Medial temporal lobe function and structure in mild cognitive impairment

Functional magnetic resonance imaging (fMRI) was used to study memory‐associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly individuals with mild cognitive impairment (MCI). Subjects performed a visual encoding task during fMRI scanning and were tested for recognition...

Full description

Saved in:
Bibliographic Details
Published inAnnals of neurology Vol. 56; no. 1; pp. 27 - 35
Main Authors Dickerson, Bradford C., Salat, David H., Bates, Julianna F., Atiya, Monika, Killiany, Ronald J., Greve, Douglas N., Dale, Anders M., Stern, Chantal E., Blacker, Deborah, Albert, Marilyn S., Sperling, Reisa A.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2004
Willey-Liss
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Functional magnetic resonance imaging (fMRI) was used to study memory‐associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly individuals with mild cognitive impairment (MCI). Subjects performed a visual encoding task during fMRI scanning and were tested for recognition of stimuli afterward. MTL regions of interest were identified from each individual's structural MRI, and activation was quantified within each region. Greater extent of activation within the hippocampal formation and parahippocampal gyrus (PHG) was correlated with better memory performance. There was, however, a paradoxical relationship between extent of activation and clinical status at both baseline and follow‐up evaluations. Subjects with greater clinical impairment, based on the Clinical Dementia Rating Sum of Boxes, recruited a larger extent of the right PHG during encoding, even after accounting for atrophy. Moreover, those who subsequently declined over the 2.5 years of clinical follow‐up (44% of the subjects) activated a significantly greater extent of the right PHG during encoding, despite equivalent memory performance. We hypothesize that increased activation in MTL regions reflects a compensatory response to accumulating AD pathology and may serve as a marker for impending clinical decline. Ann Neurol 2004;56:27–35
AbstractList Functional magnetic resonance imaging (fMRI) was used to study memory-associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly individuals with mild cognitive impairment (MCI). Subjects performed a visual encoding task during fMRI scanning and were tested for recognition of stimuli afterward. MTL regions of interest were identified from each individual's structural MRI, and activation was quantified within each region. Greater extent of activation within the hippocampal formation and parahippocampal gyrus (PHG) was correlated with better memory performance. There was, however, a paradoxical relationship between extent of activation and clinical status at both baseline and follow-up evaluations. Subjects with greater clinical impairment, based on the Clinical Dementia Rating Sum of Boxes, recruited a larger extent of the right PHG during encoding, even after accounting for atrophy. Moreover, those who subsequently declined over the 2.5 years of clinical follow-up (44% of the subjects) activated a significantly greater extent of the right PHG during encoding, despite equivalent memory performance. We hypothesize that increased activation in MTL regions reflects a compensatory response to accumulating AD pathology and may serve as a marker for impending clinical decline.
Functional magnetic resonance imaging (fMRI) was used to study memory-associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly individuals with mild cognitive impairment (MCI). Subjects performed a visual encoding task during fMRI scanning and were tested for recognition of stimuli afterward. MTL regions of interest were identified from each individual's structural MRI, and activation was quantified within each region. Greater extent of activation within the hippocampal formation and parahippocampal gyrus (PHG) was correlated with better memory performance. There was, however, a paradoxical relationship between extent of activation and clinical status at both baseline and follow-up evaluations. Subjects with greater clinical impairment, based on the Clinical Dementia Rating Sum of Boxes, recruited a larger extent of the right PHG during encoding, even after accounting for atrophy. Moreover, those who subsequently declined over the 2.5 years of clinical follow-up (44% of the subjects) activated a significantly greater extent of the right PHG during encoding, despite equivalent memory performance. We hypothesize that increased activation in MTL regions reflects a compensatory response to accumulating AD pathology and may serve as a marker for impending clinical decline.Functional magnetic resonance imaging (fMRI) was used to study memory-associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly individuals with mild cognitive impairment (MCI). Subjects performed a visual encoding task during fMRI scanning and were tested for recognition of stimuli afterward. MTL regions of interest were identified from each individual's structural MRI, and activation was quantified within each region. Greater extent of activation within the hippocampal formation and parahippocampal gyrus (PHG) was correlated with better memory performance. There was, however, a paradoxical relationship between extent of activation and clinical status at both baseline and follow-up evaluations. Subjects with greater clinical impairment, based on the Clinical Dementia Rating Sum of Boxes, recruited a larger extent of the right PHG during encoding, even after accounting for atrophy. Moreover, those who subsequently declined over the 2.5 years of clinical follow-up (44% of the subjects) activated a significantly greater extent of the right PHG during encoding, despite equivalent memory performance. We hypothesize that increased activation in MTL regions reflects a compensatory response to accumulating AD pathology and may serve as a marker for impending clinical decline.
Functional magnetic resonance imaging (fMRI) was used to study memory‐associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly individuals with mild cognitive impairment (MCI). Subjects performed a visual encoding task during fMRI scanning and were tested for recognition of stimuli afterward. MTL regions of interest were identified from each individual's structural MRI, and activation was quantified within each region. Greater extent of activation within the hippocampal formation and parahippocampal gyrus (PHG) was correlated with better memory performance. There was, however, a paradoxical relationship between extent of activation and clinical status at both baseline and follow‐up evaluations. Subjects with greater clinical impairment, based on the Clinical Dementia Rating Sum of Boxes, recruited a larger extent of the right PHG during encoding, even after accounting for atrophy. Moreover, those who subsequently declined over the 2.5 years of clinical follow‐up (44% of the subjects) activated a significantly greater extent of the right PHG during encoding, despite equivalent memory performance. We hypothesize that increased activation in MTL regions reflects a compensatory response to accumulating AD pathology and may serve as a marker for impending clinical decline. Ann Neurol 2004;56:27–35
Author Atiya, Monika
Greve, Douglas N.
Albert, Marilyn S.
Sperling, Reisa A.
Salat, David H.
Bates, Julianna F.
Dale, Anders M.
Blacker, Deborah
Killiany, Ronald J.
Dickerson, Bradford C.
Stern, Chantal E.
AuthorAffiliation 4 Harvard Medical School, Boston, MA
5 Department of Radiology, Massachusetts General Hospital, Charlestown, MA
6 Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
7 Max Planck Institute for Psychiatry, Munich, Germany
8 Departments of Anatomy and Neurobiology, Boston University of Medicine
10 Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
2 Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
9 Center for Memory and Brain, Boston University, Boston, MA
3 Department of Neurology, Brigham and Women’s Hospital
1 Department of Neurology, Massachusetts General Hospital
AuthorAffiliation_xml – name: 7 Max Planck Institute for Psychiatry, Munich, Germany
– name: 9 Center for Memory and Brain, Boston University, Boston, MA
– name: 1 Department of Neurology, Massachusetts General Hospital
– name: 2 Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
– name: 6 Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
– name: 5 Department of Radiology, Massachusetts General Hospital, Charlestown, MA
– name: 8 Departments of Anatomy and Neurobiology, Boston University of Medicine
– name: 3 Department of Neurology, Brigham and Women’s Hospital
– name: 4 Harvard Medical School, Boston, MA
– name: 10 Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
Author_xml – sequence: 1
  givenname: Bradford C.
  surname: Dickerson
  fullname: Dickerson, Bradford C.
  email: bradd@nmr.mgh.harvard.edu
  organization: Department of Neurology, Massachusetts General Hospital
– sequence: 2
  givenname: David H.
  surname: Salat
  fullname: Salat, David H.
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
– sequence: 3
  givenname: Julianna F.
  surname: Bates
  fullname: Bates, Julianna F.
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
– sequence: 4
  givenname: Monika
  surname: Atiya
  fullname: Atiya, Monika
  organization: Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
– sequence: 5
  givenname: Ronald J.
  surname: Killiany
  fullname: Killiany, Ronald J.
  organization: Departments of Anatomy and Neurobiology, Boston University of Medicine
– sequence: 6
  givenname: Douglas N.
  surname: Greve
  fullname: Greve, Douglas N.
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
– sequence: 7
  givenname: Anders M.
  surname: Dale
  fullname: Dale, Anders M.
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
– sequence: 8
  givenname: Chantal E.
  surname: Stern
  fullname: Stern, Chantal E.
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
– sequence: 9
  givenname: Deborah
  surname: Blacker
  fullname: Blacker, Deborah
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
– sequence: 10
  givenname: Marilyn S.
  surname: Albert
  fullname: Albert, Marilyn S.
  organization: Department of Neurology, Massachusetts General Hospital
– sequence: 11
  givenname: Reisa A.
  surname: Sperling
  fullname: Sperling, Reisa A.
  organization: Department of Neurology, Massachusetts General Hospital
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15918156$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15236399$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9vFCEcxYmpsdvWg_-AmYsmPUwLw6_hYrKp2jXZ1h40HgkDTEVnYAtMbf97WXdbaxP1BIHPe98Hbw_s-OAtAC8QPEIQNsfKq6MGIoafgBmiGNVtQ8QOmEHMSE0RJrtgL6VvEELBEHwGdhFtMMNCzMDizBqnhirbcRVi2Qyhs1U_eZ1d8JXypko5TjpP0VbOV6MbTKXDpXfZXZeTcaVcHK3PB-Bpr4Zkn2_XffD5_btPJ4t6-fH0w8l8WWvKGa4Z7iBpO2FEq5httNaCmN5iZrTgrNMGckJ6rqE2TY9wR7tWdL2AjJCmta3C--DNxnc1daM1uowuseUqulHFWxmUk3_eePdVXoZrSTCmrBXF4PXWIIaryaYsR5e0HQblbZiSZIxxCiH_L4h4IzjFa_Dlw0j3We5-uQCvtoBKWg19VF679IATqEWUFe5ww-kYUoq2_41AuW5alqblr6YLe_yI1S6rdWnl1W74l-KHG-zt363l_Hx-p6g3CpeyvblXqPhdMo45lV_OT6XgF2_JYskkxD8B_PrJSA
CODEN ANNED3
CitedBy_id crossref_primary_10_1016_j_neuropharm_2012_06_023
crossref_primary_10_1097_HRP_0000000000000084
crossref_primary_10_1016_j_neurobiolaging_2011_09_002
crossref_primary_10_1016_j_bbadis_2011_07_002
crossref_primary_10_1016_j_neurobiolaging_2011_09_009
crossref_primary_10_1016_j_neuroimage_2010_05_068
crossref_primary_10_1016_j_matpr_2021_01_221
crossref_primary_10_1016_j_neurobiolaging_2007_08_024
crossref_primary_10_1016_j_neuron_2009_07_003
crossref_primary_10_3390_nu11040926
crossref_primary_10_1159_000516230
crossref_primary_10_1016_j_nicl_2019_101958
crossref_primary_10_3389_fnsyn_2022_826601
crossref_primary_10_3389_fnagi_2024_1460293
crossref_primary_10_1016_j_neuroimage_2007_09_064
crossref_primary_10_1093_brain_awaa058
crossref_primary_10_3233_JAD_170181
crossref_primary_10_1007_s11682_014_9322_z
crossref_primary_10_1097_JGP_0b013e3180488325
crossref_primary_10_1016_j_neuroscience_2015_06_031
crossref_primary_10_1007_s12017_009_8109_7
crossref_primary_10_1523_JNEUROSCI_4740_11_2011
crossref_primary_10_1016_j_psc_2005_05_007
crossref_primary_10_1038_s41598_022_11582_1
crossref_primary_10_1007_s12264_014_1490_8
crossref_primary_10_1016_j_nicl_2016_01_008
crossref_primary_10_1016_j_nicl_2023_103532
crossref_primary_10_1002_alz_13037
crossref_primary_10_1523_JNEUROSCI_2250_06_2006
crossref_primary_10_1002_hipo_20105
crossref_primary_10_1016_j_biopsych_2012_05_026
crossref_primary_10_1212_01_wnl_0000277292_37292_69
crossref_primary_10_1254_fpj_139_157
crossref_primary_10_12779_dnd_2013_12_4_100
crossref_primary_10_1016_j_neuroimage_2006_04_195
crossref_primary_10_1016_j_neurobiolaging_2016_04_010
crossref_primary_10_1016_j_neuron_2013_01_002
crossref_primary_10_3233_JAD_220749
crossref_primary_10_1093_brain_awl266
crossref_primary_10_3389_fnagi_2022_919712
crossref_primary_10_1002_hbm_20883
crossref_primary_10_1016_j_neurobiolaging_2016_04_018
crossref_primary_10_1016_j_neuropsychologia_2007_11_030
crossref_primary_10_1002_ana_20189
crossref_primary_10_1111_j_1532_5415_2008_01684_x
crossref_primary_10_1371_journal_pone_0004936
crossref_primary_10_1088_0967_3334_35_7_1279
crossref_primary_10_1111_jnc_12967
crossref_primary_10_3109_0954898X_2011_638696
crossref_primary_10_1186_s13195_020_00612_7
crossref_primary_10_1007_s11682_013_9278_4
crossref_primary_10_1016_j_pscychresns_2005_06_006
crossref_primary_10_1098_rsif_2014_0919
crossref_primary_10_1017_S1355617709090523
crossref_primary_10_1016_j_neuroimage_2006_07_039
crossref_primary_10_1016_j_nicl_2021_102643
crossref_primary_10_1007_s11065_007_9025_y
crossref_primary_10_1016_j_arr_2020_101065
crossref_primary_10_1016_j_neurobiolaging_2007_05_027
crossref_primary_10_1016_j_jalz_2007_07_004
crossref_primary_10_1371_journal_pmed_1002979
crossref_primary_10_1016_j_neuroimage_2011_11_075
crossref_primary_10_12779_dnd_2012_11_2_59
crossref_primary_10_1093_cercor_bhq158
crossref_primary_10_2217_14796708_3_4_409
crossref_primary_10_1042_AN20120058
crossref_primary_10_3389_fnagi_2018_00289
crossref_primary_10_1016_j_neuropsychologia_2007_02_003
crossref_primary_10_1007_s12264_022_00985_9
crossref_primary_10_1016_j_neuroimage_2018_08_017
crossref_primary_10_1007_s11682_011_9117_4
crossref_primary_10_1016_j_neurobiolaging_2005_12_013
crossref_primary_10_3233_JAD_150214
crossref_primary_10_1002_hipo_20491
crossref_primary_10_1097_WCO_0b013e3283557b36
crossref_primary_10_1016_j_jalz_2010_11_008
crossref_primary_10_1177_0891988706291088
crossref_primary_10_1038_nn_3806
crossref_primary_10_1002_hipo_20494
crossref_primary_10_1007_s11910_005_0033_0
crossref_primary_10_1186_1471_2202_11_113
crossref_primary_10_1109_TMI_2024_3386937
crossref_primary_10_1002_gps_2535
crossref_primary_10_1002_hbm_20549
crossref_primary_10_3389_fnagi_2017_00287
crossref_primary_10_1016_j_neurobiolaging_2008_10_010
crossref_primary_10_1146_annurev_clinpsy_032408_153625
crossref_primary_10_3390_brainsci13081133
crossref_primary_10_1002_mrm_21686
crossref_primary_10_1016_j_neuroimage_2011_11_086
crossref_primary_10_1002_hipo_20809
crossref_primary_10_1002_hipo_20808
crossref_primary_10_1016_j_neuroimage_2015_10_045
crossref_primary_10_1093_gerona_glx199
crossref_primary_10_1602_neurorx_2_2_348
crossref_primary_10_1155_2019_9610212
crossref_primary_10_1038_nrneurol_2013_107
crossref_primary_10_1007_s11682_014_9335_7
crossref_primary_10_1016_j_brainres_2006_11_068
crossref_primary_10_1523_JNEUROSCI_0959_06_2006
crossref_primary_10_1371_journal_pone_0028664
crossref_primary_10_1002_hbm_21273
crossref_primary_10_12974_2313_1047_2014_01_01_1
crossref_primary_10_1016_j_bbr_2013_09_032
crossref_primary_10_1038_npp_2009_207
crossref_primary_10_1212_WNL_0b013e31823efc6c
crossref_primary_10_1002_gps_1581
crossref_primary_10_1002_hipo_23676
crossref_primary_10_1371_journal_pone_0087114
crossref_primary_10_1024_1011_6877_18_4_203
crossref_primary_10_13104_jksmrm_2013_17_4_294
crossref_primary_10_1371_journal_pone_0057030
crossref_primary_10_1155_2018_6392986
crossref_primary_10_1038_srep24560
crossref_primary_10_1002_ana_24199
crossref_primary_10_1016_j_euroneuro_2012_11_010
crossref_primary_10_1002_hipo_20397
crossref_primary_10_1097_PSY_0000000000000212
crossref_primary_10_1159_000484248
crossref_primary_10_3389_fnins_2021_731614
crossref_primary_10_1016_S1474_4422_05_70168_X
crossref_primary_10_2199_jjsca_29_385
crossref_primary_10_1002_14651858_CD009628_pub2
crossref_primary_10_1007_s00592_014_0618_7
crossref_primary_10_1016_j_clinph_2007_09_059
crossref_primary_10_1097_01_yco_0000218602_25346_c6
crossref_primary_10_1016_j_cortex_2014_10_020
crossref_primary_10_1016_S0035_3787_06_75104_9
crossref_primary_10_1016_j_neubiorev_2020_12_022
crossref_primary_10_1093_brain_awv007
crossref_primary_10_3389_fninf_2021_630172
crossref_primary_10_1590_1414_431x20198244
crossref_primary_10_1093_braincomms_fcac134
crossref_primary_10_1186_s12888_019_2149_9
crossref_primary_10_1080_0361073X_2012_660057
crossref_primary_10_1016_j_neurobiolaging_2013_09_028
crossref_primary_10_1038_s43856_025_00736_7
crossref_primary_10_1148_radiol_13121573
crossref_primary_10_1016_j_neuroimage_2009_12_025
crossref_primary_10_1111_jon_13024
crossref_primary_10_4236_jbise_2014_78056
crossref_primary_10_1016_j_neurobiolaging_2007_04_022
crossref_primary_10_1080_14656566_2016_1258060
crossref_primary_10_1155_2013_946298
crossref_primary_10_1212_01_wnl_0000171450_97464_49
crossref_primary_10_3233_JAD_220983
crossref_primary_10_1016_j_neuroimage_2010_03_040
crossref_primary_10_1093_cercor_bhn122
crossref_primary_10_3233_JAD_220612
crossref_primary_10_1016_j_jalz_2009_07_003
crossref_primary_10_1016_j_neuroimage_2016_12_081
crossref_primary_10_7554_eLife_22978
crossref_primary_10_1007_s11547_011_0780_8
crossref_primary_10_1016_j_cub_2020_08_042
crossref_primary_10_1016_j_neurobiolaging_2005_09_017
crossref_primary_10_3390_medicina61030547
crossref_primary_10_3389_fnagi_2023_1165908
crossref_primary_10_3389_fnhum_2021_755017
crossref_primary_10_1002_hbm_21166
crossref_primary_10_1016_j_eujim_2013_10_004
crossref_primary_10_1016_j_neuroimage_2009_12_014
crossref_primary_10_1371_journal_pone_0051617
crossref_primary_10_1016_j_nbd_2008_10_003
crossref_primary_10_1002_hbm_20505
crossref_primary_10_1016_j_jalz_2005_11_002
crossref_primary_10_1016_j_arr_2020_101133
crossref_primary_10_1016_S0035_3787_06_75103_7
crossref_primary_10_3390_jcm12041569
crossref_primary_10_1212_01_wnl_0000296941_06685_22
crossref_primary_10_1371_journal_pone_0179823
crossref_primary_10_1093_brain_aww231
crossref_primary_10_1016_j_neuroscience_2010_03_044
crossref_primary_10_1002_ana_22105
crossref_primary_10_1016_j_pscychresns_2012_05_008
crossref_primary_10_3389_fnagi_2014_00201
crossref_primary_10_1007_s10548_024_01060_4
crossref_primary_10_1016_j_semcdb_2021_01_005
crossref_primary_10_1016_j_neuroimage_2013_12_021
crossref_primary_10_1016_j_neuroimage_2008_01_030
crossref_primary_10_1080_13554794_2019_1603311
crossref_primary_10_1016_j_nicl_2024_103635
crossref_primary_10_1038_s42003_024_06552_4
crossref_primary_10_1016_j_neuropsychologia_2011_03_037
crossref_primary_10_1016_j_ymeth_2007_02_002
crossref_primary_10_1016_j_brainres_2010_08_018
crossref_primary_10_2217_nmt_11_34
crossref_primary_10_1016_j_neubiorev_2017_03_013
crossref_primary_10_1093_cercor_bhp206
crossref_primary_10_1016_j_neuropsychologia_2010_04_011
crossref_primary_10_1073_pnas_0706818105
crossref_primary_10_1002_hbm_20932
crossref_primary_10_1002_hbm_21107
crossref_primary_10_1016_j_neuroimage_2007_06_015
crossref_primary_10_1111_jon_12845
crossref_primary_10_1016_j_neurobiolaging_2007_10_008
crossref_primary_10_1212_WNL_0b013e3181e3966e
crossref_primary_10_1002_acn3_50823
crossref_primary_10_1016_j_neurobiolaging_2008_08_016
crossref_primary_10_1016_j_neurobiolaging_2009_10_005
crossref_primary_10_1016_j_nurt_2007_05_007
crossref_primary_10_1097_WAD_0b013e3181b4f736
crossref_primary_10_1016_j_jalz_2014_02_007
crossref_primary_10_1016_j_neuron_2017_11_028
crossref_primary_10_1016_S0035_3787_06_75102_5
crossref_primary_10_1586_14737175_8_2_169
crossref_primary_10_1097_JGP_0b013e318181276a
crossref_primary_10_1016_j_jns_2005_05_001
crossref_primary_10_3389_fpsyg_2015_01095
crossref_primary_10_1002_ana_20588
crossref_primary_10_1586_14737175_5_5_663
crossref_primary_10_1038_nrn_2016_141
crossref_primary_10_1038_s41598_023_35316_z
crossref_primary_10_1111_j_1460_9568_2011_07745_x
crossref_primary_10_1177_1533317508329814
crossref_primary_10_1007_s12640_010_9190_2
crossref_primary_10_3389_fnagi_2022_913693
crossref_primary_10_3389_fnagi_2015_00172
crossref_primary_10_1002_hbm_20160
crossref_primary_10_1371_journal_pone_0035856
crossref_primary_10_1016_j_neurobiolaging_2007_03_022
crossref_primary_10_1016_j_arr_2013_01_006
crossref_primary_10_1016_j_neurobiolaging_2006_01_012
crossref_primary_10_1016_j_nicl_2017_08_006
crossref_primary_10_3389_fnagi_2020_599112
crossref_primary_10_1016_j_neuroimage_2005_03_022
crossref_primary_10_1016_j_neuroimage_2005_12_061
crossref_primary_10_1016_j_mri_2011_07_007
crossref_primary_10_1016_j_neurobiolaging_2012_05_004
crossref_primary_10_2217_fnl_09_36
crossref_primary_10_1016_j_dadm_2019_07_003
crossref_primary_10_1196_annals_1379_009
crossref_primary_10_1016_j_jagp_2013_12_173
crossref_primary_10_1007_s13311_017_0541_z
crossref_primary_10_1016_j_neuropsychologia_2015_06_002
crossref_primary_10_3390_ijerph192316015
crossref_primary_10_1186_s13195_018_0347_1
crossref_primary_10_3917_rne_022_0145
crossref_primary_10_1016_j_brainres_2014_05_044
crossref_primary_10_1097_WNN_0b013e31827de67f
crossref_primary_10_1016_j_neuropsychologia_2013_06_025
crossref_primary_10_1002_hipo_22395
crossref_primary_10_1002_hbm_24871
crossref_primary_10_1002_pbc_24263
crossref_primary_10_1155_2012_917537
crossref_primary_10_1111_jon_12266
crossref_primary_10_1016_j_neurobiolaging_2018_05_023
crossref_primary_10_1016_j_npg_2009_06_001
crossref_primary_10_1002_ajmg_b_32116
crossref_primary_10_3233_JAD_180250
crossref_primary_10_1148_radiol_2451061847
crossref_primary_10_1196_annals_1379_017
crossref_primary_10_1016_j_acra_2013_01_020
crossref_primary_10_1002_trc2_70004
crossref_primary_10_1016_j_neuroimage_2011_05_090
crossref_primary_10_2217_bmm_14_42
crossref_primary_10_1016_j_biopsycho_2011_04_002
crossref_primary_10_1016_j_cortex_2012_06_004
crossref_primary_10_1097_01_wnr_0000185019_67434_d2
crossref_primary_10_1016_j_neurobiolaging_2018_11_020
crossref_primary_10_1007_s11910_017_0718_1
crossref_primary_10_1080_13825580601139444
crossref_primary_10_3389_fnsys_2021_777706
crossref_primary_10_1038_emm_2014_124
crossref_primary_10_1371_journal_pone_0001104
crossref_primary_10_1016_j_brs_2021_08_008
crossref_primary_10_1093_gerona_61_12_1287
crossref_primary_10_1016_j_neuroimage_2005_05_005
crossref_primary_10_1007_s11682_017_9697_8
crossref_primary_10_1016_j_brainresbull_2018_04_007
crossref_primary_10_1016_j_nicl_2016_12_002
crossref_primary_10_1016_j_bbr_2017_11_004
crossref_primary_10_1162_jocn_2009_21130
crossref_primary_10_1016_j_neurobiolaging_2021_12_008
crossref_primary_10_1212_01_wnl_0000279520_59792_fe
crossref_primary_10_3389_fnagi_2022_823502
crossref_primary_10_3389_fnins_2022_1070911
crossref_primary_10_1586_14737175_6_9_1293
crossref_primary_10_1016_j_molmed_2015_05_002
crossref_primary_10_1016_j_neulet_2016_03_044
crossref_primary_10_1093_brain_awn254
crossref_primary_10_1016_S1474_4422_04_00949_4
crossref_primary_10_31887_DCNS_2004_6_4_jgolomb
crossref_primary_10_3389_fnins_2024_1392002
crossref_primary_10_1016_j_neuron_2009_03_024
crossref_primary_10_1097_01_wco_0000189875_29852_48
crossref_primary_10_1093_cercor_bht289
crossref_primary_10_1002_jmri_21049
crossref_primary_10_1016_j_jns_2011_07_017
crossref_primary_10_1016_j_neurobiolaging_2014_10_041
crossref_primary_10_1016_j_neuroimage_2017_10_068
crossref_primary_10_1586_erd_09_35
crossref_primary_10_18632_oncotarget_12565
crossref_primary_10_1016_j_nic_2005_09_004
crossref_primary_10_1007_s00221_015_4356_z
crossref_primary_10_2337_db11_0506
crossref_primary_10_1016_j_tics_2011_09_004
crossref_primary_10_3233_JAD_190421
crossref_primary_10_1371_journal_pone_0119714
crossref_primary_10_18632_oncotarget_11353
crossref_primary_10_1097_MD_0000000000000227
crossref_primary_10_1146_annurev_psych_59_103006_093656
crossref_primary_10_1016_j_neurol_2012_07_006
crossref_primary_10_1017_S1355617716000850
crossref_primary_10_1016_j_neuropharm_2016_05_009
crossref_primary_10_1186_1471_244X_13_76
crossref_primary_10_1002_hipo_20338
crossref_primary_10_1016_j_conctc_2020_100621
crossref_primary_10_1016_j_jneumeth_2008_04_021
crossref_primary_10_1016_j_neuron_2012_03_023
crossref_primary_10_3389_fnbeh_2023_1080366
crossref_primary_10_1016_j_neurobiolaging_2006_08_008
crossref_primary_10_1038_s41380_023_02214_9
crossref_primary_10_1016_j_neurobiolaging_2009_09_006
crossref_primary_10_1016_j_nic_2005_09_011
crossref_primary_10_1002_ana_20799
crossref_primary_10_1093_cercor_bhl103
crossref_primary_10_1016_j_cortex_2007_04_005
crossref_primary_10_1007_s00259_007_0698_5
crossref_primary_10_1016_j_biopsych_2011_03_006
crossref_primary_10_3389_fnhum_2021_730134
crossref_primary_10_1038_s41583_018_0068_2
crossref_primary_10_1179_016164106X130416
crossref_primary_10_1016_j_neuropsychologia_2007_08_012
crossref_primary_10_1097_01_wco_0000186842_51129_cb
crossref_primary_10_1016_j_ejpain_2008_03_001
crossref_primary_10_1016_j_yebeh_2014_11_026
crossref_primary_10_1016_j_neurobiolaging_2022_07_007
crossref_primary_10_1017_S1355617715000855
crossref_primary_10_1523_ENEURO_0418_20_2020
crossref_primary_10_4236_jbbs_2013_38067
crossref_primary_10_1212_01_wnl_0000265594_23511_16
crossref_primary_10_1093_cercor_bhu151
crossref_primary_10_1371_journal_pone_0232469
crossref_primary_10_1016_j_neuron_2020_06_005
crossref_primary_10_3389_fnagi_2016_00260
crossref_primary_10_1016_j_neuroimage_2009_04_033
crossref_primary_10_1016_j_conb_2005_03_016
crossref_primary_10_1155_2015_529675
crossref_primary_10_1016_j_neurobiolaging_2014_08_014
crossref_primary_10_1002_gps_3829
crossref_primary_10_1007_s00401_016_1570_0
crossref_primary_10_1111_j_1528_1167_2011_03052_x
crossref_primary_10_1148_radiol_2401050739
crossref_primary_10_1016_j_neurobiolaging_2020_04_013
crossref_primary_10_1093_brain_awl089
crossref_primary_10_1093_braincomms_fcae376
crossref_primary_10_1016_j_neubiorev_2023_105489
crossref_primary_10_1212_01_wnl_0000312288_45119_d1
Cites_doi 10.1212/01.WNL.0000079052.01016.78
10.1002/(SICI)1097-0193(1999)8:2/3<80::AID-HBM2>3.0.CO;2-C
10.1016/S0896-6273(00)81109-5
10.1192/bjp.140.6.566
10.1073/pnas.012467899
10.1002/1531-8249(20010201)49:2<202::AID-ANA40>3.0.CO;2-3
10.1002/(SICI)1097-0193(1999)8:2/3<102::AID-HBM6>3.0.CO;2-J
10.1126/science.281.5380.1188
10.1016/S0197-4580(99)00107-4
10.1523/JNEUROSCI.22-02-00523.2002
10.1002/1531-8249(199904)45:4<466::AID-ANA8>3.0.CO;2-Q
10.1006/nimg.1999.0530
10.1023/A:1026073324672
10.1523/JNEUROSCI.23-03-00986.2003
10.1016/S0896-6273(00)80474-2
10.1073/pnas.95.4.1834
10.1001/archneur.61.1.59
10.1002/hbm.1047
10.1016/0022-3956(75)90026-6
10.1016/S1053-8119(03)00391-4
10.1001/archneur.60.8.1066
10.1212/WNL.34.7.939
10.1006/nimg.2001.1054
10.1056/NEJM200008173430701
10.1073/pnas.93.16.8660
10.1126/science.281.5380.1185
10.1162/089892900564046
10.1097/00004647-200209000-00002
10.1212/WNL.58.8.1197
10.1126/science.1074069
10.1212/WNL.52.7.1397
10.1002/1097-0193(200012)11:4<249::AID-HBM20>3.0.CO;2-5
10.1001/archneur.58.11.1803
10.1001/archneur.1993.00540090052010
10.1097/00004728-199403000-00005
10.1212/WNL.50.6.1563
10.1136/jnnp.74.1.44
10.1007/s004150050387
10.1212/WNL.54.3.581
10.1212/01.WNL.0000073987.79060.4B
10.1017/S1355617701755105
10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-I
10.1001/archneur.57.5.675
10.1002/ana.10069
10.1523/JNEUROSCI.16-14-04491.1996
10.1212/WNL.46.3.692
10.1016/S0197-4580(01)00230-5
10.1038/6374
10.1002/(SICI)1098-1063(2000)10:2<136::AID-HIPO2>3.0.CO;2-J
10.1212/WNL.59.6.867
10.1002/ana.10157
10.1212/WNL.57.5.812
10.1523/JNEUROSCI.23-10-03963.2003
10.1523/JNEUROSCI.20-16-06173.2000
10.1038/nrn1246
10.1016/S0197-4580(01)00271-8
10.1523/JNEUROSCI.22-16-07218.2002
ContentType Journal Article
Copyright Copyright © 2004 American Neurological Association
2004 INIST-CNRS
2004 American Neurological Association 2004
Copyright_xml – notice: Copyright © 2004 American Neurological Association
– notice: 2004 INIST-CNRS
– notice: 2004 American Neurological Association 2004
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1002/ana.20163
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Neurosciences Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8249
EndPage 35
ExternalDocumentID PMC4335689
15236399
15918156
10_1002_ana_20163
ANA20163
ark_67375_WNG_97PD4HL6_0
Genre article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIH (National Institute on Aging)
  funderid: PO1‐AG04953; K23‐AG22509
– fundername: Clinical Investigator Training Program (Harvard/MIT Health Sciences and Technology‐Beth Israel Deaconess Medical Center)
– fundername: NCRR
  funderid: P41‐RR14075
– fundername: Mental Illness and Neuroscience Discovery (MIND) Institute
– fundername: National Institute of Neurological Disorders and Stroke
  funderid: K23‐NS02189
– fundername: NINDS NIH HHS
  grantid: K23 NS 02189
– fundername: NIA NIH HHS
  grantid: P01 AG 04953
– fundername: NIA NIH HHS
  grantid: P01 AG004953
– fundername: NIA NIH HHS
  grantid: K23 AG 22509
– fundername: NINDS NIH HHS
  grantid: K23 NS002189
– fundername: NCRR NIH HHS
  grantid: P41 RR014075
– fundername: NIA NIH HHS
  grantid: K23 AG022509
– fundername: NCRR NIH HHS
  grantid: P41 RR 14075
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1L6
1OB
1OC
1ZS
23M
2QL
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEJM
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBMB
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRZS
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFAZI
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJJEV
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
F8P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
GOZPB
GRPMH
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KD1
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LXL
LXN
LXY
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.-
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
SAMSI
SJN
SUPJJ
TEORI
UB1
V2E
V8K
V9Y
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XJT
XPP
XSW
XV2
YOC
YQJ
ZGI
ZRF
ZRR
ZXP
ZZTAW
~IA
~WT
~X8
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c5763-63b048b9d98a6e2ccc94dfe36dc976bcd0744f7c0cd2f13b5b89bf9064428e8a3
IEDL.DBID DR2
ISSN 0364-5134
IngestDate Thu Aug 21 13:32:38 EDT 2025
Fri Jul 11 08:19:50 EDT 2025
Fri Jul 11 15:32:35 EDT 2025
Wed Feb 19 01:53:47 EST 2025
Mon Jul 21 09:11:04 EDT 2025
Tue Jul 01 03:06:19 EDT 2025
Thu Apr 24 23:12:26 EDT 2025
Wed Jan 22 16:24:12 EST 2025
Wed Oct 30 09:53:11 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Structure function
Temporal lobe
Nervous system diseases
mild cognitive impairment
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5763-63b048b9d98a6e2ccc94dfe36dc976bcd0744f7c0cd2f13b5b89bf9064428e8a3
Notes ArticleID:ANA20163
NCRR - No. P41-RR14075
Mental Illness and Neuroscience Discovery (MIND) Institute
istex:E3A329852FD69495CFDD27A603BF291249AB3097
Clinical Investigator Training Program (Harvard/MIT Health Sciences and Technology-Beth Israel Deaconess Medical Center)
NIH (National Institute on Aging) - No. PO1-AG04953; No. K23-AG22509
National Institute of Neurological Disorders and Stroke - No. K23-NS02189
ark:/67375/WNG-97PD4HL6-0
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ana.20163
PMID 15236399
PQID 17297537
PQPubID 23462
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4335689
proquest_miscellaneous_66675007
proquest_miscellaneous_17297537
pubmed_primary_15236399
pascalfrancis_primary_15918156
crossref_primary_10_1002_ana_20163
crossref_citationtrail_10_1002_ana_20163
wiley_primary_10_1002_ana_20163_ANA20163
istex_primary_ark_67375_WNG_97PD4HL6_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2004
PublicationDateYYYYMMDD 2004-07-01
PublicationDate_xml – month: 07
  year: 2004
  text: July 2004
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Annals of neurology
PublicationTitleAlternate Ann Neurol
PublicationYear 2004
Publisher Wiley Subscription Services, Inc., A Wiley Company
Willey-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Willey-Liss
References Sperling RA, Bates JF, Cocchiarella AJ, et al. Encoding novel face-name associations: a functional MRI study. Hum Brain Mapp 2001; 14: 129-139.
Hughes CP, Berg L, Danziger WL, et al. A new clinical scale for the staging of dementia. Br J Psychiatry 1982; 140: 566-572.
Grady CL, McIntosh AR, Beig S, et al. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer's disease. J Neurosci 2003; 23: 986-993.
Chapman PF, White GL, Jones MW, et al. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci 1999; 2: 271-276.
de Toledo-Morrell L, Dickerson B, Sullivan MP, et al. Hemispheric differences in hippocampal volume predict verbal and spatial memory performance in patients with Alzheimer's disease. Hippocampus 2000; 10: 136-142.
Delis DC, Kramer JH, Kaplan E, Ober BA. California verbal learning test, research edition, manual. San Antonio, TX: The Psychological Corporation, Harcourt Brace Jovanovich, 1987.
Cohen ER, Ugurbil K, Kim SG. Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. J Cereb Blood Flow Metab 2002; 22: 1042-1053.
Grundman M, Petersen RC, Ferris SH, et al. Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch Neurol 2004; 61: 59-66.
Small SA, Perera GM, DeLaPaz R, et al. Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer's disease. Ann Neurol 1999; 45: 466-472.
Sperling R, Chua E, Cocchiarella A, et al. Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation. Neuroimage 2003; 20: 1400-1410.
Davis TL, Kwong KK, Weisskoff RM, Rosen BR. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 1998; 95: 1834-1839.
Stern CE, Corkin S, Gonzalez RG, et al. The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc Natl Acad Sci USA 1996; 93: 8660-8665.
Becker JT, Mintun MA, Aleva K, et al. Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer's disease. Neurology 1996; 46: 692-700.
Mungas D, Reed BR, Jagust WJ, et al. Volumetric MRI predicts rate of cognitive decline related to AD and cerebrovascular disease. Neurology 2002; 59: 867-873.
Sperling R, Greve D, Dale A, et al. Functional MRI detection of pharmacologically induced memory impairment. Proc Natl Acad Sci USA 2002; 99: 455-460.
Johnson SC, Saykin AJ, Baxter LC, et al. The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and Alzheimer disease. Neuroimage 2000; 11: 179-187.
Price CJ, Friston KJ. Scanning patients with tasks they can perform. Hum Brain Mapp 1999; 8: 102-108.
Selkoe DJ. Alzheimer's disease is a synaptic failure. Science 2002; 298: 789-791.
Strange BA, Otten LJ, Josephs O, et al. Dissociable human perirhinal, hippocampal, and parahippocampal roles during verbal encoding. J Neurosci 2002; 22: 523-528.
Mueggler T, Sturchler-Pierrat C, Baumann D, et al. Compromised hemodynamic response in amyloid precursor protein transgenic mice. J Neurosci 2002; 22: 7218-7224.
Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 1994; 18: 192-205.
D'Esposito M, Deouell LY, Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 2003; 4: 863-872.
Dickerson BC, Goncharova I, Sullivan MP, et al. MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer's disease. Neurobiol Aging 2001; 22: 747-754.
Jezzard P, Clare S. Sources of distortion in functional MRI data. Hum Brain Mapp 1999; 8: 80-85.
McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984; 34: 939-944.
Convit A, de Asis J, de Leon MJ, et al. Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer's disease. Neurobiol Aging 2000; 21: 19-26.
Sperling RA, Bates JF, Chua EF, et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease. J Neurol Neurosurg Psychiatry 2003; 74: 44-50.
Smith CD, Andersen AH, Kryscio RJ, et al. Women at risk for AD show increased parietal activation during a fluency task. Neurology 2002; 58: 1197-1202.
Brewer JB, Zhao Z, Desmond JE, et al. Making memories: brain activity that predicts how well visual experience will be remembered. Science 1998; 281: 1185-1187.
Kordower JH, Chu Y, Stebbins GT, et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 2001; 49: 202-213.
Logothetis NK. The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 2003; 23: 3963-3971.
Hutton C, Bork A, Josephs O, et al. Image distortion correction in fMRI: a quantitative evaluation. Neuroimage 2002; 16: 217-240.
Jack CR Jr, Petersen RC, Xu YC, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999; 52: 1397-1403.
Killiany RJ, Gomez-Isla T, Moss M, et al. Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Ann Neurol 2000; 47: 430-439.
Kelley WM, Miezin FM, McDermott KB, et al. Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding. Neuron 1998; 20: 927-936.
Wagner AD, Schacter DL, Rotte M, et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 1998; 281: 1188-1191.
Folstein MF, Folstein SE, McHugh PR. "Mini-mental state." A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12: 189-198.
De Santi S, de Leon MJ, Rusinek H, et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging 2001; 22: 529-539.
Gron G, Bittner D, Schmitz B, et al. Subjective memory complaints: objective neural markers in patients with Alzheimer's disease and major depressive disorder. Ann Neurol 2002; 51: 491-498.
Masliah E, Alford M, Adame A, et al. Abeta1-42 promotes cholinergic sprouting in patients with AD and Lewy body variant of AD. Neurology 2003; 61: 206-211.
El Fakhri G, Kijewski MF, Johnson KA, et al. MRI-guided SPECT perfusion measures and volumetric MRI in prodromal Alzheimer disease. Arch Neurol 2003; 60: 1066-1072.
Albert MS, Moss MB, Tanzi R, Jones K. Preclinical prediction of AD using neuropsychological tests. J Int Neuropsychol Soc 2001; 7: 631-639.
Hashimoto M, Masliah E. Cycles of aberrant synaptic sprouting and neurodegeneration in Alzheimer's and dementia with Lewy bodies. Neurochem Res 2003; 28: 1743-1756.
Burock MA, Dale AM. Estimation and detection of event-related fMRI signals with temporally correlated noise: a statistically efficient and unbiased approach. Hum Brain Mapp 2000; 11: 249-260.
Gomez-Isla T, Price JL, McKeel DW Jr, et al. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. J Neurosci 1996; 16: 4491-4500.
Buckner RL, Snyder AZ, Sanders AL, et al. Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci 2000; 12 (suppl 2): 24-34.
McKhann GM, Albert MS, Grossman M, et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch Neurol 2001; 58: 1803-1809.
Mesulam MM. Neuroplasticity failure in Alzheimer's disease: bridging the gap between plaques and tangles. Neuron 1999; 24: 521-529.
Petersen RC, Jack CR Jr, Xu YC, et al. Memory and MRI-based hippocampal volumes in aging and AD. Neurology 2000; 54: 581-587.
Visser PJ, Scheltens P, Verhey FR, et al. Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. J Neurol 1999; 246: 477-485.
Rombouts SA, Barkhof F, Veltman DJ, et al. Functional MR imaging in Alzheimer's disease during memory encoding. AJNR Am J Neuroradiol 2000; 21: 1869-1875.
DeKosky ST, Ikonomovic MD, Styren SD, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002; 51: 145-155.
Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer's disease. N Engl J Med 2000; 343: 450-456.
Kato T, Knopman D, Liu H. Dissociation of regional activation in mild AD during visual encoding: a functional MRI study. Neurology 2001; 57: 812-816.
Kirchhoff BA, Wagner AD, Maril A, Stern CE. Prefrontal-temporal circuitry for episodic encoding and subsequent memory. J Neurosci 2000; 20: 6173-6180.
Johnson KA, Jones K, Holman BL, et al. Preclinical prediction of Alzheimer's disease using SPECT. Neurology 1998; 50: 1563-1571.
Machulda MM, Ward HA, Borowski B, et al. Comparison of memory fMRI response among normal, MCI, and Alzheimer's patients. Neurology 2003; 61: 500-506.
Killiany RJ, Moss MB, Albert MS, et al. Temporal lobe regions on magnetic resonance imaging identify patients with early Alzheimer's disease. Arch Neurol 1993; 50: 949-954.
Daly E, Zaitchik D, Copeland M, et al. Predicting conversion to Alzheimer disease using standardized clinical information. Arch Neurol 2000; 57: 675-680.
2002; 16
1998; 281
2002; 58
2002; 59
2004; 61
2000; 47
2002; 51
2002; 99
1999; 45
1975; 12
2001; 49
1999; 246
1982; 140
2000; 12
2000; 57
2000; 10
2000; 54
2000; 11
1987
2003; 4
1999; 52
1998; 50
1998; 95
2001; 57
2001; 14
2001; 58
2000; 21
2002; 298
2000; 20
1999; 24
1996; 93
1999; 2
2001; 22
1999; 8
1996; 16
2003; 74
1998; 20
2001; 7
1993; 50
1984; 34
2002; 22
2003; 28
1994; 18
2000; 343
2003; 60
2003; 61
1996; 46
2003; 20
2003; 23
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_7_2
Delis DC (e_1_2_6_38_2) 1987
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_43_2
Rombouts SA (e_1_2_6_18_2) 2000; 21
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_61_2
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
Strange BA (e_1_2_6_26_2) 2002; 22
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
10195221 - Nat Neurosci. 1999 Mar;2(3):271-6
11835370 - Ann Neurol. 2002 Feb;51(2):145-55
11921055 - Ann Neurol. 2002 Apr;51(4):491-8
12399581 - Science. 2002 Oct 25;298(5594):789-91
10227624 - Neurology. 1999 Apr 22;52(7):1397-403
7104545 - Br J Psychiatry. 1982 Jun;140:566-72
6610841 - Neurology. 1984 Jul;34(7):939-44
12177216 - J Neurosci. 2002 Aug 15;22(16):7218-24
11708987 - Arch Neurol. 2001 Nov;58(11):1803-9
10680786 - Neurology. 2000 Feb 8;54(3):581-7
11445252 - Neurobiol Aging. 2001 Jul-Aug;22(4):529-39
8126267 - J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192-205
8699259 - J Neurosci. 1996 Jul 15;16(14):4491-500
12874400 - Neurology. 2003 Jul 22;61(2):206-11
8363449 - Arch Neurol. 1993 Sep;50(9):949-54
11971086 - Neurology. 2002 Apr 23;58(8):1197-202
9620697 - Neuron. 1998 May;20(5):927-36
10211471 - Ann Neurol. 1999 Apr;45(4):466-72
11559958 - Hum Brain Mapp. 2001 Nov;14(3):129-39
11756667 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):455-60
11110539 - AJNR Am J Neuroradiol. 2000 Nov-Dec;21(10):1869-75
14732621 - Arch Neurol. 2004 Jan;61(1):59-66
11969330 - Neuroimage. 2002 May;16(1):217-40
10524600 - Hum Brain Mapp. 1999;8(2-3):102-8
9465103 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1834-9
10944562 - N Engl J Med. 2000 Aug 17;343(7):450-6
11459114 - J Int Neuropsychol Soc. 2001 Jul;7(5):631-9
12764080 - J Neurosci. 2003 May 15;23(10):3963-71
8618669 - Neurology. 1996 Mar;46(3):692-700
12939424 - Neurology. 2003 Aug 26;61(4):500-6
11705634 - Neurobiol Aging. 2001 Sep-Oct;22(5):747-54
15236396 - Ann Neurol. 2004 Jul;56(1):7-9
12218410 - J Cereb Blood Flow Metab. 2002 Sep;22(9):1042-53
12925361 - Arch Neurol. 2003 Aug;60(8):1066-72
8710927 - Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8660-5
12486265 - J Neurol Neurosurg Psychiatry. 2003 Jan;74(1):44-50
9712582 - Science. 1998 Aug 21;281(5380):1188-91
10815133 - Arch Neurol. 2000 May;57(5):675-80
10762153 - Ann Neurol. 2000 Apr;47(4):430-9
1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98
12297568 - Neurology. 2002 Sep 24;59(6):867-73
10791835 - Hippocampus. 2000;10(2):136-42
11144754 - Hum Brain Mapp. 2000 Dec;11(4):249-60
10524596 - Hum Brain Mapp. 1999;8(2-3):80-5
12574428 - J Neurosci. 2003 Feb 1;23 (3):986-93
14595398 - Nat Rev Neurosci. 2003 Nov;4(11):863-72
10595506 - Neuron. 1999 Nov;24(3):521-9
14568509 - Neuroimage. 2003 Oct;20(2):1400-10
11506645 - J Cogn Neurosci. 2000;12 Suppl 2:24-34
10934267 - J Neurosci. 2000 Aug 15;20(16):6173-80
9633695 - Neurology. 1998 Jun;50(6):1563-71
9712581 - Science. 1998 Aug 21;281(5380):1185-7
10431775 - J Neurol. 1999 Jun;246(6):477-85
10794844 - Neurobiol Aging. 2000 Jan-Feb;21(1):19-26
10694460 - Neuroimage. 2000 Mar;11(3):179-87
11784798 - J Neurosci. 2002 Jan 15;22(2):523-8
14584828 - Neurochem Res. 2003 Nov;28(11):1743-56
11552009 - Neurology. 2001 Sep 11;57(5):812-6
11220740 - Ann Neurol. 2001 Feb;49(2):202-13
References_xml – reference: McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984; 34: 939-944.
– reference: Delis DC, Kramer JH, Kaplan E, Ober BA. California verbal learning test, research edition, manual. San Antonio, TX: The Psychological Corporation, Harcourt Brace Jovanovich, 1987.
– reference: Sperling RA, Bates JF, Chua EF, et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease. J Neurol Neurosurg Psychiatry 2003; 74: 44-50.
– reference: D'Esposito M, Deouell LY, Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 2003; 4: 863-872.
– reference: Chapman PF, White GL, Jones MW, et al. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci 1999; 2: 271-276.
– reference: Grady CL, McIntosh AR, Beig S, et al. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer's disease. J Neurosci 2003; 23: 986-993.
– reference: Dickerson BC, Goncharova I, Sullivan MP, et al. MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer's disease. Neurobiol Aging 2001; 22: 747-754.
– reference: Sperling R, Greve D, Dale A, et al. Functional MRI detection of pharmacologically induced memory impairment. Proc Natl Acad Sci USA 2002; 99: 455-460.
– reference: Hughes CP, Berg L, Danziger WL, et al. A new clinical scale for the staging of dementia. Br J Psychiatry 1982; 140: 566-572.
– reference: Stern CE, Corkin S, Gonzalez RG, et al. The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc Natl Acad Sci USA 1996; 93: 8660-8665.
– reference: Mesulam MM. Neuroplasticity failure in Alzheimer's disease: bridging the gap between plaques and tangles. Neuron 1999; 24: 521-529.
– reference: Cohen ER, Ugurbil K, Kim SG. Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. J Cereb Blood Flow Metab 2002; 22: 1042-1053.
– reference: Kirchhoff BA, Wagner AD, Maril A, Stern CE. Prefrontal-temporal circuitry for episodic encoding and subsequent memory. J Neurosci 2000; 20: 6173-6180.
– reference: Sperling R, Chua E, Cocchiarella A, et al. Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation. Neuroimage 2003; 20: 1400-1410.
– reference: Rombouts SA, Barkhof F, Veltman DJ, et al. Functional MR imaging in Alzheimer's disease during memory encoding. AJNR Am J Neuroradiol 2000; 21: 1869-1875.
– reference: Hutton C, Bork A, Josephs O, et al. Image distortion correction in fMRI: a quantitative evaluation. Neuroimage 2002; 16: 217-240.
– reference: Masliah E, Alford M, Adame A, et al. Abeta1-42 promotes cholinergic sprouting in patients with AD and Lewy body variant of AD. Neurology 2003; 61: 206-211.
– reference: Jezzard P, Clare S. Sources of distortion in functional MRI data. Hum Brain Mapp 1999; 8: 80-85.
– reference: Killiany RJ, Gomez-Isla T, Moss M, et al. Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Ann Neurol 2000; 47: 430-439.
– reference: Mungas D, Reed BR, Jagust WJ, et al. Volumetric MRI predicts rate of cognitive decline related to AD and cerebrovascular disease. Neurology 2002; 59: 867-873.
– reference: Buckner RL, Snyder AZ, Sanders AL, et al. Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci 2000; 12 (suppl 2): 24-34.
– reference: Smith CD, Andersen AH, Kryscio RJ, et al. Women at risk for AD show increased parietal activation during a fluency task. Neurology 2002; 58: 1197-1202.
– reference: Convit A, de Asis J, de Leon MJ, et al. Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer's disease. Neurobiol Aging 2000; 21: 19-26.
– reference: Burock MA, Dale AM. Estimation and detection of event-related fMRI signals with temporally correlated noise: a statistically efficient and unbiased approach. Hum Brain Mapp 2000; 11: 249-260.
– reference: Killiany RJ, Moss MB, Albert MS, et al. Temporal lobe regions on magnetic resonance imaging identify patients with early Alzheimer's disease. Arch Neurol 1993; 50: 949-954.
– reference: Becker JT, Mintun MA, Aleva K, et al. Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer's disease. Neurology 1996; 46: 692-700.
– reference: Sperling RA, Bates JF, Cocchiarella AJ, et al. Encoding novel face-name associations: a functional MRI study. Hum Brain Mapp 2001; 14: 129-139.
– reference: Selkoe DJ. Alzheimer's disease is a synaptic failure. Science 2002; 298: 789-791.
– reference: De Santi S, de Leon MJ, Rusinek H, et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging 2001; 22: 529-539.
– reference: Kelley WM, Miezin FM, McDermott KB, et al. Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding. Neuron 1998; 20: 927-936.
– reference: de Toledo-Morrell L, Dickerson B, Sullivan MP, et al. Hemispheric differences in hippocampal volume predict verbal and spatial memory performance in patients with Alzheimer's disease. Hippocampus 2000; 10: 136-142.
– reference: DeKosky ST, Ikonomovic MD, Styren SD, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002; 51: 145-155.
– reference: Brewer JB, Zhao Z, Desmond JE, et al. Making memories: brain activity that predicts how well visual experience will be remembered. Science 1998; 281: 1185-1187.
– reference: Wagner AD, Schacter DL, Rotte M, et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 1998; 281: 1188-1191.
– reference: Small SA, Perera GM, DeLaPaz R, et al. Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer's disease. Ann Neurol 1999; 45: 466-472.
– reference: Folstein MF, Folstein SE, McHugh PR. "Mini-mental state." A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12: 189-198.
– reference: Davis TL, Kwong KK, Weisskoff RM, Rosen BR. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 1998; 95: 1834-1839.
– reference: Visser PJ, Scheltens P, Verhey FR, et al. Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. J Neurol 1999; 246: 477-485.
– reference: Albert MS, Moss MB, Tanzi R, Jones K. Preclinical prediction of AD using neuropsychological tests. J Int Neuropsychol Soc 2001; 7: 631-639.
– reference: Strange BA, Otten LJ, Josephs O, et al. Dissociable human perirhinal, hippocampal, and parahippocampal roles during verbal encoding. J Neurosci 2002; 22: 523-528.
– reference: Price CJ, Friston KJ. Scanning patients with tasks they can perform. Hum Brain Mapp 1999; 8: 102-108.
– reference: McKhann GM, Albert MS, Grossman M, et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch Neurol 2001; 58: 1803-1809.
– reference: Daly E, Zaitchik D, Copeland M, et al. Predicting conversion to Alzheimer disease using standardized clinical information. Arch Neurol 2000; 57: 675-680.
– reference: Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer's disease. N Engl J Med 2000; 343: 450-456.
– reference: Jack CR Jr, Petersen RC, Xu YC, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999; 52: 1397-1403.
– reference: Machulda MM, Ward HA, Borowski B, et al. Comparison of memory fMRI response among normal, MCI, and Alzheimer's patients. Neurology 2003; 61: 500-506.
– reference: Johnson SC, Saykin AJ, Baxter LC, et al. The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and Alzheimer disease. Neuroimage 2000; 11: 179-187.
– reference: Hashimoto M, Masliah E. Cycles of aberrant synaptic sprouting and neurodegeneration in Alzheimer's and dementia with Lewy bodies. Neurochem Res 2003; 28: 1743-1756.
– reference: Johnson KA, Jones K, Holman BL, et al. Preclinical prediction of Alzheimer's disease using SPECT. Neurology 1998; 50: 1563-1571.
– reference: Gomez-Isla T, Price JL, McKeel DW Jr, et al. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. J Neurosci 1996; 16: 4491-4500.
– reference: Petersen RC, Jack CR Jr, Xu YC, et al. Memory and MRI-based hippocampal volumes in aging and AD. Neurology 2000; 54: 581-587.
– reference: Grundman M, Petersen RC, Ferris SH, et al. Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch Neurol 2004; 61: 59-66.
– reference: Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 1994; 18: 192-205.
– reference: Logothetis NK. The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 2003; 23: 3963-3971.
– reference: Gron G, Bittner D, Schmitz B, et al. Subjective memory complaints: objective neural markers in patients with Alzheimer's disease and major depressive disorder. Ann Neurol 2002; 51: 491-498.
– reference: Kordower JH, Chu Y, Stebbins GT, et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 2001; 49: 202-213.
– reference: El Fakhri G, Kijewski MF, Johnson KA, et al. MRI-guided SPECT perfusion measures and volumetric MRI in prodromal Alzheimer disease. Arch Neurol 2003; 60: 1066-1072.
– reference: Mueggler T, Sturchler-Pierrat C, Baumann D, et al. Compromised hemodynamic response in amyloid precursor protein transgenic mice. J Neurosci 2002; 22: 7218-7224.
– reference: Kato T, Knopman D, Liu H. Dissociation of regional activation in mild AD during visual encoding: a functional MRI study. Neurology 2001; 57: 812-816.
– volume: 10
  start-page: 136
  year: 2000
  end-page: 142
  article-title: Hemispheric differences in hippocampal volume predict verbal and spatial memory performance in patients with Alzheimer's disease
  publication-title: Hippocampus
– volume: 61
  start-page: 500
  year: 2003
  end-page: 506
  article-title: Comparison of memory fMRI response among normal, MCI, and Alzheimer's patients
  publication-title: Neurology
– volume: 11
  start-page: 249
  year: 2000
  end-page: 260
  article-title: Estimation and detection of event‐related fMRI signals with temporally correlated noise: a statistically efficient and unbiased approach
  publication-title: Hum Brain Mapp
– volume: 281
  start-page: 1185
  year: 1998
  end-page: 1187
  article-title: Making memories: brain activity that predicts how well visual experience will be remembered
  publication-title: Science
– volume: 61
  start-page: 206
  year: 2003
  end-page: 211
  article-title: Abeta1–42 promotes cholinergic sprouting in patients with AD and Lewy body variant of AD
  publication-title: Neurology
– volume: 54
  start-page: 581
  year: 2000
  end-page: 587
  article-title: Memory and MRI‐based hippocampal volumes in aging and AD
  publication-title: Neurology
– volume: 16
  start-page: 217
  year: 2002
  end-page: 240
  article-title: Image distortion correction in fMRI: a quantitative evaluation
  publication-title: Neuroimage
– volume: 59
  start-page: 867
  year: 2002
  end-page: 873
  article-title: Volumetric MRI predicts rate of cognitive decline related to AD and cerebrovascular disease
  publication-title: Neurology
– volume: 20
  start-page: 1400
  year: 2003
  end-page: 1410
  article-title: Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation
  publication-title: Neuroimage
– volume: 28
  start-page: 1743
  year: 2003
  end-page: 1756
  article-title: Cycles of aberrant synaptic sprouting and neurodegeneration in Alzheimer's and dementia with Lewy bodies
  publication-title: Neurochem Res
– volume: 8
  start-page: 102
  year: 1999
  end-page: 108
  article-title: Scanning patients with tasks they can perform
  publication-title: Hum Brain Mapp
– volume: 57
  start-page: 812
  year: 2001
  end-page: 816
  article-title: Dissociation of regional activation in mild AD during visual encoding: a functional MRI study
  publication-title: Neurology
– volume: 74
  start-page: 44
  year: 2003
  end-page: 50
  article-title: fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 95
  start-page: 1834
  year: 1998
  end-page: 1839
  article-title: Calibrated functional MRI: mapping the dynamics of oxidative metabolism
  publication-title: Proc Natl Acad Sci USA
– volume: 140
  start-page: 566
  year: 1982
  end-page: 572
  article-title: A new clinical scale for the staging of dementia
  publication-title: Br J Psychiatry
– volume: 16
  start-page: 4491
  year: 1996
  end-page: 4500
  article-title: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease
  publication-title: J Neurosci
– volume: 4
  start-page: 863
  year: 2003
  end-page: 872
  article-title: Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging
  publication-title: Nat Rev Neurosci
– volume: 58
  start-page: 1803
  year: 2001
  end-page: 1809
  article-title: Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease
  publication-title: Arch Neurol
– volume: 45
  start-page: 466
  year: 1999
  end-page: 472
  article-title: Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer's disease
  publication-title: Ann Neurol
– volume: 34
  start-page: 939
  year: 1984
  end-page: 944
  article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS‐ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease
  publication-title: Neurology
– volume: 51
  start-page: 145
  year: 2002
  end-page: 155
  article-title: Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment
  publication-title: Ann Neurol
– volume: 23
  start-page: 986
  year: 2003
  end-page: 993
  article-title: Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer's disease
  publication-title: J Neurosci
– volume: 52
  start-page: 1397
  year: 1999
  end-page: 1403
  article-title: Prediction of AD with MRI‐based hippocampal volume in mild cognitive impairment
  publication-title: Neurology
– volume: 20
  start-page: 6173
  year: 2000
  end-page: 6180
  article-title: Prefrontal‐temporal circuitry for episodic encoding and subsequent memory
  publication-title: J Neurosci
– volume: 23
  start-page: 3963
  year: 2003
  end-page: 3971
  article-title: The underpinnings of the BOLD functional magnetic resonance imaging signal
  publication-title: J Neurosci
– volume: 246
  start-page: 477
  year: 1999
  end-page: 485
  article-title: Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment
  publication-title: J Neurol
– volume: 8
  start-page: 80
  year: 1999
  end-page: 85
  article-title: Sources of distortion in functional MRI data
  publication-title: Hum Brain Mapp
– volume: 50
  start-page: 949
  year: 1993
  end-page: 954
  article-title: Temporal lobe regions on magnetic resonance imaging identify patients with early Alzheimer's disease
  publication-title: Arch Neurol
– volume: 14
  start-page: 129
  year: 2001
  end-page: 139
  article-title: Encoding novel face‐name associations: a functional MRI study
  publication-title: Hum Brain Mapp
– volume: 99
  start-page: 455
  year: 2002
  end-page: 460
  article-title: Functional MRI detection of pharmacologically induced memory impairment
  publication-title: Proc Natl Acad Sci USA
– volume: 22
  start-page: 7218
  year: 2002
  end-page: 7224
  article-title: Compromised hemodynamic response in amyloid precursor protein transgenic mice
  publication-title: J Neurosci
– volume: 343
  start-page: 450
  year: 2000
  end-page: 456
  article-title: Patterns of brain activation in people at risk for Alzheimer's disease
  publication-title: N Engl J Med
– volume: 7
  start-page: 631
  year: 2001
  end-page: 639
  article-title: Preclinical prediction of AD using neuropsychological tests
  publication-title: J Int Neuropsychol Soc
– volume: 22
  start-page: 523
  year: 2002
  end-page: 528
  article-title: Dissociable human perirhinal, hippocampal, and parahippocampal roles during verbal encoding
  publication-title: J Neurosci
– volume: 11
  start-page: 179
  year: 2000
  end-page: 187
  article-title: The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and Alzheimer disease
  publication-title: Neuroimage
– volume: 49
  start-page: 202
  year: 2001
  end-page: 213
  article-title: Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment
  publication-title: Ann Neurol
– volume: 22
  start-page: 529
  year: 2001
  end-page: 539
  article-title: Hippocampal formation glucose metabolism and volume losses in MCI and AD
  publication-title: Neurobiol Aging
– year: 1987
– volume: 2
  start-page: 271
  year: 1999
  end-page: 276
  article-title: Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice
  publication-title: Nat Neurosci
– volume: 20
  start-page: 927
  year: 1998
  end-page: 936
  article-title: Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding
  publication-title: Neuron
– volume: 21
  start-page: 1869
  year: 2000
  end-page: 1875
  article-title: Functional MR imaging in Alzheimer's disease during memory encoding
  publication-title: AJNR Am J Neuroradiol
– volume: 50
  start-page: 1563
  year: 1998
  end-page: 1571
  article-title: Preclinical prediction of Alzheimer's disease using SPECT
  publication-title: Neurology
– volume: 18
  start-page: 192
  year: 1994
  end-page: 205
  article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space
  publication-title: J Comput Assist Tomogr
– volume: 22
  start-page: 747
  year: 2001
  end-page: 754
  article-title: MRI‐derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer's disease
  publication-title: Neurobiol Aging
– volume: 58
  start-page: 1197
  year: 2002
  end-page: 1202
  article-title: Women at risk for AD show increased parietal activation during a fluency task
  publication-title: Neurology
– volume: 46
  start-page: 692
  year: 1996
  end-page: 700
  article-title: Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer's disease
  publication-title: Neurology
– volume: 12
  start-page: 189
  year: 1975
  end-page: 198
  article-title: “Mini‐mental state.” A practical method for grading the cognitive state of patients for the clinician
  publication-title: J Psychiatr Res
– volume: 22
  start-page: 1042
  year: 2002
  end-page: 1053
  article-title: Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level‐dependent fMRI response
  publication-title: J Cereb Blood Flow Metab
– volume: 60
  start-page: 1066
  year: 2003
  end-page: 1072
  article-title: MRI‐guided SPECT perfusion measures and volumetric MRI in prodromal Alzheimer disease
  publication-title: Arch Neurol
– volume: 281
  start-page: 1188
  year: 1998
  end-page: 1191
  article-title: Building memories: remembering and forgetting of verbal experiences as predicted by brain activity
  publication-title: Science
– volume: 298
  start-page: 789
  year: 2002
  end-page: 791
  article-title: Alzheimer's disease is a synaptic failure
  publication-title: Science
– volume: 21
  start-page: 19
  year: 2000
  end-page: 26
  article-title: Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non‐demented elderly predict decline to Alzheimer's disease
  publication-title: Neurobiol Aging
– volume: 12
  start-page: 24
  issue: suppl 2
  year: 2000
  end-page: 34
  article-title: Functional brain imaging of young, nondemented, and demented older adults
  publication-title: J Cogn Neurosci
– volume: 57
  start-page: 675
  year: 2000
  end-page: 680
  article-title: Predicting conversion to Alzheimer disease using standardized clinical information
  publication-title: Arch Neurol
– volume: 93
  start-page: 8660
  year: 1996
  end-page: 8665
  article-title: The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging
  publication-title: Proc Natl Acad Sci USA
– volume: 61
  start-page: 59
  year: 2004
  end-page: 66
  article-title: Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials
  publication-title: Arch Neurol
– volume: 47
  start-page: 430
  year: 2000
  end-page: 439
  article-title: Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease
  publication-title: Ann Neurol
– volume: 24
  start-page: 521
  year: 1999
  end-page: 529
  article-title: Neuroplasticity failure in Alzheimer's disease: bridging the gap between plaques and tangles
  publication-title: Neuron
– volume: 51
  start-page: 491
  year: 2002
  end-page: 498
  article-title: Subjective memory complaints: objective neural markers in patients with Alzheimer's disease and major depressive disorder
  publication-title: Ann Neurol
– ident: e_1_2_6_22_2
  doi: 10.1212/01.WNL.0000079052.01016.78
– ident: e_1_2_6_60_2
  doi: 10.1002/(SICI)1097-0193(1999)8:2/3<80::AID-HBM2>3.0.CO;2-C
– ident: e_1_2_6_45_2
  doi: 10.1016/S0896-6273(00)81109-5
– ident: e_1_2_6_25_2
  doi: 10.1192/bjp.140.6.566
– ident: e_1_2_6_33_2
  doi: 10.1073/pnas.012467899
– ident: e_1_2_6_3_2
  doi: 10.1002/1531-8249(20010201)49:2<202::AID-ANA40>3.0.CO;2-3
– ident: e_1_2_6_59_2
  doi: 10.1002/(SICI)1097-0193(1999)8:2/3<102::AID-HBM6>3.0.CO;2-J
– ident: e_1_2_6_14_2
  doi: 10.1126/science.281.5380.1188
– ident: e_1_2_6_8_2
  doi: 10.1016/S0197-4580(99)00107-4
– volume: 22
  start-page: 523
  year: 2002
  ident: e_1_2_6_26_2
  article-title: Dissociable human perirhinal, hippocampal, and parahippocampal roles during verbal encoding
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-02-00523.2002
– ident: e_1_2_6_17_2
  doi: 10.1002/1531-8249(199904)45:4<466::AID-ANA8>3.0.CO;2-Q
– ident: e_1_2_6_50_2
  doi: 10.1006/nimg.1999.0530
– ident: e_1_2_6_46_2
  doi: 10.1023/A:1026073324672
– ident: e_1_2_6_44_2
  doi: 10.1523/JNEUROSCI.23-03-00986.2003
– ident: e_1_2_6_41_2
  doi: 10.1016/S0896-6273(00)80474-2
– ident: e_1_2_6_55_2
  doi: 10.1073/pnas.95.4.1834
– ident: e_1_2_6_30_2
  doi: 10.1001/archneur.61.1.59
– ident: e_1_2_6_16_2
  doi: 10.1002/hbm.1047
– ident: e_1_2_6_37_2
  doi: 10.1016/0022-3956(75)90026-6
– ident: e_1_2_6_27_2
  doi: 10.1016/S1053-8119(03)00391-4
– volume: 21
  start-page: 1869
  year: 2000
  ident: e_1_2_6_18_2
  article-title: Functional MR imaging in Alzheimer's disease during memory encoding
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_6_54_2
  doi: 10.1001/archneur.60.8.1066
– ident: e_1_2_6_31_2
  doi: 10.1212/WNL.34.7.939
– ident: e_1_2_6_61_2
  doi: 10.1006/nimg.2001.1054
– ident: e_1_2_6_23_2
  doi: 10.1056/NEJM200008173430701
– ident: e_1_2_6_12_2
  doi: 10.1073/pnas.93.16.8660
– ident: e_1_2_6_13_2
  doi: 10.1126/science.281.5380.1185
– ident: e_1_2_6_48_2
  doi: 10.1162/089892900564046
– ident: e_1_2_6_56_2
  doi: 10.1097/00004647-200209000-00002
– ident: e_1_2_6_57_2
  doi: 10.1212/WNL.58.8.1197
– ident: e_1_2_6_40_2
  doi: 10.1126/science.1074069
– ident: e_1_2_6_6_2
  doi: 10.1212/WNL.52.7.1397
– ident: e_1_2_6_34_2
  doi: 10.1002/1097-0193(200012)11:4<249::AID-HBM20>3.0.CO;2-5
– ident: e_1_2_6_32_2
  doi: 10.1001/archneur.58.11.1803
– ident: e_1_2_6_36_2
  doi: 10.1001/archneur.1993.00540090052010
– ident: e_1_2_6_35_2
  doi: 10.1097/00004728-199403000-00005
– ident: e_1_2_6_52_2
  doi: 10.1212/WNL.50.6.1563
– ident: e_1_2_6_21_2
  doi: 10.1136/jnnp.74.1.44
– ident: e_1_2_6_7_2
  doi: 10.1007/s004150050387
– ident: e_1_2_6_5_2
  doi: 10.1212/WNL.54.3.581
– ident: e_1_2_6_47_2
  doi: 10.1212/01.WNL.0000073987.79060.4B
– ident: e_1_2_6_28_2
  doi: 10.1017/S1355617701755105
– ident: e_1_2_6_9_2
  doi: 10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-I
– ident: e_1_2_6_24_2
  doi: 10.1001/archneur.57.5.675
– volume-title: California verbal learning test
  year: 1987
  ident: e_1_2_6_38_2
– ident: e_1_2_6_42_2
  doi: 10.1002/ana.10069
– ident: e_1_2_6_2_2
  doi: 10.1523/JNEUROSCI.16-14-04491.1996
– ident: e_1_2_6_43_2
  doi: 10.1212/WNL.46.3.692
– ident: e_1_2_6_53_2
  doi: 10.1016/S0197-4580(01)00230-5
– ident: e_1_2_6_39_2
  doi: 10.1038/6374
– ident: e_1_2_6_4_2
  doi: 10.1002/(SICI)1098-1063(2000)10:2<136::AID-HIPO2>3.0.CO;2-J
– ident: e_1_2_6_11_2
  doi: 10.1212/WNL.59.6.867
– ident: e_1_2_6_29_2
  doi: 10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-I
– ident: e_1_2_6_20_2
  doi: 10.1002/ana.10157
– ident: e_1_2_6_19_2
  doi: 10.1212/WNL.57.5.812
– ident: e_1_2_6_58_2
  doi: 10.1523/JNEUROSCI.23-10-03963.2003
– ident: e_1_2_6_15_2
  doi: 10.1523/JNEUROSCI.20-16-06173.2000
– ident: e_1_2_6_49_2
  doi: 10.1038/nrn1246
– ident: e_1_2_6_10_2
  doi: 10.1016/S0197-4580(01)00271-8
– ident: e_1_2_6_51_2
  doi: 10.1523/JNEUROSCI.22-16-07218.2002
– reference: 9633695 - Neurology. 1998 Jun;50(6):1563-71
– reference: 9465103 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1834-9
– reference: 11705634 - Neurobiol Aging. 2001 Sep-Oct;22(5):747-54
– reference: 12486265 - J Neurol Neurosurg Psychiatry. 2003 Jan;74(1):44-50
– reference: 10211471 - Ann Neurol. 1999 Apr;45(4):466-72
– reference: 8699259 - J Neurosci. 1996 Jul 15;16(14):4491-500
– reference: 10227624 - Neurology. 1999 Apr 22;52(7):1397-403
– reference: 8363449 - Arch Neurol. 1993 Sep;50(9):949-54
– reference: 12925361 - Arch Neurol. 2003 Aug;60(8):1066-72
– reference: 12574428 - J Neurosci. 2003 Feb 1;23 (3):986-93
– reference: 14732621 - Arch Neurol. 2004 Jan;61(1):59-66
– reference: 14568509 - Neuroimage. 2003 Oct;20(2):1400-10
– reference: 10794844 - Neurobiol Aging. 2000 Jan-Feb;21(1):19-26
– reference: 11756667 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):455-60
– reference: 11110539 - AJNR Am J Neuroradiol. 2000 Nov-Dec;21(10):1869-75
– reference: 11971086 - Neurology. 2002 Apr 23;58(8):1197-202
– reference: 9620697 - Neuron. 1998 May;20(5):927-36
– reference: 1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98
– reference: 11921055 - Ann Neurol. 2002 Apr;51(4):491-8
– reference: 12874400 - Neurology. 2003 Jul 22;61(2):206-11
– reference: 11144754 - Hum Brain Mapp. 2000 Dec;11(4):249-60
– reference: 10934267 - J Neurosci. 2000 Aug 15;20(16):6173-80
– reference: 11708987 - Arch Neurol. 2001 Nov;58(11):1803-9
– reference: 11835370 - Ann Neurol. 2002 Feb;51(2):145-55
– reference: 8710927 - Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8660-5
– reference: 12218410 - J Cereb Blood Flow Metab. 2002 Sep;22(9):1042-53
– reference: 9712582 - Science. 1998 Aug 21;281(5380):1188-91
– reference: 8618669 - Neurology. 1996 Mar;46(3):692-700
– reference: 10195221 - Nat Neurosci. 1999 Mar;2(3):271-6
– reference: 11459114 - J Int Neuropsychol Soc. 2001 Jul;7(5):631-9
– reference: 11559958 - Hum Brain Mapp. 2001 Nov;14(3):129-39
– reference: 12297568 - Neurology. 2002 Sep 24;59(6):867-73
– reference: 12177216 - J Neurosci. 2002 Aug 15;22(16):7218-24
– reference: 11969330 - Neuroimage. 2002 May;16(1):217-40
– reference: 10524596 - Hum Brain Mapp. 1999;8(2-3):80-5
– reference: 10791835 - Hippocampus. 2000;10(2):136-42
– reference: 12764080 - J Neurosci. 2003 May 15;23(10):3963-71
– reference: 10680786 - Neurology. 2000 Feb 8;54(3):581-7
– reference: 11445252 - Neurobiol Aging. 2001 Jul-Aug;22(4):529-39
– reference: 10815133 - Arch Neurol. 2000 May;57(5):675-80
– reference: 10694460 - Neuroimage. 2000 Mar;11(3):179-87
– reference: 11220740 - Ann Neurol. 2001 Feb;49(2):202-13
– reference: 10944562 - N Engl J Med. 2000 Aug 17;343(7):450-6
– reference: 11506645 - J Cogn Neurosci. 2000;12 Suppl 2:24-34
– reference: 10524600 - Hum Brain Mapp. 1999;8(2-3):102-8
– reference: 12399581 - Science. 2002 Oct 25;298(5594):789-91
– reference: 14584828 - Neurochem Res. 2003 Nov;28(11):1743-56
– reference: 8126267 - J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192-205
– reference: 11784798 - J Neurosci. 2002 Jan 15;22(2):523-8
– reference: 10431775 - J Neurol. 1999 Jun;246(6):477-85
– reference: 6610841 - Neurology. 1984 Jul;34(7):939-44
– reference: 10595506 - Neuron. 1999 Nov;24(3):521-9
– reference: 14595398 - Nat Rev Neurosci. 2003 Nov;4(11):863-72
– reference: 9712581 - Science. 1998 Aug 21;281(5380):1185-7
– reference: 15236396 - Ann Neurol. 2004 Jul;56(1):7-9
– reference: 11552009 - Neurology. 2001 Sep 11;57(5):812-6
– reference: 12939424 - Neurology. 2003 Aug 26;61(4):500-6
– reference: 7104545 - Br J Psychiatry. 1982 Jun;140:566-72
– reference: 10762153 - Ann Neurol. 2000 Apr;47(4):430-9
SSID ssj0009610
Score 2.3536124
Snippet Functional magnetic resonance imaging (fMRI) was used to study memory‐associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly...
Functional magnetic resonance imaging (fMRI) was used to study memory-associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly...
Functional magnetic resonance imaging (fMRI) was used to study memory- associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 27
SubjectTerms Aged
Aged, 80 and over
Alzheimer Disease - pathology
Alzheimer Disease - physiopathology
Biological and medical sciences
Cognition Disorders - diagnosis
Cognition Disorders - pathology
Cognition Disorders - physiopathology
Disease Progression
Female
Hippocampus - anatomy & histology
Hippocampus - physiology
Humans
Magnetic Resonance Imaging
Male
Medical sciences
Memory - physiology
Neurology
Neuropsychological Tests
Pattern Recognition, Visual
Temporal Lobe - pathology
Temporal Lobe - physiology
Title Medial temporal lobe function and structure in mild cognitive impairment
URI https://api.istex.fr/ark:/67375/WNG-97PD4HL6-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.20163
https://www.ncbi.nlm.nih.gov/pubmed/15236399
https://www.proquest.com/docview/17297537
https://www.proquest.com/docview/66675007
https://pubmed.ncbi.nlm.nih.gov/PMC4335689
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1daxQxFA2lgvjit3ZarUFE-jLtzCSTmeDTotZF3EXEYh-EkE9cuk5ltwvir_fezMd2tQXxbWBOBubm3snJ5OSEkBcWWLDjzKRCCptywKRGw1WwPAu10TZE34LJVIxP-PvT8nSLvOr3wrT-EMMPN6yM-L3GAtdmebQ2DdUN2gYBnYDvL2q1kBB9WltHSRGdCHCZLS1zxntXoaw4GlpujEU3MKw_URuplxCe0J5rcRXx_Fs_eZnXxoHp-A752r9Sq0c5O1xdmEP76w-3x_9857vkdkdY6ajNsHtkyzf3yc1JtyT_gIwnce8J7Tyu5hTlGxSHS-xyqhtHW4_a1cLTWUO_z-aODqIlirs0Zwv8RfmQnBy__fx6nHbHM6QWJiksFcxA-RvpZK2FL6y1krvgmXAWOI6xDtgJD5XNrCtCzkxpammCBA4EUx5fa_aIbDfnjd8hlDEgnrmrgK1ZXufa8GAkgHzlCs-CT8hB31HKdt7leITGXLWuy4WCyKgYmYQ8H6A_WsOOq0AvY28PCL04Q4VbVaov03dKVh_f8PEHobKE7G-kw_qRpczRaCchz_r8UFCYuNqiG3--WipghrhpuboeATNH4GsZIB63-XTp6QVD6piQaiPTBgCagm_eaWbfojk4Z6wUNbQ8iIl0fQzUaDqKF7v_Dt0jt1rlEsqVn5BtSB__FEjZhdmP1fcbeWs0VQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA61BfXFu3a8tEFE-jLt7CRzCfiyqHXU3UWkxb6UkCsu3U5l2wXx13tO5rJdbUF8C-RLICcnyZfk5AshrwywYMuZjnORm5gDJtYKUt7wxJdaGR90C8aTvDrkn46yozXypnsL0-hD9AduODLCfI0DHA-k95aqoapG3SDgEzfIBv7oHTZUX5fiUSIPWgR40RZDLu90hZJ0ry-6shptoGF_YnSkOgcD-eZni6uo598RlJeZbVia9u-S465RTUTKye7iQu-aX3_oPf5vq--ROy1npcPGye6TNVc_IDfH7a38Q1KNw_MT2spczShGcFBcMbHXqaotbWRqF3NHpzU9nc4s7eOWKD7UnM7xlPIROdx_f_C2itsfGmID-xQW50zDDKCFFaXKXWqMEdx6x3JrgOZoY4GgcF-YxNjUD5jOdCm0F0CDYNfjSsUek_X6rHabhDIG3HNgCyBshpcDpbnXAkCusKlj3kVkp-spaVr5cvxFYyYb4eVUgmVksExEXvbQH41mx1Wg16G7e4San2CQW5HJb5MPUhRf3vFqlMskIlsr_rCsMhMD1NqJyHbnIBLGJl64qNqdLc4lkEN8t1xcj4DNI1C2BBBPGoe6VHvKkD1GpFhxtR6AuuCrOfX0e9AH54xleQkld4InXW8DOZwMQ-Lpv0O3ya3qYDySo4-Tz8_I7SaQCaOXn5N1cCX3Ajjahd4KQ_E3ksM4cA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD50LZS9dPfOu7RijNEXt7YlyzZ7CsuybGtCGSvrw0DoykJTt6QNjP36HcmO02wtjL0J_Emgo3OsT9LRJ4DXGlmwYVTFvOI6ZoiJlcSS0yxxpZLaBd2C0ZgPj9mnk_xkDd4u7sI0-hDdhpuPjPC_9gF-YdzBUjRU1l42COnEHdhgPCm9S_e_LLWjKh6kCPw5W5ynlC1khZLsoKu6MhlteLv-9MmR8hLt45qHLW5inn8nUF4ntmFmGtyD74s-NQkpp_vzK7Wvf_0h9_ifnb4PWy1jJb3GxR7Amq0fwuaoPZN_BMNRuHxCWpGrKfH5G8TPl37MiawNaURq5zNLJjU5m0wN6bKWiL-mOZn5PcrHcDx4__XdMG7fZ4g1rlJozKnC-FeVqUrJbaa1rphxlnKjkeQobZCeMFfoRJvMpVTlqqyUq5AE4ZrHlpI-gfX6vLZPgVCKzDM1BdI1zcpUKuZUhSBbmMxSZyPYWwyU0K14uX9DYyoa2eVMoGVEsEwErzroRaPYcRPoTRjtDiFnpz7FrcjFt_EHURVHfTY85CKJYGfFHZZN5lXqlXYi2F34h8DI9Mctsrbn80uB1NDfWi5uR-DSEQlbgojtxp-utZ5Rzx0jKFY8rQN4VfDVL_XkR1AHZ5TmvMSae8GRbreB6I17ofDs36G7sHnUH4jDj-PPz-Fuk8XkU5dfwDp6kn2JBO1K7YRA_A3nljco
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medial+temporal+lobe+function+and+structure+in+mild+cognitive+impairment&rft.jtitle=Annals+of+neurology&rft.au=Dickerson%2C+Bradford+C.&rft.au=Salat%2C+David+H.&rft.au=Bates%2C+Julianna+F.&rft.au=Atiya%2C+Monika&rft.date=2004-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0364-5134&rft.eissn=1531-8249&rft.volume=56&rft.issue=1&rft.spage=27&rft.epage=35&rft_id=info:doi/10.1002%2Fana.20163&rft.externalDBID=10.1002%252Fana.20163&rft.externalDocID=ANA20163
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon