Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria
Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in both processes are the octahaem cytochrome c (OCC) proteins, hydroxylamine oxidoreductase (HAO) of aerobic ammonium-oxidizing bacteria (AOB), which cat...
Saved in:
Published in | Environmental microbiology Vol. 10; no. 11; pp. 3140 - 3149 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.11.2008
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in both processes are the octahaem cytochrome c (OCC) proteins, hydroxylamine oxidoreductase (HAO) of aerobic ammonium-oxidizing bacteria (AOB), which catalyses the oxidation of hydroxylamine to nitrite, and hydrazine oxidoreductase (HZO) of anammox bacteria, which converts hydrazine to N₂. While the genomes of AOB encode up to three nearly identical copies of hao operons, genome analysis of Candidatus'Kuenenia stuttgartiensis' showed eight highly divergent octahaem protein coding regions as possible candidates for the HZO. Based on their phylogenetic relationship and biochemical characteristics, the sequences of these eight gene products grouped in three clusters. Degenerate primers were designed on the basis of available gene sequences with the aim to detect hao and hzo genes in various ecosystems. The hao primer pairs amplified gene fragments from 738 to 1172 bp and the hzo primer pairs amplified gene fragments from 289 to 876 bp in length, when tested on genomic DNA isolated from a variety of AOB and anammox bacteria. A selection of these primer pairs was also used successfully to amplify and analyse the hao and hzo genes in community DNA isolated from different ecosystems harbouring both AOB and anammox bacteria. We propose that OCC protein-encoding genes are suitable targets for molecular ecological studies on both aerobic and anaerobic ammonium-oxidizing bacteria. |
---|---|
AbstractList | Summary
Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in both processes are the octahaem cytochrome
c
(OCC) proteins, hydroxylamine oxidoreductase (HAO) of aerobic ammonium‐oxidizing bacteria (AOB), which catalyses the oxidation of hydroxylamine to nitrite, and hydrazine oxidoreductase (HZO) of anammox bacteria, which converts hydrazine to N
2
. While the genomes of AOB encode up to three nearly identical copies of
hao
operons, genome analysis of
Candidatus
‘Kuenenia stuttgartiensis’ showed eight highly divergent octahaem protein coding regions as possible candidates for the HZO. Based on their phylogenetic relationship and biochemical characteristics, the sequences of these eight gene products grouped in three clusters. Degenerate primers were designed on the basis of available gene sequences with the aim to detect
hao
and
hzo
genes in various ecosystems. The
hao
primer pairs amplified gene fragments from 738 to 1172 bp and the
hzo
primer pairs amplified gene fragments from 289 to 876 bp in length, when tested on genomic DNA isolated from a variety of AOB and anammox bacteria. A selection of these primer pairs was also used successfully to amplify and analyse the
hao
and
hzo
genes in community DNA isolated from different ecosystems harbouring both AOB and anammox bacteria. We propose that OCC protein‐encoding genes are suitable targets for molecular ecological studies on both aerobic and anaerobic ammonium‐oxidizing bacteria. Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in both processes are the octahaem cytochrome c (OCC) proteins, hydroxylamine oxidoreductase (HAO) of aerobic ammonium-oxidizing bacteria (AOB), which catalyses the oxidation of hydroxylamine to nitrite, and hydrazine oxidoreductase (HZO) of anammox bacteria, which converts hydrazine to N(2). While the genomes of AOB encode up to three nearly identical copies of hao operons, genome analysis of Candidatus'Kuenenia stuttgartiensis' showed eight highly divergent octahaem protein coding regions as possible candidates for the HZO. Based on their phylogenetic relationship and biochemical characteristics, the sequences of these eight gene products grouped in three clusters. Degenerate primers were designed on the basis of available gene sequences with the aim to detect hao and hzo genes in various ecosystems. The hao primer pairs amplified gene fragments from 738 to 1172 bp and the hzo primer pairs amplified gene fragments from 289 to 876 bp in length, when tested on genomic DNA isolated from a variety of AOB and anammox bacteria. A selection of these primer pairs was also used successfully to amplify and analyse the hao and hzo genes in community DNA isolated from different ecosystems harbouring both AOB and anammox bacteria. We propose that OCC protein-encoding genes are suitable targets for molecular ecological studies on both aerobic and anaerobic ammonium-oxidizing bacteria. Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in both processes are the octahaem cytochrome c (OCC) proteins, hydroxylamine oxidoreductase (HAO) of aerobic ammonium-oxidizing bacteria (AOB), which catalyses the oxidation of hydroxylamine to nitrite, and hydrazine oxidoreductase (HZO) of anammox bacteria, which converts hydrazine to N₂. While the genomes of AOB encode up to three nearly identical copies of hao operons, genome analysis of Candidatus'Kuenenia stuttgartiensis' showed eight highly divergent octahaem protein coding regions as possible candidates for the HZO. Based on their phylogenetic relationship and biochemical characteristics, the sequences of these eight gene products grouped in three clusters. Degenerate primers were designed on the basis of available gene sequences with the aim to detect hao and hzo genes in various ecosystems. The hao primer pairs amplified gene fragments from 738 to 1172 bp and the hzo primer pairs amplified gene fragments from 289 to 876 bp in length, when tested on genomic DNA isolated from a variety of AOB and anammox bacteria. A selection of these primer pairs was also used successfully to amplify and analyse the hao and hzo genes in community DNA isolated from different ecosystems harbouring both AOB and anammox bacteria. We propose that OCC protein-encoding genes are suitable targets for molecular ecological studies on both aerobic and anaerobic ammonium-oxidizing bacteria. Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in both processes are the octahaem cytochrome c (OCC) proteins, hydroxylamine oxidoreductase (HAO) of aerobic ammonium-oxidizing bacteria (AOB), which catalyses the oxidation of hydroxylamine to nitrite, and hydrazine oxidoreductase (HZO) of anammox bacteria, which converts hydrazine to N sub(2). While the genomes of AOB encode up to three nearly identical copies of hao operons, genome analysis of Candidatus'Kuenenia stuttgartiensis' showed eight highly divergent octahaem protein coding regions as possible candidates for the HZO. Based on their phylogenetic relationship and biochemical characteristics, the sequences of these eight gene products grouped in three clusters. Degenerate primers were designed on the basis of available gene sequences with the aim to detect hao and hzo genes in various ecosystems. The hao primer pairs amplified gene fragments from 738 to 1172bp and the hzo primer pairs amplified gene fragments from 289 to 876bp in length, when tested on genomic DNA isolated from a variety of AOB and anammox bacteria. A selection of these primer pairs was also used successfully to amplify and analyse the hao and hzo genes in community DNA isolated from different ecosystems harbouring both AOB and anammox bacteria. We propose that OCC protein-encoding genes are suitable targets for molecular ecological studies on both aerobic and anaerobic ammonium-oxidizing bacteria. Summary Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in both processes are the octahaem cytochrome c (OCC) proteins, hydroxylamine oxidoreductase (HAO) of aerobic ammonium‐oxidizing bacteria (AOB), which catalyses the oxidation of hydroxylamine to nitrite, and hydrazine oxidoreductase (HZO) of anammox bacteria, which converts hydrazine to N2. While the genomes of AOB encode up to three nearly identical copies of hao operons, genome analysis of Candidatus‘Kuenenia stuttgartiensis’ showed eight highly divergent octahaem protein coding regions as possible candidates for the HZO. Based on their phylogenetic relationship and biochemical characteristics, the sequences of these eight gene products grouped in three clusters. Degenerate primers were designed on the basis of available gene sequences with the aim to detect hao and hzo genes in various ecosystems. The hao primer pairs amplified gene fragments from 738 to 1172 bp and the hzo primer pairs amplified gene fragments from 289 to 876 bp in length, when tested on genomic DNA isolated from a variety of AOB and anammox bacteria. A selection of these primer pairs was also used successfully to amplify and analyse the hao and hzo genes in community DNA isolated from different ecosystems harbouring both AOB and anammox bacteria. We propose that OCC protein‐encoding genes are suitable targets for molecular ecological studies on both aerobic and anaerobic ammonium‐oxidizing bacteria. |
Author | Schmid, Markus C Jetten, Mike S.M Kuypers, Marcel M.M Pommerening-Roeser, Andreas Woebken, Dagmar Lam, Phyllis op den Camp, Huub J.M Hooper, Alan B Klotz, Martin G |
Author_xml | – sequence: 1 fullname: Schmid, Markus C – sequence: 2 fullname: Hooper, Alan B – sequence: 3 fullname: Klotz, Martin G – sequence: 4 fullname: Woebken, Dagmar – sequence: 5 fullname: Lam, Phyllis – sequence: 6 fullname: Kuypers, Marcel M.M – sequence: 7 fullname: Pommerening-Roeser, Andreas – sequence: 8 fullname: op den Camp, Huub J.M – sequence: 9 fullname: Jetten, Mike S.M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18973625$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctu1DAUhiNURC_wCuAVu6S-5LpgAdUwrVQuAgpL68Q5mfGQ2K2dQMJj8MQ4zGjYYsnyOfL__ZbPfx6dGGswigijCQvrcpewNOcxrzhNOKVlQlkheDI9is6OFyfHmvHT6Nz7HV1UBX0SnbKyKkTOs7Po98r80M6aHs0AHWlwQDVoa4htiVUDbAF7oubBqq2zPRJFtnPj7DR30GuDl0sHv0JF7KQb67AZA-WRbNCgX1wAna21ImCasI9d31ujxz5eMB0MNqQGNaDT8DR63ELn8dnhvIju3q6-XF3Htx_WN1evb2OVFeFfIsVKlJjVwAWt0xSqFIBCjUUhqjZPM1YJnmJKsapR8RwqaAqeC85EUQLn4iJ6ufe9d_ZhRD_IXnuFXQcG7eglq0pGRZkGYbkXKme9d9jKe6d7cLNkVC55yJ1cRi2XscslD_k3DzkF9PnhjbHusfkHHgIIgld7wU_d4fzfxnL17mapAh_vee0HnI48uO8yD2Fn8tv7tfyY8TdfP12vZR70L_b6FqyEjdNe3n3mlAnKsjQvWC7-AB1bttU |
CitedBy_id | crossref_primary_10_1007_s10646_014_1333_4 crossref_primary_10_1038_srep27744 crossref_primary_10_1111_1574_6941_12241 crossref_primary_10_1016_j_jenvman_2024_120607 crossref_primary_10_1007_s10533_017_0311_3 crossref_primary_10_1016_j_dsr2_2018_08_008 crossref_primary_10_1016_j_jhazmat_2020_122714 crossref_primary_10_1016_j_watres_2020_116184 crossref_primary_10_1007_s00253_017_8502_3 crossref_primary_10_1016_j_watres_2010_08_018 crossref_primary_10_1007_s00253_017_8404_4 crossref_primary_10_1016_j_ijggc_2014_11_013 crossref_primary_10_2166_wst_2016_483 crossref_primary_10_1111_1462_2920_15187 crossref_primary_10_1002_jeq2_20181 crossref_primary_10_1042_BST20110712 crossref_primary_10_1111_raq_12558 crossref_primary_10_3389_fmicb_2019_01229 crossref_primary_10_1061__ASCE_EE_1943_7870_0001246 crossref_primary_10_1016_j_scitotenv_2020_139387 crossref_primary_10_1016_j_biortech_2013_01_147 crossref_primary_10_2139_ssrn_3975142 crossref_primary_10_1016_j_watres_2019_04_007 crossref_primary_10_1007_s11356_021_15197_3 crossref_primary_10_1007_s00253_016_8013_7 crossref_primary_10_1016_j_biortech_2013_09_066 crossref_primary_10_1016_j_scitotenv_2019_04_438 crossref_primary_10_1007_s00253_013_5242_x crossref_primary_10_5194_bg_13_1105_2016 crossref_primary_10_1111_j_1462_2920_2008_01786_x crossref_primary_10_1002_bip_23428 crossref_primary_10_1016_j_scitotenv_2024_172073 crossref_primary_10_1007_s10098_017_1458_2 crossref_primary_10_1128_AEM_01264_10 crossref_primary_10_1039_D1RA00384D crossref_primary_10_1016_j_jbiotec_2010_12_025 crossref_primary_10_1007_s00253_018_9078_2 crossref_primary_10_1007_s12237_017_0306_2 crossref_primary_10_1002_lno_10306 crossref_primary_10_1016_j_ibiod_2018_11_003 crossref_primary_10_1007_s10646_011_0711_4 crossref_primary_10_1371_journal_pone_0078275 crossref_primary_10_4014_mbl_1909_09004 crossref_primary_10_1016_j_biortech_2017_02_125 crossref_primary_10_1007_s10311_017_0607_5 crossref_primary_10_1016_j_cej_2014_05_055 crossref_primary_10_1038_ismej_2014_71 crossref_primary_10_1016_j_soilbio_2015_12_004 crossref_primary_10_1111_1758_2229_12021 crossref_primary_10_1002_jctb_6047 crossref_primary_10_1007_s11270_016_2765_7 crossref_primary_10_1016_j_scitotenv_2019_03_130 crossref_primary_10_1007_s11802_021_4530_9 crossref_primary_10_1016_S1002_0160_18_60023_2 crossref_primary_10_1038_s41396_019_0561_2 crossref_primary_10_1155_2013_134914 crossref_primary_10_2166_ws_2018_188 crossref_primary_10_1371_journal_pone_0061330 crossref_primary_10_3389_fmicb_2020_01825 crossref_primary_10_1111_j_1574_6968_2012_02654_x crossref_primary_10_1007_s00248_010_9733_3 crossref_primary_10_1016_j_ecolind_2020_106411 crossref_primary_10_3389_fmicb_2019_02141 crossref_primary_10_1016_j_jenvman_2021_113398 crossref_primary_10_1016_j_scitotenv_2020_143023 crossref_primary_10_1016_j_biortech_2013_05_022 crossref_primary_10_3390_agriculture12091458 crossref_primary_10_1016_j_syapm_2018_12_008 crossref_primary_10_1007_s00248_011_9849_0 crossref_primary_10_1016_j_cej_2016_03_154 crossref_primary_10_1007_s00248_012_0175_y crossref_primary_10_1016_j_ecss_2015_10_009 crossref_primary_10_1016_j_watres_2019_05_006 crossref_primary_10_1080_10643389_2015_1085234 crossref_primary_10_1016_j_ecoleng_2015_11_031 crossref_primary_10_1111_1758_2229_12115 crossref_primary_10_1016_j_marenvres_2021_105397 crossref_primary_10_1007_s10126_018_9797_5 crossref_primary_10_1021_es103826w crossref_primary_10_3390_app12136756 crossref_primary_10_1016_j_scitotenv_2017_04_240 crossref_primary_10_1016_j_jmarsys_2018_09_007 crossref_primary_10_1016_j_biortech_2015_06_049 crossref_primary_10_5194_bg_9_2419_2012 crossref_primary_10_1002_jobm_201200378 crossref_primary_10_1007_s00248_010_9743_1 crossref_primary_10_4155_bfs_10_67 crossref_primary_10_1039_C5RA16802C crossref_primary_10_1016_j_bej_2016_09_002 crossref_primary_10_1007_s10646_020_02332_y crossref_primary_10_1080_09593330_2019_1610076 crossref_primary_10_1007_s10098_019_01688_y crossref_primary_10_1111_1462_2920_12152 crossref_primary_10_3390_w14142238 crossref_primary_10_1016_j_jece_2022_107173 crossref_primary_10_1007_s00253_012_4430_4 crossref_primary_10_1111_j_1758_2229_2012_00347_x crossref_primary_10_1007_s00253_010_2925_4 crossref_primary_10_1007_s00253_010_2929_0 crossref_primary_10_1007_s00253_009_2361_5 crossref_primary_10_1061_JOEEDU_EEENG_7570 crossref_primary_10_2521_jswtb_51_11 crossref_primary_10_1016_j_syapm_2009_03_002 crossref_primary_10_1155_2013_396487 crossref_primary_10_1002_2014JC010554 crossref_primary_10_1038_s41396_018_0223_9 crossref_primary_10_1111_j_1574_6941_2010_01027_x crossref_primary_10_1128_AEM_02520_12 crossref_primary_10_1007_s00253_012_4036_x crossref_primary_10_1016_j_ibiod_2013_01_001 crossref_primary_10_1128_AEM_07113_11 crossref_primary_10_1007_s00253_020_10415_3 crossref_primary_10_1007_s00253_009_2228_9 crossref_primary_10_1007_s11707_012_0336_9 crossref_primary_10_1016_j_chemosphere_2020_128340 crossref_primary_10_3389_fmicb_2016_00512 crossref_primary_10_1016_j_desal_2011_05_038 crossref_primary_10_1016_j_watres_2012_12_018 crossref_primary_10_1080_01490451_2011_635760 crossref_primary_10_1016_j_watres_2014_03_049 crossref_primary_10_1155_2020_8888615 crossref_primary_10_5194_bg_12_7467_2015 crossref_primary_10_1016_j_biortech_2017_02_049 crossref_primary_10_1007_s00253_013_4756_6 crossref_primary_10_1016_j_cej_2023_142681 crossref_primary_10_1016_j_biortech_2023_130113 crossref_primary_10_1007_s10098_011_0355_3 crossref_primary_10_1016_j_biortech_2020_122749 crossref_primary_10_1016_j_biortech_2016_07_036 crossref_primary_10_1016_j_envres_2021_111671 crossref_primary_10_1111_1574_6976_12014 crossref_primary_10_1007_s12275_014_4114_0 crossref_primary_10_1016_j_ibiod_2022_105536 crossref_primary_10_1007_s00253_012_4510_5 crossref_primary_10_1007_s00253_011_3230_6 crossref_primary_10_1016_j_ibiod_2022_105376 crossref_primary_10_1016_j_bbabio_2012_07_005 crossref_primary_10_1007_s10499_016_0105_y crossref_primary_10_1080_10409230902722783 crossref_primary_10_1016_j_scitotenv_2020_143580 crossref_primary_10_5194_bg_18_4305_2021 crossref_primary_10_1002_wer_10780 crossref_primary_10_1264_jsme2_ME10131 |
Cites_doi | 10.1128/AEM.64.8.3042-3051.1998 10.1038/nature03170 10.1371/journal.pbio.0020303 10.1078/0723-2020-00077 10.1111/j.1574-6941.2007.00408.x 10.1111/j.1574-6941.1996.tb00347.x 10.1073/pnas.0506625102 10.1046/j.1462-2920.2001.00211.x 10.1078/072320203770865837 10.1016/S0043-1354(01)00476-6 10.1016/S0723-2020(98)80010-6 10.1016/S1389-1723(02)80218-3 10.1111/j.1574-6968.2007.00970.x 10.1021/bi992721k 10.1111/j.1462-2920.2008.01642.x 10.1111/j.1574-6976.2000.tb00566.x 10.1128/AEM.66.12.5368-5382.2000 10.1099/00221287-137-7-1689 10.1890/06-0219 10.1099/ijs.0.02638-0 10.1016/j.syapm.2006.03.004 10.1128/AEM.71.9.5371-5382.2005 10.1263/jbb.105.243 10.1128/AEM.01978-06 10.1038/22749 10.1007/s00203-002-0452-0 10.1038/ismej.2007.63 10.1111/j.1462-2920.2007.01266.x 10.1038/nature03911 10.1038/nature04983 10.1038/nature04647 10.1146/annurev.micro.58.030603.123605 10.1073/pnas.0608549103 10.1128/AEM.71.4.1677-1684.2005 10.1128/AEM.63.12.4704-4712.1997 10.1111/j.1462-2920.2008.01643.x 10.1111/j.1574-6968.1998.tb12801.x 10.4319/lo.2007.52.3.0923 10.1016/S0167-7012(02)00077-5 10.1111/j.1462-2920.2008.01733.x 10.1016/j.femsec.2004.04.012 10.1016/S0022-2836(05)80360-2 10.1016/S0723-2020(00)80050-8 |
ContentType | Journal Article |
Copyright | 2008 The Authors. Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd |
Copyright_xml | – notice: 2008 The Authors. Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd |
DBID | FBQ BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7SN 7T7 7TM 8FD C1K FR3 P64 RC3 |
DOI | 10.1111/j.1462-2920.2008.01732.x |
DatabaseName | AGRIS Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-2920 |
EndPage | 3149 |
ExternalDocumentID | 10_1111_j_1462_2920_2008_01732_x 18973625 EMI1732 ark_67375_WNG_P52BVRHG_6 US201301546716 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABJNI ABPTK ABPVW ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XFK XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7SN 7T7 7TM 8FD C1K FR3 P64 RC3 |
ID | FETCH-LOGICAL-c5762-34e938e5ba230b44a94aa0abe7739f64519324e40e9bec26a9ad726321378a223 |
IEDL.DBID | DR2 |
ISSN | 1462-2912 |
IngestDate | Fri Aug 16 11:36:02 EDT 2024 Fri Aug 23 01:46:21 EDT 2024 Sat Sep 28 07:52:51 EDT 2024 Sat Aug 24 01:12:31 EDT 2024 Wed Oct 30 09:53:00 EDT 2024 Wed Dec 27 19:25:32 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5762-34e938e5ba230b44a94aa0abe7739f64519324e40e9bec26a9ad726321378a223 |
Notes | http://dx.doi.org/10.1111/j.1462-2920.2008.01732.x istex:707D0AEE46674C5869FB0BED9A480E0A36E7C1E8 ark:/67375/WNG-P52BVRHG-6 ArticleID:EMI1732 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://repository.ubn.ru.nl//bitstream/handle/2066/72297/72297.pdf |
PMID | 18973625 |
PQID | 19810384 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_19810384 crossref_primary_10_1111_j_1462_2920_2008_01732_x pubmed_primary_18973625 wiley_primary_10_1111_j_1462_2920_2008_01732_x_EMI1732 istex_primary_ark_67375_WNG_P52BVRHG_6 fao_agris_US201301546716 |
PublicationCentury | 2000 |
PublicationDate | November 2008 |
PublicationDateYYYYMMDD | 2008-11-01 |
PublicationDate_xml | – month: 11 year: 2008 text: November 2008 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | Environmental microbiology |
PublicationTitleAlternate | Environ Microbiol |
PublicationYear | 2008 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd |
References | Rotthauwe, J.H., Witzel, K.P., and Liesack, W. (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63: 4704-4712. Bergmann, D.J., Hooper, A.B., and Klotz, M.G. (2005) Structure and sequence conservation of hao cluster genes of autotrophic ammonia-oxidizing bacteria: evidence for their evolutionary history. Appl Environ Microbiol 71: 5371-5382. Bothe, H., Jost, G., Schloter, M., Ward, B.B., and Witzel, K. (2000) Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol Rev 24: 673-690. Dunfield, P.F., Yuryev, A., Senin, P., Smirnova, A.V., Stott, M.B., Hou, S., et al. (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450: 879-883. Hamersley, M.R., Lavik, G., Woebken, D., Rattray, J.E., Lam, P., Hopmans, E.C., et al. (2007) Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnol Oceanogr 52: 923-933. Ward, N., Larsen, O., Sakwa, J., Bruseth, L., Khouri, H., Durkin, A.S., et al. (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2: 1616-1628. Klotz, M.G., Schmid, M.C., Strous, M., Op Den Camp, H.J.M., Jetten, M.S.M., and Hooper, A.B. (2008) Evolution of an octahaem cytochrome c protein family that is key to aerobic and anaerobic ammonia oxidation by bacteria. Environ Microbiol 10: 3150-3163. Koops, H.-P., Böttcher, B., Möller, U.C., Pommerening-Röser, A., and Stehr, G. (1991) Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov. J Gen Microbiol 137: 1689-1699. Strous, M., Fuerst, J.A., Framer, E.H.H., Logemann, S., Muyzer, G., Van De Pas-Schoonen, K.T., et al. (1999) Missing lithotroph identified as new planctomycete. Nature 400: 446-449. Purkhold, U., Wagner, M., Timmermann, G., Pommerening-Roser, A., and Koops, H.P. (2003) 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. Int J Syst Evol Microbiol 53: 1485-1494. Strous, M., and Jetten, M.S.M. (2004) Anaerobic oxidation of methane and ammonium. Annu Rev Microbiol 58: 99-117. Klotz, M.G., and Stein, L.Y. (2007) Nitrifier genomics and evolution of the nitrogen cycle. FEMS Microbiol Lett 278: 146-156. Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., et al. (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442: 806-809. Mohan, S.B., Schmid, M., Jetten, M.S.M., and Cole, J. (2004) Detection and widespread distribution of the nrfA gene encoding nitrite reduction to ammonia, a short circuitin the Biological Nitrogen Cycle that competes with denitrification. FEMS Microb Ecol 49: 433-443. Third, K.A., Sliekers, A.O., Kuenen, J.G., and Jetten, M.S.M. (2001) The CANON system (Completely Autotrophic Nitrogen-removal Over Nitrite) under ammonium limitation: interaction and competition between three groups of bacteria. Syst Appl Microbiol 24: 588-596. Könneke, M., Bernhard, A.E., De La Torre, J.R., Walker, C.B., Waterbury, J.B., and Stahl, D.A. (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543-546. Shimamura, M., Nishiyama, T., Shigetomo, H., Toyomoto, T., Kawahara, Y., Furukawa, K., and Fujii, T. (2007) Isolation of a multiheme protein with features of a hydrazine-oxidizing enzyme from an anaerobic ammonium-oxidizing enrichment culture. Appl Environ Microbiol 73: 1065-1072. Strous, M., Pelletier, E., Mangenot, S., Rattei, T., Lehner, A., Taylor, M.W., et al. (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440: 790-794. Schmid, M.C., Risgaard-Petersen, N., Van De Vossenberg, J., Kuypers, M.M., Lavik, G., Petersen, J., et al. (2007) Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ Microbiol 9: 1476-1484. Utaker, J.B., and Nes, I.F. (1998) A qualitative evaluation of the published oligonucleotides specific for the 16S rRNA gene sequences of the ammonia-oxidizing bacteria. Syst Appl Microbiol 21: 72-88. Sliekers, A.O., Derwort, N., Gomez, J.L., Strous, M., Kuenen, J.G., and Jetten, M.S.M. (2002) Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Res 36: 2475-2482. Schmid, M.C., Maas, B., Dapena, A., Van De Pas-Schoonen, K., Van De Vossenberg, J., Kartal, B., et al. (2005) Biomarkers for the in situ detection of anaerobic ammonium oxidizing (anammox) bacteria. Appl Environ Microbiol 71: 1677-1684. Arp, D.J., Sayavedra-Soto, L.A., and Hommes, N.G. (2002) Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Arch Microbiol 178: 250-255. Shimamura, M., Nishiyama, T., Shinya, K., Kawahara, Y., Furukawa, K., and Fujii, T. (2008) Another multiheme protein, hydroxylamine oxidoreductase, abundantly produced in an anammox bacterium besides the hydrazine-oxidizing enzyme. J Biosci Bioeng 105: 243-248. Hallam, S.J., Konstantinidis, K.T., Putnam, N., Schleper, C., Watanabe, Y., Sugahara, J., et al. (2006) Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA 103: 18296-18301. Schalk, J., Oustad, H., Kuenen, J.G., and Jetten, M.S.M. (1998) The anaerobic oxidation of hydrazine: a novel reaction in microbial nitrogen metabolism. FEMS Microbiol Lett 158: 61-67. Schmid, M., Twachtmann, U., Klein, M., Strous, M., Juretschko, S., Jetten, M.S.M., et al. (2000) Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 23: 93-106. Schmid, M.C., Walsh, K., Webb, R., Rijpstra, W.I.C., Van De Pas-Schoonen, K., Verbruggen, M.J., et al. (2003) Candidatus 'Scalindua brodae', sp. nov., Candidatus 'Scalindua wagneri', sp. nov., two new species of anaerobic ammonium oxidizing bacteria. System Appl Microbiol 26: 529-538. Fujii, T., Sugino, H., Rouse, J.D., and Furukawa, K. (2002) Characterization of the microbial community in an anaerobic ammonium-oxidizing biofilm cultured on a non-woven biomass carrier. J Biosci Bioeng 94: 412-418. Schmid, M., Schmitz-Esser, S., Jetten, M., and Wagner, M. (2001) 16S−23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium oxidizing bacteria: implications for phylogeny and in situ detection. Environ Microbiol 3: 450-459. Bjerrum, L., Kjaer, T., and Ramsing, N.B. (2002) Enumerating ammonia-oxidizing bacteria in environmental samples using competitive PCR. J Microbiol Methods 51: 227-239. Kartal, B., Rattray, J., Van Niftrik, L., Van De Vossenberg, J.L.C.M., Schmid, M.C., Webb, R.I., et al. (2007) Candidatus 'Anammoxoglobus propionicus' a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 30: 39-49. Woebken, D., Teeling, H., Wecker, P., Dumitriu, A., Kostadinov, I., Delong, E.F., et al. (2007) Fosmids of novel marine Planctomycetes from the Namibian and Oregon coast upwelling systems and their cross-comparison with planctomycete genomes. ISME J 1: 419-435. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Basic local alignment search tool. J Mol Biol 215: 403-410. Juretschko, S., Timmermann, G., Schmid, M.C., Schleifer, K.-H., Pommerening-Röser, A., Koops, H.-P., and Wagner, M. (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64: 3042-3051. Quan, Z.X., Rhee, S.K., Zuo, J.E., Yang, Y., Bae, J.W., Park, J.R., et al. (2008) Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol 10: 3130-3139. Moran, M.A., Buchan, A., Gonzalez, J.M., Heidelberg, J.F., Whitman, W.B., Kiene, R.P., et al. (2004) Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432: 910-913. Purkhold, U., Pommerening-Röser, A., Juretschko, S., Schmid, M.C., Koops, H.-P., and Wagner, M. (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66: 5368-5382. Francis, C.A., Roberts, K.J., Beman, J.M., Santoro, A.E., and Oakley, B.B. (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102: 14683-14688. Schalk, J., De Vries, S., Kuenen, J.G., and Jetten, M.S.M. (2000) Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation. Biochemistry 39: 5405-5412. Kartal, B., Van Niftrik, L., Rattray, J., Van Der Vossenberg, J.L.C.M., Schmid, M.C., Sinninghe Damsté, J., et al. (2008) Candidatus 'Brocadia fulgida': an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol Ecol 63: 46-55. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, et al. (2004) arb: a software environment for sequence data. Nucleic Acids Res 32: 1363-1371. 2002; 36 2002; 94 2004; 49 2000; 23 2002; 51 2000; 24 1997; 63 2000; 66 2002; 178 2005; 437 2008 2008; 10 2008; 105 1998; 158 1999; 400 2003 2007; 73 2004; 2 2007; 52 2007; 30 2001; 24 1998; 21 1998; 64 1991; 137 2003; 53 2004; 32 2007; 278 1990; 215 2004; 432 2000; 39 2005; 102 2004; 58 2007; 450 2007; 9 2003; 26 2006; 440 2001; 3 2005; 71 2008; 63 2007; 1 2006; 442 2006; 103 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_43_1 Ward N. (e_1_2_5_44_1) 2004; 2 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_18_1 Koops H.P. (e_1_2_5_19_1) 2003 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 450 start-page: 879 year: 2007 end-page: 883 article-title: Methane oxidation by an extremely acidophilic bacterium of the phylum publication-title: Nature – volume: 63 start-page: 46 year: 2008 end-page: 55 article-title: ‘Brocadia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium publication-title: FEMS Microbiol Ecol – volume: 73 start-page: 1065 year: 2007 end-page: 1072 article-title: Isolation of a multiheme protein with features of a hydrazine‐oxidizing enzyme from an anaerobic ammonium‐oxidizing enrichment culture publication-title: Appl Environ Microbiol – volume: 23 start-page: 93 year: 2000 end-page: 106 article-title: Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation publication-title: Syst Appl Microbiol – volume: 2 start-page: 1616 year: 2004 end-page: 1628 article-title: Genomic insights into methanotrophy: the complete genome sequence of (Bath) publication-title: PLoS Biol – volume: 10 start-page: 3150 year: 2008 end-page: 3163 article-title: Evolution of an octahaem cytochrome c protein family that is key to aerobic and anaerobic ammonia oxidation by bacteria publication-title: Environ Microbiol – volume: 24 start-page: 673 year: 2000 end-page: 690 article-title: Molecular analysis of ammonia oxidation and denitrification in natural environments publication-title: FEMS Microbiol Rev – volume: 49 start-page: 433 year: 2004 end-page: 443 article-title: Detection and widespread distribution of the gene encoding nitrite reduction to ammonia, a short circuitin the Biological Nitrogen Cycle that competes with denitrification publication-title: FEMS Microb Ecol – volume: 21 start-page: 72 year: 1998 end-page: 88 article-title: A qualitative evaluation of the published oligonucleotides specific for the 16S rRNA gene sequences of the ammonia‐oxidizing bacteria publication-title: Syst Appl Microbiol – volume: 103 start-page: 18296 year: 2006 end-page: 18301 article-title: Genomic analysis of the uncultivated marine crenarchaeote publication-title: Proc Natl Acad Sci USA – volume: 51 start-page: 227 year: 2002 end-page: 239 article-title: Enumerating ammonia‐oxidizing bacteria in environmental samples using competitive PCR publication-title: J Microbiol Methods – volume: 158 start-page: 61 year: 1998 end-page: 67 article-title: The anaerobic oxidation of hydrazine: a novel reaction in microbial nitrogen metabolism publication-title: FEMS Microbiol Lett – year: 2003 – volume: 53 start-page: 1485 year: 2003 end-page: 1494 article-title: 16S rRNA and ‐based phylogeny of 12 novel betaproteobacterial ammonia‐oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads publication-title: Int J Syst Evol Microbiol – volume: 24 start-page: 588 year: 2001 end-page: 596 article-title: The CANON system (Completely Autotrophic Nitrogen‐removal Over Nitrite) under ammonium limitation: interaction and competition between three groups of bacteria publication-title: Syst Appl Microbiol – volume: 432 start-page: 910 year: 2004 end-page: 913 article-title: Genome sequence of reveals adaptations to the marine environment publication-title: Nature – volume: 30 start-page: 39 year: 2007 end-page: 49 article-title: ‘Anammoxoglobus propionicus’ a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria publication-title: Syst Appl Microbiol – volume: 71 start-page: 5371 year: 2005 end-page: 5382 article-title: Structure and sequence conservation of cluster genes of autotrophic ammonia‐oxidizing bacteria: evidence for their evolutionary history publication-title: Appl Environ Microbiol – volume: 9 start-page: 1476 year: 2007 end-page: 1484 article-title: Anaerobic ammonium‐oxidizing bacteria in marine environments: widespread occurrence but low diversity publication-title: Environ Microbiol – volume: 105 start-page: 243 year: 2008 end-page: 248 article-title: Another multiheme protein, hydroxylamine oxidoreductase, abundantly produced in an anammox bacterium besides the hydrazine‐oxidizing enzyme publication-title: J Biosci Bioeng – volume: 66 start-page: 5368 year: 2000 end-page: 5382 article-title: Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and sequence analysis: implications for molecular diversity surveys publication-title: Appl Environ Microbiol – volume: 71 start-page: 1677 year: 2005 end-page: 1684 article-title: Biomarkers for the detection of anaerobic ammonium oxidizing (anammox) bacteria publication-title: Appl Environ Microbiol – volume: 64 start-page: 3042 year: 1998 end-page: 3051 article-title: Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: and ‐like bacteria as dominant populations publication-title: Appl Environ Microbiol – volume: 36 start-page: 2475 year: 2002 end-page: 2482 article-title: Completely autotrophic nitrogen removal over nitrite in one single reactor publication-title: Water Res – volume: 58 start-page: 99 year: 2004 end-page: 117 article-title: Anaerobic oxidation of methane and ammonium publication-title: Annu Rev Microbiol – volume: 3 start-page: 450 year: 2001 end-page: 459 article-title: 16S−23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium oxidizing bacteria: implications for phylogeny and detection publication-title: Environ Microbiol – volume: 94 start-page: 412 year: 2002 end-page: 418 article-title: Characterization of the microbial community in an anaerobic ammonium‐oxidizing biofilm cultured on a non‐woven biomass carrier publication-title: J Biosci Bioeng – volume: 39 start-page: 5405 year: 2000 end-page: 5412 article-title: Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation publication-title: Biochemistry – volume: 437 start-page: 543 year: 2005 end-page: 546 article-title: Isolation of an autotrophic ammonia‐oxidizing marine archaeon publication-title: Nature – year: 2008 – volume: 26 start-page: 529 year: 2003 end-page: 538 article-title: ‘Scalindua brodae’, sp. nov., ‘Scalindua wagneri’, sp. nov., two new species of anaerobic ammonium oxidizing bacteria publication-title: System Appl Microbiol – volume: 1 start-page: 419 year: 2007 end-page: 435 article-title: Fosmids of novel marine from the Namibian and Oregon coast upwelling systems and their cross‐comparison with planctomycete genomes publication-title: ISME J – volume: 278 start-page: 146 year: 2007 end-page: 156 article-title: Nitrifier genomics and evolution of the nitrogen cycle publication-title: FEMS Microbiol Lett – volume: 442 start-page: 806 year: 2006 end-page: 809 article-title: Archaea predominate among ammonia‐oxidizing prokaryotes in soils publication-title: Nature – volume: 10 start-page: 3130 year: 2008 end-page: 3139 article-title: Diversity of ammonium‐oxidizing bacteria in a granular sludge anaerobic ammonium‐oxidizing (anammox) reactor publication-title: Environ Microbiol – volume: 102 start-page: 14683 year: 2005 end-page: 14688 article-title: Ubiquity and diversity of ammonia‐oxidizing archaea in water columns and sediments of the ocean publication-title: Proc Natl Acad Sci USA – volume: 400 start-page: 446 year: 1999 end-page: 449 article-title: Missing lithotroph identified as new planctomycete publication-title: Nature – volume: 440 start-page: 790 year: 2006 end-page: 794 article-title: Deciphering the evolution and metabolism of an anammox bacterium from a community genome publication-title: Nature – volume: 32 start-page: 1363 year: 2004 end-page: 1371 article-title: arb: a software environment for sequence data publication-title: Nucleic Acids Res – volume: 215 start-page: 403 year: 1990 end-page: 410 article-title: Basic local alignment search tool publication-title: J Mol Biol – volume: 137 start-page: 1689 year: 1991 end-page: 1699 article-title: Classification of eight new species of ammonia‐oxidizing bacteria: sp. nov., sp. nov., sp. nov., sp. nov., sp. nov., sp. nov., sp. nov. and sp. nov publication-title: J Gen Microbiol – volume: 52 start-page: 923 year: 2007 end-page: 933 article-title: Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone publication-title: Limnol Oceanogr – volume: 178 start-page: 250 year: 2002 end-page: 255 article-title: Molecular biology and biochemistry of ammonia oxidation by publication-title: Arch Microbiol – volume: 63 start-page: 4704 year: 1997 end-page: 4712 article-title: The ammonia monooxygenase structural gene as a functional marker: molecular fine‐scale analysis of natural ammonia‐oxidizing populations publication-title: Appl Environ Microbiol – ident: e_1_2_5_12_1 doi: 10.1128/AEM.64.8.3042-3051.1998 – ident: e_1_2_5_23_1 doi: 10.1038/nature03170 – volume: 2 start-page: 1616 year: 2004 ident: e_1_2_5_44_1 article-title: Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath) publication-title: PLoS Biol doi: 10.1371/journal.pbio.0020303 contributor: fullname: Ward N. – ident: e_1_2_5_41_1 doi: 10.1078/0723-2020-00077 – ident: e_1_2_5_14_1 doi: 10.1111/j.1574-6941.2007.00408.x – ident: e_1_2_5_7_1 doi: 10.1111/j.1574-6941.1996.tb00347.x – ident: e_1_2_5_8_1 doi: 10.1073/pnas.0506625102 – ident: e_1_2_5_31_1 doi: 10.1046/j.1462-2920.2001.00211.x – ident: e_1_2_5_32_1 doi: 10.1078/072320203770865837 – ident: e_1_2_5_37_1 doi: 10.1016/S0043-1354(01)00476-6 – ident: e_1_2_5_42_1 doi: 10.1016/S0723-2020(98)80010-6 – ident: e_1_2_5_9_1 doi: 10.1016/S1389-1723(02)80218-3 – ident: e_1_2_5_15_1 doi: 10.1111/j.1574-6968.2007.00970.x – ident: e_1_2_5_29_1 doi: 10.1021/bi992721k – ident: e_1_2_5_26_1 doi: 10.1111/j.1462-2920.2008.01642.x – ident: e_1_2_5_6_1 doi: 10.1111/j.1574-6976.2000.tb00566.x – ident: e_1_2_5_24_1 doi: 10.1128/AEM.66.12.5368-5382.2000 – ident: e_1_2_5_18_1 doi: 10.1099/00221287-137-7-1689 – volume-title: The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community year: 2003 ident: e_1_2_5_19_1 contributor: fullname: Koops H.P. – ident: e_1_2_5_21_1 doi: 10.1890/06-0219 – ident: e_1_2_5_25_1 doi: 10.1099/ijs.0.02638-0 – ident: e_1_2_5_13_1 doi: 10.1016/j.syapm.2006.03.004 – ident: e_1_2_5_4_1 doi: 10.1128/AEM.71.9.5371-5382.2005 – ident: e_1_2_5_36_1 doi: 10.1263/jbb.105.243 – ident: e_1_2_5_35_1 doi: 10.1128/AEM.01978-06 – ident: e_1_2_5_39_1 doi: 10.1038/22749 – ident: e_1_2_5_3_1 doi: 10.1007/s00203-002-0452-0 – ident: e_1_2_5_45_1 doi: 10.1038/ismej.2007.63 – ident: e_1_2_5_34_1 doi: 10.1111/j.1462-2920.2007.01266.x – ident: e_1_2_5_17_1 doi: 10.1038/nature03911 – ident: e_1_2_5_20_1 doi: 10.1038/nature04983 – ident: e_1_2_5_40_1 doi: 10.1038/nature04647 – ident: e_1_2_5_38_1 doi: 10.1146/annurev.micro.58.030603.123605 – ident: e_1_2_5_10_1 doi: 10.1073/pnas.0608549103 – ident: e_1_2_5_33_1 doi: 10.1128/AEM.71.4.1677-1684.2005 – ident: e_1_2_5_27_1 doi: 10.1128/AEM.63.12.4704-4712.1997 – ident: e_1_2_5_43_1 doi: 10.1111/j.1462-2920.2008.01643.x – ident: e_1_2_5_28_1 doi: 10.1111/j.1574-6968.1998.tb12801.x – ident: e_1_2_5_11_1 doi: 10.4319/lo.2007.52.3.0923 – ident: e_1_2_5_5_1 doi: 10.1016/S0167-7012(02)00077-5 – ident: e_1_2_5_16_1 doi: 10.1111/j.1462-2920.2008.01733.x – ident: e_1_2_5_22_1 doi: 10.1016/j.femsec.2004.04.012 – ident: e_1_2_5_2_1 doi: 10.1016/S0022-2836(05)80360-2 – ident: e_1_2_5_30_1 doi: 10.1016/S0723-2020(00)80050-8 |
SSID | ssj0017370 |
Score | 2.4012632 |
Snippet | Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in both... Summary Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in... |
SourceID | proquest crossref pubmed wiley istex fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3140 |
SubjectTerms | Amino Acid Sequence Bacterial Proteins - genetics Cytochrome c Group - metabolism DNA Primers DNA, Bacterial - chemistry DNA, Bacterial - genetics Environmental Microbiology Hydrazines - metabolism Hydroxylamine - metabolism Molecular Sequence Data Oxidoreductases - genetics Phylogeny Polymerase Chain Reaction - methods Sequence Alignment Sequence Analysis, DNA |
Title | Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria |
URI | https://api.istex.fr/ark:/67375/WNG-P52BVRHG-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2008.01732.x https://www.ncbi.nlm.nih.gov/pubmed/18973625 https://search.proquest.com/docview/19810384 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgJSQuvGHD0wfELVViO3Fz5LG7FRIrtFDYmzV2nLaqNkG7qdRy4idw4BfyS5hx0q5a7QEhDpESxR459oznszP-hrGXuR-6HD1zLJyAGPF_EqMbkXEpS5FXUqdZSYeTPxzno7F6f5qd9vFPdBam44fYbLiRZYT5mgwc7MWukYuYsi31IZGplmJAeDKVmqK73p1smKTwVcgb11dJd4J6rhS05amuV9AgfqWuX14FRrexbXBOh7fZfP1ZXUzKfLBo7cB932F8_D_ffYfd6jEsf90p3V12zdf32I0uq-XqPvt1cHl4DouVvg3hXjVvKt64Fqbgz7hbtY2bElcCd3y6KqnlqJzE2kFPgfSaN8sZJUIhSlp0tnxC8zJJAU_sUY5DXeK1eSKTmi3Ofv_4SRVnKGLCbcdGDQ_Y-PDg89tR3Cd_iB0ugUQslS_k0GcWcJFklYJCASRgvdayqHIVkKfyKvEFqqHIoYBSE_k8DT4g6HnI9uqm9vuMOydJWkr7KyqxiZWFKxDGeF0NM6wesXQ90OZbx_FhttZGwlBv9xk7qbfNMmL7qBEGJjgVm_EnQT-AEY3muPyM2KugJhtZcD6n8Dmdma_HR-ZjJt58ORkdGSz4Yq1HBo2a_tRA7ZvFhcGWEnG9itijTr0u2zUsNGKOLGJ5UJK_brBBs6a7x_9a8Qm7GWJlwjnMp2yvPV_4ZwjIWvs8mNofFbwmYw |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BEYJLeZaGV31A3LJKbOd15NF2gXaFShd6sxzH2V2VJqjNSruc-Akc-IX8Emac7Fa76gEhDpFixR45zoznszP-BuBFbFMTo2f2ueHaR_wf-OhGhF-IgselSMKooMPJh4O4P5TvT6KTLh0QnYVp-SGWG25kGW6-JgOnDel1K-c-pVvqYiLDRPAeAsobaP2C8ji8PVpySeEzlzmuaxOuhfVcKWnFV10vdY0IlgZ_dhUcXUW3zj3t3YGvixdro1JOe9Mm75nva5yP_-nN78JmB2PZq1bv7sE1W92Hm21iy_kD-LV7eX4OqxW2cRFfFatLVptGj7U9Y2be1GZMdAnMsPG8oK6jfhJxB5Uc7zWrZxPKhUKstOhv2YimZpKiLRFIGaarAq9liaxqMj37_eMnNZygiBHLW0Jq_RCGe7vHb_p-l__BN7gK4r6QNhOpjXKN66RcSp1JrQOd2yQRWRlLBz6llYHNUBN5rDNdJMQ_H4ok1Yh7tmCjqiu7DcwYQdJC2mKRQR7kIjMZIhmblGmEzT0IF19afWtpPtTK8ogrGu0uaSeNtpp5sI0qofQIZ2M1_MTpHzAC0hhXoB68dHqylKXPTymCLonUl8G--hjx15-P-vsKK-4sFEmhXdPPGl3ZenqhsKfEXS89eNTq12W_0ixB2BF5EDst-esOK7Rsunv8rw134Fb_-PBAHbwbfHgCt13ojDuW-RQ2mvOpfYb4rMmfO7v7A236Kns |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgEYgL72XDa31A3FIltmMnRx7bLa9qtVDYm-U4TltVm6yWVGo58RM48Av5Jcw4aVet9oAQh0ixYo8cZ8bz2Rl_Q8hz6VIrwTOHzDITAv6PQnAjPCx4wWTJVZwUeDj541AORuLdSXLSxT_hWZiWH2K94YaW4edrNPCzotw2chZitqUuJDJWnPUAT14TEoAwAqTjNZUUPPOJ47o28VZUz6WSNlzV1dLUAGBx7BeXodFNcOu9U_82ma3eqw1KmfXmTd6z37coH__Pi98htzoQS1-2WneXXHHVPXK9TWu5vE9-HVycnoNqhWt8vFdF65LWtjET406pXTa1nSBZArV0siyw56CdSNuBJc96TevFFDOhICcteFs6xokZpRiH9FGWmqqAa11Cm5rOT3__-IkNpyBiTPOWjto8IKP-wefXg7DL_hBaWAOxkAuX8dQluYFVUi6EyYQxkcmdUjwrpfDQUzgRuQz0kEmTmUIh-3zMVWoA9eySnaqu3B6h1nKUFuMGi4jyKOeZzQDHOFWmCTQPSLz60PqsJfnQG4sjpnG0u5SdONp6EZA90AhtxjAX69Enhn-AAY5KWH8G5IVXk7Uscz7D-DmV6K_DQ32UsFdfjgeHGirur_RIg1XjrxpTuXr-TUNPkbleBORhq14X_UozBaAjCYj0SvLXHdZg13j36F8b7pMbR2_6-sPb4fvH5KaPm_FnMp-QneZ87p4COGvyZ97q_gC9RCkq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+detection+of+octahaem+cytochrome+c+hydroxylamine%2Fhydrazine+oxidoreductase+genes+of+aerobic+and+anaerobic+ammonium-oxidizing+bacteria&rft.jtitle=Environmental+microbiology&rft.au=Schmid%2C+Markus+C.&rft.au=Hooper%2C+Alan+B.&rft.au=Klotz%2C+Martin+G.&rft.au=Woebken%2C+Dagmar&rft.date=2008-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=10&rft.issue=11&rft.spage=3140&rft.epage=3149&rft_id=info:doi/10.1111%2Fj.1462-2920.2008.01732.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_P52BVRHG_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |