Integrating machining learning and multimodal neuroimaging to detect schizophrenia at the level of the individual

Schizophrenia is a severe psychiatric disorder associated with both structural and functional brain abnormalities. In the past few years, there has been growing interest in the application of machine learning techniques to neuroimaging data for the diagnostic and prognostic assessment of this disord...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 41; no. 5; pp. 1119 - 1135
Main Authors Lei, Du, Pinaya, Walter H. L., Young, Jonathan, Amelsvoort, Therese, Marcelis, Machteld, Donohoe, Gary, Mothersill, David O., Corvin, Aiden, Vieira, Sandra, Huang, Xiaoqi, Lui, Su, Scarpazza, Cristina, Arango, Celso, Bullmore, Ed, Gong, Qiyong, McGuire, Philip, Mechelli, Andrea
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Schizophrenia is a severe psychiatric disorder associated with both structural and functional brain abnormalities. In the past few years, there has been growing interest in the application of machine learning techniques to neuroimaging data for the diagnostic and prognostic assessment of this disorder. However, the vast majority of studies published so far have used either structural or functional neuroimaging data, without accounting for the multimodal nature of the disorder. Structural MRI and resting‐state functional MRI data were acquired from a total of 295 patients with schizophrenia and 452 healthy controls at five research centers. We extracted features from the data including gray matter volume, white matter volume, amplitude of low‐frequency fluctuation, regional homogeneity and two connectome‐wide based metrics: structural covariance matrices and functional connectivity matrices. A support vector machine classifier was trained on each dataset separately to distinguish the subjects at individual level using each of the single feature as well as their combination, and 10‐fold cross‐validation was used to assess the performance of the model. Functional data allow higher accuracy of classification than structural data (mean 82.75% vs. 75.84%). Within each modality, the combination of images and matrices improves performance, resulting in mean accuracies of 81.63% for structural data and 87.59% for functional data. The use of all combined structural and functional measures allows the highest accuracy of classification (90.83%). We conclude that combining multimodal measures within a single model is a promising direction for developing biologically informed diagnostic tools in schizophrenia.
AbstractList Schizophrenia is a severe psychiatric disorder associated with both structural and functional brain abnormalities. In the past few years, there has been growing interest in the application of machine learning techniques to neuroimaging data for the diagnostic and prognostic assessment of this disorder. However, the vast majority of studies published so far have used either structural or functional neuroimaging data, without accounting for the multimodal nature of the disorder. Structural MRI and resting-state functional MRI data were acquired from a total of 295 patients with schizophrenia and 452 healthy controls at five research centers. We extracted features from the data including gray matter volume, white matter volume, amplitude of low-frequency fluctuation, regional homogeneity and two connectome-wide based metrics: structural covariance matrices and functional connectivity matrices. A support vector machine classifier was trained on each dataset separately to distinguish the subjects at individual level using each of the single feature as well as their combination, and 10-fold cross-validation was used to assess the performance of the model. Functional data allow higher accuracy of classification than structural data (mean 82.75% vs. 75.84%). Within each modality, the combination of images and matrices improves performance, resulting in mean accuracies of 81.63% for structural data and 87.59% for functional data. The use of all combined structural and functional measures allows the highest accuracy of classification (90.83%). We conclude that combining multimodal measures within a single model is a promising direction for developing biologically informed diagnostic tools in schizophrenia.Schizophrenia is a severe psychiatric disorder associated with both structural and functional brain abnormalities. In the past few years, there has been growing interest in the application of machine learning techniques to neuroimaging data for the diagnostic and prognostic assessment of this disorder. However, the vast majority of studies published so far have used either structural or functional neuroimaging data, without accounting for the multimodal nature of the disorder. Structural MRI and resting-state functional MRI data were acquired from a total of 295 patients with schizophrenia and 452 healthy controls at five research centers. We extracted features from the data including gray matter volume, white matter volume, amplitude of low-frequency fluctuation, regional homogeneity and two connectome-wide based metrics: structural covariance matrices and functional connectivity matrices. A support vector machine classifier was trained on each dataset separately to distinguish the subjects at individual level using each of the single feature as well as their combination, and 10-fold cross-validation was used to assess the performance of the model. Functional data allow higher accuracy of classification than structural data (mean 82.75% vs. 75.84%). Within each modality, the combination of images and matrices improves performance, resulting in mean accuracies of 81.63% for structural data and 87.59% for functional data. The use of all combined structural and functional measures allows the highest accuracy of classification (90.83%). We conclude that combining multimodal measures within a single model is a promising direction for developing biologically informed diagnostic tools in schizophrenia.
Schizophrenia is a severe psychiatric disorder associated with both structural and functional brain abnormalities. In the past few years, there has been growing interest in the application of machine learning techniques to neuroimaging data for the diagnostic and prognostic assessment of this disorder. However, the vast majority of studies published so far have used either structural or functional neuroimaging data, without accounting for the multimodal nature of the disorder. Structural MRI and resting-state functional MRI data were acquired from a total of 295 patients with schizophrenia and 452 healthy controls at five research centers. We extracted features from the data including gray matter volume, white matter volume, amplitude of low-frequency fluctuation, regional homogeneity and two connectome-wide based metrics: structural covariance matrices and functional connectivity matrices. A support vector machine classifier was trained on each dataset separately to distinguish the subjects at individual level using each of the single feature as well as their combination, and 10-fold cross-validation was used to assess the performance of the model. Functional data allow higher accuracy of classification than structural data (mean 82.75% vs. 75.84%). Within each modality, the combination of images and matrices improves performance, resulting in mean accuracies of 81.63% for structural data and 87.59% for functional data. The use of all combined structural and functional measures allows the highest accuracy of classification (90.83%). We conclude that combining multimodal measures within a single model is a promising direction for developing biologically informed diagnostic tools in schizophrenia.
Audience Academic
Author Vieira, Sandra
Young, Jonathan
Arango, Celso
Gong, Qiyong
Amelsvoort, Therese
Lui, Su
Corvin, Aiden
Donohoe, Gary
Bullmore, Ed
McGuire, Philip
Scarpazza, Cristina
Lei, Du
Mothersill, David O.
Pinaya, Walter H. L.
Huang, Xiaoqi
Marcelis, Machteld
Mechelli, Andrea
AuthorAffiliation 9 Child and Adolescent Department of Psychiatry Hospital General Universitario Gregorio Marañon, School of Medicine, Universidad Complutense Madrid, IiSGM, CIBERSAM Madrid Spain
10 Brain Mapping Unit, Department of Psychiatry University of Cambridge Cambridge UK
1 Huaxi MR Research Center (HMRRC), Department of Radiology West China Hospital of Sichuan University Chengdu China
6 School of Psychology & Center for neuroimaging and Cognitive Genomics, NUI Galway University Galway Ireland
7 Department of Psychiatry School of Medicine, Trinity College Dublin Dublin Ireland
2 Department of Psychosis Studies Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park London UK
3 Department of Neuroimaging Institute of Psychiatry, Psychology, and Neuroscience, King's College London London UK
5 Mental Health Care Institute Eindhoven (GGzE) Eindhoven The Netherlands
4 Department of Psychiatry and Neuropsychology School of Mental Health and Neuroscience, Maastricht Univers
AuthorAffiliation_xml – name: 3 Department of Neuroimaging Institute of Psychiatry, Psychology, and Neuroscience, King's College London London UK
– name: 2 Department of Psychosis Studies Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park London UK
– name: 8 Department of General Psychology University of Padua Padua Italy
– name: 4 Department of Psychiatry and Neuropsychology School of Mental Health and Neuroscience, Maastricht University Medical Center Maastricht The Netherlands
– name: 11 Psychoradiology Research Unit of Chinese Academy of Medical Sciences West China Hospital of Sichuan University Chengdu Sichuan China
– name: 1 Huaxi MR Research Center (HMRRC), Department of Radiology West China Hospital of Sichuan University Chengdu China
– name: 5 Mental Health Care Institute Eindhoven (GGzE) Eindhoven The Netherlands
– name: 6 School of Psychology & Center for neuroimaging and Cognitive Genomics, NUI Galway University Galway Ireland
– name: 7 Department of Psychiatry School of Medicine, Trinity College Dublin Dublin Ireland
– name: 10 Brain Mapping Unit, Department of Psychiatry University of Cambridge Cambridge UK
– name: 12 Department of Radiology Shengjing Hospital of China Medical University Shenyang Liaoning China
– name: 9 Child and Adolescent Department of Psychiatry Hospital General Universitario Gregorio Marañon, School of Medicine, Universidad Complutense Madrid, IiSGM, CIBERSAM Madrid Spain
Author_xml – sequence: 1
  givenname: Du
  surname: Lei
  fullname: Lei, Du
  organization: Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park
– sequence: 2
  givenname: Walter H. L.
  orcidid: 0000-0003-3739-1087
  surname: Pinaya
  fullname: Pinaya, Walter H. L.
  organization: Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park
– sequence: 3
  givenname: Jonathan
  surname: Young
  fullname: Young, Jonathan
  organization: Institute of Psychiatry, Psychology, and Neuroscience, King's College London
– sequence: 4
  givenname: Therese
  surname: Amelsvoort
  fullname: Amelsvoort, Therese
  organization: School of Mental Health and Neuroscience, Maastricht University Medical Center
– sequence: 5
  givenname: Machteld
  surname: Marcelis
  fullname: Marcelis, Machteld
  organization: Mental Health Care Institute Eindhoven (GGzE)
– sequence: 6
  givenname: Gary
  surname: Donohoe
  fullname: Donohoe, Gary
  organization: School of Psychology & Center for neuroimaging and Cognitive Genomics, NUI Galway University
– sequence: 7
  givenname: David O.
  surname: Mothersill
  fullname: Mothersill, David O.
  organization: School of Psychology & Center for neuroimaging and Cognitive Genomics, NUI Galway University
– sequence: 8
  givenname: Aiden
  surname: Corvin
  fullname: Corvin, Aiden
  organization: School of Medicine, Trinity College Dublin
– sequence: 9
  givenname: Sandra
  surname: Vieira
  fullname: Vieira, Sandra
  organization: Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park
– sequence: 10
  givenname: Xiaoqi
  surname: Huang
  fullname: Huang, Xiaoqi
  organization: West China Hospital of Sichuan University
– sequence: 11
  givenname: Su
  surname: Lui
  fullname: Lui, Su
  organization: West China Hospital of Sichuan University
– sequence: 12
  givenname: Cristina
  surname: Scarpazza
  fullname: Scarpazza, Cristina
  organization: University of Padua
– sequence: 13
  givenname: Celso
  surname: Arango
  fullname: Arango, Celso
  organization: Hospital General Universitario Gregorio Marañon, School of Medicine, Universidad Complutense Madrid, IiSGM, CIBERSAM
– sequence: 14
  givenname: Ed
  surname: Bullmore
  fullname: Bullmore, Ed
  organization: University of Cambridge
– sequence: 15
  givenname: Qiyong
  orcidid: 0000-0002-5912-4871
  surname: Gong
  fullname: Gong, Qiyong
  email: qiyonggong@hmrrc.org.cn
  organization: Shengjing Hospital of China Medical University
– sequence: 16
  givenname: Philip
  surname: McGuire
  fullname: McGuire, Philip
  organization: Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park
– sequence: 17
  givenname: Andrea
  surname: Mechelli
  fullname: Mechelli, Andrea
  organization: Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31737978$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNURD_gwB9AkbjAIVt_xU4uSKUCWqmIC5yt2WSSuHLsreMsKr8eZ7cUWgHywWPPM69nPHOcHTjvMMteUrKihLDTYT2umKgkf5IdUVKrgtCaHyy2LItaKHqYHU_TNSGUloQ-yw45VVzVqjrKbi5dxD5ANK7PR2gG4xbLIoSdAa7Nx9lGM_oWbO5wDt6M0C--6PMWIzYxn1LcD78ZAjoDOcQ8Dpg0tmhz3-0OxrVma9oZ7PPsaQd2whd3-0n27eOHr-cXxdWXT5fnZ1dFUyrJC5BVKwjQTqKSsgSBKWcJHKoO1tDUyKFEXNeMcVEJBqoGICpholVC1JKfZO_2upt5PWLboIsBrN6ElH641R6MfuhxZtC932rFZEUqkQTe3AkEfzPjFPVopgatBYd-njTjtCxZRemCvn6EXvs5uFReohQRnJQ1-031YFEb1_n0brOI6jOVesWEZEveq79QabU4miY1vjPp_kHAqz8Lva_wV5MT8HYPNMFPU8DuHqFELwOk0wDp3QAl9vQR25iYpsMvf2Ts_yK-p7xu_y2tL95_3kf8BEfj1x4
CitedBy_id crossref_primary_10_1002_hbm_25276
crossref_primary_10_1016_j_jpsychires_2024_02_024
crossref_primary_10_1016_j_schres_2022_01_058
crossref_primary_10_1002_hbm_25951
crossref_primary_10_1016_j_bpsc_2023_04_007
crossref_primary_10_1016_j_jpsychires_2021_07_044
crossref_primary_10_1038_s41398_021_01705_z
crossref_primary_10_1038_s41398_022_01939_5
crossref_primary_10_3389_fnins_2021_785595
crossref_primary_10_1038_s41398_023_02314_8
crossref_primary_10_1093_schbul_sbab112
crossref_primary_10_1093_schbul_sbac047
crossref_primary_10_1007_s12264_025_01385_5
crossref_primary_10_1016_j_neunet_2024_106296
crossref_primary_10_1038_s41537_024_00464_2
crossref_primary_10_7554_eLife_85082
crossref_primary_10_3389_fnins_2022_879703
crossref_primary_10_1038_s41380_023_02195_9
crossref_primary_10_1016_j_ebiom_2022_103977
crossref_primary_10_3390_diagnostics14232698
crossref_primary_10_1016_j_neuroimage_2025_121052
crossref_primary_10_3389_fpsyt_2021_597918
crossref_primary_10_3390_diagnostics13132140
crossref_primary_10_3390_healthcare10040643
crossref_primary_10_1007_s12652_023_04536_6
crossref_primary_10_1016_j_radi_2025_01_013
crossref_primary_10_1016_j_neuroimage_2023_120497
crossref_primary_10_1111_cns_14906
crossref_primary_10_3389_fnins_2021_685005
crossref_primary_10_3389_fnins_2023_1153035
crossref_primary_10_1155_2021_5550914
crossref_primary_10_1038_s41598_023_38101_0
crossref_primary_10_1007_s11042_022_13809_9
crossref_primary_10_1007_s13246_023_01225_8
crossref_primary_10_1016_j_ijlp_2025_102086
crossref_primary_10_3389_fpsyt_2020_567534
crossref_primary_10_3389_fnins_2022_1099560
crossref_primary_10_1016_j_psychres_2021_114294
crossref_primary_10_1186_s12916_023_02941_4
crossref_primary_10_20900_jpbs_20230005
crossref_primary_10_3389_fnagi_2022_911220
crossref_primary_10_1038_s41598_025_89359_5
crossref_primary_10_1002_hbm_25606
crossref_primary_10_1016_j_ijlp_2025_102082
crossref_primary_10_3389_fnins_2023_1132607
crossref_primary_10_3390_biomedicines11071990
crossref_primary_10_1371_journal_pcbi_1012692
crossref_primary_10_1016_j_biopsych_2024_06_011
crossref_primary_10_1007_s44192_023_00041_6
crossref_primary_10_1111_pcn_13736
crossref_primary_10_1038_s41398_023_02371_z
crossref_primary_10_1016_j_compbiomed_2022_105554
crossref_primary_10_3390_jpm11010032
crossref_primary_10_1192_j_eurpsy_2021_2248
crossref_primary_10_3389_fpsyt_2023_1232015
crossref_primary_10_1016_j_jad_2024_11_035
crossref_primary_10_1109_JBHI_2022_3168357
crossref_primary_10_3390_diagnostics11030393
crossref_primary_10_1016_j_schres_2021_06_011
crossref_primary_10_1016_j_bpsgos_2022_05_004
crossref_primary_10_1016_j_neuroimage_2024_120911
Cites_doi 10.1093/brain/awv111
10.1016/j.nicl.2015.09.015
10.1038/srep27619
10.1016/j.neuroimage.2015.05.018
10.1038/nrn2575
10.3389/fnhum.2013.00910
10.1093/schbul/sbw053
10.3389/fnins.2014.00189
10.1186/s12888-016-0912-8
10.1097/WCO.0000000000000220
10.1016/j.neurobiolaging.2013.02.020
10.1016/j.biopsych.2015.06.026
10.1016/j.neuroimage.2011.01.008
10.1007/BF00994018
10.1017/S003329171300024X
10.1089/brain.2013.0209
10.1371/journal.pone.0058921
10.1001/archpsyc.1992.01820080023004
10.1371/journal.pone.0021047
10.1146/annurev-clinpsy-040510-143934
10.1016/j.neuroimage.2016.01.056
10.1523/JNEUROSCI.0333-10.2010
10.3389/fnhum.2012.00145
10.1109/TNB.2017.2751074
10.1016/j.neuroimage.2013.08.048
10.1016/j.schres.2012.04.021
10.1523/JNEUROSCI.2874-10.2010
10.1371/journal.pbio.3000042
10.1016/j.schres.2016.03.033
10.1016/j.schres.2006.05.007
10.1016/j.schres.2006.06.028
10.1016/j.nicl.2013.09.003
10.1093/schbul/sbs095
10.3389/fnhum.2013.00235
10.1093/brain/awn018
10.1093/cercor/bhr221
10.1371/journal.pone.0047714
10.1214/aoms/1177729694
10.1007/s12264-016-0090-1
10.1016/j.drudis.2015.03.003
10.1016/j.neuroimage.2011.10.003
10.3389/fnins.2016.00292
10.1176/appi.ajp.161.9.1603
10.1007/978-1-4939-7027-8_19
10.1001/jamapsychiatry.2015.0566
10.1016/S0140-6736(13)62036-X
10.3389/fninf.2017.00059
10.3389/fpsyt.2016.00052
10.1038/sdata.2016.110
10.1016/j.schres.2015.08.025
10.1016/j.neuroimage.2019.01.074
10.1002/brb3.448
10.1016/j.pscychresns.2015.08.007
10.1016/j.neuroimage.2005.02.018
10.1002/brb3.602
10.1016/j.neuroimage.2012.08.052
10.1142/S0129065715500070
10.1176/ajp.2006.163.12.2103
10.1016/j.neubiorev.2012.01.004
10.1016/j.jneumeth.2014.09.003
10.1016/j.neuroimage.2014.04.057
10.1145/1961189.1961199
10.1016/j.jpsychires.2013.06.010
10.1016/j.neubiorev.2017.01.002
10.1152/jn.90777.2008
10.1016/j.neuroimage.2011.10.018
10.1001/archgenpsychiatry.2009.62
10.1176/appi.ajp.2012.12010056
10.1001/archgenpsychiatry.2010.199
10.1016/j.euroneuro.2014.02.011
10.1001/jamapsychiatry.2018.1543
10.1097/YCO.0b013e32835d9e6a
10.1093/cercor/bhu239
10.1177/0963721410377601
10.1371/journal.pone.0062867
10.1177/1073858414537560
10.1186/1471-244X-11-18
10.1038/nature16874
10.1016/j.neuroimage.2015.12.007
10.1016/j.neurobiolaging.2015.10.015
10.1177/070674371405900104
10.1016/j.neuroimage.2009.11.011
10.1016/j.neuroimage.2013.08.053
ContentType Journal Article
Copyright 2019 The Authors. published by Wiley Periodicals, Inc.
2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
COPYRIGHT 2019 John Wiley & Sons, Inc.
2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. published by Wiley Periodicals, Inc.
– notice: 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
– notice: COPYRIGHT 2019 John Wiley & Sons, Inc.
– notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.24863
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE



CrossRef

Technology Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Lei et al
EISSN 1097-0193
EndPage 1135
ExternalDocumentID PMC7268084
A710624626
31737978
10_1002_hbm_24863
HBM24863
Genre article
Research Support, Non-U.S. Gov't
Multicenter Study
Journal Article
GrantInformation_xml – fundername: Newton International Fellowship
  funderid: NF151455
– fundername: Science Foundation Ireland
  funderid: SFI 12/1365
– fundername: Wellcome Trust's Innovator Award
  funderid: 208519/Z/17/Z
– fundername: National Natural Science Foundation of China
  funderid: 81220108013; 81501452; 81761128023; 81227002
– fundername: European Commission
  funderid: 603196
– fundername: European Research Council
  funderid: REA‐677467
– fundername: Wellcome Trust
  grantid: 208519/Z/17/Z
– fundername: Wellcome Trust's Innovator Award
  grantid: 208519/Z/17/Z
– fundername: ;
  grantid: REA‐677467
– fundername: Newton International Fellowship
  grantid: NF151455
– fundername: ;
  grantid: SFI 12/1365
– fundername: ;
  grantid: 603196
– fundername: ;
  grantid: 81220108013; 81501452; 81761128023; 81227002
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
.Y3
31~
7X7
8FI
8FJ
AAFWJ
AANHP
AAYXX
ABEML
ABJNI
ABUWG
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AFKRA
AFPKN
AGQPQ
ASPBG
AVWKF
AZFZN
BENPR
BFHJK
CCPQU
CITATION
EJD
FEDTE
FYUFA
GAKWD
HF~
HMCUK
HVGLF
LW6
M6M
PHGZM
PHGZT
RIWAO
RJQFR
SAMSI
UKHRP
WXSBR
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5763-a68d40a1f6e7665a4e1736a3a8fabac9e3a5eeb92234842a79aa07a4e4d744963
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:37:08 EDT 2025
Fri Jul 11 01:31:20 EDT 2025
Sat Jul 26 02:15:08 EDT 2025
Tue Jun 17 21:10:13 EDT 2025
Tue Jun 10 20:44:09 EDT 2025
Mon Jul 21 05:43:20 EDT 2025
Tue Jul 01 01:10:56 EDT 2025
Thu Apr 24 23:10:49 EDT 2025
Wed Jan 22 16:34:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords functional connectivity
schizophrenia
machine learning
graph theoretical analysis
neuroimaging
Language English
License Attribution
2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5763-a68d40a1f6e7665a4e1736a3a8fabac9e3a5eeb92234842a79aa07a4e4d744963
Notes Funding information
European Commission, Grant/Award Number: 603196; European Research Council, Grant/Award Number: REA‐677467; National Natural Science Foundation of China, Grant/Award Numbers: 81220108013, 81501452, 81761128023, 81227002; Newton International Fellowship, Grant/Award Number: NF151455; Science Foundation Ireland, Grant/Award Number: SFI 12/1365; Wellcome Trust's Innovator Award, Grant/Award Number: 208519/Z/17/Z
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information European Commission, Grant/Award Number: 603196; European Research Council, Grant/Award Number: REA‐677467; National Natural Science Foundation of China, Grant/Award Numbers: 81220108013, 81501452, 81761128023, 81227002; Newton International Fellowship, Grant/Award Number: NF151455; Science Foundation Ireland, Grant/Award Number: SFI 12/1365; Wellcome Trust's Innovator Award, Grant/Award Number: 208519/Z/17/Z
ORCID 0000-0003-3739-1087
0000-0002-5912-4871
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24863
PMID 31737978
PQID 2370430592
PQPubID 996345
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7268084
proquest_miscellaneous_2315528114
proquest_journals_2370430592
gale_infotracmisc_A710624626
gale_infotracacademiconefile_A710624626
pubmed_primary_31737978
crossref_primary_10_1002_hbm_24863
crossref_citationtrail_10_1002_hbm_24863
wiley_primary_10_1002_hbm_24863_HBM24863
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 1, 2020
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 1, 2020
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 7
2013; 26
2013; 3
2010; 19
2015; 72
2004; 161
2013; 64
2019; 17
2011; 11
1951; 22
2011; 55
2012; 59
2005; 26
2013; 7
2012; 169
2013; 8
2012; 12
2016; 37
2016; 79
2016; 33
1995; 20
2017; 74
2014; 4
2009; 10
2000
2015; 138
2006; 163
2016; 42
2014; 59
2011; 68
1992; 49
2014; 8
2010; 4
2018; 75
2012; 22
2012; 139
2010; 30
2014; 98
2009; 66
2014; 237
2013; 47
2011; 2
2012
2013; 43
2015; 168
2016; 129
2016; 124
2016; 10
2006
2014; 2014
2004
2012; 36
2015; 9
2014; 84
2016; 16
2011; 6
2011; 5
2011; 7
2019; 189
2016; 6
2015; 25
2016; 7
2010; 49
2015; 28
2013; 39
2016; 3
2006; 87
2017; 16
2015; 234
2013; 34
2015; 20
2017; 11
2015; 21
2016; 530
2009; 101
2017; 1613
2012; 6
2012; 7
2017; 145
2014; 383
2016; 26
2008; 131
2016; 175
e_1_2_8_28_1
Yu Q. (e_1_2_8_91_1) 2011; 5
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Arbabshirani M. R. (e_1_2_8_5_1) 2014; 2014
e_1_2_8_70_1
Wang H. (e_1_2_8_80_1) 2016; 6
Pedregosa F. (e_1_2_8_54_1) 2012; 12
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
American Psychiatric Association (e_1_2_8_2_1) 2000
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_93_1
e_1_2_8_29_1
Oh J. (e_1_2_8_49_1) 2017; 7
First M. B. (e_1_2_8_22_1) 2004
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Wang J. (e_1_2_8_81_1) 2015; 9
Lieberman A. J. (e_1_2_8_39_1) 2006
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_88_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_92_1
e_1_2_8_94_1
e_1_2_8_90_1
Chao‐Gan Y. (e_1_2_8_13_1) 2010; 4
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
Wang J. (e_1_2_8_82_1) 2010; 4
First M. B. (e_1_2_8_23_1) 2012
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 124
  start-page: 127
  issue: Pt. A
  year: 2016
  end-page: 146
  article-title: Deep neural network with weight sparsity control and pre‐training extracts hierarchical features and enhances classification performance: Evidence from whole‐brain resting‐state functional connectivity patterns of schizophrenia
  publication-title: NeuroImage
– volume: 36
  start-page: 1140
  issue: 4
  year: 2012
  end-page: 1152
  article-title: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review
  publication-title: Neuroscience and Biobehavioral Reviews
– volume: 25
  start-page: 733
  issue: 5
  year: 2015
  end-page: 748
  article-title: Connectomics: A new paradigm for understanding brain disease
  publication-title: European Neuropsychopharmacology
– volume: 8
  start-page: 189
  year: 2014
  article-title: An empirical comparison of different approaches for combining multimodal neuroimaging data with support vector machine
  publication-title: Frontiers in Neuroscience
– volume: 30
  start-page: 15915
  issue: 47
  year: 2010
  end-page: 15926
  article-title: Aberrant frontal and temporal complex network structure in schizophrenia: A graph theoretical analysis
  publication-title: Journal of Neuroscience
– start-page: 365
  year: 2006
  end-page: 381
  article-title: Treatment of chronic schizophrenia
  publication-title: The American Psychiatric Publishing Textbook of Schizophrenia
– volume: 2014
  start-page: 6691
  year: 2014
  end-page: 6694
  article-title: Accurate classification of schizophrenia patients based on novel resting‐state fMRI features
  publication-title: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 7
  issue: 11
  year: 2012
  article-title: Automatic classification of early Parkinson's disease with multi‐modal MR imaging
  publication-title: PLoS One
– volume: 30
  start-page: 9477
  issue: 28
  year: 2010
  end-page: 9487
  article-title: Functional connectivity and brain networks in schizophrenia
  publication-title: The Journal of Neuroscience
– volume: 25
  issue: 3
  year: 2015
  article-title: Discrimination of schizophrenia auditory hallucinators by machine learning of resting‐state functional MRI
  publication-title: International Journal of Neural Systems
– volume: 98
  start-page: 405
  year: 2014
  end-page: 415
  article-title: Correction of inter‐scanner and within‐subject variance in structural MRI based automated diagnosing
  publication-title: NeuroImage
– volume: 8
  issue: 5
  year: 2013
  article-title: Combining classification with fMRI‐derived complex network measures for potential neurodiagnostics
  publication-title: PLoS One
– volume: 64
  start-page: 240
  year: 2013
  end-page: 256
  article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting‐state functional connectivity data
  publication-title: NeuroImage
– volume: 66
  start-page: 700
  issue: 7
  year: 2009
  end-page: 712
  article-title: Use of neuroanatomical pattern classification to identify subjects in at‐risk mental states of psychosis and predict disease transition
  publication-title: Archives of General Psychiatry
– volume: 7
  start-page: 113
  year: 2011
  end-page: 140
  article-title: Brain graphs: Graphical models of the human brain connectome
  publication-title: Annual Review of Clinical Psychology
– volume: 59
  start-page: 13
  issue: 1
  year: 2014
  end-page: 17
  article-title: Cognition, function, and disability in patients with schizophrenia: A review of longitudinal studies
  publication-title: Canadian Journal of Psychiatry
– volume: 2
  start-page: 1
  issue: 3
  year: 2011
  end-page: 27
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Transactions on Intelligent Systems & Technology
– volume: 8
  issue: 3
  year: 2013
  article-title: Single‐subject grey matter graphs in Alzheimer's disease
  publication-title: PLoS One
– volume: 84
  start-page: 299
  year: 2014
  end-page: 306
  article-title: Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects
  publication-title: NeuroImage
– volume: 19
  start-page: 226
  issue: 4
  year: 2010
  end-page: 231
  article-title: Structural and functional brain abnormalities in schizophrenia
  publication-title: Current Directions in Psychological Science
– volume: 4
  start-page: 337
  issue: 5
  year: 2014
  end-page: 346
  article-title: Single‐subject gray matter graph properties and their relationship with cognitive impairment in early‐ and late‐onset Alzheimer's disease
  publication-title: Brain Connectivity
– volume: 129
  start-page: 247
  year: 2016
  end-page: 259
  article-title: Statistical machine learning to identify traumatic brain injury (TBI) from structural disconnections of white matter networks
  publication-title: NeuroImage
– volume: 383
  start-page: 1677
  issue: 9929
  year: 2014
  end-page: 1687
  article-title: Schizophrenia: An integrated sociodevelopmental‐cognitive model
  publication-title: Lancet
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  end-page: 86
  article-title: On information and sufficiency
  publication-title: Annals of Mathematical Statistics
– volume: 34
  start-page: 2023
  issue: 8
  year: 2013
  end-page: 2036
  article-title: Alzheimer's disease: Connecting findings from graph theoretical studies of brain networks
  publication-title: Neurobiology of Aging
– volume: 6
  issue: 4
  year: 2016
  article-title: Single‐subject morphological brain networks: Connectivity mapping, topological characterization and test‐retest reliability
  publication-title: Brain and Behavior: A Cognitive Neuroscience Perspective
– volume: 87
  start-page: 60
  issue: 1–3
  year: 2006
  end-page: 66
  article-title: Small‐world networks and disturbed functional connectivity in schizophrenia
  publication-title: Schizophrenia Research
– volume: 234
  start-page: 66
  issue: 1
  year: 2015
  end-page: 73
  article-title: The neural basis of a deficit in abstract thinking in patients with schizophrenia
  publication-title: Psychiatry Research
– year: 2004
– volume: 20
  start-page: 924
  issue: 8
  year: 2015
  end-page: 927
  article-title: Predicting clinical response in people at ultra‐high risk of psychosis: A systematic and quantitative review
  publication-title: Drug Discovery Today
– volume: 43
  start-page: 2547
  issue: 12
  year: 2013
  end-page: 2562
  article-title: Using genetic, cognitive and multi‐modal neuroimaging data to identify ultra‐high‐risk and first‐episode psychosis at the individual level
  publication-title: Psychological Medicine
– volume: 7
  issue: 1
  year: 2017
  article-title: Aberrant neural networks for the recognition memory of socially relevant information in patients with schizophrenia
  publication-title: Brain and Behavior: A Cognitive Neuroscience Perspective
– volume: 6
  start-page: 145
  year: 2012
  article-title: High classification accuracy for schizophrenia with rest and task FMRI data
  publication-title: Frontiers in Human Neuroscience
– volume: 7
  start-page: 52
  year: 2016
  article-title: Identifying individuals at high risk of psychosis: Predictive utility of support vector machine using structural and functional MRI data
  publication-title: Frontiers in Psychiatry
– volume: 3
  year: 2016
  article-title: A phenome‐wide examination of neural and cognitive function
  publication-title: Scientific Data
– volume: 22
  start-page: 1530
  issue: 7
  year: 2012
  end-page: 1541
  article-title: Similarity‐based extraction of individual networks from gray matter MRI scans
  publication-title: Cerebral Cortex
– volume: 49
  start-page: 3110
  issue: 4
  year: 2010
  end-page: 3121
  article-title: Discriminative analysis of resting‐state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI
  publication-title: NeuroImage
– volume: 3
  start-page: 279
  year: 2013
  end-page: 289
  article-title: Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single‐subject level
  publication-title: NeuroImage: Clinical
– volume: 68
  start-page: 128
  issue: 2
  year: 2011
  end-page: 137
  article-title: Long‐term antipsychotic treatment and brain volumes: A longitudinal study of first‐episode schizophrenia
  publication-title: Archives of General Psychiatry
– volume: 9
  start-page: 555
  year: 2015
  end-page: 563
  article-title: Classifying individuals at high‐risk for psychosis based on functional brain activity during working memory processing
  publication-title: NeuroImage: Clinical
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  article-title: Support vector network
  publication-title: Machine Learning
– volume: 87
  start-page: 297
  issue: 1–3
  year: 2006
  end-page: 306
  article-title: Classification of adolescent psychotic disorders using linear discriminant analysis
  publication-title: Schizophrenia Research
– volume: 530
  start-page: 162
  issue: 7589
  year: 2016
  end-page: 163
  article-title: Schizophrenia: From genetics to physiology at last
  publication-title: Nature
– volume: 16
  start-page: 600
  issue: 7
  year: 2017
  end-page: 608
  article-title: Classification of schizophrenia based on individual hierarchical brain networks constructed from structural MRI images
  publication-title: IEEE Transactions on Nanobioscience
– volume: 6
  issue: 6
  year: 2011
  article-title: Classification of first‐episode schizophrenia patients and healthy subjects by automated MRI measures of regional brain volume and cortical thickness
  publication-title: PLoS One
– volume: 138
  start-page: 2059
  issue: Pt. 7
  year: 2015
  end-page: 2073
  article-title: Individualized differential diagnosis of schizophrenia and mood disorders using neuroanatomical biomarkers
  publication-title: Brain
– volume: 39
  start-page: 1105
  issue: 5
  year: 2013
  end-page: 1114
  article-title: Distinguishing prodromal from first‐episode psychosis using neuroanatomical single‐subject pattern recognition
  publication-title: Schizophrenia Bulletin
– volume: 7
  start-page: 910
  year: 2013
  article-title: Addressing head motion dependencies for small‐world topologies in functional connectomics
  publication-title: Frontiers in Human Neuroscience
– volume: 55
  start-page: 856
  issue: 3
  year: 2011
  end-page: 867
  article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: NeuroImage
– year: 2000
– volume: 163
  start-page: 2103
  issue: 12
  year: 2006
  end-page: 2110
  article-title: Middle and inferior temporal gyrus gray matter volume abnormalities in first‐episode schizophrenia: An MRI study
  publication-title: The American Journal of Psychiatry
– volume: 84
  start-page: 320
  year: 2014
  end-page: 341
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI
  publication-title: NeuroImage
– volume: 161
  start-page: 1603
  issue: 9
  year: 2004
  end-page: 1611
  article-title: Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: An MRI study
  publication-title: The American Journal of Psychiatry
– volume: 28
  start-page: 358
  issue: 4
  year: 2015
  end-page: 364
  article-title: Neuroimaging signature of neuropsychiatric disorders
  publication-title: Current Opinion in Neurology
– volume: 26
  start-page: 839
  issue: 3
  year: 2005
  end-page: 851
  article-title: Unified segmentation
  publication-title: NeuroImage
– volume: 37
  start-page: 154
  year: 2016
  end-page: 160
  article-title: Gray matter network disruptions and amyloid beta in cognitively normal adults
  publication-title: Neurobiology of Aging
– volume: 145
  start-page: 238
  issue: Pt B
  year: 2017
  end-page: 245
  article-title: Classification of first‐episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques
  publication-title: NeuroImage
– volume: 21
  start-page: 290
  issue: 3
  year: 2015
  end-page: 305
  article-title: Understanding structural‐functional relationships in the human brain: A large‐scale network perspective
  publication-title: The Neuroscientist
– volume: 16
  start-page: 228
  year: 2016
  article-title: Disability and recovery in schizophrenia: A systematic review of cognitive behavioral therapy interventions
  publication-title: BMC Psychiatry
– volume: 12
  start-page: 2825
  issue: 10
  year: 2012
  end-page: 2830
  article-title: Scikit‐learn: Machine learning in python
  publication-title: Journal of Machine Learning Research
– volume: 49
  start-page: 615
  issue: 8
  year: 1992
  end-page: 623
  article-title: The comprehensive assessment of symptoms and history (CASH). An instrument for assessing diagnosis and psychopathology
  publication-title: Archives of General Psychiatry
– volume: 11
  start-page: 18
  year: 2011
  article-title: Pattern of neural responses to verbal fluency shows diagnostic specificity for schizophrenia and bipolar disorder
  publication-title: BMC Psychiatry
– year: 2012
– volume: 7
  start-page: 235
  year: 2013
  article-title: Combination of resting state fMRI, DTI, and sMRI data to discriminate schizophrenia by N‐way MCCA + jICA
  publication-title: Frontiers in Human Neuroscience
– volume: 26
  start-page: 288
  issue: 1
  year: 2016
  end-page: 303
  article-title: Generation and evaluation of a cortical area parcellation from resting‐state correlations
  publication-title: Cerebral Cortex
– volume: 59
  start-page: 2142
  issue: 3
  year: 2012
  end-page: 2154
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
– volume: 11
  start-page: 59
  year: 2017
  article-title: Multimodal discrimination of schizophrenia using hybrid weighted feature concatenation of brain functional connectivity and anatomical features with an extreme learning machine
  publication-title: Frontiers in Neuroinformatics
– volume: 5
  start-page: 7
  year: 2011
  article-title: Altered small‐world brain networks in temporal lobe in patients with schizophrenia performing an auditory oddball task
  publication-title: Frontiers in Systems Neuroscience
– volume: 169
  start-page: 1092
  issue: 10
  year: 2012
  end-page: 1099
  article-title: Thalamocortical dysconnectivity in schizophrenia
  publication-title: American Journal of Psychiatry
– volume: 79
  start-page: 1016
  issue: 12
  year: 2016
  end-page: 1025
  article-title: Mapping thalamocortical functional connectivity in chronic and early stages of psychotic disorders
  publication-title: Biological Psychiatry
– volume: 131
  start-page: 945
  issue: Pt. 4
  year: 2008
  end-page: 961
  article-title: Disrupted small‐world networks in schizophrenia
  publication-title: Brain
– volume: 9
  start-page: 386
  year: 2015
  article-title: GRETNA: A graph theoretical network analysis toolbox for imaging connectomics
  publication-title: Frontiers in Human Neuroscience
– volume: 10
  start-page: 292
  year: 2016
  article-title: Multimodal MRI‐based classification of trauma survivors with and without post‐traumatic stress disorder
  publication-title: Frontiers in Neuroscience
– volume: 42
  start-page: S110
  issue: Suppl. 1
  year: 2016
  end-page: S117
  article-title: Classifying schizophrenia using multimodal multivariate pattern recognition analysis: Evaluating the impact of individual clinical profiles on the neurodiagnostic performance
  publication-title: Schizophrenia Bulletin
– volume: 139
  start-page: 7
  issue: 1–3
  year: 2012
  end-page: 12
  article-title: Whole brain resting state functional connectivity abnormalities in schizophrenia
  publication-title: Schizophrenia Research
– volume: 72
  start-page: 882
  issue: 9
  year: 2015
  end-page: 891
  article-title: Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk
  publication-title: JAMA Psychiatry
– volume: 47
  start-page: 1383
  issue: 10
  year: 2013
  end-page: 1388
  article-title: Discrimination between schizophrenia and major depressive disorder by magnetic resonance imaging of the female brain
  publication-title: Journal of Psychiatric Research
– volume: 175
  start-page: 20
  issue: 1–3
  year: 2016
  end-page: 26
  article-title: Increased superior frontal gyrus activation during working memory processing in psychosis: Significant relation to cumulative antipsychotic medication and to negative symptoms
  publication-title: Schizophrenia Research
– volume: 75
  start-page: 960
  issue: 9
  year: 2018
  end-page: 968
  article-title: Use of machine learning to determine deviance in neuroanatomical maturity associated with future psychosis in youths at clinically high risk
  publication-title: JAMA Psychiatry
– volume: 17
  issue: 4
  year: 2019
  article-title: Harmonization of resting‐state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias
  publication-title: PLoS Biology
– volume: 4
  start-page: 13
  year: 2010
  article-title: DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting‐state fMRI
  publication-title: Frontiers in Systems Neuroscience
– volume: 74
  start-page: 58
  year: 2017
  end-page: 75
  article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications
  publication-title: Neuroscience and Biobehavioral Reviews.
– volume: 26
  start-page: 172
  issue: 2
  year: 2013
  end-page: 187
  article-title: Review of functional and anatomical brain connectivity findings in schizophrenia
  publication-title: Current Opinion in Psychiatry
– volume: 33
  start-page: 73
  year: 2016
  end-page: 84
  article-title: A review of the functional and anatomical default mode network in schizophrenia
  publication-title: Neuroscience Bulletin
– volume: 168
  start-page: 1
  issue: 1–2
  year: 2015
  end-page: 8
  article-title: Grey matter networks in people at increased familial risk for schizophrenia
  publication-title: Schizophrenia Research
– volume: 6
  year: 2016
  article-title: Abnormal regional homogeneity as potential imaging biomarker for psychosis risk syndrome: A resting‐state fMRI study and support vector machine analysis
  publication-title: Scientific Reports
– volume: 101
  start-page: 3270
  issue: 6
  year: 2009
  end-page: 3283
  article-title: The global signal and observed anticorrelated resting state brain networks
  publication-title: Journal of Neurophysiology
– volume: 59
  start-page: 2187
  issue: 3
  year: 2012
  end-page: 2195
  article-title: Discriminative analysis of early Alzheimer's disease using multi‐modal imaging and multi‐level characterization with multi‐classifier (M3)
  publication-title: NeuroImage
– volume: 1613
  start-page: 479
  year: 2017
  end-page: 504
  article-title: Functional network disruptions in schizophrenia
  publication-title: Methods in Molecular Biology
– volume: 237
  start-page: 103
  year: 2014
  end-page: 107
  article-title: Measuring individual morphological relationship of cortical regions
  publication-title: Journal of Neuroscience Methods
– volume: 10
  start-page: 186
  issue: 3
  year: 2009
  end-page: 198
  article-title: Complex brain networks: Graph theoretical analysis of structural and functional systems
  publication-title: Nature Reviews: Neuroscience
– volume: 4
  start-page: 16
  year: 2010
  article-title: Graph‐based network analysis of resting‐state functional MRI
  publication-title: Frontiers in Systems Neuroscience
– volume: 189
  start-page: 700
  year: 2019
  end-page: 714
  article-title: Reproducibility of functional brain alterations in major depressive disorder: Evidence from a multisite resting‐state functional MRI study with 1,434 individuals
  publication-title: NeuroImage
– ident: e_1_2_8_35_1
  doi: 10.1093/brain/awv111
– ident: e_1_2_8_7_1
  doi: 10.1016/j.nicl.2015.09.015
– ident: e_1_2_8_83_1
  doi: 10.1038/srep27619
– ident: e_1_2_8_32_1
  doi: 10.1016/j.neuroimage.2015.05.018
– ident: e_1_2_8_9_1
  doi: 10.1038/nrn2575
– ident: e_1_2_8_90_1
  doi: 10.3389/fnhum.2013.00910
– ident: e_1_2_8_11_1
  doi: 10.1093/schbul/sbw053
– ident: e_1_2_8_56_1
  doi: 10.3389/fnins.2014.00189
– volume-title: Structured clinical interview for DSM‐IV Axis I disorders (SCID‐I/P)
  year: 2012
  ident: e_1_2_8_23_1
– ident: e_1_2_8_47_1
  doi: 10.1186/s12888-016-0912-8
– ident: e_1_2_8_87_1
  doi: 10.1097/WCO.0000000000000220
– ident: e_1_2_8_73_1
  doi: 10.1016/j.neurobiolaging.2013.02.020
– ident: e_1_2_8_85_1
  doi: 10.1016/j.biopsych.2015.06.026
– ident: e_1_2_8_93_1
  doi: 10.1016/j.neuroimage.2011.01.008
– ident: e_1_2_8_16_1
  doi: 10.1007/BF00994018
– ident: e_1_2_8_55_1
  doi: 10.1017/S003329171300024X
– ident: e_1_2_8_74_1
  doi: 10.1089/brain.2013.0209
– ident: e_1_2_8_69_1
  doi: 10.1371/journal.pone.0058921
– ident: e_1_2_8_3_1
  doi: 10.1001/archpsyc.1992.01820080023004
– ident: e_1_2_8_68_1
  doi: 10.1371/journal.pone.0021047
– ident: e_1_2_8_10_1
  doi: 10.1146/annurev-clinpsy-040510-143934
– ident: e_1_2_8_46_1
  doi: 10.1016/j.neuroimage.2016.01.056
– ident: e_1_2_8_43_1
  doi: 10.1523/JNEUROSCI.0333-10.2010
– volume: 4
  start-page: 13
  year: 2010
  ident: e_1_2_8_13_1
  article-title: DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting‐state fMRI
  publication-title: Frontiers in Systems Neuroscience
– ident: e_1_2_8_20_1
  doi: 10.3389/fnhum.2012.00145
– ident: e_1_2_8_40_1
  doi: 10.1109/TNB.2017.2751074
– ident: e_1_2_8_59_1
  doi: 10.1016/j.neuroimage.2013.08.048
– ident: e_1_2_8_77_1
  doi: 10.1016/j.schres.2012.04.021
– volume: 9
  start-page: 386
  year: 2015
  ident: e_1_2_8_81_1
  article-title: GRETNA: A graph theoretical network analysis toolbox for imaging connectomics
  publication-title: Frontiers in Human Neuroscience
– ident: e_1_2_8_76_1
  doi: 10.1523/JNEUROSCI.2874-10.2010
– ident: e_1_2_8_89_1
  doi: 10.1371/journal.pbio.3000042
– ident: e_1_2_8_79_1
  doi: 10.1016/j.schres.2016.03.033
– volume: 5
  start-page: 7
  year: 2011
  ident: e_1_2_8_91_1
  article-title: Altered small‐world brain networks in temporal lobe in patients with schizophrenia performing an auditory oddball task
  publication-title: Frontiers in Systems Neuroscience
– ident: e_1_2_8_53_1
  doi: 10.1016/j.schres.2006.05.007
– ident: e_1_2_8_45_1
  doi: 10.1016/j.schres.2006.06.028
– ident: e_1_2_8_92_1
  doi: 10.1016/j.nicl.2013.09.003
– ident: e_1_2_8_8_1
  doi: 10.1093/schbul/sbs095
– ident: e_1_2_8_67_1
  doi: 10.3389/fnhum.2013.00235
– ident: e_1_2_8_41_1
  doi: 10.1093/brain/awn018
– ident: e_1_2_8_70_1
  doi: 10.1093/cercor/bhr221
– ident: e_1_2_8_42_1
  doi: 10.1371/journal.pone.0047714
– ident: e_1_2_8_37_1
  doi: 10.1214/aoms/1177729694
– ident: e_1_2_8_30_1
  doi: 10.1007/s12264-016-0090-1
– ident: e_1_2_8_44_1
  doi: 10.1016/j.drudis.2015.03.003
– ident: e_1_2_8_18_1
  doi: 10.1016/j.neuroimage.2011.10.003
– ident: e_1_2_8_94_1
  doi: 10.3389/fnins.2016.00292
– ident: e_1_2_8_50_1
  doi: 10.1176/appi.ajp.161.9.1603
– ident: e_1_2_8_62_1
  doi: 10.1007/978-1-4939-7027-8_19
– ident: e_1_2_8_4_1
  doi: 10.1001/jamapsychiatry.2015.0566
– ident: e_1_2_8_29_1
  doi: 10.1016/S0140-6736(13)62036-X
– volume: 4
  start-page: 16
  year: 2010
  ident: e_1_2_8_82_1
  article-title: Graph‐based network analysis of resting‐state functional MRI
  publication-title: Frontiers in Systems Neuroscience
– ident: e_1_2_8_60_1
  doi: 10.3389/fninf.2017.00059
– ident: e_1_2_8_75_1
  doi: 10.3389/fpsyt.2016.00052
– ident: e_1_2_8_57_1
  doi: 10.1038/sdata.2016.110
– volume: 2014
  start-page: 6691
  year: 2014
  ident: e_1_2_8_5_1
  article-title: Accurate classification of schizophrenia patients based on novel resting‐state fMRI features
  publication-title: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– ident: e_1_2_8_71_1
  doi: 10.1016/j.schres.2015.08.025
– ident: e_1_2_8_88_1
  doi: 10.1016/j.neuroimage.2019.01.074
– volume: 6
  start-page: e00448
  issue: 4
  year: 2016
  ident: e_1_2_8_80_1
  article-title: Single‐subject morphological brain networks: Connectivity mapping, topological characterization and test‐retest reliability
  publication-title: Brain and Behavior: A Cognitive Neuroscience Perspective
  doi: 10.1002/brb3.448
– volume: 12
  start-page: 2825
  issue: 10
  year: 2012
  ident: e_1_2_8_54_1
  article-title: Scikit‐learn: Machine learning in python
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_48_1
  doi: 10.1016/j.pscychresns.2015.08.007
– ident: e_1_2_8_6_1
  doi: 10.1016/j.neuroimage.2005.02.018
– volume: 7
  start-page: e00602
  issue: 1
  year: 2017
  ident: e_1_2_8_49_1
  article-title: Aberrant neural networks for the recognition memory of socially relevant information in patients with schizophrenia
  publication-title: Brain and Behavior: A Cognitive Neuroscience Perspective
  doi: 10.1002/brb3.602
– ident: e_1_2_8_63_1
  doi: 10.1016/j.neuroimage.2012.08.052
– ident: e_1_2_8_15_1
  doi: 10.1142/S0129065715500070
– ident: e_1_2_8_38_1
  doi: 10.1176/ajp.2006.163.12.2103
– ident: e_1_2_8_51_1
  doi: 10.1016/j.neubiorev.2012.01.004
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jneumeth.2014.09.003
– ident: e_1_2_8_34_1
  doi: 10.1016/j.neuroimage.2014.04.057
– ident: e_1_2_8_12_1
  doi: 10.1145/1961189.1961199
– volume-title: DSM‐IV‐TR guidebook
  year: 2004
  ident: e_1_2_8_22_1
– ident: e_1_2_8_52_1
  doi: 10.1016/j.jpsychires.2013.06.010
– ident: e_1_2_8_78_1
  doi: 10.1016/j.neubiorev.2017.01.002
– ident: e_1_2_8_26_1
  doi: 10.1152/jn.90777.2008
– ident: e_1_2_8_58_1
  doi: 10.1016/j.neuroimage.2011.10.018
– ident: e_1_2_8_36_1
  doi: 10.1001/archgenpsychiatry.2009.62
– ident: e_1_2_8_86_1
  doi: 10.1176/appi.ajp.2012.12010056
– ident: e_1_2_8_28_1
  doi: 10.1001/archgenpsychiatry.2010.199
– ident: e_1_2_8_25_1
  doi: 10.1016/j.euroneuro.2014.02.011
– ident: e_1_2_8_14_1
  doi: 10.1001/jamapsychiatry.2018.1543
– ident: e_1_2_8_24_1
  doi: 10.1097/YCO.0b013e32835d9e6a
– ident: e_1_2_8_27_1
  doi: 10.1093/cercor/bhu239
– ident: e_1_2_8_31_1
  doi: 10.1177/0963721410377601
– ident: e_1_2_8_21_1
  doi: 10.1371/journal.pone.0062867
– ident: e_1_2_8_84_1
  doi: 10.1177/1073858414537560
– start-page: 365
  year: 2006
  ident: e_1_2_8_39_1
  article-title: Treatment of chronic schizophrenia
  publication-title: The American Psychiatric Publishing Textbook of Schizophrenia
– ident: e_1_2_8_17_1
  doi: 10.1186/1471-244X-11-18
– ident: e_1_2_8_19_1
  doi: 10.1038/nature16874
– ident: e_1_2_8_66_1
  doi: 10.1016/j.neuroimage.2015.12.007
– ident: e_1_2_8_72_1
  doi: 10.1016/j.neurobiolaging.2015.10.015
– ident: e_1_2_8_61_1
  doi: 10.1177/070674371405900104
– ident: e_1_2_8_65_1
  doi: 10.1016/j.neuroimage.2009.11.011
– volume-title: Diagnostic and statistical manual of mental disorders, 4th edition – Text revision
  year: 2000
  ident: e_1_2_8_2_1
– ident: e_1_2_8_64_1
  doi: 10.1016/j.neuroimage.2013.08.053
SSID ssj0011501
Score 2.5464768
Snippet Schizophrenia is a severe psychiatric disorder associated with both structural and functional brain abnormalities. In the past few years, there has been...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1119
SubjectTerms Abnormalities
Adult
Classification
Connectome
Covariance matrix
Data acquisition
Diagnostic imaging
Diagnostic software
Diagnostic systems
Diffusion Tensor Imaging
Feature extraction
Female
functional connectivity
Functional magnetic resonance imaging
graph theoretical analysis
Gray Matter - diagnostic imaging
Homogeneity
Humans
Image Processing, Computer-Assisted - methods
Learning algorithms
Machine Learning
Machining
Magnetic Resonance Imaging
Male
Mathematical analysis
Matrix algebra
Matrix methods
Medical imaging
Mental disorders
Middle Aged
Model accuracy
Multimodal Imaging - methods
Neural networks
Neural Pathways - diagnostic imaging
Neuroimaging
Neuroimaging - methods
Performance enhancement
Reproducibility of Results
Research facilities
Rest
Schizophrenia
Schizophrenia - diagnostic imaging
Structure-function relationships
Substantia alba
Substantia grisea
Support Vector Machine
Support vector machines
White Matter - diagnostic imaging
Young Adult
Title Integrating machining learning and multimodal neuroimaging to detect schizophrenia at the level of the individual
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24863
https://www.ncbi.nlm.nih.gov/pubmed/31737978
https://www.proquest.com/docview/2370430592
https://www.proquest.com/docview/2315528114
https://pubmed.ncbi.nlm.nih.gov/PMC7268084
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_OexBf_Ljzo3ouUUTvpXvdNG1SfFrFYxVWRDy4B6EkbeotXlt1u4L-9c6kH24XBfGtJZPQpjOT36ST3wA8yfPccKsiX8uC-0JkyscwKPKVEcoGM-xk6aDw8m28OBNvzqPzPXjen4Vp-SGGDTeyDOevycC1WZ_8Jg29MOWUCxUT0yflahEgej9QRxHQccEWLrF-gh64ZxUK-MnQc7QW7XrkrSVpN11yG8a6dej0Bnzs36BNP_k83TRmmv3cIXf8z1e8Cdc7fMrmrULdgj1bHcDhvMLYvPzBnjKXMeq24g_g6rL7MX8IX193tBO4ErLSJWjSVVeT4hPTVc5c7mJZ5zi8Y9Fcla5CEmtqllv6l8HW2xmATDcM0SmO8d1esrpwN6vh_NhtODt99eHlwu-qOfgZxjShr2OVi0DPitjKOI60sDMZxjrUqtBGZ4kNdWStSRCvCCW4lonWgUQxkUsh0E_cgf2qruw9YMRaGIQhgjWeiLDgSmmhEhVxk6lZoDMPjvvvmmYd1TlV3LhMW5JmnuLMpm5mPXg8iH5p-T3-JPSMlCMlm8dxMt0dXcCnIfasdI4wLeYCY0MPjkaSaKvZuLlXr7TzFeuUh9IRryXcg0dDM_Wk_LfK1huSIao8hcGrB3dbbRweFxFgKBOpPJAjPR0EiEF83FKtLhyTuORUeQXHPHZq-PcZSBcvlu7i_r-LPoBrnDYnXJrTEew33zb2ISK4xkzgChfvJm7_Y-LM9heYtERM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXHi2PQAGDEPSSbdZxYkfisjyqLXR7QK3UC7KcxKErmgRoFgl-PTPOg90VSIibI48tx5mnM_4G4Fme5ym3KvKNLLgvRKZ8DIMiX6VC2WCMgyxdFJ4dxdMT8e40Ot2Al_1dmBYfYjhwI8lw-poEnA6k936jhp6l5YgLFYeX4DJV9Cbk_DcfBvAocnVcuIVG1k9QB_e4QgHfG4auWKN1nbxklNYTJpcdWWeJ9m_Ax_4d2gSUz6NFk46yn2vwjv_7kjfheueisknLU7dgw1ZbsD2pMDwvf7DnzCWNutP4Lbgy6_7Nb8PXgw55Ao0hK12OJrW6shSfmKly5tIXyzrH6R2Q5rx0RZJYU7Pc0u8MdrGcBMhMw9BBxTm-23NWF-5hPlwhuw0n-2-PX0_9rqCDn2FYE_omVrkIzLiIrYzjyAg7lmFsQqMKk5ossaGJrE0TdFmEEtzIxJhAIpnIpRCoKu7AZlVX9h4wAi4MwhD9NZ6IsOBKGaESFfE0U-PAZB7s9h9WZx3aORXdONctTjPXuLPa7awHTwfSLy3Ex5-IXhB3aBJ7nCcz3e0FXA0BaOkJemoxFxgeerCzQonimq129_ylO3VxoXkoHfZawj14MnTTSEqBq2y9IBpCy1MYv3pwt2XHYbnoBIYykcoDucKoAwGBiK_2VPMzByYuORVfwTl3HR_-fQf09NXMNe7_O-ljuDo9nh3qw4Oj9w_gGqezCpf1tAObzbeFfYgOXZM-cnL7C2-7Rpw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIlVcKtrySGnBIAS9hGZtJ3bEaXmstsBWPVCpN8tJnHalJmnpFol_z4yTDZsKJG6JPLaijMfzjT3-BuB1URQZdzoOrSp5KGWuQwyD4lBnUrtohJ0cXRSeHSfTU_nlLD5bg_fLuzAtP0S_4UaW4ddrMvCrojz8Qxp6kVXvuNSJuAf36bCP8rm4POmPEBDp-GgLfWyY4hK8pBWK-GHfdeCM7i7JKz7pbr7kKo71jmjyEDY7BMnGrcq3YM3V27AzrjF6rn6xN8zndPrN8m3YmHVH5ztwfdQRQ6CvYpVPoaSnrmrEObN1wXx2YdUUOLznuZxXvoYRWzSscHTawG5Wc_SYXTDEjzjGT3fJmtK_zPsbXo_gdPL5-8dp2NVbCHOMOkRoE13IyI7KxKkkia10IyUSK6wubWbz1AkbO5eliCikltyq1NpIoZgslJRoyY9hvW5q9xQY8QpGQiCc4qkUJdfaSp3qmGe5HkU2D-Bg-eNN3pGRU02MS9PSKHODOjJeRwG86kWvWgaOvwm9Je0ZskocJ7fd5QL8GuK3MmMEUgmXGL0FsDeQRGvKh81L_ZvOmm8MF8pTo6U8gJd9M_WkDLXaNbckQ2R2GsPLAJ6006X_XMRoQmG4HoAaTKRegDi-hy31_MJzfStOtVFwzAM_5f79B8z0w8w_7P6_6AvYOPk0Md-Ojr8-gwecdhJ8TtIerC9-3Lp9hFuL7Lk3q99dhCUc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+machining+learning+and+multimodal+neuroimaging+to+detect+schizophrenia+at+the+level+of+the+individual&rft.jtitle=Human+brain+mapping&rft.au=Lei%2C+Du&rft.au=Pinaya%2C+Walter+H.+L.&rft.au=Young%2C+Jonathan&rft.au=van+Amelsvoort%2C+Therese&rft.date=2020-04-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=41&rft.issue=5&rft.spage=1119&rft.epage=1135&rft_id=info:doi/10.1002%2Fhbm.24863&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_24863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon