The uptake of selenium by perennial ryegrass in soils of different organic matter contents receiving sheep excreta

Background and aims The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 486; no. 1-2; pp. 639 - 659
Main Authors Kao, Pei-Tzu, Buss, Heather L., McGrath, Steve P., Darch, Tegan, Warren, Helen E., Lee, Michael R. F.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.05.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background and aims The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients and organic matter. This study aims to unentangle the unclear effect of applying different types of ruminant excreta in soils of different organic matter contents on selenium uptake by forage. Methods Perennial ryegrass ( Lolium perenne ) was grown in soils of different organic matter contents. Urine and/or feces collected from sheep fed with organic or inorganic mineral supplements, including selenium, were applied to the soils. The selenium in the collected samples were analyzed using ICP-MS. The associated biogeochemical reactions were scrutinized by wet chemistry. Results The application of urine and/or feces resulted in either the same or lower selenium concentrations in perennial ryegrass. The excreta type did not affect total selenium accumulation in grass grown in low organic matter soil, whereas in high organic matter soil, feces resulted in significantly lower total selenium accumulation than urine, which was attributed to a possible interaction of selenium sorption in soil and microbial reduction of Se. Conclusion This one-time excreta application did not increase, but further decrease in some treatments, selenium concentration and accumulation in the perennial ryegrass. Consequently, to increase ruminant selenium intake, supplementing selenium directly to animals is more recommended than applying animal manure to soil, which might drive selenium reduction and decrease selenium uptake by grass.
AbstractList Background and aims The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients and organic matter. This study aims to unentangle the unclear effect of applying different types of ruminant excreta in soils of different organic matter contents on selenium uptake by forage. Methods Perennial ryegrass ( Lolium perenne ) was grown in soils of different organic matter contents. Urine and/or feces collected from sheep fed with organic or inorganic mineral supplements, including selenium, were applied to the soils. The selenium in the collected samples were analyzed using ICP-MS. The associated biogeochemical reactions were scrutinized by wet chemistry. Results The application of urine and/or feces resulted in either the same or lower selenium concentrations in perennial ryegrass. The excreta type did not affect total selenium accumulation in grass grown in low organic matter soil, whereas in high organic matter soil, feces resulted in significantly lower total selenium accumulation than urine, which was attributed to a possible interaction of selenium sorption in soil and microbial reduction of Se. Conclusion This one-time excreta application did not increase, but further decrease in some treatments, selenium concentration and accumulation in the perennial ryegrass. Consequently, to increase ruminant selenium intake, supplementing selenium directly to animals is more recommended than applying animal manure to soil, which might drive selenium reduction and decrease selenium uptake by grass.
The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients and organic matter. This study aims to unentangle the unclear effect of applying different types of ruminant excreta in soils of different organic matter contents on selenium uptake by forage. Perennial ryegrass ( ) was grown in soils of different organic matter contents. Urine and/or feces collected from sheep fed with organic or inorganic mineral supplements, including selenium, were applied to the soils. The selenium in the collected samples were analyzed using ICP-MS. The associated biogeochemical reactions were scrutinized by wet chemistry. The application of urine and/or feces resulted in either the same or lower selenium concentrations in perennial ryegrass. The excreta type did not affect total selenium accumulation in grass grown in low organic matter soil, whereas in high organic matter soil, feces resulted in significantly lower total selenium accumulation than urine, which was attributed to a possible interaction of selenium sorption in soil and microbial reduction of Se. This one-time excreta application did not increase, but further decrease in some treatments, selenium concentration and accumulation in the perennial ryegrass. Consequently, to increase ruminant selenium intake, supplementing selenium directly to animals is more recommended than applying animal manure to soil, which might drive selenium reduction and decrease selenium uptake by grass. The online version contains supplementary material available at 10.1007/s11104-023-05898-8.
Background and aims The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients and organic matter. This study aims to unentangle the unclear effect of applying different types of ruminant excreta in soils of different organic matter contents on selenium uptake by forage. Methods Perennial ryegrass (Lolium perenne) was grown in soils of different organic matter contents. Urine and/or feces collected from sheep fed with organic or inorganic mineral supplements, including selenium, were applied to the soils. The selenium in the collected samples were analyzed using ICP-MS. The associated biogeochemical reactions were scrutinized by wet chemistry. Results The application of urine and/or feces resulted in either the same or lower selenium concentrations in perennial ryegrass. The excreta type did not affect total selenium accumulation in grass grown in low organic matter soil, whereas in high organic matter soil, feces resulted in significantly lower total selenium accumulation than urine, which was attributed to a possible interaction of selenium sorption in soil and microbial reduction of Se. Conclusion This one-time excreta application did not increase, but further decrease in some treatments, selenium concentration and accumulation in the perennial ryegrass. Consequently, to increase ruminant selenium intake, supplementing selenium directly to animals is more recommended than applying animal manure to soil, which might drive selenium reduction and decrease selenium uptake by grass.
The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients and organic matter. This study aims to unentangle the unclear effect of applying different types of ruminant excreta in soils of different organic matter contents on selenium uptake by forage.Background and aimsThe intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients and organic matter. This study aims to unentangle the unclear effect of applying different types of ruminant excreta in soils of different organic matter contents on selenium uptake by forage.Perennial ryegrass (Lolium perenne) was grown in soils of different organic matter contents. Urine and/or feces collected from sheep fed with organic or inorganic mineral supplements, including selenium, were applied to the soils. The selenium in the collected samples were analyzed using ICP-MS. The associated biogeochemical reactions were scrutinized by wet chemistry.MethodsPerennial ryegrass (Lolium perenne) was grown in soils of different organic matter contents. Urine and/or feces collected from sheep fed with organic or inorganic mineral supplements, including selenium, were applied to the soils. The selenium in the collected samples were analyzed using ICP-MS. The associated biogeochemical reactions were scrutinized by wet chemistry.The application of urine and/or feces resulted in either the same or lower selenium concentrations in perennial ryegrass. The excreta type did not affect total selenium accumulation in grass grown in low organic matter soil, whereas in high organic matter soil, feces resulted in significantly lower total selenium accumulation than urine, which was attributed to a possible interaction of selenium sorption in soil and microbial reduction of Se.ResultsThe application of urine and/or feces resulted in either the same or lower selenium concentrations in perennial ryegrass. The excreta type did not affect total selenium accumulation in grass grown in low organic matter soil, whereas in high organic matter soil, feces resulted in significantly lower total selenium accumulation than urine, which was attributed to a possible interaction of selenium sorption in soil and microbial reduction of Se.This one-time excreta application did not increase, but further decrease in some treatments, selenium concentration and accumulation in the perennial ryegrass. Consequently, to increase ruminant selenium intake, supplementing selenium directly to animals is more recommended than applying animal manure to soil, which might drive selenium reduction and decrease selenium uptake by grass.ConclusionThis one-time excreta application did not increase, but further decrease in some treatments, selenium concentration and accumulation in the perennial ryegrass. Consequently, to increase ruminant selenium intake, supplementing selenium directly to animals is more recommended than applying animal manure to soil, which might drive selenium reduction and decrease selenium uptake by grass.The online version contains supplementary material available at 10.1007/s11104-023-05898-8.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11104-023-05898-8.
The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients and organic matter. This study aims to unentangle the unclear effect of applying different types of ruminant excreta in soils of different organic matter contents on selenium uptake by forage. Perennial ryegrass (Lolium perenne) was grown in soils of different organic matter contents. Urine and/or feces collected from sheep fed with organic or inorganic mineral supplements, including selenium, were applied to the soils. The selenium in the collected samples were analyzed using ICP-MS. The associated biogeochemical reactions were scrutinized by wet chemistry. The application of urine and/or feces resulted in either the same or lower selenium concentrations in perennial ryegrass. The excreta type did not affect total selenium accumulation in grass grown in low organic matter soil, whereas in high organic matter soil, feces resulted in significantly lower total selenium accumulation than urine, which was attributed to a possible interaction of selenium sorption in soil and microbial reduction of Se. This one-time excreta application did not increase, but further decrease in some treatments, selenium concentration and accumulation in the perennial ryegrass. Consequently, to increase ruminant selenium intake, supplementing selenium directly to animals is more recommended than applying animal manure to soil, which might drive selenium reduction and decrease selenium uptake by grass.
Background and aimsThe intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients and organic matter. This study aims to unentangle the unclear effect of applying different types of ruminant excreta in soils of different organic matter contents on selenium uptake by forage.MethodsPerennial ryegrass (Lolium perenne) was grown in soils of different organic matter contents. Urine and/or feces collected from sheep fed with organic or inorganic mineral supplements, including selenium, were applied to the soils. The selenium in the collected samples were analyzed using ICP-MS. The associated biogeochemical reactions were scrutinized by wet chemistry.ResultsThe application of urine and/or feces resulted in either the same or lower selenium concentrations in perennial ryegrass. The excreta type did not affect total selenium accumulation in grass grown in low organic matter soil, whereas in high organic matter soil, feces resulted in significantly lower total selenium accumulation than urine, which was attributed to a possible interaction of selenium sorption in soil and microbial reduction of Se.ConclusionThis one-time excreta application did not increase, but further decrease in some treatments, selenium concentration and accumulation in the perennial ryegrass. Consequently, to increase ruminant selenium intake, supplementing selenium directly to animals is more recommended than applying animal manure to soil, which might drive selenium reduction and decrease selenium uptake by grass.
Audience Academic
Author Warren, Helen E.
Buss, Heather L.
Kao, Pei-Tzu
Darch, Tegan
Lee, Michael R. F.
McGrath, Steve P.
Author_xml – sequence: 1
  givenname: Pei-Tzu
  orcidid: 0000-0002-1380-7781
  surname: Kao
  fullname: Kao, Pei-Tzu
  email: b01601029@gmail.com
  organization: Rothamsted Research
– sequence: 2
  givenname: Heather L.
  orcidid: 0000-0002-1852-3657
  surname: Buss
  fullname: Buss, Heather L.
  organization: School of Earth Sciences, University of Bristol
– sequence: 3
  givenname: Steve P.
  orcidid: 0000-0003-0952-8947
  surname: McGrath
  fullname: McGrath, Steve P.
  organization: Rothamsted Research
– sequence: 4
  givenname: Tegan
  orcidid: 0000-0003-2367-043X
  surname: Darch
  fullname: Darch, Tegan
  organization: Rothamsted Research
– sequence: 5
  givenname: Helen E.
  orcidid: 0000-0002-5952-9748
  surname: Warren
  fullname: Warren, Helen E.
  organization: Alltech Bioscience Centre
– sequence: 6
  givenname: Michael R. F.
  orcidid: 0000-0001-7451-5611
  surname: Lee
  fullname: Lee, Michael R. F.
  organization: Harper Adams University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37251257$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1rFTEYhYNU7If-ARcScONmaj4mk8xKSvELCm4quAuZzJu5qTPJNZkp3n9vxttqW6SSRUjynMPLyTlGByEGQOglJaeUEPk2U0pJXRHGKyJUqyr1BB1RIXklCG8O0BEhnFVEtt8O0XHOV2Q90-YZOuSSCcqEPELpcgN42c7mO-DocIYRgl8m3O3wFhKE4M2I0w6GZHLGPuAc_ZhXtPfOrcSMYxpM8BZPZp4hYRvDXK4zTmDBX_sw4LwB2GL4aRPM5jl66syY4cXNfoK-fnh_ef6puvjy8fP52UVlhRRz5ay1tZOCWAt1b7jo-kY2Vkngsu4d7-qOC-4kFZTXqjVGEFeT1ionOgo14yfo3d53u3QT9LbMlMyot8lPJu10NF7ffwl-o4d4rSlhjFDWFIc3Nw4p_lggz3ry2cI4mgBxyZpTwWlTE17_F2WKkbZRjVhdXz9Ar-KSQomiULQVvG2aO9RgRtA-uFhmtKupPiuhKFVLJQp1-g-qrB4mXz4CnC_39wSv7obyJ43bRhRA7QGbYs4JnLZ-NrOPa0Z-LOHotXx6Xz5dyqd_l0-rImUPpLfuj4r4XpQLHAZIf9N4RPULc87sKA
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e37740
crossref_primary_10_1016_j_jfca_2024_106822
crossref_primary_10_1007_s11104_023_06293_z
crossref_primary_10_1038_s41598_024_66648_z
Cites_doi 10.1186/s12934-016-0554-z
10.3390/nu7064199
10.1071/9780643101364
10.1080/17583004.2021.1976674
10.1111/j.1365-2389.1992.tb00152.x
10.1071/AN19258
10.1201/9781351114561-4
10.1111/j.1469-8137.2007.02343.x
10.1016/S1002-0160(15)60028-5
10.1016/j.jhazmat.2007.04.098
10.1016/S1002-0160(17)60444-2
10.1016/S0009-2541(00)00246-1
10.1071/EA97161
10.1016/j.smallrumres.2009.12.042
10.1002/jpln.3591050303
10.1016/j.anifeedsci.2019.05.011
10.1201/9781439821985
10.1016/j.geoderma.2017.02.019
10.1007/s11120-005-5222-9
10.1111/j.1439-0523.2004.01032.x
10.1017/S0021859600058767
10.1097/00010694-197705000-00005
10.1128/AEM.00877-16
10.1371/journal.pone.0221647
10.1007/s00580-008-0793-4
10.2134/jeq1991.00472425002000010014x
10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2
10.1016/j.scitotenv.2007.08.024
10.1080/03067310903111661
10.1002/jpln.200900015
10.1007/s10705-006-9039-5
10.1016/bs.agron.2020.06.004
10.1007/s11157-009-9145-3
10.1007/BF00010076
10.2136/sssaj1987.03615995005100050009x
10.1007/s00244-013-9926-0
10.1016/S0883-2927(01)00046-4
10.1023/A:1004639906245
10.1007/s11356-020-10303-3
10.1071/SR9940543
10.1007/s10705-011-9435-3
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023.
COPYRIGHT 2023 Springer
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023.
– notice: COPYRIGHT 2023 Springer
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
7S9
L.6
5PM
DOI 10.1007/s11104-023-05898-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
AGRICOLA

Agricultural Science Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Ecology
Botany
EISSN 1573-5036
EndPage 659
ExternalDocumentID PMC10220126
A750884785
37251257
10_1007_s11104_023_05898_8
Genre Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research
  grantid: BBS/E/C/000I0320
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/C/000J0100
  funderid: http://dx.doi.org/10.13039/501100000268
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/C/000I0320
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/C/000J0100
– fundername: ;
  grantid: BBS/E/C/000I0320
– fundername: ;
  grantid: BBS/E/C/000J0100
GroupedDBID -4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~F
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X2
88A
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACBXY
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEJZ
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIDBO
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DATOO
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMK
EN4
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0K
M0L
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SA0
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
XOL
Y6R
YLTOR
Z45
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
NPM
PQGLB
AEIIB
PMFND
7SN
7ST
7T7
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c575t-fccc4f750cce4da35bd676c87e374df3b4b353f71513489aa50f409c8f5b1e423
IEDL.DBID BENPR
ISSN 0032-079X
IngestDate Thu Aug 21 18:37:40 EDT 2025
Fri Jul 11 10:28:21 EDT 2025
Fri Jul 11 11:19:17 EDT 2025
Fri Jul 25 18:58:47 EDT 2025
Tue Jun 17 22:12:36 EDT 2025
Tue Jun 10 21:07:01 EDT 2025
Mon Jul 21 06:07:05 EDT 2025
Tue Jul 01 01:47:20 EDT 2025
Thu Apr 24 23:03:38 EDT 2025
Fri Feb 21 02:43:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Manure
Microbial reduction
Pasture
Ruminants
Fertilizers
Grassland soil
Language English
License The Author(s) 2023.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-fccc4f750cce4da35bd676c87e374df3b4b353f71513489aa50f409c8f5b1e423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Responsible Editor: Ismail Cakmak.
ORCID 0000-0002-1380-7781
0000-0003-0952-8947
0000-0003-2367-043X
0000-0002-5952-9748
0000-0001-7451-5611
0000-0002-1852-3657
OpenAccessLink https://doi.org/10.1007/s11104-023-05898-8
PMID 37251257
PQID 2819539666
PQPubID 54098
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10220126
proquest_miscellaneous_3153164034
proquest_miscellaneous_2820968656
proquest_journals_2819539666
gale_infotracmisc_A750884785
gale_infotracacademiconefile_A750884785
pubmed_primary_37251257
crossref_citationtrail_10_1007_s11104_023_05898_8
crossref_primary_10_1007_s11104_023_05898_8
springer_journals_10_1007_s11104_023_05898_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Netherlands
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationTitleAlternate Plant Soil
PublicationYear 2023
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References SébyFPotin-GautierMGiffautEBorgeGDonardOFXA critical review of thermodynamic data for selenium species at 25 °CChem Geol200117117319410.1016/S0009-2541(00)00246-1
Fernández-MartínezACharletLSelenium environmental cycling and bioavailability: a structural chemist point of viewRev Environ Sci Biotechnol20098811101:CAS:528:DC%2BD1MXitVOrtb0%3D10.1007/s11157-009-9145-3
ClaydenBHollisJMCriteria for differentiating soil series1984HarpendenRothamsted Experimental Station
LehmannJSchrothGSchrothGSinclairFNutrient leachingTrees, crops and soil fertility2003WallingfordCABI Publishing151166
TanYYaoRWangRWangDWangGZhengSReduction of selenite to Se (0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soilMicrob Cell Fact2016151101:CAS:528:DC%2BC1cXmslWr10.1186/s12934-016-0554-z
FanMSZhaoFJPoultonPRMcGrathSPHistorical changes in the concentrations of selenium in soil and wheat grain from the Broadbalk experiment over the last 160 yearsSci Total Environ20083895325381:CAS:528:DC%2BD2sXhtlaqurjO10.1016/j.scitotenv.2007.08.02417888491
AlemiMHGoldhamerDANielsenDRModeling selenium transport in steady-state, unsaturated soil columnsJ Environ Qual19912089951:CAS:528:DyaK3MXhsVaisrc%3D10.2134/jeq1991.00472425002000010014x
EswayahASSmithTJGardinerPHEMicrobial transformations of selenium species of relevance to bioremediationAppl Environ Microbiol201682484848591:CAS:528:DC%2BC28XitVWisrfO10.1128/AEM.00877-16272603594968552
FulkersonWJSlackKHennessyDWHoughGMNutrients in ryegrass (Lolium spp.), white clover (Trifolium repens) and kikuyu (Pennisetum clandestinum) pastures in relation to season and stage of regrowth in a subtropical environmentAust J Exp Agric1998382272401:CAS:528:DyaK1cXksVyhuro%3D10.1071/EA97161
LiZLiangDPengQCuiZHuangJLinZInteraction between selenium and soil organic matter and its impact on soil selenium bioavailability: a reviewGeoderma201729569791:CAS:528:DC%2BC2sXjslyls7k%3D10.1016/j.geoderma.2017.02.019
Sears PD, Newbold RP (1942) The effect of sheep droppings on yield, botanical composition, and chemical composition of pasture. 1. Establishment of trial, technique of measurement, and results for the 1940-41 season. N Z J Sci Technol Sect A:36-61.
MorganteMGianesellaMCasellaSRavarottoLStellettaCGiudiceEBlood gas analyses, ruminal and blood pH, urine and faecal pH in dairy cows during subacute ruminal acidosisComp Clin Path2009182292321:CAS:528:DC%2BD1MXns1CgtL0%3D10.1007/s00580-008-0793-4
SparksDLPageALHelmkePALoeppertRHMethods of soil analysis, part 3: Chemical methods2020Wisconsin, USAWiley
Stroud JL, McGrath SP, Zhao F (2012) Selenium speciation in soil extracts using LC-ICP-MS. Int J Environ Anal Chem 92(2):222–236. https://doi.org/10.1080/03067310903111661
Tórtora-PérezJLThe importance of selenium and the effects of its deficiency in animal healthSmall Rumin Res20108918519210.1016/j.smallrumres.2009.12.042
GustafssonJPJohnssonLSelenium retention in the organic matter of Swedish forest soilsJ Soil Sci1992434614721:CAS:528:DyaK3sXht1eltbg%3D10.1111/j.1365-2389.1992.tb00152.x
AHDB (2020) Recommended Grass and Clover Lists for England and Wales. https://ahdb.org.uk/recommended-grass-and-clover-lists. Accessed 31 May 2022
ZhaoFMcGrathSPExtractable sulphate and organic sulphur in soils and their availability to plantsPlant Soil199416422432501:CAS:528:DyaK2MXislamsrY%3D10.1007/BF00010076
SchwertmannUDifferenzierung der eisenoxide des bodens durch extraktion mit ammoniumoxalat-LösungJ Plant Nutr Soil Sci19641051942021:CAS:528:DyaF2MXotlCj10.1002/jpln.3591050303
Power JF, Prasad R (1997) Organic Manures. In: Soil fertility management for sustainable agriculture. CRC Press, New York
KaoP-TDarchTMcGrathSPKendallNRBussHLWarrenHLeeMRFFactors influencing elemental micronutrient supply from pasture systems for grazing ruminantsAdv Agron202016416122910.1016/bs.agron.2020.06.004
Rayment GE, Lyons DJ (2011) Nitrogen & Phosphorus & Extractable iron, aluminum and silicon. In: Soil Chemical Methods, CSIRO Publishing, Australasia
DoakBWSome chemical changes in the nitrogenous constituents of urine when voided on pastureJ Agric Sci1952421-21621711:CAS:528:DyaG2cXjtlyitw%3D%3D10.1017/S0021859600058767
ConantRTPaustianKElliottETGrassland management and conversion into grassland: effects on soil carbonEcol Appl20011134335510.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2
Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. In: USDA Circular No. 939. Government Printing Office, Washington D.C., US. pp 19
ÁvilaPAFaquinVÁvilaFWKachinskiWDCarvalhoGSGuilhermeJRGPhosphorus and sulfur in a tropical soil and their effects on growth and selenium accumulation in Leucaena leucocephala (Lam.) de WitEnviron Sci Pollut Res20202744060440721:CAS:528:DC%2BB3cXhs1ShtbfK10.1007/s11356-020-10303-3
JenkinsonDSRaynerJHThe turnover of soil organic matter in some of the Rothamsted classical experimentsSoil Sci1977529830510.1097/00010694-197705000-00005
Lee MRF, Rivero MJ, Cone JW (2018) The role of pasture in the diet of ruminant livestock. In: Marshall A, Collins R (ed). Improving grassland and pasture management in temperature agriculture. Burleigh Dodds Science Publishing, Cambridge, pp 31-54. https://doi.org/10.1201/9781351114561-4
RibeiroHMFangueiroDAlvesFVasconcelosECoutinhoJBolRCabralFCarbon-mineralization kinetics in an organically managed Cambic Arenosol amended with organic fertilizersJ Plant Nutr Soil Sci201017339451:CAS:528:DC%2BC3cXhvFGisr8%3D10.1002/jpln.200900015
WangQZhangJZhaoBXinXDengXZhangHInfluence of long-term fertilization on selenium accumulation in soil and uptake by cropsPedosphere2016261201291:CAS:528:DC%2BB3cXhtVegsrnM10.1016/S1002-0160(15)60028-5
ADAS (2011) Impact of grazing management on cattle and sheep parasites. https://meatpromotion.wales/images/resources/Impact_of_grazing_management_on_cattle_and_sheep_parasites.pdf. Accessed 13 July 2022
RoviraMGiménezJMartínezMMartínez-LladóXde PabloJMartíVDuroLSorption of selenium (IV) and selenium (VI) onto natural iron oxides: goethite and hematiteJ Hazard Meter20081502792841:CAS:528:DC%2BD1cXltVOgtA%3D%3D10.1016/j.jhazmat.2007.04.098
BolaricSBarthSMelchingerAEPosseltUKGenetic diversity in European perennial ryegrass cultivars investigated with RAPD markersPlant Breed200512421611661:CAS:528:DC%2BD2MXktlyisrw%3D10.1111/j.1439-0523.2004.01032.x
HopperJLParkerDRPlant availability of selenite and selenate as influenced by the competing ions phosphate and sulfatePlant Soil19992101992071:CAS:528:DyaK1MXnt1Kku7k%3D10.1023/A:1004639906245
WinkelLHEVriensBJonesGDSchneiderLSPilon-SmitsEBañuelosGSSelenium cycling across soil-plant-atmosphere interfaces: a critical reviewNutrients20157419942391:CAS:528:DC%2BC2MXhsFKmsbrE10.3390/nu7064199260352464488781
WangZGaoYBiogeochemical cycling of selenium in Chinese environmentsAppl Geochem200116134513511:CAS:528:DC%2BD3MXjslamt70%3D10.1016/S0883-2927(01)00046-4
DarchTDunnRMGuyAHawkinsJMBAshMFrimpongKABlackwellMSAFertilizer produced from abattoir waste can contribute to phosphorus sustainability, and biofortify crops with mineralsPLoS ONE201914e02216471:CAS:528:DC%2BC1MXhvF2ju7nF10.1371/journal.pone.0221647314838066726140
SmažíkováPPrausLSzákováJTremlovaJAlešHTlustošPEffects of organic matter-rich amendments on selenium mobility in soilsPedosphere2019297407511:CAS:528:DC%2BB38XhslelsbvL10.1016/S1002-0160(17)60444-2
KeskinenRRätyMYli-HallaMSelenium fractions in selenate-fertilized field soils of FinlandNutr Cycl Agroecosyst20119117291:CAS:528:DC%2BC3MXhtVeitLzF10.1007/s10705-011-9435-3
KikkertJBerkelaarEPlant uptake and translocation of inorganic and organic forms of seleniumArch Environ Contam Toxicol2013654584651:CAS:528:DC%2BC3sXhtl2qurbE10.1007/s00244-013-9926-023793939
SorsTGEllisDRSaltDESelenium uptake, translocation, assimilation and metabolic fate in plantsPhotosynth Res2005863733891:CAS:528:DC%2BD28XpsFOr10.1007/s11120-005-5222-916307305
R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at https://www.R-project.org/. Accessed 1 Jan 2022
LiHFMcGrathSPZhaoFJSelenium uptake, translocation and speciation in wheat supplied with selenate or seleniteNew Phytol2008178921021:CAS:528:DC%2BD1cXks1SmtLo%3D10.1111/j.1469-8137.2007.02343.x18179602
LeeMRFFlemingHRCoganTHodgsonCDaviesDRAssessing the ability of silage lactic acid bacteria to incorporate and transform inorganic selenium within laboratory scale silosAnim Feed Sci Technol20192531251341:CAS:528:DC%2BC1MXhtVKisr3P10.1016/j.anifeedsci.2019.05.011312932916588266
Mayland HF, Gough LP, Stewart KC (1991) Chapter E: Selenium mobility in soils and its absorption, translocation, and metabolism in plants. In: Proceedings, Symposium on selenium, Western USA
BalistrieriLSChaoTTSelenium adsorption by goethiteSSSAJ198751114511511:CAS:528:DyaL1cXitFSisQ%3D%3D10.2136/sssaj1987.03615995005100050009x
AHDB (2019) Understanding grass growth for beef rotational grazing. https://ahdb.org.uk/knowledge-library/understanding-grass-growth-for-beef-rotational-grazing. Accessed 31 May 2022
LeeMRFFlemingHRWhittingtonFHodgsonCSurajPTDaviesDRThe potential of silage lactic acid bacteria derived nano-selenium as a dietary supplement in sheepAnim Prod Sci201959199920091:CAS:528:DC%2BC1MXhvFCiu7%2FE10.1071/AN19258
BlairGJTillARBoswellCRate of recycling of sulfur from urine, feces and litter applied to the soil surfaceAust J Soil Res19943254355410.1071/SR9940543
ØgaardAFSognTAEich-GreatorexSEffect of cattle manure on selenate and selenite retention in soilNutri Cycl Agroecosyst200676394810.1007/s10705-006-9039-5
DheriGSNazirGA review on carbon pools and sequestration as influenced by long-term management practices in a rice–wheat cropping systemCarbon Manag2021125595801:CAS:528:DC%2BB3MXitFaqtLfP10.1080/17583004.2021.1976674
J Lehmann (5898_CR27) 2003
JP Gustafsson (5898_CR18) 1992; 43
5898_CR26
R Keskinen (5898_CR22) 2011; 91
GS Dheri (5898_CR12) 2021; 12
Q Wang (5898_CR49) 2016; 26
T Darch (5898_CR11) 2019; 14
MRF Lee (5898_CR25) 2019; 253
S Bolaric (5898_CR8) 2005; 124
5898_CR30
WJ Fulkerson (5898_CR17) 1998; 38
PA Ávila (5898_CR5) 2020; 27
5898_CR34
5898_CR33
HF Li (5898_CR28) 2008; 178
5898_CR36
RT Conant (5898_CR10) 2001; 11
DS Jenkinson (5898_CR20) 1977; 5
5898_CR35
GJ Blair (5898_CR7) 1994; 32
A Fernández-Martínez (5898_CR16) 2009; 8
MH Alemi (5898_CR4) 1991; 20
JL Tórtora-Pérez (5898_CR47) 2010; 89
AF Øgaard (5898_CR32) 2006; 76
5898_CR40
5898_CR45
J Kikkert (5898_CR23) 2013; 65
M Rovira (5898_CR38) 2008; 150
B Clayden (5898_CR9) 1984
DL Sparks (5898_CR44) 2020
LS Balistrieri (5898_CR6) 1987; 51
BW Doak (5898_CR13) 1952; 42
TG Sors (5898_CR43) 2005; 86
P-T Kao (5898_CR21) 2020; 164
Z Li (5898_CR29) 2017; 295
F Zhao (5898_CR51) 1994; 164
LHE Winkel (5898_CR50) 2015; 7
5898_CR1
AS Eswayah (5898_CR14) 2016; 82
5898_CR2
HM Ribeiro (5898_CR37) 2010; 173
5898_CR3
M Morgante (5898_CR31) 2009; 18
Z Wang (5898_CR48) 2001; 16
MRF Lee (5898_CR24) 2019; 59
U Schwertmann (5898_CR39) 1964; 105
F Séby (5898_CR41) 2001; 171
JL Hopper (5898_CR19) 1999; 210
P Smažíková (5898_CR42) 2019; 29
Y Tan (5898_CR46) 2016; 15
MS Fan (5898_CR15) 2008; 389
References_xml – reference: RibeiroHMFangueiroDAlvesFVasconcelosECoutinhoJBolRCabralFCarbon-mineralization kinetics in an organically managed Cambic Arenosol amended with organic fertilizersJ Plant Nutr Soil Sci201017339451:CAS:528:DC%2BC3cXhvFGisr8%3D10.1002/jpln.200900015
– reference: AHDB (2019) Understanding grass growth for beef rotational grazing. https://ahdb.org.uk/knowledge-library/understanding-grass-growth-for-beef-rotational-grazing. Accessed 31 May 2022
– reference: KeskinenRRätyMYli-HallaMSelenium fractions in selenate-fertilized field soils of FinlandNutr Cycl Agroecosyst20119117291:CAS:528:DC%2BC3MXhtVeitLzF10.1007/s10705-011-9435-3
– reference: ClaydenBHollisJMCriteria for differentiating soil series1984HarpendenRothamsted Experimental Station
– reference: Mayland HF, Gough LP, Stewart KC (1991) Chapter E: Selenium mobility in soils and its absorption, translocation, and metabolism in plants. In: Proceedings, Symposium on selenium, Western USA
– reference: Power JF, Prasad R (1997) Organic Manures. In: Soil fertility management for sustainable agriculture. CRC Press, New York
– reference: DoakBWSome chemical changes in the nitrogenous constituents of urine when voided on pastureJ Agric Sci1952421-21621711:CAS:528:DyaG2cXjtlyitw%3D%3D10.1017/S0021859600058767
– reference: KaoP-TDarchTMcGrathSPKendallNRBussHLWarrenHLeeMRFFactors influencing elemental micronutrient supply from pasture systems for grazing ruminantsAdv Agron202016416122910.1016/bs.agron.2020.06.004
– reference: BlairGJTillARBoswellCRate of recycling of sulfur from urine, feces and litter applied to the soil surfaceAust J Soil Res19943254355410.1071/SR9940543
– reference: BolaricSBarthSMelchingerAEPosseltUKGenetic diversity in European perennial ryegrass cultivars investigated with RAPD markersPlant Breed200512421611661:CAS:528:DC%2BD2MXktlyisrw%3D10.1111/j.1439-0523.2004.01032.x
– reference: HopperJLParkerDRPlant availability of selenite and selenate as influenced by the competing ions phosphate and sulfatePlant Soil19992101992071:CAS:528:DyaK1MXnt1Kku7k%3D10.1023/A:1004639906245
– reference: GustafssonJPJohnssonLSelenium retention in the organic matter of Swedish forest soilsJ Soil Sci1992434614721:CAS:528:DyaK3sXht1eltbg%3D10.1111/j.1365-2389.1992.tb00152.x
– reference: MorganteMGianesellaMCasellaSRavarottoLStellettaCGiudiceEBlood gas analyses, ruminal and blood pH, urine and faecal pH in dairy cows during subacute ruminal acidosisComp Clin Path2009182292321:CAS:528:DC%2BD1MXns1CgtL0%3D10.1007/s00580-008-0793-4
– reference: ØgaardAFSognTAEich-GreatorexSEffect of cattle manure on selenate and selenite retention in soilNutri Cycl Agroecosyst200676394810.1007/s10705-006-9039-5
– reference: LeeMRFFlemingHRCoganTHodgsonCDaviesDRAssessing the ability of silage lactic acid bacteria to incorporate and transform inorganic selenium within laboratory scale silosAnim Feed Sci Technol20192531251341:CAS:528:DC%2BC1MXhtVKisr3P10.1016/j.anifeedsci.2019.05.011312932916588266
– reference: Fernández-MartínezACharletLSelenium environmental cycling and bioavailability: a structural chemist point of viewRev Environ Sci Biotechnol20098811101:CAS:528:DC%2BD1MXitVOrtb0%3D10.1007/s11157-009-9145-3
– reference: ConantRTPaustianKElliottETGrassland management and conversion into grassland: effects on soil carbonEcol Appl20011134335510.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2
– reference: JenkinsonDSRaynerJHThe turnover of soil organic matter in some of the Rothamsted classical experimentsSoil Sci1977529830510.1097/00010694-197705000-00005
– reference: SébyFPotin-GautierMGiffautEBorgeGDonardOFXA critical review of thermodynamic data for selenium species at 25 °CChem Geol200117117319410.1016/S0009-2541(00)00246-1
– reference: SmažíkováPPrausLSzákováJTremlovaJAlešHTlustošPEffects of organic matter-rich amendments on selenium mobility in soilsPedosphere2019297407511:CAS:528:DC%2BB38XhslelsbvL10.1016/S1002-0160(17)60444-2
– reference: Rayment GE, Lyons DJ (2011) Nitrogen & Phosphorus & Extractable iron, aluminum and silicon. In: Soil Chemical Methods, CSIRO Publishing, Australasia
– reference: BalistrieriLSChaoTTSelenium adsorption by goethiteSSSAJ198751114511511:CAS:528:DyaL1cXitFSisQ%3D%3D10.2136/sssaj1987.03615995005100050009x
– reference: FanMSZhaoFJPoultonPRMcGrathSPHistorical changes in the concentrations of selenium in soil and wheat grain from the Broadbalk experiment over the last 160 yearsSci Total Environ20083895325381:CAS:528:DC%2BD2sXhtlaqurjO10.1016/j.scitotenv.2007.08.02417888491
– reference: KikkertJBerkelaarEPlant uptake and translocation of inorganic and organic forms of seleniumArch Environ Contam Toxicol2013654584651:CAS:528:DC%2BC3sXhtl2qurbE10.1007/s00244-013-9926-023793939
– reference: WinkelLHEVriensBJonesGDSchneiderLSPilon-SmitsEBañuelosGSSelenium cycling across soil-plant-atmosphere interfaces: a critical reviewNutrients20157419942391:CAS:528:DC%2BC2MXhsFKmsbrE10.3390/nu7064199260352464488781
– reference: FulkersonWJSlackKHennessyDWHoughGMNutrients in ryegrass (Lolium spp.), white clover (Trifolium repens) and kikuyu (Pennisetum clandestinum) pastures in relation to season and stage of regrowth in a subtropical environmentAust J Exp Agric1998382272401:CAS:528:DyaK1cXksVyhuro%3D10.1071/EA97161
– reference: LiZLiangDPengQCuiZHuangJLinZInteraction between selenium and soil organic matter and its impact on soil selenium bioavailability: a reviewGeoderma201729569791:CAS:528:DC%2BC2sXjslyls7k%3D10.1016/j.geoderma.2017.02.019
– reference: WangZGaoYBiogeochemical cycling of selenium in Chinese environmentsAppl Geochem200116134513511:CAS:528:DC%2BD3MXjslamt70%3D10.1016/S0883-2927(01)00046-4
– reference: AlemiMHGoldhamerDANielsenDRModeling selenium transport in steady-state, unsaturated soil columnsJ Environ Qual19912089951:CAS:528:DyaK3MXhsVaisrc%3D10.2134/jeq1991.00472425002000010014x
– reference: Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. In: USDA Circular No. 939. Government Printing Office, Washington D.C., US. pp 19
– reference: ADAS (2011) Impact of grazing management on cattle and sheep parasites. https://meatpromotion.wales/images/resources/Impact_of_grazing_management_on_cattle_and_sheep_parasites.pdf. Accessed 13 July 2022
– reference: R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at https://www.R-project.org/. Accessed 1 Jan 2022
– reference: ZhaoFMcGrathSPExtractable sulphate and organic sulphur in soils and their availability to plantsPlant Soil199416422432501:CAS:528:DyaK2MXislamsrY%3D10.1007/BF00010076
– reference: Stroud JL, McGrath SP, Zhao F (2012) Selenium speciation in soil extracts using LC-ICP-MS. Int J Environ Anal Chem 92(2):222–236. https://doi.org/10.1080/03067310903111661
– reference: LehmannJSchrothGSchrothGSinclairFNutrient leachingTrees, crops and soil fertility2003WallingfordCABI Publishing151166
– reference: SorsTGEllisDRSaltDESelenium uptake, translocation, assimilation and metabolic fate in plantsPhotosynth Res2005863733891:CAS:528:DC%2BD28XpsFOr10.1007/s11120-005-5222-916307305
– reference: Tórtora-PérezJLThe importance of selenium and the effects of its deficiency in animal healthSmall Rumin Res20108918519210.1016/j.smallrumres.2009.12.042
– reference: ÁvilaPAFaquinVÁvilaFWKachinskiWDCarvalhoGSGuilhermeJRGPhosphorus and sulfur in a tropical soil and their effects on growth and selenium accumulation in Leucaena leucocephala (Lam.) de WitEnviron Sci Pollut Res20202744060440721:CAS:528:DC%2BB3cXhs1ShtbfK10.1007/s11356-020-10303-3
– reference: WangQZhangJZhaoBXinXDengXZhangHInfluence of long-term fertilization on selenium accumulation in soil and uptake by cropsPedosphere2016261201291:CAS:528:DC%2BB3cXhtVegsrnM10.1016/S1002-0160(15)60028-5
– reference: AHDB (2020) Recommended Grass and Clover Lists for England and Wales. https://ahdb.org.uk/recommended-grass-and-clover-lists. Accessed 31 May 2022
– reference: SchwertmannUDifferenzierung der eisenoxide des bodens durch extraktion mit ammoniumoxalat-LösungJ Plant Nutr Soil Sci19641051942021:CAS:528:DyaF2MXotlCj10.1002/jpln.3591050303
– reference: LeeMRFFlemingHRWhittingtonFHodgsonCSurajPTDaviesDRThe potential of silage lactic acid bacteria derived nano-selenium as a dietary supplement in sheepAnim Prod Sci201959199920091:CAS:528:DC%2BC1MXhvFCiu7%2FE10.1071/AN19258
– reference: DarchTDunnRMGuyAHawkinsJMBAshMFrimpongKABlackwellMSAFertilizer produced from abattoir waste can contribute to phosphorus sustainability, and biofortify crops with mineralsPLoS ONE201914e02216471:CAS:528:DC%2BC1MXhvF2ju7nF10.1371/journal.pone.0221647314838066726140
– reference: DheriGSNazirGA review on carbon pools and sequestration as influenced by long-term management practices in a rice–wheat cropping systemCarbon Manag2021125595801:CAS:528:DC%2BB3MXitFaqtLfP10.1080/17583004.2021.1976674
– reference: LiHFMcGrathSPZhaoFJSelenium uptake, translocation and speciation in wheat supplied with selenate or seleniteNew Phytol2008178921021:CAS:528:DC%2BD1cXks1SmtLo%3D10.1111/j.1469-8137.2007.02343.x18179602
– reference: Sears PD, Newbold RP (1942) The effect of sheep droppings on yield, botanical composition, and chemical composition of pasture. 1. Establishment of trial, technique of measurement, and results for the 1940-41 season. N Z J Sci Technol Sect A:36-61.
– reference: TanYYaoRWangRWangDWangGZhengSReduction of selenite to Se (0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soilMicrob Cell Fact2016151101:CAS:528:DC%2BC1cXmslWr10.1186/s12934-016-0554-z
– reference: EswayahASSmithTJGardinerPHEMicrobial transformations of selenium species of relevance to bioremediationAppl Environ Microbiol201682484848591:CAS:528:DC%2BC28XitVWisrfO10.1128/AEM.00877-16272603594968552
– reference: RoviraMGiménezJMartínezMMartínez-LladóXde PabloJMartíVDuroLSorption of selenium (IV) and selenium (VI) onto natural iron oxides: goethite and hematiteJ Hazard Meter20081502792841:CAS:528:DC%2BD1cXltVOgtA%3D%3D10.1016/j.jhazmat.2007.04.098
– reference: SparksDLPageALHelmkePALoeppertRHMethods of soil analysis, part 3: Chemical methods2020Wisconsin, USAWiley
– reference: Lee MRF, Rivero MJ, Cone JW (2018) The role of pasture in the diet of ruminant livestock. In: Marshall A, Collins R (ed). Improving grassland and pasture management in temperature agriculture. Burleigh Dodds Science Publishing, Cambridge, pp 31-54. https://doi.org/10.1201/9781351114561-4
– volume: 15
  start-page: 1
  year: 2016
  ident: 5898_CR46
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-016-0554-z
– volume: 7
  start-page: 4199
  year: 2015
  ident: 5898_CR50
  publication-title: Nutrients
  doi: 10.3390/nu7064199
– ident: 5898_CR33
– ident: 5898_CR36
  doi: 10.1071/9780643101364
– volume: 12
  start-page: 559
  year: 2021
  ident: 5898_CR12
  publication-title: Carbon Manag
  doi: 10.1080/17583004.2021.1976674
– volume: 43
  start-page: 461
  year: 1992
  ident: 5898_CR18
  publication-title: J Soil Sci
  doi: 10.1111/j.1365-2389.1992.tb00152.x
– volume: 59
  start-page: 1999
  year: 2019
  ident: 5898_CR24
  publication-title: Anim Prod Sci
  doi: 10.1071/AN19258
– ident: 5898_CR26
  doi: 10.1201/9781351114561-4
– volume: 178
  start-page: 92
  year: 2008
  ident: 5898_CR28
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2007.02343.x
– ident: 5898_CR2
– volume: 26
  start-page: 120
  year: 2016
  ident: 5898_CR49
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(15)60028-5
– volume: 150
  start-page: 279
  year: 2008
  ident: 5898_CR38
  publication-title: J Hazard Meter
  doi: 10.1016/j.jhazmat.2007.04.098
– volume: 29
  start-page: 740
  year: 2019
  ident: 5898_CR42
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(17)60444-2
– volume: 171
  start-page: 173
  year: 2001
  ident: 5898_CR41
  publication-title: Chem Geol
  doi: 10.1016/S0009-2541(00)00246-1
– volume: 38
  start-page: 227
  year: 1998
  ident: 5898_CR17
  publication-title: Aust J Exp Agric
  doi: 10.1071/EA97161
– volume: 89
  start-page: 185
  year: 2010
  ident: 5898_CR47
  publication-title: Small Rumin Res
  doi: 10.1016/j.smallrumres.2009.12.042
– volume: 105
  start-page: 194
  year: 1964
  ident: 5898_CR39
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.3591050303
– volume: 253
  start-page: 125
  year: 2019
  ident: 5898_CR25
  publication-title: Anim Feed Sci Technol
  doi: 10.1016/j.anifeedsci.2019.05.011
– ident: 5898_CR34
  doi: 10.1201/9781439821985
– volume-title: Criteria for differentiating soil series
  year: 1984
  ident: 5898_CR9
– volume: 295
  start-page: 69
  year: 2017
  ident: 5898_CR29
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.02.019
– volume: 86
  start-page: 373
  year: 2005
  ident: 5898_CR43
  publication-title: Photosynth Res
  doi: 10.1007/s11120-005-5222-9
– volume-title: Methods of soil analysis, part 3: Chemical methods
  year: 2020
  ident: 5898_CR44
– volume: 124
  start-page: 161
  issue: 2
  year: 2005
  ident: 5898_CR8
  publication-title: Plant Breed
  doi: 10.1111/j.1439-0523.2004.01032.x
– volume: 42
  start-page: 162
  issue: 1-2
  year: 1952
  ident: 5898_CR13
  publication-title: J Agric Sci
  doi: 10.1017/S0021859600058767
– start-page: 151
  volume-title: Trees, crops and soil fertility
  year: 2003
  ident: 5898_CR27
– volume: 5
  start-page: 298
  year: 1977
  ident: 5898_CR20
  publication-title: Soil Sci
  doi: 10.1097/00010694-197705000-00005
– volume: 82
  start-page: 4848
  year: 2016
  ident: 5898_CR14
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00877-16
– ident: 5898_CR1
– volume: 14
  start-page: e0221647
  year: 2019
  ident: 5898_CR11
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0221647
– volume: 18
  start-page: 229
  year: 2009
  ident: 5898_CR31
  publication-title: Comp Clin Path
  doi: 10.1007/s00580-008-0793-4
– volume: 20
  start-page: 89
  year: 1991
  ident: 5898_CR4
  publication-title: J Environ Qual
  doi: 10.2134/jeq1991.00472425002000010014x
– volume: 11
  start-page: 343
  year: 2001
  ident: 5898_CR10
  publication-title: Ecol Appl
  doi: 10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2
– volume: 389
  start-page: 532
  year: 2008
  ident: 5898_CR15
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2007.08.024
– ident: 5898_CR45
  doi: 10.1080/03067310903111661
– ident: 5898_CR35
– volume: 173
  start-page: 39
  year: 2010
  ident: 5898_CR37
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.200900015
– volume: 76
  start-page: 39
  year: 2006
  ident: 5898_CR32
  publication-title: Nutri Cycl Agroecosyst
  doi: 10.1007/s10705-006-9039-5
– volume: 164
  start-page: 161
  year: 2020
  ident: 5898_CR21
  publication-title: Adv Agron
  doi: 10.1016/bs.agron.2020.06.004
– volume: 8
  start-page: 81
  year: 2009
  ident: 5898_CR16
  publication-title: Rev Environ Sci Biotechnol
  doi: 10.1007/s11157-009-9145-3
– volume: 164
  start-page: 243
  issue: 2
  year: 1994
  ident: 5898_CR51
  publication-title: Plant Soil
  doi: 10.1007/BF00010076
– volume: 51
  start-page: 1145
  year: 1987
  ident: 5898_CR6
  publication-title: SSSAJ
  doi: 10.2136/sssaj1987.03615995005100050009x
– ident: 5898_CR30
– volume: 65
  start-page: 458
  year: 2013
  ident: 5898_CR23
  publication-title: Arch Environ Contam Toxicol
  doi: 10.1007/s00244-013-9926-0
– volume: 16
  start-page: 1345
  year: 2001
  ident: 5898_CR48
  publication-title: Appl Geochem
  doi: 10.1016/S0883-2927(01)00046-4
– ident: 5898_CR3
– volume: 210
  start-page: 199
  year: 1999
  ident: 5898_CR19
  publication-title: Plant Soil
  doi: 10.1023/A:1004639906245
– volume: 27
  start-page: 44060
  year: 2020
  ident: 5898_CR5
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-10303-3
– ident: 5898_CR40
– volume: 32
  start-page: 543
  year: 1994
  ident: 5898_CR7
  publication-title: Aust J Soil Res
  doi: 10.1071/SR9940543
– volume: 91
  start-page: 17
  year: 2011
  ident: 5898_CR22
  publication-title: Nutr Cycl Agroecosyst
  doi: 10.1007/s10705-011-9435-3
SSID ssj0003216
Score 2.4282243
Snippet Background and aims The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in...
The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which...
Background and aims The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in...
Background and aimsThe intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in...
BACKGROUND AND AIMS: The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 639
SubjectTerms Accumulation
Agriculture
Analysis
Animal manures
Animals
Biomedical and Life Sciences
Ecology
Feces
Forage
Grasses
Growth
Life Sciences
Lolium perenne
Methods
Microorganisms
Nutrients
Nutritional aspects
Organic fertilizers
Organic matter
Plant Physiology
Plant Sciences
Plant-soil relationships
Reduction
Research Article
Ryegrasses
Selenium
Sheep
soil
Soil microbiology
Soil Science & Conservation
Soils
sorption
Urine
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB70VNAH0fVX9ZQIgg8abJukSR_X5Y7DB5882LfSpOld8a5dtrvg_vfOtN2eXTzBt0KmadqZSb5pJt8AfCicddYqyX2oSi6tzHla5ILbOMlL5ZwQvsu2-J6cnctvS7UcaHLoLMzB_v2XFn2R8iRiyjIzqeHmLtxTkdBUpmGRLMZZV8RdmVO64KFOl8MBmb_3MVmEDqfiP9aiwzzJg83Sbg06fQKPB_DI5r22n8IdX8_g0fxiPRBo-Bnc_9og3NvN4MFJx0e9ewZrNAW2XW3yn541JaPySnW1vWZ2x1Z02K9GE2QIvS_WCKRZVbO2qa5aEt1XT9mwvviTY9cdHSejBHfKwGA4X_qK_kmw9tL7FfO_HCUwPofz05MfizM-lFrgDvHahpfOOVkienDOS9SVskWiE2e0F1oWpbDSCiVKjfhASJPmuQpLjAydKZWNPEKyF3BUN7V_BawItbOptoVwUgod2VxJUaZCOJOncVIEEO2_feYGHnIqh3GV3TAok74y1FfW6SszAXwa71n1LBz_lP5IKs3IRbFnlw8nDXB8RHaVzTWhUqmNCuB4Iomu5abNe6PIBtdus37nEaPEJID3YzPdSelqtW-2JBNjaGgQK98uI3CtwVg1FDKAl72dje8mNMFOpQMwEwscBYgUfNpSV5cdOThF8Ag68MGf98Z6M_bbv9nr_xN_Aw_j3p94GB3D0Wa99W8RnW3su84tfwMwkDC-
  priority: 102
  providerName: Springer Nature
Title The uptake of selenium by perennial ryegrass in soils of different organic matter contents receiving sheep excreta
URI https://link.springer.com/article/10.1007/s11104-023-05898-8
https://www.ncbi.nlm.nih.gov/pubmed/37251257
https://www.proquest.com/docview/2819539666
https://www.proquest.com/docview/2820968656
https://www.proquest.com/docview/3153164034
https://pubmed.ncbi.nlm.nih.gov/PMC10220126
Volume 486
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdYywM8IBgwAqMyEhIPYJHGduw8oba0TCBNCFGpPEWx42wVWxL6IbH_nrvEbWml7SWJ5Evi5L5-ts93hLzNrbHGSMFcKAsmjMhYkmecmSjOCmkt566JtjiPz6bi60zO_ITb0odVbmxiY6jzyuIc-cd2wQfAefyp_sOwahSurvoSGkekCyZY6w7pDsfn339sbTGPmuKneMFClcz8tpl28xx4PsHAZzEsraeZ3nNNhwb6Pw91GD15sITaeKbJY_LIQ0o6aGXgCbnnymPycHCx8Gk13DG5P6wABN48JQsQC7quV9lvR6uCYqmlcr6-puaG1rjxrwRxpADDLxYAqum8pMtqfrVE0k0llRVtC0FZet2k5qQY7I7RGBRsp5vj_ARdXjpXU_fXYjDjMzKdjH-Ozpgvu8AsYLcVK6y1ogAkYa0TwDdp8ljFVivHlcgLboThkhcKsAIXOskyGRYwSrS6kKbvAJ49J52yKt0LQvNQWZMok3MrBFd9k0nBi4Rzq7MkivOA9Dd_PLU-JzmWxrhKd9mUkUspcCltuJTqgLzf3lO3GTnupH6HjExRXeHJNvO7DqB_mPgqHShEqEJpGZDTPUpQM7vfvBGF1Kv5Mt0JZUDebJvxTgxdK121RpoIhokacPPtNBz8DoxbQy4CctJK1_bbuEIIKlVA9J7cbQkwQfh-Szm_bBKF42geAAi8-MNGRHd9v_2fvbz7U1-RB1GrNSzsn5LOarF2rwGZrUyPdAfDz8MJnr_8-jbueXXskaNRPILjNBr8A7LCO00
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD6aOiTgAcG4BQYYCcQDWKSxHScPCHWwqWOjQmiT9hZix9kqtqT0Iuif4jdyTi4trbS97S2STxIn5_bZPheAV5k11hglufNVzqWRKY-zVHAThGmurBXCVdEWg7B_LL-cqJMN-NvmwlBYZWsTK0OdlZb2yN_XBz4IzsOPo1-cukbR6WrbQqMWiwM3_41LtsmH_c_I39dBsLd79KnPm64C3CI0mfLcWitzdJTWOonTUiYLdWgj7YSWWS6MNEKJXKMrFDKK01T5OS6CbJQr03WSCh2gyd-UIvSDDmzu7A6-fV_YfhFUzVbpgvs6PmnSdOpkPfS0kqOP5NTKL-LRiitcdwj_ecT1aM21I9vKE-7dhTsNhGW9WubuwYYrtuB273TclPFwW3Bjp0TQOb8PYxRDNhtN05-OlTmj1k7FcHbBzJyNKNGwQPFnCPtPxwji2bBgk3J4PiHStnPLlNWNpyy7qEqBMgqup-gPhrbaDWk_hE3OnBsx98dS8OQDOL4WhjyETlEW7jGwzNfWxNpkwkopdNekSoo8FsJGaRyEmQfd9o8ntqmBTq04zpNl9WbiUoJcSiouJZEHbxf3jOoKIFdSvyFGJmQe8Mk2bbIccH5UaCvpaULEUkfKg-0VSlRruzrcikLSmJVJslQCD14uhulOCpUrXDkjmgCXpRHi9MtpBPo5XCf7QnrwqJauxbcJTZBXaQ-iFblbEFBB8tWRYnhWFSan3QMEPPjid62ILud--T97cvWnvoCb_aOvh8nh_uDgKdwKag3ifncbOtPxzD1DVDg1zxtVZPDjurX_Hw5bc_Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VLUJwQFBegQJGAnEAq9nYjpMDQlvaVUvRqkJU2luIHadd0SbLPgT71_h1zOSxy67U3nqL5EniZB7fjD2eAXiTWWONUZI7X-VcGpnyOEsFN0GY5spaIVyVbdEPD0_ll4EabMDf9iwMpVW2NrEy1FlpaY18t97wQec83M2btIiT_d6n0S9OHaRop7Vtp1GLyLGb_8bwbfLxaB95_TYIegffPx_ypsMAt-imTHlurZU5gqa1TuIUlclCHdpIO6FllgsjjVAi1wiLQkZxmio_x4DIRrkyHSep6AGa_y1NUdEmbO0d9E--LXBABFXjVbrgvo4HzZGd-uAeoq7kiJec2vpFPFqBxXVw-A8d1zM317ZvK1Ts3Yd7jTvLurX8PYANV2zD3e7ZuCnp4bbh1l6JDuj8IYxRJNlsNE1_OlbmjNo8FcPZJTNzNqJDhwWqAsMQ4GyMDj0bFmxSDi8mRNp2cZmyugmVZZdVWVBGifaUCcLQbrshrY2wyblzI-b-WEqkfASnN8KQx7BZlIV7CizztTWxNpmwUgrdMamSIo-FsFEaB2HmQaf944lt6qFTW46LZFnJmbiUIJeSiktJ5MH7xT2juhrItdTviJEJmQp8sk2bEw84Pyq6lXQ1ecdSR8qDnRVKVHG7OtyKQtKYmEmyVAgPXi-G6U5KmytcOSOaAEPUCH32q2kEYh7GzL6QHjyppWvxbUKT-6u0B9GK3C0IqDj56kgxPK-KlNNKAjo_-OIPrYgu5371P3t2_ae-gtuo9cnXo_7xc7gT1ArE_c4ObE7HM_cCHcSpedloIoMfN638_wCSLXgr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+uptake+of+selenium+by+perennial+ryegrass+in+soils+of+different+organic+matter+contents+receiving+sheep+excreta&rft.jtitle=Plant+and+soil&rft.au=Kao%2C+Pei-Tzu&rft.au=Buss%2C+Heather+L&rft.au=McGrath%2C+Steve+P&rft.au=Darch%2C+Tegan&rft.date=2023-05-01&rft.issn=0032-079X&rft.volume=486&rft.issue=1-2&rft.spage=639&rft_id=info:doi/10.1007%2Fs11104-023-05898-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon