysis publication-title: J Pain doi: 10.1016/j.jpain.2014.09.010 – volume: 18 start-page: 145 year: 2015 end-page: 153 ident: CR34 article-title: Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing publication-title: Nat Neurosci doi: 10.1038/nn.3881 – volume: 74 start-page: 609 year: 2012 end-page: 619 ident: CR15 article-title: How we feel: ion channel partnerships that detect mechanical inputs and give rise to touch and pain perception publication-title: Neuron doi: 10.1016/j.neuron.2012.04.023 – volume: 343 start-page: 776 year: 2014 end-page: 779 ident: CR28 article-title: Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types publication-title: Science doi: 10.1126/science.1247651 – volume: 8 start-page: e79523 year: 2013 ident: CR18 article-title: Comprehensive RNA-Seq expression analysis of sensory ganglia with a focus on ion channels and GPCRs in Trigeminal ganglia publication-title: PLoS One doi: 10.1371/journal.pone.0079523 – volume: 7 start-page: 87 year: 2014 ident: CR24 article-title: Defining the nociceptor transcriptome publication-title: Front Mol Neurosci doi: 10.3389/fnmol.2014.00087 – volume: 35 start-page: 375 year: 1990 end-page: 475 ident: CR38 article-title: Calbindin D-28k and parvalbumin in the rat nervous system publication-title: Neuroscience doi: 10.1016/0306-4522(90)90091-H – volume: 5 start-page: 378 year: 2013 end-page: 388 ident: CR49 article-title: TAFA4, a chemokine-like protein, modulates injury-induced mechanical and chemical pain hypersensitivity in mice publication-title: Cell Rep doi: 10.1016/j.celrep.2013.09.013 – volume: 510 start-page: 363 year: 2014 end-page: 369 ident: CR31 article-title: Single-cell RNA-seq reveals dynamic paracrine control of cellular variation publication-title: Nature doi: 10.1038/nature13437 – volume: 15 start-page: 1015 year: 2012 end-page: 1021 ident: CR42 article-title: The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons publication-title: Nat Neurosci doi: 10.1038/nn.3111 – volume: 247 start-page: 417 year: 1987 end-page: 431 ident: CR3 article-title: Primary sensory neurons of the rat showing calcitonin gene-related peptide immunoreactivity and their relation to substance P-, somatostatin-, galanin-, vasoactive intestinal polypeptide- and cholecystokinin-immunoreactive ganglion cells publication-title: Cell Tissue Res doi: 10.1007/BF00218323 – volume: 8 start-page: e79523 year: 2013 ident: BFcr2015149_CR18 publication-title: PLoS One doi: 10.1371/journal.pone.0079523 – volume: 30 start-page: 777 year: 2012 ident: BFcr2015149_CR26 publication-title: Nat Biotechnol doi: 10.1038/nbt.2282 – ident: BFcr2015149_CR5 doi: 10.1016/B0-443-07287-6/50006-0 – volume: 106 start-page: 619 year: 2001 ident: BFcr2015149_CR8 publication-title: Cell doi: 10.1016/S0092-8674(01)00483-4 – volume: 133 start-page: 448 year: 2014 ident: BFcr2015149_CR36 publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2013.10.048 – volume: 112 start-page: 819 year: 2003 ident: BFcr2015149_CR39 publication-title: Cell doi: 10.1016/S0092-8674(03)00158-2 – volume: 7 start-page: e29852 year: 2012 ident: BFcr2015149_CR22 publication-title: PLoS One doi: 10.1371/journal.pone.0029852 – volume: 88 start-page: 10 year: 2013 ident: BFcr2015149_CR13 publication-title: Anat Sci Int doi: 10.1007/s12565-012-0163-9 – volume: 18 start-page: 145 year: 2015 ident: BFcr2015149_CR34 publication-title: Nat Neurosci doi: 10.1038/nn.3881 – volume: 74 start-page: 609 year: 2012 ident: BFcr2015149_CR15 publication-title: Neuron doi: 10.1016/j.neuron.2012.04.023 – volume: 29 start-page: 8612 year: 2009 ident: BFcr2015149_CR48 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1057-09.2009 – volume: 343 start-page: 776 year: 2014 ident: BFcr2015149_CR28 publication-title: Science doi: 10.1126/science.1247651 – volume: 493 start-page: 669 year: 2013 ident: BFcr2015149_CR47 publication-title: Nature doi: 10.1038/nature11810 – volume: 7 start-page: 87 year: 2014 ident: BFcr2015149_CR24 publication-title: Front Mol Neurosci doi: 10.3389/fnmol.2014.00087 – volume: 10 start-page: 946 year: 2007 ident: BFcr2015149_CR46 publication-title: Nat Neurosci doi: 10.1038/nn1937 – volume: 509 start-page: 371 year: 2014 ident: BFcr2015149_CR32 publication-title: Nature doi: 10.1038/nature13173 – volume: 94 start-page: 729 year: 1997 ident: BFcr2015149_CR7 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.2.729 – volume: 110 start-page: 52 year: 2003 ident: BFcr2015149_CR16 publication-title: Brain Res Mol Brain Res doi: 10.1016/S0169-328X(02)00584-3 – volume: 15 start-page: 1338 year: 2014 ident: BFcr2015149_CR23 publication-title: J Pain doi: 10.1016/j.jpain.2014.09.010 – volume: 247 start-page: 417 year: 1987 ident: BFcr2015149_CR3 publication-title: Cell Tissue Res doi: 10.1007/BF00218323 – volume: 35 start-page: 375 year: 1990 ident: BFcr2015149_CR38 publication-title: Neuroscience doi: 10.1016/0306-4522(90)90091-H – volume: 389 start-page: 816 year: 1997 ident: BFcr2015149_CR11 publication-title: Nature doi: 10.1038/39807 – volume: 15 start-page: 1015 year: 2012 ident: BFcr2015149_CR42 publication-title: Nat Neurosci doi: 10.1038/nn.3111 – volume: 15 start-page: 291 year: 2004 ident: BFcr2015149_CR37 publication-title: Eur Cytokine Netw – volume: 10 start-page: 117 year: 1987 ident: BFcr2015149_CR1 publication-title: Trends Neurosci doi: 10.1016/0166-2236(87)90056-7 – volume: 9 start-page: 559 year: 2008 ident: BFcr2015149_CR35 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-559 – volume: 22 start-page: 27 year: 2001 ident: BFcr2015149_CR10 publication-title: Trends Pharmacol Sci doi: 10.1016/S0165-6147(00)01585-6 – volume: 516 start-page: 121 year: 2014 ident: BFcr2015149_CR50 publication-title: Nature doi: 10.1038/nature13980 – volume: 69 start-page: 974 year: 2011 ident: BFcr2015149_CR20 publication-title: Neuron doi: 10.1016/j.neuron.2011.01.022 – volume: 43 start-page: 331 year: 2014 ident: BFcr2015149_CR44 publication-title: Annu Rev Biophys doi: 10.1146/annurev-biophys-051013-022826 – volume: 32 start-page: 1053 year: 2014 ident: BFcr2015149_CR30 publication-title: Nat Biotechnol doi: 10.1038/nbt.2967 – ident: BFcr2015149_CR25 doi: 10.7554/eLife.04660.034 – volume: 5 start-page: 378 year: 2013 ident: BFcr2015149_CR49 publication-title: Cell Rep doi: 10.1016/j.celrep.2013.09.013 – volume: 11 start-page: 41 year: 2014 ident: BFcr2015149_CR33 publication-title: Nat Methods doi: 10.1038/nmeth.2694 – volume: 510 start-page: 363 year: 2014 ident: BFcr2015149_CR31 publication-title: Nature doi: 10.1038/nature13437 – ident: BFcr2015149_CR6 doi: 10.1007/978-1-4615-0037-7_2 – volume: 25 start-page: 318 year: 2015 ident: BFcr2015149_CR21 publication-title: Cell Res doi: 10.1038/cr.2015.12 – volume: 147 start-page: 1615 year: 2011 ident: BFcr2015149_CR2 publication-title: Cell doi: 10.1016/j.cell.2011.11.027 – volume: 340 start-page: 968 year: 2013 ident: BFcr2015149_CR43 publication-title: Science doi: 10.1126/science.1233765 – volume: 62 start-page: 539 year: 1994 ident: BFcr2015149_CR4 publication-title: Neuroscience doi: 10.1016/0306-4522(94)90387-5 – volume: 28 start-page: 125 year: 2008 ident: BFcr2015149_CR9 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4472-07.2008 – volume: 46 start-page: 131 year: 2004 ident: BFcr2015149_CR51 publication-title: Brain Res Brain Res Rev doi: 10.1016/j.brainresrev.2004.07.015 – volume: 2 start-page: 26 year: 2011 ident: BFcr2015149_CR14 publication-title: ACS Chem Neurosci doi: 10.1021/cn100094b – volume: 12 start-page: 793 year: 2000 ident: BFcr2015149_CR41 publication-title: Eur J Neurosci doi: 10.1046/j.1460-9568.2000.00967.x – volume: 30 start-page: 10927 year: 2010 ident: BFcr2015149_CR19 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0657-10.2010 – volume: 29 start-page: 135 year: 2006 ident: BFcr2015149_CR12 publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.29.051605.112958 – volume: 10 start-page: 4 year: 2014 ident: BFcr2015149_CR45 publication-title: Mol Pain – volume: 99 start-page: 8360 year: 2002 ident: BFcr2015149_CR17 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.122231899 – volume: 344 start-page: 1396 year: 2014 ident: BFcr2015149_CR29 publication-title: Science doi: 10.1126/science.1254257 – volume: 115 start-page: 2393 year: 2005 ident: BFcr2015149_CR40 publication-title: J Clin Invest doi: 10.1172/JCI25437 – volume: 31 start-page: 748 year: 2013 ident: BFcr2015149_CR27 publication-title: Nat Biotechnol doi: 10.1038/nbt.2642 – reference: 22778854 - ACS Chem Neurosci. 2011 Jan 19;2(1):26-37 – reference: 12573533 - Brain Res Mol Brain Res. 2003 Jan 31;110(1):52-62 – reference: 17618277 - Nat Neurosci. 2007 Aug;10(8):946-8 – reference: 23179910 - Anat Sci Int. 2013 Jan;88(1):10-6 – reference: 24925914 - Science. 2014 Jun 20;344(6190):1396-401 – reference: 25471886 - Nature. 2014 Dec 4;516(7529):121-5 – reference: 23364746 - Nature. 2013 Jan 31;493(7434):669-73 – reference: 27481604 - Cell Res. 2016 Aug;26(8):967 – reference: 25525749 - Elife. 2014;3. doi: 10.7554/eLife.04660 – reference: 25420068 - Nat Neurosci. 2015 Jan;18(1):145-53 – reference: 22253804 - PLoS One. 2012;7(1):e29852 – reference: 22632719 - Neuron. 2012 May 24;74(4):609-19 – reference: 11165669 - Trends Pharmacol Sci. 2001 Jan;22(1):27-31 – reference: 21382556 - Neuron. 2011 Mar 10;69(5):974-87 – reference: 16776582 - Annu Rev Neurosci. 2006;29:135-61 – reference: 23873083 - Nat Biotechnol. 2013 Aug;31(8):748-52 – reference: 24739965 - Nature. 2014 May 15;509(7500):371-5 – reference: 10762308 - Eur J Neurosci. 2000 Mar;12(3):793-802 – reference: 25633594 - Cell Res. 2015 Mar;25(3):318-34 – reference: 7530347 - Neuroscience. 1994 Sep;62(2):539-51 – reference: 2434236 - Cell Tissue Res. 1987 Feb;247(2):417-31 – reference: 25426020 - Front Mol Neurosci. 2014 Nov 11;7:87 – reference: 22196735 - Cell. 2011 Dec 23;147(7):1615-27 – reference: 19114008 - BMC Bioinformatics. 2008;9:559 – reference: 24531970 - Science. 2014 Feb 14;343(6172):776-9 – reference: 24373353 - J Allergy Clin Immunol. 2014 Feb;133(2):448-60 – reference: 25281809 - J Pain. 2014 Dec;15(12):1338-59 – reference: 19571152 - J Neurosci. 2009 Jul 1;29(26):8612-9 – reference: 25086649 - Nat Biotechnol. 2014 Oct;32(10):1053-8 – reference: 12654248 - Cell. 2003 Mar 21;112(6):819-29 – reference: 18171930 - J Neurosci. 2008 Jan 2;28(1):125-32 – reference: 23704570 - Science. 2013 May 24;340(6135):968-71 – reference: 15464202 - Brain Res Brain Res Rev. 2004 Oct;46(2):131-45 – reference: 9349813 - Nature. 1997 Oct 23;389(6653):816-24 – reference: 20702721 - J Neurosci. 2010 Aug 11;30(32):10927-38 – reference: 12060780 - Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8360-5 – reference: 16110328 - J Clin Invest. 2005 Sep;115(9):2393-401 – reference: 24260241 - PLoS One. 2013;8(11):e79523 – reference: 24139797 - Cell Rep. 2013 Oct 31;5(2):378-88 – reference: 11551509 - Cell. 2001 Sep 7;106(5):619-32 – reference: 15627637 - Eur Cytokine Netw. 2004 Oct-Dec;15(4):291-302 – reference: 22820318 - Nat Biotechnol. 2012 Aug;30(8):777-82 – reference: 24819620 - Annu Rev Biophys. 2014;43:331-55 – reference: 24438367 - Mol Pain. 2014;10:4 – reference: 9012853 - Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):729-34 – reference: 24919153 - Nature. 2014 Jun 19;510(7505):363-9 – reference: 22634729 - Nat Neurosci. 2012 Jul;15(7):1015-21 – reference: 24141493 - Nat Methods. 2014 Jan;11(1):41-6 – reference: 2199841 - Neuroscience. 1990;35(2):375-475 |
SSID | ssj0025451 |
Score | 2.5992327 |
Snippet | Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking... |
SourceID | pubmedcentral proquest pubmed crossref springer chongqing |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 83 |
SubjectTerms | 631/1647/514/1949 631/337/572 631/378/2620 Animals Base Sequence Biomedical and Life Sciences Cell Biology Cells, Cultured Ganglia, Spinal - cytology Ganglia, Spinal - metabolism Gene Regulatory Networks Genetic markers Heterogeneity Life Sciences Male Mechanoreceptors - cytology Mechanoreceptors - metabolism Mice Mice, Inbred C57BL Multigene Family Nociceptors - cytology Nociceptors - metabolism Original original-article Patch-Clamp Techniques RNA Sensory Receptor Cells - cytology Sensory Receptor Cells - metabolism Sequence Analysis, RNA Transcriptome 单细胞 异质性 测序 神经类型 背根神经节神经元 覆盖率 躯体感觉 |
Title | Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity |
URI | http://lib.cqvip.com/qk/85240X/201601/668483892.html https://link.springer.com/article/10.1038/cr.2015.149 https://www.ncbi.nlm.nih.gov/pubmed/26691752 https://www.proquest.com/docview/1753226299 https://www.proquest.com/docview/1754093508 https://www.proquest.com/docview/1773826732 https://pubmed.ncbi.nlm.nih.gov/PMC4816136 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELYoqFIvVaEPttDIleilkkXWb04VrUCIQ1TRIuW2Wj-2QUK7kIRD_n1nvA-aBnFdT1Zeezz-5pFvCDkaK5eHYMas0i4yaUvN4J4vmeTS-OBKTJ1htcVEX1zLy6madgG3RVdW2dvEZKhD4zFGfoyMkgAVwHp-u7tn2DUKs6tdC40XZCdRl4E-m-mjwwXoIDlcqWxIYyXPXvs3c3vskQs0V2AoTpBVYdbUf-7hrli_nTYg52bl5H_p03Qrnb8hrzs4SU_b_d8lW7HeIy_bBpOrt6T-1QAibRbgqzbzFU3klTXFsOuC3oS2UCgG6lYUaYuZx3pOMDAUAwi3kWFUn15NTllXcA1PaVkHipdhG0OkMyynaUALI8D5d-T6_Oz3jwvWdVhgHvyMJePWWy-EgkNY2bzKebDgX3CTx1wF440bh-C0Eiqk_ul5UBx-qErnRQBXyIr3ZLtu6rhPaMUrWUojg1JR5iXYLltx5yrHddTCVBk5GFa5uGuZNAqtrbQAmXhGvvbrXviOnBx7ZNwWKUkubOHnBW4YuConGTkahPs3PSl22G9g0R3MRfGoRhn5PAzDkcIVLevYPCQZifnhsX1OxgjwzIyAqX9odWKYC2AecIIVjJg1bRkEkNJ7faS-mSVqb2kBgQudkS-9Xv0z9c1P_Pj8Jx6QVyDZRYwOyfZy_hA_AYZaulE6KCOy8_1s8vNqlIJcfwFfAB55 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEJTX0gJGai9IVjeO7bgHhAq02tKyQqWVegvxI2ylKml3t0L7p_iNzOQFy6Leeo0nkWOPZ755eAZgc6Bs5H0y4Lm2gUuTaY56PuNSyMR5m1HojLItRnp4Kj-fqbMV-NXehaG0ylYmVoLal4585NtUURKhAkrP95dXnLpGUXS1baFRs8VhmP9Ek2367uAT7u-WEPt7Jx-HvOkqwB1i6xkXxhkXxwoZLzdRHglvEFOLJAqR8olL7MB7q1WsfNUzPPJK4Isqsy72CP9NjN-9A6uSbrT2YPXD3ujrcWfiIR6pTLwqUUlT7tBafbHdbDuqPhopFE07VMdhXBY_rlA7LerDJZC7nKv5T8C20oP7D-FBA2DZbs1xj2AlFGtwt25pOX8MxbcSMXA5Reu4nMxZVS6zYOTonbJzX6cmBc_snFGhZO4ogxRFGiOXxUXgFEdgx6Nd3qR441OWFZ6R-q29lmxMCTwl8n1AA-IJnN7K6j-FXlEW4TmwXOQyk4n0SgUZZSgtTS6sza3QQcdJ3of1bpXTy7p2R6q1kQZBmujD23bdU9eUQ6euHBdpFZaPTeomKW0YGkc7fdjsiNsv_Zdso93AtBEF0_QP4_bhTTeMh5hWNCtCeV3RSIpID8xNNEmMtmAS49Sf1TzRzQVRFprdCkeSBW7pCKiI-OJIcT6uiolLg5g_1n3Yavnqr6kv_-KLm3_xNdwbnnw5So8ORofrcB_favxVG9CbTa7DS0RwM_uqOTYMvt_2Sf0N7g5YKg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxNBFJ4gRuMLUVRcQR0TeDGZtDt3HowhYgNiGqOS9G3duawlIbvQlpD-NX-d5-ylWGt443VndjM7cy7fucw5hOz2lUtDMH1WaBeZtLlmoOdzJrk0PrgcQ2eYbTHUR6fy80iN1sjv7i4MplV2MrEW1KHy6CPvYUVJgAogPXtFmxbx9XDw4eKSYQcpjLR27TQaEjmJ82sw36bvjw_hrPc4H3z68fGItR0GmAecPWPceuuFUECEhU2LlAcL-JqbNKYqGG9cPwSnlVCh7h-eBsXhRZU7LwKYAlbAd--R-0YAqgJeMqMbYw-QSW3s1SlLGrOINpsr7rbnsQ5pqkBI7WNFh3FV_roEPbWsGVfg7mrW5j-h21ojDh6TjRbK0oOG9p6QtVhukgdNc8v5U1J-rwANV1Owk6vJnNaFM0uKLt8pPQtNklIM1M0plkxmHnNJQbhRdF6cR4YRBfpteMDaZG94SvMyUFTEjf-SjjGVpwIOiGBKPCOnd7L3z8l6WZXxBaEFL2QujQxKRZnmIDdtwZ0rHNdRC1MkZHuxy9lFU8Uj09pKC3CNJ-Rdt--ZbwujY3-O86wO0Aub-UmGBwZm0n5CdheTuy_9d9pOd4BZKxSm2Q0JJ-TtYhjYGXc0L2N1Vc-RGJvu29vmGAFWoRGw9K2GJhZrAbwFBriCEbNELYsJWE58eaQ8G9dlxaUF9C90QvY6uvpr6au_-PL2X3xDHgJ_Zl-Ohyfb5BG81Dqudsj6bHIVXwGUm7nXNc9Q8vOumfQPAc9a8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Somatosensory+neuron+types+identified+by+high-coverage+single-cell+RNA-sequencing+and+functional+heterogeneity&rft.jtitle=%E7%BB%86%E8%83%9E%E7%A0%94%E7%A9%B6%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Chang-Lin+Li+Kai-Cheng+Li+Dan+Wu+Yan+Chen+Hao+Luo+Jing-Rong+Zhao+Sa-Shuang+Wang+Ming-Ming+Sun+Ying-Jin+Lu+Yan-Qing+Zhong+Xu-Ye+Hu+Rui+Hou+Bei-Bei+Zhou+Lan+Bao+Hua-Sheng+Xiao+Xu+Zhang&rft.date=2016-01-01&rft.issn=1001-0602&rft.eissn=1748-7838&rft.issue=1&rft.spage=83&rft.epage=102&rft_id=info:doi/10.1038%2Fcr.2015.149&rft.externalDocID=668483892 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85240X%2F85240X.jpg |