Medial temporal lobe function and structure in mild cognitive impairment
Functional magnetic resonance imaging (fMRI) was used to study memory‐associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly individuals with mild cognitive impairment (MCI). Subjects performed a visual encoding task during fMRI scanning and were tested for recognition...
Saved in:
Published in | Annals of neurology Vol. 56; no. 1; pp. 27 - 35 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.07.2004
Willey-Liss |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Functional magnetic resonance imaging (fMRI) was used to study memory‐associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly individuals with mild cognitive impairment (MCI). Subjects performed a visual encoding task during fMRI scanning and were tested for recognition of stimuli afterward. MTL regions of interest were identified from each individual's structural MRI, and activation was quantified within each region. Greater extent of activation within the hippocampal formation and parahippocampal gyrus (PHG) was correlated with better memory performance. There was, however, a paradoxical relationship between extent of activation and clinical status at both baseline and follow‐up evaluations. Subjects with greater clinical impairment, based on the Clinical Dementia Rating Sum of Boxes, recruited a larger extent of the right PHG during encoding, even after accounting for atrophy. Moreover, those who subsequently declined over the 2.5 years of clinical follow‐up (44% of the subjects) activated a significantly greater extent of the right PHG during encoding, despite equivalent memory performance. We hypothesize that increased activation in MTL regions reflects a compensatory response to accumulating AD pathology and may serve as a marker for impending clinical decline. Ann Neurol 2004;56:27–35 |
---|---|
AbstractList | Functional magnetic resonance imaging (fMRI) was used to study memory-associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly individuals with mild cognitive impairment (MCI). Subjects performed a visual encoding task during fMRI scanning and were tested for recognition of stimuli afterward. MTL regions of interest were identified from each individual's structural MRI, and activation was quantified within each region. Greater extent of activation within the hippocampal formation and parahippocampal gyrus (PHG) was correlated with better memory performance. There was, however, a paradoxical relationship between extent of activation and clinical status at both baseline and follow-up evaluations. Subjects with greater clinical impairment, based on the Clinical Dementia Rating Sum of Boxes, recruited a larger extent of the right PHG during encoding, even after accounting for atrophy. Moreover, those who subsequently declined over the 2.5 years of clinical follow-up (44% of the subjects) activated a significantly greater extent of the right PHG during encoding, despite equivalent memory performance. We hypothesize that increased activation in MTL regions reflects a compensatory response to accumulating AD pathology and may serve as a marker for impending clinical decline. Functional magnetic resonance imaging (fMRI) was used to study memory-associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly individuals with mild cognitive impairment (MCI). Subjects performed a visual encoding task during fMRI scanning and were tested for recognition of stimuli afterward. MTL regions of interest were identified from each individual's structural MRI, and activation was quantified within each region. Greater extent of activation within the hippocampal formation and parahippocampal gyrus (PHG) was correlated with better memory performance. There was, however, a paradoxical relationship between extent of activation and clinical status at both baseline and follow-up evaluations. Subjects with greater clinical impairment, based on the Clinical Dementia Rating Sum of Boxes, recruited a larger extent of the right PHG during encoding, even after accounting for atrophy. Moreover, those who subsequently declined over the 2.5 years of clinical follow-up (44% of the subjects) activated a significantly greater extent of the right PHG during encoding, despite equivalent memory performance. We hypothesize that increased activation in MTL regions reflects a compensatory response to accumulating AD pathology and may serve as a marker for impending clinical decline.Functional magnetic resonance imaging (fMRI) was used to study memory-associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly individuals with mild cognitive impairment (MCI). Subjects performed a visual encoding task during fMRI scanning and were tested for recognition of stimuli afterward. MTL regions of interest were identified from each individual's structural MRI, and activation was quantified within each region. Greater extent of activation within the hippocampal formation and parahippocampal gyrus (PHG) was correlated with better memory performance. There was, however, a paradoxical relationship between extent of activation and clinical status at both baseline and follow-up evaluations. Subjects with greater clinical impairment, based on the Clinical Dementia Rating Sum of Boxes, recruited a larger extent of the right PHG during encoding, even after accounting for atrophy. Moreover, those who subsequently declined over the 2.5 years of clinical follow-up (44% of the subjects) activated a significantly greater extent of the right PHG during encoding, despite equivalent memory performance. We hypothesize that increased activation in MTL regions reflects a compensatory response to accumulating AD pathology and may serve as a marker for impending clinical decline. Functional magnetic resonance imaging (fMRI) was used to study memory‐associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly individuals with mild cognitive impairment (MCI). Subjects performed a visual encoding task during fMRI scanning and were tested for recognition of stimuli afterward. MTL regions of interest were identified from each individual's structural MRI, and activation was quantified within each region. Greater extent of activation within the hippocampal formation and parahippocampal gyrus (PHG) was correlated with better memory performance. There was, however, a paradoxical relationship between extent of activation and clinical status at both baseline and follow‐up evaluations. Subjects with greater clinical impairment, based on the Clinical Dementia Rating Sum of Boxes, recruited a larger extent of the right PHG during encoding, even after accounting for atrophy. Moreover, those who subsequently declined over the 2.5 years of clinical follow‐up (44% of the subjects) activated a significantly greater extent of the right PHG during encoding, despite equivalent memory performance. We hypothesize that increased activation in MTL regions reflects a compensatory response to accumulating AD pathology and may serve as a marker for impending clinical decline. Ann Neurol 2004;56:27–35 |
Author | Atiya, Monika Greve, Douglas N. Albert, Marilyn S. Sperling, Reisa A. Salat, David H. Bates, Julianna F. Dale, Anders M. Blacker, Deborah Killiany, Ronald J. Dickerson, Bradford C. Stern, Chantal E. |
AuthorAffiliation | 4 Harvard Medical School, Boston, MA 5 Department of Radiology, Massachusetts General Hospital, Charlestown, MA 6 Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 7 Max Planck Institute for Psychiatry, Munich, Germany 8 Departments of Anatomy and Neurobiology, Boston University of Medicine 10 Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 2 Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 9 Center for Memory and Brain, Boston University, Boston, MA 3 Department of Neurology, Brigham and Women’s Hospital 1 Department of Neurology, Massachusetts General Hospital |
AuthorAffiliation_xml | – name: 7 Max Planck Institute for Psychiatry, Munich, Germany – name: 9 Center for Memory and Brain, Boston University, Boston, MA – name: 1 Department of Neurology, Massachusetts General Hospital – name: 2 Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA – name: 6 Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA – name: 5 Department of Radiology, Massachusetts General Hospital, Charlestown, MA – name: 8 Departments of Anatomy and Neurobiology, Boston University of Medicine – name: 3 Department of Neurology, Brigham and Women’s Hospital – name: 4 Harvard Medical School, Boston, MA – name: 10 Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD |
Author_xml | – sequence: 1 givenname: Bradford C. surname: Dickerson fullname: Dickerson, Bradford C. email: bradd@nmr.mgh.harvard.edu organization: Department of Neurology, Massachusetts General Hospital – sequence: 2 givenname: David H. surname: Salat fullname: Salat, David H. organization: Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA – sequence: 3 givenname: Julianna F. surname: Bates fullname: Bates, Julianna F. organization: Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA – sequence: 4 givenname: Monika surname: Atiya fullname: Atiya, Monika organization: Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA – sequence: 5 givenname: Ronald J. surname: Killiany fullname: Killiany, Ronald J. organization: Departments of Anatomy and Neurobiology, Boston University of Medicine – sequence: 6 givenname: Douglas N. surname: Greve fullname: Greve, Douglas N. organization: Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA – sequence: 7 givenname: Anders M. surname: Dale fullname: Dale, Anders M. organization: Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA – sequence: 8 givenname: Chantal E. surname: Stern fullname: Stern, Chantal E. organization: Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA – sequence: 9 givenname: Deborah surname: Blacker fullname: Blacker, Deborah organization: Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA – sequence: 10 givenname: Marilyn S. surname: Albert fullname: Albert, Marilyn S. organization: Department of Neurology, Massachusetts General Hospital – sequence: 11 givenname: Reisa A. surname: Sperling fullname: Sperling, Reisa A. organization: Department of Neurology, Massachusetts General Hospital |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15918156$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15236399$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9vFCEcxYmpsdvWg_-AmYsmPUwLw6_hYrKp2jXZ1h40HgkDTEVnYAtMbf97WXdbaxP1BIHPe98Hbw_s-OAtAC8QPEIQNsfKq6MGIoafgBmiGNVtQ8QOmEHMSE0RJrtgL6VvEELBEHwGdhFtMMNCzMDizBqnhirbcRVi2Qyhs1U_eZ1d8JXypko5TjpP0VbOV6MbTKXDpXfZXZeTcaVcHK3PB-Bpr4Zkn2_XffD5_btPJ4t6-fH0w8l8WWvKGa4Z7iBpO2FEq5httNaCmN5iZrTgrNMGckJ6rqE2TY9wR7tWdL2AjJCmta3C--DNxnc1daM1uowuseUqulHFWxmUk3_eePdVXoZrSTCmrBXF4PXWIIaryaYsR5e0HQblbZiSZIxxCiH_L4h4IzjFa_Dlw0j3We5-uQCvtoBKWg19VF679IATqEWUFe5ww-kYUoq2_41AuW5alqblr6YLe_yI1S6rdWnl1W74l-KHG-zt363l_Hx-p6g3CpeyvblXqPhdMo45lV_OT6XgF2_JYskkxD8B_PrJSA |
CODEN | ANNED3 |
CitedBy_id | crossref_primary_10_1016_j_neuropharm_2012_06_023 crossref_primary_10_1097_HRP_0000000000000084 crossref_primary_10_1016_j_neurobiolaging_2011_09_002 crossref_primary_10_1016_j_bbadis_2011_07_002 crossref_primary_10_1016_j_neurobiolaging_2011_09_009 crossref_primary_10_1016_j_neuroimage_2010_05_068 crossref_primary_10_1016_j_matpr_2021_01_221 crossref_primary_10_1016_j_neurobiolaging_2007_08_024 crossref_primary_10_1016_j_neuron_2009_07_003 crossref_primary_10_3390_nu11040926 crossref_primary_10_1159_000516230 crossref_primary_10_1016_j_nicl_2019_101958 crossref_primary_10_3389_fnsyn_2022_826601 crossref_primary_10_3389_fnagi_2024_1460293 crossref_primary_10_1016_j_neuroimage_2007_09_064 crossref_primary_10_1093_brain_awaa058 crossref_primary_10_3233_JAD_170181 crossref_primary_10_1007_s11682_014_9322_z crossref_primary_10_1097_JGP_0b013e3180488325 crossref_primary_10_1016_j_neuroscience_2015_06_031 crossref_primary_10_1007_s12017_009_8109_7 crossref_primary_10_1523_JNEUROSCI_4740_11_2011 crossref_primary_10_1016_j_psc_2005_05_007 crossref_primary_10_1038_s41598_022_11582_1 crossref_primary_10_1007_s12264_014_1490_8 crossref_primary_10_1016_j_nicl_2016_01_008 crossref_primary_10_1016_j_nicl_2023_103532 crossref_primary_10_1002_alz_13037 crossref_primary_10_1523_JNEUROSCI_2250_06_2006 crossref_primary_10_1002_hipo_20105 crossref_primary_10_1016_j_biopsych_2012_05_026 crossref_primary_10_1212_01_wnl_0000277292_37292_69 crossref_primary_10_1254_fpj_139_157 crossref_primary_10_12779_dnd_2013_12_4_100 crossref_primary_10_1016_j_neuroimage_2006_04_195 crossref_primary_10_1016_j_neurobiolaging_2016_04_010 crossref_primary_10_1016_j_neuron_2013_01_002 crossref_primary_10_3233_JAD_220749 crossref_primary_10_1093_brain_awl266 crossref_primary_10_3389_fnagi_2022_919712 crossref_primary_10_1002_hbm_20883 crossref_primary_10_1016_j_neurobiolaging_2016_04_018 crossref_primary_10_1016_j_neuropsychologia_2007_11_030 crossref_primary_10_1002_ana_20189 crossref_primary_10_1111_j_1532_5415_2008_01684_x crossref_primary_10_1371_journal_pone_0004936 crossref_primary_10_1088_0967_3334_35_7_1279 crossref_primary_10_1111_jnc_12967 crossref_primary_10_3109_0954898X_2011_638696 crossref_primary_10_1186_s13195_020_00612_7 crossref_primary_10_1007_s11682_013_9278_4 crossref_primary_10_1016_j_pscychresns_2005_06_006 crossref_primary_10_1098_rsif_2014_0919 crossref_primary_10_1017_S1355617709090523 crossref_primary_10_1016_j_neuroimage_2006_07_039 crossref_primary_10_1016_j_nicl_2021_102643 crossref_primary_10_1007_s11065_007_9025_y crossref_primary_10_1016_j_arr_2020_101065 crossref_primary_10_1016_j_neurobiolaging_2007_05_027 crossref_primary_10_1016_j_jalz_2007_07_004 crossref_primary_10_1371_journal_pmed_1002979 crossref_primary_10_1016_j_neuroimage_2011_11_075 crossref_primary_10_12779_dnd_2012_11_2_59 crossref_primary_10_1093_cercor_bhq158 crossref_primary_10_2217_14796708_3_4_409 crossref_primary_10_1042_AN20120058 crossref_primary_10_3389_fnagi_2018_00289 crossref_primary_10_1016_j_neuropsychologia_2007_02_003 crossref_primary_10_1007_s12264_022_00985_9 crossref_primary_10_1016_j_neuroimage_2018_08_017 crossref_primary_10_1007_s11682_011_9117_4 crossref_primary_10_1016_j_neurobiolaging_2005_12_013 crossref_primary_10_3233_JAD_150214 crossref_primary_10_1002_hipo_20491 crossref_primary_10_1097_WCO_0b013e3283557b36 crossref_primary_10_1016_j_jalz_2010_11_008 crossref_primary_10_1177_0891988706291088 crossref_primary_10_1038_nn_3806 crossref_primary_10_1002_hipo_20494 crossref_primary_10_1007_s11910_005_0033_0 crossref_primary_10_1186_1471_2202_11_113 crossref_primary_10_1109_TMI_2024_3386937 crossref_primary_10_1002_gps_2535 crossref_primary_10_1002_hbm_20549 crossref_primary_10_3389_fnagi_2017_00287 crossref_primary_10_1016_j_neurobiolaging_2008_10_010 crossref_primary_10_1146_annurev_clinpsy_032408_153625 crossref_primary_10_3390_brainsci13081133 crossref_primary_10_1002_mrm_21686 crossref_primary_10_1016_j_neuroimage_2011_11_086 crossref_primary_10_1002_hipo_20809 crossref_primary_10_1002_hipo_20808 crossref_primary_10_1016_j_neuroimage_2015_10_045 crossref_primary_10_1093_gerona_glx199 crossref_primary_10_1602_neurorx_2_2_348 crossref_primary_10_1155_2019_9610212 crossref_primary_10_1038_nrneurol_2013_107 crossref_primary_10_1007_s11682_014_9335_7 crossref_primary_10_1016_j_brainres_2006_11_068 crossref_primary_10_1523_JNEUROSCI_0959_06_2006 crossref_primary_10_1371_journal_pone_0028664 crossref_primary_10_1002_hbm_21273 crossref_primary_10_12974_2313_1047_2014_01_01_1 crossref_primary_10_1016_j_bbr_2013_09_032 crossref_primary_10_1038_npp_2009_207 crossref_primary_10_1212_WNL_0b013e31823efc6c crossref_primary_10_1002_gps_1581 crossref_primary_10_1002_hipo_23676 crossref_primary_10_1371_journal_pone_0087114 crossref_primary_10_1024_1011_6877_18_4_203 crossref_primary_10_13104_jksmrm_2013_17_4_294 crossref_primary_10_1371_journal_pone_0057030 crossref_primary_10_1155_2018_6392986 crossref_primary_10_1038_srep24560 crossref_primary_10_1002_ana_24199 crossref_primary_10_1016_j_euroneuro_2012_11_010 crossref_primary_10_1002_hipo_20397 crossref_primary_10_1097_PSY_0000000000000212 crossref_primary_10_1159_000484248 crossref_primary_10_3389_fnins_2021_731614 crossref_primary_10_1016_S1474_4422_05_70168_X crossref_primary_10_2199_jjsca_29_385 crossref_primary_10_1002_14651858_CD009628_pub2 crossref_primary_10_1007_s00592_014_0618_7 crossref_primary_10_1016_j_clinph_2007_09_059 crossref_primary_10_1097_01_yco_0000218602_25346_c6 crossref_primary_10_1016_j_cortex_2014_10_020 crossref_primary_10_1016_S0035_3787_06_75104_9 crossref_primary_10_1016_j_neubiorev_2020_12_022 crossref_primary_10_1093_brain_awv007 crossref_primary_10_3389_fninf_2021_630172 crossref_primary_10_1590_1414_431x20198244 crossref_primary_10_1093_braincomms_fcac134 crossref_primary_10_1186_s12888_019_2149_9 crossref_primary_10_1080_0361073X_2012_660057 crossref_primary_10_1016_j_neurobiolaging_2013_09_028 crossref_primary_10_1038_s43856_025_00736_7 crossref_primary_10_1148_radiol_13121573 crossref_primary_10_1016_j_neuroimage_2009_12_025 crossref_primary_10_1111_jon_13024 crossref_primary_10_4236_jbise_2014_78056 crossref_primary_10_1016_j_neurobiolaging_2007_04_022 crossref_primary_10_1080_14656566_2016_1258060 crossref_primary_10_1155_2013_946298 crossref_primary_10_1212_01_wnl_0000171450_97464_49 crossref_primary_10_3233_JAD_220983 crossref_primary_10_1016_j_neuroimage_2010_03_040 crossref_primary_10_1093_cercor_bhn122 crossref_primary_10_3233_JAD_220612 crossref_primary_10_1016_j_jalz_2009_07_003 crossref_primary_10_1016_j_neuroimage_2016_12_081 crossref_primary_10_7554_eLife_22978 crossref_primary_10_1007_s11547_011_0780_8 crossref_primary_10_1016_j_cub_2020_08_042 crossref_primary_10_1016_j_neurobiolaging_2005_09_017 crossref_primary_10_3390_medicina61030547 crossref_primary_10_3389_fnagi_2023_1165908 crossref_primary_10_3389_fnhum_2021_755017 crossref_primary_10_1002_hbm_21166 crossref_primary_10_1016_j_eujim_2013_10_004 crossref_primary_10_1016_j_neuroimage_2009_12_014 crossref_primary_10_1371_journal_pone_0051617 crossref_primary_10_1016_j_nbd_2008_10_003 crossref_primary_10_1002_hbm_20505 crossref_primary_10_1016_j_jalz_2005_11_002 crossref_primary_10_1016_j_arr_2020_101133 crossref_primary_10_1016_S0035_3787_06_75103_7 crossref_primary_10_3390_jcm12041569 crossref_primary_10_1212_01_wnl_0000296941_06685_22 crossref_primary_10_1371_journal_pone_0179823 crossref_primary_10_1093_brain_aww231 crossref_primary_10_1016_j_neuroscience_2010_03_044 crossref_primary_10_1002_ana_22105 crossref_primary_10_1016_j_pscychresns_2012_05_008 crossref_primary_10_3389_fnagi_2014_00201 crossref_primary_10_1007_s10548_024_01060_4 crossref_primary_10_1016_j_semcdb_2021_01_005 crossref_primary_10_1016_j_neuroimage_2013_12_021 crossref_primary_10_1016_j_neuroimage_2008_01_030 crossref_primary_10_1080_13554794_2019_1603311 crossref_primary_10_1016_j_nicl_2024_103635 crossref_primary_10_1038_s42003_024_06552_4 crossref_primary_10_1016_j_neuropsychologia_2011_03_037 crossref_primary_10_1016_j_ymeth_2007_02_002 crossref_primary_10_1016_j_brainres_2010_08_018 crossref_primary_10_2217_nmt_11_34 crossref_primary_10_1016_j_neubiorev_2017_03_013 crossref_primary_10_1093_cercor_bhp206 crossref_primary_10_1016_j_neuropsychologia_2010_04_011 crossref_primary_10_1073_pnas_0706818105 crossref_primary_10_1002_hbm_20932 crossref_primary_10_1002_hbm_21107 crossref_primary_10_1016_j_neuroimage_2007_06_015 crossref_primary_10_1111_jon_12845 crossref_primary_10_1016_j_neurobiolaging_2007_10_008 crossref_primary_10_1212_WNL_0b013e3181e3966e crossref_primary_10_1002_acn3_50823 crossref_primary_10_1016_j_neurobiolaging_2008_08_016 crossref_primary_10_1016_j_neurobiolaging_2009_10_005 crossref_primary_10_1016_j_nurt_2007_05_007 crossref_primary_10_1097_WAD_0b013e3181b4f736 crossref_primary_10_1016_j_jalz_2014_02_007 crossref_primary_10_1016_j_neuron_2017_11_028 crossref_primary_10_1016_S0035_3787_06_75102_5 crossref_primary_10_1586_14737175_8_2_169 crossref_primary_10_1097_JGP_0b013e318181276a crossref_primary_10_1016_j_jns_2005_05_001 crossref_primary_10_3389_fpsyg_2015_01095 crossref_primary_10_1002_ana_20588 crossref_primary_10_1586_14737175_5_5_663 crossref_primary_10_1038_nrn_2016_141 crossref_primary_10_1038_s41598_023_35316_z crossref_primary_10_1111_j_1460_9568_2011_07745_x crossref_primary_10_1177_1533317508329814 crossref_primary_10_1007_s12640_010_9190_2 crossref_primary_10_3389_fnagi_2022_913693 crossref_primary_10_3389_fnagi_2015_00172 crossref_primary_10_1002_hbm_20160 crossref_primary_10_1371_journal_pone_0035856 crossref_primary_10_1016_j_neurobiolaging_2007_03_022 crossref_primary_10_1016_j_arr_2013_01_006 crossref_primary_10_1016_j_neurobiolaging_2006_01_012 crossref_primary_10_1016_j_nicl_2017_08_006 crossref_primary_10_3389_fnagi_2020_599112 crossref_primary_10_1016_j_neuroimage_2005_03_022 crossref_primary_10_1016_j_neuroimage_2005_12_061 crossref_primary_10_1016_j_mri_2011_07_007 crossref_primary_10_1016_j_neurobiolaging_2012_05_004 crossref_primary_10_2217_fnl_09_36 crossref_primary_10_1016_j_dadm_2019_07_003 crossref_primary_10_1196_annals_1379_009 crossref_primary_10_1016_j_jagp_2013_12_173 crossref_primary_10_1007_s13311_017_0541_z crossref_primary_10_1016_j_neuropsychologia_2015_06_002 crossref_primary_10_3390_ijerph192316015 crossref_primary_10_1186_s13195_018_0347_1 crossref_primary_10_3917_rne_022_0145 crossref_primary_10_1016_j_brainres_2014_05_044 crossref_primary_10_1097_WNN_0b013e31827de67f crossref_primary_10_1016_j_neuropsychologia_2013_06_025 crossref_primary_10_1002_hipo_22395 crossref_primary_10_1002_hbm_24871 crossref_primary_10_1002_pbc_24263 crossref_primary_10_1155_2012_917537 crossref_primary_10_1111_jon_12266 crossref_primary_10_1016_j_neurobiolaging_2018_05_023 crossref_primary_10_1016_j_npg_2009_06_001 crossref_primary_10_1002_ajmg_b_32116 crossref_primary_10_3233_JAD_180250 crossref_primary_10_1148_radiol_2451061847 crossref_primary_10_1196_annals_1379_017 crossref_primary_10_1016_j_acra_2013_01_020 crossref_primary_10_1002_trc2_70004 crossref_primary_10_1016_j_neuroimage_2011_05_090 crossref_primary_10_2217_bmm_14_42 crossref_primary_10_1016_j_biopsycho_2011_04_002 crossref_primary_10_1016_j_cortex_2012_06_004 crossref_primary_10_1097_01_wnr_0000185019_67434_d2 crossref_primary_10_1016_j_neurobiolaging_2018_11_020 crossref_primary_10_1007_s11910_017_0718_1 crossref_primary_10_1080_13825580601139444 crossref_primary_10_3389_fnsys_2021_777706 crossref_primary_10_1038_emm_2014_124 crossref_primary_10_1371_journal_pone_0001104 crossref_primary_10_1016_j_brs_2021_08_008 crossref_primary_10_1093_gerona_61_12_1287 crossref_primary_10_1016_j_neuroimage_2005_05_005 crossref_primary_10_1007_s11682_017_9697_8 crossref_primary_10_1016_j_brainresbull_2018_04_007 crossref_primary_10_1016_j_nicl_2016_12_002 crossref_primary_10_1016_j_bbr_2017_11_004 crossref_primary_10_1162_jocn_2009_21130 crossref_primary_10_1016_j_neurobiolaging_2021_12_008 crossref_primary_10_1212_01_wnl_0000279520_59792_fe crossref_primary_10_3389_fnagi_2022_823502 crossref_primary_10_3389_fnins_2022_1070911 crossref_primary_10_1586_14737175_6_9_1293 crossref_primary_10_1016_j_molmed_2015_05_002 crossref_primary_10_1016_j_neulet_2016_03_044 crossref_primary_10_1093_brain_awn254 crossref_primary_10_1016_S1474_4422_04_00949_4 crossref_primary_10_31887_DCNS_2004_6_4_jgolomb crossref_primary_10_3389_fnins_2024_1392002 crossref_primary_10_1016_j_neuron_2009_03_024 crossref_primary_10_1097_01_wco_0000189875_29852_48 crossref_primary_10_1093_cercor_bht289 crossref_primary_10_1002_jmri_21049 crossref_primary_10_1016_j_jns_2011_07_017 crossref_primary_10_1016_j_neurobiolaging_2014_10_041 crossref_primary_10_1016_j_neuroimage_2017_10_068 crossref_primary_10_1586_erd_09_35 crossref_primary_10_18632_oncotarget_12565 crossref_primary_10_1016_j_nic_2005_09_004 crossref_primary_10_1007_s00221_015_4356_z crossref_primary_10_2337_db11_0506 crossref_primary_10_1016_j_tics_2011_09_004 crossref_primary_10_3233_JAD_190421 crossref_primary_10_1371_journal_pone_0119714 crossref_primary_10_18632_oncotarget_11353 crossref_primary_10_1097_MD_0000000000000227 crossref_primary_10_1146_annurev_psych_59_103006_093656 crossref_primary_10_1016_j_neurol_2012_07_006 crossref_primary_10_1017_S1355617716000850 crossref_primary_10_1016_j_neuropharm_2016_05_009 crossref_primary_10_1186_1471_244X_13_76 crossref_primary_10_1002_hipo_20338 crossref_primary_10_1016_j_conctc_2020_100621 crossref_primary_10_1016_j_jneumeth_2008_04_021 crossref_primary_10_1016_j_neuron_2012_03_023 crossref_primary_10_3389_fnbeh_2023_1080366 crossref_primary_10_1016_j_neurobiolaging_2006_08_008 crossref_primary_10_1038_s41380_023_02214_9 crossref_primary_10_1016_j_neurobiolaging_2009_09_006 crossref_primary_10_1016_j_nic_2005_09_011 crossref_primary_10_1002_ana_20799 crossref_primary_10_1093_cercor_bhl103 crossref_primary_10_1016_j_cortex_2007_04_005 crossref_primary_10_1007_s00259_007_0698_5 crossref_primary_10_1016_j_biopsych_2011_03_006 crossref_primary_10_3389_fnhum_2021_730134 crossref_primary_10_1038_s41583_018_0068_2 crossref_primary_10_1179_016164106X130416 crossref_primary_10_1016_j_neuropsychologia_2007_08_012 crossref_primary_10_1097_01_wco_0000186842_51129_cb crossref_primary_10_1016_j_ejpain_2008_03_001 crossref_primary_10_1016_j_yebeh_2014_11_026 crossref_primary_10_1016_j_neurobiolaging_2022_07_007 crossref_primary_10_1017_S1355617715000855 crossref_primary_10_1523_ENEURO_0418_20_2020 crossref_primary_10_4236_jbbs_2013_38067 crossref_primary_10_1212_01_wnl_0000265594_23511_16 crossref_primary_10_1093_cercor_bhu151 crossref_primary_10_1371_journal_pone_0232469 crossref_primary_10_1016_j_neuron_2020_06_005 crossref_primary_10_3389_fnagi_2016_00260 crossref_primary_10_1016_j_neuroimage_2009_04_033 crossref_primary_10_1016_j_conb_2005_03_016 crossref_primary_10_1155_2015_529675 crossref_primary_10_1016_j_neurobiolaging_2014_08_014 crossref_primary_10_1002_gps_3829 crossref_primary_10_1007_s00401_016_1570_0 crossref_primary_10_1111_j_1528_1167_2011_03052_x crossref_primary_10_1148_radiol_2401050739 crossref_primary_10_1016_j_neurobiolaging_2020_04_013 crossref_primary_10_1093_brain_awl089 crossref_primary_10_1093_braincomms_fcae376 crossref_primary_10_1016_j_neubiorev_2023_105489 crossref_primary_10_1212_01_wnl_0000312288_45119_d1 |
Cites_doi | 10.1212/01.WNL.0000079052.01016.78 10.1002/(SICI)1097-0193(1999)8:2/3<80::AID-HBM2>3.0.CO;2-C 10.1016/S0896-6273(00)81109-5 10.1192/bjp.140.6.566 10.1073/pnas.012467899 10.1002/1531-8249(20010201)49:2<202::AID-ANA40>3.0.CO;2-3 10.1002/(SICI)1097-0193(1999)8:2/3<102::AID-HBM6>3.0.CO;2-J 10.1126/science.281.5380.1188 10.1016/S0197-4580(99)00107-4 10.1523/JNEUROSCI.22-02-00523.2002 10.1002/1531-8249(199904)45:4<466::AID-ANA8>3.0.CO;2-Q 10.1006/nimg.1999.0530 10.1023/A:1026073324672 10.1523/JNEUROSCI.23-03-00986.2003 10.1016/S0896-6273(00)80474-2 10.1073/pnas.95.4.1834 10.1001/archneur.61.1.59 10.1002/hbm.1047 10.1016/0022-3956(75)90026-6 10.1016/S1053-8119(03)00391-4 10.1001/archneur.60.8.1066 10.1212/WNL.34.7.939 10.1006/nimg.2001.1054 10.1056/NEJM200008173430701 10.1073/pnas.93.16.8660 10.1126/science.281.5380.1185 10.1162/089892900564046 10.1097/00004647-200209000-00002 10.1212/WNL.58.8.1197 10.1126/science.1074069 10.1212/WNL.52.7.1397 10.1002/1097-0193(200012)11:4<249::AID-HBM20>3.0.CO;2-5 10.1001/archneur.58.11.1803 10.1001/archneur.1993.00540090052010 10.1097/00004728-199403000-00005 10.1212/WNL.50.6.1563 10.1136/jnnp.74.1.44 10.1007/s004150050387 10.1212/WNL.54.3.581 10.1212/01.WNL.0000073987.79060.4B 10.1017/S1355617701755105 10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-I 10.1001/archneur.57.5.675 10.1002/ana.10069 10.1523/JNEUROSCI.16-14-04491.1996 10.1212/WNL.46.3.692 10.1016/S0197-4580(01)00230-5 10.1038/6374 10.1002/(SICI)1098-1063(2000)10:2<136::AID-HIPO2>3.0.CO;2-J 10.1212/WNL.59.6.867 10.1002/ana.10157 10.1212/WNL.57.5.812 10.1523/JNEUROSCI.23-10-03963.2003 10.1523/JNEUROSCI.20-16-06173.2000 10.1038/nrn1246 10.1016/S0197-4580(01)00271-8 10.1523/JNEUROSCI.22-16-07218.2002 |
ContentType | Journal Article |
Copyright | Copyright © 2004 American Neurological Association 2004 INIST-CNRS 2004 American Neurological Association 2004 |
Copyright_xml | – notice: Copyright © 2004 American Neurological Association – notice: 2004 INIST-CNRS – notice: 2004 American Neurological Association 2004 |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1002/ana.20163 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1531-8249 |
EndPage | 35 |
ExternalDocumentID | PMC4335689 15236399 15918156 10_1002_ana_20163 ANA20163 ark_67375_WNG_97PD4HL6_0 |
Genre | article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIH (National Institute on Aging) funderid: PO1‐AG04953; K23‐AG22509 – fundername: Clinical Investigator Training Program (Harvard/MIT Health Sciences and Technology‐Beth Israel Deaconess Medical Center) – fundername: NCRR funderid: P41‐RR14075 – fundername: Mental Illness and Neuroscience Discovery (MIND) Institute – fundername: National Institute of Neurological Disorders and Stroke funderid: K23‐NS02189 – fundername: NINDS NIH HHS grantid: K23 NS 02189 – fundername: NIA NIH HHS grantid: P01 AG 04953 – fundername: NIA NIH HHS grantid: P01 AG004953 – fundername: NIA NIH HHS grantid: K23 AG 22509 – fundername: NINDS NIH HHS grantid: K23 NS002189 – fundername: NCRR NIH HHS grantid: P41 RR014075 – fundername: NIA NIH HHS grantid: K23 AG022509 – fundername: NCRR NIH HHS grantid: P41 RR 14075 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1L6 1OB 1OC 1ZS 23M 2QL 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEJM AAESR AAEVG AAHHS AANLZ AAONW AAQQT AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBMB ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRZS ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFAZI AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE AJJEV ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM EBS EJD EMOBN F00 F01 F04 F5P F8P FEDTE FUBAC FYBCS G-S G.N GNP GODZA GOZPB GRPMH H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KBYEO KD1 KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LXL LXN LXY LYRES M6M MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ NNB O66 O9- OHT OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.- Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 SAMSI SJN SUPJJ TEORI UB1 V2E V8K V9Y VH1 W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XJT XPP XSW XV2 YOC YQJ ZGI ZRF ZRR ZXP ZZTAW ~IA ~WT ~X8 AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c5763-63b048b9d98a6e2ccc94dfe36dc976bcd0744f7c0cd2f13b5b89bf9064428e8a3 |
IEDL.DBID | DR2 |
ISSN | 0364-5134 |
IngestDate | Thu Aug 21 13:32:38 EDT 2025 Fri Jul 11 08:19:50 EDT 2025 Fri Jul 11 15:32:35 EDT 2025 Wed Feb 19 01:53:47 EST 2025 Mon Jul 21 09:11:04 EDT 2025 Tue Jul 01 03:06:19 EDT 2025 Thu Apr 24 23:12:26 EDT 2025 Wed Jan 22 16:24:12 EST 2025 Wed Oct 30 09:53:11 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Structure function Temporal lobe Nervous system diseases mild cognitive impairment |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5763-63b048b9d98a6e2ccc94dfe36dc976bcd0744f7c0cd2f13b5b89bf9064428e8a3 |
Notes | ArticleID:ANA20163 NCRR - No. P41-RR14075 Mental Illness and Neuroscience Discovery (MIND) Institute istex:E3A329852FD69495CFDD27A603BF291249AB3097 Clinical Investigator Training Program (Harvard/MIT Health Sciences and Technology-Beth Israel Deaconess Medical Center) NIH (National Institute on Aging) - No. PO1-AG04953; No. K23-AG22509 National Institute of Neurological Disorders and Stroke - No. K23-NS02189 ark:/67375/WNG-97PD4HL6-0 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ana.20163 |
PMID | 15236399 |
PQID | 17297537 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4335689 proquest_miscellaneous_66675007 proquest_miscellaneous_17297537 pubmed_primary_15236399 pascalfrancis_primary_15918156 crossref_primary_10_1002_ana_20163 crossref_citationtrail_10_1002_ana_20163 wiley_primary_10_1002_ana_20163_ANA20163 istex_primary_ark_67375_WNG_97PD4HL6_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2004 |
PublicationDateYYYYMMDD | 2004-07-01 |
PublicationDate_xml | – month: 07 year: 2004 text: July 2004 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Annals of neurology |
PublicationTitleAlternate | Ann Neurol |
PublicationYear | 2004 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Willey-Liss |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Willey-Liss |
References | Sperling RA, Bates JF, Cocchiarella AJ, et al. Encoding novel face-name associations: a functional MRI study. Hum Brain Mapp 2001; 14: 129-139. Hughes CP, Berg L, Danziger WL, et al. A new clinical scale for the staging of dementia. Br J Psychiatry 1982; 140: 566-572. Grady CL, McIntosh AR, Beig S, et al. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer's disease. J Neurosci 2003; 23: 986-993. Chapman PF, White GL, Jones MW, et al. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci 1999; 2: 271-276. de Toledo-Morrell L, Dickerson B, Sullivan MP, et al. Hemispheric differences in hippocampal volume predict verbal and spatial memory performance in patients with Alzheimer's disease. Hippocampus 2000; 10: 136-142. Delis DC, Kramer JH, Kaplan E, Ober BA. California verbal learning test, research edition, manual. San Antonio, TX: The Psychological Corporation, Harcourt Brace Jovanovich, 1987. Cohen ER, Ugurbil K, Kim SG. Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. J Cereb Blood Flow Metab 2002; 22: 1042-1053. Grundman M, Petersen RC, Ferris SH, et al. Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch Neurol 2004; 61: 59-66. Small SA, Perera GM, DeLaPaz R, et al. Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer's disease. Ann Neurol 1999; 45: 466-472. Sperling R, Chua E, Cocchiarella A, et al. Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation. Neuroimage 2003; 20: 1400-1410. Davis TL, Kwong KK, Weisskoff RM, Rosen BR. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 1998; 95: 1834-1839. Stern CE, Corkin S, Gonzalez RG, et al. The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc Natl Acad Sci USA 1996; 93: 8660-8665. Becker JT, Mintun MA, Aleva K, et al. Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer's disease. Neurology 1996; 46: 692-700. Mungas D, Reed BR, Jagust WJ, et al. Volumetric MRI predicts rate of cognitive decline related to AD and cerebrovascular disease. Neurology 2002; 59: 867-873. Sperling R, Greve D, Dale A, et al. Functional MRI detection of pharmacologically induced memory impairment. Proc Natl Acad Sci USA 2002; 99: 455-460. Johnson SC, Saykin AJ, Baxter LC, et al. The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and Alzheimer disease. Neuroimage 2000; 11: 179-187. Price CJ, Friston KJ. Scanning patients with tasks they can perform. Hum Brain Mapp 1999; 8: 102-108. Selkoe DJ. Alzheimer's disease is a synaptic failure. Science 2002; 298: 789-791. Strange BA, Otten LJ, Josephs O, et al. Dissociable human perirhinal, hippocampal, and parahippocampal roles during verbal encoding. J Neurosci 2002; 22: 523-528. Mueggler T, Sturchler-Pierrat C, Baumann D, et al. Compromised hemodynamic response in amyloid precursor protein transgenic mice. J Neurosci 2002; 22: 7218-7224. Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 1994; 18: 192-205. D'Esposito M, Deouell LY, Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 2003; 4: 863-872. Dickerson BC, Goncharova I, Sullivan MP, et al. MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer's disease. Neurobiol Aging 2001; 22: 747-754. Jezzard P, Clare S. Sources of distortion in functional MRI data. Hum Brain Mapp 1999; 8: 80-85. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984; 34: 939-944. Convit A, de Asis J, de Leon MJ, et al. Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer's disease. Neurobiol Aging 2000; 21: 19-26. Sperling RA, Bates JF, Chua EF, et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease. J Neurol Neurosurg Psychiatry 2003; 74: 44-50. Smith CD, Andersen AH, Kryscio RJ, et al. Women at risk for AD show increased parietal activation during a fluency task. Neurology 2002; 58: 1197-1202. Brewer JB, Zhao Z, Desmond JE, et al. Making memories: brain activity that predicts how well visual experience will be remembered. Science 1998; 281: 1185-1187. Kordower JH, Chu Y, Stebbins GT, et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 2001; 49: 202-213. Logothetis NK. The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 2003; 23: 3963-3971. Hutton C, Bork A, Josephs O, et al. Image distortion correction in fMRI: a quantitative evaluation. Neuroimage 2002; 16: 217-240. Jack CR Jr, Petersen RC, Xu YC, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999; 52: 1397-1403. Killiany RJ, Gomez-Isla T, Moss M, et al. Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Ann Neurol 2000; 47: 430-439. Kelley WM, Miezin FM, McDermott KB, et al. Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding. Neuron 1998; 20: 927-936. Wagner AD, Schacter DL, Rotte M, et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 1998; 281: 1188-1191. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state." A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12: 189-198. De Santi S, de Leon MJ, Rusinek H, et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging 2001; 22: 529-539. Gron G, Bittner D, Schmitz B, et al. Subjective memory complaints: objective neural markers in patients with Alzheimer's disease and major depressive disorder. Ann Neurol 2002; 51: 491-498. Masliah E, Alford M, Adame A, et al. Abeta1-42 promotes cholinergic sprouting in patients with AD and Lewy body variant of AD. Neurology 2003; 61: 206-211. El Fakhri G, Kijewski MF, Johnson KA, et al. MRI-guided SPECT perfusion measures and volumetric MRI in prodromal Alzheimer disease. Arch Neurol 2003; 60: 1066-1072. Albert MS, Moss MB, Tanzi R, Jones K. Preclinical prediction of AD using neuropsychological tests. J Int Neuropsychol Soc 2001; 7: 631-639. Hashimoto M, Masliah E. Cycles of aberrant synaptic sprouting and neurodegeneration in Alzheimer's and dementia with Lewy bodies. Neurochem Res 2003; 28: 1743-1756. Burock MA, Dale AM. Estimation and detection of event-related fMRI signals with temporally correlated noise: a statistically efficient and unbiased approach. Hum Brain Mapp 2000; 11: 249-260. Gomez-Isla T, Price JL, McKeel DW Jr, et al. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. J Neurosci 1996; 16: 4491-4500. Buckner RL, Snyder AZ, Sanders AL, et al. Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci 2000; 12 (suppl 2): 24-34. McKhann GM, Albert MS, Grossman M, et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch Neurol 2001; 58: 1803-1809. Mesulam MM. Neuroplasticity failure in Alzheimer's disease: bridging the gap between plaques and tangles. Neuron 1999; 24: 521-529. Petersen RC, Jack CR Jr, Xu YC, et al. Memory and MRI-based hippocampal volumes in aging and AD. Neurology 2000; 54: 581-587. Visser PJ, Scheltens P, Verhey FR, et al. Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. J Neurol 1999; 246: 477-485. Rombouts SA, Barkhof F, Veltman DJ, et al. Functional MR imaging in Alzheimer's disease during memory encoding. AJNR Am J Neuroradiol 2000; 21: 1869-1875. DeKosky ST, Ikonomovic MD, Styren SD, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002; 51: 145-155. Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer's disease. N Engl J Med 2000; 343: 450-456. Kato T, Knopman D, Liu H. Dissociation of regional activation in mild AD during visual encoding: a functional MRI study. Neurology 2001; 57: 812-816. Kirchhoff BA, Wagner AD, Maril A, Stern CE. Prefrontal-temporal circuitry for episodic encoding and subsequent memory. J Neurosci 2000; 20: 6173-6180. Johnson KA, Jones K, Holman BL, et al. Preclinical prediction of Alzheimer's disease using SPECT. Neurology 1998; 50: 1563-1571. Machulda MM, Ward HA, Borowski B, et al. Comparison of memory fMRI response among normal, MCI, and Alzheimer's patients. Neurology 2003; 61: 500-506. Killiany RJ, Moss MB, Albert MS, et al. Temporal lobe regions on magnetic resonance imaging identify patients with early Alzheimer's disease. Arch Neurol 1993; 50: 949-954. Daly E, Zaitchik D, Copeland M, et al. Predicting conversion to Alzheimer disease using standardized clinical information. Arch Neurol 2000; 57: 675-680. 2002; 16 1998; 281 2002; 58 2002; 59 2004; 61 2000; 47 2002; 51 2002; 99 1999; 45 1975; 12 2001; 49 1999; 246 1982; 140 2000; 12 2000; 57 2000; 10 2000; 54 2000; 11 1987 2003; 4 1999; 52 1998; 50 1998; 95 2001; 57 2001; 14 2001; 58 2000; 21 2002; 298 2000; 20 1999; 24 1996; 93 1999; 2 2001; 22 1999; 8 1996; 16 2003; 74 1998; 20 2001; 7 1993; 50 1984; 34 2002; 22 2003; 28 1994; 18 2000; 343 2003; 60 2003; 61 1996; 46 2003; 20 2003; 23 e_1_2_6_51_2 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_60_2 e_1_2_6_7_2 Delis DC (e_1_2_6_38_2) 1987 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_43_2 Rombouts SA (e_1_2_6_18_2) 2000; 21 e_1_2_6_45_2 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_31_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_61_2 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 Strange BA (e_1_2_6_26_2) 2002; 22 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 10195221 - Nat Neurosci. 1999 Mar;2(3):271-6 11835370 - Ann Neurol. 2002 Feb;51(2):145-55 11921055 - Ann Neurol. 2002 Apr;51(4):491-8 12399581 - Science. 2002 Oct 25;298(5594):789-91 10227624 - Neurology. 1999 Apr 22;52(7):1397-403 7104545 - Br J Psychiatry. 1982 Jun;140:566-72 6610841 - Neurology. 1984 Jul;34(7):939-44 12177216 - J Neurosci. 2002 Aug 15;22(16):7218-24 11708987 - Arch Neurol. 2001 Nov;58(11):1803-9 10680786 - Neurology. 2000 Feb 8;54(3):581-7 11445252 - Neurobiol Aging. 2001 Jul-Aug;22(4):529-39 8126267 - J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192-205 8699259 - J Neurosci. 1996 Jul 15;16(14):4491-500 12874400 - Neurology. 2003 Jul 22;61(2):206-11 8363449 - Arch Neurol. 1993 Sep;50(9):949-54 11971086 - Neurology. 2002 Apr 23;58(8):1197-202 9620697 - Neuron. 1998 May;20(5):927-36 10211471 - Ann Neurol. 1999 Apr;45(4):466-72 11559958 - Hum Brain Mapp. 2001 Nov;14(3):129-39 11756667 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):455-60 11110539 - AJNR Am J Neuroradiol. 2000 Nov-Dec;21(10):1869-75 14732621 - Arch Neurol. 2004 Jan;61(1):59-66 11969330 - Neuroimage. 2002 May;16(1):217-40 10524600 - Hum Brain Mapp. 1999;8(2-3):102-8 9465103 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1834-9 10944562 - N Engl J Med. 2000 Aug 17;343(7):450-6 11459114 - J Int Neuropsychol Soc. 2001 Jul;7(5):631-9 12764080 - J Neurosci. 2003 May 15;23(10):3963-71 8618669 - Neurology. 1996 Mar;46(3):692-700 12939424 - Neurology. 2003 Aug 26;61(4):500-6 11705634 - Neurobiol Aging. 2001 Sep-Oct;22(5):747-54 15236396 - Ann Neurol. 2004 Jul;56(1):7-9 12218410 - J Cereb Blood Flow Metab. 2002 Sep;22(9):1042-53 12925361 - Arch Neurol. 2003 Aug;60(8):1066-72 8710927 - Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8660-5 12486265 - J Neurol Neurosurg Psychiatry. 2003 Jan;74(1):44-50 9712582 - Science. 1998 Aug 21;281(5380):1188-91 10815133 - Arch Neurol. 2000 May;57(5):675-80 10762153 - Ann Neurol. 2000 Apr;47(4):430-9 1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98 12297568 - Neurology. 2002 Sep 24;59(6):867-73 10791835 - Hippocampus. 2000;10(2):136-42 11144754 - Hum Brain Mapp. 2000 Dec;11(4):249-60 10524596 - Hum Brain Mapp. 1999;8(2-3):80-5 12574428 - J Neurosci. 2003 Feb 1;23 (3):986-93 14595398 - Nat Rev Neurosci. 2003 Nov;4(11):863-72 10595506 - Neuron. 1999 Nov;24(3):521-9 14568509 - Neuroimage. 2003 Oct;20(2):1400-10 11506645 - J Cogn Neurosci. 2000;12 Suppl 2:24-34 10934267 - J Neurosci. 2000 Aug 15;20(16):6173-80 9633695 - Neurology. 1998 Jun;50(6):1563-71 9712581 - Science. 1998 Aug 21;281(5380):1185-7 10431775 - J Neurol. 1999 Jun;246(6):477-85 10794844 - Neurobiol Aging. 2000 Jan-Feb;21(1):19-26 10694460 - Neuroimage. 2000 Mar;11(3):179-87 11784798 - J Neurosci. 2002 Jan 15;22(2):523-8 14584828 - Neurochem Res. 2003 Nov;28(11):1743-56 11552009 - Neurology. 2001 Sep 11;57(5):812-6 11220740 - Ann Neurol. 2001 Feb;49(2):202-13 |
References_xml | – reference: McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984; 34: 939-944. – reference: Delis DC, Kramer JH, Kaplan E, Ober BA. California verbal learning test, research edition, manual. San Antonio, TX: The Psychological Corporation, Harcourt Brace Jovanovich, 1987. – reference: Sperling RA, Bates JF, Chua EF, et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease. J Neurol Neurosurg Psychiatry 2003; 74: 44-50. – reference: D'Esposito M, Deouell LY, Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 2003; 4: 863-872. – reference: Chapman PF, White GL, Jones MW, et al. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci 1999; 2: 271-276. – reference: Grady CL, McIntosh AR, Beig S, et al. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer's disease. J Neurosci 2003; 23: 986-993. – reference: Dickerson BC, Goncharova I, Sullivan MP, et al. MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer's disease. Neurobiol Aging 2001; 22: 747-754. – reference: Sperling R, Greve D, Dale A, et al. Functional MRI detection of pharmacologically induced memory impairment. Proc Natl Acad Sci USA 2002; 99: 455-460. – reference: Hughes CP, Berg L, Danziger WL, et al. A new clinical scale for the staging of dementia. Br J Psychiatry 1982; 140: 566-572. – reference: Stern CE, Corkin S, Gonzalez RG, et al. The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc Natl Acad Sci USA 1996; 93: 8660-8665. – reference: Mesulam MM. Neuroplasticity failure in Alzheimer's disease: bridging the gap between plaques and tangles. Neuron 1999; 24: 521-529. – reference: Cohen ER, Ugurbil K, Kim SG. Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. J Cereb Blood Flow Metab 2002; 22: 1042-1053. – reference: Kirchhoff BA, Wagner AD, Maril A, Stern CE. Prefrontal-temporal circuitry for episodic encoding and subsequent memory. J Neurosci 2000; 20: 6173-6180. – reference: Sperling R, Chua E, Cocchiarella A, et al. Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation. Neuroimage 2003; 20: 1400-1410. – reference: Rombouts SA, Barkhof F, Veltman DJ, et al. Functional MR imaging in Alzheimer's disease during memory encoding. AJNR Am J Neuroradiol 2000; 21: 1869-1875. – reference: Hutton C, Bork A, Josephs O, et al. Image distortion correction in fMRI: a quantitative evaluation. Neuroimage 2002; 16: 217-240. – reference: Masliah E, Alford M, Adame A, et al. Abeta1-42 promotes cholinergic sprouting in patients with AD and Lewy body variant of AD. Neurology 2003; 61: 206-211. – reference: Jezzard P, Clare S. Sources of distortion in functional MRI data. Hum Brain Mapp 1999; 8: 80-85. – reference: Killiany RJ, Gomez-Isla T, Moss M, et al. Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Ann Neurol 2000; 47: 430-439. – reference: Mungas D, Reed BR, Jagust WJ, et al. Volumetric MRI predicts rate of cognitive decline related to AD and cerebrovascular disease. Neurology 2002; 59: 867-873. – reference: Buckner RL, Snyder AZ, Sanders AL, et al. Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci 2000; 12 (suppl 2): 24-34. – reference: Smith CD, Andersen AH, Kryscio RJ, et al. Women at risk for AD show increased parietal activation during a fluency task. Neurology 2002; 58: 1197-1202. – reference: Convit A, de Asis J, de Leon MJ, et al. Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer's disease. Neurobiol Aging 2000; 21: 19-26. – reference: Burock MA, Dale AM. Estimation and detection of event-related fMRI signals with temporally correlated noise: a statistically efficient and unbiased approach. Hum Brain Mapp 2000; 11: 249-260. – reference: Killiany RJ, Moss MB, Albert MS, et al. Temporal lobe regions on magnetic resonance imaging identify patients with early Alzheimer's disease. Arch Neurol 1993; 50: 949-954. – reference: Becker JT, Mintun MA, Aleva K, et al. Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer's disease. Neurology 1996; 46: 692-700. – reference: Sperling RA, Bates JF, Cocchiarella AJ, et al. Encoding novel face-name associations: a functional MRI study. Hum Brain Mapp 2001; 14: 129-139. – reference: Selkoe DJ. Alzheimer's disease is a synaptic failure. Science 2002; 298: 789-791. – reference: De Santi S, de Leon MJ, Rusinek H, et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging 2001; 22: 529-539. – reference: Kelley WM, Miezin FM, McDermott KB, et al. Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding. Neuron 1998; 20: 927-936. – reference: de Toledo-Morrell L, Dickerson B, Sullivan MP, et al. Hemispheric differences in hippocampal volume predict verbal and spatial memory performance in patients with Alzheimer's disease. Hippocampus 2000; 10: 136-142. – reference: DeKosky ST, Ikonomovic MD, Styren SD, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002; 51: 145-155. – reference: Brewer JB, Zhao Z, Desmond JE, et al. Making memories: brain activity that predicts how well visual experience will be remembered. Science 1998; 281: 1185-1187. – reference: Wagner AD, Schacter DL, Rotte M, et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 1998; 281: 1188-1191. – reference: Small SA, Perera GM, DeLaPaz R, et al. Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer's disease. Ann Neurol 1999; 45: 466-472. – reference: Folstein MF, Folstein SE, McHugh PR. "Mini-mental state." A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12: 189-198. – reference: Davis TL, Kwong KK, Weisskoff RM, Rosen BR. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 1998; 95: 1834-1839. – reference: Visser PJ, Scheltens P, Verhey FR, et al. Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. J Neurol 1999; 246: 477-485. – reference: Albert MS, Moss MB, Tanzi R, Jones K. Preclinical prediction of AD using neuropsychological tests. J Int Neuropsychol Soc 2001; 7: 631-639. – reference: Strange BA, Otten LJ, Josephs O, et al. Dissociable human perirhinal, hippocampal, and parahippocampal roles during verbal encoding. J Neurosci 2002; 22: 523-528. – reference: Price CJ, Friston KJ. Scanning patients with tasks they can perform. Hum Brain Mapp 1999; 8: 102-108. – reference: McKhann GM, Albert MS, Grossman M, et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch Neurol 2001; 58: 1803-1809. – reference: Daly E, Zaitchik D, Copeland M, et al. Predicting conversion to Alzheimer disease using standardized clinical information. Arch Neurol 2000; 57: 675-680. – reference: Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer's disease. N Engl J Med 2000; 343: 450-456. – reference: Jack CR Jr, Petersen RC, Xu YC, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999; 52: 1397-1403. – reference: Machulda MM, Ward HA, Borowski B, et al. Comparison of memory fMRI response among normal, MCI, and Alzheimer's patients. Neurology 2003; 61: 500-506. – reference: Johnson SC, Saykin AJ, Baxter LC, et al. The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and Alzheimer disease. Neuroimage 2000; 11: 179-187. – reference: Hashimoto M, Masliah E. Cycles of aberrant synaptic sprouting and neurodegeneration in Alzheimer's and dementia with Lewy bodies. Neurochem Res 2003; 28: 1743-1756. – reference: Johnson KA, Jones K, Holman BL, et al. Preclinical prediction of Alzheimer's disease using SPECT. Neurology 1998; 50: 1563-1571. – reference: Gomez-Isla T, Price JL, McKeel DW Jr, et al. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. J Neurosci 1996; 16: 4491-4500. – reference: Petersen RC, Jack CR Jr, Xu YC, et al. Memory and MRI-based hippocampal volumes in aging and AD. Neurology 2000; 54: 581-587. – reference: Grundman M, Petersen RC, Ferris SH, et al. Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch Neurol 2004; 61: 59-66. – reference: Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 1994; 18: 192-205. – reference: Logothetis NK. The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 2003; 23: 3963-3971. – reference: Gron G, Bittner D, Schmitz B, et al. Subjective memory complaints: objective neural markers in patients with Alzheimer's disease and major depressive disorder. Ann Neurol 2002; 51: 491-498. – reference: Kordower JH, Chu Y, Stebbins GT, et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 2001; 49: 202-213. – reference: El Fakhri G, Kijewski MF, Johnson KA, et al. MRI-guided SPECT perfusion measures and volumetric MRI in prodromal Alzheimer disease. Arch Neurol 2003; 60: 1066-1072. – reference: Mueggler T, Sturchler-Pierrat C, Baumann D, et al. Compromised hemodynamic response in amyloid precursor protein transgenic mice. J Neurosci 2002; 22: 7218-7224. – reference: Kato T, Knopman D, Liu H. Dissociation of regional activation in mild AD during visual encoding: a functional MRI study. Neurology 2001; 57: 812-816. – volume: 10 start-page: 136 year: 2000 end-page: 142 article-title: Hemispheric differences in hippocampal volume predict verbal and spatial memory performance in patients with Alzheimer's disease publication-title: Hippocampus – volume: 61 start-page: 500 year: 2003 end-page: 506 article-title: Comparison of memory fMRI response among normal, MCI, and Alzheimer's patients publication-title: Neurology – volume: 11 start-page: 249 year: 2000 end-page: 260 article-title: Estimation and detection of event‐related fMRI signals with temporally correlated noise: a statistically efficient and unbiased approach publication-title: Hum Brain Mapp – volume: 281 start-page: 1185 year: 1998 end-page: 1187 article-title: Making memories: brain activity that predicts how well visual experience will be remembered publication-title: Science – volume: 61 start-page: 206 year: 2003 end-page: 211 article-title: Abeta1–42 promotes cholinergic sprouting in patients with AD and Lewy body variant of AD publication-title: Neurology – volume: 54 start-page: 581 year: 2000 end-page: 587 article-title: Memory and MRI‐based hippocampal volumes in aging and AD publication-title: Neurology – volume: 16 start-page: 217 year: 2002 end-page: 240 article-title: Image distortion correction in fMRI: a quantitative evaluation publication-title: Neuroimage – volume: 59 start-page: 867 year: 2002 end-page: 873 article-title: Volumetric MRI predicts rate of cognitive decline related to AD and cerebrovascular disease publication-title: Neurology – volume: 20 start-page: 1400 year: 2003 end-page: 1410 article-title: Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation publication-title: Neuroimage – volume: 28 start-page: 1743 year: 2003 end-page: 1756 article-title: Cycles of aberrant synaptic sprouting and neurodegeneration in Alzheimer's and dementia with Lewy bodies publication-title: Neurochem Res – volume: 8 start-page: 102 year: 1999 end-page: 108 article-title: Scanning patients with tasks they can perform publication-title: Hum Brain Mapp – volume: 57 start-page: 812 year: 2001 end-page: 816 article-title: Dissociation of regional activation in mild AD during visual encoding: a functional MRI study publication-title: Neurology – volume: 74 start-page: 44 year: 2003 end-page: 50 article-title: fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease publication-title: J Neurol Neurosurg Psychiatry – volume: 95 start-page: 1834 year: 1998 end-page: 1839 article-title: Calibrated functional MRI: mapping the dynamics of oxidative metabolism publication-title: Proc Natl Acad Sci USA – volume: 140 start-page: 566 year: 1982 end-page: 572 article-title: A new clinical scale for the staging of dementia publication-title: Br J Psychiatry – volume: 16 start-page: 4491 year: 1996 end-page: 4500 article-title: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease publication-title: J Neurosci – volume: 4 start-page: 863 year: 2003 end-page: 872 article-title: Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging publication-title: Nat Rev Neurosci – volume: 58 start-page: 1803 year: 2001 end-page: 1809 article-title: Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease publication-title: Arch Neurol – volume: 45 start-page: 466 year: 1999 end-page: 472 article-title: Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer's disease publication-title: Ann Neurol – volume: 34 start-page: 939 year: 1984 end-page: 944 article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS‐ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease publication-title: Neurology – volume: 51 start-page: 145 year: 2002 end-page: 155 article-title: Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment publication-title: Ann Neurol – volume: 23 start-page: 986 year: 2003 end-page: 993 article-title: Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer's disease publication-title: J Neurosci – volume: 52 start-page: 1397 year: 1999 end-page: 1403 article-title: Prediction of AD with MRI‐based hippocampal volume in mild cognitive impairment publication-title: Neurology – volume: 20 start-page: 6173 year: 2000 end-page: 6180 article-title: Prefrontal‐temporal circuitry for episodic encoding and subsequent memory publication-title: J Neurosci – volume: 23 start-page: 3963 year: 2003 end-page: 3971 article-title: The underpinnings of the BOLD functional magnetic resonance imaging signal publication-title: J Neurosci – volume: 246 start-page: 477 year: 1999 end-page: 485 article-title: Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment publication-title: J Neurol – volume: 8 start-page: 80 year: 1999 end-page: 85 article-title: Sources of distortion in functional MRI data publication-title: Hum Brain Mapp – volume: 50 start-page: 949 year: 1993 end-page: 954 article-title: Temporal lobe regions on magnetic resonance imaging identify patients with early Alzheimer's disease publication-title: Arch Neurol – volume: 14 start-page: 129 year: 2001 end-page: 139 article-title: Encoding novel face‐name associations: a functional MRI study publication-title: Hum Brain Mapp – volume: 99 start-page: 455 year: 2002 end-page: 460 article-title: Functional MRI detection of pharmacologically induced memory impairment publication-title: Proc Natl Acad Sci USA – volume: 22 start-page: 7218 year: 2002 end-page: 7224 article-title: Compromised hemodynamic response in amyloid precursor protein transgenic mice publication-title: J Neurosci – volume: 343 start-page: 450 year: 2000 end-page: 456 article-title: Patterns of brain activation in people at risk for Alzheimer's disease publication-title: N Engl J Med – volume: 7 start-page: 631 year: 2001 end-page: 639 article-title: Preclinical prediction of AD using neuropsychological tests publication-title: J Int Neuropsychol Soc – volume: 22 start-page: 523 year: 2002 end-page: 528 article-title: Dissociable human perirhinal, hippocampal, and parahippocampal roles during verbal encoding publication-title: J Neurosci – volume: 11 start-page: 179 year: 2000 end-page: 187 article-title: The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and Alzheimer disease publication-title: Neuroimage – volume: 49 start-page: 202 year: 2001 end-page: 213 article-title: Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment publication-title: Ann Neurol – volume: 22 start-page: 529 year: 2001 end-page: 539 article-title: Hippocampal formation glucose metabolism and volume losses in MCI and AD publication-title: Neurobiol Aging – year: 1987 – volume: 2 start-page: 271 year: 1999 end-page: 276 article-title: Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice publication-title: Nat Neurosci – volume: 20 start-page: 927 year: 1998 end-page: 936 article-title: Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding publication-title: Neuron – volume: 21 start-page: 1869 year: 2000 end-page: 1875 article-title: Functional MR imaging in Alzheimer's disease during memory encoding publication-title: AJNR Am J Neuroradiol – volume: 50 start-page: 1563 year: 1998 end-page: 1571 article-title: Preclinical prediction of Alzheimer's disease using SPECT publication-title: Neurology – volume: 18 start-page: 192 year: 1994 end-page: 205 article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space publication-title: J Comput Assist Tomogr – volume: 22 start-page: 747 year: 2001 end-page: 754 article-title: MRI‐derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer's disease publication-title: Neurobiol Aging – volume: 58 start-page: 1197 year: 2002 end-page: 1202 article-title: Women at risk for AD show increased parietal activation during a fluency task publication-title: Neurology – volume: 46 start-page: 692 year: 1996 end-page: 700 article-title: Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer's disease publication-title: Neurology – volume: 12 start-page: 189 year: 1975 end-page: 198 article-title: “Mini‐mental state.” A practical method for grading the cognitive state of patients for the clinician publication-title: J Psychiatr Res – volume: 22 start-page: 1042 year: 2002 end-page: 1053 article-title: Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level‐dependent fMRI response publication-title: J Cereb Blood Flow Metab – volume: 60 start-page: 1066 year: 2003 end-page: 1072 article-title: MRI‐guided SPECT perfusion measures and volumetric MRI in prodromal Alzheimer disease publication-title: Arch Neurol – volume: 281 start-page: 1188 year: 1998 end-page: 1191 article-title: Building memories: remembering and forgetting of verbal experiences as predicted by brain activity publication-title: Science – volume: 298 start-page: 789 year: 2002 end-page: 791 article-title: Alzheimer's disease is a synaptic failure publication-title: Science – volume: 21 start-page: 19 year: 2000 end-page: 26 article-title: Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non‐demented elderly predict decline to Alzheimer's disease publication-title: Neurobiol Aging – volume: 12 start-page: 24 issue: suppl 2 year: 2000 end-page: 34 article-title: Functional brain imaging of young, nondemented, and demented older adults publication-title: J Cogn Neurosci – volume: 57 start-page: 675 year: 2000 end-page: 680 article-title: Predicting conversion to Alzheimer disease using standardized clinical information publication-title: Arch Neurol – volume: 93 start-page: 8660 year: 1996 end-page: 8665 article-title: The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging publication-title: Proc Natl Acad Sci USA – volume: 61 start-page: 59 year: 2004 end-page: 66 article-title: Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials publication-title: Arch Neurol – volume: 47 start-page: 430 year: 2000 end-page: 439 article-title: Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease publication-title: Ann Neurol – volume: 24 start-page: 521 year: 1999 end-page: 529 article-title: Neuroplasticity failure in Alzheimer's disease: bridging the gap between plaques and tangles publication-title: Neuron – volume: 51 start-page: 491 year: 2002 end-page: 498 article-title: Subjective memory complaints: objective neural markers in patients with Alzheimer's disease and major depressive disorder publication-title: Ann Neurol – ident: e_1_2_6_22_2 doi: 10.1212/01.WNL.0000079052.01016.78 – ident: e_1_2_6_60_2 doi: 10.1002/(SICI)1097-0193(1999)8:2/3<80::AID-HBM2>3.0.CO;2-C – ident: e_1_2_6_45_2 doi: 10.1016/S0896-6273(00)81109-5 – ident: e_1_2_6_25_2 doi: 10.1192/bjp.140.6.566 – ident: e_1_2_6_33_2 doi: 10.1073/pnas.012467899 – ident: e_1_2_6_3_2 doi: 10.1002/1531-8249(20010201)49:2<202::AID-ANA40>3.0.CO;2-3 – ident: e_1_2_6_59_2 doi: 10.1002/(SICI)1097-0193(1999)8:2/3<102::AID-HBM6>3.0.CO;2-J – ident: e_1_2_6_14_2 doi: 10.1126/science.281.5380.1188 – ident: e_1_2_6_8_2 doi: 10.1016/S0197-4580(99)00107-4 – volume: 22 start-page: 523 year: 2002 ident: e_1_2_6_26_2 article-title: Dissociable human perirhinal, hippocampal, and parahippocampal roles during verbal encoding publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-02-00523.2002 – ident: e_1_2_6_17_2 doi: 10.1002/1531-8249(199904)45:4<466::AID-ANA8>3.0.CO;2-Q – ident: e_1_2_6_50_2 doi: 10.1006/nimg.1999.0530 – ident: e_1_2_6_46_2 doi: 10.1023/A:1026073324672 – ident: e_1_2_6_44_2 doi: 10.1523/JNEUROSCI.23-03-00986.2003 – ident: e_1_2_6_41_2 doi: 10.1016/S0896-6273(00)80474-2 – ident: e_1_2_6_55_2 doi: 10.1073/pnas.95.4.1834 – ident: e_1_2_6_30_2 doi: 10.1001/archneur.61.1.59 – ident: e_1_2_6_16_2 doi: 10.1002/hbm.1047 – ident: e_1_2_6_37_2 doi: 10.1016/0022-3956(75)90026-6 – ident: e_1_2_6_27_2 doi: 10.1016/S1053-8119(03)00391-4 – volume: 21 start-page: 1869 year: 2000 ident: e_1_2_6_18_2 article-title: Functional MR imaging in Alzheimer's disease during memory encoding publication-title: AJNR Am J Neuroradiol – ident: e_1_2_6_54_2 doi: 10.1001/archneur.60.8.1066 – ident: e_1_2_6_31_2 doi: 10.1212/WNL.34.7.939 – ident: e_1_2_6_61_2 doi: 10.1006/nimg.2001.1054 – ident: e_1_2_6_23_2 doi: 10.1056/NEJM200008173430701 – ident: e_1_2_6_12_2 doi: 10.1073/pnas.93.16.8660 – ident: e_1_2_6_13_2 doi: 10.1126/science.281.5380.1185 – ident: e_1_2_6_48_2 doi: 10.1162/089892900564046 – ident: e_1_2_6_56_2 doi: 10.1097/00004647-200209000-00002 – ident: e_1_2_6_57_2 doi: 10.1212/WNL.58.8.1197 – ident: e_1_2_6_40_2 doi: 10.1126/science.1074069 – ident: e_1_2_6_6_2 doi: 10.1212/WNL.52.7.1397 – ident: e_1_2_6_34_2 doi: 10.1002/1097-0193(200012)11:4<249::AID-HBM20>3.0.CO;2-5 – ident: e_1_2_6_32_2 doi: 10.1001/archneur.58.11.1803 – ident: e_1_2_6_36_2 doi: 10.1001/archneur.1993.00540090052010 – ident: e_1_2_6_35_2 doi: 10.1097/00004728-199403000-00005 – ident: e_1_2_6_52_2 doi: 10.1212/WNL.50.6.1563 – ident: e_1_2_6_21_2 doi: 10.1136/jnnp.74.1.44 – ident: e_1_2_6_7_2 doi: 10.1007/s004150050387 – ident: e_1_2_6_5_2 doi: 10.1212/WNL.54.3.581 – ident: e_1_2_6_47_2 doi: 10.1212/01.WNL.0000073987.79060.4B – ident: e_1_2_6_28_2 doi: 10.1017/S1355617701755105 – ident: e_1_2_6_9_2 doi: 10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-I – ident: e_1_2_6_24_2 doi: 10.1001/archneur.57.5.675 – volume-title: California verbal learning test year: 1987 ident: e_1_2_6_38_2 – ident: e_1_2_6_42_2 doi: 10.1002/ana.10069 – ident: e_1_2_6_2_2 doi: 10.1523/JNEUROSCI.16-14-04491.1996 – ident: e_1_2_6_43_2 doi: 10.1212/WNL.46.3.692 – ident: e_1_2_6_53_2 doi: 10.1016/S0197-4580(01)00230-5 – ident: e_1_2_6_39_2 doi: 10.1038/6374 – ident: e_1_2_6_4_2 doi: 10.1002/(SICI)1098-1063(2000)10:2<136::AID-HIPO2>3.0.CO;2-J – ident: e_1_2_6_11_2 doi: 10.1212/WNL.59.6.867 – ident: e_1_2_6_29_2 doi: 10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-I – ident: e_1_2_6_20_2 doi: 10.1002/ana.10157 – ident: e_1_2_6_19_2 doi: 10.1212/WNL.57.5.812 – ident: e_1_2_6_58_2 doi: 10.1523/JNEUROSCI.23-10-03963.2003 – ident: e_1_2_6_15_2 doi: 10.1523/JNEUROSCI.20-16-06173.2000 – ident: e_1_2_6_49_2 doi: 10.1038/nrn1246 – ident: e_1_2_6_10_2 doi: 10.1016/S0197-4580(01)00271-8 – ident: e_1_2_6_51_2 doi: 10.1523/JNEUROSCI.22-16-07218.2002 – reference: 9633695 - Neurology. 1998 Jun;50(6):1563-71 – reference: 9465103 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1834-9 – reference: 11705634 - Neurobiol Aging. 2001 Sep-Oct;22(5):747-54 – reference: 12486265 - J Neurol Neurosurg Psychiatry. 2003 Jan;74(1):44-50 – reference: 10211471 - Ann Neurol. 1999 Apr;45(4):466-72 – reference: 8699259 - J Neurosci. 1996 Jul 15;16(14):4491-500 – reference: 10227624 - Neurology. 1999 Apr 22;52(7):1397-403 – reference: 8363449 - Arch Neurol. 1993 Sep;50(9):949-54 – reference: 12925361 - Arch Neurol. 2003 Aug;60(8):1066-72 – reference: 12574428 - J Neurosci. 2003 Feb 1;23 (3):986-93 – reference: 14732621 - Arch Neurol. 2004 Jan;61(1):59-66 – reference: 14568509 - Neuroimage. 2003 Oct;20(2):1400-10 – reference: 10794844 - Neurobiol Aging. 2000 Jan-Feb;21(1):19-26 – reference: 11756667 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):455-60 – reference: 11110539 - AJNR Am J Neuroradiol. 2000 Nov-Dec;21(10):1869-75 – reference: 11971086 - Neurology. 2002 Apr 23;58(8):1197-202 – reference: 9620697 - Neuron. 1998 May;20(5):927-36 – reference: 1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98 – reference: 11921055 - Ann Neurol. 2002 Apr;51(4):491-8 – reference: 12874400 - Neurology. 2003 Jul 22;61(2):206-11 – reference: 11144754 - Hum Brain Mapp. 2000 Dec;11(4):249-60 – reference: 10934267 - J Neurosci. 2000 Aug 15;20(16):6173-80 – reference: 11708987 - Arch Neurol. 2001 Nov;58(11):1803-9 – reference: 11835370 - Ann Neurol. 2002 Feb;51(2):145-55 – reference: 8710927 - Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8660-5 – reference: 12218410 - J Cereb Blood Flow Metab. 2002 Sep;22(9):1042-53 – reference: 9712582 - Science. 1998 Aug 21;281(5380):1188-91 – reference: 8618669 - Neurology. 1996 Mar;46(3):692-700 – reference: 10195221 - Nat Neurosci. 1999 Mar;2(3):271-6 – reference: 11459114 - J Int Neuropsychol Soc. 2001 Jul;7(5):631-9 – reference: 11559958 - Hum Brain Mapp. 2001 Nov;14(3):129-39 – reference: 12297568 - Neurology. 2002 Sep 24;59(6):867-73 – reference: 12177216 - J Neurosci. 2002 Aug 15;22(16):7218-24 – reference: 11969330 - Neuroimage. 2002 May;16(1):217-40 – reference: 10524596 - Hum Brain Mapp. 1999;8(2-3):80-5 – reference: 10791835 - Hippocampus. 2000;10(2):136-42 – reference: 12764080 - J Neurosci. 2003 May 15;23(10):3963-71 – reference: 10680786 - Neurology. 2000 Feb 8;54(3):581-7 – reference: 11445252 - Neurobiol Aging. 2001 Jul-Aug;22(4):529-39 – reference: 10815133 - Arch Neurol. 2000 May;57(5):675-80 – reference: 10694460 - Neuroimage. 2000 Mar;11(3):179-87 – reference: 11220740 - Ann Neurol. 2001 Feb;49(2):202-13 – reference: 10944562 - N Engl J Med. 2000 Aug 17;343(7):450-6 – reference: 11506645 - J Cogn Neurosci. 2000;12 Suppl 2:24-34 – reference: 10524600 - Hum Brain Mapp. 1999;8(2-3):102-8 – reference: 12399581 - Science. 2002 Oct 25;298(5594):789-91 – reference: 14584828 - Neurochem Res. 2003 Nov;28(11):1743-56 – reference: 8126267 - J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192-205 – reference: 11784798 - J Neurosci. 2002 Jan 15;22(2):523-8 – reference: 10431775 - J Neurol. 1999 Jun;246(6):477-85 – reference: 6610841 - Neurology. 1984 Jul;34(7):939-44 – reference: 10595506 - Neuron. 1999 Nov;24(3):521-9 – reference: 14595398 - Nat Rev Neurosci. 2003 Nov;4(11):863-72 – reference: 9712581 - Science. 1998 Aug 21;281(5380):1185-7 – reference: 15236396 - Ann Neurol. 2004 Jul;56(1):7-9 – reference: 11552009 - Neurology. 2001 Sep 11;57(5):812-6 – reference: 12939424 - Neurology. 2003 Aug 26;61(4):500-6 – reference: 7104545 - Br J Psychiatry. 1982 Jun;140:566-72 – reference: 10762153 - Ann Neurol. 2000 Apr;47(4):430-9 |
SSID | ssj0009610 |
Score | 2.3536124 |
Snippet | Functional magnetic resonance imaging (fMRI) was used to study memory‐associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly... Functional magnetic resonance imaging (fMRI) was used to study memory-associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly... Functional magnetic resonance imaging (fMRI) was used to study memory- associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 27 |
SubjectTerms | Aged Aged, 80 and over Alzheimer Disease - pathology Alzheimer Disease - physiopathology Biological and medical sciences Cognition Disorders - diagnosis Cognition Disorders - pathology Cognition Disorders - physiopathology Disease Progression Female Hippocampus - anatomy & histology Hippocampus - physiology Humans Magnetic Resonance Imaging Male Medical sciences Memory - physiology Neurology Neuropsychological Tests Pattern Recognition, Visual Temporal Lobe - pathology Temporal Lobe - physiology |
Title | Medial temporal lobe function and structure in mild cognitive impairment |
URI | https://api.istex.fr/ark:/67375/WNG-97PD4HL6-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.20163 https://www.ncbi.nlm.nih.gov/pubmed/15236399 https://www.proquest.com/docview/17297537 https://www.proquest.com/docview/66675007 https://pubmed.ncbi.nlm.nih.gov/PMC4335689 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1daxQxFA2lgvjit3ZarUFE-jLtzCSTmeDTotZF3EXEYh-EkE9cuk5ltwvir_fezMd2tQXxbWBOBubm3snJ5OSEkBcWWLDjzKRCCptywKRGw1WwPAu10TZE34LJVIxP-PvT8nSLvOr3wrT-EMMPN6yM-L3GAtdmebQ2DdUN2gYBnYDvL2q1kBB9WltHSRGdCHCZLS1zxntXoaw4GlpujEU3MKw_URuplxCe0J5rcRXx_Fs_eZnXxoHp-A752r9Sq0c5O1xdmEP76w-3x_9857vkdkdY6ajNsHtkyzf3yc1JtyT_gIwnce8J7Tyu5hTlGxSHS-xyqhtHW4_a1cLTWUO_z-aODqIlirs0Zwv8RfmQnBy__fx6nHbHM6QWJiksFcxA-RvpZK2FL6y1krvgmXAWOI6xDtgJD5XNrCtCzkxpammCBA4EUx5fa_aIbDfnjd8hlDEgnrmrgK1ZXufa8GAkgHzlCs-CT8hB31HKdt7leITGXLWuy4WCyKgYmYQ8H6A_WsOOq0AvY28PCL04Q4VbVaov03dKVh_f8PEHobKE7G-kw_qRpczRaCchz_r8UFCYuNqiG3--WipghrhpuboeATNH4GsZIB63-XTp6QVD6piQaiPTBgCagm_eaWbfojk4Z6wUNbQ8iIl0fQzUaDqKF7v_Dt0jt1rlEsqVn5BtSB__FEjZhdmP1fcbeWs0VQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA61BfXFu3a8tEFE-jLt7CRzCfiyqHXU3UWkxb6UkCsu3U5l2wXx13tO5rJdbUF8C-RLICcnyZfk5AshrwywYMuZjnORm5gDJtYKUt7wxJdaGR90C8aTvDrkn46yozXypnsL0-hD9AduODLCfI0DHA-k95aqoapG3SDgEzfIBv7oHTZUX5fiUSIPWgR40RZDLu90hZJ0ry-6shptoGF_YnSkOgcD-eZni6uo598RlJeZbVia9u-S465RTUTKye7iQu-aX3_oPf5vq--ROy1npcPGye6TNVc_IDfH7a38Q1KNw_MT2spczShGcFBcMbHXqaotbWRqF3NHpzU9nc4s7eOWKD7UnM7xlPIROdx_f_C2itsfGmID-xQW50zDDKCFFaXKXWqMEdx6x3JrgOZoY4GgcF-YxNjUD5jOdCm0F0CDYNfjSsUek_X6rHabhDIG3HNgCyBshpcDpbnXAkCusKlj3kVkp-spaVr5cvxFYyYb4eVUgmVksExEXvbQH41mx1Wg16G7e4San2CQW5HJb5MPUhRf3vFqlMskIlsr_rCsMhMD1NqJyHbnIBLGJl64qNqdLc4lkEN8t1xcj4DNI1C2BBBPGoe6VHvKkD1GpFhxtR6AuuCrOfX0e9AH54xleQkld4InXW8DOZwMQ-Lpv0O3ya3qYDySo4-Tz8_I7SaQCaOXn5N1cCX3Ajjahd4KQ_E3ksM4cA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD50LZS9dPfOu7RijNEXt7YlyzZ7CsuybGtCGSvrw0DoykJTt6QNjP36HcmO02wtjL0J_Emgo3OsT9LRJ4DXGlmwYVTFvOI6ZoiJlcSS0yxxpZLaBd2C0ZgPj9mnk_xkDd4u7sI0-hDdhpuPjPC_9gF-YdzBUjRU1l42COnEHdhgPCm9S_e_LLWjKh6kCPw5W5ynlC1khZLsoKu6MhlteLv-9MmR8hLt45qHLW5inn8nUF4ntmFmGtyD74s-NQkpp_vzK7Wvf_0h9_ifnb4PWy1jJb3GxR7Amq0fwuaoPZN_BMNRuHxCWpGrKfH5G8TPl37MiawNaURq5zNLJjU5m0wN6bKWiL-mOZn5PcrHcDx4__XdMG7fZ4g1rlJozKnC-FeVqUrJbaa1rphxlnKjkeQobZCeMFfoRJvMpVTlqqyUq5AE4ZrHlpI-gfX6vLZPgVCKzDM1BdI1zcpUKuZUhSBbmMxSZyPYWwyU0K14uX9DYyoa2eVMoGVEsEwErzroRaPYcRPoTRjtDiFnpz7FrcjFt_EHURVHfTY85CKJYGfFHZZN5lXqlXYi2F34h8DI9Mctsrbn80uB1NDfWi5uR-DSEQlbgojtxp-utZ5Rzx0jKFY8rQN4VfDVL_XkR1AHZ5TmvMSae8GRbreB6I17ofDs36G7sHnUH4jDj-PPz-Fuk8XkU5dfwDp6kn2JBO1K7YRA_A3nljco |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medial+temporal+lobe+function+and+structure+in+mild+cognitive+impairment&rft.jtitle=Annals+of+neurology&rft.au=Dickerson%2C+Bradford+C.&rft.au=Salat%2C+David+H.&rft.au=Bates%2C+Julianna+F.&rft.au=Atiya%2C+Monika&rft.date=2004-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0364-5134&rft.eissn=1531-8249&rft.volume=56&rft.issue=1&rft.spage=27&rft.epage=35&rft_id=info:doi/10.1002%2Fana.20163&rft.externalDBID=10.1002%252Fana.20163&rft.externalDocID=ANA20163 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon |