Scale-free dynamics of global functional connectivity in the human brain
Higher brain functions depend upon the rapid creation and dissolution of ever changing synchronous cell assemblies. We examine the hypothesis that the dynamics of this process displays scale‐free, self‐similar properties. EEGs (19 channels, average reference, sample frequency 500 Hz) of 15 healthy s...
Saved in:
Published in | Human brain mapping Vol. 22; no. 2; pp. 97 - 109 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.06.2004
Wiley-Liss |
Subjects | |
Online Access | Get full text |
ISSN | 1065-9471 1097-0193 |
DOI | 10.1002/hbm.20016 |
Cover
Loading…
Abstract | Higher brain functions depend upon the rapid creation and dissolution of ever changing synchronous cell assemblies. We examine the hypothesis that the dynamics of this process displays scale‐free, self‐similar properties. EEGs (19 channels, average reference, sample frequency 500 Hz) of 15 healthy subjects (10 men; mean age 22.5 years) were analyzed during eyes‐closed and eyes‐open no‐task conditions. Mean level of synchronization as a function of time was estimated with the synchronization likelihood for five frequency bands (0.5–4, 4–8, 8–13, 13–30, and 30–48 Hz). Scaling in these time series was investigated with detrended fluctuation analysis (DFA). DFA analysis of global synchronization time series showed scale‐free characteristics, suggesting neuronal dynamics do not necessarily have a characteristic time constant. The scaling exponent as determined with DFA differed significantly for different frequency bands and conditions. The exponent was close to 1.5 for low frequencies (δ, θ, and α) and close to 1 for β and γ bands. Eye opening decreased the exponent, in particular in α and β bands. Fluctuations of EEG synchronization in δ, θ, α, β, and γ bands exhibit scale‐free dynamics in eyes‐closed as well as eyes‐open no‐task states. The decrease in the scaling exponent following eye opening reflects a relative preponderance of rapid fluctuations with respect to slow changes in the mean synchronization level. The existence of scaling suggests that the underlying dynamics may display self‐organized criticality, possibly representing a near‐optimal state for information processing. Hum. Brain Mapping 22:99–111, 2004. © 2004 Wiley‐Liss, Inc. |
---|---|
AbstractList | Higher brain functions depend upon the rapid creation and dissolution of ever changing synchronous cell assemblies. We examine the hypothesis that the dynamics of this process displays scale-free, self-similar properties. EEGs (19 channels, average reference, sample frequency 500 Hz) of 15 healthy subjects (10 men; mean age 22.5 years) were analyzed during eyes-closed and eyes-open no-task conditions. Mean level of synchronization as a function of time was estimated with the synchronization likelihood for five frequency bands (0.5-4, 4-8, 8-13, 13-30, and 30-48 Hz). Scaling in these time series was investigated with detrended fluctuation analysis (DFA). DFA analysis of global synchronization time series showed scale-free characteristics, suggesting neuronal dynamics do not necessarily have a characteristic time constant. The scaling exponent as determined with DFA differed significantly for different frequency bands and conditions. The exponent was close to 1.5 for low frequencies (, , and ) and close to 1 for and bands. Eye opening decreased the exponent, in particular in and bands. Fluctuations of EEG synchronization in , , , , and bands exhibit scale-free dynamics in eyes-closed as well as eyes-open no-task states. The decrease in the scaling exponent following eye opening reflects a relative preponderance of rapid fluctuations with respect to slow changes in the mean synchronization level. The existence of scaling suggests that the underlying dynamics may display self-organized criticality, possibly representing a near-optimal state for information processing. Hum. Brain Mapping 22:99-111, 2004. Higher brain functions depend upon the rapid creation and dissolution of ever changing synchronous cell assemblies. We examine the hypothesis that the dynamics of this process displays scale‐free, self‐similar properties. EEGs (19 channels, average reference, sample frequency 500 Hz) of 15 healthy subjects (10 men; mean age 22.5 years) were analyzed during eyes‐closed and eyes‐open no‐task conditions. Mean level of synchronization as a function of time was estimated with the synchronization likelihood for five frequency bands (0.5–4, 4–8, 8–13, 13–30, and 30–48 Hz). Scaling in these time series was investigated with detrended fluctuation analysis (DFA). DFA analysis of global synchronization time series showed scale‐free characteristics, suggesting neuronal dynamics do not necessarily have a characteristic time constant. The scaling exponent as determined with DFA differed significantly for different frequency bands and conditions. The exponent was close to 1.5 for low frequencies (δ, θ, and α) and close to 1 for β and γ bands. Eye opening decreased the exponent, in particular in α and β bands. Fluctuations of EEG synchronization in δ, θ, α, β, and γ bands exhibit scale‐free dynamics in eyes‐closed as well as eyes‐open no‐task states. The decrease in the scaling exponent following eye opening reflects a relative preponderance of rapid fluctuations with respect to slow changes in the mean synchronization level. The existence of scaling suggests that the underlying dynamics may display self‐organized criticality, possibly representing a near‐optimal state for information processing. Hum. Brain Mapping 22:99–111, 2004. © 2004 Wiley‐Liss, Inc. Higher brain functions depend upon the rapid creation and dissolution of ever changing synchronous cell assemblies. We examine the hypothesis that the dynamics of this process displays scale-free, self-similar properties. EEGs (19 channels, average reference, sample frequency 500 Hz) of 15 healthy subjects (10 men; mean age 22.5 years) were analyzed during eyes-closed and eyes-open no-task conditions. Mean level of synchronization as a function of time was estimated with the synchronization likelihood for five frequency bands (0.5-4, 4-8, 8-13, 13-30, and 30-48 Hz). Scaling in these time series was investigated with detrended fluctuation analysis (DFA). DFA analysis of global synchronization time series showed scale-free characteristics, suggesting neuronal dynamics do not necessarily have a characteristic time constant. The scaling exponent as determined with DFA differed significantly for different frequency bands and conditions. The exponent was close to 1.5 for low frequencies (delta, theta, and alpha) and close to 1 for beta and gamma bands. Eye opening decreased the exponent, in particular in alpha and beta bands. Fluctuations of EEG synchronization in delta, theta, alpha, beta, and gamma bands exhibit scale-free dynamics in eyes-closed as well as eyes-open no-task states. The decrease in the scaling exponent following eye opening reflects a relative preponderance of rapid fluctuations with respect to slow changes in the mean synchronization level. The existence of scaling suggests that the underlying dynamics may display self-organized criticality, possibly representing a near-optimal state for information processing. Higher brain functions depend upon the rapid creation and dissolution of ever changing synchronous cell assemblies. We examine the hypothesis that the dynamics of this process displays scale-free, self-similar properties. EEGs (19 channels, average reference, sample frequency 500 Hz) of 15 healthy subjects (10 men; mean age 22.5 years) were analyzed during eyes-closed and eyes-open no-task conditions. Mean level of synchronization as a function of time was estimated with the synchronization likelihood for five frequency bands (0.5-4, 4-8, 8-13, 13-30, and 30-48 Hz). Scaling in these time series was investigated with detrended fluctuation analysis (DFA). DFA analysis of global synchronization time series showed scale-free characteristics, suggesting neuronal dynamics do not necessarily have a characteristic time constant. The scaling exponent as determined with DFA differed significantly for different frequency bands and conditions. The exponent was close to 1.5 for low frequencies (delta, theta, and alpha) and close to 1 for beta and gamma bands. Eye opening decreased the exponent, in particular in alpha and beta bands. Fluctuations of EEG synchronization in delta, theta, alpha, beta, and gamma bands exhibit scale-free dynamics in eyes-closed as well as eyes-open no-task states. The decrease in the scaling exponent following eye opening reflects a relative preponderance of rapid fluctuations with respect to slow changes in the mean synchronization level. The existence of scaling suggests that the underlying dynamics may display self-organized criticality, possibly representing a near-optimal state for information processing.Higher brain functions depend upon the rapid creation and dissolution of ever changing synchronous cell assemblies. We examine the hypothesis that the dynamics of this process displays scale-free, self-similar properties. EEGs (19 channels, average reference, sample frequency 500 Hz) of 15 healthy subjects (10 men; mean age 22.5 years) were analyzed during eyes-closed and eyes-open no-task conditions. Mean level of synchronization as a function of time was estimated with the synchronization likelihood for five frequency bands (0.5-4, 4-8, 8-13, 13-30, and 30-48 Hz). Scaling in these time series was investigated with detrended fluctuation analysis (DFA). DFA analysis of global synchronization time series showed scale-free characteristics, suggesting neuronal dynamics do not necessarily have a characteristic time constant. The scaling exponent as determined with DFA differed significantly for different frequency bands and conditions. The exponent was close to 1.5 for low frequencies (delta, theta, and alpha) and close to 1 for beta and gamma bands. Eye opening decreased the exponent, in particular in alpha and beta bands. Fluctuations of EEG synchronization in delta, theta, alpha, beta, and gamma bands exhibit scale-free dynamics in eyes-closed as well as eyes-open no-task states. The decrease in the scaling exponent following eye opening reflects a relative preponderance of rapid fluctuations with respect to slow changes in the mean synchronization level. The existence of scaling suggests that the underlying dynamics may display self-organized criticality, possibly representing a near-optimal state for information processing. |
Author | de Bruin, Eveline Astrid Stam, Cornelis Jan |
AuthorAffiliation | 2 Department of Psychopharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands 1 Department of Clinical Neurophysiology, VU University Medical Center, Amsterdam, The Netherlands |
AuthorAffiliation_xml | – name: 2 Department of Psychopharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands – name: 1 Department of Clinical Neurophysiology, VU University Medical Center, Amsterdam, The Netherlands |
Author_xml | – sequence: 1 givenname: Cornelis Jan surname: Stam fullname: Stam, Cornelis Jan email: CJ.Stam@Vumc.nl organization: Department of Clinical Neurophysiology, VU University Medical Center, Amsterdam, The Netherlands – sequence: 2 givenname: Eveline Astrid surname: de Bruin fullname: de Bruin, Eveline Astrid organization: Department of Psychopharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15788341$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15108297$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URD_gwB9AuYDEIa0dx7F9QSoVdJHaQsUiJC6W44y7hsQudlLYf4-X3X6ABD15rHneVzPz7qItHzwg9JTgfYJxdbBoh_0KY9I8QDsES15iIunWqm5YKWtOttFuSl8zQRgmj9A2YQSLSvIdNPtodA-ljQBFt_R6cCYVwRYXfWh1X9jJm9EFn0sTvIf8uXLjsnC-GBdQLKZB-6KN2vnH6KHVfYInm3cPfXr7Zn40K0_eH787OjwpDeNNU1Immg5zJigBJmrdtcxaLYFi0zJZd6SzBteAayptZ1uLBWk1sxKAdBWmQPfQq7Xv5dQO0BnwY9S9uoxu0HGpgnbqz453C3URrlQjOOFSZoMXG4MYvk-QRjW4ZKDvtYcwJcWJaGTNqnvBCtecYt5k8NndkW5mub5yBp5vAJ3yuW3U3rh0h-NC0Jpk7uWaMzGkFMHeIlitklY5afU76cwe_MUaN-pVVnlr1_9P8cP1sPy3tZq9Pr1WlGuFSyP8vFHo-E01nHKmPp8dq_P57MMciy_qjP4CJabJaQ |
CitedBy_id | crossref_primary_10_1016_j_neucom_2017_03_008 crossref_primary_10_1016_j_neuroimage_2013_06_036 crossref_primary_10_1371_journal_pone_0068360 crossref_primary_10_1016_j_clinph_2020_03_038 crossref_primary_10_3389_fphys_2018_01704 crossref_primary_10_3389_fncir_2020_00054 crossref_primary_10_1016_j_brainres_2016_02_008 crossref_primary_10_1038_s41598_018_37920_w crossref_primary_10_1016_j_pneurobio_2017_07_002 crossref_primary_10_1103_PhysRevE_86_016211 crossref_primary_10_1186_1753_4631_1_3 crossref_primary_10_1103_PhysRevLett_97_238103 crossref_primary_10_1088_0967_3334_34_10_1269 crossref_primary_10_1080_03640210801944898 crossref_primary_10_1016_j_neulet_2007_12_025 crossref_primary_10_1073_pnas_2105730118 crossref_primary_10_1080_87565640903265178 crossref_primary_10_1016_j_clinph_2004_09_022 crossref_primary_10_1088_1361_6579_aaa916 crossref_primary_10_1111_j_1749_6632_2010_05888_x crossref_primary_10_3109_00207450903436346 crossref_primary_10_1016_j_smrv_2016_10_003 crossref_primary_10_1016_j_clinph_2008_02_024 crossref_primary_10_1016_j_conb_2014_10_014 crossref_primary_10_1016_j_physd_2006_09_008 crossref_primary_10_1016_j_clinph_2008_04_294 crossref_primary_10_1016_j_neuroimage_2019_116367 crossref_primary_10_3389_fphys_2020_578537 crossref_primary_10_1016_j_clinph_2012_01_011 crossref_primary_10_1371_journal_pcbi_1004007 crossref_primary_10_1007_s11357_023_00836_z crossref_primary_10_3389_fnsys_2014_00176 crossref_primary_10_3389_fnins_2019_01248 crossref_primary_10_3390_brainsci12020218 crossref_primary_10_1134_S0362119716030063 crossref_primary_10_1155_2018_3012743 crossref_primary_10_2217_npy_11_45 crossref_primary_10_1007_s11571_025_10225_1 crossref_primary_10_1016_j_neurobiolaging_2015_02_007 crossref_primary_10_1002_hbm_21455 crossref_primary_10_1016_j_neuroimage_2010_12_039 crossref_primary_10_1002_hbm_20524 crossref_primary_10_1016_j_neuroscience_2007_02_048 crossref_primary_10_1088_0256_307X_28_4_048701 crossref_primary_10_1016_j_ifacol_2018_09_206 crossref_primary_10_1016_j_neuroimage_2009_12_068 crossref_primary_10_1016_j_neuroimage_2014_05_056 crossref_primary_10_1257_jep_25_4_31 crossref_primary_10_1016_j_cortex_2015_03_020 crossref_primary_10_1016_j_neuroimage_2010_01_071 crossref_primary_10_1002_hbm_23708 crossref_primary_10_1016_j_clinph_2007_01_003 crossref_primary_10_1016_j_irbm_2017_02_002 crossref_primary_10_1016_j_bbr_2018_10_024 crossref_primary_10_1002_hbm_20156 crossref_primary_10_1016_j_neuroimage_2013_12_009 crossref_primary_10_3389_fnins_2018_00352 crossref_primary_10_1088_1361_6579_ac184d crossref_primary_10_1016_j_chemosphere_2023_138153 crossref_primary_10_3389_fpsyg_2015_01944 crossref_primary_10_1371_journal_pone_0092182 crossref_primary_10_1523_JNEUROSCI_4701_13_2014 crossref_primary_10_1016_j_neuroimage_2014_04_039 crossref_primary_10_3389_fnhum_2020_600437 crossref_primary_10_1111_ina_13067 crossref_primary_10_1068_p5918 crossref_primary_10_1016_j_neuroimage_2005_09_015 crossref_primary_10_1016_j_chaos_2017_08_034 crossref_primary_10_1016_j_neulet_2006_06_008 crossref_primary_10_1016_j_physa_2021_126516 crossref_primary_10_1007_s00422_006_0094_4 crossref_primary_10_1080_17470919_2015_1072110 crossref_primary_10_1080_87565641_2011_619241 crossref_primary_10_1371_journal_pone_0177446 crossref_primary_10_3389_fneur_2017_00346 crossref_primary_10_1016_j_neuroimage_2021_118662 crossref_primary_10_1007_s11571_017_9434_4 crossref_primary_10_1007_s41470_017_0007_y crossref_primary_10_1016_j_clinph_2008_08_019 crossref_primary_10_1016_j_neuroscience_2012_03_045 crossref_primary_10_1088_1367_2630_9_6_178 crossref_primary_10_1016_j_neuroscience_2007_06_032 crossref_primary_10_1007_s40846_015_0020_0 crossref_primary_10_1016_j_medengphy_2013_04_013 crossref_primary_10_1016_j_neuroimage_2013_04_103 crossref_primary_10_1177_15500594221076347 crossref_primary_10_1016_j_medengphy_2013_04_014 crossref_primary_10_1103_PhysRevE_85_011912 crossref_primary_10_1103_PhysRevE_90_042712 crossref_primary_10_1007_s10548_015_0467_x crossref_primary_10_1007_s11571_023_10033_5 crossref_primary_10_1016_j_clinph_2007_08_018 crossref_primary_10_1142_S0219635214400019 crossref_primary_10_1002_brb3_2047 crossref_primary_10_1371_journal_pcbi_1002038 crossref_primary_10_1016_j_neuroimage_2011_05_024 crossref_primary_10_1016_j_clinph_2005_06_011 crossref_primary_10_1016_j_neuroimage_2017_07_047 crossref_primary_10_1038_s41598_020_70319_0 crossref_primary_10_1103_PhysRevE_75_051902 crossref_primary_10_1016_j_neunet_2018_10_017 crossref_primary_10_3389_fnsys_2020_00049 crossref_primary_10_1016_j_jneumeth_2005_09_020 crossref_primary_10_1007_s11571_008_9040_6 crossref_primary_10_1074_jbc_M700572200 crossref_primary_10_3389_fbioe_2016_00015 crossref_primary_10_1061__ASCE_1084_0702_2005_10_5_564 crossref_primary_10_1093_cercor_bhl049 crossref_primary_10_1016_j_pbiomolbio_2022_10_005 crossref_primary_10_1093_brain_awv129 crossref_primary_10_1109_ACCESS_2022_3146719 crossref_primary_10_1016_j_neuroimage_2006_06_066 crossref_primary_10_1016_j_neuroimage_2011_12_051 crossref_primary_10_1016_j_jneumeth_2017_03_014 crossref_primary_10_1007_s00422_005_0584_9 crossref_primary_10_1038_nrn2201 crossref_primary_10_1016_j_clinph_2004_04_010 crossref_primary_10_1097_MD_0000000000021303 crossref_primary_10_1016_j_crvi_2004_10_014 crossref_primary_10_3389_fnhum_2021_740225 crossref_primary_10_1038_s41598_019_49726_5 crossref_primary_10_1089_brain_2011_0008 crossref_primary_10_1016_j_clinph_2013_02_022 crossref_primary_10_3389_fnetp_2021_755016 crossref_primary_10_3389_fncir_2022_630621 crossref_primary_10_1016_j_neurobiolaging_2018_06_007 crossref_primary_10_1016_j_chaos_2015_10_034 crossref_primary_10_1089_brain_2016_0426 crossref_primary_10_1016_j_pediatrneurol_2007_04_004 crossref_primary_10_3390_s22093102 crossref_primary_10_1016_j_compbiomed_2021_104515 crossref_primary_10_1016_j_neuroimage_2014_03_047 crossref_primary_10_3389_fphys_2019_01452 crossref_primary_10_1016_j_clinph_2024_03_012 crossref_primary_10_1109_MSP_2015_2482121 crossref_primary_10_1007_s11571_020_09646_x crossref_primary_10_1016_j_chaos_2013_06_005 crossref_primary_10_3389_fphys_2018_01767 crossref_primary_10_3389_fpsyg_2023_1209881 crossref_primary_10_1016_j_neuroimage_2022_118928 crossref_primary_10_1162_imag_a_00380 crossref_primary_10_1016_j_chaos_2024_115772 crossref_primary_10_3389_fnins_2018_00398 crossref_primary_10_1007_s11357_023_01022_x crossref_primary_10_17711_SM_0185_3325_2019_012 crossref_primary_10_1038_s41598_017_14879_8 crossref_primary_10_1073_pnas_1007841107 crossref_primary_10_1016_j_neuron_2010_04_020 crossref_primary_10_1016_j_neuroscience_2004_10_007 crossref_primary_10_4304_jcp_8_6_1377_1384 crossref_primary_10_3389_fphys_2020_615961 crossref_primary_10_1111_brv_12032 crossref_primary_10_3389_fncom_2015_00097 crossref_primary_10_1016_j_neuroimage_2008_06_009 crossref_primary_10_1007_s11682_008_9031_6 crossref_primary_10_1016_j_neubiorev_2007_04_005 crossref_primary_10_1016_j_neuroimage_2019_06_006 crossref_primary_10_4236_wjns_2021_112014 crossref_primary_10_1016_j_clinph_2006_10_021 crossref_primary_10_1016_j_neulet_2012_11_051 crossref_primary_10_1016_j_compbiomed_2015_06_014 crossref_primary_10_3389_fnsys_2014_00112 crossref_primary_10_1007_s11571_022_09863_6 crossref_primary_10_1016_j_plrev_2023_12_006 crossref_primary_10_1038_nphys1803 crossref_primary_10_1016_j_neuroimage_2014_11_027 crossref_primary_10_1016_j_neuroimage_2008_02_027 crossref_primary_10_1007_s11571_017_9451_3 crossref_primary_10_1016_j_ijpsycho_2016_11_006 crossref_primary_10_3938_jkps_63_1659 crossref_primary_10_1016_j_irbm_2014_07_005 crossref_primary_10_1016_j_ijpsycho_2005_07_007 crossref_primary_10_1016_j_neuroimage_2014_06_062 crossref_primary_10_1063_1_4981391 crossref_primary_10_1016_j_neubiorev_2023_105402 crossref_primary_10_1016_j_pbiomolbio_2012_08_006 |
Cites_doi | 10.1016/S1388-2457(02)00338-3 10.1016/S0167-2789(01)00386-4 10.1126/science.7892611 10.1034/j.1600-0404.2003.02067.x 10.1016/S0167-8760(02)00108-3 10.1103/PhysRevE.66.021901 10.1093/cercor/13.4.422 10.1038/35067550 10.1046/j.1460-9568.2003.02522.x 10.1016/0013-4694(77)90235-8 10.1002/hbm.10120 10.1098/rstb.2000.0560 10.1111/j.1749-6632.2001.tb05712.x 10.1016/S0167-8760(01)00199-4 10.1152/jn.00254.2001 10.1016/S0165-0270(03)00090-6 10.1063/1.166141 10.1103/PhysRevLett.74.118 10.1016/S1388-2457(99)00099-1 10.1016/S1364-6613(00)01568-0 10.1016/S0013-4694(97)00066-7 10.1073/pnas.92.25.11568 10.1073/pnas.0135058100 10.1523/JNEUROSCI.21-04-01370.2001 10.4067/S0716-97602003000100006 10.1038/17120 10.1007/BFb0091924 10.1073/pnas.95.12.7092 10.1097/00004691-200212000-00010 10.1073/pnas.98.3.1282 10.1038/356168a0 10.1016/S0167-8760(00)00145-8 10.1016/S0304-3940(02)01247-8 10.1016/S1364-6613(00)01564-3 10.1016/S0167-8760(02)00041-7 10.1126/science.7878473 10.1002/hbm.10106 10.1016/S0010-4825(01)00031-2 10.1103/PhysRevLett.59.381 10.1088/0954-898X_14_4_305 |
ContentType | Journal Article |
Copyright | Copyright © 2004 Wiley‐Liss, Inc. 2004 INIST-CNRS Copyright 2004 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2004 Wiley‐Liss, Inc. – notice: 2004 INIST-CNRS – notice: Copyright 2004 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1002/hbm.20016 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Scale‐Free Functional Connectivity Dynamics |
EISSN | 1097-0193 |
EndPage | 109 |
ExternalDocumentID | PMC6871799 15108297 15788341 10_1002_hbm_20016 HBM20016 ark_67375_WNG_QTHPT08Z_N |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c5766-3586d075831e584adb5ffa9e30cb594d1dfc04e0439fdfbf081ba5f9ee1d203e3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 |
IngestDate | Thu Aug 21 18:24:56 EDT 2025 Thu Sep 04 16:24:47 EDT 2025 Fri Sep 05 04:57:22 EDT 2025 Wed Feb 19 01:38:52 EST 2025 Mon Jul 21 09:13:41 EDT 2025 Thu Apr 24 23:00:06 EDT 2025 Tue Jul 01 04:25:50 EDT 2025 Wed Jan 22 16:27:41 EST 2025 Wed Oct 30 09:55:28 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Human Fluctuations Nervous system diseases Radiodiagnosis scale-free EEG Central nervous system detrended fluctuation analysis Electrophysiology Electroencephalography Synchronization self-similar Encephalon self-organized criticality Working memory |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright 2004 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5766-3586d075831e584adb5ffa9e30cb594d1dfc04e0439fdfbf081ba5f9ee1d203e3 |
Notes | istex:F2546EF9F3B2FB41B54A0E4347A3DEC732EFA94B ark:/67375/WNG-QTHPT08Z-N ArticleID:HBM20016 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.20016?download=true |
PMID | 15108297 |
PQID | 20473076 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871799 proquest_miscellaneous_71869452 proquest_miscellaneous_20473076 pubmed_primary_15108297 pascalfrancis_primary_15788341 crossref_primary_10_1002_hbm_20016 crossref_citationtrail_10_1002_hbm_20016 wiley_primary_10_1002_hbm_20016_HBM20016 istex_primary_ark_67375_WNG_QTHPT08Z_N |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2004 |
PublicationDateYYYYMMDD | 2004-06-01 |
PublicationDate_xml | – month: 06 year: 2004 text: June 2004 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2004 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss |
References | Stam CJ, van Cappellen van Walsum AM, Pijnenburg YAL, Berendse HW, de Munck JC, Scheltens Ph, van Dijk BW (2002b): Generalized synchronization of MEG recordings in Alzheimer's disease: evidence for involvement of the γ band. J Clin Neurophysiol 19: 562-574. Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ (2001): Long-range temporal correlations and scaling behavior in human brain oscillations. J Neurosci 21: 1370-1377. Greicius MD, Krasnow B, Reiss AL, Menon V (2003): Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100: 253-258. Fell J, Klaver P, Elfadil H, Schaller C, Elger Ch E, Fernandez G (2003): Rhinal-hippocampal θ coherence during declarative memory formation: interaction with γ synchronization? Eur J Neurosci 17: 1082-1088. Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1992): EEG coherency I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroenceph Clin Neurophysiol 103: 499-515. Stam CJ, van der Made Y, Pijnenburg YAL, Scheltens Ph (2003b): EEG synchronization in mild cognitive impairment and Alzheimer's disease. Acta Neurol Scand 108: 90-96. Gong P, Nikolaev AR, van Leeuwen C (2003): Scale-invariant fluctuations of the dynamical synchronization in human brain electrical activity. Neurosci Lett 336: 33-36. Bullock TH, McClune MC, Achimowicz JZ, Iragui-Madoz VJ, Duckrow RB, Spencer SS (1995): Temporal fluctuations in coherence of brain waves. Proc Natl Acad Sci USA 92: 11568-11572. Friston KJ (2000): The labile brain. I. Neuronal transients and nonlinear coupling. Phil Trans R Soc Lond B 355: 215-236. Engel AK, Singer W (2001): Temporal binding and the neural correlates of sensory awareness. Trends Cognit Sci 5: 16-25. Schack B, Vath N, Petsche H, Geissler H-G, Moller E (2002): Phase-coupling of θ-γ EEG rhythms during short-term memory processing. Int J Psychophysiol 44: 143-163. Van Putten MJAM (2003): Proposed link rates in the human brain. J Neurosci Methods 127: 1-10. Stam CJ, van Dijk BW (2002): Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Physica D 163: 236-241. Hopfield JJ, Brody CD (2001): What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. PNAS 98: 1282-1287. Lee J-M, Kim D-J, Kim I-Y, Park K-S, Kim SI (2002): Detrended fluctuation analysis of EEG in sleep apnea using MIT/BIG polysomnography data. Comput Biol Med 32: 37-47. Stam CJ, Pijn JPM, Suffczynski P, Lopes da Silva FH (1999): Dynamics of the human α rhythm: evidence for non-linearity? Clin Neurophysiol 110: 1801-1813. Hwa R, Ferree ThC (2002): Scaling properties of fluctations in the human electroencephalogram. Phys Rev E 66: 021901. Breakspear M, Terry JR, Friston KJ (2003): Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysiocal model of neuronal dynamics. Network: Comput Neural Syst 14: 703-732. Peng CK, Havlin S, Stanley HE, Goldbergeer AL (1995): Quantification of scaling exponents and crossover phenomena in nonstationary hearbeat time series. Chaos 5: 82-87. Leopold DA, Murayama Y, Logothetis NK (2003): ) Very slow activity fluctuations in monkey visuual cortex: implications for functional brain imaging. Cereb Cort 13: 422-433. Freeman WJ, Rogers LJ (2002): Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in γ EEGs. J Neurophysiol 87: 937-945. Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, von Stein A (1998): Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci USA 95: 7092-7096. Bressler SL, Kelso JAS (2001): Cortical coordination dynamics and cognition. Trends Cognit Neurosci 5: 26-36. Freeman WJ, Burke BC, Holmes MD (2003): Aperiodic phase-resetting in scalp EEG of β-γ oscillations by state transitions at α-θ rates. Hum Brain Mapping 19: 248-272. Gilden DL, Thornton T, Mallon MW (1995): 1/f Noise in human cognition. Science 267: 1837-1839. Singer W (2001): Consciousness and the binding problem. Ann NY Acad Sci 929: 123-146. Varela F, Lachaux J-P, Rodriguez E, Martinerie J (2001): The brainweb: phase synchronization and large-scale integration. Nature Rev Neurosci 2: 229-239. Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ (1999): Perception's shadow: long-distance synchronization of human brain activity. Nature 397: 430-433. Bak P, Tang Ch, Wiesenfeld K (1987): Self-organized criticality: an explanation of 1/f noise. Phys Rev Lett 59: 381-384. Shen Y, Olbrich E, Achermann P, Meier PF (2003): Dimensional complexity and spectral properties of the human sleep EEG. Clin Neurophysiol 114: 199-209. Stam CJ, van Cappellen van Walsum AM, Micheloyannis S (2002a): Variability of EEG synchronization during a working memory task in healthy subjects. Int J Psychophysiol 46: 53-66. Corral A, Perez J, Diaz-Guilera A, Arenas A (1995): Self-organized criticality and synchronization in a lattice model of integrate-and-fire oscillators. Phys Rev Lett 74: 118-121. Stam CJ, Breakspear M, van Cappellen van Walsum AM, van Dijk BW (2003a): Nonlinear synchronization in EEG and whole-head MEG recordings of healthy subjects. Hum Brain Mapping 19: 63-78. Basar E, Basar-Eroglu C, Karakas S, Schurmann M (2001): Gamma, α, δ, and θ oscillations govern cognitive processes. Int J Psychophysiol 39: 241-248. Takens F (1981): Detecting strange attractors in turbulence. Lecture Notes in Mathematics 898: 366-381. Burgess AP, Ali L (2002): Functional connectivity of γ EEG activity is modulated at low frequency during conscious recollection. Int J Psychophysiol 46: 91-100. Le van Quyen, M (2003): Disentangling the dynamic core: a research program for a neurodynamics at the large-scale. Biol Res 36: 67-88. Lisman JE, Idiart MAP (1995): Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science 267: 1512-1515. Peng CK, Buldyrev SV, Goldberger AL, Havlin S, Sciortino F, Simons M, Stanley HE (1992): Long-range correlations in nucleotide sequences. Nature 356: 168-170. Pfurtscheller G, Aranibar A (1997): Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroenceph Clin Neurophysiol 42: 817-826. 1995; 74 1995; 92 2003; 336 2000; 355 1997; 42 2002; 32 1992; 103 2003; 13 1998 2003; 14 2003; 36 2001; 929 2003; 17 2003; 19 2003a; 19 2003; 114 2002b; 19 1995; 5 1987; 59 2001; 21 2003; 127 2001; 5 2002; 163 2002; 46 2002a; 46 2002; 87 1992; 356 2002; 66 2002; 44 1999; 110 1981; 898 1995; 267 2001; 2 2001; 39 1999; 397 1998; 95 2003; 100 2001; 98 2003b; 108 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 Hopfield JJ (e_1_2_6_17_1) 2001; 98 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Bressler SL, Kelso JAS (2001): Cortical coordination dynamics and cognition. Trends Cognit Neurosci 5: 26-36. – reference: Stam CJ, van der Made Y, Pijnenburg YAL, Scheltens Ph (2003b): EEG synchronization in mild cognitive impairment and Alzheimer's disease. Acta Neurol Scand 108: 90-96. – reference: Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, von Stein A (1998): Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci USA 95: 7092-7096. – reference: Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ (1999): Perception's shadow: long-distance synchronization of human brain activity. Nature 397: 430-433. – reference: Lee J-M, Kim D-J, Kim I-Y, Park K-S, Kim SI (2002): Detrended fluctuation analysis of EEG in sleep apnea using MIT/BIG polysomnography data. Comput Biol Med 32: 37-47. – reference: Bak P, Tang Ch, Wiesenfeld K (1987): Self-organized criticality: an explanation of 1/f noise. Phys Rev Lett 59: 381-384. – reference: Fell J, Klaver P, Elfadil H, Schaller C, Elger Ch E, Fernandez G (2003): Rhinal-hippocampal θ coherence during declarative memory formation: interaction with γ synchronization? Eur J Neurosci 17: 1082-1088. – reference: Peng CK, Havlin S, Stanley HE, Goldbergeer AL (1995): Quantification of scaling exponents and crossover phenomena in nonstationary hearbeat time series. Chaos 5: 82-87. – reference: Freeman WJ, Burke BC, Holmes MD (2003): Aperiodic phase-resetting in scalp EEG of β-γ oscillations by state transitions at α-θ rates. Hum Brain Mapping 19: 248-272. – reference: Stam CJ, van Cappellen van Walsum AM, Pijnenburg YAL, Berendse HW, de Munck JC, Scheltens Ph, van Dijk BW (2002b): Generalized synchronization of MEG recordings in Alzheimer's disease: evidence for involvement of the γ band. J Clin Neurophysiol 19: 562-574. – reference: Stam CJ, van Cappellen van Walsum AM, Micheloyannis S (2002a): Variability of EEG synchronization during a working memory task in healthy subjects. Int J Psychophysiol 46: 53-66. – reference: Hopfield JJ, Brody CD (2001): What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. PNAS 98: 1282-1287. – reference: Breakspear M, Terry JR, Friston KJ (2003): Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysiocal model of neuronal dynamics. Network: Comput Neural Syst 14: 703-732. – reference: Pfurtscheller G, Aranibar A (1997): Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroenceph Clin Neurophysiol 42: 817-826. – reference: Stam CJ, van Dijk BW (2002): Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Physica D 163: 236-241. – reference: Burgess AP, Ali L (2002): Functional connectivity of γ EEG activity is modulated at low frequency during conscious recollection. Int J Psychophysiol 46: 91-100. – reference: Bullock TH, McClune MC, Achimowicz JZ, Iragui-Madoz VJ, Duckrow RB, Spencer SS (1995): Temporal fluctuations in coherence of brain waves. Proc Natl Acad Sci USA 92: 11568-11572. – reference: Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ (2001): Long-range temporal correlations and scaling behavior in human brain oscillations. J Neurosci 21: 1370-1377. – reference: Leopold DA, Murayama Y, Logothetis NK (2003): ) Very slow activity fluctuations in monkey visuual cortex: implications for functional brain imaging. Cereb Cort 13: 422-433. – reference: Greicius MD, Krasnow B, Reiss AL, Menon V (2003): Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100: 253-258. – reference: Hwa R, Ferree ThC (2002): Scaling properties of fluctations in the human electroencephalogram. Phys Rev E 66: 021901. – reference: Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1992): EEG coherency I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroenceph Clin Neurophysiol 103: 499-515. – reference: Schack B, Vath N, Petsche H, Geissler H-G, Moller E (2002): Phase-coupling of θ-γ EEG rhythms during short-term memory processing. Int J Psychophysiol 44: 143-163. – reference: Varela F, Lachaux J-P, Rodriguez E, Martinerie J (2001): The brainweb: phase synchronization and large-scale integration. Nature Rev Neurosci 2: 229-239. – reference: Engel AK, Singer W (2001): Temporal binding and the neural correlates of sensory awareness. Trends Cognit Sci 5: 16-25. – reference: Le van Quyen, M (2003): Disentangling the dynamic core: a research program for a neurodynamics at the large-scale. Biol Res 36: 67-88. – reference: Friston KJ (2000): The labile brain. I. Neuronal transients and nonlinear coupling. Phil Trans R Soc Lond B 355: 215-236. – reference: Stam CJ, Breakspear M, van Cappellen van Walsum AM, van Dijk BW (2003a): Nonlinear synchronization in EEG and whole-head MEG recordings of healthy subjects. Hum Brain Mapping 19: 63-78. – reference: Shen Y, Olbrich E, Achermann P, Meier PF (2003): Dimensional complexity and spectral properties of the human sleep EEG. Clin Neurophysiol 114: 199-209. – reference: Corral A, Perez J, Diaz-Guilera A, Arenas A (1995): Self-organized criticality and synchronization in a lattice model of integrate-and-fire oscillators. Phys Rev Lett 74: 118-121. – reference: Gilden DL, Thornton T, Mallon MW (1995): 1/f Noise in human cognition. Science 267: 1837-1839. – reference: Stam CJ, Pijn JPM, Suffczynski P, Lopes da Silva FH (1999): Dynamics of the human α rhythm: evidence for non-linearity? Clin Neurophysiol 110: 1801-1813. – reference: Basar E, Basar-Eroglu C, Karakas S, Schurmann M (2001): Gamma, α, δ, and θ oscillations govern cognitive processes. Int J Psychophysiol 39: 241-248. – reference: Freeman WJ, Rogers LJ (2002): Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in γ EEGs. J Neurophysiol 87: 937-945. – reference: Van Putten MJAM (2003): Proposed link rates in the human brain. J Neurosci Methods 127: 1-10. – reference: Peng CK, Buldyrev SV, Goldberger AL, Havlin S, Sciortino F, Simons M, Stanley HE (1992): Long-range correlations in nucleotide sequences. Nature 356: 168-170. – reference: Takens F (1981): Detecting strange attractors in turbulence. Lecture Notes in Mathematics 898: 366-381. – reference: Lisman JE, Idiart MAP (1995): Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science 267: 1512-1515. – reference: Singer W (2001): Consciousness and the binding problem. Ann NY Acad Sci 929: 123-146. – reference: Gong P, Nikolaev AR, van Leeuwen C (2003): Scale-invariant fluctuations of the dynamical synchronization in human brain electrical activity. Neurosci Lett 336: 33-36. – volume: 92 start-page: 11568 year: 1995 end-page: 11572 article-title: Temporal fluctuations in coherence of brain waves publication-title: Proc Natl Acad Sci USA – volume: 5 start-page: 26 year: 2001 end-page: 36 article-title: Cortical coordination dynamics and cognition publication-title: Trends Cognit Neurosci – volume: 19 start-page: 562 year: 2002b end-page: 574 article-title: Generalized synchronization of MEG recordings in Alzheimer's disease: evidence for involvement of the γ band publication-title: J Clin Neurophysiol – volume: 108 start-page: 90 year: 2003b end-page: 96 article-title: EEG synchronization in mild cognitive impairment and Alzheimer's disease publication-title: Acta Neurol Scand – volume: 898 start-page: 366 year: 1981 end-page: 381 article-title: Detecting strange attractors in turbulence publication-title: Lecture Notes in Mathematics – volume: 44 start-page: 143 year: 2002 end-page: 163 article-title: Phase‐coupling of θ‐γ EEG rhythms during short‐term memory processing publication-title: Int J Psychophysiol – volume: 114 start-page: 199 year: 2003 end-page: 209 article-title: Dimensional complexity and spectral properties of the human sleep EEG publication-title: Clin Neurophysiol – volume: 17 start-page: 1082 year: 2003 end-page: 1088 article-title: Rhinal‐hippocampal θ coherence during declarative memory formation: interaction with γ synchronization? publication-title: Eur J Neurosci – volume: 95 start-page: 7092 year: 1998 end-page: 7096 article-title: Synchronization between prefrontal and posterior association cortex during human working memory publication-title: Proc Natl Acad Sci USA – volume: 397 start-page: 430 year: 1999 end-page: 433 article-title: Perception's shadow: long‐distance synchronization of human brain activity publication-title: Nature – volume: 110 start-page: 1801 year: 1999 end-page: 1813 article-title: Dynamics of the human α rhythm: evidence for non‐linearity? publication-title: Clin Neurophysiol – volume: 356 start-page: 168 year: 1992 end-page: 170 article-title: Long‐range correlations in nucleotide sequences publication-title: Nature – volume: 98 start-page: 1282 year: 2001 end-page: 1287 article-title: What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration publication-title: PNAS – volume: 103 start-page: 499 year: 1992 end-page: 515 article-title: EEG coherency I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales publication-title: Electroenceph Clin Neurophysiol – volume: 87 start-page: 937 year: 2002 end-page: 945 article-title: Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in γ EEGs publication-title: J Neurophysiol – volume: 66 start-page: 021901 year: 2002 article-title: Scaling properties of fluctations in the human electroencephalogram publication-title: Phys Rev E – volume: 163 start-page: 236 year: 2002 end-page: 241 article-title: Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets publication-title: Physica D – volume: 127 start-page: 1 year: 2003 end-page: 10 article-title: Proposed link rates in the human brain publication-title: J Neurosci Methods – volume: 14 start-page: 703 year: 2003 end-page: 732 article-title: Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysiocal model of neuronal dynamics publication-title: Network: Comput Neural Syst – year: 1998 – volume: 32 start-page: 37 year: 2002 end-page: 47 article-title: Detrended fluctuation analysis of EEG in sleep apnea using MIT/BIG polysomnography data publication-title: Comput Biol Med – volume: 46 start-page: 53 year: 2002a end-page: 66 article-title: Variability of EEG synchronization during a working memory task in healthy subjects publication-title: Int J Psychophysiol – volume: 19 start-page: 63 year: 2003a end-page: 78 article-title: Nonlinear synchronization in EEG and whole‐head MEG recordings of healthy subjects publication-title: Hum Brain Mapping – volume: 267 start-page: 1837 year: 1995 end-page: 1839 article-title: 1/f Noise in human cognition publication-title: Science – volume: 36 start-page: 67 year: 2003 end-page: 88 article-title: Disentangling the dynamic core: a research program for a neurodynamics at the large‐scale publication-title: Biol Res – volume: 59 start-page: 381 year: 1987 end-page: 384 article-title: Self‐organized criticality: an explanation of 1/f noise publication-title: Phys Rev Lett – volume: 929 start-page: 123 year: 2001 end-page: 146 article-title: Consciousness and the binding problem publication-title: Ann NY Acad Sci – volume: 336 start-page: 33 year: 2003 end-page: 36 article-title: Scale‐invariant fluctuations of the dynamical synchronization in human brain electrical activity publication-title: Neurosci Lett – volume: 100 start-page: 253 year: 2003 end-page: 258 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: Proc Natl Acad Sci USA – volume: 267 start-page: 1512 year: 1995 end-page: 1515 article-title: Storage of 7 ± 2 short‐term memories in oscillatory subcycles publication-title: Science – volume: 39 start-page: 241 year: 2001 end-page: 248 article-title: Gamma, α, δ, and θ oscillations govern cognitive processes publication-title: Int J Psychophysiol – volume: 21 start-page: 1370 year: 2001 end-page: 1377 article-title: Long‐range temporal correlations and scaling behavior in human brain oscillations publication-title: J Neurosci – volume: 46 start-page: 91 year: 2002 end-page: 100 article-title: Functional connectivity of γ EEG activity is modulated at low frequency during conscious recollection publication-title: Int J Psychophysiol – volume: 42 start-page: 817 year: 1997 end-page: 826 article-title: Event‐related cortical desynchronization detected by power measurements of scalp EEG publication-title: Electroenceph Clin Neurophysiol – volume: 13 start-page: 422 year: 2003 end-page: 433 article-title: ) Very slow activity fluctuations in monkey visuual cortex: implications for functional brain imaging publication-title: Cereb Cort – volume: 355 start-page: 215 year: 2000 end-page: 236 article-title: The labile brain. I. Neuronal transients and nonlinear coupling publication-title: Phil Trans R Soc Lond B – volume: 19 start-page: 248 year: 2003 end-page: 272 article-title: Aperiodic phase‐resetting in scalp EEG of β‐γ oscillations by state transitions at α‐θ rates publication-title: Hum Brain Mapping – volume: 5 start-page: 82 year: 1995 end-page: 87 article-title: Quantification of scaling exponents and crossover phenomena in nonstationary hearbeat time series publication-title: Chaos – volume: 74 start-page: 118 year: 1995 end-page: 121 article-title: Self‐organized criticality and synchronization in a lattice model of integrate‐and‐fire oscillators publication-title: Phys Rev Lett – volume: 5 start-page: 16 year: 2001 end-page: 25 article-title: Temporal binding and the neural correlates of sensory awareness publication-title: Trends Cognit Sci – volume: 2 start-page: 229 year: 2001 end-page: 239 article-title: The brainweb: phase synchronization and large‐scale integration publication-title: Nature Rev Neurosci – ident: e_1_2_6_31_1 doi: 10.1016/S1388-2457(02)00338-3 – ident: e_1_2_6_33_1 doi: 10.1016/S0167-2789(01)00386-4 – ident: e_1_2_6_14_1 doi: 10.1126/science.7892611 – ident: e_1_2_6_38_1 doi: 10.1034/j.1600-0404.2003.02067.x – ident: e_1_2_6_7_1 doi: 10.1016/S0167-8760(02)00108-3 – ident: e_1_2_6_18_1 doi: 10.1103/PhysRevE.66.021901 – ident: e_1_2_6_20_1 doi: 10.1093/cercor/13.4.422 – ident: e_1_2_6_41_1 doi: 10.1038/35067550 – ident: e_1_2_6_10_1 doi: 10.1046/j.1460-9568.2003.02522.x – ident: e_1_2_6_42_1 – ident: e_1_2_6_27_1 doi: 10.1016/0013-4694(77)90235-8 – ident: e_1_2_6_12_1 doi: 10.1002/hbm.10120 – ident: e_1_2_6_13_1 doi: 10.1098/rstb.2000.0560 – ident: e_1_2_6_32_1 doi: 10.1111/j.1749-6632.2001.tb05712.x – ident: e_1_2_6_30_1 doi: 10.1016/S0167-8760(01)00199-4 – ident: e_1_2_6_11_1 doi: 10.1152/jn.00254.2001 – ident: e_1_2_6_40_1 doi: 10.1016/S0165-0270(03)00090-6 – ident: e_1_2_6_26_1 doi: 10.1063/1.166141 – ident: e_1_2_6_8_1 doi: 10.1103/PhysRevLett.74.118 – ident: e_1_2_6_34_1 doi: 10.1016/S1388-2457(99)00099-1 – ident: e_1_2_6_9_1 doi: 10.1016/S1364-6613(00)01568-0 – ident: e_1_2_6_24_1 doi: 10.1016/S0013-4694(97)00066-7 – ident: e_1_2_6_6_1 doi: 10.1073/pnas.92.25.11568 – ident: e_1_2_6_16_1 doi: 10.1073/pnas.0135058100 – ident: e_1_2_6_22_1 doi: 10.1523/JNEUROSCI.21-04-01370.2001 – ident: e_1_2_6_21_1 doi: 10.4067/S0716-97602003000100006 – ident: e_1_2_6_28_1 doi: 10.1038/17120 – ident: e_1_2_6_39_1 doi: 10.1007/BFb0091924 – ident: e_1_2_6_29_1 doi: 10.1073/pnas.95.12.7092 – ident: e_1_2_6_36_1 doi: 10.1097/00004691-200212000-00010 – volume: 98 start-page: 1282 year: 2001 ident: e_1_2_6_17_1 article-title: What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration publication-title: PNAS doi: 10.1073/pnas.98.3.1282 – ident: e_1_2_6_25_1 doi: 10.1038/356168a0 – ident: e_1_2_6_3_1 doi: 10.1016/S0167-8760(00)00145-8 – ident: e_1_2_6_15_1 doi: 10.1016/S0304-3940(02)01247-8 – ident: e_1_2_6_5_1 doi: 10.1016/S1364-6613(00)01564-3 – ident: e_1_2_6_35_1 doi: 10.1016/S0167-8760(02)00041-7 – ident: e_1_2_6_23_1 doi: 10.1126/science.7878473 – ident: e_1_2_6_37_1 doi: 10.1002/hbm.10106 – ident: e_1_2_6_19_1 doi: 10.1016/S0010-4825(01)00031-2 – ident: e_1_2_6_2_1 doi: 10.1103/PhysRevLett.59.381 – ident: e_1_2_6_4_1 doi: 10.1088/0954-898X_14_4_305 |
SSID | ssj0011501 |
Score | 2.2499402 |
Snippet | Higher brain functions depend upon the rapid creation and dissolution of ever changing synchronous cell assemblies. We examine the hypothesis that the dynamics... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 97 |
SubjectTerms | Adolescent Adult Biological and medical sciences Brain - physiology Brain Mapping Cortical Synchronization detrended fluctuation analysis EEG Electroencephalography Evoked Potentials, Visual - physiology Female Humans Investigative techniques, diagnostic techniques (general aspects) Male Medical sciences Nervous system Radiodiagnosis. Nmr imagery. Nmr spectrometry scale-free self-organized criticality self-similar synchronization working memory |
Title | Scale-free dynamics of global functional connectivity in the human brain |
URI | https://api.istex.fr/ark:/67375/WNG-QTHPT08Z-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20016 https://www.ncbi.nlm.nih.gov/pubmed/15108297 https://www.proquest.com/docview/20473076 https://www.proquest.com/docview/71869452 https://pubmed.ncbi.nlm.nih.gov/PMC6871799 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5KBfHFS6s2rdZFpPiSNvfdxacq1kPhHLycYhEh7Ca7tNTmlHOB1id_gr_RX-LM7knaoy2Ib4FMEnYyO_Pt7sw3AC-UpNMrlYZcmyjMtLQhBmG05UwKy60UwtVW9QdF7yDbP8wPl-BVWwvj-SG6DTeaGc5f0wRXerJzSRp6pF0heUx025SrRYDoY0cdRUDHLbYwxIYSPXDLKhQlO92TC7HoFqn1nHIj1QTVY31fi-uA59_5k1dxrQtMe_fgazskn49ysj2b6u3q-x9sj_855vtwdw5Y2a63sAewZJoVWN1tcLF-esG2mEshdXvzK3C7Pz-pX4X9Tzg68-vHTzs2htW-7_2EjSzzFCSMAqrfh2QVJdtUvo0FO24YYlLmegcyTQ0sHsLB3tvhm14479sQVrh6KcI0F0WNUESksUF8o2qdW6ukSaNK5zKr49pWUWaoKNfWVltEJVrlVhoT10mUmvQRLDejxqwBi6wxaVGLKrZRZo1VWpAT4mlSc5EqHsDL9g-W1ZzUnHprfCs9HXNSospKp7IAnneiZ57J4zqhLWcGnYQan1DqG8_Lz4N35Ydh7_0wEl_KQQCbC3Zy-Up0gQKhQQDPWsMpccbSMYxqzGg2wQ9l6FZ5cbMEpz5hWZ4E8Ngb2pW3x64YOgC-YIKdALGFL95pjo8ca3iBS2MuJWrMWdjNOih7r_vuYv3fRTfgjk9pou2pJ7A8Hc_MU0RrU73ppuVv5wM8mQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxEB6VVoK-cLRQlqO1EKp42XZv2xIv5SihNBFHKiokZNm7thqVblAOifLET-A38ksY29ltA62EeIuUyUaenRl_Hs98A_BYcnt7JdOQKh2FmeImxE0YbTnjzFDDGXO9Vd1e0TnI9g7zwwV42vTCeH6INuFmPcPFa-vgNiG9fcYaeqRcJ3lcXIElO9HbuuWL9y15lIU67riFm2zIMQY3vEJRst3-dG43WrKK_WarI-UYFWT8ZIuLoOffFZTnka3bmnZvwOdmUb4i5XhrOlFb5fc_-B7_d9U34foMs5Idb2S3YEHXK7C6U-N5_eSUbBJXRerS8ytwtTu7rF-FvQ-4PP3rx08z0ppUp7U8GZRjMjTEs5AQu6f6VCQpbb1N6SdZkEFNEJYSNz6QKDvD4jYc7L7sP--Es9ENYYkHmCJMc1ZUiEZYGmuEOLJSuTGS6zQqVc6zKq5MGWXa9uWayiiDwETJ3HCt4yqJUp3egcV6WOu7QCKjdVpUrIxNlBltpGI2DtE0qShLJQ3gSfMKRTnjNbfjNb4Iz8icCFSZcCoL4FEr-tWTeVwktOnsoJWQo2Nb_UZz8bH3Srzrd972I_ZJ9AJYnzOUs0diFGSIDgLYaCxHoNPamxhZ6-F0jH-UYWSlxeUS1I4Ky_IkgDVvaeeeHrt-6ADonA22ApYwfP6benDkiMMLPB1TzlFjzsQu14HoPOu6D_f-XXQDrnX63X2x_7r35j4s-wonm616AIuT0VQ_RPA2UevOR38DdZJAsg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tTxQxEJ4gJMQvqKCyvkBjDPHLwr63jZ9QPE_0LqhHJMakaXfbQNA9ci-J-smf4G_0lzhtbxdOITF-u-Tm9tLZ6cwz7cwzAI8lt7dXMg2p0lGYKW5CDMJoyxlnhhrOmOut6vWL7mG2f5QfLcDTphfG80O0B252Zzh_bTf4WWV2zklDj5VrJI-La7CUFRGzmdfeu5Y7yiIdl21hjA05uuCGVihKdtqfzgWjJavXr7Y4Uo5RP8YPtrgMef5dQHkR2LrI1LkBn5o1-YKU0-3pRG2X3_-ge_zPRd-ElRliJbvexG7Bgq5XYW23xmz9yzeyRVwNqTucX4Xl3uyqfg323-Pq9K8fP81Ia1L5wfdjMjTEc5AQG1H9QSQpbbVN6edYkJOaICglbnggUXaCxW047LwYPO-Gs8ENYYnpSxGmOSsqxCIsjTUCHFmp3BjJdRqVKudZFVemjDJtu3JNZZRBWKJkbrjWcZVEqU7vwGI9rPU6kMhonRYVK2MTZUYbqZj1QjRNKspSSQN40rxBUc5Yze1wjc_C8zEnAlUmnMoCeNSKnnkqj8uEtpwZtBJydGpr32guPvRfireD7sEgYh9FP4CNOTs5fyT6QIbYIIDNxnAEbll7DyNrPZyO8Y8y9Ku0uFqC2kFhWZ4EcNcb2oWnx64bOgA6Z4KtgKULn_-mPjl2tOEF5saUc9SYs7CrdSC6z3ruw71_F92E5YO9jnjzqv_6Plz35U32qOoBLE5GU_0QkdtEbbgd-huuHT9q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scale-free+dynamics+of+global+functional+connectivity+in+the+human+brain&rft.jtitle=Human+brain+mapping&rft.au=STAM%2C+Cornelis+Jan&rft.au=DE+BRUIN%2C+Eveline+Astrid&rft.date=2004-06-01&rft.pub=Wiley-Liss&rft.issn=1065-9471&rft.volume=22&rft.issue=2&rft.spage=97&rft.epage=109&rft_id=info:doi/10.1002%2Fhbm.20016&rft.externalDBID=n%2Fa&rft.externalDocID=15788341 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |