The Complete Genome Sequence of a Chronic Atrophic Gastritis Helicobacter pylori Strain: Evolution during Disease Progression

Helicobacter pylori produces acute superficial gastritis in nearly all of its human hosts. However, a subset of individuals develops chronic atrophic gastritis (ChAG), a condition characterized in part by diminished numbers of acid-producing parietal cells and increased risk for development of gastr...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 103; no. 26; pp. 9999 - 10004
Main Authors Oh, Jung D., Kling-Bäckhed, Helene, Giannakis, Marios, Xu, Jian, Fulton, Robert S., Fulton, Lucinda A., Cordum, Holland S., Wang, Chunyan, Elliott, Glendoria, Edwards, Jennifer, Mardis, Elaine R., Engstrand, Lars G., Gordon, Jeffrey I.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 27.06.2006
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Helicobacter pylori produces acute superficial gastritis in nearly all of its human hosts. However, a subset of individuals develops chronic atrophic gastritis (ChAG), a condition characterized in part by diminished numbers of acid-producing parietal cells and increased risk for development of gastric adenocarcinoma. Previously, we used a gnotobiotic transgenic mouse model with an engineered ablation of parietal cells to show that loss of parietal cells provides an opportunity for a H. pylori isolate from a patient with ChAG (HPAG1) to bind to, enter, and persist within gastric stem cells. This finding raises the question of how ChAG influences H. pylori genome evolution, physiology, and tumorigenesis. Here we describe the 1,596,366-bp HPAG1 genome. Custom HPAG1 Affymetrix GeneChips, representing 99.6% of its predicted ORFs, were used for whole-genome genotyping of additional H. pylori ChAG isolates obtained from Swedish patients enrolled in a casecontrol study of gastric cancer, as well as ChAG- and cancerassociated isolates from an individual who progressed from ChAG to gastric adenocarcinoma. The results reveal a shared gene signature among ChAG strains, as well as genes that may have been lost or gained during progression to adenocarcinoma. Wholegenome transcriptional profiling of HPAG1's response to acid during in vitro growth indicates that genes encoding components of metal uptake and utilization pathways, outer membrane proteins, and virulence factors are among those associated with H. pylori's adaptation to ChAG.
AbstractList Helicobacterpylori produces acute superficial gastritis in nearly all of its human hosts. However, a subset of individuals develops chronic atrophic gastritis (ChAG), a condition characterized in part by diminished numbers of acid-producing parietal cells and in- creased risk for development of gastric adenocarcinoma. Previously, we used a gnotobiotic transgenic mouse model with an engineered ablation of parietal cells to show that loss of parietal cells provides an opportunity for a H. pylori isolate from a patient with ChAG (HPAG1) to bind to, enter, and persist within gastric stem cells. This finding raises the question of how ChAG influences H. pylori genome evolution, physiology, and tumorigenesis. Here we describe the 1,596,366-bp HPAG1 genome. Custom HPAG1 Affymetrix GeneChips, representing 99.6% of its predicted ORFs, were used for whole-genome genotyping of additional H. pylon ChAG isolates obtained from Swedish patients enrolled in a case-control study of gastric cancer, as well as ChAG- and cancer-associated isolates from an individual who progressed from ChAG to gastric adenocarcinoma. The results reveal a shared gene signature among ChAG strains, as well as genes that may have been lost or gained during progression to adenocarcinoma. Whole-genome transcriptional profiling of HPAG1's response to acid during in vitro growth indicates that genes encoding components of metal uptake and utilization pathways, outer membrane proteins, and virulence factors are among those associated with H. pylori's adaptation to ChAG. [PUBLICATION ABSTRACT]
Helicobacter pylori produces acute superficial gastritis in nearly all of its human hosts. However, a subset of individuals develops chronic atrophic gastritis (ChAG), a condition characterized in part by diminished numbers of acid-producing parietal cells and increased risk for development of gastric adenocarcinoma. Previously, we used a gnotobiotic transgenic mouse model with an engineered ablation of parietal cells to show that loss of parietal cells provides an opportunity for a H. pylori isolate from a patient with ChAG (HPAG1) to bind to, enter, and persist within gastric stem cells. This finding raises the question of how ChAG influences H. pylori genome evolution, physiology, and tumorigenesis. Here we describe the 1,596,366-bp HPAG1 genome. Custom HPAG1 Affymetrix GeneChips, representing 99.6% of its predicted ORFs, were used for whole-genome genotyping of additional H. pylori ChAG isolates obtained from Swedish patients enrolled in a case-control study of gastric cancer, as well as ChAG- and cancer-associated isolates from an individual who progressed from ChAG to gastric adenocarcinoma. The results reveal a shared gene signature among ChAG strains, as well as genes that may have been lost or gained during progression to adenocarcinoma. Whole-genome transcriptional profiling of HPAG1’s response to acid during in vitro growth indicates that genes encoding components of metal uptake and utilization pathways, outer membrane proteins, and virulence factors are among those associated with H. pylori ’s adaptation to ChAG.
Helicobacter pylori produces acute superficial gastritis in nearly all of its human hosts. However, a subset of individuals develops chronic atrophic gastritis (ChAG), a condition characterized in part by diminished numbers of acid-producing parietal cells and increased risk for development of gastric adenocarcinoma. Previously, we used a gnotobiotic transgenic mouse model with an engineered ablation of parietal cells to show that loss of parietal cells provides an opportunity for a H. pylori isolate from a patient with ChAG (HPAG1) to bind to, enter, and persist within gastric stem cells. This finding raises the question of how ChAG influences H. pylori genome evolution, physiology, and tumorigenesis. Here we describe the 1,596,366-bp HPAG1 genome. Custom HPAG1 Affymetrix GeneChips, representing 99.6% of its predicted ORFs, were used for whole-genome genotyping of additional H. pylori ChAG isolates obtained from Swedish patients enrolled in a case-control study of gastric cancer, as well as ChAG- and cancer-associated isolates from an individual who progressed from ChAG to gastric adenocarcinoma. The results reveal a shared gene signature among ChAG strains, as well as genes that may have been lost or gained during progression to adenocarcinoma. Whole-genome transcriptional profiling of HPAG1’s response to acid during in vitro growth indicates that genes encoding components of metal uptake and utilization pathways, outer membrane proteins, and virulence factors are among those associated with H. pylori ’s adaptation to ChAG. acid regulation comparative microbial genomics ecogenomics functional genomics gastric cancer
Helicobacter pylori produces acute superficial gastritis in nearly all of its human hosts. However, a subset of individuals develops chronic atrophic gastritis (ChAG), a condition characterized in part by diminished numbers of acid-producing parietal cells and increased risk for development of gastric adenocarcinoma. Previously, we used a gnotobiotic transgenic mouse model with an engineered ablation of parietal cells to show that loss of parietal cells provides an opportunity for a H. pylori isolate from a patient with ChAG (HPAG1) to bind to, enter, and persist within gastric stem cells. This finding raises the question of how ChAG influences H. pylori genome evolution, physiology, and tumorigenesis. Here we describe the 1,596,366-bp HPAG1 genome. Custom HPAG1 Affymetrix GeneChips, representing 99.6% of its predicted ORFs, were used for whole-genome genotyping of additional H. pylori ChAG isolates obtained from Swedish patients enrolled in a case-control study of gastric cancer, as well as ChAG- and cancer-associated isolates from an individual who progressed from ChAG to gastric adenocarcinoma. The results reveal a shared gene signature among ChAG strains, as well as genes that may have been lost or gained during progression to adenocarcinoma. Whole-genome transcriptional profiling of HPAG1's response to acid during in vitro growth indicates that genes encoding components of metal uptake and utilization pathways, outer membrane proteins, and virulence factors are among those associated with H. pylori's adaptation to ChAG.
Helicobacter pylori produces acute superficial gastritis in nearly all of its human hosts. However, a subset of individuals develops chronic atrophic gastritis (ChAG), a condition characterized in part by diminished numbers of acid-producing parietal cells and increased risk for development of gastric adenocarcinoma. Previously, we used a gnotobiotic transgenic mouse model with an engineered ablation of parietal cells to show that loss of parietal cells provides an opportunity for a H. pylori isolate from a patient with ChAG (HPAG1) to bind to, enter, and persist within gastric stem cells. This finding raises the question of how ChAG influences H. pylori genome evolution, physiology, and tumorigenesis. Here we describe the 1,596,366-bp HPAG1 genome. Custom HPAG1 Affymetrix GeneChips, representing 99.6% of its predicted ORFs, were used for whole-genome genotyping of additional H. pylori ChAG isolates obtained from Swedish patients enrolled in a casecontrol study of gastric cancer, as well as ChAG- and cancerassociated isolates from an individual who progressed from ChAG to gastric adenocarcinoma. The results reveal a shared gene signature among ChAG strains, as well as genes that may have been lost or gained during progression to adenocarcinoma. Wholegenome transcriptional profiling of HPAG1's response to acid during in vitro growth indicates that genes encoding components of metal uptake and utilization pathways, outer membrane proteins, and virulence factors are among those associated with H. pylori's adaptation to ChAG.
Author Mardis, Elaine R.
Edwards, Jennifer
Xu, Jian
Engstrand, Lars G.
Giannakis, Marios
Cordum, Holland S.
Fulton, Lucinda A.
Elliott, Glendoria
Kling-Bäckhed, Helene
Oh, Jung D.
Fulton, Robert S.
Gordon, Jeffrey I.
Wang, Chunyan
Author_xml – sequence: 1
  givenname: Jung D.
  surname: Oh
  fullname: Oh, Jung D.
– sequence: 2
  givenname: Helene
  surname: Kling-Bäckhed
  fullname: Kling-Bäckhed, Helene
– sequence: 3
  givenname: Marios
  surname: Giannakis
  fullname: Giannakis, Marios
– sequence: 4
  givenname: Jian
  surname: Xu
  fullname: Xu, Jian
– sequence: 5
  givenname: Robert S.
  surname: Fulton
  fullname: Fulton, Robert S.
– sequence: 6
  givenname: Lucinda A.
  surname: Fulton
  fullname: Fulton, Lucinda A.
– sequence: 7
  givenname: Holland S.
  surname: Cordum
  fullname: Cordum, Holland S.
– sequence: 8
  givenname: Chunyan
  surname: Wang
  fullname: Wang, Chunyan
– sequence: 9
  givenname: Glendoria
  surname: Elliott
  fullname: Elliott, Glendoria
– sequence: 10
  givenname: Jennifer
  surname: Edwards
  fullname: Edwards, Jennifer
– sequence: 11
  givenname: Elaine R.
  surname: Mardis
  fullname: Mardis, Elaine R.
– sequence: 12
  givenname: Lars G.
  surname: Engstrand
  fullname: Engstrand, Lars G.
– sequence: 13
  givenname: Jeffrey I.
  surname: Gordon
  fullname: Gordon, Jeffrey I.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16788065$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:1930256$$DView record from Swedish Publication Index
BookMark eNqFkk1vEzEQhleoiH7AmRNgcUBc0o4_dr3mgFSFkiJVAqnlbHmd2cRhYy_2bqEH_juOEjWUA1iyPfI888ozeo-LAx88FsVzCqcUJD_rvUmnUAGXtaDAHxVHFBSdVELBQXEEwOSkFkwcFscprQBAlTU8KQ5pJesaqvKo-HWzRDIN677DAckMfVgjucbvI3qLJLTEkOkyBu8sOR9i6Jc5mJk0RDe4RC6xczY0xg4YSX_XhejI9RCN8-_IxW3oxsEFT-ZjdH5BPriEJiH5EsMiYko59bR43Jou4bPdfVJ8_XhxM72cXH2efZqeX01sKathQk1DS9lAM5eNqGhlGmVNI_JJm1Zw2zI0NucVU_NSccGpEoi1ApTcykrwk0JuddMP7MdG99GtTbzTwbgch7nevX9zm60Taqo4sLLKle-3lTm9xrlFn9vrHgo8yHi31Itwq6moQQDPAm92AjHkqaZBr12y2HXGYxiTruqyVoL9H2TAhGSUZfD1X-AqjNHn-WWGCspkuen4bAvZGFKK2N5_mYLeWEdvrKP31skVL__sdM_vvJKBtztgU7mX45pVWuWl27HrBvw5ZPTVv9FMvNgSqzSEeI9wgDJjwH8DbEDmmg
CitedBy_id crossref_primary_10_1042_BST0361091
crossref_primary_10_1002_eji_202350662
crossref_primary_10_1002_elps_200800456
crossref_primary_10_1093_jb_mvp105
crossref_primary_10_1007_s10620_012_2466_z
crossref_primary_10_1053_j_gastro_2011_05_009
crossref_primary_10_1093_dnares_dsn006
crossref_primary_10_1128_JB_01399_12
crossref_primary_10_1111_j_1574_695X_2007_00244_x
crossref_primary_10_1371_journal_ppat_1001078
crossref_primary_10_1016_j_resmic_2007_09_006
crossref_primary_10_1099_mic_0_062976_0
crossref_primary_10_1371_journal_pone_0068917
crossref_primary_10_3748_wjg_14_4265
crossref_primary_10_1073_pnas_0800668105
crossref_primary_10_1080_07391102_2017_1302361
crossref_primary_10_1111_j_1742_4658_2010_07593_x
crossref_primary_10_1111_hel_12037
crossref_primary_10_1111_j_1749_6632_2011_06193_x
crossref_primary_10_1128_JCM_01456_06
crossref_primary_10_1002_ange_201007153
crossref_primary_10_4167_jbv_2010_40_2_67
crossref_primary_10_1016_j_cyto_2014_03_006
crossref_primary_10_4167_jbv_2011_41_4_267
crossref_primary_10_1128_JB_01199_06
crossref_primary_10_1186_1471_2180_7_54
crossref_primary_10_1093_nar_gkq378
crossref_primary_10_1007_s10620_013_2767_x
crossref_primary_10_1093_glycob_cwq066
crossref_primary_10_1096_fj_07_8501com
crossref_primary_10_1111_j_1365_2958_2007_05853_x
crossref_primary_10_1016_j_patbio_2015_09_004
crossref_primary_10_1099_jmm_0_2008_000570_0
crossref_primary_10_1128_JB_01416_08
crossref_primary_10_1038_nrc2857
crossref_primary_10_1007_s00894_011_1204_3
crossref_primary_10_2217_14622416_8_10_1437
crossref_primary_10_1016_j_jep_2021_114828
crossref_primary_10_1186_1757_4749_6_20
crossref_primary_10_3390_pathogens8020065
crossref_primary_10_1038_nbt1485
crossref_primary_10_1111_j_1365_2958_2010_07307_x
crossref_primary_10_1016_j_meegid_2011_12_002
crossref_primary_10_1111_hel_12069
crossref_primary_10_1186_1471_2180_9_193
crossref_primary_10_1155_2015_139580
crossref_primary_10_1111_j_1462_5822_2007_00921_x
crossref_primary_10_1186_1471_2180_8_14
crossref_primary_10_1073_pnas_0700687104
crossref_primary_10_1128_AEM_01084_07
crossref_primary_10_1128_mBio_00239_11
crossref_primary_10_2217_fmb_15_72
crossref_primary_10_1101_gr_071266_107
crossref_primary_10_1128_IAI_01284_08
crossref_primary_10_1111_j_1523_5378_2010_00745_x
crossref_primary_10_1152_physrev_00039_2009
crossref_primary_10_1111_j_1365_2958_2010_07456_x
crossref_primary_10_1111_mmi_13276
crossref_primary_10_1128_JCM_00401_10
crossref_primary_10_1371_journal_pone_0001358
crossref_primary_10_1016_j_ijmm_2007_02_006
crossref_primary_10_1053_j_gastro_2014_01_001
crossref_primary_10_1111_j_1523_5378_2007_00539_x
crossref_primary_10_1007_s15010_023_02159_9
crossref_primary_10_1002_elps_200800006
crossref_primary_10_1186_1471_2164_11_368
crossref_primary_10_1111_j_1462_2920_2006_01089_x
crossref_primary_10_1016_j_carres_2007_12_012
crossref_primary_10_1128_IAI_00627_08
crossref_primary_10_1093_jb_mvp098
crossref_primary_10_1074_jbc_M109_052738
crossref_primary_10_1128_JB_01026_13
crossref_primary_10_1016_j_febslet_2010_11_018
crossref_primary_10_1016_j_febslet_2009_04_027
crossref_primary_10_1093_gbe_evr022
crossref_primary_10_1371_journal_pcbi_0030151
crossref_primary_10_1371_journal_pone_0017300
crossref_primary_10_3390_gastroent12020011
crossref_primary_10_1517_17460441_2_8_1041
crossref_primary_10_1007_s00430_020_00666_2
crossref_primary_10_1128_JB_00063_10
crossref_primary_10_1007_s12038_009_0069_4
crossref_primary_10_1038_nrmicro1658
crossref_primary_10_1128_JB_00706_09
crossref_primary_10_1128_JB_01728_07
crossref_primary_10_5483_BMBRep_2009_42_6_387
crossref_primary_10_1073_pnas_1012579108
crossref_primary_10_1002_anie_201007153
crossref_primary_10_1128_MMBR_00044_12
crossref_primary_10_1186_1471_2180_7_26
crossref_primary_10_1016_j_jbiotec_2008_03_021
crossref_primary_10_1155_2012_371503
crossref_primary_10_1038_labinvest_3700719
crossref_primary_10_1038_s41598_018_33874_1
crossref_primary_10_3390_toxins9030101
crossref_primary_10_1086_592166
crossref_primary_10_1093_nar_gkm760
crossref_primary_10_1016_j_micpath_2012_08_002
crossref_primary_10_1016_j_jmb_2019_10_001
crossref_primary_10_1038_nmeth_1224
crossref_primary_10_1586_eri_09_61
crossref_primary_10_1186_1471_2180_9_248
crossref_primary_10_3724_SP_J_1005_2012_00863
crossref_primary_10_1038_nrmicro1528
crossref_primary_10_1111_j_1469_0691_2009_02962_x
crossref_primary_10_1128_AAC_00510_09
crossref_primary_10_1128_IAI_06191_11
crossref_primary_10_3390_ijms24098104
crossref_primary_10_1186_s12903_018_0526_2
crossref_primary_10_1016_j_canlet_2010_07_014
crossref_primary_10_1128_JB_00108_07
crossref_primary_10_2217_fmb_13_28
crossref_primary_10_1128_JB_01696_06
crossref_primary_10_1111_j_1365_2958_2007_06033_x
crossref_primary_10_1371_journal_ppat_1007921
crossref_primary_10_6564_JKMRS_2009_13_2_108
crossref_primary_10_1371_journal_pone_0120659
crossref_primary_10_1196_annals_1419_014
crossref_primary_10_3390_ijms13067109
crossref_primary_10_1007_s10120_018_0867_1
crossref_primary_10_1093_nar_gkq332
crossref_primary_10_1186_1471_2180_11_104
crossref_primary_10_1016_j_jep_2018_12_025
crossref_primary_10_1016_j_tig_2007_03_017
crossref_primary_10_1128_mBio_01016_13
crossref_primary_10_1002_prca_200800158
crossref_primary_10_1039_C6MB00306K
crossref_primary_10_1128_AEM_00199_07
crossref_primary_10_1371_journal_pone_0055120
crossref_primary_10_1021_ac2010857
crossref_primary_10_1007_s11033_008_9390_5
crossref_primary_10_1371_journal_pone_0005369
crossref_primary_10_1186_1471_2164_10_3
crossref_primary_10_1371_journal_pone_0036507
crossref_primary_10_1371_journal_pgen_1000146
crossref_primary_10_1186_1471_2164_11_335
crossref_primary_10_1111_hel_12547
crossref_primary_10_2144_000113136
crossref_primary_10_1371_journal_pone_0038528
crossref_primary_10_2217_17460913_4_2_223
crossref_primary_10_1128_JB_00300_07
crossref_primary_10_1074_mcp_M110_001065
crossref_primary_10_1016_j_jprot_2013_07_016
crossref_primary_10_1371_journal_pone_0017510
crossref_primary_10_1155_2013_182601
crossref_primary_10_1186_s13099_016_0093_5
crossref_primary_10_1042_BJ20101668
crossref_primary_10_1098_rsos_150565
crossref_primary_10_4137_CGast_S13760
crossref_primary_10_1053_j_gastro_2008_12_072
crossref_primary_10_1186_s13099_019_0284_y
crossref_primary_10_1371_journal_pgen_1001069
crossref_primary_10_1002_pmic_201100029
crossref_primary_10_1128_JB_05006_11
crossref_primary_10_1111_hel_12095
crossref_primary_10_1128_genomeA_00229_15
crossref_primary_10_1007_s00430_023_00766_9
crossref_primary_10_1016_S1155_1968_10_50083_X
crossref_primary_10_1128_JB_00113_12
crossref_primary_10_1111_j_1523_5378_2010_00759_x
crossref_primary_10_1128_JB_01848_07
crossref_primary_10_4167_jbv_2007_37_4_203
crossref_primary_10_1016_S1473_3099_07_70260_8
crossref_primary_10_1371_journal_pone_0016810
crossref_primary_10_1007_s00535_014_0938_y
crossref_primary_10_1093_nar_gkn718
crossref_primary_10_1186_s12864_015_1585_2
crossref_primary_10_1371_journal_pone_0006859
crossref_primary_10_1186_1471_2164_15_310
Cites_doi 10.1073/pnas.98.1.31
10.1073/pnas.0334340100
10.1080/00365520410010625
10.1074/jbc.M203613200
10.1093/nar/27.16.3325
10.1038/41483
10.1093/oxfordjournals.epirev.a018040
10.1172/JCI12672
10.1016/S0002-9629(15)40626-3
10.1016/S0188-4409(00)00099-0
10.1111/j.1365-2036.2005.02582.x
10.1073/pnas.36.12.708
10.1093/genetics/123.4.887
10.1073/pnas.97.17.9671
10.1007/s00018-005-5269-y
10.1097/00042737-199701000-00002
10.1016/S1286-4579(03)00112-6
10.1093/jnci/djh057
10.1073/pnas.0506758102
10.1038/16495
10.1073/pnas.93.25.14648
10.1080/00365520410008141
10.1128/IAI.70.2.606-611.2002
10.1086/314785
10.1073/pnas.251551698
10.1073/pnas.96.17.9721
10.1016/S0016-5085(98)70475-5
10.1046/j.1365-2958.2001.02714.x
10.1128/iai.63.7.2682-2688.1995
10.1016/j.femsim.2005.04.002
10.1016/S1470-2045(01)00486-7
10.1053/j.gastro.2003.08.033
10.1371/journal.pgen.0010043
10.1073/pnas.0506655103
10.1158/1055-9965.EPI-03-0124
10.1038/nature03959
10.1002/ijc.11680
10.1016/j.gene.2003.11.029
10.1073/pnas.1735481100
10.1046/j.1365-2958.2003.03549.x
10.1073/pnas.0407657102
10.1128/JB.182.21.5948-5953.2000
ContentType Journal Article
Copyright Copyright 2006 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jun 27, 2006
2006 by The National Academy of Sciences of the USA 2006
Copyright_xml – notice: Copyright 2006 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jun 27, 2006
– notice: 2006 by The National Academy of Sciences of the USA 2006
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1073/pnas.0603784103
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
CrossRef


MEDLINE - Academic
MEDLINE

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 10004
ExternalDocumentID oai_prod_swepub_kib_ki_se_1930256
1149846441
10_1073_pnas_0603784103
16788065
103_26_9999
30051030
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: DK 63483
– fundername: NIDDK NIH HHS
  grantid: DK 58529
– fundername: NIDDK NIH HHS
  grantid: U01 DK063483
– fundername: NIDDK NIH HHS
  grantid: R01 DK058529
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FRP
GX1
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
AJYGW
AS
DZ
GJ
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
692
6TJ
ACKIV
ADTPV
AOWAS
D8T
HGD
NEJ
NHB
VOH
ZZAVC
ID FETCH-LOGICAL-c576t-1ab157b0bd7b4616ab9cab4b9c1bf43cf2eac7b0929d59343194ee890e73c7643
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Wed Oct 30 05:07:06 EDT 2024
Tue Sep 17 21:26:57 EDT 2024
Fri Oct 25 06:52:12 EDT 2024
Fri Oct 25 21:10:13 EDT 2024
Thu Oct 10 17:43:40 EDT 2024
Fri Aug 23 01:50:51 EDT 2024
Sat Sep 28 07:42:40 EDT 2024
Thu May 30 08:50:33 EDT 2019
Wed Nov 11 00:29:50 EST 2020
Fri Feb 02 07:05:44 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
License Freely available online through the PNAS open access option.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-1ab157b0bd7b4616ab9cab4b9c1bf43cf2eac7b0929d59343194ee890e73c7643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: J.D.O., H.K.-B., M.G., L.G.E., and J.I.G. designed research; J.D.O., H.K.-B., M.G., J.X., R.S.F., L.A.F., H.S.C., C.W., G.E., J.E., and E.R.M. performed research; E.R.M., L.G.E., and J.I.G. contributed new reagents/analytic tools; J.D.O., H.K.-B., M.G., J.X., and J.I.G. analyzed data; and J.D.O., H.K.-B., M.G., J.X., and J.I.G. wrote the paper.
J.D.O. and H.K.-B. contributed equally to this work.
Contributed by Jeffrey I. Gordon, May 8, 2006
OpenAccessLink http://kipublications.ki.se/Default.aspx?queryparsed=id:1930256
PMID 16788065
PQID 201412754
PQPubID 42026
PageCount 6
ParticipantIDs swepub_primary_oai_prod_swepub_kib_ki_se_1930256
proquest_miscellaneous_20247212
pnas_primary_103_26_9999_fulltext
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1480403
proquest_journals_201412754
jstor_primary_30051030
crossref_primary_10_1073_pnas_0603784103
proquest_miscellaneous_68589423
pnas_primary_103_26_9999
pubmed_primary_16788065
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2006-06-27
PublicationDateYYYYMMDD 2006-06-27
PublicationDate_xml – month: 06
  year: 2006
  text: 2006-06-27
  day: 27
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2006
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 7790085 - Infect Immun. 1995 Jul;63(7):2682-8
12105196 - J Biol Chem. 2002 Sep 13;277(37):34191-7
14735480 - Int J Cancer. 2004 Mar10;109(1):138-43
11029412 - J Bacteriol. 2000 Nov;182(21):5948-53
11886563 - Mol Microbiol. 2001 Dec;42(5):1337-48
16128686 - Aliment Pharmacol Ther. 2005 Sep 1;22(5):471-81
12823823 - Mol Microbiol. 2003 Jul;49(1):219-34
14808160 - Proc Natl Acad Sci U S A. 1950 Dec;36(12):708-19
8962108 - Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14648-53
2612899 - Genetics. 1989 Dec;123(4):887-99
11905707 - Lancet Oncol. 2001 Sep;2(9):533-43
10449761 - Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9721-6
10522550 - Am J Med Sci. 1999 Oct;318(4):213-29
9252185 - Nature. 1997 Aug 7;388(6642):539-47
12814771 - Microbes Infect. 2003 Jul;5(8):705-13
12538876 - Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1072-7
16217547 - PLoS Genet. 2005 Oct;1(4):e43
16056220 - Nature. 2005 Sep 15;437(7057):376-80
11179581 - Arch Med Res. 2000 Sep-Oct;31(5):431-69
15743007 - Scand J Gastroenterol. 2004 Dec;39(12):1280-8
14724815 - Gastroenterology. 2003 Dec;125(6):1636-44
9031888 - Eur J Gastroenterol Hepatol. 1997 Jan;9(1):1-2
11724955 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14625-30
10944229 - Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9671-6
10228075 - J Infect Dis. 1999 Jun;179(6):1523-30
14996860 - J Natl Cancer Inst. 2004 Mar 3;96(5):388-96
11285290 - J Clin Invest. 2001 Apr;107(7):767-73
11218379 - Epidemiol Rev. 2000;22(2):283-97
16261263 - Cell Mol Life Sci. 2005 Dec;62(23):2792-810
11134512 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6
14593200 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13579-84
16172379 - Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13950-5
11796589 - Infect Immun. 2002 Feb;70(2):606-11
15795379 - Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5186-91
15019987 - Gene. 2004 Mar 17;328:85-93
11008919 - Cancer Epidemiol Biomarkers Prev. 2000 Sep;9(9):981-5
16407106 - Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):732-7
15932171 - Scand J Gastroenterol. 2005 Mar;40(3):302-11
14744726 - Cancer Epidemiol Biomarkers Prev. 2004 Jan;13(1):4-10
15949928 - FEMS Immunol Med Microbiol. 2005 Jul 1;45(1):11-23
10454640 - Nucleic Acids Res. 1999 Aug 15;27(16):3325-33
9453484 - Gastroenterology. 1998 Feb;114(2):256-61
9923682 - Nature. 1999 Jan 14;397(6715):176-80
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
Enroth H. (e_1_3_3_23_2) 2000; 9
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_39_2
  doi: 10.1073/pnas.98.1.31
– ident: e_1_3_3_19_2
  doi: 10.1073/pnas.0334340100
– ident: e_1_3_3_32_2
  doi: 10.1080/00365520410010625
– ident: e_1_3_3_25_2
  doi: 10.1074/jbc.M203613200
– ident: e_1_3_3_34_2
  doi: 10.1093/nar/27.16.3325
– ident: e_1_3_3_16_2
  doi: 10.1038/41483
– ident: e_1_3_3_1_2
  doi: 10.1093/oxfordjournals.epirev.a018040
– ident: e_1_3_3_15_2
  doi: 10.1172/JCI12672
– ident: e_1_3_3_38_2
  doi: 10.1016/S0002-9629(15)40626-3
– ident: e_1_3_3_2_2
  doi: 10.1016/S0188-4409(00)00099-0
– ident: e_1_3_3_10_2
  doi: 10.1111/j.1365-2036.2005.02582.x
– ident: e_1_3_3_20_2
  doi: 10.1073/pnas.36.12.708
– ident: e_1_3_3_21_2
  doi: 10.1093/genetics/123.4.887
– ident: e_1_3_3_26_2
  doi: 10.1073/pnas.97.17.9671
– ident: e_1_3_3_40_2
  doi: 10.1007/s00018-005-5269-y
– ident: e_1_3_3_11_2
  doi: 10.1097/00042737-199701000-00002
– ident: e_1_3_3_3_2
  doi: 10.1016/S1286-4579(03)00112-6
– ident: e_1_3_3_6_2
  doi: 10.1093/jnci/djh057
– ident: e_1_3_3_22_2
  doi: 10.1073/pnas.0506758102
– ident: e_1_3_3_17_2
  doi: 10.1038/16495
– ident: e_1_3_3_28_2
  doi: 10.1073/pnas.93.25.14648
– ident: e_1_3_3_31_2
  doi: 10.1080/00365520410008141
– ident: e_1_3_3_36_2
  doi: 10.1128/IAI.70.2.606-611.2002
– ident: e_1_3_3_5_2
  doi: 10.1086/314785
– ident: e_1_3_3_13_2
  doi: 10.1073/pnas.251551698
– ident: e_1_3_3_18_2
  doi: 10.1073/pnas.96.17.9721
– ident: e_1_3_3_4_2
  doi: 10.1016/S0016-5085(98)70475-5
– ident: e_1_3_3_29_2
  doi: 10.1046/j.1365-2958.2001.02714.x
– volume: 9
  start-page: 981
  year: 2000
  ident: e_1_3_3_23_2
  publication-title: Cancer Epidemiol. Biomarkers Prev.
  contributor:
    fullname: Enroth H.
– ident: e_1_3_3_37_2
  doi: 10.1128/iai.63.7.2682-2688.1995
– ident: e_1_3_3_41_2
  doi: 10.1016/j.femsim.2005.04.002
– ident: e_1_3_3_7_2
  doi: 10.1016/S1470-2045(01)00486-7
– ident: e_1_3_3_8_2
  doi: 10.1053/j.gastro.2003.08.033
– ident: e_1_3_3_33_2
  doi: 10.1371/journal.pgen.0010043
– ident: e_1_3_3_42_2
  doi: 10.1073/pnas.0506655103
– ident: e_1_3_3_12_2
  doi: 10.1158/1055-9965.EPI-03-0124
– ident: e_1_3_3_43_2
  doi: 10.1038/nature03959
– ident: e_1_3_3_9_2
  doi: 10.1002/ijc.11680
– ident: e_1_3_3_27_2
  doi: 10.1016/j.gene.2003.11.029
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.1735481100
– ident: e_1_3_3_30_2
  doi: 10.1046/j.1365-2958.2003.03549.x
– ident: e_1_3_3_24_2
  doi: 10.1073/pnas.0407657102
– ident: e_1_3_3_35_2
  doi: 10.1128/JB.182.21.5948-5953.2000
SSID ssj0009580
Score 2.3739314
Snippet Helicobacter pylori produces acute superficial gastritis in nearly all of its human hosts. However, a subset of individuals develops chronic atrophic gastritis...
Helicobacter pylori produces acute superficial gastritis in nearly all of its human hosts. However, a subset of individuals develops chronic atrophic gastritis...
Helicobacterpylori produces acute superficial gastritis in nearly all of its human hosts. However, a subset of individuals develops chronic atrophic gastritis...
SourceID swepub
pubmedcentral
proquest
crossref
pubmed
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9999
SubjectTerms Adenocarcinoma
Adenocarcinoma - microbiology
Bacteria
Base Pairing
Biological Sciences
Biosynthesis
Cancer
Chronic Disease
Disease Progression
DNA
Enzymes
Epithelial cells
Gastritis, Atrophic - microbiology
Gastrointestinal diseases
Gene Expression Profiling
Gene Expression Regulation, Bacterial
Genes
Genome, Bacterial - genetics
Genomes
Genomic Instability
Genomics
Genotype
Helicobacter pylori
Helicobacter pylori - drug effects
Helicobacter pylori - genetics
Helicobacter pylori - growth & development
Humans
Hydrogen-Ion Concentration
Medicin och hälsovetenskap
Membrane proteins
Molecular Sequence Data
Oligonucleotide Array Sequence Analysis
Open reading frames
Pathology
Rodents
Sequence Analysis, DNA
Stomach Neoplasms - microbiology
Title The Complete Genome Sequence of a Chronic Atrophic Gastritis Helicobacter pylori Strain: Evolution during Disease Progression
URI https://www.jstor.org/stable/30051030
http://www.pnas.org/content/103/26/9999.abstract
https://www.ncbi.nlm.nih.gov/pubmed/16788065
https://www.proquest.com/docview/201412754
https://search.proquest.com/docview/20247212
https://search.proquest.com/docview/68589423
https://pubmed.ncbi.nlm.nih.gov/PMC1480403
http://kipublications.ki.se/Default.aspx?queryparsed=id:1930256
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH7aduKCGDAWBsNIHMYhrWM7TsINTZsGaIgDk3azYsdhFTSNSMdt__uef6RVBLtwaFXVL22k9579vbzPnwHe4axosozrNKdGpEJLmeoyq9PSmDZvjGDUuELx8qu8uBKfr_PrHcjHvTCetG_0Ytb9Ws66xY3nVvZLMx95YvNvl6cI4TH2-HwXdjFAxxJ9o7Rbhn0nDKdfwcSo51Pwed_Vw4xKyl2zjfojdHCudq3FyaoUiIlO7RTt_4U8_yZQTmRG_dJ0_gQeR0xJPoZ734cd2z2F_Zi1AzmJ0tLvn8EdRgXxLHLEysTpsy4tGdnUZNWSmpiglkvcM_L-Bj_8qAcv2D8QXKIwbrTXdya9q_QXZPBnTHwgZ39iDJOw8ZHEzg_xBLAg_vEcrs7Pvp9epPEAhtRgGbJOs1pneaGpbgotZCZrXZlaC3zPdCu4aRlO2ziOEKvJK45YpBLWlhW1BTcFYp0D2OtWnT0EUpZGSIrxQptS4G-UmoqWlTVOD61tuEzgZHSA6oPOhvL98YIr5wa1dVsCB95BGzsedAFpAofedHs9V0wqhMBVAm8fGlJtZNkkcDR6WsVEHhRzRFhW5CKBN5tRzEDXVqk7u7p1JkxgHc0etnAa_xXi1gRehLjZ3keMvwSKSURtDJz693QEk8KrgMckSICG2Jtegquvit__XLiXGqxCsO4g7sv__rMjeBQeQcmUFa9gb_371r5GULbWx1iOfPpy7FPxHpe4Olc
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH4a4wAXxICxMGBG4jAOaR3b-cUNTZsKrBOHTdrNih1nq6BpRDpu_O88_0irCHbh0KqqX9pI7z37e3mfPwO8x1lRJwlXcUq1iIXKslgVSRUXWjdprQWj2haK84tsdiW-XKfXO5AOe2EcaV-rxaT9sZy0i1vHreyWejrwxKbf5icI4TH2-PQBPMR8pWIo0jdau4XfecJwAhZMDIo-OZ92bdVPaEa5bbdRd4gOzta2uThalzw10eqdov2_sOffFMqR0KhbnM6ewpOAKsknf_d7sGPaZ7AX8rYnx0Fc-sNz-I1xQRyPHNEysQqtS0MGPjVZNaQi2uvlEvuUvLvFDzdV7yT7e4KLFEaOcgrPpLO1_oL07pSJj-T0V4hi4rc-ktD7IY4C5uU_XsDV2enlySwORzDEGguRdZxUKklzRVWdK5ElWaVKXSmB74lqBNcNw4kbxxFk1WnJEY2UwpiipCbnOke0sw-77ao1B0CKQouMYsTQuhD4G4WiomFFhRNEY2qeRXA8OEB2XmlDug55zqV1g9y6LYJ956CNHffKgDSCA2e6vZ5LlkkEwWUE7-4bkk3g2URwOHhahlTuJbNUWJanIoKjzSjmoG2sVK1Z3VkTJrCSZvdbWJX_EpFrBC993GzvI8RfBPkoojYGVv97PIJp4XTAQxpEQH3sjS_B9VeG778v7Ev2RiJctyD31X__2RE8ml3Oz-X554uvh_DYP5DKYpa_ht31zzvzBiHaWr11CfkH0HA8tA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRCXigKloUCNxKEcsuvYjpNwQ6Wr8mjVA5V6s2InaVew2ajZcuO_M35klwh64bCr1Xq8D82M_U3my2eAt7gqmiThOk6pEbHQUsY6T8o4N6ZJKyMYNbZQPD2TJxfi82V6-cdRX460b_R80v5YTNr5teNWdgszHXhi0_PTI4TwGHt82lXN9D48wJylcijU13q7ub_7hOEiLJgYVH0ynNWW_YRKym3LjbqDdHDFtg3G0d7k6YlW8xTt_4U__6ZRjsRG3QY1ewzbAVmSD_4f7MC9un0COyF3e3IYBKbfPYVfGBvEcckRMROr0rqoycCpJsuGlMR4zVxir5R31_jiquydbH9PcKPC6NFO5Zl0tt6fk96dNPGeHP8MkUz87Y8k9H-Io4F5CZBncDE7_nZ0EodjGGKDxcgqTkqdpJmmusq0kIksdWFKLfA50Y3gpmG4eOM4Aq0qLTgikkLUdV7QOuMmQ8SzC1vtsq33gOS5EZJi1NAqF_gZuaaiYXmJi0RTV1xGcDg4QHVebUO5LnnGlXWD2rgtgl3noLUd9-qANII9Z7qZzxWTCoFwEcGbu4ZUE7g2EewPnlYhnXvFLB2WZamI4GA9inlomytlWy9vrQkTWE2zuy2s0n-B6DWC5z5uNr8jxF8E2Sii1gZWA3w8gqnhtMBDKkRAfeyNp-AerML73-f2ofpaIWS3QPfFf3_ZATw8_zhTXz-dfdmHR_6alIxZ9hK2Vje39StEaSv92uXjbzzsPcc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+complete+genome+sequence+of+a+chronic+atrophic+gastritis+Helicobacter+pylori+strain%3A+Evolution+during+disease+progression&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Jung+D.+Oh&rft.au=Helene+Kling-B%C3%A4ckhed&rft.au=Marios+Giannakis&rft.au=Jian+Xu&rft.date=2006-06-27&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=103&rft.issue=26&rft.spage=9999&rft_id=info:doi/10.1073%2Fpnas.0603784103&rft_id=info%3Apmid%2F16788065&rft.externalDBID=n%2Fa&rft.externalDocID=103_26_9999
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F26.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F26.cover.gif