Integrating machining learning and multimodal neuroimaging to detect schizophrenia at the level of the individual
Schizophrenia is a severe psychiatric disorder associated with both structural and functional brain abnormalities. In the past few years, there has been growing interest in the application of machine learning techniques to neuroimaging data for the diagnostic and prognostic assessment of this disord...
Saved in:
Published in | Human brain mapping Vol. 41; no. 5; pp. 1119 - 1135 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Schizophrenia is a severe psychiatric disorder associated with both structural and functional brain abnormalities. In the past few years, there has been growing interest in the application of machine learning techniques to neuroimaging data for the diagnostic and prognostic assessment of this disorder. However, the vast majority of studies published so far have used either structural or functional neuroimaging data, without accounting for the multimodal nature of the disorder. Structural MRI and resting‐state functional MRI data were acquired from a total of 295 patients with schizophrenia and 452 healthy controls at five research centers. We extracted features from the data including gray matter volume, white matter volume, amplitude of low‐frequency fluctuation, regional homogeneity and two connectome‐wide based metrics: structural covariance matrices and functional connectivity matrices. A support vector machine classifier was trained on each dataset separately to distinguish the subjects at individual level using each of the single feature as well as their combination, and 10‐fold cross‐validation was used to assess the performance of the model. Functional data allow higher accuracy of classification than structural data (mean 82.75% vs. 75.84%). Within each modality, the combination of images and matrices improves performance, resulting in mean accuracies of 81.63% for structural data and 87.59% for functional data. The use of all combined structural and functional measures allows the highest accuracy of classification (90.83%). We conclude that combining multimodal measures within a single model is a promising direction for developing biologically informed diagnostic tools in schizophrenia. |
---|---|
AbstractList | Schizophrenia is a severe psychiatric disorder associated with both structural and functional brain abnormalities. In the past few years, there has been growing interest in the application of machine learning techniques to neuroimaging data for the diagnostic and prognostic assessment of this disorder. However, the vast majority of studies published so far have used either structural or functional neuroimaging data, without accounting for the multimodal nature of the disorder. Structural MRI and resting-state functional MRI data were acquired from a total of 295 patients with schizophrenia and 452 healthy controls at five research centers. We extracted features from the data including gray matter volume, white matter volume, amplitude of low-frequency fluctuation, regional homogeneity and two connectome-wide based metrics: structural covariance matrices and functional connectivity matrices. A support vector machine classifier was trained on each dataset separately to distinguish the subjects at individual level using each of the single feature as well as their combination, and 10-fold cross-validation was used to assess the performance of the model. Functional data allow higher accuracy of classification than structural data (mean 82.75% vs. 75.84%). Within each modality, the combination of images and matrices improves performance, resulting in mean accuracies of 81.63% for structural data and 87.59% for functional data. The use of all combined structural and functional measures allows the highest accuracy of classification (90.83%). We conclude that combining multimodal measures within a single model is a promising direction for developing biologically informed diagnostic tools in schizophrenia.Schizophrenia is a severe psychiatric disorder associated with both structural and functional brain abnormalities. In the past few years, there has been growing interest in the application of machine learning techniques to neuroimaging data for the diagnostic and prognostic assessment of this disorder. However, the vast majority of studies published so far have used either structural or functional neuroimaging data, without accounting for the multimodal nature of the disorder. Structural MRI and resting-state functional MRI data were acquired from a total of 295 patients with schizophrenia and 452 healthy controls at five research centers. We extracted features from the data including gray matter volume, white matter volume, amplitude of low-frequency fluctuation, regional homogeneity and two connectome-wide based metrics: structural covariance matrices and functional connectivity matrices. A support vector machine classifier was trained on each dataset separately to distinguish the subjects at individual level using each of the single feature as well as their combination, and 10-fold cross-validation was used to assess the performance of the model. Functional data allow higher accuracy of classification than structural data (mean 82.75% vs. 75.84%). Within each modality, the combination of images and matrices improves performance, resulting in mean accuracies of 81.63% for structural data and 87.59% for functional data. The use of all combined structural and functional measures allows the highest accuracy of classification (90.83%). We conclude that combining multimodal measures within a single model is a promising direction for developing biologically informed diagnostic tools in schizophrenia. Schizophrenia is a severe psychiatric disorder associated with both structural and functional brain abnormalities. In the past few years, there has been growing interest in the application of machine learning techniques to neuroimaging data for the diagnostic and prognostic assessment of this disorder. However, the vast majority of studies published so far have used either structural or functional neuroimaging data, without accounting for the multimodal nature of the disorder. Structural MRI and resting-state functional MRI data were acquired from a total of 295 patients with schizophrenia and 452 healthy controls at five research centers. We extracted features from the data including gray matter volume, white matter volume, amplitude of low-frequency fluctuation, regional homogeneity and two connectome-wide based metrics: structural covariance matrices and functional connectivity matrices. A support vector machine classifier was trained on each dataset separately to distinguish the subjects at individual level using each of the single feature as well as their combination, and 10-fold cross-validation was used to assess the performance of the model. Functional data allow higher accuracy of classification than structural data (mean 82.75% vs. 75.84%). Within each modality, the combination of images and matrices improves performance, resulting in mean accuracies of 81.63% for structural data and 87.59% for functional data. The use of all combined structural and functional measures allows the highest accuracy of classification (90.83%). We conclude that combining multimodal measures within a single model is a promising direction for developing biologically informed diagnostic tools in schizophrenia. |
Audience | Academic |
Author | Vieira, Sandra Young, Jonathan Arango, Celso Gong, Qiyong Amelsvoort, Therese Lui, Su Corvin, Aiden Donohoe, Gary Bullmore, Ed McGuire, Philip Scarpazza, Cristina Lei, Du Mothersill, David O. Pinaya, Walter H. L. Huang, Xiaoqi Marcelis, Machteld Mechelli, Andrea |
AuthorAffiliation | 9 Child and Adolescent Department of Psychiatry Hospital General Universitario Gregorio Marañon, School of Medicine, Universidad Complutense Madrid, IiSGM, CIBERSAM Madrid Spain 10 Brain Mapping Unit, Department of Psychiatry University of Cambridge Cambridge UK 1 Huaxi MR Research Center (HMRRC), Department of Radiology West China Hospital of Sichuan University Chengdu China 6 School of Psychology & Center for neuroimaging and Cognitive Genomics, NUI Galway University Galway Ireland 7 Department of Psychiatry School of Medicine, Trinity College Dublin Dublin Ireland 2 Department of Psychosis Studies Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park London UK 3 Department of Neuroimaging Institute of Psychiatry, Psychology, and Neuroscience, King's College London London UK 5 Mental Health Care Institute Eindhoven (GGzE) Eindhoven The Netherlands 4 Department of Psychiatry and Neuropsychology School of Mental Health and Neuroscience, Maastricht Univers |
AuthorAffiliation_xml | – name: 3 Department of Neuroimaging Institute of Psychiatry, Psychology, and Neuroscience, King's College London London UK – name: 2 Department of Psychosis Studies Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park London UK – name: 8 Department of General Psychology University of Padua Padua Italy – name: 4 Department of Psychiatry and Neuropsychology School of Mental Health and Neuroscience, Maastricht University Medical Center Maastricht The Netherlands – name: 11 Psychoradiology Research Unit of Chinese Academy of Medical Sciences West China Hospital of Sichuan University Chengdu Sichuan China – name: 1 Huaxi MR Research Center (HMRRC), Department of Radiology West China Hospital of Sichuan University Chengdu China – name: 5 Mental Health Care Institute Eindhoven (GGzE) Eindhoven The Netherlands – name: 6 School of Psychology & Center for neuroimaging and Cognitive Genomics, NUI Galway University Galway Ireland – name: 7 Department of Psychiatry School of Medicine, Trinity College Dublin Dublin Ireland – name: 10 Brain Mapping Unit, Department of Psychiatry University of Cambridge Cambridge UK – name: 12 Department of Radiology Shengjing Hospital of China Medical University Shenyang Liaoning China – name: 9 Child and Adolescent Department of Psychiatry Hospital General Universitario Gregorio Marañon, School of Medicine, Universidad Complutense Madrid, IiSGM, CIBERSAM Madrid Spain |
Author_xml | – sequence: 1 givenname: Du surname: Lei fullname: Lei, Du organization: Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park – sequence: 2 givenname: Walter H. L. orcidid: 0000-0003-3739-1087 surname: Pinaya fullname: Pinaya, Walter H. L. organization: Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park – sequence: 3 givenname: Jonathan surname: Young fullname: Young, Jonathan organization: Institute of Psychiatry, Psychology, and Neuroscience, King's College London – sequence: 4 givenname: Therese surname: Amelsvoort fullname: Amelsvoort, Therese organization: School of Mental Health and Neuroscience, Maastricht University Medical Center – sequence: 5 givenname: Machteld surname: Marcelis fullname: Marcelis, Machteld organization: Mental Health Care Institute Eindhoven (GGzE) – sequence: 6 givenname: Gary surname: Donohoe fullname: Donohoe, Gary organization: School of Psychology & Center for neuroimaging and Cognitive Genomics, NUI Galway University – sequence: 7 givenname: David O. surname: Mothersill fullname: Mothersill, David O. organization: School of Psychology & Center for neuroimaging and Cognitive Genomics, NUI Galway University – sequence: 8 givenname: Aiden surname: Corvin fullname: Corvin, Aiden organization: School of Medicine, Trinity College Dublin – sequence: 9 givenname: Sandra surname: Vieira fullname: Vieira, Sandra organization: Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park – sequence: 10 givenname: Xiaoqi surname: Huang fullname: Huang, Xiaoqi organization: West China Hospital of Sichuan University – sequence: 11 givenname: Su surname: Lui fullname: Lui, Su organization: West China Hospital of Sichuan University – sequence: 12 givenname: Cristina surname: Scarpazza fullname: Scarpazza, Cristina organization: University of Padua – sequence: 13 givenname: Celso surname: Arango fullname: Arango, Celso organization: Hospital General Universitario Gregorio Marañon, School of Medicine, Universidad Complutense Madrid, IiSGM, CIBERSAM – sequence: 14 givenname: Ed surname: Bullmore fullname: Bullmore, Ed organization: University of Cambridge – sequence: 15 givenname: Qiyong orcidid: 0000-0002-5912-4871 surname: Gong fullname: Gong, Qiyong email: qiyonggong@hmrrc.org.cn organization: Shengjing Hospital of China Medical University – sequence: 16 givenname: Philip surname: McGuire fullname: McGuire, Philip organization: Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park – sequence: 17 givenname: Andrea surname: Mechelli fullname: Mechelli, Andrea organization: Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31737978$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNURD_gwB9AkbjAIVt_xU4uSKUCWqmIC5yt2WSSuHLsreMsKr8eZ7cUWgHywWPPM69nPHOcHTjvMMteUrKihLDTYT2umKgkf5IdUVKrgtCaHyy2LItaKHqYHU_TNSGUloQ-yw45VVzVqjrKbi5dxD5ANK7PR2gG4xbLIoSdAa7Nx9lGM_oWbO5wDt6M0C--6PMWIzYxn1LcD78ZAjoDOcQ8Dpg0tmhz3-0OxrVma9oZ7PPsaQd2whd3-0n27eOHr-cXxdWXT5fnZ1dFUyrJC5BVKwjQTqKSsgSBKWcJHKoO1tDUyKFEXNeMcVEJBqoGICpholVC1JKfZO_2upt5PWLboIsBrN6ElH641R6MfuhxZtC932rFZEUqkQTe3AkEfzPjFPVopgatBYd-njTjtCxZRemCvn6EXvs5uFReohQRnJQ1-031YFEb1_n0brOI6jOVesWEZEveq79QabU4miY1vjPp_kHAqz8Lva_wV5MT8HYPNMFPU8DuHqFELwOk0wDp3QAl9vQR25iYpsMvf2Ts_yK-p7xu_y2tL95_3kf8BEfj1x4 |
CitedBy_id | crossref_primary_10_1002_hbm_25276 crossref_primary_10_1016_j_jpsychires_2024_02_024 crossref_primary_10_1016_j_schres_2022_01_058 crossref_primary_10_1002_hbm_25951 crossref_primary_10_1016_j_bpsc_2023_04_007 crossref_primary_10_1016_j_jpsychires_2021_07_044 crossref_primary_10_1038_s41398_021_01705_z crossref_primary_10_1038_s41398_022_01939_5 crossref_primary_10_3389_fnins_2021_785595 crossref_primary_10_1038_s41398_023_02314_8 crossref_primary_10_1093_schbul_sbab112 crossref_primary_10_1093_schbul_sbac047 crossref_primary_10_1007_s12264_025_01385_5 crossref_primary_10_1016_j_neunet_2024_106296 crossref_primary_10_1038_s41537_024_00464_2 crossref_primary_10_7554_eLife_85082 crossref_primary_10_3389_fnins_2022_879703 crossref_primary_10_1038_s41380_023_02195_9 crossref_primary_10_1016_j_ebiom_2022_103977 crossref_primary_10_3390_diagnostics14232698 crossref_primary_10_1016_j_neuroimage_2025_121052 crossref_primary_10_3389_fpsyt_2021_597918 crossref_primary_10_3390_diagnostics13132140 crossref_primary_10_3390_healthcare10040643 crossref_primary_10_1007_s12652_023_04536_6 crossref_primary_10_1016_j_radi_2025_01_013 crossref_primary_10_1016_j_neuroimage_2023_120497 crossref_primary_10_1111_cns_14906 crossref_primary_10_3389_fnins_2021_685005 crossref_primary_10_3389_fnins_2023_1153035 crossref_primary_10_1155_2021_5550914 crossref_primary_10_1038_s41598_023_38101_0 crossref_primary_10_1007_s11042_022_13809_9 crossref_primary_10_1007_s13246_023_01225_8 crossref_primary_10_1016_j_ijlp_2025_102086 crossref_primary_10_3389_fpsyt_2020_567534 crossref_primary_10_3389_fnins_2022_1099560 crossref_primary_10_1016_j_psychres_2021_114294 crossref_primary_10_1186_s12916_023_02941_4 crossref_primary_10_20900_jpbs_20230005 crossref_primary_10_3389_fnagi_2022_911220 crossref_primary_10_1038_s41598_025_89359_5 crossref_primary_10_1002_hbm_25606 crossref_primary_10_1016_j_ijlp_2025_102082 crossref_primary_10_3389_fnins_2023_1132607 crossref_primary_10_3390_biomedicines11071990 crossref_primary_10_1371_journal_pcbi_1012692 crossref_primary_10_1016_j_biopsych_2024_06_011 crossref_primary_10_1007_s44192_023_00041_6 crossref_primary_10_1111_pcn_13736 crossref_primary_10_1038_s41398_023_02371_z crossref_primary_10_1016_j_compbiomed_2022_105554 crossref_primary_10_3390_jpm11010032 crossref_primary_10_1192_j_eurpsy_2021_2248 crossref_primary_10_3389_fpsyt_2023_1232015 crossref_primary_10_1016_j_jad_2024_11_035 crossref_primary_10_1109_JBHI_2022_3168357 crossref_primary_10_3390_diagnostics11030393 crossref_primary_10_1016_j_schres_2021_06_011 crossref_primary_10_1016_j_bpsgos_2022_05_004 crossref_primary_10_1016_j_neuroimage_2024_120911 |
Cites_doi | 10.1093/brain/awv111 10.1016/j.nicl.2015.09.015 10.1038/srep27619 10.1016/j.neuroimage.2015.05.018 10.1038/nrn2575 10.3389/fnhum.2013.00910 10.1093/schbul/sbw053 10.3389/fnins.2014.00189 10.1186/s12888-016-0912-8 10.1097/WCO.0000000000000220 10.1016/j.neurobiolaging.2013.02.020 10.1016/j.biopsych.2015.06.026 10.1016/j.neuroimage.2011.01.008 10.1007/BF00994018 10.1017/S003329171300024X 10.1089/brain.2013.0209 10.1371/journal.pone.0058921 10.1001/archpsyc.1992.01820080023004 10.1371/journal.pone.0021047 10.1146/annurev-clinpsy-040510-143934 10.1016/j.neuroimage.2016.01.056 10.1523/JNEUROSCI.0333-10.2010 10.3389/fnhum.2012.00145 10.1109/TNB.2017.2751074 10.1016/j.neuroimage.2013.08.048 10.1016/j.schres.2012.04.021 10.1523/JNEUROSCI.2874-10.2010 10.1371/journal.pbio.3000042 10.1016/j.schres.2016.03.033 10.1016/j.schres.2006.05.007 10.1016/j.schres.2006.06.028 10.1016/j.nicl.2013.09.003 10.1093/schbul/sbs095 10.3389/fnhum.2013.00235 10.1093/brain/awn018 10.1093/cercor/bhr221 10.1371/journal.pone.0047714 10.1214/aoms/1177729694 10.1007/s12264-016-0090-1 10.1016/j.drudis.2015.03.003 10.1016/j.neuroimage.2011.10.003 10.3389/fnins.2016.00292 10.1176/appi.ajp.161.9.1603 10.1007/978-1-4939-7027-8_19 10.1001/jamapsychiatry.2015.0566 10.1016/S0140-6736(13)62036-X 10.3389/fninf.2017.00059 10.3389/fpsyt.2016.00052 10.1038/sdata.2016.110 10.1016/j.schres.2015.08.025 10.1016/j.neuroimage.2019.01.074 10.1002/brb3.448 10.1016/j.pscychresns.2015.08.007 10.1016/j.neuroimage.2005.02.018 10.1002/brb3.602 10.1016/j.neuroimage.2012.08.052 10.1142/S0129065715500070 10.1176/ajp.2006.163.12.2103 10.1016/j.neubiorev.2012.01.004 10.1016/j.jneumeth.2014.09.003 10.1016/j.neuroimage.2014.04.057 10.1145/1961189.1961199 10.1016/j.jpsychires.2013.06.010 10.1016/j.neubiorev.2017.01.002 10.1152/jn.90777.2008 10.1016/j.neuroimage.2011.10.018 10.1001/archgenpsychiatry.2009.62 10.1176/appi.ajp.2012.12010056 10.1001/archgenpsychiatry.2010.199 10.1016/j.euroneuro.2014.02.011 10.1001/jamapsychiatry.2018.1543 10.1097/YCO.0b013e32835d9e6a 10.1093/cercor/bhu239 10.1177/0963721410377601 10.1371/journal.pone.0062867 10.1177/1073858414537560 10.1186/1471-244X-11-18 10.1038/nature16874 10.1016/j.neuroimage.2015.12.007 10.1016/j.neurobiolaging.2015.10.015 10.1177/070674371405900104 10.1016/j.neuroimage.2009.11.011 10.1016/j.neuroimage.2013.08.053 |
ContentType | Journal Article |
Copyright | 2019 The Authors. published by Wiley Periodicals, Inc. 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. COPYRIGHT 2019 John Wiley & Sons, Inc. 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 The Authors. published by Wiley Periodicals, Inc. – notice: 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. – notice: COPYRIGHT 2019 John Wiley & Sons, Inc. – notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.24863 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Lei et al |
EISSN | 1097-0193 |
EndPage | 1135 |
ExternalDocumentID | PMC7268084 A710624626 31737978 10_1002_hbm_24863 HBM24863 |
Genre | article Research Support, Non-U.S. Gov't Multicenter Study Journal Article |
GrantInformation_xml | – fundername: Newton International Fellowship funderid: NF151455 – fundername: Science Foundation Ireland funderid: SFI 12/1365 – fundername: Wellcome Trust's Innovator Award funderid: 208519/Z/17/Z – fundername: National Natural Science Foundation of China funderid: 81220108013; 81501452; 81761128023; 81227002 – fundername: European Commission funderid: 603196 – fundername: European Research Council funderid: REA‐677467 – fundername: Wellcome Trust grantid: 208519/Z/17/Z – fundername: Wellcome Trust's Innovator Award grantid: 208519/Z/17/Z – fundername: ; grantid: REA‐677467 – fundername: Newton International Fellowship grantid: NF151455 – fundername: ; grantid: SFI 12/1365 – fundername: ; grantid: 603196 – fundername: ; grantid: 81220108013; 81501452; 81761128023; 81227002 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT .Y3 31~ 7X7 8FI 8FJ AAFWJ AANHP AAYXX ABEML ABJNI ABUWG ACBWZ ACRPL ACSCC ACYXJ ADNMO AFKRA AFPKN AGQPQ ASPBG AVWKF AZFZN BENPR BFHJK CCPQU CITATION EJD FEDTE FYUFA GAKWD HF~ HMCUK HVGLF LW6 M6M PHGZM PHGZT RIWAO RJQFR SAMSI UKHRP WXSBR AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c5763-a68d40a1f6e7665a4e1736a3a8fabac9e3a5eeb92234842a79aa07a4e4d744963 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 18:37:08 EDT 2025 Fri Jul 11 01:31:20 EDT 2025 Sat Jul 26 02:15:08 EDT 2025 Tue Jun 17 21:10:13 EDT 2025 Tue Jun 10 20:44:09 EDT 2025 Mon Jul 21 05:43:20 EDT 2025 Tue Jul 01 01:10:56 EDT 2025 Thu Apr 24 23:10:49 EDT 2025 Wed Jan 22 16:34:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | functional connectivity schizophrenia machine learning graph theoretical analysis neuroimaging |
Language | English |
License | Attribution 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5763-a68d40a1f6e7665a4e1736a3a8fabac9e3a5eeb92234842a79aa07a4e4d744963 |
Notes | Funding information European Commission, Grant/Award Number: 603196; European Research Council, Grant/Award Number: REA‐677467; National Natural Science Foundation of China, Grant/Award Numbers: 81220108013, 81501452, 81761128023, 81227002; Newton International Fellowship, Grant/Award Number: NF151455; Science Foundation Ireland, Grant/Award Number: SFI 12/1365; Wellcome Trust's Innovator Award, Grant/Award Number: 208519/Z/17/Z ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information European Commission, Grant/Award Number: 603196; European Research Council, Grant/Award Number: REA‐677467; National Natural Science Foundation of China, Grant/Award Numbers: 81220108013, 81501452, 81761128023, 81227002; Newton International Fellowship, Grant/Award Number: NF151455; Science Foundation Ireland, Grant/Award Number: SFI 12/1365; Wellcome Trust's Innovator Award, Grant/Award Number: 208519/Z/17/Z |
ORCID | 0000-0003-3739-1087 0000-0002-5912-4871 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24863 |
PMID | 31737978 |
PQID | 2370430592 |
PQPubID | 996345 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7268084 proquest_miscellaneous_2315528114 proquest_journals_2370430592 gale_infotracmisc_A710624626 gale_infotracacademiconefile_A710624626 pubmed_primary_31737978 crossref_primary_10_1002_hbm_24863 crossref_citationtrail_10_1002_hbm_24863 wiley_primary_10_1002_hbm_24863_HBM24863 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 1, 2020 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 1, 2020 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 7 2013; 26 2013; 3 2010; 19 2015; 72 2004; 161 2013; 64 2019; 17 2011; 11 1951; 22 2011; 55 2012; 59 2005; 26 2013; 7 2012; 169 2013; 8 2012; 12 2016; 37 2016; 79 2016; 33 1995; 20 2017; 74 2014; 4 2009; 10 2000 2015; 138 2006; 163 2016; 42 2014; 59 2011; 68 1992; 49 2014; 8 2010; 4 2018; 75 2012; 22 2012; 139 2010; 30 2014; 98 2009; 66 2014; 237 2013; 47 2011; 2 2012 2013; 43 2015; 168 2016; 129 2016; 124 2016; 10 2006 2014; 2014 2004 2012; 36 2015; 9 2014; 84 2016; 16 2011; 6 2011; 5 2011; 7 2019; 189 2016; 6 2015; 25 2016; 7 2010; 49 2015; 28 2013; 39 2016; 3 2006; 87 2017; 16 2015; 234 2013; 34 2015; 20 2017; 11 2015; 21 2016; 530 2009; 101 2017; 1613 2012; 6 2012; 7 2017; 145 2014; 383 2016; 26 2008; 131 2016; 175 e_1_2_8_28_1 Yu Q. (e_1_2_8_91_1) 2011; 5 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Arbabshirani M. R. (e_1_2_8_5_1) 2014; 2014 e_1_2_8_70_1 Wang H. (e_1_2_8_80_1) 2016; 6 Pedregosa F. (e_1_2_8_54_1) 2012; 12 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 American Psychiatric Association (e_1_2_8_2_1) 2000 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_93_1 e_1_2_8_29_1 Oh J. (e_1_2_8_49_1) 2017; 7 First M. B. (e_1_2_8_22_1) 2004 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 Wang J. (e_1_2_8_81_1) 2015; 9 Lieberman A. J. (e_1_2_8_39_1) 2006 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_88_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_92_1 e_1_2_8_94_1 e_1_2_8_90_1 Chao‐Gan Y. (e_1_2_8_13_1) 2010; 4 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 Wang J. (e_1_2_8_82_1) 2010; 4 First M. B. (e_1_2_8_23_1) 2012 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 124 start-page: 127 issue: Pt. A year: 2016 end-page: 146 article-title: Deep neural network with weight sparsity control and pre‐training extracts hierarchical features and enhances classification performance: Evidence from whole‐brain resting‐state functional connectivity patterns of schizophrenia publication-title: NeuroImage – volume: 36 start-page: 1140 issue: 4 year: 2012 end-page: 1152 article-title: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review publication-title: Neuroscience and Biobehavioral Reviews – volume: 25 start-page: 733 issue: 5 year: 2015 end-page: 748 article-title: Connectomics: A new paradigm for understanding brain disease publication-title: European Neuropsychopharmacology – volume: 8 start-page: 189 year: 2014 article-title: An empirical comparison of different approaches for combining multimodal neuroimaging data with support vector machine publication-title: Frontiers in Neuroscience – volume: 30 start-page: 15915 issue: 47 year: 2010 end-page: 15926 article-title: Aberrant frontal and temporal complex network structure in schizophrenia: A graph theoretical analysis publication-title: Journal of Neuroscience – start-page: 365 year: 2006 end-page: 381 article-title: Treatment of chronic schizophrenia publication-title: The American Psychiatric Publishing Textbook of Schizophrenia – volume: 2014 start-page: 6691 year: 2014 end-page: 6694 article-title: Accurate classification of schizophrenia patients based on novel resting‐state fMRI features publication-title: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 7 issue: 11 year: 2012 article-title: Automatic classification of early Parkinson's disease with multi‐modal MR imaging publication-title: PLoS One – volume: 30 start-page: 9477 issue: 28 year: 2010 end-page: 9487 article-title: Functional connectivity and brain networks in schizophrenia publication-title: The Journal of Neuroscience – volume: 25 issue: 3 year: 2015 article-title: Discrimination of schizophrenia auditory hallucinators by machine learning of resting‐state functional MRI publication-title: International Journal of Neural Systems – volume: 98 start-page: 405 year: 2014 end-page: 415 article-title: Correction of inter‐scanner and within‐subject variance in structural MRI based automated diagnosing publication-title: NeuroImage – volume: 8 issue: 5 year: 2013 article-title: Combining classification with fMRI‐derived complex network measures for potential neurodiagnostics publication-title: PLoS One – volume: 64 start-page: 240 year: 2013 end-page: 256 article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting‐state functional connectivity data publication-title: NeuroImage – volume: 66 start-page: 700 issue: 7 year: 2009 end-page: 712 article-title: Use of neuroanatomical pattern classification to identify subjects in at‐risk mental states of psychosis and predict disease transition publication-title: Archives of General Psychiatry – volume: 7 start-page: 113 year: 2011 end-page: 140 article-title: Brain graphs: Graphical models of the human brain connectome publication-title: Annual Review of Clinical Psychology – volume: 59 start-page: 13 issue: 1 year: 2014 end-page: 17 article-title: Cognition, function, and disability in patients with schizophrenia: A review of longitudinal studies publication-title: Canadian Journal of Psychiatry – volume: 2 start-page: 1 issue: 3 year: 2011 end-page: 27 article-title: LIBSVM: A library for support vector machines publication-title: ACM Transactions on Intelligent Systems & Technology – volume: 8 issue: 3 year: 2013 article-title: Single‐subject grey matter graphs in Alzheimer's disease publication-title: PLoS One – volume: 84 start-page: 299 year: 2014 end-page: 306 article-title: Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects publication-title: NeuroImage – volume: 19 start-page: 226 issue: 4 year: 2010 end-page: 231 article-title: Structural and functional brain abnormalities in schizophrenia publication-title: Current Directions in Psychological Science – volume: 4 start-page: 337 issue: 5 year: 2014 end-page: 346 article-title: Single‐subject gray matter graph properties and their relationship with cognitive impairment in early‐ and late‐onset Alzheimer's disease publication-title: Brain Connectivity – volume: 129 start-page: 247 year: 2016 end-page: 259 article-title: Statistical machine learning to identify traumatic brain injury (TBI) from structural disconnections of white matter networks publication-title: NeuroImage – volume: 383 start-page: 1677 issue: 9929 year: 2014 end-page: 1687 article-title: Schizophrenia: An integrated sociodevelopmental‐cognitive model publication-title: Lancet – volume: 22 start-page: 79 issue: 1 year: 1951 end-page: 86 article-title: On information and sufficiency publication-title: Annals of Mathematical Statistics – volume: 34 start-page: 2023 issue: 8 year: 2013 end-page: 2036 article-title: Alzheimer's disease: Connecting findings from graph theoretical studies of brain networks publication-title: Neurobiology of Aging – volume: 6 issue: 4 year: 2016 article-title: Single‐subject morphological brain networks: Connectivity mapping, topological characterization and test‐retest reliability publication-title: Brain and Behavior: A Cognitive Neuroscience Perspective – volume: 87 start-page: 60 issue: 1–3 year: 2006 end-page: 66 article-title: Small‐world networks and disturbed functional connectivity in schizophrenia publication-title: Schizophrenia Research – volume: 234 start-page: 66 issue: 1 year: 2015 end-page: 73 article-title: The neural basis of a deficit in abstract thinking in patients with schizophrenia publication-title: Psychiatry Research – year: 2004 – volume: 20 start-page: 924 issue: 8 year: 2015 end-page: 927 article-title: Predicting clinical response in people at ultra‐high risk of psychosis: A systematic and quantitative review publication-title: Drug Discovery Today – volume: 43 start-page: 2547 issue: 12 year: 2013 end-page: 2562 article-title: Using genetic, cognitive and multi‐modal neuroimaging data to identify ultra‐high‐risk and first‐episode psychosis at the individual level publication-title: Psychological Medicine – volume: 7 issue: 1 year: 2017 article-title: Aberrant neural networks for the recognition memory of socially relevant information in patients with schizophrenia publication-title: Brain and Behavior: A Cognitive Neuroscience Perspective – volume: 6 start-page: 145 year: 2012 article-title: High classification accuracy for schizophrenia with rest and task FMRI data publication-title: Frontiers in Human Neuroscience – volume: 7 start-page: 52 year: 2016 article-title: Identifying individuals at high risk of psychosis: Predictive utility of support vector machine using structural and functional MRI data publication-title: Frontiers in Psychiatry – volume: 3 year: 2016 article-title: A phenome‐wide examination of neural and cognitive function publication-title: Scientific Data – volume: 22 start-page: 1530 issue: 7 year: 2012 end-page: 1541 article-title: Similarity‐based extraction of individual networks from gray matter MRI scans publication-title: Cerebral Cortex – volume: 49 start-page: 3110 issue: 4 year: 2010 end-page: 3121 article-title: Discriminative analysis of resting‐state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI publication-title: NeuroImage – volume: 3 start-page: 279 year: 2013 end-page: 289 article-title: Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single‐subject level publication-title: NeuroImage: Clinical – volume: 68 start-page: 128 issue: 2 year: 2011 end-page: 137 article-title: Long‐term antipsychotic treatment and brain volumes: A longitudinal study of first‐episode schizophrenia publication-title: Archives of General Psychiatry – volume: 9 start-page: 555 year: 2015 end-page: 563 article-title: Classifying individuals at high‐risk for psychosis based on functional brain activity during working memory processing publication-title: NeuroImage: Clinical – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 article-title: Support vector network publication-title: Machine Learning – volume: 87 start-page: 297 issue: 1–3 year: 2006 end-page: 306 article-title: Classification of adolescent psychotic disorders using linear discriminant analysis publication-title: Schizophrenia Research – volume: 530 start-page: 162 issue: 7589 year: 2016 end-page: 163 article-title: Schizophrenia: From genetics to physiology at last publication-title: Nature – volume: 16 start-page: 600 issue: 7 year: 2017 end-page: 608 article-title: Classification of schizophrenia based on individual hierarchical brain networks constructed from structural MRI images publication-title: IEEE Transactions on Nanobioscience – volume: 6 issue: 6 year: 2011 article-title: Classification of first‐episode schizophrenia patients and healthy subjects by automated MRI measures of regional brain volume and cortical thickness publication-title: PLoS One – volume: 138 start-page: 2059 issue: Pt. 7 year: 2015 end-page: 2073 article-title: Individualized differential diagnosis of schizophrenia and mood disorders using neuroanatomical biomarkers publication-title: Brain – volume: 39 start-page: 1105 issue: 5 year: 2013 end-page: 1114 article-title: Distinguishing prodromal from first‐episode psychosis using neuroanatomical single‐subject pattern recognition publication-title: Schizophrenia Bulletin – volume: 7 start-page: 910 year: 2013 article-title: Addressing head motion dependencies for small‐world topologies in functional connectomics publication-title: Frontiers in Human Neuroscience – volume: 55 start-page: 856 issue: 3 year: 2011 end-page: 867 article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment publication-title: NeuroImage – year: 2000 – volume: 163 start-page: 2103 issue: 12 year: 2006 end-page: 2110 article-title: Middle and inferior temporal gyrus gray matter volume abnormalities in first‐episode schizophrenia: An MRI study publication-title: The American Journal of Psychiatry – volume: 84 start-page: 320 year: 2014 end-page: 341 article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI publication-title: NeuroImage – volume: 161 start-page: 1603 issue: 9 year: 2004 end-page: 1611 article-title: Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: An MRI study publication-title: The American Journal of Psychiatry – volume: 28 start-page: 358 issue: 4 year: 2015 end-page: 364 article-title: Neuroimaging signature of neuropsychiatric disorders publication-title: Current Opinion in Neurology – volume: 26 start-page: 839 issue: 3 year: 2005 end-page: 851 article-title: Unified segmentation publication-title: NeuroImage – volume: 37 start-page: 154 year: 2016 end-page: 160 article-title: Gray matter network disruptions and amyloid beta in cognitively normal adults publication-title: Neurobiology of Aging – volume: 145 start-page: 238 issue: Pt B year: 2017 end-page: 245 article-title: Classification of first‐episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques publication-title: NeuroImage – volume: 21 start-page: 290 issue: 3 year: 2015 end-page: 305 article-title: Understanding structural‐functional relationships in the human brain: A large‐scale network perspective publication-title: The Neuroscientist – volume: 16 start-page: 228 year: 2016 article-title: Disability and recovery in schizophrenia: A systematic review of cognitive behavioral therapy interventions publication-title: BMC Psychiatry – volume: 12 start-page: 2825 issue: 10 year: 2012 end-page: 2830 article-title: Scikit‐learn: Machine learning in python publication-title: Journal of Machine Learning Research – volume: 49 start-page: 615 issue: 8 year: 1992 end-page: 623 article-title: The comprehensive assessment of symptoms and history (CASH). An instrument for assessing diagnosis and psychopathology publication-title: Archives of General Psychiatry – volume: 11 start-page: 18 year: 2011 article-title: Pattern of neural responses to verbal fluency shows diagnostic specificity for schizophrenia and bipolar disorder publication-title: BMC Psychiatry – year: 2012 – volume: 7 start-page: 235 year: 2013 article-title: Combination of resting state fMRI, DTI, and sMRI data to discriminate schizophrenia by N‐way MCCA + jICA publication-title: Frontiers in Human Neuroscience – volume: 26 start-page: 288 issue: 1 year: 2016 end-page: 303 article-title: Generation and evaluation of a cortical area parcellation from resting‐state correlations publication-title: Cerebral Cortex – volume: 59 start-page: 2142 issue: 3 year: 2012 end-page: 2154 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: NeuroImage – volume: 11 start-page: 59 year: 2017 article-title: Multimodal discrimination of schizophrenia using hybrid weighted feature concatenation of brain functional connectivity and anatomical features with an extreme learning machine publication-title: Frontiers in Neuroinformatics – volume: 5 start-page: 7 year: 2011 article-title: Altered small‐world brain networks in temporal lobe in patients with schizophrenia performing an auditory oddball task publication-title: Frontiers in Systems Neuroscience – volume: 169 start-page: 1092 issue: 10 year: 2012 end-page: 1099 article-title: Thalamocortical dysconnectivity in schizophrenia publication-title: American Journal of Psychiatry – volume: 79 start-page: 1016 issue: 12 year: 2016 end-page: 1025 article-title: Mapping thalamocortical functional connectivity in chronic and early stages of psychotic disorders publication-title: Biological Psychiatry – volume: 131 start-page: 945 issue: Pt. 4 year: 2008 end-page: 961 article-title: Disrupted small‐world networks in schizophrenia publication-title: Brain – volume: 9 start-page: 386 year: 2015 article-title: GRETNA: A graph theoretical network analysis toolbox for imaging connectomics publication-title: Frontiers in Human Neuroscience – volume: 10 start-page: 292 year: 2016 article-title: Multimodal MRI‐based classification of trauma survivors with and without post‐traumatic stress disorder publication-title: Frontiers in Neuroscience – volume: 42 start-page: S110 issue: Suppl. 1 year: 2016 end-page: S117 article-title: Classifying schizophrenia using multimodal multivariate pattern recognition analysis: Evaluating the impact of individual clinical profiles on the neurodiagnostic performance publication-title: Schizophrenia Bulletin – volume: 139 start-page: 7 issue: 1–3 year: 2012 end-page: 12 article-title: Whole brain resting state functional connectivity abnormalities in schizophrenia publication-title: Schizophrenia Research – volume: 72 start-page: 882 issue: 9 year: 2015 end-page: 891 article-title: Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk publication-title: JAMA Psychiatry – volume: 47 start-page: 1383 issue: 10 year: 2013 end-page: 1388 article-title: Discrimination between schizophrenia and major depressive disorder by magnetic resonance imaging of the female brain publication-title: Journal of Psychiatric Research – volume: 175 start-page: 20 issue: 1–3 year: 2016 end-page: 26 article-title: Increased superior frontal gyrus activation during working memory processing in psychosis: Significant relation to cumulative antipsychotic medication and to negative symptoms publication-title: Schizophrenia Research – volume: 75 start-page: 960 issue: 9 year: 2018 end-page: 968 article-title: Use of machine learning to determine deviance in neuroanatomical maturity associated with future psychosis in youths at clinically high risk publication-title: JAMA Psychiatry – volume: 17 issue: 4 year: 2019 article-title: Harmonization of resting‐state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias publication-title: PLoS Biology – volume: 4 start-page: 13 year: 2010 article-title: DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting‐state fMRI publication-title: Frontiers in Systems Neuroscience – volume: 74 start-page: 58 year: 2017 end-page: 75 article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications publication-title: Neuroscience and Biobehavioral Reviews. – volume: 26 start-page: 172 issue: 2 year: 2013 end-page: 187 article-title: Review of functional and anatomical brain connectivity findings in schizophrenia publication-title: Current Opinion in Psychiatry – volume: 33 start-page: 73 year: 2016 end-page: 84 article-title: A review of the functional and anatomical default mode network in schizophrenia publication-title: Neuroscience Bulletin – volume: 168 start-page: 1 issue: 1–2 year: 2015 end-page: 8 article-title: Grey matter networks in people at increased familial risk for schizophrenia publication-title: Schizophrenia Research – volume: 6 year: 2016 article-title: Abnormal regional homogeneity as potential imaging biomarker for psychosis risk syndrome: A resting‐state fMRI study and support vector machine analysis publication-title: Scientific Reports – volume: 101 start-page: 3270 issue: 6 year: 2009 end-page: 3283 article-title: The global signal and observed anticorrelated resting state brain networks publication-title: Journal of Neurophysiology – volume: 59 start-page: 2187 issue: 3 year: 2012 end-page: 2195 article-title: Discriminative analysis of early Alzheimer's disease using multi‐modal imaging and multi‐level characterization with multi‐classifier (M3) publication-title: NeuroImage – volume: 1613 start-page: 479 year: 2017 end-page: 504 article-title: Functional network disruptions in schizophrenia publication-title: Methods in Molecular Biology – volume: 237 start-page: 103 year: 2014 end-page: 107 article-title: Measuring individual morphological relationship of cortical regions publication-title: Journal of Neuroscience Methods – volume: 10 start-page: 186 issue: 3 year: 2009 end-page: 198 article-title: Complex brain networks: Graph theoretical analysis of structural and functional systems publication-title: Nature Reviews: Neuroscience – volume: 4 start-page: 16 year: 2010 article-title: Graph‐based network analysis of resting‐state functional MRI publication-title: Frontiers in Systems Neuroscience – volume: 189 start-page: 700 year: 2019 end-page: 714 article-title: Reproducibility of functional brain alterations in major depressive disorder: Evidence from a multisite resting‐state functional MRI study with 1,434 individuals publication-title: NeuroImage – ident: e_1_2_8_35_1 doi: 10.1093/brain/awv111 – ident: e_1_2_8_7_1 doi: 10.1016/j.nicl.2015.09.015 – ident: e_1_2_8_83_1 doi: 10.1038/srep27619 – ident: e_1_2_8_32_1 doi: 10.1016/j.neuroimage.2015.05.018 – ident: e_1_2_8_9_1 doi: 10.1038/nrn2575 – ident: e_1_2_8_90_1 doi: 10.3389/fnhum.2013.00910 – ident: e_1_2_8_11_1 doi: 10.1093/schbul/sbw053 – ident: e_1_2_8_56_1 doi: 10.3389/fnins.2014.00189 – volume-title: Structured clinical interview for DSM‐IV Axis I disorders (SCID‐I/P) year: 2012 ident: e_1_2_8_23_1 – ident: e_1_2_8_47_1 doi: 10.1186/s12888-016-0912-8 – ident: e_1_2_8_87_1 doi: 10.1097/WCO.0000000000000220 – ident: e_1_2_8_73_1 doi: 10.1016/j.neurobiolaging.2013.02.020 – ident: e_1_2_8_85_1 doi: 10.1016/j.biopsych.2015.06.026 – ident: e_1_2_8_93_1 doi: 10.1016/j.neuroimage.2011.01.008 – ident: e_1_2_8_16_1 doi: 10.1007/BF00994018 – ident: e_1_2_8_55_1 doi: 10.1017/S003329171300024X – ident: e_1_2_8_74_1 doi: 10.1089/brain.2013.0209 – ident: e_1_2_8_69_1 doi: 10.1371/journal.pone.0058921 – ident: e_1_2_8_3_1 doi: 10.1001/archpsyc.1992.01820080023004 – ident: e_1_2_8_68_1 doi: 10.1371/journal.pone.0021047 – ident: e_1_2_8_10_1 doi: 10.1146/annurev-clinpsy-040510-143934 – ident: e_1_2_8_46_1 doi: 10.1016/j.neuroimage.2016.01.056 – ident: e_1_2_8_43_1 doi: 10.1523/JNEUROSCI.0333-10.2010 – volume: 4 start-page: 13 year: 2010 ident: e_1_2_8_13_1 article-title: DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting‐state fMRI publication-title: Frontiers in Systems Neuroscience – ident: e_1_2_8_20_1 doi: 10.3389/fnhum.2012.00145 – ident: e_1_2_8_40_1 doi: 10.1109/TNB.2017.2751074 – ident: e_1_2_8_59_1 doi: 10.1016/j.neuroimage.2013.08.048 – ident: e_1_2_8_77_1 doi: 10.1016/j.schres.2012.04.021 – volume: 9 start-page: 386 year: 2015 ident: e_1_2_8_81_1 article-title: GRETNA: A graph theoretical network analysis toolbox for imaging connectomics publication-title: Frontiers in Human Neuroscience – ident: e_1_2_8_76_1 doi: 10.1523/JNEUROSCI.2874-10.2010 – ident: e_1_2_8_89_1 doi: 10.1371/journal.pbio.3000042 – ident: e_1_2_8_79_1 doi: 10.1016/j.schres.2016.03.033 – volume: 5 start-page: 7 year: 2011 ident: e_1_2_8_91_1 article-title: Altered small‐world brain networks in temporal lobe in patients with schizophrenia performing an auditory oddball task publication-title: Frontiers in Systems Neuroscience – ident: e_1_2_8_53_1 doi: 10.1016/j.schres.2006.05.007 – ident: e_1_2_8_45_1 doi: 10.1016/j.schres.2006.06.028 – ident: e_1_2_8_92_1 doi: 10.1016/j.nicl.2013.09.003 – ident: e_1_2_8_8_1 doi: 10.1093/schbul/sbs095 – ident: e_1_2_8_67_1 doi: 10.3389/fnhum.2013.00235 – ident: e_1_2_8_41_1 doi: 10.1093/brain/awn018 – ident: e_1_2_8_70_1 doi: 10.1093/cercor/bhr221 – ident: e_1_2_8_42_1 doi: 10.1371/journal.pone.0047714 – ident: e_1_2_8_37_1 doi: 10.1214/aoms/1177729694 – ident: e_1_2_8_30_1 doi: 10.1007/s12264-016-0090-1 – ident: e_1_2_8_44_1 doi: 10.1016/j.drudis.2015.03.003 – ident: e_1_2_8_18_1 doi: 10.1016/j.neuroimage.2011.10.003 – ident: e_1_2_8_94_1 doi: 10.3389/fnins.2016.00292 – ident: e_1_2_8_50_1 doi: 10.1176/appi.ajp.161.9.1603 – ident: e_1_2_8_62_1 doi: 10.1007/978-1-4939-7027-8_19 – ident: e_1_2_8_4_1 doi: 10.1001/jamapsychiatry.2015.0566 – ident: e_1_2_8_29_1 doi: 10.1016/S0140-6736(13)62036-X – volume: 4 start-page: 16 year: 2010 ident: e_1_2_8_82_1 article-title: Graph‐based network analysis of resting‐state functional MRI publication-title: Frontiers in Systems Neuroscience – ident: e_1_2_8_60_1 doi: 10.3389/fninf.2017.00059 – ident: e_1_2_8_75_1 doi: 10.3389/fpsyt.2016.00052 – ident: e_1_2_8_57_1 doi: 10.1038/sdata.2016.110 – volume: 2014 start-page: 6691 year: 2014 ident: e_1_2_8_5_1 article-title: Accurate classification of schizophrenia patients based on novel resting‐state fMRI features publication-title: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society – ident: e_1_2_8_71_1 doi: 10.1016/j.schres.2015.08.025 – ident: e_1_2_8_88_1 doi: 10.1016/j.neuroimage.2019.01.074 – volume: 6 start-page: e00448 issue: 4 year: 2016 ident: e_1_2_8_80_1 article-title: Single‐subject morphological brain networks: Connectivity mapping, topological characterization and test‐retest reliability publication-title: Brain and Behavior: A Cognitive Neuroscience Perspective doi: 10.1002/brb3.448 – volume: 12 start-page: 2825 issue: 10 year: 2012 ident: e_1_2_8_54_1 article-title: Scikit‐learn: Machine learning in python publication-title: Journal of Machine Learning Research – ident: e_1_2_8_48_1 doi: 10.1016/j.pscychresns.2015.08.007 – ident: e_1_2_8_6_1 doi: 10.1016/j.neuroimage.2005.02.018 – volume: 7 start-page: e00602 issue: 1 year: 2017 ident: e_1_2_8_49_1 article-title: Aberrant neural networks for the recognition memory of socially relevant information in patients with schizophrenia publication-title: Brain and Behavior: A Cognitive Neuroscience Perspective doi: 10.1002/brb3.602 – ident: e_1_2_8_63_1 doi: 10.1016/j.neuroimage.2012.08.052 – ident: e_1_2_8_15_1 doi: 10.1142/S0129065715500070 – ident: e_1_2_8_38_1 doi: 10.1176/ajp.2006.163.12.2103 – ident: e_1_2_8_51_1 doi: 10.1016/j.neubiorev.2012.01.004 – ident: e_1_2_8_33_1 doi: 10.1016/j.jneumeth.2014.09.003 – ident: e_1_2_8_34_1 doi: 10.1016/j.neuroimage.2014.04.057 – ident: e_1_2_8_12_1 doi: 10.1145/1961189.1961199 – volume-title: DSM‐IV‐TR guidebook year: 2004 ident: e_1_2_8_22_1 – ident: e_1_2_8_52_1 doi: 10.1016/j.jpsychires.2013.06.010 – ident: e_1_2_8_78_1 doi: 10.1016/j.neubiorev.2017.01.002 – ident: e_1_2_8_26_1 doi: 10.1152/jn.90777.2008 – ident: e_1_2_8_58_1 doi: 10.1016/j.neuroimage.2011.10.018 – ident: e_1_2_8_36_1 doi: 10.1001/archgenpsychiatry.2009.62 – ident: e_1_2_8_86_1 doi: 10.1176/appi.ajp.2012.12010056 – ident: e_1_2_8_28_1 doi: 10.1001/archgenpsychiatry.2010.199 – ident: e_1_2_8_25_1 doi: 10.1016/j.euroneuro.2014.02.011 – ident: e_1_2_8_14_1 doi: 10.1001/jamapsychiatry.2018.1543 – ident: e_1_2_8_24_1 doi: 10.1097/YCO.0b013e32835d9e6a – ident: e_1_2_8_27_1 doi: 10.1093/cercor/bhu239 – ident: e_1_2_8_31_1 doi: 10.1177/0963721410377601 – ident: e_1_2_8_21_1 doi: 10.1371/journal.pone.0062867 – ident: e_1_2_8_84_1 doi: 10.1177/1073858414537560 – start-page: 365 year: 2006 ident: e_1_2_8_39_1 article-title: Treatment of chronic schizophrenia publication-title: The American Psychiatric Publishing Textbook of Schizophrenia – ident: e_1_2_8_17_1 doi: 10.1186/1471-244X-11-18 – ident: e_1_2_8_19_1 doi: 10.1038/nature16874 – ident: e_1_2_8_66_1 doi: 10.1016/j.neuroimage.2015.12.007 – ident: e_1_2_8_72_1 doi: 10.1016/j.neurobiolaging.2015.10.015 – ident: e_1_2_8_61_1 doi: 10.1177/070674371405900104 – ident: e_1_2_8_65_1 doi: 10.1016/j.neuroimage.2009.11.011 – volume-title: Diagnostic and statistical manual of mental disorders, 4th edition – Text revision year: 2000 ident: e_1_2_8_2_1 – ident: e_1_2_8_64_1 doi: 10.1016/j.neuroimage.2013.08.053 |
SSID | ssj0011501 |
Score | 2.5464768 |
Snippet | Schizophrenia is a severe psychiatric disorder associated with both structural and functional brain abnormalities. In the past few years, there has been... |
SourceID | pubmedcentral proquest gale pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1119 |
SubjectTerms | Abnormalities Adult Classification Connectome Covariance matrix Data acquisition Diagnostic imaging Diagnostic software Diagnostic systems Diffusion Tensor Imaging Feature extraction Female functional connectivity Functional magnetic resonance imaging graph theoretical analysis Gray Matter - diagnostic imaging Homogeneity Humans Image Processing, Computer-Assisted - methods Learning algorithms Machine Learning Machining Magnetic Resonance Imaging Male Mathematical analysis Matrix algebra Matrix methods Medical imaging Mental disorders Middle Aged Model accuracy Multimodal Imaging - methods Neural networks Neural Pathways - diagnostic imaging Neuroimaging Neuroimaging - methods Performance enhancement Reproducibility of Results Research facilities Rest Schizophrenia Schizophrenia - diagnostic imaging Structure-function relationships Substantia alba Substantia grisea Support Vector Machine Support vector machines White Matter - diagnostic imaging Young Adult |
Title | Integrating machining learning and multimodal neuroimaging to detect schizophrenia at the level of the individual |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24863 https://www.ncbi.nlm.nih.gov/pubmed/31737978 https://www.proquest.com/docview/2370430592 https://www.proquest.com/docview/2315528114 https://pubmed.ncbi.nlm.nih.gov/PMC7268084 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_OexBf_Ljzo3ouUUTvpXvdNG1SfFrFYxVWRDy4B6EkbeotXlt1u4L-9c6kH24XBfGtJZPQpjOT36ST3wA8yfPccKsiX8uC-0JkyscwKPKVEcoGM-xk6aDw8m28OBNvzqPzPXjen4Vp-SGGDTeyDOevycC1WZ_8Jg29MOWUCxUT0yflahEgej9QRxHQccEWLrF-gh64ZxUK-MnQc7QW7XrkrSVpN11yG8a6dej0Bnzs36BNP_k83TRmmv3cIXf8z1e8Cdc7fMrmrULdgj1bHcDhvMLYvPzBnjKXMeq24g_g6rL7MX8IX193tBO4ErLSJWjSVVeT4hPTVc5c7mJZ5zi8Y9Fcla5CEmtqllv6l8HW2xmATDcM0SmO8d1esrpwN6vh_NhtODt99eHlwu-qOfgZxjShr2OVi0DPitjKOI60sDMZxjrUqtBGZ4kNdWStSRCvCCW4lonWgUQxkUsh0E_cgf2qruw9YMRaGIQhgjWeiLDgSmmhEhVxk6lZoDMPjvvvmmYd1TlV3LhMW5JmnuLMpm5mPXg8iH5p-T3-JPSMlCMlm8dxMt0dXcCnIfasdI4wLeYCY0MPjkaSaKvZuLlXr7TzFeuUh9IRryXcg0dDM_Wk_LfK1huSIao8hcGrB3dbbRweFxFgKBOpPJAjPR0EiEF83FKtLhyTuORUeQXHPHZq-PcZSBcvlu7i_r-LPoBrnDYnXJrTEew33zb2ISK4xkzgChfvJm7_Y-LM9heYtERM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXHi2PQAGDEPSSbdZxYkfisjyqLXR7QK3UC7KcxKErmgRoFgl-PTPOg90VSIibI48tx5mnM_4G4Fme5ym3KvKNLLgvRKZ8DIMiX6VC2WCMgyxdFJ4dxdMT8e40Ot2Al_1dmBYfYjhwI8lw-poEnA6k936jhp6l5YgLFYeX4DJV9Cbk_DcfBvAocnVcuIVG1k9QB_e4QgHfG4auWKN1nbxklNYTJpcdWWeJ9m_Ax_4d2gSUz6NFk46yn2vwjv_7kjfheueisknLU7dgw1ZbsD2pMDwvf7DnzCWNutP4Lbgy6_7Nb8PXgw55Ao0hK12OJrW6shSfmKly5tIXyzrH6R2Q5rx0RZJYU7Pc0u8MdrGcBMhMw9BBxTm-23NWF-5hPlwhuw0n-2-PX0_9rqCDn2FYE_omVrkIzLiIrYzjyAg7lmFsQqMKk5ossaGJrE0TdFmEEtzIxJhAIpnIpRCoKu7AZlVX9h4wAi4MwhD9NZ6IsOBKGaESFfE0U-PAZB7s9h9WZx3aORXdONctTjPXuLPa7awHTwfSLy3Ex5-IXhB3aBJ7nCcz3e0FXA0BaOkJemoxFxgeerCzQonimq129_ylO3VxoXkoHfZawj14MnTTSEqBq2y9IBpCy1MYv3pwt2XHYbnoBIYykcoDucKoAwGBiK_2VPMzByYuORVfwTl3HR_-fQf09NXMNe7_O-ljuDo9nh3qw4Oj9w_gGqezCpf1tAObzbeFfYgOXZM-cnL7C2-7Rpw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIlVcKtrySGnBIAS9hGZtJ3bEaXmstsBWPVCpN8tJnHalJmnpFol_z4yTDZsKJG6JPLaijMfzjT3-BuB1URQZdzoOrSp5KGWuQwyD4lBnUrtohJ0cXRSeHSfTU_nlLD5bg_fLuzAtP0S_4UaW4ddrMvCrojz8Qxp6kVXvuNSJuAf36bCP8rm4POmPEBDp-GgLfWyY4hK8pBWK-GHfdeCM7i7JKz7pbr7kKo71jmjyEDY7BMnGrcq3YM3V27AzrjF6rn6xN8zndPrN8m3YmHVH5ztwfdQRQ6CvYpVPoaSnrmrEObN1wXx2YdUUOLznuZxXvoYRWzSscHTawG5Wc_SYXTDEjzjGT3fJmtK_zPsbXo_gdPL5-8dp2NVbCHOMOkRoE13IyI7KxKkkia10IyUSK6wubWbz1AkbO5eliCikltyq1NpIoZgslJRoyY9hvW5q9xQY8QpGQiCc4qkUJdfaSp3qmGe5HkU2D-Bg-eNN3pGRU02MS9PSKHODOjJeRwG86kWvWgaOvwm9Je0ZskocJ7fd5QL8GuK3MmMEUgmXGL0FsDeQRGvKh81L_ZvOmm8MF8pTo6U8gJd9M_WkDLXaNbckQ2R2GsPLAJ6006X_XMRoQmG4HoAaTKRegDi-hy31_MJzfStOtVFwzAM_5f79B8z0w8w_7P6_6AvYOPk0Md-Ojr8-gwecdhJ8TtIerC9-3Lp9hFuL7Lk3q99dhCUc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+machining+learning+and+multimodal+neuroimaging+to+detect+schizophrenia+at+the+level+of+the+individual&rft.jtitle=Human+brain+mapping&rft.au=Lei%2C+Du&rft.au=Pinaya%2C+Walter+H.+L.&rft.au=Young%2C+Jonathan&rft.au=van+Amelsvoort%2C+Therese&rft.date=2020-04-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=41&rft.issue=5&rft.spage=1119&rft.epage=1135&rft_id=info:doi/10.1002%2Fhbm.24863&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_24863 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |