The uptake of selenium by perennial ryegrass in soils of different organic matter contents receiving sheep excreta
Background and aims The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients...
Saved in:
Published in | Plant and soil Vol. 486; no. 1-2; pp. 639 - 659 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.05.2023
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background and aims
The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients and organic matter. This study aims to unentangle the unclear effect of applying different types of ruminant excreta in soils of different organic matter contents on selenium uptake by forage.
Methods
Perennial ryegrass (
Lolium perenne
) was grown in soils of different organic matter contents. Urine and/or feces collected from sheep fed with organic or inorganic mineral supplements, including selenium, were applied to the soils. The selenium in the collected samples were analyzed using ICP-MS. The associated biogeochemical reactions were scrutinized by wet chemistry.
Results
The application of urine and/or feces resulted in either the same or lower selenium concentrations in perennial ryegrass. The excreta type did not affect total selenium accumulation in grass grown in low organic matter soil, whereas in high organic matter soil, feces resulted in significantly lower total selenium accumulation than urine, which was attributed to a possible interaction of selenium sorption in soil and microbial reduction of Se.
Conclusion
This one-time excreta application did not increase, but further decrease in some treatments, selenium concentration and accumulation in the perennial ryegrass. Consequently, to increase ruminant selenium intake, supplementing selenium directly to animals is more recommended than applying animal manure to soil, which might drive selenium reduction and decrease selenium uptake by grass. |
---|---|
AbstractList | Background and aims
The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients and organic matter. This study aims to unentangle the unclear effect of applying different types of ruminant excreta in soils of different organic matter contents on selenium uptake by forage.
Methods
Perennial ryegrass (
Lolium perenne
) was grown in soils of different organic matter contents. Urine and/or feces collected from sheep fed with organic or inorganic mineral supplements, including selenium, were applied to the soils. The selenium in the collected samples were analyzed using ICP-MS. The associated biogeochemical reactions were scrutinized by wet chemistry.
Results
The application of urine and/or feces resulted in either the same or lower selenium concentrations in perennial ryegrass. The excreta type did not affect total selenium accumulation in grass grown in low organic matter soil, whereas in high organic matter soil, feces resulted in significantly lower total selenium accumulation than urine, which was attributed to a possible interaction of selenium sorption in soil and microbial reduction of Se.
Conclusion
This one-time excreta application did not increase, but further decrease in some treatments, selenium concentration and accumulation in the perennial ryegrass. Consequently, to increase ruminant selenium intake, supplementing selenium directly to animals is more recommended than applying animal manure to soil, which might drive selenium reduction and decrease selenium uptake by grass. The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients and organic matter. This study aims to unentangle the unclear effect of applying different types of ruminant excreta in soils of different organic matter contents on selenium uptake by forage. Perennial ryegrass ( ) was grown in soils of different organic matter contents. Urine and/or feces collected from sheep fed with organic or inorganic mineral supplements, including selenium, were applied to the soils. The selenium in the collected samples were analyzed using ICP-MS. The associated biogeochemical reactions were scrutinized by wet chemistry. The application of urine and/or feces resulted in either the same or lower selenium concentrations in perennial ryegrass. The excreta type did not affect total selenium accumulation in grass grown in low organic matter soil, whereas in high organic matter soil, feces resulted in significantly lower total selenium accumulation than urine, which was attributed to a possible interaction of selenium sorption in soil and microbial reduction of Se. This one-time excreta application did not increase, but further decrease in some treatments, selenium concentration and accumulation in the perennial ryegrass. Consequently, to increase ruminant selenium intake, supplementing selenium directly to animals is more recommended than applying animal manure to soil, which might drive selenium reduction and decrease selenium uptake by grass. The online version contains supplementary material available at 10.1007/s11104-023-05898-8. Background and aims The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients and organic matter. This study aims to unentangle the unclear effect of applying different types of ruminant excreta in soils of different organic matter contents on selenium uptake by forage. Methods Perennial ryegrass (Lolium perenne) was grown in soils of different organic matter contents. Urine and/or feces collected from sheep fed with organic or inorganic mineral supplements, including selenium, were applied to the soils. The selenium in the collected samples were analyzed using ICP-MS. The associated biogeochemical reactions were scrutinized by wet chemistry. Results The application of urine and/or feces resulted in either the same or lower selenium concentrations in perennial ryegrass. The excreta type did not affect total selenium accumulation in grass grown in low organic matter soil, whereas in high organic matter soil, feces resulted in significantly lower total selenium accumulation than urine, which was attributed to a possible interaction of selenium sorption in soil and microbial reduction of Se. Conclusion This one-time excreta application did not increase, but further decrease in some treatments, selenium concentration and accumulation in the perennial ryegrass. Consequently, to increase ruminant selenium intake, supplementing selenium directly to animals is more recommended than applying animal manure to soil, which might drive selenium reduction and decrease selenium uptake by grass. The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients and organic matter. This study aims to unentangle the unclear effect of applying different types of ruminant excreta in soils of different organic matter contents on selenium uptake by forage.Background and aimsThe intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients and organic matter. This study aims to unentangle the unclear effect of applying different types of ruminant excreta in soils of different organic matter contents on selenium uptake by forage.Perennial ryegrass (Lolium perenne) was grown in soils of different organic matter contents. Urine and/or feces collected from sheep fed with organic or inorganic mineral supplements, including selenium, were applied to the soils. The selenium in the collected samples were analyzed using ICP-MS. The associated biogeochemical reactions were scrutinized by wet chemistry.MethodsPerennial ryegrass (Lolium perenne) was grown in soils of different organic matter contents. Urine and/or feces collected from sheep fed with organic or inorganic mineral supplements, including selenium, were applied to the soils. The selenium in the collected samples were analyzed using ICP-MS. The associated biogeochemical reactions were scrutinized by wet chemistry.The application of urine and/or feces resulted in either the same or lower selenium concentrations in perennial ryegrass. The excreta type did not affect total selenium accumulation in grass grown in low organic matter soil, whereas in high organic matter soil, feces resulted in significantly lower total selenium accumulation than urine, which was attributed to a possible interaction of selenium sorption in soil and microbial reduction of Se.ResultsThe application of urine and/or feces resulted in either the same or lower selenium concentrations in perennial ryegrass. The excreta type did not affect total selenium accumulation in grass grown in low organic matter soil, whereas in high organic matter soil, feces resulted in significantly lower total selenium accumulation than urine, which was attributed to a possible interaction of selenium sorption in soil and microbial reduction of Se.This one-time excreta application did not increase, but further decrease in some treatments, selenium concentration and accumulation in the perennial ryegrass. Consequently, to increase ruminant selenium intake, supplementing selenium directly to animals is more recommended than applying animal manure to soil, which might drive selenium reduction and decrease selenium uptake by grass.ConclusionThis one-time excreta application did not increase, but further decrease in some treatments, selenium concentration and accumulation in the perennial ryegrass. Consequently, to increase ruminant selenium intake, supplementing selenium directly to animals is more recommended than applying animal manure to soil, which might drive selenium reduction and decrease selenium uptake by grass.The online version contains supplementary material available at 10.1007/s11104-023-05898-8.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11104-023-05898-8. The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients and organic matter. This study aims to unentangle the unclear effect of applying different types of ruminant excreta in soils of different organic matter contents on selenium uptake by forage. Perennial ryegrass (Lolium perenne) was grown in soils of different organic matter contents. Urine and/or feces collected from sheep fed with organic or inorganic mineral supplements, including selenium, were applied to the soils. The selenium in the collected samples were analyzed using ICP-MS. The associated biogeochemical reactions were scrutinized by wet chemistry. The application of urine and/or feces resulted in either the same or lower selenium concentrations in perennial ryegrass. The excreta type did not affect total selenium accumulation in grass grown in low organic matter soil, whereas in high organic matter soil, feces resulted in significantly lower total selenium accumulation than urine, which was attributed to a possible interaction of selenium sorption in soil and microbial reduction of Se. This one-time excreta application did not increase, but further decrease in some treatments, selenium concentration and accumulation in the perennial ryegrass. Consequently, to increase ruminant selenium intake, supplementing selenium directly to animals is more recommended than applying animal manure to soil, which might drive selenium reduction and decrease selenium uptake by grass. Background and aimsThe intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients and organic matter. This study aims to unentangle the unclear effect of applying different types of ruminant excreta in soils of different organic matter contents on selenium uptake by forage.MethodsPerennial ryegrass (Lolium perenne) was grown in soils of different organic matter contents. Urine and/or feces collected from sheep fed with organic or inorganic mineral supplements, including selenium, were applied to the soils. The selenium in the collected samples were analyzed using ICP-MS. The associated biogeochemical reactions were scrutinized by wet chemistry.ResultsThe application of urine and/or feces resulted in either the same or lower selenium concentrations in perennial ryegrass. The excreta type did not affect total selenium accumulation in grass grown in low organic matter soil, whereas in high organic matter soil, feces resulted in significantly lower total selenium accumulation than urine, which was attributed to a possible interaction of selenium sorption in soil and microbial reduction of Se.ConclusionThis one-time excreta application did not increase, but further decrease in some treatments, selenium concentration and accumulation in the perennial ryegrass. Consequently, to increase ruminant selenium intake, supplementing selenium directly to animals is more recommended than applying animal manure to soil, which might drive selenium reduction and decrease selenium uptake by grass. |
Audience | Academic |
Author | Warren, Helen E. Buss, Heather L. Kao, Pei-Tzu Darch, Tegan Lee, Michael R. F. McGrath, Steve P. |
Author_xml | – sequence: 1 givenname: Pei-Tzu orcidid: 0000-0002-1380-7781 surname: Kao fullname: Kao, Pei-Tzu email: b01601029@gmail.com organization: Rothamsted Research – sequence: 2 givenname: Heather L. orcidid: 0000-0002-1852-3657 surname: Buss fullname: Buss, Heather L. organization: School of Earth Sciences, University of Bristol – sequence: 3 givenname: Steve P. orcidid: 0000-0003-0952-8947 surname: McGrath fullname: McGrath, Steve P. organization: Rothamsted Research – sequence: 4 givenname: Tegan orcidid: 0000-0003-2367-043X surname: Darch fullname: Darch, Tegan organization: Rothamsted Research – sequence: 5 givenname: Helen E. orcidid: 0000-0002-5952-9748 surname: Warren fullname: Warren, Helen E. organization: Alltech Bioscience Centre – sequence: 6 givenname: Michael R. F. orcidid: 0000-0001-7451-5611 surname: Lee fullname: Lee, Michael R. F. organization: Harper Adams University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37251257$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1rFTEYhYNU7If-ARcScONmaj4mk8xKSvELCm4quAuZzJu5qTPJNZkp3n9vxttqW6SSRUjynMPLyTlGByEGQOglJaeUEPk2U0pJXRHGKyJUqyr1BB1RIXklCG8O0BEhnFVEtt8O0XHOV2Q90-YZOuSSCcqEPELpcgN42c7mO-DocIYRgl8m3O3wFhKE4M2I0w6GZHLGPuAc_ZhXtPfOrcSMYxpM8BZPZp4hYRvDXK4zTmDBX_sw4LwB2GL4aRPM5jl66syY4cXNfoK-fnh_ef6puvjy8fP52UVlhRRz5ay1tZOCWAt1b7jo-kY2Vkngsu4d7-qOC-4kFZTXqjVGEFeT1ionOgo14yfo3d53u3QT9LbMlMyot8lPJu10NF7ffwl-o4d4rSlhjFDWFIc3Nw4p_lggz3ry2cI4mgBxyZpTwWlTE17_F2WKkbZRjVhdXz9Ar-KSQomiULQVvG2aO9RgRtA-uFhmtKupPiuhKFVLJQp1-g-qrB4mXz4CnC_39wSv7obyJ43bRhRA7QGbYs4JnLZ-NrOPa0Z-LOHotXx6Xz5dyqd_l0-rImUPpLfuj4r4XpQLHAZIf9N4RPULc87sKA |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e37740 crossref_primary_10_1016_j_jfca_2024_106822 crossref_primary_10_1007_s11104_023_06293_z crossref_primary_10_1038_s41598_024_66648_z |
Cites_doi | 10.1186/s12934-016-0554-z 10.3390/nu7064199 10.1071/9780643101364 10.1080/17583004.2021.1976674 10.1111/j.1365-2389.1992.tb00152.x 10.1071/AN19258 10.1201/9781351114561-4 10.1111/j.1469-8137.2007.02343.x 10.1016/S1002-0160(15)60028-5 10.1016/j.jhazmat.2007.04.098 10.1016/S1002-0160(17)60444-2 10.1016/S0009-2541(00)00246-1 10.1071/EA97161 10.1016/j.smallrumres.2009.12.042 10.1002/jpln.3591050303 10.1016/j.anifeedsci.2019.05.011 10.1201/9781439821985 10.1016/j.geoderma.2017.02.019 10.1007/s11120-005-5222-9 10.1111/j.1439-0523.2004.01032.x 10.1017/S0021859600058767 10.1097/00010694-197705000-00005 10.1128/AEM.00877-16 10.1371/journal.pone.0221647 10.1007/s00580-008-0793-4 10.2134/jeq1991.00472425002000010014x 10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2 10.1016/j.scitotenv.2007.08.024 10.1080/03067310903111661 10.1002/jpln.200900015 10.1007/s10705-006-9039-5 10.1016/bs.agron.2020.06.004 10.1007/s11157-009-9145-3 10.1007/BF00010076 10.2136/sssaj1987.03615995005100050009x 10.1007/s00244-013-9926-0 10.1016/S0883-2927(01)00046-4 10.1023/A:1004639906245 10.1007/s11356-020-10303-3 10.1071/SR9940543 10.1007/s10705-011-9435-3 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. COPYRIGHT 2023 Springer The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. – notice: COPYRIGHT 2023 Springer – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 7S9 L.6 5PM |
DOI | 10.1007/s11104-023-05898-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Ecology Botany |
EISSN | 1573-5036 |
EndPage | 659 |
ExternalDocumentID | PMC10220126 A750884785 37251257 10_1007_s11104_023_05898_8 |
Genre | Journal Article |
GeographicLocations | United Kingdom |
GeographicLocations_xml | – name: United Kingdom |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research grantid: BBS/E/C/000I0320 – fundername: Biotechnology and Biological Sciences Research Council grantid: BBS/E/C/000J0100 funderid: http://dx.doi.org/10.13039/501100000268 – fundername: Biotechnology and Biological Sciences Research Council grantid: BBS/E/C/000I0320 – fundername: Biotechnology and Biological Sciences Research Council grantid: BBS/E/C/000J0100 – fundername: ; grantid: BBS/E/C/000I0320 – fundername: ; grantid: BBS/E/C/000J0100 |
GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~F 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X2 88A 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBXY ACDTI ACGFS ACHIC ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADYPR ADZKW AEBTG AEEJZ AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIDBO AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EN4 EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0K M0L M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 PF0 PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SA0 SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XOL Y6R YLTOR Z45 Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG ZMTXR ZOVNA ~02 ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ NPM PQGLB AEIIB PMFND 7SN 7ST 7T7 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c575t-fccc4f750cce4da35bd676c87e374df3b4b353f71513489aa50f409c8f5b1e423 |
IEDL.DBID | BENPR |
ISSN | 0032-079X |
IngestDate | Thu Aug 21 18:37:40 EDT 2025 Fri Jul 11 10:28:21 EDT 2025 Fri Jul 11 11:19:17 EDT 2025 Fri Jul 25 18:58:47 EDT 2025 Tue Jun 17 22:12:36 EDT 2025 Tue Jun 10 21:07:01 EDT 2025 Mon Jul 21 06:07:05 EDT 2025 Tue Jul 01 01:47:20 EDT 2025 Thu Apr 24 23:03:38 EDT 2025 Fri Feb 21 02:43:26 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Manure Microbial reduction Pasture Ruminants Fertilizers Grassland soil |
Language | English |
License | The Author(s) 2023. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-fccc4f750cce4da35bd676c87e374df3b4b353f71513489aa50f409c8f5b1e423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Responsible Editor: Ismail Cakmak. |
ORCID | 0000-0002-1380-7781 0000-0003-0952-8947 0000-0003-2367-043X 0000-0002-5952-9748 0000-0001-7451-5611 0000-0002-1852-3657 |
OpenAccessLink | https://doi.org/10.1007/s11104-023-05898-8 |
PMID | 37251257 |
PQID | 2819539666 |
PQPubID | 54098 |
PageCount | 21 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10220126 proquest_miscellaneous_3153164034 proquest_miscellaneous_2820968656 proquest_journals_2819539666 gale_infotracmisc_A750884785 gale_infotracacademiconefile_A750884785 pubmed_primary_37251257 crossref_citationtrail_10_1007_s11104_023_05898_8 crossref_primary_10_1007_s11104_023_05898_8 springer_journals_10_1007_s11104_023_05898_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Netherlands – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationTitleAlternate | Plant Soil |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | SébyFPotin-GautierMGiffautEBorgeGDonardOFXA critical review of thermodynamic data for selenium species at 25 °CChem Geol200117117319410.1016/S0009-2541(00)00246-1 Fernández-MartínezACharletLSelenium environmental cycling and bioavailability: a structural chemist point of viewRev Environ Sci Biotechnol20098811101:CAS:528:DC%2BD1MXitVOrtb0%3D10.1007/s11157-009-9145-3 ClaydenBHollisJMCriteria for differentiating soil series1984HarpendenRothamsted Experimental Station LehmannJSchrothGSchrothGSinclairFNutrient leachingTrees, crops and soil fertility2003WallingfordCABI Publishing151166 TanYYaoRWangRWangDWangGZhengSReduction of selenite to Se (0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soilMicrob Cell Fact2016151101:CAS:528:DC%2BC1cXmslWr10.1186/s12934-016-0554-z FanMSZhaoFJPoultonPRMcGrathSPHistorical changes in the concentrations of selenium in soil and wheat grain from the Broadbalk experiment over the last 160 yearsSci Total Environ20083895325381:CAS:528:DC%2BD2sXhtlaqurjO10.1016/j.scitotenv.2007.08.02417888491 AlemiMHGoldhamerDANielsenDRModeling selenium transport in steady-state, unsaturated soil columnsJ Environ Qual19912089951:CAS:528:DyaK3MXhsVaisrc%3D10.2134/jeq1991.00472425002000010014x EswayahASSmithTJGardinerPHEMicrobial transformations of selenium species of relevance to bioremediationAppl Environ Microbiol201682484848591:CAS:528:DC%2BC28XitVWisrfO10.1128/AEM.00877-16272603594968552 FulkersonWJSlackKHennessyDWHoughGMNutrients in ryegrass (Lolium spp.), white clover (Trifolium repens) and kikuyu (Pennisetum clandestinum) pastures in relation to season and stage of regrowth in a subtropical environmentAust J Exp Agric1998382272401:CAS:528:DyaK1cXksVyhuro%3D10.1071/EA97161 LiZLiangDPengQCuiZHuangJLinZInteraction between selenium and soil organic matter and its impact on soil selenium bioavailability: a reviewGeoderma201729569791:CAS:528:DC%2BC2sXjslyls7k%3D10.1016/j.geoderma.2017.02.019 Sears PD, Newbold RP (1942) The effect of sheep droppings on yield, botanical composition, and chemical composition of pasture. 1. Establishment of trial, technique of measurement, and results for the 1940-41 season. N Z J Sci Technol Sect A:36-61. MorganteMGianesellaMCasellaSRavarottoLStellettaCGiudiceEBlood gas analyses, ruminal and blood pH, urine and faecal pH in dairy cows during subacute ruminal acidosisComp Clin Path2009182292321:CAS:528:DC%2BD1MXns1CgtL0%3D10.1007/s00580-008-0793-4 SparksDLPageALHelmkePALoeppertRHMethods of soil analysis, part 3: Chemical methods2020Wisconsin, USAWiley Stroud JL, McGrath SP, Zhao F (2012) Selenium speciation in soil extracts using LC-ICP-MS. Int J Environ Anal Chem 92(2):222–236. https://doi.org/10.1080/03067310903111661 Tórtora-PérezJLThe importance of selenium and the effects of its deficiency in animal healthSmall Rumin Res20108918519210.1016/j.smallrumres.2009.12.042 GustafssonJPJohnssonLSelenium retention in the organic matter of Swedish forest soilsJ Soil Sci1992434614721:CAS:528:DyaK3sXht1eltbg%3D10.1111/j.1365-2389.1992.tb00152.x AHDB (2020) Recommended Grass and Clover Lists for England and Wales. https://ahdb.org.uk/recommended-grass-and-clover-lists. Accessed 31 May 2022 ZhaoFMcGrathSPExtractable sulphate and organic sulphur in soils and their availability to plantsPlant Soil199416422432501:CAS:528:DyaK2MXislamsrY%3D10.1007/BF00010076 SchwertmannUDifferenzierung der eisenoxide des bodens durch extraktion mit ammoniumoxalat-LösungJ Plant Nutr Soil Sci19641051942021:CAS:528:DyaF2MXotlCj10.1002/jpln.3591050303 Power JF, Prasad R (1997) Organic Manures. In: Soil fertility management for sustainable agriculture. CRC Press, New York KaoP-TDarchTMcGrathSPKendallNRBussHLWarrenHLeeMRFFactors influencing elemental micronutrient supply from pasture systems for grazing ruminantsAdv Agron202016416122910.1016/bs.agron.2020.06.004 Rayment GE, Lyons DJ (2011) Nitrogen & Phosphorus & Extractable iron, aluminum and silicon. In: Soil Chemical Methods, CSIRO Publishing, Australasia DoakBWSome chemical changes in the nitrogenous constituents of urine when voided on pastureJ Agric Sci1952421-21621711:CAS:528:DyaG2cXjtlyitw%3D%3D10.1017/S0021859600058767 ConantRTPaustianKElliottETGrassland management and conversion into grassland: effects on soil carbonEcol Appl20011134335510.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2 Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. In: USDA Circular No. 939. Government Printing Office, Washington D.C., US. pp 19 ÁvilaPAFaquinVÁvilaFWKachinskiWDCarvalhoGSGuilhermeJRGPhosphorus and sulfur in a tropical soil and their effects on growth and selenium accumulation in Leucaena leucocephala (Lam.) de WitEnviron Sci Pollut Res20202744060440721:CAS:528:DC%2BB3cXhs1ShtbfK10.1007/s11356-020-10303-3 JenkinsonDSRaynerJHThe turnover of soil organic matter in some of the Rothamsted classical experimentsSoil Sci1977529830510.1097/00010694-197705000-00005 Lee MRF, Rivero MJ, Cone JW (2018) The role of pasture in the diet of ruminant livestock. In: Marshall A, Collins R (ed). Improving grassland and pasture management in temperature agriculture. Burleigh Dodds Science Publishing, Cambridge, pp 31-54. https://doi.org/10.1201/9781351114561-4 RibeiroHMFangueiroDAlvesFVasconcelosECoutinhoJBolRCabralFCarbon-mineralization kinetics in an organically managed Cambic Arenosol amended with organic fertilizersJ Plant Nutr Soil Sci201017339451:CAS:528:DC%2BC3cXhvFGisr8%3D10.1002/jpln.200900015 WangQZhangJZhaoBXinXDengXZhangHInfluence of long-term fertilization on selenium accumulation in soil and uptake by cropsPedosphere2016261201291:CAS:528:DC%2BB3cXhtVegsrnM10.1016/S1002-0160(15)60028-5 ADAS (2011) Impact of grazing management on cattle and sheep parasites. https://meatpromotion.wales/images/resources/Impact_of_grazing_management_on_cattle_and_sheep_parasites.pdf. Accessed 13 July 2022 RoviraMGiménezJMartínezMMartínez-LladóXde PabloJMartíVDuroLSorption of selenium (IV) and selenium (VI) onto natural iron oxides: goethite and hematiteJ Hazard Meter20081502792841:CAS:528:DC%2BD1cXltVOgtA%3D%3D10.1016/j.jhazmat.2007.04.098 BolaricSBarthSMelchingerAEPosseltUKGenetic diversity in European perennial ryegrass cultivars investigated with RAPD markersPlant Breed200512421611661:CAS:528:DC%2BD2MXktlyisrw%3D10.1111/j.1439-0523.2004.01032.x HopperJLParkerDRPlant availability of selenite and selenate as influenced by the competing ions phosphate and sulfatePlant Soil19992101992071:CAS:528:DyaK1MXnt1Kku7k%3D10.1023/A:1004639906245 WinkelLHEVriensBJonesGDSchneiderLSPilon-SmitsEBañuelosGSSelenium cycling across soil-plant-atmosphere interfaces: a critical reviewNutrients20157419942391:CAS:528:DC%2BC2MXhsFKmsbrE10.3390/nu7064199260352464488781 WangZGaoYBiogeochemical cycling of selenium in Chinese environmentsAppl Geochem200116134513511:CAS:528:DC%2BD3MXjslamt70%3D10.1016/S0883-2927(01)00046-4 DarchTDunnRMGuyAHawkinsJMBAshMFrimpongKABlackwellMSAFertilizer produced from abattoir waste can contribute to phosphorus sustainability, and biofortify crops with mineralsPLoS ONE201914e02216471:CAS:528:DC%2BC1MXhvF2ju7nF10.1371/journal.pone.0221647314838066726140 SmažíkováPPrausLSzákováJTremlovaJAlešHTlustošPEffects of organic matter-rich amendments on selenium mobility in soilsPedosphere2019297407511:CAS:528:DC%2BB38XhslelsbvL10.1016/S1002-0160(17)60444-2 KeskinenRRätyMYli-HallaMSelenium fractions in selenate-fertilized field soils of FinlandNutr Cycl Agroecosyst20119117291:CAS:528:DC%2BC3MXhtVeitLzF10.1007/s10705-011-9435-3 KikkertJBerkelaarEPlant uptake and translocation of inorganic and organic forms of seleniumArch Environ Contam Toxicol2013654584651:CAS:528:DC%2BC3sXhtl2qurbE10.1007/s00244-013-9926-023793939 SorsTGEllisDRSaltDESelenium uptake, translocation, assimilation and metabolic fate in plantsPhotosynth Res2005863733891:CAS:528:DC%2BD28XpsFOr10.1007/s11120-005-5222-916307305 R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at https://www.R-project.org/. Accessed 1 Jan 2022 LiHFMcGrathSPZhaoFJSelenium uptake, translocation and speciation in wheat supplied with selenate or seleniteNew Phytol2008178921021:CAS:528:DC%2BD1cXks1SmtLo%3D10.1111/j.1469-8137.2007.02343.x18179602 LeeMRFFlemingHRCoganTHodgsonCDaviesDRAssessing the ability of silage lactic acid bacteria to incorporate and transform inorganic selenium within laboratory scale silosAnim Feed Sci Technol20192531251341:CAS:528:DC%2BC1MXhtVKisr3P10.1016/j.anifeedsci.2019.05.011312932916588266 Mayland HF, Gough LP, Stewart KC (1991) Chapter E: Selenium mobility in soils and its absorption, translocation, and metabolism in plants. In: Proceedings, Symposium on selenium, Western USA BalistrieriLSChaoTTSelenium adsorption by goethiteSSSAJ198751114511511:CAS:528:DyaL1cXitFSisQ%3D%3D10.2136/sssaj1987.03615995005100050009x AHDB (2019) Understanding grass growth for beef rotational grazing. https://ahdb.org.uk/knowledge-library/understanding-grass-growth-for-beef-rotational-grazing. Accessed 31 May 2022 LeeMRFFlemingHRWhittingtonFHodgsonCSurajPTDaviesDRThe potential of silage lactic acid bacteria derived nano-selenium as a dietary supplement in sheepAnim Prod Sci201959199920091:CAS:528:DC%2BC1MXhvFCiu7%2FE10.1071/AN19258 BlairGJTillARBoswellCRate of recycling of sulfur from urine, feces and litter applied to the soil surfaceAust J Soil Res19943254355410.1071/SR9940543 ØgaardAFSognTAEich-GreatorexSEffect of cattle manure on selenate and selenite retention in soilNutri Cycl Agroecosyst200676394810.1007/s10705-006-9039-5 DheriGSNazirGA review on carbon pools and sequestration as influenced by long-term management practices in a rice–wheat cropping systemCarbon Manag2021125595801:CAS:528:DC%2BB3MXitFaqtLfP10.1080/17583004.2021.1976674 J Lehmann (5898_CR27) 2003 JP Gustafsson (5898_CR18) 1992; 43 5898_CR26 R Keskinen (5898_CR22) 2011; 91 GS Dheri (5898_CR12) 2021; 12 Q Wang (5898_CR49) 2016; 26 T Darch (5898_CR11) 2019; 14 MRF Lee (5898_CR25) 2019; 253 S Bolaric (5898_CR8) 2005; 124 5898_CR30 WJ Fulkerson (5898_CR17) 1998; 38 PA Ávila (5898_CR5) 2020; 27 5898_CR34 5898_CR33 HF Li (5898_CR28) 2008; 178 5898_CR36 RT Conant (5898_CR10) 2001; 11 DS Jenkinson (5898_CR20) 1977; 5 5898_CR35 GJ Blair (5898_CR7) 1994; 32 A Fernández-Martínez (5898_CR16) 2009; 8 MH Alemi (5898_CR4) 1991; 20 JL Tórtora-Pérez (5898_CR47) 2010; 89 AF Øgaard (5898_CR32) 2006; 76 5898_CR40 5898_CR45 J Kikkert (5898_CR23) 2013; 65 M Rovira (5898_CR38) 2008; 150 B Clayden (5898_CR9) 1984 DL Sparks (5898_CR44) 2020 LS Balistrieri (5898_CR6) 1987; 51 BW Doak (5898_CR13) 1952; 42 TG Sors (5898_CR43) 2005; 86 P-T Kao (5898_CR21) 2020; 164 Z Li (5898_CR29) 2017; 295 F Zhao (5898_CR51) 1994; 164 LHE Winkel (5898_CR50) 2015; 7 5898_CR1 AS Eswayah (5898_CR14) 2016; 82 5898_CR2 HM Ribeiro (5898_CR37) 2010; 173 5898_CR3 M Morgante (5898_CR31) 2009; 18 Z Wang (5898_CR48) 2001; 16 MRF Lee (5898_CR24) 2019; 59 U Schwertmann (5898_CR39) 1964; 105 F Séby (5898_CR41) 2001; 171 JL Hopper (5898_CR19) 1999; 210 P Smažíková (5898_CR42) 2019; 29 Y Tan (5898_CR46) 2016; 15 MS Fan (5898_CR15) 2008; 389 |
References_xml | – reference: RibeiroHMFangueiroDAlvesFVasconcelosECoutinhoJBolRCabralFCarbon-mineralization kinetics in an organically managed Cambic Arenosol amended with organic fertilizersJ Plant Nutr Soil Sci201017339451:CAS:528:DC%2BC3cXhvFGisr8%3D10.1002/jpln.200900015 – reference: AHDB (2019) Understanding grass growth for beef rotational grazing. https://ahdb.org.uk/knowledge-library/understanding-grass-growth-for-beef-rotational-grazing. Accessed 31 May 2022 – reference: KeskinenRRätyMYli-HallaMSelenium fractions in selenate-fertilized field soils of FinlandNutr Cycl Agroecosyst20119117291:CAS:528:DC%2BC3MXhtVeitLzF10.1007/s10705-011-9435-3 – reference: ClaydenBHollisJMCriteria for differentiating soil series1984HarpendenRothamsted Experimental Station – reference: Mayland HF, Gough LP, Stewart KC (1991) Chapter E: Selenium mobility in soils and its absorption, translocation, and metabolism in plants. In: Proceedings, Symposium on selenium, Western USA – reference: Power JF, Prasad R (1997) Organic Manures. In: Soil fertility management for sustainable agriculture. CRC Press, New York – reference: DoakBWSome chemical changes in the nitrogenous constituents of urine when voided on pastureJ Agric Sci1952421-21621711:CAS:528:DyaG2cXjtlyitw%3D%3D10.1017/S0021859600058767 – reference: KaoP-TDarchTMcGrathSPKendallNRBussHLWarrenHLeeMRFFactors influencing elemental micronutrient supply from pasture systems for grazing ruminantsAdv Agron202016416122910.1016/bs.agron.2020.06.004 – reference: BlairGJTillARBoswellCRate of recycling of sulfur from urine, feces and litter applied to the soil surfaceAust J Soil Res19943254355410.1071/SR9940543 – reference: BolaricSBarthSMelchingerAEPosseltUKGenetic diversity in European perennial ryegrass cultivars investigated with RAPD markersPlant Breed200512421611661:CAS:528:DC%2BD2MXktlyisrw%3D10.1111/j.1439-0523.2004.01032.x – reference: HopperJLParkerDRPlant availability of selenite and selenate as influenced by the competing ions phosphate and sulfatePlant Soil19992101992071:CAS:528:DyaK1MXnt1Kku7k%3D10.1023/A:1004639906245 – reference: GustafssonJPJohnssonLSelenium retention in the organic matter of Swedish forest soilsJ Soil Sci1992434614721:CAS:528:DyaK3sXht1eltbg%3D10.1111/j.1365-2389.1992.tb00152.x – reference: MorganteMGianesellaMCasellaSRavarottoLStellettaCGiudiceEBlood gas analyses, ruminal and blood pH, urine and faecal pH in dairy cows during subacute ruminal acidosisComp Clin Path2009182292321:CAS:528:DC%2BD1MXns1CgtL0%3D10.1007/s00580-008-0793-4 – reference: ØgaardAFSognTAEich-GreatorexSEffect of cattle manure on selenate and selenite retention in soilNutri Cycl Agroecosyst200676394810.1007/s10705-006-9039-5 – reference: LeeMRFFlemingHRCoganTHodgsonCDaviesDRAssessing the ability of silage lactic acid bacteria to incorporate and transform inorganic selenium within laboratory scale silosAnim Feed Sci Technol20192531251341:CAS:528:DC%2BC1MXhtVKisr3P10.1016/j.anifeedsci.2019.05.011312932916588266 – reference: Fernández-MartínezACharletLSelenium environmental cycling and bioavailability: a structural chemist point of viewRev Environ Sci Biotechnol20098811101:CAS:528:DC%2BD1MXitVOrtb0%3D10.1007/s11157-009-9145-3 – reference: ConantRTPaustianKElliottETGrassland management and conversion into grassland: effects on soil carbonEcol Appl20011134335510.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2 – reference: JenkinsonDSRaynerJHThe turnover of soil organic matter in some of the Rothamsted classical experimentsSoil Sci1977529830510.1097/00010694-197705000-00005 – reference: SébyFPotin-GautierMGiffautEBorgeGDonardOFXA critical review of thermodynamic data for selenium species at 25 °CChem Geol200117117319410.1016/S0009-2541(00)00246-1 – reference: SmažíkováPPrausLSzákováJTremlovaJAlešHTlustošPEffects of organic matter-rich amendments on selenium mobility in soilsPedosphere2019297407511:CAS:528:DC%2BB38XhslelsbvL10.1016/S1002-0160(17)60444-2 – reference: Rayment GE, Lyons DJ (2011) Nitrogen & Phosphorus & Extractable iron, aluminum and silicon. In: Soil Chemical Methods, CSIRO Publishing, Australasia – reference: BalistrieriLSChaoTTSelenium adsorption by goethiteSSSAJ198751114511511:CAS:528:DyaL1cXitFSisQ%3D%3D10.2136/sssaj1987.03615995005100050009x – reference: FanMSZhaoFJPoultonPRMcGrathSPHistorical changes in the concentrations of selenium in soil and wheat grain from the Broadbalk experiment over the last 160 yearsSci Total Environ20083895325381:CAS:528:DC%2BD2sXhtlaqurjO10.1016/j.scitotenv.2007.08.02417888491 – reference: KikkertJBerkelaarEPlant uptake and translocation of inorganic and organic forms of seleniumArch Environ Contam Toxicol2013654584651:CAS:528:DC%2BC3sXhtl2qurbE10.1007/s00244-013-9926-023793939 – reference: WinkelLHEVriensBJonesGDSchneiderLSPilon-SmitsEBañuelosGSSelenium cycling across soil-plant-atmosphere interfaces: a critical reviewNutrients20157419942391:CAS:528:DC%2BC2MXhsFKmsbrE10.3390/nu7064199260352464488781 – reference: FulkersonWJSlackKHennessyDWHoughGMNutrients in ryegrass (Lolium spp.), white clover (Trifolium repens) and kikuyu (Pennisetum clandestinum) pastures in relation to season and stage of regrowth in a subtropical environmentAust J Exp Agric1998382272401:CAS:528:DyaK1cXksVyhuro%3D10.1071/EA97161 – reference: LiZLiangDPengQCuiZHuangJLinZInteraction between selenium and soil organic matter and its impact on soil selenium bioavailability: a reviewGeoderma201729569791:CAS:528:DC%2BC2sXjslyls7k%3D10.1016/j.geoderma.2017.02.019 – reference: WangZGaoYBiogeochemical cycling of selenium in Chinese environmentsAppl Geochem200116134513511:CAS:528:DC%2BD3MXjslamt70%3D10.1016/S0883-2927(01)00046-4 – reference: AlemiMHGoldhamerDANielsenDRModeling selenium transport in steady-state, unsaturated soil columnsJ Environ Qual19912089951:CAS:528:DyaK3MXhsVaisrc%3D10.2134/jeq1991.00472425002000010014x – reference: Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. In: USDA Circular No. 939. Government Printing Office, Washington D.C., US. pp 19 – reference: ADAS (2011) Impact of grazing management on cattle and sheep parasites. https://meatpromotion.wales/images/resources/Impact_of_grazing_management_on_cattle_and_sheep_parasites.pdf. Accessed 13 July 2022 – reference: R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at https://www.R-project.org/. Accessed 1 Jan 2022 – reference: ZhaoFMcGrathSPExtractable sulphate and organic sulphur in soils and their availability to plantsPlant Soil199416422432501:CAS:528:DyaK2MXislamsrY%3D10.1007/BF00010076 – reference: Stroud JL, McGrath SP, Zhao F (2012) Selenium speciation in soil extracts using LC-ICP-MS. Int J Environ Anal Chem 92(2):222–236. https://doi.org/10.1080/03067310903111661 – reference: LehmannJSchrothGSchrothGSinclairFNutrient leachingTrees, crops and soil fertility2003WallingfordCABI Publishing151166 – reference: SorsTGEllisDRSaltDESelenium uptake, translocation, assimilation and metabolic fate in plantsPhotosynth Res2005863733891:CAS:528:DC%2BD28XpsFOr10.1007/s11120-005-5222-916307305 – reference: Tórtora-PérezJLThe importance of selenium and the effects of its deficiency in animal healthSmall Rumin Res20108918519210.1016/j.smallrumres.2009.12.042 – reference: ÁvilaPAFaquinVÁvilaFWKachinskiWDCarvalhoGSGuilhermeJRGPhosphorus and sulfur in a tropical soil and their effects on growth and selenium accumulation in Leucaena leucocephala (Lam.) de WitEnviron Sci Pollut Res20202744060440721:CAS:528:DC%2BB3cXhs1ShtbfK10.1007/s11356-020-10303-3 – reference: WangQZhangJZhaoBXinXDengXZhangHInfluence of long-term fertilization on selenium accumulation in soil and uptake by cropsPedosphere2016261201291:CAS:528:DC%2BB3cXhtVegsrnM10.1016/S1002-0160(15)60028-5 – reference: AHDB (2020) Recommended Grass and Clover Lists for England and Wales. https://ahdb.org.uk/recommended-grass-and-clover-lists. Accessed 31 May 2022 – reference: SchwertmannUDifferenzierung der eisenoxide des bodens durch extraktion mit ammoniumoxalat-LösungJ Plant Nutr Soil Sci19641051942021:CAS:528:DyaF2MXotlCj10.1002/jpln.3591050303 – reference: LeeMRFFlemingHRWhittingtonFHodgsonCSurajPTDaviesDRThe potential of silage lactic acid bacteria derived nano-selenium as a dietary supplement in sheepAnim Prod Sci201959199920091:CAS:528:DC%2BC1MXhvFCiu7%2FE10.1071/AN19258 – reference: DarchTDunnRMGuyAHawkinsJMBAshMFrimpongKABlackwellMSAFertilizer produced from abattoir waste can contribute to phosphorus sustainability, and biofortify crops with mineralsPLoS ONE201914e02216471:CAS:528:DC%2BC1MXhvF2ju7nF10.1371/journal.pone.0221647314838066726140 – reference: DheriGSNazirGA review on carbon pools and sequestration as influenced by long-term management practices in a rice–wheat cropping systemCarbon Manag2021125595801:CAS:528:DC%2BB3MXitFaqtLfP10.1080/17583004.2021.1976674 – reference: LiHFMcGrathSPZhaoFJSelenium uptake, translocation and speciation in wheat supplied with selenate or seleniteNew Phytol2008178921021:CAS:528:DC%2BD1cXks1SmtLo%3D10.1111/j.1469-8137.2007.02343.x18179602 – reference: Sears PD, Newbold RP (1942) The effect of sheep droppings on yield, botanical composition, and chemical composition of pasture. 1. Establishment of trial, technique of measurement, and results for the 1940-41 season. N Z J Sci Technol Sect A:36-61. – reference: TanYYaoRWangRWangDWangGZhengSReduction of selenite to Se (0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soilMicrob Cell Fact2016151101:CAS:528:DC%2BC1cXmslWr10.1186/s12934-016-0554-z – reference: EswayahASSmithTJGardinerPHEMicrobial transformations of selenium species of relevance to bioremediationAppl Environ Microbiol201682484848591:CAS:528:DC%2BC28XitVWisrfO10.1128/AEM.00877-16272603594968552 – reference: RoviraMGiménezJMartínezMMartínez-LladóXde PabloJMartíVDuroLSorption of selenium (IV) and selenium (VI) onto natural iron oxides: goethite and hematiteJ Hazard Meter20081502792841:CAS:528:DC%2BD1cXltVOgtA%3D%3D10.1016/j.jhazmat.2007.04.098 – reference: SparksDLPageALHelmkePALoeppertRHMethods of soil analysis, part 3: Chemical methods2020Wisconsin, USAWiley – reference: Lee MRF, Rivero MJ, Cone JW (2018) The role of pasture in the diet of ruminant livestock. In: Marshall A, Collins R (ed). Improving grassland and pasture management in temperature agriculture. Burleigh Dodds Science Publishing, Cambridge, pp 31-54. https://doi.org/10.1201/9781351114561-4 – volume: 15 start-page: 1 year: 2016 ident: 5898_CR46 publication-title: Microb Cell Fact doi: 10.1186/s12934-016-0554-z – volume: 7 start-page: 4199 year: 2015 ident: 5898_CR50 publication-title: Nutrients doi: 10.3390/nu7064199 – ident: 5898_CR33 – ident: 5898_CR36 doi: 10.1071/9780643101364 – volume: 12 start-page: 559 year: 2021 ident: 5898_CR12 publication-title: Carbon Manag doi: 10.1080/17583004.2021.1976674 – volume: 43 start-page: 461 year: 1992 ident: 5898_CR18 publication-title: J Soil Sci doi: 10.1111/j.1365-2389.1992.tb00152.x – volume: 59 start-page: 1999 year: 2019 ident: 5898_CR24 publication-title: Anim Prod Sci doi: 10.1071/AN19258 – ident: 5898_CR26 doi: 10.1201/9781351114561-4 – volume: 178 start-page: 92 year: 2008 ident: 5898_CR28 publication-title: New Phytol doi: 10.1111/j.1469-8137.2007.02343.x – ident: 5898_CR2 – volume: 26 start-page: 120 year: 2016 ident: 5898_CR49 publication-title: Pedosphere doi: 10.1016/S1002-0160(15)60028-5 – volume: 150 start-page: 279 year: 2008 ident: 5898_CR38 publication-title: J Hazard Meter doi: 10.1016/j.jhazmat.2007.04.098 – volume: 29 start-page: 740 year: 2019 ident: 5898_CR42 publication-title: Pedosphere doi: 10.1016/S1002-0160(17)60444-2 – volume: 171 start-page: 173 year: 2001 ident: 5898_CR41 publication-title: Chem Geol doi: 10.1016/S0009-2541(00)00246-1 – volume: 38 start-page: 227 year: 1998 ident: 5898_CR17 publication-title: Aust J Exp Agric doi: 10.1071/EA97161 – volume: 89 start-page: 185 year: 2010 ident: 5898_CR47 publication-title: Small Rumin Res doi: 10.1016/j.smallrumres.2009.12.042 – volume: 105 start-page: 194 year: 1964 ident: 5898_CR39 publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.3591050303 – volume: 253 start-page: 125 year: 2019 ident: 5898_CR25 publication-title: Anim Feed Sci Technol doi: 10.1016/j.anifeedsci.2019.05.011 – ident: 5898_CR34 doi: 10.1201/9781439821985 – volume-title: Criteria for differentiating soil series year: 1984 ident: 5898_CR9 – volume: 295 start-page: 69 year: 2017 ident: 5898_CR29 publication-title: Geoderma doi: 10.1016/j.geoderma.2017.02.019 – volume: 86 start-page: 373 year: 2005 ident: 5898_CR43 publication-title: Photosynth Res doi: 10.1007/s11120-005-5222-9 – volume-title: Methods of soil analysis, part 3: Chemical methods year: 2020 ident: 5898_CR44 – volume: 124 start-page: 161 issue: 2 year: 2005 ident: 5898_CR8 publication-title: Plant Breed doi: 10.1111/j.1439-0523.2004.01032.x – volume: 42 start-page: 162 issue: 1-2 year: 1952 ident: 5898_CR13 publication-title: J Agric Sci doi: 10.1017/S0021859600058767 – start-page: 151 volume-title: Trees, crops and soil fertility year: 2003 ident: 5898_CR27 – volume: 5 start-page: 298 year: 1977 ident: 5898_CR20 publication-title: Soil Sci doi: 10.1097/00010694-197705000-00005 – volume: 82 start-page: 4848 year: 2016 ident: 5898_CR14 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00877-16 – ident: 5898_CR1 – volume: 14 start-page: e0221647 year: 2019 ident: 5898_CR11 publication-title: PLoS ONE doi: 10.1371/journal.pone.0221647 – volume: 18 start-page: 229 year: 2009 ident: 5898_CR31 publication-title: Comp Clin Path doi: 10.1007/s00580-008-0793-4 – volume: 20 start-page: 89 year: 1991 ident: 5898_CR4 publication-title: J Environ Qual doi: 10.2134/jeq1991.00472425002000010014x – volume: 11 start-page: 343 year: 2001 ident: 5898_CR10 publication-title: Ecol Appl doi: 10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2 – volume: 389 start-page: 532 year: 2008 ident: 5898_CR15 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2007.08.024 – ident: 5898_CR45 doi: 10.1080/03067310903111661 – ident: 5898_CR35 – volume: 173 start-page: 39 year: 2010 ident: 5898_CR37 publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.200900015 – volume: 76 start-page: 39 year: 2006 ident: 5898_CR32 publication-title: Nutri Cycl Agroecosyst doi: 10.1007/s10705-006-9039-5 – volume: 164 start-page: 161 year: 2020 ident: 5898_CR21 publication-title: Adv Agron doi: 10.1016/bs.agron.2020.06.004 – volume: 8 start-page: 81 year: 2009 ident: 5898_CR16 publication-title: Rev Environ Sci Biotechnol doi: 10.1007/s11157-009-9145-3 – volume: 164 start-page: 243 issue: 2 year: 1994 ident: 5898_CR51 publication-title: Plant Soil doi: 10.1007/BF00010076 – volume: 51 start-page: 1145 year: 1987 ident: 5898_CR6 publication-title: SSSAJ doi: 10.2136/sssaj1987.03615995005100050009x – ident: 5898_CR30 – volume: 65 start-page: 458 year: 2013 ident: 5898_CR23 publication-title: Arch Environ Contam Toxicol doi: 10.1007/s00244-013-9926-0 – volume: 16 start-page: 1345 year: 2001 ident: 5898_CR48 publication-title: Appl Geochem doi: 10.1016/S0883-2927(01)00046-4 – ident: 5898_CR3 – volume: 210 start-page: 199 year: 1999 ident: 5898_CR19 publication-title: Plant Soil doi: 10.1023/A:1004639906245 – volume: 27 start-page: 44060 year: 2020 ident: 5898_CR5 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-10303-3 – ident: 5898_CR40 – volume: 32 start-page: 543 year: 1994 ident: 5898_CR7 publication-title: Aust J Soil Res doi: 10.1071/SR9940543 – volume: 91 start-page: 17 year: 2011 ident: 5898_CR22 publication-title: Nutr Cycl Agroecosyst doi: 10.1007/s10705-011-9435-3 |
SSID | ssj0003216 |
Score | 2.4282243 |
Snippet | Background and aims
The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in... The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which... Background and aims The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in... Background and aimsThe intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in... BACKGROUND AND AIMS: The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 639 |
SubjectTerms | Accumulation Agriculture Analysis Animal manures Animals Biomedical and Life Sciences Ecology Feces Forage Grasses Growth Life Sciences Lolium perenne Methods Microorganisms Nutrients Nutritional aspects Organic fertilizers Organic matter Plant Physiology Plant Sciences Plant-soil relationships Reduction Research Article Ryegrasses Selenium Sheep soil Soil microbiology Soil Science & Conservation Soils sorption Urine |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB70VNAH0fVX9ZQIgg8abJukSR_X5Y7DB5882LfSpOld8a5dtrvg_vfOtN2eXTzBt0KmadqZSb5pJt8AfCicddYqyX2oSi6tzHla5ILbOMlL5ZwQvsu2-J6cnctvS7UcaHLoLMzB_v2XFn2R8iRiyjIzqeHmLtxTkdBUpmGRLMZZV8RdmVO64KFOl8MBmb_3MVmEDqfiP9aiwzzJg83Sbg06fQKPB_DI5r22n8IdX8_g0fxiPRBo-Bnc_9og3NvN4MFJx0e9ewZrNAW2XW3yn541JaPySnW1vWZ2x1Z02K9GE2QIvS_WCKRZVbO2qa5aEt1XT9mwvviTY9cdHSejBHfKwGA4X_qK_kmw9tL7FfO_HCUwPofz05MfizM-lFrgDvHahpfOOVkienDOS9SVskWiE2e0F1oWpbDSCiVKjfhASJPmuQpLjAydKZWNPEKyF3BUN7V_BawItbOptoVwUgod2VxJUaZCOJOncVIEEO2_feYGHnIqh3GV3TAok74y1FfW6SszAXwa71n1LBz_lP5IKs3IRbFnlw8nDXB8RHaVzTWhUqmNCuB4Iomu5abNe6PIBtdus37nEaPEJID3YzPdSelqtW-2JBNjaGgQK98uI3CtwVg1FDKAl72dje8mNMFOpQMwEwscBYgUfNpSV5cdOThF8Ag68MGf98Z6M_bbv9nr_xN_Aw_j3p94GB3D0Wa99W8RnW3su84tfwMwkDC- priority: 102 providerName: Springer Nature |
Title | The uptake of selenium by perennial ryegrass in soils of different organic matter contents receiving sheep excreta |
URI | https://link.springer.com/article/10.1007/s11104-023-05898-8 https://www.ncbi.nlm.nih.gov/pubmed/37251257 https://www.proquest.com/docview/2819539666 https://www.proquest.com/docview/2820968656 https://www.proquest.com/docview/3153164034 https://pubmed.ncbi.nlm.nih.gov/PMC10220126 |
Volume | 486 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdYywM8IBgwAqMyEhIPYJHGduw8oba0TCBNCFGpPEWx42wVWxL6IbH_nrvEbWml7SWJ5Evi5L5-ts93hLzNrbHGSMFcKAsmjMhYkmecmSjOCmkt566JtjiPz6bi60zO_ITb0odVbmxiY6jzyuIc-cd2wQfAefyp_sOwahSurvoSGkekCyZY6w7pDsfn339sbTGPmuKneMFClcz8tpl28xx4PsHAZzEsraeZ3nNNhwb6Pw91GD15sITaeKbJY_LIQ0o6aGXgCbnnymPycHCx8Gk13DG5P6wABN48JQsQC7quV9lvR6uCYqmlcr6-puaG1rjxrwRxpADDLxYAqum8pMtqfrVE0k0llRVtC0FZet2k5qQY7I7RGBRsp5vj_ARdXjpXU_fXYjDjMzKdjH-Ozpgvu8AsYLcVK6y1ogAkYa0TwDdp8ljFVivHlcgLboThkhcKsAIXOskyGRYwSrS6kKbvAJ49J52yKt0LQvNQWZMok3MrBFd9k0nBi4Rzq7MkivOA9Dd_PLU-JzmWxrhKd9mUkUspcCltuJTqgLzf3lO3GTnupH6HjExRXeHJNvO7DqB_mPgqHShEqEJpGZDTPUpQM7vfvBGF1Kv5Mt0JZUDebJvxTgxdK121RpoIhokacPPtNBz8DoxbQy4CctJK1_bbuEIIKlVA9J7cbQkwQfh-Szm_bBKF42geAAi8-MNGRHd9v_2fvbz7U1-RB1GrNSzsn5LOarF2rwGZrUyPdAfDz8MJnr_8-jbueXXskaNRPILjNBr8A7LCO00 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD6aOiTgAcG4BQYYCcQDWKSxHScPCHWwqWOjQmiT9hZix9kqtqT0Iuif4jdyTi4trbS97S2STxIn5_bZPheAV5k11hglufNVzqWRKY-zVHAThGmurBXCVdEWg7B_LL-cqJMN-NvmwlBYZWsTK0OdlZb2yN_XBz4IzsOPo1-cukbR6WrbQqMWiwM3_41LtsmH_c_I39dBsLd79KnPm64C3CI0mfLcWitzdJTWOonTUiYLdWgj7YSWWS6MNEKJXKMrFDKK01T5OS6CbJQr03WSCh2gyd-UIvSDDmzu7A6-fV_YfhFUzVbpgvs6PmnSdOpkPfS0kqOP5NTKL-LRiitcdwj_ecT1aM21I9vKE-7dhTsNhGW9WubuwYYrtuB273TclPFwW3Bjp0TQOb8PYxRDNhtN05-OlTmj1k7FcHbBzJyNKNGwQPFnCPtPxwji2bBgk3J4PiHStnPLlNWNpyy7qEqBMgqup-gPhrbaDWk_hE3OnBsx98dS8OQDOL4WhjyETlEW7jGwzNfWxNpkwkopdNekSoo8FsJGaRyEmQfd9o8ntqmBTq04zpNl9WbiUoJcSiouJZEHbxf3jOoKIFdSvyFGJmQe8Mk2bbIccH5UaCvpaULEUkfKg-0VSlRruzrcikLSmJVJslQCD14uhulOCpUrXDkjmgCXpRHi9MtpBPo5XCf7QnrwqJauxbcJTZBXaQ-iFblbEFBB8tWRYnhWFSan3QMEPPjid62ILud--T97cvWnvoCb_aOvh8nh_uDgKdwKag3ifncbOtPxzD1DVDg1zxtVZPDjurX_Hw5bc_Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VLUJwQFBegQJGAnEAq9nYjpMDQlvaVUvRqkJU2luIHadd0SbLPgT71_h1zOSxy67U3nqL5EniZB7fjD2eAXiTWWONUZI7X-VcGpnyOEsFN0GY5spaIVyVbdEPD0_ll4EabMDf9iwMpVW2NrEy1FlpaY18t97wQec83M2btIiT_d6n0S9OHaRop7Vtp1GLyLGb_8bwbfLxaB95_TYIegffPx_ypsMAt-imTHlurZU5gqa1TuIUlclCHdpIO6FllgsjjVAi1wiLQkZxmio_x4DIRrkyHSep6AGa_y1NUdEmbO0d9E--LXBABFXjVbrgvo4HzZGd-uAeoq7kiJec2vpFPFqBxXVw-A8d1zM317ZvK1Ts3Yd7jTvLurX8PYANV2zD3e7ZuCnp4bbh1l6JDuj8IYxRJNlsNE1_OlbmjNo8FcPZJTNzNqJDhwWqAsMQ4GyMDj0bFmxSDi8mRNp2cZmyugmVZZdVWVBGifaUCcLQbrshrY2wyblzI-b-WEqkfASnN8KQx7BZlIV7CizztTWxNpmwUgrdMamSIo-FsFEaB2HmQaf944lt6qFTW46LZFnJmbiUIJeSiktJ5MH7xT2juhrItdTviJEJmQp8sk2bEw84Pyq6lXQ1ecdSR8qDnRVKVHG7OtyKQtKYmEmyVAgPXi-G6U5KmytcOSOaAEPUCH32q2kEYh7GzL6QHjyppWvxbUKT-6u0B9GK3C0IqDj56kgxPK-KlNNKAjo_-OIPrYgu5371P3t2_ae-gtuo9cnXo_7xc7gT1ArE_c4ObE7HM_cCHcSpedloIoMfN638_wCSLXgr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+uptake+of+selenium+by+perennial+ryegrass+in+soils+of+different+organic+matter+contents+receiving+sheep+excreta&rft.jtitle=Plant+and+soil&rft.au=Kao%2C+Pei-Tzu&rft.au=Buss%2C+Heather+L&rft.au=McGrath%2C+Steve+P&rft.au=Darch%2C+Tegan&rft.date=2023-05-01&rft.issn=0032-079X&rft.volume=486&rft.issue=1-2&rft.spage=639&rft_id=info:doi/10.1007%2Fs11104-023-05898-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |