Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria

Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in both processes are the octahaem cytochrome c (OCC) proteins, hydroxylamine oxidoreductase (HAO) of aerobic ammonium-oxidizing bacteria (AOB), which cat...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 10; no. 11; pp. 3140 - 3149
Main Authors Schmid, Markus C, Hooper, Alan B, Klotz, Martin G, Woebken, Dagmar, Lam, Phyllis, Kuypers, Marcel M.M, Pommerening-Roeser, Andreas, op den Camp, Huub J.M, Jetten, Mike S.M
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.11.2008
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in both processes are the octahaem cytochrome c (OCC) proteins, hydroxylamine oxidoreductase (HAO) of aerobic ammonium-oxidizing bacteria (AOB), which catalyses the oxidation of hydroxylamine to nitrite, and hydrazine oxidoreductase (HZO) of anammox bacteria, which converts hydrazine to N₂. While the genomes of AOB encode up to three nearly identical copies of hao operons, genome analysis of Candidatus'Kuenenia stuttgartiensis' showed eight highly divergent octahaem protein coding regions as possible candidates for the HZO. Based on their phylogenetic relationship and biochemical characteristics, the sequences of these eight gene products grouped in three clusters. Degenerate primers were designed on the basis of available gene sequences with the aim to detect hao and hzo genes in various ecosystems. The hao primer pairs amplified gene fragments from 738 to 1172 bp and the hzo primer pairs amplified gene fragments from 289 to 876 bp in length, when tested on genomic DNA isolated from a variety of AOB and anammox bacteria. A selection of these primer pairs was also used successfully to amplify and analyse the hao and hzo genes in community DNA isolated from different ecosystems harbouring both AOB and anammox bacteria. We propose that OCC protein-encoding genes are suitable targets for molecular ecological studies on both aerobic and anaerobic ammonium-oxidizing bacteria.
AbstractList Summary Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in both processes are the octahaem cytochrome c (OCC) proteins, hydroxylamine oxidoreductase (HAO) of aerobic ammonium‐oxidizing bacteria (AOB), which catalyses the oxidation of hydroxylamine to nitrite, and hydrazine oxidoreductase (HZO) of anammox bacteria, which converts hydrazine to N 2 . While the genomes of AOB encode up to three nearly identical copies of hao operons, genome analysis of Candidatus ‘Kuenenia stuttgartiensis’ showed eight highly divergent octahaem protein coding regions as possible candidates for the HZO. Based on their phylogenetic relationship and biochemical characteristics, the sequences of these eight gene products grouped in three clusters. Degenerate primers were designed on the basis of available gene sequences with the aim to detect hao and hzo genes in various ecosystems. The hao primer pairs amplified gene fragments from 738 to 1172 bp and the hzo primer pairs amplified gene fragments from 289 to 876 bp in length, when tested on genomic DNA isolated from a variety of AOB and anammox bacteria. A selection of these primer pairs was also used successfully to amplify and analyse the hao and hzo genes in community DNA isolated from different ecosystems harbouring both AOB and anammox bacteria. We propose that OCC protein‐encoding genes are suitable targets for molecular ecological studies on both aerobic and anaerobic ammonium‐oxidizing bacteria.
Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in both processes are the octahaem cytochrome c (OCC) proteins, hydroxylamine oxidoreductase (HAO) of aerobic ammonium-oxidizing bacteria (AOB), which catalyses the oxidation of hydroxylamine to nitrite, and hydrazine oxidoreductase (HZO) of anammox bacteria, which converts hydrazine to N(2). While the genomes of AOB encode up to three nearly identical copies of hao operons, genome analysis of Candidatus'Kuenenia stuttgartiensis' showed eight highly divergent octahaem protein coding regions as possible candidates for the HZO. Based on their phylogenetic relationship and biochemical characteristics, the sequences of these eight gene products grouped in three clusters. Degenerate primers were designed on the basis of available gene sequences with the aim to detect hao and hzo genes in various ecosystems. The hao primer pairs amplified gene fragments from 738 to 1172 bp and the hzo primer pairs amplified gene fragments from 289 to 876 bp in length, when tested on genomic DNA isolated from a variety of AOB and anammox bacteria. A selection of these primer pairs was also used successfully to amplify and analyse the hao and hzo genes in community DNA isolated from different ecosystems harbouring both AOB and anammox bacteria. We propose that OCC protein-encoding genes are suitable targets for molecular ecological studies on both aerobic and anaerobic ammonium-oxidizing bacteria.
Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in both processes are the octahaem cytochrome c (OCC) proteins, hydroxylamine oxidoreductase (HAO) of aerobic ammonium-oxidizing bacteria (AOB), which catalyses the oxidation of hydroxylamine to nitrite, and hydrazine oxidoreductase (HZO) of anammox bacteria, which converts hydrazine to N₂. While the genomes of AOB encode up to three nearly identical copies of hao operons, genome analysis of Candidatus'Kuenenia stuttgartiensis' showed eight highly divergent octahaem protein coding regions as possible candidates for the HZO. Based on their phylogenetic relationship and biochemical characteristics, the sequences of these eight gene products grouped in three clusters. Degenerate primers were designed on the basis of available gene sequences with the aim to detect hao and hzo genes in various ecosystems. The hao primer pairs amplified gene fragments from 738 to 1172 bp and the hzo primer pairs amplified gene fragments from 289 to 876 bp in length, when tested on genomic DNA isolated from a variety of AOB and anammox bacteria. A selection of these primer pairs was also used successfully to amplify and analyse the hao and hzo genes in community DNA isolated from different ecosystems harbouring both AOB and anammox bacteria. We propose that OCC protein-encoding genes are suitable targets for molecular ecological studies on both aerobic and anaerobic ammonium-oxidizing bacteria.
Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in both processes are the octahaem cytochrome c (OCC) proteins, hydroxylamine oxidoreductase (HAO) of aerobic ammonium-oxidizing bacteria (AOB), which catalyses the oxidation of hydroxylamine to nitrite, and hydrazine oxidoreductase (HZO) of anammox bacteria, which converts hydrazine to N sub(2). While the genomes of AOB encode up to three nearly identical copies of hao operons, genome analysis of Candidatus'Kuenenia stuttgartiensis' showed eight highly divergent octahaem protein coding regions as possible candidates for the HZO. Based on their phylogenetic relationship and biochemical characteristics, the sequences of these eight gene products grouped in three clusters. Degenerate primers were designed on the basis of available gene sequences with the aim to detect hao and hzo genes in various ecosystems. The hao primer pairs amplified gene fragments from 738 to 1172bp and the hzo primer pairs amplified gene fragments from 289 to 876bp in length, when tested on genomic DNA isolated from a variety of AOB and anammox bacteria. A selection of these primer pairs was also used successfully to amplify and analyse the hao and hzo genes in community DNA isolated from different ecosystems harbouring both AOB and anammox bacteria. We propose that OCC protein-encoding genes are suitable targets for molecular ecological studies on both aerobic and anaerobic ammonium-oxidizing bacteria.
Summary Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in both processes are the octahaem cytochrome c (OCC) proteins, hydroxylamine oxidoreductase (HAO) of aerobic ammonium‐oxidizing bacteria (AOB), which catalyses the oxidation of hydroxylamine to nitrite, and hydrazine oxidoreductase (HZO) of anammox bacteria, which converts hydrazine to N2. While the genomes of AOB encode up to three nearly identical copies of hao operons, genome analysis of Candidatus‘Kuenenia stuttgartiensis’ showed eight highly divergent octahaem protein coding regions as possible candidates for the HZO. Based on their phylogenetic relationship and biochemical characteristics, the sequences of these eight gene products grouped in three clusters. Degenerate primers were designed on the basis of available gene sequences with the aim to detect hao and hzo genes in various ecosystems. The hao primer pairs amplified gene fragments from 738 to 1172 bp and the hzo primer pairs amplified gene fragments from 289 to 876 bp in length, when tested on genomic DNA isolated from a variety of AOB and anammox bacteria. A selection of these primer pairs was also used successfully to amplify and analyse the hao and hzo genes in community DNA isolated from different ecosystems harbouring both AOB and anammox bacteria. We propose that OCC protein‐encoding genes are suitable targets for molecular ecological studies on both aerobic and anaerobic ammonium‐oxidizing bacteria.
Author Schmid, Markus C
Jetten, Mike S.M
Kuypers, Marcel M.M
Pommerening-Roeser, Andreas
Woebken, Dagmar
Lam, Phyllis
op den Camp, Huub J.M
Hooper, Alan B
Klotz, Martin G
Author_xml – sequence: 1
  fullname: Schmid, Markus C
– sequence: 2
  fullname: Hooper, Alan B
– sequence: 3
  fullname: Klotz, Martin G
– sequence: 4
  fullname: Woebken, Dagmar
– sequence: 5
  fullname: Lam, Phyllis
– sequence: 6
  fullname: Kuypers, Marcel M.M
– sequence: 7
  fullname: Pommerening-Roeser, Andreas
– sequence: 8
  fullname: op den Camp, Huub J.M
– sequence: 9
  fullname: Jetten, Mike S.M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18973625$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1DAUhiNURC_wCuAVu6S-5LpgAdUwrVQuAgpL68Q5mfGQ2K2dQMJj8MQ4zGjYYsnyOfL__ZbPfx6dGGswigijCQvrcpewNOcxrzhNOKVlQlkheDI9is6OFyfHmvHT6Nz7HV1UBX0SnbKyKkTOs7Po98r80M6aHs0AHWlwQDVoa4htiVUDbAF7oubBqq2zPRJFtnPj7DR30GuDl0sHv0JF7KQb67AZA-WRbNCgX1wAna21ImCasI9d31ujxz5eMB0MNqQGNaDT8DR63ELn8dnhvIju3q6-XF3Htx_WN1evb2OVFeFfIsVKlJjVwAWt0xSqFIBCjUUhqjZPM1YJnmJKsapR8RwqaAqeC85EUQLn4iJ6ufe9d_ZhRD_IXnuFXQcG7eglq0pGRZkGYbkXKme9d9jKe6d7cLNkVC55yJ1cRi2XscslD_k3DzkF9PnhjbHusfkHHgIIgld7wU_d4fzfxnL17mapAh_vee0HnI48uO8yD2Fn8tv7tfyY8TdfP12vZR70L_b6FqyEjdNe3n3mlAnKsjQvWC7-AB1bttU
CitedBy_id crossref_primary_10_1007_s10646_014_1333_4
crossref_primary_10_1038_srep27744
crossref_primary_10_1111_1574_6941_12241
crossref_primary_10_1016_j_jenvman_2024_120607
crossref_primary_10_1007_s10533_017_0311_3
crossref_primary_10_1016_j_dsr2_2018_08_008
crossref_primary_10_1016_j_jhazmat_2020_122714
crossref_primary_10_1016_j_watres_2020_116184
crossref_primary_10_1007_s00253_017_8502_3
crossref_primary_10_1016_j_watres_2010_08_018
crossref_primary_10_1007_s00253_017_8404_4
crossref_primary_10_1016_j_ijggc_2014_11_013
crossref_primary_10_2166_wst_2016_483
crossref_primary_10_1111_1462_2920_15187
crossref_primary_10_1002_jeq2_20181
crossref_primary_10_1042_BST20110712
crossref_primary_10_1111_raq_12558
crossref_primary_10_3389_fmicb_2019_01229
crossref_primary_10_1061__ASCE_EE_1943_7870_0001246
crossref_primary_10_1016_j_scitotenv_2020_139387
crossref_primary_10_1016_j_biortech_2013_01_147
crossref_primary_10_2139_ssrn_3975142
crossref_primary_10_1016_j_watres_2019_04_007
crossref_primary_10_1007_s11356_021_15197_3
crossref_primary_10_1007_s00253_016_8013_7
crossref_primary_10_1016_j_biortech_2013_09_066
crossref_primary_10_1016_j_scitotenv_2019_04_438
crossref_primary_10_1007_s00253_013_5242_x
crossref_primary_10_5194_bg_13_1105_2016
crossref_primary_10_1111_j_1462_2920_2008_01786_x
crossref_primary_10_1002_bip_23428
crossref_primary_10_1016_j_scitotenv_2024_172073
crossref_primary_10_1007_s10098_017_1458_2
crossref_primary_10_1128_AEM_01264_10
crossref_primary_10_1039_D1RA00384D
crossref_primary_10_1016_j_jbiotec_2010_12_025
crossref_primary_10_1007_s00253_018_9078_2
crossref_primary_10_1007_s12237_017_0306_2
crossref_primary_10_1002_lno_10306
crossref_primary_10_1016_j_ibiod_2018_11_003
crossref_primary_10_1007_s10646_011_0711_4
crossref_primary_10_1371_journal_pone_0078275
crossref_primary_10_4014_mbl_1909_09004
crossref_primary_10_1016_j_biortech_2017_02_125
crossref_primary_10_1007_s10311_017_0607_5
crossref_primary_10_1016_j_cej_2014_05_055
crossref_primary_10_1038_ismej_2014_71
crossref_primary_10_1016_j_soilbio_2015_12_004
crossref_primary_10_1111_1758_2229_12021
crossref_primary_10_1002_jctb_6047
crossref_primary_10_1007_s11270_016_2765_7
crossref_primary_10_1016_j_scitotenv_2019_03_130
crossref_primary_10_1007_s11802_021_4530_9
crossref_primary_10_1016_S1002_0160_18_60023_2
crossref_primary_10_1038_s41396_019_0561_2
crossref_primary_10_1155_2013_134914
crossref_primary_10_2166_ws_2018_188
crossref_primary_10_1371_journal_pone_0061330
crossref_primary_10_3389_fmicb_2020_01825
crossref_primary_10_1111_j_1574_6968_2012_02654_x
crossref_primary_10_1007_s00248_010_9733_3
crossref_primary_10_1016_j_ecolind_2020_106411
crossref_primary_10_3389_fmicb_2019_02141
crossref_primary_10_1016_j_jenvman_2021_113398
crossref_primary_10_1016_j_scitotenv_2020_143023
crossref_primary_10_1016_j_biortech_2013_05_022
crossref_primary_10_3390_agriculture12091458
crossref_primary_10_1016_j_syapm_2018_12_008
crossref_primary_10_1007_s00248_011_9849_0
crossref_primary_10_1016_j_cej_2016_03_154
crossref_primary_10_1007_s00248_012_0175_y
crossref_primary_10_1016_j_ecss_2015_10_009
crossref_primary_10_1016_j_watres_2019_05_006
crossref_primary_10_1080_10643389_2015_1085234
crossref_primary_10_1016_j_ecoleng_2015_11_031
crossref_primary_10_1111_1758_2229_12115
crossref_primary_10_1016_j_marenvres_2021_105397
crossref_primary_10_1007_s10126_018_9797_5
crossref_primary_10_1021_es103826w
crossref_primary_10_3390_app12136756
crossref_primary_10_1016_j_scitotenv_2017_04_240
crossref_primary_10_1016_j_jmarsys_2018_09_007
crossref_primary_10_1016_j_biortech_2015_06_049
crossref_primary_10_5194_bg_9_2419_2012
crossref_primary_10_1002_jobm_201200378
crossref_primary_10_1007_s00248_010_9743_1
crossref_primary_10_4155_bfs_10_67
crossref_primary_10_1039_C5RA16802C
crossref_primary_10_1016_j_bej_2016_09_002
crossref_primary_10_1007_s10646_020_02332_y
crossref_primary_10_1080_09593330_2019_1610076
crossref_primary_10_1007_s10098_019_01688_y
crossref_primary_10_1111_1462_2920_12152
crossref_primary_10_3390_w14142238
crossref_primary_10_1016_j_jece_2022_107173
crossref_primary_10_1007_s00253_012_4430_4
crossref_primary_10_1111_j_1758_2229_2012_00347_x
crossref_primary_10_1007_s00253_010_2925_4
crossref_primary_10_1007_s00253_010_2929_0
crossref_primary_10_1007_s00253_009_2361_5
crossref_primary_10_1061_JOEEDU_EEENG_7570
crossref_primary_10_2521_jswtb_51_11
crossref_primary_10_1016_j_syapm_2009_03_002
crossref_primary_10_1155_2013_396487
crossref_primary_10_1002_2014JC010554
crossref_primary_10_1038_s41396_018_0223_9
crossref_primary_10_1111_j_1574_6941_2010_01027_x
crossref_primary_10_1128_AEM_02520_12
crossref_primary_10_1007_s00253_012_4036_x
crossref_primary_10_1016_j_ibiod_2013_01_001
crossref_primary_10_1128_AEM_07113_11
crossref_primary_10_1007_s00253_020_10415_3
crossref_primary_10_1007_s00253_009_2228_9
crossref_primary_10_1007_s11707_012_0336_9
crossref_primary_10_1016_j_chemosphere_2020_128340
crossref_primary_10_3389_fmicb_2016_00512
crossref_primary_10_1016_j_desal_2011_05_038
crossref_primary_10_1016_j_watres_2012_12_018
crossref_primary_10_1080_01490451_2011_635760
crossref_primary_10_1016_j_watres_2014_03_049
crossref_primary_10_1155_2020_8888615
crossref_primary_10_5194_bg_12_7467_2015
crossref_primary_10_1016_j_biortech_2017_02_049
crossref_primary_10_1007_s00253_013_4756_6
crossref_primary_10_1016_j_cej_2023_142681
crossref_primary_10_1016_j_biortech_2023_130113
crossref_primary_10_1007_s10098_011_0355_3
crossref_primary_10_1016_j_biortech_2020_122749
crossref_primary_10_1016_j_biortech_2016_07_036
crossref_primary_10_1016_j_envres_2021_111671
crossref_primary_10_1111_1574_6976_12014
crossref_primary_10_1007_s12275_014_4114_0
crossref_primary_10_1016_j_ibiod_2022_105536
crossref_primary_10_1007_s00253_012_4510_5
crossref_primary_10_1007_s00253_011_3230_6
crossref_primary_10_1016_j_ibiod_2022_105376
crossref_primary_10_1016_j_bbabio_2012_07_005
crossref_primary_10_1007_s10499_016_0105_y
crossref_primary_10_1080_10409230902722783
crossref_primary_10_1016_j_scitotenv_2020_143580
crossref_primary_10_5194_bg_18_4305_2021
crossref_primary_10_1002_wer_10780
crossref_primary_10_1264_jsme2_ME10131
Cites_doi 10.1128/AEM.64.8.3042-3051.1998
10.1038/nature03170
10.1371/journal.pbio.0020303
10.1078/0723-2020-00077
10.1111/j.1574-6941.2007.00408.x
10.1111/j.1574-6941.1996.tb00347.x
10.1073/pnas.0506625102
10.1046/j.1462-2920.2001.00211.x
10.1078/072320203770865837
10.1016/S0043-1354(01)00476-6
10.1016/S0723-2020(98)80010-6
10.1016/S1389-1723(02)80218-3
10.1111/j.1574-6968.2007.00970.x
10.1021/bi992721k
10.1111/j.1462-2920.2008.01642.x
10.1111/j.1574-6976.2000.tb00566.x
10.1128/AEM.66.12.5368-5382.2000
10.1099/00221287-137-7-1689
10.1890/06-0219
10.1099/ijs.0.02638-0
10.1016/j.syapm.2006.03.004
10.1128/AEM.71.9.5371-5382.2005
10.1263/jbb.105.243
10.1128/AEM.01978-06
10.1038/22749
10.1007/s00203-002-0452-0
10.1038/ismej.2007.63
10.1111/j.1462-2920.2007.01266.x
10.1038/nature03911
10.1038/nature04983
10.1038/nature04647
10.1146/annurev.micro.58.030603.123605
10.1073/pnas.0608549103
10.1128/AEM.71.4.1677-1684.2005
10.1128/AEM.63.12.4704-4712.1997
10.1111/j.1462-2920.2008.01643.x
10.1111/j.1574-6968.1998.tb12801.x
10.4319/lo.2007.52.3.0923
10.1016/S0167-7012(02)00077-5
10.1111/j.1462-2920.2008.01733.x
10.1016/j.femsec.2004.04.012
10.1016/S0022-2836(05)80360-2
10.1016/S0723-2020(00)80050-8
ContentType Journal Article
Copyright 2008 The Authors. Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd
Copyright_xml – notice: 2008 The Authors. Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd
DBID FBQ
BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7SN
7T7
7TM
8FD
C1K
FR3
P64
RC3
DOI 10.1111/j.1462-2920.2008.01732.x
DatabaseName AGRIS
Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
MEDLINE

Genetics Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 3149
ExternalDocumentID 10_1111_j_1462_2920_2008_01732_x
18973625
EMI1732
ark_67375_WNG_P52BVRHG_6
US201301546716
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XFK
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7SN
7T7
7TM
8FD
C1K
FR3
P64
RC3
ID FETCH-LOGICAL-c5762-34e938e5ba230b44a94aa0abe7739f64519324e40e9bec26a9ad726321378a223
IEDL.DBID DR2
ISSN 1462-2912
IngestDate Fri Aug 16 11:36:02 EDT 2024
Fri Aug 23 01:46:21 EDT 2024
Sat Sep 28 07:52:51 EDT 2024
Sat Aug 24 01:12:31 EDT 2024
Wed Oct 30 09:53:00 EDT 2024
Wed Dec 27 19:25:32 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5762-34e938e5ba230b44a94aa0abe7739f64519324e40e9bec26a9ad726321378a223
Notes http://dx.doi.org/10.1111/j.1462-2920.2008.01732.x
istex:707D0AEE46674C5869FB0BED9A480E0A36E7C1E8
ark:/67375/WNG-P52BVRHG-6
ArticleID:EMI1732
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://repository.ubn.ru.nl//bitstream/handle/2066/72297/72297.pdf
PMID 18973625
PQID 19810384
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_19810384
crossref_primary_10_1111_j_1462_2920_2008_01732_x
pubmed_primary_18973625
wiley_primary_10_1111_j_1462_2920_2008_01732_x_EMI1732
istex_primary_ark_67375_WNG_P52BVRHG_6
fao_agris_US201301546716
PublicationCentury 2000
PublicationDate November 2008
PublicationDateYYYYMMDD 2008-11-01
PublicationDate_xml – month: 11
  year: 2008
  text: November 2008
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2008
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
References Rotthauwe, J.H., Witzel, K.P., and Liesack, W. (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63: 4704-4712.
Bergmann, D.J., Hooper, A.B., and Klotz, M.G. (2005) Structure and sequence conservation of hao cluster genes of autotrophic ammonia-oxidizing bacteria: evidence for their evolutionary history. Appl Environ Microbiol 71: 5371-5382.
Bothe, H., Jost, G., Schloter, M., Ward, B.B., and Witzel, K. (2000) Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol Rev 24: 673-690.
Dunfield, P.F., Yuryev, A., Senin, P., Smirnova, A.V., Stott, M.B., Hou, S., et al. (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450: 879-883.
Hamersley, M.R., Lavik, G., Woebken, D., Rattray, J.E., Lam, P., Hopmans, E.C., et al. (2007) Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnol Oceanogr 52: 923-933.
Ward, N., Larsen, O., Sakwa, J., Bruseth, L., Khouri, H., Durkin, A.S., et al. (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2: 1616-1628.
Klotz, M.G., Schmid, M.C., Strous, M., Op Den Camp, H.J.M., Jetten, M.S.M., and Hooper, A.B. (2008) Evolution of an octahaem cytochrome c protein family that is key to aerobic and anaerobic ammonia oxidation by bacteria. Environ Microbiol 10: 3150-3163.
Koops, H.-P., Böttcher, B., Möller, U.C., Pommerening-Röser, A., and Stehr, G. (1991) Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov. J Gen Microbiol 137: 1689-1699.
Strous, M., Fuerst, J.A., Framer, E.H.H., Logemann, S., Muyzer, G., Van De Pas-Schoonen, K.T., et al. (1999) Missing lithotroph identified as new planctomycete. Nature 400: 446-449.
Purkhold, U., Wagner, M., Timmermann, G., Pommerening-Roser, A., and Koops, H.P. (2003) 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. Int J Syst Evol Microbiol 53: 1485-1494.
Strous, M., and Jetten, M.S.M. (2004) Anaerobic oxidation of methane and ammonium. Annu Rev Microbiol 58: 99-117.
Klotz, M.G., and Stein, L.Y. (2007) Nitrifier genomics and evolution of the nitrogen cycle. FEMS Microbiol Lett 278: 146-156.
Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., et al. (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442: 806-809.
Mohan, S.B., Schmid, M., Jetten, M.S.M., and Cole, J. (2004) Detection and widespread distribution of the nrfA gene encoding nitrite reduction to ammonia, a short circuitin the Biological Nitrogen Cycle that competes with denitrification. FEMS Microb Ecol 49: 433-443.
Third, K.A., Sliekers, A.O., Kuenen, J.G., and Jetten, M.S.M. (2001) The CANON system (Completely Autotrophic Nitrogen-removal Over Nitrite) under ammonium limitation: interaction and competition between three groups of bacteria. Syst Appl Microbiol 24: 588-596.
Könneke, M., Bernhard, A.E., De La Torre, J.R., Walker, C.B., Waterbury, J.B., and Stahl, D.A. (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543-546.
Shimamura, M., Nishiyama, T., Shigetomo, H., Toyomoto, T., Kawahara, Y., Furukawa, K., and Fujii, T. (2007) Isolation of a multiheme protein with features of a hydrazine-oxidizing enzyme from an anaerobic ammonium-oxidizing enrichment culture. Appl Environ Microbiol 73: 1065-1072.
Strous, M., Pelletier, E., Mangenot, S., Rattei, T., Lehner, A., Taylor, M.W., et al. (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440: 790-794.
Schmid, M.C., Risgaard-Petersen, N., Van De Vossenberg, J., Kuypers, M.M., Lavik, G., Petersen, J., et al. (2007) Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ Microbiol 9: 1476-1484.
Utaker, J.B., and Nes, I.F. (1998) A qualitative evaluation of the published oligonucleotides specific for the 16S rRNA gene sequences of the ammonia-oxidizing bacteria. Syst Appl Microbiol 21: 72-88.
Sliekers, A.O., Derwort, N., Gomez, J.L., Strous, M., Kuenen, J.G., and Jetten, M.S.M. (2002) Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Res 36: 2475-2482.
Schmid, M.C., Maas, B., Dapena, A., Van De Pas-Schoonen, K., Van De Vossenberg, J., Kartal, B., et al. (2005) Biomarkers for the in situ detection of anaerobic ammonium oxidizing (anammox) bacteria. Appl Environ Microbiol 71: 1677-1684.
Arp, D.J., Sayavedra-Soto, L.A., and Hommes, N.G. (2002) Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Arch Microbiol 178: 250-255.
Shimamura, M., Nishiyama, T., Shinya, K., Kawahara, Y., Furukawa, K., and Fujii, T. (2008) Another multiheme protein, hydroxylamine oxidoreductase, abundantly produced in an anammox bacterium besides the hydrazine-oxidizing enzyme. J Biosci Bioeng 105: 243-248.
Hallam, S.J., Konstantinidis, K.T., Putnam, N., Schleper, C., Watanabe, Y., Sugahara, J., et al. (2006) Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA 103: 18296-18301.
Schalk, J., Oustad, H., Kuenen, J.G., and Jetten, M.S.M. (1998) The anaerobic oxidation of hydrazine: a novel reaction in microbial nitrogen metabolism. FEMS Microbiol Lett 158: 61-67.
Schmid, M., Twachtmann, U., Klein, M., Strous, M., Juretschko, S., Jetten, M.S.M., et al. (2000) Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 23: 93-106.
Schmid, M.C., Walsh, K., Webb, R., Rijpstra, W.I.C., Van De Pas-Schoonen, K., Verbruggen, M.J., et al. (2003) Candidatus 'Scalindua brodae', sp. nov., Candidatus 'Scalindua wagneri', sp. nov., two new species of anaerobic ammonium oxidizing bacteria. System Appl Microbiol 26: 529-538.
Fujii, T., Sugino, H., Rouse, J.D., and Furukawa, K. (2002) Characterization of the microbial community in an anaerobic ammonium-oxidizing biofilm cultured on a non-woven biomass carrier. J Biosci Bioeng 94: 412-418.
Schmid, M., Schmitz-Esser, S., Jetten, M., and Wagner, M. (2001) 16S−23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium oxidizing bacteria: implications for phylogeny and in situ detection. Environ Microbiol 3: 450-459.
Bjerrum, L., Kjaer, T., and Ramsing, N.B. (2002) Enumerating ammonia-oxidizing bacteria in environmental samples using competitive PCR. J Microbiol Methods 51: 227-239.
Kartal, B., Rattray, J., Van Niftrik, L., Van De Vossenberg, J.L.C.M., Schmid, M.C., Webb, R.I., et al. (2007) Candidatus 'Anammoxoglobus propionicus' a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 30: 39-49.
Woebken, D., Teeling, H., Wecker, P., Dumitriu, A., Kostadinov, I., Delong, E.F., et al. (2007) Fosmids of novel marine Planctomycetes from the Namibian and Oregon coast upwelling systems and their cross-comparison with planctomycete genomes. ISME J 1: 419-435.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Basic local alignment search tool. J Mol Biol 215: 403-410.
Juretschko, S., Timmermann, G., Schmid, M.C., Schleifer, K.-H., Pommerening-Röser, A., Koops, H.-P., and Wagner, M. (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64: 3042-3051.
Quan, Z.X., Rhee, S.K., Zuo, J.E., Yang, Y., Bae, J.W., Park, J.R., et al. (2008) Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol 10: 3130-3139.
Moran, M.A., Buchan, A., Gonzalez, J.M., Heidelberg, J.F., Whitman, W.B., Kiene, R.P., et al. (2004) Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432: 910-913.
Purkhold, U., Pommerening-Röser, A., Juretschko, S., Schmid, M.C., Koops, H.-P., and Wagner, M. (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66: 5368-5382.
Francis, C.A., Roberts, K.J., Beman, J.M., Santoro, A.E., and Oakley, B.B. (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102: 14683-14688.
Schalk, J., De Vries, S., Kuenen, J.G., and Jetten, M.S.M. (2000) Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation. Biochemistry 39: 5405-5412.
Kartal, B., Van Niftrik, L., Rattray, J., Van Der Vossenberg, J.L.C.M., Schmid, M.C., Sinninghe Damsté, J., et al. (2008) Candidatus 'Brocadia fulgida': an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol Ecol 63: 46-55.
Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, et al. (2004) arb: a software environment for sequence data. Nucleic Acids Res 32: 1363-1371.
2002; 36
2002; 94
2004; 49
2000; 23
2002; 51
2000; 24
1997; 63
2000; 66
2002; 178
2005; 437
2008
2008; 10
2008; 105
1998; 158
1999; 400
2003
2007; 73
2004; 2
2007; 52
2007; 30
2001; 24
1998; 21
1998; 64
1991; 137
2003; 53
2004; 32
2007; 278
1990; 215
2004; 432
2000; 39
2005; 102
2004; 58
2007; 450
2007; 9
2003; 26
2006; 440
2001; 3
2005; 71
2008; 63
2007; 1
2006; 442
2006; 103
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_43_1
Ward N. (e_1_2_5_44_1) 2004; 2
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_18_1
Koops H.P. (e_1_2_5_19_1) 2003
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 450
  start-page: 879
  year: 2007
  end-page: 883
  article-title: Methane oxidation by an extremely acidophilic bacterium of the phylum
  publication-title: Nature
– volume: 63
  start-page: 46
  year: 2008
  end-page: 55
  article-title: ‘Brocadia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium
  publication-title: FEMS Microbiol Ecol
– volume: 73
  start-page: 1065
  year: 2007
  end-page: 1072
  article-title: Isolation of a multiheme protein with features of a hydrazine‐oxidizing enzyme from an anaerobic ammonium‐oxidizing enrichment culture
  publication-title: Appl Environ Microbiol
– volume: 23
  start-page: 93
  year: 2000
  end-page: 106
  article-title: Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation
  publication-title: Syst Appl Microbiol
– volume: 2
  start-page: 1616
  year: 2004
  end-page: 1628
  article-title: Genomic insights into methanotrophy: the complete genome sequence of (Bath)
  publication-title: PLoS Biol
– volume: 10
  start-page: 3150
  year: 2008
  end-page: 3163
  article-title: Evolution of an octahaem cytochrome c protein family that is key to aerobic and anaerobic ammonia oxidation by bacteria
  publication-title: Environ Microbiol
– volume: 24
  start-page: 673
  year: 2000
  end-page: 690
  article-title: Molecular analysis of ammonia oxidation and denitrification in natural environments
  publication-title: FEMS Microbiol Rev
– volume: 49
  start-page: 433
  year: 2004
  end-page: 443
  article-title: Detection and widespread distribution of the gene encoding nitrite reduction to ammonia, a short circuitin the Biological Nitrogen Cycle that competes with denitrification
  publication-title: FEMS Microb Ecol
– volume: 21
  start-page: 72
  year: 1998
  end-page: 88
  article-title: A qualitative evaluation of the published oligonucleotides specific for the 16S rRNA gene sequences of the ammonia‐oxidizing bacteria
  publication-title: Syst Appl Microbiol
– volume: 103
  start-page: 18296
  year: 2006
  end-page: 18301
  article-title: Genomic analysis of the uncultivated marine crenarchaeote
  publication-title: Proc Natl Acad Sci USA
– volume: 51
  start-page: 227
  year: 2002
  end-page: 239
  article-title: Enumerating ammonia‐oxidizing bacteria in environmental samples using competitive PCR
  publication-title: J Microbiol Methods
– volume: 158
  start-page: 61
  year: 1998
  end-page: 67
  article-title: The anaerobic oxidation of hydrazine: a novel reaction in microbial nitrogen metabolism
  publication-title: FEMS Microbiol Lett
– year: 2003
– volume: 53
  start-page: 1485
  year: 2003
  end-page: 1494
  article-title: 16S rRNA and ‐based phylogeny of 12 novel betaproteobacterial ammonia‐oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads
  publication-title: Int J Syst Evol Microbiol
– volume: 24
  start-page: 588
  year: 2001
  end-page: 596
  article-title: The CANON system (Completely Autotrophic Nitrogen‐removal Over Nitrite) under ammonium limitation: interaction and competition between three groups of bacteria
  publication-title: Syst Appl Microbiol
– volume: 432
  start-page: 910
  year: 2004
  end-page: 913
  article-title: Genome sequence of reveals adaptations to the marine environment
  publication-title: Nature
– volume: 30
  start-page: 39
  year: 2007
  end-page: 49
  article-title: ‘Anammoxoglobus propionicus’ a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria
  publication-title: Syst Appl Microbiol
– volume: 71
  start-page: 5371
  year: 2005
  end-page: 5382
  article-title: Structure and sequence conservation of cluster genes of autotrophic ammonia‐oxidizing bacteria: evidence for their evolutionary history
  publication-title: Appl Environ Microbiol
– volume: 9
  start-page: 1476
  year: 2007
  end-page: 1484
  article-title: Anaerobic ammonium‐oxidizing bacteria in marine environments: widespread occurrence but low diversity
  publication-title: Environ Microbiol
– volume: 105
  start-page: 243
  year: 2008
  end-page: 248
  article-title: Another multiheme protein, hydroxylamine oxidoreductase, abundantly produced in an anammox bacterium besides the hydrazine‐oxidizing enzyme
  publication-title: J Biosci Bioeng
– volume: 66
  start-page: 5368
  year: 2000
  end-page: 5382
  article-title: Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and sequence analysis: implications for molecular diversity surveys
  publication-title: Appl Environ Microbiol
– volume: 71
  start-page: 1677
  year: 2005
  end-page: 1684
  article-title: Biomarkers for the detection of anaerobic ammonium oxidizing (anammox) bacteria
  publication-title: Appl Environ Microbiol
– volume: 64
  start-page: 3042
  year: 1998
  end-page: 3051
  article-title: Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: and ‐like bacteria as dominant populations
  publication-title: Appl Environ Microbiol
– volume: 36
  start-page: 2475
  year: 2002
  end-page: 2482
  article-title: Completely autotrophic nitrogen removal over nitrite in one single reactor
  publication-title: Water Res
– volume: 58
  start-page: 99
  year: 2004
  end-page: 117
  article-title: Anaerobic oxidation of methane and ammonium
  publication-title: Annu Rev Microbiol
– volume: 3
  start-page: 450
  year: 2001
  end-page: 459
  article-title: 16S−23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium oxidizing bacteria: implications for phylogeny and detection
  publication-title: Environ Microbiol
– volume: 94
  start-page: 412
  year: 2002
  end-page: 418
  article-title: Characterization of the microbial community in an anaerobic ammonium‐oxidizing biofilm cultured on a non‐woven biomass carrier
  publication-title: J Biosci Bioeng
– volume: 39
  start-page: 5405
  year: 2000
  end-page: 5412
  article-title: Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation
  publication-title: Biochemistry
– volume: 437
  start-page: 543
  year: 2005
  end-page: 546
  article-title: Isolation of an autotrophic ammonia‐oxidizing marine archaeon
  publication-title: Nature
– year: 2008
– volume: 26
  start-page: 529
  year: 2003
  end-page: 538
  article-title: ‘Scalindua brodae’, sp. nov., ‘Scalindua wagneri’, sp. nov., two new species of anaerobic ammonium oxidizing bacteria
  publication-title: System Appl Microbiol
– volume: 1
  start-page: 419
  year: 2007
  end-page: 435
  article-title: Fosmids of novel marine from the Namibian and Oregon coast upwelling systems and their cross‐comparison with planctomycete genomes
  publication-title: ISME J
– volume: 278
  start-page: 146
  year: 2007
  end-page: 156
  article-title: Nitrifier genomics and evolution of the nitrogen cycle
  publication-title: FEMS Microbiol Lett
– volume: 442
  start-page: 806
  year: 2006
  end-page: 809
  article-title: Archaea predominate among ammonia‐oxidizing prokaryotes in soils
  publication-title: Nature
– volume: 10
  start-page: 3130
  year: 2008
  end-page: 3139
  article-title: Diversity of ammonium‐oxidizing bacteria in a granular sludge anaerobic ammonium‐oxidizing (anammox) reactor
  publication-title: Environ Microbiol
– volume: 102
  start-page: 14683
  year: 2005
  end-page: 14688
  article-title: Ubiquity and diversity of ammonia‐oxidizing archaea in water columns and sediments of the ocean
  publication-title: Proc Natl Acad Sci USA
– volume: 400
  start-page: 446
  year: 1999
  end-page: 449
  article-title: Missing lithotroph identified as new planctomycete
  publication-title: Nature
– volume: 440
  start-page: 790
  year: 2006
  end-page: 794
  article-title: Deciphering the evolution and metabolism of an anammox bacterium from a community genome
  publication-title: Nature
– volume: 32
  start-page: 1363
  year: 2004
  end-page: 1371
  article-title: arb: a software environment for sequence data
  publication-title: Nucleic Acids Res
– volume: 215
  start-page: 403
  year: 1990
  end-page: 410
  article-title: Basic local alignment search tool
  publication-title: J Mol Biol
– volume: 137
  start-page: 1689
  year: 1991
  end-page: 1699
  article-title: Classification of eight new species of ammonia‐oxidizing bacteria: sp. nov., sp. nov., sp. nov., sp. nov., sp. nov., sp. nov., sp. nov. and sp. nov
  publication-title: J Gen Microbiol
– volume: 52
  start-page: 923
  year: 2007
  end-page: 933
  article-title: Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone
  publication-title: Limnol Oceanogr
– volume: 178
  start-page: 250
  year: 2002
  end-page: 255
  article-title: Molecular biology and biochemistry of ammonia oxidation by
  publication-title: Arch Microbiol
– volume: 63
  start-page: 4704
  year: 1997
  end-page: 4712
  article-title: The ammonia monooxygenase structural gene as a functional marker: molecular fine‐scale analysis of natural ammonia‐oxidizing populations
  publication-title: Appl Environ Microbiol
– ident: e_1_2_5_12_1
  doi: 10.1128/AEM.64.8.3042-3051.1998
– ident: e_1_2_5_23_1
  doi: 10.1038/nature03170
– volume: 2
  start-page: 1616
  year: 2004
  ident: e_1_2_5_44_1
  article-title: Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath)
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0020303
  contributor:
    fullname: Ward N.
– ident: e_1_2_5_41_1
  doi: 10.1078/0723-2020-00077
– ident: e_1_2_5_14_1
  doi: 10.1111/j.1574-6941.2007.00408.x
– ident: e_1_2_5_7_1
  doi: 10.1111/j.1574-6941.1996.tb00347.x
– ident: e_1_2_5_8_1
  doi: 10.1073/pnas.0506625102
– ident: e_1_2_5_31_1
  doi: 10.1046/j.1462-2920.2001.00211.x
– ident: e_1_2_5_32_1
  doi: 10.1078/072320203770865837
– ident: e_1_2_5_37_1
  doi: 10.1016/S0043-1354(01)00476-6
– ident: e_1_2_5_42_1
  doi: 10.1016/S0723-2020(98)80010-6
– ident: e_1_2_5_9_1
  doi: 10.1016/S1389-1723(02)80218-3
– ident: e_1_2_5_15_1
  doi: 10.1111/j.1574-6968.2007.00970.x
– ident: e_1_2_5_29_1
  doi: 10.1021/bi992721k
– ident: e_1_2_5_26_1
  doi: 10.1111/j.1462-2920.2008.01642.x
– ident: e_1_2_5_6_1
  doi: 10.1111/j.1574-6976.2000.tb00566.x
– ident: e_1_2_5_24_1
  doi: 10.1128/AEM.66.12.5368-5382.2000
– ident: e_1_2_5_18_1
  doi: 10.1099/00221287-137-7-1689
– volume-title: The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community
  year: 2003
  ident: e_1_2_5_19_1
  contributor:
    fullname: Koops H.P.
– ident: e_1_2_5_21_1
  doi: 10.1890/06-0219
– ident: e_1_2_5_25_1
  doi: 10.1099/ijs.0.02638-0
– ident: e_1_2_5_13_1
  doi: 10.1016/j.syapm.2006.03.004
– ident: e_1_2_5_4_1
  doi: 10.1128/AEM.71.9.5371-5382.2005
– ident: e_1_2_5_36_1
  doi: 10.1263/jbb.105.243
– ident: e_1_2_5_35_1
  doi: 10.1128/AEM.01978-06
– ident: e_1_2_5_39_1
  doi: 10.1038/22749
– ident: e_1_2_5_3_1
  doi: 10.1007/s00203-002-0452-0
– ident: e_1_2_5_45_1
  doi: 10.1038/ismej.2007.63
– ident: e_1_2_5_34_1
  doi: 10.1111/j.1462-2920.2007.01266.x
– ident: e_1_2_5_17_1
  doi: 10.1038/nature03911
– ident: e_1_2_5_20_1
  doi: 10.1038/nature04983
– ident: e_1_2_5_40_1
  doi: 10.1038/nature04647
– ident: e_1_2_5_38_1
  doi: 10.1146/annurev.micro.58.030603.123605
– ident: e_1_2_5_10_1
  doi: 10.1073/pnas.0608549103
– ident: e_1_2_5_33_1
  doi: 10.1128/AEM.71.4.1677-1684.2005
– ident: e_1_2_5_27_1
  doi: 10.1128/AEM.63.12.4704-4712.1997
– ident: e_1_2_5_43_1
  doi: 10.1111/j.1462-2920.2008.01643.x
– ident: e_1_2_5_28_1
  doi: 10.1111/j.1574-6968.1998.tb12801.x
– ident: e_1_2_5_11_1
  doi: 10.4319/lo.2007.52.3.0923
– ident: e_1_2_5_5_1
  doi: 10.1016/S0167-7012(02)00077-5
– ident: e_1_2_5_16_1
  doi: 10.1111/j.1462-2920.2008.01733.x
– ident: e_1_2_5_22_1
  doi: 10.1016/j.femsec.2004.04.012
– ident: e_1_2_5_2_1
  doi: 10.1016/S0022-2836(05)80360-2
– ident: e_1_2_5_30_1
  doi: 10.1016/S0723-2020(00)80050-8
SSID ssj0017370
Score 2.4012632
Snippet Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in both...
Summary Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in...
SourceID proquest
crossref
pubmed
wiley
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 3140
SubjectTerms Amino Acid Sequence
Bacterial Proteins - genetics
Cytochrome c Group - metabolism
DNA Primers
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
Environmental Microbiology
Hydrazines - metabolism
Hydroxylamine - metabolism
Molecular Sequence Data
Oxidoreductases - genetics
Phylogeny
Polymerase Chain Reaction - methods
Sequence Alignment
Sequence Analysis, DNA
Title Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria
URI https://api.istex.fr/ark:/67375/WNG-P52BVRHG-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2008.01732.x
https://www.ncbi.nlm.nih.gov/pubmed/18973625
https://search.proquest.com/docview/19810384
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgJSQuvGHD0wfELVViO3Fz5LG7FRIrtFDYmzV2nLaqNkG7qdRy4idw4BfyS5hx0q5a7QEhDpESxR459oznszP-hrGXuR-6HD1zLJyAGPF_EqMbkXEpS5FXUqdZSYeTPxzno7F6f5qd9vFPdBam44fYbLiRZYT5mgwc7MWukYuYsi31IZGplmJAeDKVmqK73p1smKTwVcgb11dJd4J6rhS05amuV9AgfqWuX14FRrexbXBOh7fZfP1ZXUzKfLBo7cB932F8_D_ffYfd6jEsf90p3V12zdf32I0uq-XqPvt1cHl4DouVvg3hXjVvKt64Fqbgz7hbtY2bElcCd3y6KqnlqJzE2kFPgfSaN8sZJUIhSlp0tnxC8zJJAU_sUY5DXeK1eSKTmi3Ofv_4SRVnKGLCbcdGDQ_Y-PDg89tR3Cd_iB0ugUQslS_k0GcWcJFklYJCASRgvdayqHIVkKfyKvEFqqHIoYBSE_k8DT4g6HnI9uqm9vuMOydJWkr7KyqxiZWFKxDGeF0NM6wesXQ90OZbx_FhttZGwlBv9xk7qbfNMmL7qBEGJjgVm_EnQT-AEY3muPyM2KugJhtZcD6n8Dmdma_HR-ZjJt58ORkdGSz4Yq1HBo2a_tRA7ZvFhcGWEnG9itijTr0u2zUsNGKOLGJ5UJK_brBBs6a7x_9a8Qm7GWJlwjnMp2yvPV_4ZwjIWvs8mNofFbwmYw
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BEYJLeZaGV31A3LJKbOd15NF2gXaFShd6sxzH2V2VJqjNSruc-Akc-IX8Emac7Fa76gEhDpFixR45zoznszP-BuBFbFMTo2f2ueHaR_wf-OhGhF-IgselSMKooMPJh4O4P5TvT6KTLh0QnYVp-SGWG25kGW6-JgOnDel1K-c-pVvqYiLDRPAeAsobaP2C8ji8PVpySeEzlzmuaxOuhfVcKWnFV10vdY0IlgZ_dhUcXUW3zj3t3YGvixdro1JOe9Mm75nva5yP_-nN78JmB2PZq1bv7sE1W92Hm21iy_kD-LV7eX4OqxW2cRFfFatLVptGj7U9Y2be1GZMdAnMsPG8oK6jfhJxB5Uc7zWrZxPKhUKstOhv2YimZpKiLRFIGaarAq9liaxqMj37_eMnNZygiBHLW0Jq_RCGe7vHb_p-l__BN7gK4r6QNhOpjXKN66RcSp1JrQOd2yQRWRlLBz6llYHNUBN5rDNdJMQ_H4ok1Yh7tmCjqiu7DcwYQdJC2mKRQR7kIjMZIhmblGmEzT0IF19afWtpPtTK8ogrGu0uaSeNtpp5sI0qofQIZ2M1_MTpHzAC0hhXoB68dHqylKXPTymCLonUl8G--hjx15-P-vsKK-4sFEmhXdPPGl3ZenqhsKfEXS89eNTq12W_0ixB2BF5EDst-esOK7Rsunv8rw134Fb_-PBAHbwbfHgCt13ojDuW-RQ2mvOpfYb4rMmfO7v7A236Kns
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgEYgL72XDa31A3FIltmMnRx7bLa9qtVDYm-U4TltVm6yWVGo58RM48Av5Jcw4aVet9oAQh0ixYo8cZ8bz2Rl_Q8hz6VIrwTOHzDITAv6PQnAjPCx4wWTJVZwUeDj541AORuLdSXLSxT_hWZiWH2K94YaW4edrNPCzotw2chZitqUuJDJWnPUAT14TEoAwAqTjNZUUPPOJ47o28VZUz6WSNlzV1dLUAGBx7BeXodFNcOu9U_82ma3eqw1KmfXmTd6z37coH__Pi98htzoQS1-2WneXXHHVPXK9TWu5vE9-HVycnoNqhWt8vFdF65LWtjET406pXTa1nSBZArV0siyw56CdSNuBJc96TevFFDOhICcteFs6xokZpRiH9FGWmqqAa11Cm5rOT3__-IkNpyBiTPOWjto8IKP-wefXg7DL_hBaWAOxkAuX8dQluYFVUi6EyYQxkcmdUjwrpfDQUzgRuQz0kEmTmUIh-3zMVWoA9eySnaqu3B6h1nKUFuMGi4jyKOeZzQDHOFWmCTQPSLz60PqsJfnQG4sjpnG0u5SdONp6EZA90AhtxjAX69Enhn-AAY5KWH8G5IVXk7Uscz7D-DmV6K_DQ32UsFdfjgeHGirur_RIg1XjrxpTuXr-TUNPkbleBORhq14X_UozBaAjCYj0SvLXHdZg13j36F8b7pMbR2_6-sPb4fvH5KaPm_FnMp-QneZ87p4COGvyZ97q_gC9RCkq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+detection+of+octahaem+cytochrome+c+hydroxylamine%2Fhydrazine+oxidoreductase+genes+of+aerobic+and+anaerobic+ammonium-oxidizing+bacteria&rft.jtitle=Environmental+microbiology&rft.au=Schmid%2C+Markus+C.&rft.au=Hooper%2C+Alan+B.&rft.au=Klotz%2C+Martin+G.&rft.au=Woebken%2C+Dagmar&rft.date=2008-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=10&rft.issue=11&rft.spage=3140&rft.epage=3149&rft_id=info:doi/10.1111%2Fj.1462-2920.2008.01732.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_P52BVRHG_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon