The importance of GLP-1 and PYY in resistant starch's effect on body fat in mice

Resistant starch (RS) is a dietary fermentable fiber that decreases body fat accumulation, and stimulates the secretion of glucagon‐like peptide‐1 (GLP‐1) and peptide YY (PYY) in rodents. GLP‐1 and PYY are gut‐secreted hormones with antiobesity effect. Thus, blocking the signals of increased GLP‐1 a...

Full description

Saved in:
Bibliographic Details
Published inMolecular nutrition & food research Vol. 59; no. 5; pp. 1000 - 1003
Main Authors Zhou, June, Martin, Roy J., Raggio, Anne M., Shen, Li, McCutcheon, Kathleen, Keenan, Michael J.
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Resistant starch (RS) is a dietary fermentable fiber that decreases body fat accumulation, and stimulates the secretion of glucagon‐like peptide‐1 (GLP‐1) and peptide YY (PYY) in rodents. GLP‐1 and PYY are gut‐secreted hormones with antiobesity effect. Thus, blocking the signals of increased GLP‐1 and PYY may also block the effect of dietary RS on body fat. In a 10‐week study, C57BL/6J and GLP‐1 receptor null (GLP‐1R KO) mice were fed control or 30% RS diet, and received daily intraperitoneal injection of either saline or PYY receptor antagonist (BIIE0246, 20 μg/kg body weight). Dietary RS significantly decreased body fat accumulation only in wild‐type mice that has saline injection, but not in GLP‐1R KO mice. PYY receptor antagonist diminished RS action on body fat in wild‐type mice, but did not interfere with GLP‐1R KO mice response to RS. Regardless of genotype and injection received, all RS‐fed mice had increased cumulative food intake, cecal fermentation, and mRNA expression of proglucagon and PYY. Thus, our results suggest that increased GLP‐1 and PYY is important in RS effects on body fat accumulation.
AbstractList Resistant starch (RS) is a dietary fermentable fiber that decreases body fat accumulation, and stimulates the secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) in rodents. GLP-1 and PYY are gut-secreted hormones with antiobesity effect. Thus, blocking the signals of increased GLP-1 and PYY may also block the effect of dietary RS on body fat. In a 10-week study, C57BL/6J and GLP-1 receptor null (GLP-1R KO) mice were fed control or 30% RS diet, and received daily intraperitoneal injection of either saline or PYY receptor antagonist (BIIE0246, 20 μg/kg body weight). Dietary RS significantly decreased body fat accumulation only in wild-type mice that has saline injection, but not in GLP-1R KO mice. PYY receptor antagonist diminished RS action on body fat in wild-type mice, but did not interfere with GLP-1R KO mice response to RS. Regardless of genotype and injection received, all RS-fed mice had increased cumulative food intake, cecal fermentation, and mRNA expression of proglucagon and PYY. Thus, our results suggest that increased GLP-1 and PYY is important in RS effects on body fat accumulation.Resistant starch (RS) is a dietary fermentable fiber that decreases body fat accumulation, and stimulates the secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) in rodents. GLP-1 and PYY are gut-secreted hormones with antiobesity effect. Thus, blocking the signals of increased GLP-1 and PYY may also block the effect of dietary RS on body fat. In a 10-week study, C57BL/6J and GLP-1 receptor null (GLP-1R KO) mice were fed control or 30% RS diet, and received daily intraperitoneal injection of either saline or PYY receptor antagonist (BIIE0246, 20 μg/kg body weight). Dietary RS significantly decreased body fat accumulation only in wild-type mice that has saline injection, but not in GLP-1R KO mice. PYY receptor antagonist diminished RS action on body fat in wild-type mice, but did not interfere with GLP-1R KO mice response to RS. Regardless of genotype and injection received, all RS-fed mice had increased cumulative food intake, cecal fermentation, and mRNA expression of proglucagon and PYY. Thus, our results suggest that increased GLP-1 and PYY is important in RS effects on body fat accumulation.
Resistant starch (RS) is a dietary fermentable fiber that decreases body fat accumulation, and stimulates the secretion of glucagon‐like peptide‐1 (GLP‐1) and peptide YY (PYY) in rodents. GLP‐1 and PYY are gut‐secreted hormones with antiobesity effect. Thus, blocking the signals of increased GLP‐1 and PYY may also block the effect of dietary RS on body fat. In a 10‐week study, C57BL/6J and GLP‐1 receptor null (GLP‐1R KO) mice were fed control or 30% RS diet, and received daily intraperitoneal injection of either saline or PYY receptor antagonist (BIIE0246, 20 μg/kg body weight). Dietary RS significantly decreased body fat accumulation only in wild‐type mice that has saline injection, but not in GLP‐1R KO mice. PYY receptor antagonist diminished RS action on body fat in wild‐type mice, but did not interfere with GLP‐1R KO mice response to RS. Regardless of genotype and injection received, all RS‐fed mice had increased cumulative food intake, cecal fermentation, and mRNA expression of proglucagon and PYY. Thus, our results suggest that increased GLP‐1 and PYY is important in RS effects on body fat accumulation.
Resistant starch (RS) is a dietary fermentable fiber that decreases body fat accumulation, and stimulates the secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) in rodents. GLP-1 and PYY are gut secreted hormones with anti-obesity effect. Thus, blocking the signals of increased GLP-1 and PYY may also block the effect of dietary RS on body fat. In a ten-week study, C57BL/6J and GLP-1 receptor null (GLP-1R KO) mice were fed control or 30% RS diet, and received daily intraperitoneal injection of either saline or PYY receptor antagonist (BIIE 0246, 20ug/kg body weight). Dietary RS significantly decreased body fat accumulation only in wild type mice that has saline injection, but not in GLP-1R KO mice. PYY receptor antagonist diminished RS action on body fat in wild type mice, but did not interfere with GLP-1R KO mice response to RS. Regardless of genotype and injection received, all RS fed mice had increased cumulative food intake, cecal fermentation, and mRNA expression of proglucagon and PYY. Thus, our results suggest that increased GLP-1 and PYY is important in RS effects on body fat accumulation.
Author McCutcheon, Kathleen
Shen, Li
Raggio, Anne M.
Martin, Roy J.
Keenan, Michael J.
Zhou, June
AuthorAffiliation 1 Pennington Biomedical Research Center, Baton Rouge, LA 70808
3 Louisiana State University AgCenter, Baton Rouge, LA 70803
2 Veterans Affairs Medical Center Washington DC 20422
AuthorAffiliation_xml – name: 2 Veterans Affairs Medical Center Washington DC 20422
– name: 3 Louisiana State University AgCenter, Baton Rouge, LA 70803
– name: 1 Pennington Biomedical Research Center, Baton Rouge, LA 70808
Author_xml – sequence: 1
  givenname: June
  surname: Zhou
  fullname: Zhou, June
  email: june.zhou@va.gov
  organization: Pennington Biomedical Research Center, Baton Rouge, LA, USA
– sequence: 2
  givenname: Roy J.
  surname: Martin
  fullname: Martin, Roy J.
  organization: Pennington Biomedical Research Center, Baton Rouge, LA, USA
– sequence: 3
  givenname: Anne M.
  surname: Raggio
  fullname: Raggio, Anne M.
  organization: Pennington Biomedical Research Center, Baton Rouge, LA, USA
– sequence: 4
  givenname: Li
  surname: Shen
  fullname: Shen, Li
  organization: Pennington Biomedical Research Center, Baton Rouge, LA, USA
– sequence: 5
  givenname: Kathleen
  surname: McCutcheon
  fullname: McCutcheon, Kathleen
  organization: Louisiana State University AgCenter, LA, Baton Rouge, USA
– sequence: 6
  givenname: Michael J.
  surname: Keenan
  fullname: Keenan, Michael J.
  organization: Pennington Biomedical Research Center, Baton Rouge, LA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25631638$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhSNURB-wZYm8g00Gv5NskFBFp0jTMipFqCvLca4ZQ2IPdoZ2_j0eTYmAzWxsy_c7x9f3nBZHPngoipcEzwjG9O3gbZxRTDjGDeZPihMiCSs5YexoOlNxXJym9B1jRihnz4pjKiQjktUnxfJ2BcgN6xBH7Q2gYNF8sSwJ0r5Dy7s75DyKkFzK5RHlNZrV64TAWjAjCh61odsiq8cdODgDz4unVvcJXjzuZ8WXiw-355fl4tP84_n7RWlEJWXZGNG2pmMcN7WGzgI1FCxUhNiKisZyBpK3wmLS4KaiHQCnNt8bY3AnMbCz4t3ed71pB-gM-DHqXq2jG3TcqqCd-rfi3Up9C7-UEILRBmeDN48GMfzcQBrV4JKBvtcewiYpUudxEUEYPYzKGpOaYcky-urvtqZ-_kw8A7M9YGJIKYKdEILVLlK1i1RNkWYB_09g3KhHF3bfcv1B2b3rYXvgEXV1fXFDGZdZVu5lOXF4mGQ6_lCyYpVQX6_nStBLSm6uuPrMfgMdmsNd
CitedBy_id crossref_primary_10_3390_nu11010156
crossref_primary_10_1016_j_fbio_2023_102644
crossref_primary_10_3390_foods11192980
crossref_primary_10_1016_j_ijbiomac_2019_08_032
crossref_primary_10_1016_j_foodhyd_2017_09_019
crossref_primary_10_1186_s12937_015_0104_2
crossref_primary_10_29219_fnr_v64_3525
crossref_primary_10_1186_s13099_016_0149_6
crossref_primary_10_3389_fcimb_2020_00188
crossref_primary_10_1186_s40168_017_0230_5
crossref_primary_10_1097_MCO_0000000000000223
crossref_primary_10_1038_s41538_025_00403_0
crossref_primary_10_3389_fnut_2022_861854
crossref_primary_10_3389_fendo_2019_00082
crossref_primary_10_1016_j_foodhyd_2021_106949
crossref_primary_10_1093_nutrit_nuae040
crossref_primary_10_1152_ajpendo_00391_2018
crossref_primary_10_1096_fj_202403239R
crossref_primary_10_3390_foods11193028
crossref_primary_10_1002_jsfa_12756
crossref_primary_10_1002_star_201600205
crossref_primary_10_1186_s12937_017_0235_8
crossref_primary_10_1016_j_jff_2018_12_041
crossref_primary_10_3390_nu15010151
crossref_primary_10_1016_j_gene_2017_08_028
crossref_primary_10_3390_nu14183802
crossref_primary_10_3390_md18020097
crossref_primary_10_1016_j_ijbiomac_2017_11_105
crossref_primary_10_1016_j_mehy_2018_06_032
crossref_primary_10_1038_ejcn_2016_249
crossref_primary_10_3390_nu11092066
crossref_primary_10_3390_foods12122310
crossref_primary_10_3748_wjg_v27_i18_2219
crossref_primary_10_1016_j_foodres_2023_113215
crossref_primary_10_1080_13543776_2023_2274905
crossref_primary_10_1097_MPG_0000000000001857
crossref_primary_10_1016_j_psj_2024_103570
crossref_primary_10_1039_C7FO01820G
crossref_primary_10_3389_fmicb_2022_1073350
crossref_primary_10_3390_microorganisms11071725
Cites_doi 10.1021/jf901548e
10.1097/00001574-200003000-00014
10.1007/978-1-4615-5967-2_21
10.1038/oby.2008.483
10.1080/10408398.2011.629352
10.1038/oby.2006.176
10.1002/mnfr.201000605
10.1159/000335319
10.1097/MOG.0b013e32835b9aa3
10.3920/BM2010.0041
10.1152/ajpendo.90637.2008
10.1007/978-3-642-38007-5_22
10.1002/oby.20501
10.1038/ijo.2012.227
10.1002/mnfr.200500025
10.1155/2010/651063
10.1002/mnfr.201300135
10.1002/oby.20109
10.1210/en.2005-0473
10.1038/oby.2006.77
10.1210/en.2005-0237
10.1016/j.brainres.2005.02.065
10.1124/mol.109.058677
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1002/mnfr.201400904
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


AGRICOLA
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 1613-4133
EndPage 1003
ExternalDocumentID PMC5553290
25631638
10_1002_mnfr_201400904
MNFR2346
ark_67375_WNG_52H21RM4_S
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: R21 DK073403
– fundername: NIDDK NIH HHS
  grantid: P30 DK072476
– fundername: NIDDK NIH HHS
  grantid: R21 DK073403
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WJL
WNSPC
WOHZO
WXSBR
WYISQ
XG1
XV2
Y6R
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
DROCM
AAFWJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
1OB
5PM
ID FETCH-LOGICAL-c5766-9c5bbcd34098aedfe2c2efe711f7259f43e64b5f0190972dee42f59fccc0d60e3
IEDL.DBID DR2
ISSN 1613-4125
1613-4133
IngestDate Thu Aug 21 13:52:42 EDT 2025
Fri Jul 11 18:32:32 EDT 2025
Fri Jul 11 05:54:19 EDT 2025
Mon Jul 21 06:04:59 EDT 2025
Tue Jul 01 01:51:39 EDT 2025
Thu Apr 24 23:07:12 EDT 2025
Wed Jan 22 16:29:26 EST 2025
Wed Oct 30 09:52:11 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Obesity
Dietary Fiber
Antagonist
GLP-1 receptor
PYY receptor
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5766-9c5bbcd34098aedfe2c2efe711f7259f43e64b5f0190972dee42f59fccc0d60e3
Notes ArticleID:MNFR2346
ark:/67375/WNG-52H21RM4-S
NIH - No. R21 DK073403
istex:2821C6AD15026E95E4EDDBE8B14ED798BDD1B0D4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current address: Laboratory of Geriatric Endocrinology and Metabolism, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA, Phone: 202-745-8000 ext. 5294, Fax: 202-518-4611, june.zhou@va.gov
OpenAccessLink http://doi.org/10.1002/mnfr.201400904
PMID 25631638
PQID 1680183063
PQPubID 23479
PageCount 4
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5553290
proquest_miscellaneous_1803115132
proquest_miscellaneous_1680183063
pubmed_primary_25631638
crossref_primary_10_1002_mnfr_201400904
crossref_citationtrail_10_1002_mnfr_201400904
wiley_primary_10_1002_mnfr_201400904_MNFR2346
istex_primary_ark_67375_WNG_52H21RM4_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2015
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: May 2015
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Molecular nutrition & food research
PublicationTitleAlternate Mol. Nutr. Food Res
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Asp, N. G., Resistant starch-an update on its physiological effects. Adv. Exp. Med. Biol. 1997, 427, 201-210.
Zhou, J., Hegsted, M., McCutcheon, K. L., Keenan, M. J. et al., Peptide YY and proglucagon mRNA expression patterns and regulation in the gut. Obesity 2006, 14, 683-689.
Keenan, M. J., Martin, R. J., Raggio, A. M., McCutcheon, K. L. et al., High-amylose resistant starch increases hormones and improves structure and function of the gastrointestinal tract: a microarray study. J. Nutrigenet. Nutrigenomics 2012, 5, 26-44.
Hullar, M. A., Burnett-Hartman, A. N., Lampe, J. W., Gut microbes, diet, and cancer. Cancer Treat. Res. 2014, 159, 377-399.
Talsania, T., Anini, Y., Siu, S., Drucker, D. J. et al., Peripheral exendin-4 and peptide YY(3-36) synergistically reduce food intake through different mechanisms in mice. Endocrinology 2005, 146, 3748-3756.
Zhou, J., Martin, R. J., Tulley, R. T., Raggio, A. M. et al., Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1160-E1166.
Vidrine, K., Ye, J., Martin, R. J., McCutcheon, K. L. et al., Resistant starch from high amylose maize (HAM-RS2) and Dietary butyrate reduce abdominal fat by a different apparent mechanism. Obesity 2013, 22, 344-348.
Parker, J. A., McCullough, K. A., Field, B. C., Minnion, J. S. et al., Glucagon and GLP-1 inhibit food intake and increase c-fos expression in similar appetite regulating centres in the brainstem and amygdala. Int. J. Obes. 2013, 37, 1391-1398.
Garcia, T. A., McCutcheon, K. L., Francis, A. R., Keenan, M. J. et al., The effects of resistant starch on gastrointestinal organs and fecal output in rats. FASEB J. 2003, 17, A335.
Keenan, M. J., Janes, M., Robert, J., Martin, R. J. et al., Resistant starch from high amylose maize (HAM-RS2) reduces body fat and increases gut bacteria in ovariectomized (OVX) rats. Obesity (Silver Spring) 2013, 21, 981-984.
Abbott, C. R., Small, C. J., Kennedy, A. R., Neary, N. M. et al., Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3-36) on food intake. Brain Res. 2005, 1043, 139-144.
Neary, N. M., Small, C. J., Druce, M. R., Park, A. J. et al., Peptide YY3-36 and glucagon-like peptide-17-36 inhibit food intake additively. Endocrinology 2005, 146, 5120-5127.
Keenan, M. J., Zhou, J., McCutcheon, K. L., Raggio, A. M. et al., Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat. Obesity 2006, 14, 1523-1534.
Zhou, J., Keenan, M. J., Fernandez-Kim, S. O., Pistell, P. J. et al., Dietary resistant starch improves selected brain and behavioral functions in adult and aged rodents. Mol. Nutr. Food Res. 2013, 57, 2071-2074.
Shen, L., Keenan, M. J., Martin, R. J., Tulley, R. T. et al., Dietary resistant starch increases hypothalamic POMC expression in rats. Obesity 2009, 17, 40-45.
Brothers, S. P., Saldanha, S. A., Spicer, T. P., Cameron, M. et al., Selective and brain penetrant neuropeptide y y2 receptor antagonists discovered by whole-cell high-throughput screening. Mol. Pharmacol. 2010, 77, 46-57.
Brennan, C. S., Dietary fibre, glycaemic response, and diabetes. Mol. Nutr. Food Res. 2005, 49, 560-570.
Al-Tamimi, E. K., Seib, P. A., Snyder, B. S., Haub, M. D., Consumption of cross-linked resistant starch (RS4(XL)) on glucose and insulin responses in humans. J. Nutr. Metab. 2010, 2010, doi: 10.1155/2010/651063.
Zhou, J., Martin, R. J., Tulley, R. T., Raggio, A. M. et al., Failure to ferment dietary resistant starch in specific mouse models of obesity results in no body fat loss. J. Agric. Food Chem. 2009, 57, 8844-8851.
Jenkins, D. J., Kendall, C. W., Resistant starches. Curr. Opin. Gastroenterol. 2000, 16, 178-183.
Higgins, J. A., Brown, I. L., Resistant starch: a promising dietary agent for the prevention/treatment of inflammatory bowel disease and bowel cancer. Curr. Opin. Gastroenterol. 2013, 29, 190-194.
Higgins, J. A., Resistant starch and energy balance: impact on weight loss and maintenance. Crit. Rev. Food Sci. Nutr. 2014, 54, 1158-1166.
Bird, A. R., Conlon, M. A., Christophersen, C. T., Topping, D. L., Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Benef. Microbes 2011, 1, 423-431.
Shen, L., Keenan, M. J., Raggio, A., Williams, C. et al., Dietary-resistant starch improves maternal glycemic control in Goto-Kakizaki rat. Mol. Nutr. Food Res. 2011, 55, 1499-1508.
2013; 29
2010; 77
2009; 57
2013; 37
1997; 427
2000; 16
2010; 2010
2011; 1
2013; 22
2013; 21
2013; 57
2005; 146
2006; 14
2005; 1043
2011; 55
2003; 17
2005; 49
2012; 5
2008; 295
2014; 159
2014; 54
2009; 17
e_1_2_5_15_1
e_1_2_5_14_1
Garcia T. A. (e_1_2_5_9_1) 2003; 17
e_1_2_5_17_1
e_1_2_5_25_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_23_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_24_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_21_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_22_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_20_1
23818307 - Mol Nutr Food Res. 2013 Nov;57(11):2071-4
23630079 - Obesity (Silver Spring). 2014 Feb;22(2):344-8
24499148 - Crit Rev Food Sci Nutr. 2014;54(9):1158-66
18948970 - Obesity (Silver Spring). 2009 Jan;17(1):40-5
18796545 - Am J Physiol Endocrinol Metab. 2008 Nov;295(5):E1160-6
9361845 - Adv Exp Med Biol. 1997;427:201-10
23784900 - Obesity (Silver Spring). 2013 May;21(5):981-4
15862527 - Brain Res. 2005 May 10;1043(1-2):139-44
22516953 - J Nutrigenet Nutrigenomics. 2012;5(1):26-44
23385525 - Curr Opin Gastroenterol. 2013 Mar;29(2):190-4
19739641 - J Agric Food Chem. 2009 Oct 14;57(19):8844-51
16741270 - Obesity (Silver Spring). 2006 Apr;14(4):683-9
24114492 - Cancer Treat Res. 2014;159:377-99
21831780 - Benef Microbes. 2010 Nov;1(4):423-31
19837904 - Mol Pharmacol. 2010 Jan;77(1):46-57
15926145 - Mol Nutr Food Res. 2005 Jun;49(6):560-70
23337772 - Int J Obes (Lond). 2013 Oct;37(10):1391-8
17030963 - Obesity (Silver Spring). 2006 Sep;14(9):1523-34
17024038 - Curr Opin Gastroenterol. 2000 Mar;16(2):178-83
21638778 - Mol Nutr Food Res. 2011 Oct;55(10 ):1499-508
16150917 - Endocrinology. 2005 Dec;146(12):5120-7
15932924 - Endocrinology. 2005 Sep;146(9):3748-56
20798767 - J Nutr Metab. 2010;2010:null
References_xml – reference: Asp, N. G., Resistant starch-an update on its physiological effects. Adv. Exp. Med. Biol. 1997, 427, 201-210.
– reference: Brennan, C. S., Dietary fibre, glycaemic response, and diabetes. Mol. Nutr. Food Res. 2005, 49, 560-570.
– reference: Shen, L., Keenan, M. J., Raggio, A., Williams, C. et al., Dietary-resistant starch improves maternal glycemic control in Goto-Kakizaki rat. Mol. Nutr. Food Res. 2011, 55, 1499-1508.
– reference: Abbott, C. R., Small, C. J., Kennedy, A. R., Neary, N. M. et al., Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3-36) on food intake. Brain Res. 2005, 1043, 139-144.
– reference: Al-Tamimi, E. K., Seib, P. A., Snyder, B. S., Haub, M. D., Consumption of cross-linked resistant starch (RS4(XL)) on glucose and insulin responses in humans. J. Nutr. Metab. 2010, 2010, doi: 10.1155/2010/651063.
– reference: Vidrine, K., Ye, J., Martin, R. J., McCutcheon, K. L. et al., Resistant starch from high amylose maize (HAM-RS2) and Dietary butyrate reduce abdominal fat by a different apparent mechanism. Obesity 2013, 22, 344-348.
– reference: Zhou, J., Martin, R. J., Tulley, R. T., Raggio, A. M. et al., Failure to ferment dietary resistant starch in specific mouse models of obesity results in no body fat loss. J. Agric. Food Chem. 2009, 57, 8844-8851.
– reference: Bird, A. R., Conlon, M. A., Christophersen, C. T., Topping, D. L., Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Benef. Microbes 2011, 1, 423-431.
– reference: Shen, L., Keenan, M. J., Martin, R. J., Tulley, R. T. et al., Dietary resistant starch increases hypothalamic POMC expression in rats. Obesity 2009, 17, 40-45.
– reference: Zhou, J., Martin, R. J., Tulley, R. T., Raggio, A. M. et al., Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1160-E1166.
– reference: Neary, N. M., Small, C. J., Druce, M. R., Park, A. J. et al., Peptide YY3-36 and glucagon-like peptide-17-36 inhibit food intake additively. Endocrinology 2005, 146, 5120-5127.
– reference: Higgins, J. A., Resistant starch and energy balance: impact on weight loss and maintenance. Crit. Rev. Food Sci. Nutr. 2014, 54, 1158-1166.
– reference: Parker, J. A., McCullough, K. A., Field, B. C., Minnion, J. S. et al., Glucagon and GLP-1 inhibit food intake and increase c-fos expression in similar appetite regulating centres in the brainstem and amygdala. Int. J. Obes. 2013, 37, 1391-1398.
– reference: Zhou, J., Hegsted, M., McCutcheon, K. L., Keenan, M. J. et al., Peptide YY and proglucagon mRNA expression patterns and regulation in the gut. Obesity 2006, 14, 683-689.
– reference: Hullar, M. A., Burnett-Hartman, A. N., Lampe, J. W., Gut microbes, diet, and cancer. Cancer Treat. Res. 2014, 159, 377-399.
– reference: Zhou, J., Keenan, M. J., Fernandez-Kim, S. O., Pistell, P. J. et al., Dietary resistant starch improves selected brain and behavioral functions in adult and aged rodents. Mol. Nutr. Food Res. 2013, 57, 2071-2074.
– reference: Keenan, M. J., Martin, R. J., Raggio, A. M., McCutcheon, K. L. et al., High-amylose resistant starch increases hormones and improves structure and function of the gastrointestinal tract: a microarray study. J. Nutrigenet. Nutrigenomics 2012, 5, 26-44.
– reference: Keenan, M. J., Janes, M., Robert, J., Martin, R. J. et al., Resistant starch from high amylose maize (HAM-RS2) reduces body fat and increases gut bacteria in ovariectomized (OVX) rats. Obesity (Silver Spring) 2013, 21, 981-984.
– reference: Talsania, T., Anini, Y., Siu, S., Drucker, D. J. et al., Peripheral exendin-4 and peptide YY(3-36) synergistically reduce food intake through different mechanisms in mice. Endocrinology 2005, 146, 3748-3756.
– reference: Keenan, M. J., Zhou, J., McCutcheon, K. L., Raggio, A. M. et al., Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat. Obesity 2006, 14, 1523-1534.
– reference: Brothers, S. P., Saldanha, S. A., Spicer, T. P., Cameron, M. et al., Selective and brain penetrant neuropeptide y y2 receptor antagonists discovered by whole-cell high-throughput screening. Mol. Pharmacol. 2010, 77, 46-57.
– reference: Higgins, J. A., Brown, I. L., Resistant starch: a promising dietary agent for the prevention/treatment of inflammatory bowel disease and bowel cancer. Curr. Opin. Gastroenterol. 2013, 29, 190-194.
– reference: Jenkins, D. J., Kendall, C. W., Resistant starches. Curr. Opin. Gastroenterol. 2000, 16, 178-183.
– reference: Garcia, T. A., McCutcheon, K. L., Francis, A. R., Keenan, M. J. et al., The effects of resistant starch on gastrointestinal organs and fecal output in rats. FASEB J. 2003, 17, A335.
– volume: 54
  start-page: 1158
  year: 2014
  end-page: 1166
  article-title: Resistant starch and energy balance: impact on weight loss and maintenance
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 14
  start-page: 1523
  year: 2006
  end-page: 1534
  article-title: Effects of resistant starch, a non‐digestible fermentable fiber, on reducing body fat
  publication-title: Obesity
– volume: 57
  start-page: 8844
  year: 2009
  end-page: 8851
  article-title: Failure to ferment dietary resistant starch in specific mouse models of obesity results in no body fat loss
  publication-title: J. Agric. Food Chem.
– volume: 2010
  year: 2010
  article-title: Consumption of cross‐linked resistant starch (RS4(XL)) on glucose and insulin responses in humans
  publication-title: J. Nutr. Metab.
– volume: 29
  start-page: 190
  year: 2013
  end-page: 194
  article-title: Resistant starch: a promising dietary agent for the prevention/treatment of inflammatory bowel disease and bowel cancer
  publication-title: Curr. Opin. Gastroenterol.
– volume: 1043
  start-page: 139
  year: 2005
  end-page: 144
  article-title: Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3‐36) on food intake
  publication-title: Brain Res.
– volume: 1
  start-page: 423
  year: 2011
  end-page: 431
  article-title: Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics
  publication-title: Benef. Microbes
– volume: 16
  start-page: 178
  year: 2000
  end-page: 183
  article-title: Resistant starches
  publication-title: Curr. Opin. Gastroenterol.
– volume: 17
  start-page: A335
  year: 2003
  article-title: The effects of resistant starch on gastrointestinal organs and fecal output in rats
  publication-title: FASEB J.
– volume: 159
  start-page: 377
  year: 2014
  end-page: 399
  article-title: Gut microbes, diet, and cancer
  publication-title: Cancer Treat. Res.
– volume: 21
  start-page: 981
  year: 2013
  end-page: 984
  article-title: Resistant starch from high amylose maize (HAM‐RS2) reduces body fat and increases gut bacteria in ovariectomized (OVX) rats
  publication-title: Obesity (Silver Spring)
– volume: 57
  start-page: 2071
  year: 2013
  end-page: 2074
  article-title: Dietary resistant starch improves selected brain and behavioral functions in adult and aged rodents
  publication-title: Mol. Nutr. Food Res.
– volume: 146
  start-page: 3748
  year: 2005
  end-page: 3756
  article-title: Peripheral exendin‐4 and peptide YY(3‐36) synergistically reduce food intake through different mechanisms in mice
  publication-title: Endocrinology
– volume: 49
  start-page: 560
  year: 2005
  end-page: 570
  article-title: Dietary fibre, glycaemic response, and diabetes
  publication-title: Mol. Nutr. Food Res.
– volume: 14
  start-page: 683
  year: 2006
  end-page: 689
  article-title: Peptide YY and proglucagon mRNA expression patterns and regulation in the gut
  publication-title: Obesity
– volume: 37
  start-page: 1391
  year: 2013
  end-page: 1398
  article-title: Glucagon and GLP‐1 inhibit food intake and increase c‐fos expression in similar appetite regulating centres in the brainstem and amygdala
  publication-title: Int. J. Obes.
– volume: 17
  start-page: 40
  year: 2009
  end-page: 45
  article-title: Dietary resistant starch increases hypothalamic POMC expression in rats
  publication-title: Obesity
– volume: 55
  start-page: 1499
  year: 2011
  end-page: 1508
  article-title: Dietary‐resistant starch improves maternal glycemic control in Goto‐Kakizaki rat
  publication-title: Mol. Nutr. Food Res.
– volume: 295
  start-page: E1160
  year: 2008
  end-page: E1166
  article-title: Dietary resistant starch upregulates total GLP‐1 and PYY in a sustained day‐long manner through fermentation in rodents
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 5
  start-page: 26
  year: 2012
  end-page: 44
  article-title: High‐amylose resistant starch increases hormones and improves structure and function of the gastrointestinal tract: a microarray study
  publication-title: J. Nutrigenet. Nutrigenomics
– volume: 77
  start-page: 46
  year: 2010
  end-page: 57
  article-title: Selective and brain penetrant neuropeptide y y2 receptor antagonists discovered by whole‐cell high‐throughput screening
  publication-title: Mol. Pharmacol.
– volume: 22
  start-page: 344
  year: 2013
  end-page: 348
  article-title: Resistant starch from high amylose maize (HAM‐RS2) and Dietary butyrate reduce abdominal fat by a different apparent mechanism
  publication-title: Obesity
– volume: 427
  start-page: 201
  year: 1997
  end-page: 210
  article-title: Resistant starch—an update on its physiological effects
  publication-title: Adv. Exp. Med. Biol.
– volume: 146
  start-page: 5120
  year: 2005
  end-page: 5127
  article-title: Peptide YY3‐36 and glucagon‐like peptide‐17‐36 inhibit food intake additively
  publication-title: Endocrinology
– ident: e_1_2_5_18_1
  doi: 10.1021/jf901548e
– volume: 17
  start-page: A335
  year: 2003
  ident: e_1_2_5_9_1
  article-title: The effects of resistant starch on gastrointestinal organs and fecal output in rats
  publication-title: FASEB J.
– ident: e_1_2_5_8_1
  doi: 10.1097/00001574-200003000-00014
– ident: e_1_2_5_5_1
  doi: 10.1007/978-1-4615-5967-2_21
– ident: e_1_2_5_16_1
  doi: 10.1038/oby.2008.483
– ident: e_1_2_5_3_1
  doi: 10.1080/10408398.2011.629352
– ident: e_1_2_5_12_1
  doi: 10.1038/oby.2006.176
– ident: e_1_2_5_17_1
  doi: 10.1002/mnfr.201000605
– ident: e_1_2_5_15_1
  doi: 10.1159/000335319
– ident: e_1_2_5_2_1
  doi: 10.1097/MOG.0b013e32835b9aa3
– ident: e_1_2_5_6_1
  doi: 10.3920/BM2010.0041
– ident: e_1_2_5_19_1
  doi: 10.1152/ajpendo.90637.2008
– ident: e_1_2_5_4_1
  doi: 10.1007/978-3-642-38007-5_22
– ident: e_1_2_5_13_1
  doi: 10.1002/oby.20501
– ident: e_1_2_5_25_1
  doi: 10.1038/ijo.2012.227
– ident: e_1_2_5_7_1
  doi: 10.1002/mnfr.200500025
– ident: e_1_2_5_10_1
  doi: 10.1155/2010/651063
– ident: e_1_2_5_14_1
  doi: 10.1002/mnfr.201300135
– ident: e_1_2_5_11_1
  doi: 10.1002/oby.20109
– ident: e_1_2_5_24_1
  doi: 10.1210/en.2005-0473
– ident: e_1_2_5_20_1
  doi: 10.1038/oby.2006.77
– ident: e_1_2_5_23_1
  doi: 10.1210/en.2005-0237
– ident: e_1_2_5_22_1
  doi: 10.1016/j.brainres.2005.02.065
– ident: e_1_2_5_21_1
  doi: 10.1124/mol.109.058677
– reference: 24499148 - Crit Rev Food Sci Nutr. 2014;54(9):1158-66
– reference: 23818307 - Mol Nutr Food Res. 2013 Nov;57(11):2071-4
– reference: 17024038 - Curr Opin Gastroenterol. 2000 Mar;16(2):178-83
– reference: 17030963 - Obesity (Silver Spring). 2006 Sep;14(9):1523-34
– reference: 20798767 - J Nutr Metab. 2010;2010:null
– reference: 15926145 - Mol Nutr Food Res. 2005 Jun;49(6):560-70
– reference: 23385525 - Curr Opin Gastroenterol. 2013 Mar;29(2):190-4
– reference: 22516953 - J Nutrigenet Nutrigenomics. 2012;5(1):26-44
– reference: 24114492 - Cancer Treat Res. 2014;159:377-99
– reference: 21638778 - Mol Nutr Food Res. 2011 Oct;55(10 ):1499-508
– reference: 16741270 - Obesity (Silver Spring). 2006 Apr;14(4):683-9
– reference: 19837904 - Mol Pharmacol. 2010 Jan;77(1):46-57
– reference: 19739641 - J Agric Food Chem. 2009 Oct 14;57(19):8844-51
– reference: 18948970 - Obesity (Silver Spring). 2009 Jan;17(1):40-5
– reference: 23337772 - Int J Obes (Lond). 2013 Oct;37(10):1391-8
– reference: 21831780 - Benef Microbes. 2010 Nov;1(4):423-31
– reference: 15862527 - Brain Res. 2005 May 10;1043(1-2):139-44
– reference: 9361845 - Adv Exp Med Biol. 1997;427:201-10
– reference: 18796545 - Am J Physiol Endocrinol Metab. 2008 Nov;295(5):E1160-6
– reference: 23784900 - Obesity (Silver Spring). 2013 May;21(5):981-4
– reference: 15932924 - Endocrinology. 2005 Sep;146(9):3748-56
– reference: 23630079 - Obesity (Silver Spring). 2014 Feb;22(2):344-8
– reference: 16150917 - Endocrinology. 2005 Dec;146(12):5120-7
SSID ssj0031243
Score 2.3211124
Snippet Resistant starch (RS) is a dietary fermentable fiber that decreases body fat accumulation, and stimulates the secretion of glucagon‐like peptide‐1 (GLP‐1) and...
Resistant starch (RS) is a dietary fermentable fiber that decreases body fat accumulation, and stimulates the secretion of glucagon-like peptide-1 (GLP-1) and...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1000
SubjectTerms Adipose Tissue - metabolism
Animals
Antagonist
antagonists
body fat
body weight
Dietary Fiber
Dietary Fiber - pharmacology
fermentation
food intake
gene expression
genotype
GLP-1 receptor
glucagon-like peptide 1
Glucagon-Like Peptide 1 - blood
Glucagon-Like Peptide 1 - physiology
intraperitoneal injection
messenger RNA
Mice
Obesity
peptide YY
Peptide YY - blood
Peptide YY - physiology
PYY receptor
resistant starch
secretion
Starch - pharmacology
Title The importance of GLP-1 and PYY in resistant starch's effect on body fat in mice
URI https://api.istex.fr/ark:/67375/WNG-52H21RM4-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.201400904
https://www.ncbi.nlm.nih.gov/pubmed/25631638
https://www.proquest.com/docview/1680183063
https://www.proquest.com/docview/1803115132
https://pubmed.ncbi.nlm.nih.gov/PMC5553290
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQuXDh_QgvGQm1p7SJX0mOiLJdIbqqFirak-X4oa7adVA3KwEnfgK_kV_SsbMJXZ5CXHxwJko8mfF8E48_I_RcCWFya2H2K-MyI3VpqZROBWUqMyq0ke1zIsaH7PURP7q0i7_jhxh-uAXPiPN1cHBVL3a-k4bOvQt8npAgZFUkBA0FWwEVTQf-KArBK1bYQ8yC9yC8Z23MyM767WtR6WpQ8MdfQc6fKycvI9oYkkY3kOoH01WinG4v23pbf_6B5_F_RnsTXV_hVfyiM7Bb6Ir1t1GyO7Mt3sQrUtEzPOk5_e-gKRgens0jrAeDwo3De28Ovn35mmPlDT44PsYzjyHJD8DVtxhacLWtBe4qS3Djcd2YT9ipNgjOYSK7iw5Hr969HKergxtSDemLSCvN61obCrljqaxxlmhinS3y3BWQbjlGrWA1d2Efe1UQYy0jDvq11pkRmaX30IZvvH0QKq-4UaSqHeMZILe81EwzIwrCjDJ5ViUo7T-c1CtW83C4xpns-JiJDJqTg-YStDXIf-j4PH4ruRntYBBT56ehCq7g8v1kT3IyJvl0n8m3CXrWG4oE3wwLLsrbZrmQuYD4X0JSRv8gU2aB8CinJEH3O-ManghwlAa8nKBizewGgcANvn7Fz04iRzjnnJIqA_VEq_rLWOX-ZDQllImH_yj_CF2DTt5VgD5GG-350j4BlNbWT6MnXgBETDUy
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQe4AL70d4Ggm1p7SJX0mOCNgusBtVSyvoyXL8EKt2E9RmJeDET-A38ksYO5vA8hTi4kMyUeLJjOcbe_wZoUdKCJNaC6NfHpYZqYtzpXQsKFOJUb4NbJ-lGB-yF294X03o98J0_BDDhJv3jDBeewf3E9K731hDF7XzhJ6QISSFZwTd9Md6h6xqNjBIUQhfocYeohZ8CeE9b2NCdtefX4tLm17F738FOn-unfwe04agNLqEqr47XS3K8c6yrXb0xx-YHv-rv5fRxRVkxY87G7uCztn6Koqezm2Lt_CKV_QElz2t_zU0A9vD80VA9mBTuHF4b7L_5dPnFKva4P2jIzyvMeT5HrvWLYYWvG37DHfFJbipcdWYD9ip1gsuYCy7jg5Hzw6ejOPV2Q2xhgxGxIXmVaUNhfQxV9Y4SzSxzmZp6jLIuByjVrCKO7-VvciIsZYRB9e11okRiaU30Ebd1PaWL77iRpGicownAN7SXDPNjMgIM8qkSRGhuP9zUq-Izf35Gieyo2Qm0mtODpqL0PYg_66j9Pit5FYwhEFMnR77QriMy9flnuRkTNLZlMlXEXrYW4oE9_RrLqq2zfJMpgIgQA55Gf2DTJ54zqOUkgjd7KxreCMgUuohc4SyNbsbBDw9-Pqdev420IRzzikpElBPMKu_9FVOy9GMUCZu_6P8A3R-fDCdyMnz8uUddAEEeFcQehdttKdLew9AW1vdD275FXnMOU0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQKyE2vKHhaSTUrtImfiVZIobpAO1oNFDRrizHDzFqJ6najASs-AS-kS_h2pmEDk8hNl7EN0rsnGufG18fI_RUCWFSa2H0y8MyI3VxrpSOBWUqMcqXQe1zLEYH7NUhP7ywi7_Vh-h_uHnPCOO1d_BT43a-i4bOK-f1PCFASAovCLrORJJ7XA-mvYAUhdkrpNjDpAUvQngn25iQndX7V6aldd_DH37FOX9OnbxIacOcNLyGVNeaNhXleHvRlNv60w9Cj__T3Ovo6pKw4mctwm6gS7a6iaLBzDZ4Ey9VRU_wuBP1v4WmgDw8mwdeD4jCtcO7e5Ovn7-kWFUGT46O8KzCEOV75lo1GErwta1z3KaW4LrCZW0-YqcabziHkew2Ohi-ePt8FC9Pbog1xC8iLjQvS20oBI-5ssZZool1NktTl0G85Ri1gpXc-Y3sRUaMtYw4uK61ToxILL2D1qq6shs-9YobRYrSMZ4AdUtzzTQzIiPMKJMmRYTi7sNJvZQ196drnMhWkJlI33Oy77kIbfX2p62gx28tNwMOejN1duzT4DIu3413JScjkk73mXwToScdUCQ4p19xUZWtF-cyFUAAcojK6B9s8sQrHqWUROhuC67-icBHqSfMEcpWYNcbeHHw1Zpq9j6IhHPOKSkS6J6Aqr-0Ve6Ph1NCmbj3j_aP0eXJYCj3Xo5f30dXoJ632aAP0FpztrAPgbE15aPglN8Av8w4BQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+importance+of+GLP%E2%80%901+and+PYY+in+resistant+starch%27s+effect+on+body+fat+in+mice&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=Zhou%2C+June&rft.au=Martin%2C+Roy+J&rft.au=Raggio%2C+Anne+M&rft.au=Shen%2C+Li&rft.date=2015-05-01&rft.issn=1613-4125&rft.volume=59&rft.issue=5+p.1000-1003&rft.spage=1000&rft.epage=1003&rft_id=info:doi/10.1002%2Fmnfr.201400904&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon