Methane prediction equations including genera of rumen bacteria as predictor variables improve prediction accuracy
Methane (CH 4 ) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH 4 . To address thi...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 21305 - 11 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.12.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-023-48449-y |
Cover
Loading…
Abstract | Methane (CH
4
) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH
4
. To address this limitation, we developed novel CH
4
prediction models incorporating rumen microbes as predictors, alongside animal- and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH
4
production (g CH
4
/animal·d, ANIM-B models) and CH
4
yield (g CH
4
/kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin’s concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH
4
prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH
4
emissions from sheep, providing valuable insights for future research and mitigation strategies. |
---|---|
AbstractList | Methane (CH4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH4. To address this limitation, we developed novel CH4 prediction models incorporating rumen microbes as predictors, alongside animal- and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH4 production (g CH4/animal·d, ANIM-B models) and CH4 yield (g CH4/kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin's concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH4 prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH4 emissions from sheep, providing valuable insights for future research and mitigation strategies.Methane (CH4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH4. To address this limitation, we developed novel CH4 prediction models incorporating rumen microbes as predictors, alongside animal- and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH4 production (g CH4/animal·d, ANIM-B models) and CH4 yield (g CH4/kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin's concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH4 prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH4 emissions from sheep, providing valuable insights for future research and mitigation strategies. Methane (CH 4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animalrelated data, ignoring the predicting power of rumen microbiota, the source of CH 4. To address this limitation, we developed novel CH 4 prediction models incorporating rumen microbes as predictors, alongside animal-and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH 4 production (g CH 4 /animal•d, ANIM-B models) and CH 4 yield (g CH 4 /kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin's concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH 4 prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH 4 emissions from sheep, providing valuable insights for future research and mitigation strategies. Methane (CH 4 ) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH 4 . To address this limitation, we developed novel CH 4 prediction models incorporating rumen microbes as predictors, alongside animal- and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH 4 production (g CH 4 /animal·d, ANIM-B models) and CH 4 yield (g CH 4 /kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin’s concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH 4 prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH 4 emissions from sheep, providing valuable insights for future research and mitigation strategies. Abstract Methane (CH4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH4. To address this limitation, we developed novel CH4 prediction models incorporating rumen microbes as predictors, alongside animal- and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH4 production (g CH4/animal·d, ANIM-B models) and CH4 yield (g CH4/kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin’s concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH4 prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH4 emissions from sheep, providing valuable insights for future research and mitigation strategies. Methane (CH ) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH . To address this limitation, we developed novel CH prediction models incorporating rumen microbes as predictors, alongside animal- and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH production (g CH /animal·d, ANIM-B models) and CH yield (g CH /kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin's concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH emissions from sheep, providing valuable insights for future research and mitigation strategies. Methane (CH4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH4. To address this limitation, we developed novel CH4 prediction models incorporating rumen microbes as predictors, alongside animal- and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH4 production (g CH4/animal·d, ANIM-B models) and CH4 yield (g CH4/kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin’s concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH4 prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH4 emissions from sheep, providing valuable insights for future research and mitigation strategies. |
ArticleNumber | 21305 |
Author | Firkins, Jeffrey Eugène, Maguy A. Zhang, Boyang McGee, Mark Kreuzer, Michael Crompton, Les A. Kebreab, Ermias Reynolds, Christopher K. Schwarm, Angela Dijkstra, Jan Hristov, Alexander N. Bannink, André Bayat, Alireza R. Yáñez-Ruiz, David R. Janssen, Peter H. Lin, Shili Moraes, Luis Yu, Zhongtang |
Author_xml | – sequence: 1 givenname: Boyang surname: Zhang fullname: Zhang, Boyang organization: Department of Animal Sciences, The Ohio State University – sequence: 2 givenname: Shili surname: Lin fullname: Lin, Shili email: shili@stat.osu.edu organization: Department of Statistics, The Ohio State University – sequence: 3 givenname: Luis surname: Moraes fullname: Moraes, Luis organization: Department of Animal Sciences, The Ohio State University, Consultoria – sequence: 4 givenname: Jeffrey surname: Firkins fullname: Firkins, Jeffrey organization: Department of Animal Sciences, The Ohio State University – sequence: 5 givenname: Alexander N. surname: Hristov fullname: Hristov, Alexander N. organization: Department of Animal Science, The Pennsylvania State University – sequence: 6 givenname: Ermias surname: Kebreab fullname: Kebreab, Ermias organization: Department of Animal Science, University of California – sequence: 7 givenname: Peter H. surname: Janssen fullname: Janssen, Peter H. organization: AgResearch Limited, Grasslands Research Centre – sequence: 8 givenname: André surname: Bannink fullname: Bannink, André organization: Wageningen Livestock Research, Wageningen University & Research – sequence: 9 givenname: Alireza R. surname: Bayat fullname: Bayat, Alireza R. organization: Milk Production, Production Systems, Natural Resources Institute Finland (Luke) – sequence: 10 givenname: Les A. surname: Crompton fullname: Crompton, Les A. organization: School of Agriculture, Policy, and Development, University of Reading – sequence: 11 givenname: Jan surname: Dijkstra fullname: Dijkstra, Jan organization: Animal Nutrition Group, Wageningen University & Research – sequence: 12 givenname: Maguy A. surname: Eugène fullname: Eugène, Maguy A. organization: INRAE UMR Herbivores, VetAgro Sup, Université Clermont Auvergne – sequence: 13 givenname: Michael surname: Kreuzer fullname: Kreuzer, Michael organization: Institute of Agricultural Sciences, ETH Zurich – sequence: 14 givenname: Mark surname: McGee fullname: McGee, Mark organization: Teagasc, AGRIC, Grange, Dunsany., CO – sequence: 15 givenname: Christopher K. surname: Reynolds fullname: Reynolds, Christopher K. organization: School of Agriculture, Policy, and Development, University of Reading – sequence: 16 givenname: Angela surname: Schwarm fullname: Schwarm, Angela organization: Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences – sequence: 17 givenname: David R. surname: Yáñez-Ruiz fullname: Yáñez-Ruiz, David R. organization: Estación Experimental del Zaidin (CSIC) – sequence: 18 givenname: Zhongtang surname: Yu fullname: Yu, Zhongtang email: yu.226@osu.edu organization: Department of Animal Sciences, The Ohio State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38042941$$D View this record in MEDLINE/PubMed https://hal.science/hal-04331242$$DView record in HAL |
BookMark | eNp9Uk1v0zAYjtAQG2N_gAOKxAUOAX8m9glNE7BJRVx2txz7TesqtTs7qdR_j9NsY-1hvvjV6-fDfv28L8588FAUHzH6hhEV3xPDXIoKEVoxwZis9m-KC4IYrwgl5OxFfV5cpbRGeXEiGZbvinMqEJvqiyL-gWGlPZTbCNaZwQVfwsOopyKVzpt-tM4vyyV4iLoMXRnHDfiy1WaA6HSp0xM1xHKnc6vtITM32xh2R7LamDFqs_9QvO10n-Dqcb8s7n_9vL-5rRZ_f9_dXC8qwxs-VEA6zVsmG9kAga4xVNctE4gjI1rLJBFEWGYBaikQlVgKzqCmxlpjqUT0sribZW3Qa7WNbqPjXgXt1KER4lLpODjTg8oGVmrcMosJszQLNpJn-VrWmBvCstaPWWs7thuwBvwQdX8kenzi3Uotw05hVEvK-aTwdVZYnfBurxdq6iFGaXYnO5yxXx7dYngYIQ1q45KBvs__FMakiJB1noNspkd-PoGuwxh9HusBhSUhRGbUp5fXf_Z_ikEGkBlgYkgpQvcMwUhNcVNz3FSOmzrETe0zSZyQjBsOwckjcP3rVDpTU_bxS4j_r_0K6x98Yupn |
CitedBy_id | crossref_primary_10_1016_j_apenergy_2024_124613 |
Cites_doi | 10.2527/1995.7382483x 10.1093/nar/gky1022 10.1007/s11222-012-9359-z 10.1079/bjn19760053 10.7717/peerj.6496 10.1371/journal.pone.0214777 10.1016/S0921-4488(97)00031-X 10.2527/jas.2013-6583 10.3389/fmicb.2019.00162 10.1186/s40168-016-0201-2 10.1016/j.anifeedsci.2016.05.018 10.1007/978-1-0716-1418-1 10.1017/S1751731119003252 10.3389/fmicb.2018.01647 10.1038/s41396-019-0464-2 10.1371/journal.pone.0242158 10.1128/AEM.00010-10 10.3168/jds.2017-13536 10.18637/jss.v083.i02 10.1111/gcb.14094 10.1186/s40104-017-0141-0 10.1093/nar/gks1219 10.1016/j.biortech.2013.12.099 10.1016/j.agee.2019.106575 10.1371/journal.pone.0103171 10.2527/jas.2016.1222 10.3389/fmicb.2015.01087 10.3389/fmicb.2020.01981 10.1016/j.smallrumres.2017.08.009 10.1002/jsfa.9162 10.1111/gcb.13339 10.1111/asj.12877 10.3389/fmicb.2019.00614 10.1038/nmeth.3869 10.1093/gigascience/giab088 10.3168/jds.2016-12367 10.3168/jds.2018-16105 10.2527/jas.2016-0334 10.18637/jss.v033.i01 10.1186/s12866-020-02037-6 10.18637/jss.v067.i01 10.1017/S1751731113000864 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM DOA |
DOI | 10.1038/s41598-023-48449-y |
DatabaseName | Springer Nature OA/Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_7e2d9a1b4d124d369879582869615c24 PMC10693554 oai_HAL_hal_04331242v1 38042941 10_1038_s41598_023_48449_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Institute of Food and Agriculture grantid: 2014-67003-21979 – fundername: ; grantid: 2014-67003-21979 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 1XC PMFND VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c575t-e2fa5b49797e2ef7c3a6b48050c8bd492828d4dee69803919854e63cddcd3903 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:13:53 EDT 2025 Thu Aug 21 18:36:03 EDT 2025 Thu May 29 05:52:36 EDT 2025 Tue Aug 05 11:33:50 EDT 2025 Wed Aug 13 06:12:33 EDT 2025 Thu Apr 03 07:05:21 EDT 2025 Tue Jul 01 03:58:00 EDT 2025 Thu Apr 24 23:08:10 EDT 2025 Fri Feb 21 02:37:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Attribution: http://creativecommons.org/licenses/by Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-e2fa5b49797e2ef7c3a6b48050c8bd492828d4dee69803919854e63cddcd3903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2111-0597 |
OpenAccessLink | https://doaj.org/article/7e2d9a1b4d124d369879582869615c24 |
PMID | 38042941 |
PQID | 2896192229 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7e2d9a1b4d124d369879582869615c24 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10693554 hal_primary_oai_HAL_hal_04331242v1 proquest_miscellaneous_2896805970 proquest_journals_2896192229 pubmed_primary_38042941 crossref_primary_10_1038_s41598_023_48449_y crossref_citationtrail_10_1038_s41598_023_48449_y springer_journals_10_1038_s41598_023_48449_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-02 |
PublicationDateYYYYMMDD | 2023-12-02 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | OhSKoikeSKobayashiYEffect of ginkgo extract supplementation on in vitro rumen fermentation and bacterial profiles under different dietary conditionsAnim. Sci. J.201788173717431:CAS:528:DC%2BC2sXhslyms77I10.1111/asj.1287728707415 NewboldCJRamos-MoralesEReview: Ruminal microbiome and microbial metabolome: Effects of diet and ruminant hostAnimal202014s78s861:STN:280:DC%2BB38%2FoslKlsg%3D%3D10.1017/S175173111900325232024572 Aguilar-MarinSBBetancur-MurilloCLIsazaGAMesaHJovelJLower methane emissions were associated with higher abundance of ruminal Prevotella in a cohort of Colombian buffalosBMC Microbiol.2020203641:CAS:528:DC%2BB3cXislWju7vF10.1186/s12866-020-02037-6332464127694292 CallahanBJMcMurdiePJRosenMJHanAWJohnsonAJHolmesSPDADA2: High-resolution sample inference from Illumina amplicon dataNat. Methods2016135815831:CAS:528:DC%2BC28XosVWitb4%3D10.1038/nmeth.3869272140474927377 Team, R. C. R: A Language and Environment for Statistical Computing (v. 4.0. 2) [Computer Software] (R Foundation for Statistical Computing, 2020). ChenLMegasphaeraelsdenii lactate degradation pattern shifts in rumen acidosis modelsFront. Microbiol.20191016210.3389/fmicb.2019.00162307927046374331 MarchandinHJuvonenRHaikaraATrujilloMEMegasphaeraBergey's Manual of Systematics of Archaea and Bacteria2015Wiley116 NiuMPrediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental databaseGlob. Chang. Biol.201824336833892018GCBio..24.3368N10.1111/gcb.14094294509806055644 RamosAFOTucuma oil shifted ruminal fermentation, reducing methane production and altering the microbiome but decreased substrate digestibility within a RUSITEC fed a mixed hay–concentrate dietFront. Microbiol.20189164710.3389/fmicb.2018.01647300938886071481 JamesGWittenDHastieTTibshiraniRTaylorJAn Introduction to Statistical Learning with Applications in R20212Springer44510.1007/978-1-0716-1418-11469.62002 Lopez-GarciaAFungal and ciliate protozoa are the main rumen microbes associated with methane emissions in dairy cattleGigascience202211881:CAS:528:DC%2BB3sXosF2nsrg%3D10.1093/gigascience/giab088 KittelmannSTwo different bacterial community types are linked with the low-methane emission trait in sheepPLoS ONE201492014PLoSO...9j3171K1:CAS:528:DC%2BC2cXhs1ertbfO10.1371/journal.pone.0103171250785644117531 DenmanSEMartinez FernandezGShinkaiTMitsumoriMMcSweeneyCSMetagenomic analysis of the rumen microbial community following inhibition of methane formation by a halogenated methane analogFront. Microbiol.20156108710.3389/fmicb.2015.01087265282534602129 HammondKJReview of current in vivo measurement techniques for quantifying enteric methane emission from ruminantsAnim. Feed Sci. Technol.201621913301:CAS:528:DC%2BC28XpvFakurc%3D10.1016/j.anifeedsci.2016.05.018 GreeningCDiverse hydrogen production and consumption pathways influence methane production in ruminantsISME J.201913261726321:CAS:528:DC%2BC1MXhtlGgs7rL10.1038/s41396-019-0464-2312433326776011 EllisonMJDiet and feed efficiency status affect rumen microbial profiles of sheepSmall Rumin. Res.2017156121910.1016/j.smallrumres.2017.08.009 HendersonGImproved taxonomic assignment of rumen bacterial 16S rRNA sequences using a revised SILVA taxonomic frameworkPeerJ201971:CAS:528:DC%2BC1MXitl2jsrbF10.7717/peerj.6496308636736407505 JohnsonKAJohnsonDEMethane emissions from cattleJ. Anim. Sci.199573248324921:CAS:528:DyaK2MXnsVCntb8%3D10.2527/1995.7382483x8567486 TapioISnellingTJStrozziFWallaceRJThe ruminal microbiome associated with methane emissions from ruminant livestockJ. Anim. Sci. Biotechnol.2017871:CAS:528:DC%2BC1cXlsVCru78%3D10.1186/s40104-017-0141-0281236985244708 Pinares-PatinoCSHeritability estimates of methane emissions from sheepAnimal20137Suppl 231632110.1017/S1751731113000864237394733691003 PatraAKYuZCombinations of nitrate, saponin, and sulfate additively reduce methane production by rumen cultures in vitro while not adversely affecting feed digestion, fermentation or microbial communitiesBioresour. Technol.20141551291351:CAS:528:DC%2BC2cXmslWqtbY%3D10.1016/j.biortech.2013.12.09924440491 NilssonRHThe UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classificationsNucleic Acids Res.201947D259D2641:CAS:528:DC%2BC1MXhs1Cgt7nF10.1093/nar/gky102230371820 KamkeJRumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisationMicrobiome201645610.1186/s40168-016-0201-2277605705069950 FriedmanJHastieTTibshiraniRRegularization paths for generalized linear models via coordinate descentJ. Stat. Softw.20103312210.18637/jss.v033.i01208087282929880 CunhaCSCompositional and structural dynamics of the ruminal microbiota in dairy heifers and its relationship to methane productionJ. Sci. Food Agric.2019992102181:CAS:528:DC%2BC1cXht12lsLfE10.1002/jsfa.916229851082 QuastCThe SILVA ribosomal RNA gene database project: Improved data processing and web-based toolsNucleic Acids Res.201341D5905961:CAS:528:DC%2BC38XhvV2ksb%2FN10.1093/nar/gks121923193283 AppuhamyJAFranceJKebreabEModels for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New ZealandGlob. Chang. Biol.201622303930562016GCBio..22.3039A10.1111/gcb.1333927148862 van LingenHJPrediction of enteric methane production, yield and intensity of beef cattle using an intercontinental databaseAgric. Ecosyst. Environ.20192831:CAS:528:DC%2BC1MXhtlejurbF10.1016/j.agee.2019.106575 Stevenson, M. et al.EpiR: An R Package for the Analysis of Epidemiological Data v. 2.0.62 (2013). Granja-SalcedoYTLong-term encapsulated nitrate supplementation modulates rumen microbial diversity and rumen fermentation to reduce methane emission in grazing steersFront. Microbiol.20191061410.3389/fmicb.2019.00614309841416449429 LiREffect of different forage-to-concentrate ratios on ruminal bacterial structure and real-time methane production in sheepPLoS ONE2019141:CAS:528:DC%2BC1MXhtV2jtb3O10.1371/journal.pone.0214777311167576530836 SatoYCalcium salts of long-chain fatty acids from linseed oil decrease methane production by altering the rumen microbiome in vitroPLoS ONE2020151:CAS:528:DC%2BB3cXitlGgur3P10.1371/journal.pone.0242158331708867654805 Greg, R. gbm: Generalized Boosted Regression Models v. 2.1.8.1 (2010). BatesDMächlerMBolkerBWalkerSFitting linear mixed-effects models using lme4J. Stat. Softw.20156714810.18637/jss.v067.i01 van GastelenSLinseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cowsJ. Dairy Sci.2017100893989571:CAS:528:DC%2BC2sXhsFSmt7vF10.3168/jds.2016-1236728918153 ZhouMHernandez-SanabriaEGuanLLCharacterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysisAppl. Environ. Microbiol.201076377637862010ApEnM..76.3776Z1:CAS:528:DC%2BC3cXptVenurY%3D10.1128/AEM.00010-10204184362893468 PereaKFeed efficiency phenotypes in lambs involve changes in ruminal, colonic, and small-intestine-located microbiotaJ. Anim. Sci.201795258525921:CAS:528:DC%2BC2sXht1Kns7vF10.2527/jas.2016.122228727071 HristovANSpecial topics–mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation optionsJ. Anim. Sci.201391504550691:CAS:528:DC%2BC3sXhslKktrrL10.2527/jas.2013-658324045497 ZhaoYGO'ConnellNEYanTPrediction of enteric methane emissions from sheep offered fresh perennial ryegrass (Lolium perenne) using data measured in indirect open-circuit respiration chambersJ. Anim. Sci.201694242524351:CAS:528:DC%2BC28XhsFejurzJ10.2527/jas.2016-033427285918 HristovANSymposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction modelsJ. Dairy Sci.2018101665566741:CAS:528:DC%2BC1cXnvFemsbg%3D10.3168/jds.2017-1353629680642 PelchenAPetersKJMethane emissions from sheepSmall Rumin. Res.19982713715010.1016/S0921-4488(97)00031-X Yang, L. Model-Based Clustering of Longitudinal Data in High Dimensions Thesis (Ph.D.) thesis (University of Rochester, 2021). MurrayRMBryantAMLengRARates of production of methane in the rumen and large intestine of sheepBr. J. Nutr.1976361141:CAS:528:DyaE28XkvFSqt7o%3D10.1079/bjn19760053949464 BachAChanges in the rumen and colon microbiota and effects of live yeast dietary supplementation during the transition from the dry period to lactation of dairy cowsJ. Dairy Sci.2019102618061981:CAS:528:DC%2BC1MXovVOmsrs%3D10.3168/jds.2018-1610531056321 GrollATutzGVariable selection for generalized linear mixed models by L 1-penalized estimationStat. Comput.201224137154316554410.1007/s11222-012-9359-z1325.62139 McLoughlinSRumen microbiome composition is altered in sheep divergent in feed efficiencyFront. Microbiol.202011198110.3389/fmicb.2020.01981329830097477290 Masson-Delmotte, V. et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021). SaldanaDFFengYSIS: An R package for sure independence screening in ultrahigh-dimensional statistical modelsJ. Stat. Softw.201810.18637/jss.v083.i02 YG Zhao (48449_CR5) 2016; 94 YT Granja-Salcedo (48449_CR45) 2019; 10 AN Hristov (48449_CR9) 2018; 101 BJ Callahan (48449_CR15) 2016; 13 R Li (48449_CR40) 2019; 14 SE Denman (48449_CR39) 2015; 6 S van Gastelen (48449_CR30) 2017; 100 MJ Ellison (48449_CR36) 2017; 156 J Kamke (48449_CR46) 2016; 4 C Quast (48449_CR16) 2013; 41 DF Saldana (48449_CR24) 2018 AFO Ramos (48449_CR43) 2018; 9 A Pelchen (48449_CR3) 1998; 27 H Marchandin (48449_CR48) 2015 KJ Hammond (48449_CR4) 2016; 219 SB Aguilar-Marin (48449_CR38) 2020; 20 G James (48449_CR25) 2021 S Oh (48449_CR44) 2017; 88 JA Appuhamy (48449_CR8) 2016; 22 A Bach (48449_CR31) 2019; 102 S McLoughlin (48449_CR41) 2020; 11 K Perea (48449_CR32) 2017; 95 L Chen (48449_CR47) 2019; 10 CJ Newbold (48449_CR11) 2020; 14 48449_CR18 A Groll (48449_CR20) 2012; 24 I Tapio (48449_CR12) 2017; 8 S Kittelmann (48449_CR13) 2014; 9 HJ van Lingen (48449_CR6) 2019; 283 RM Murray (48449_CR27) 1976; 36 KA Johnson (48449_CR2) 1995; 73 Y Sato (48449_CR42) 2020; 15 RH Nilsson (48449_CR17) 2019; 47 J Friedman (48449_CR19) 2010; 33 C Greening (48449_CR33) 2019; 13 A Lopez-Garcia (48449_CR34) 2022; 11 48449_CR1 D Bates (48449_CR22) 2015; 67 AK Patra (48449_CR10) 2014; 155 G Henderson (48449_CR35) 2019; 7 48449_CR23 M Niu (48449_CR7) 2018; 24 48449_CR21 M Zhou (48449_CR28) 2010; 76 AN Hristov (48449_CR37) 2013; 91 CS Cunha (48449_CR29) 2019; 99 CS Pinares-Patino (48449_CR14) 2013; 7 48449_CR26 |
References_xml | – reference: PelchenAPetersKJMethane emissions from sheepSmall Rumin. Res.19982713715010.1016/S0921-4488(97)00031-X – reference: MarchandinHJuvonenRHaikaraATrujilloMEMegasphaeraBergey's Manual of Systematics of Archaea and Bacteria2015Wiley116 – reference: NewboldCJRamos-MoralesEReview: Ruminal microbiome and microbial metabolome: Effects of diet and ruminant hostAnimal202014s78s861:STN:280:DC%2BB38%2FoslKlsg%3D%3D10.1017/S175173111900325232024572 – reference: Lopez-GarciaAFungal and ciliate protozoa are the main rumen microbes associated with methane emissions in dairy cattleGigascience202211881:CAS:528:DC%2BB3sXosF2nsrg%3D10.1093/gigascience/giab088 – reference: PereaKFeed efficiency phenotypes in lambs involve changes in ruminal, colonic, and small-intestine-located microbiotaJ. Anim. Sci.201795258525921:CAS:528:DC%2BC2sXht1Kns7vF10.2527/jas.2016.122228727071 – reference: AppuhamyJAFranceJKebreabEModels for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New ZealandGlob. Chang. Biol.201622303930562016GCBio..22.3039A10.1111/gcb.1333927148862 – reference: HristovANSpecial topics–mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation optionsJ. Anim. Sci.201391504550691:CAS:528:DC%2BC3sXhslKktrrL10.2527/jas.2013-658324045497 – reference: Stevenson, M. et al.EpiR: An R Package for the Analysis of Epidemiological Data v. 2.0.62 (2013). – reference: JamesGWittenDHastieTTibshiraniRTaylorJAn Introduction to Statistical Learning with Applications in R20212Springer44510.1007/978-1-0716-1418-11469.62002 – reference: HristovANSymposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction modelsJ. Dairy Sci.2018101665566741:CAS:528:DC%2BC1cXnvFemsbg%3D10.3168/jds.2017-1353629680642 – reference: EllisonMJDiet and feed efficiency status affect rumen microbial profiles of sheepSmall Rumin. Res.2017156121910.1016/j.smallrumres.2017.08.009 – reference: McLoughlinSRumen microbiome composition is altered in sheep divergent in feed efficiencyFront. Microbiol.202011198110.3389/fmicb.2020.01981329830097477290 – reference: Pinares-PatinoCSHeritability estimates of methane emissions from sheepAnimal20137Suppl 231632110.1017/S1751731113000864237394733691003 – reference: MurrayRMBryantAMLengRARates of production of methane in the rumen and large intestine of sheepBr. J. Nutr.1976361141:CAS:528:DyaE28XkvFSqt7o%3D10.1079/bjn19760053949464 – reference: GreeningCDiverse hydrogen production and consumption pathways influence methane production in ruminantsISME J.201913261726321:CAS:528:DC%2BC1MXhtlGgs7rL10.1038/s41396-019-0464-2312433326776011 – reference: Greg, R. gbm: Generalized Boosted Regression Models v. 2.1.8.1 (2010). – reference: SaldanaDFFengYSIS: An R package for sure independence screening in ultrahigh-dimensional statistical modelsJ. Stat. Softw.201810.18637/jss.v083.i02 – reference: HendersonGImproved taxonomic assignment of rumen bacterial 16S rRNA sequences using a revised SILVA taxonomic frameworkPeerJ201971:CAS:528:DC%2BC1MXitl2jsrbF10.7717/peerj.6496308636736407505 – reference: BachAChanges in the rumen and colon microbiota and effects of live yeast dietary supplementation during the transition from the dry period to lactation of dairy cowsJ. Dairy Sci.2019102618061981:CAS:528:DC%2BC1MXovVOmsrs%3D10.3168/jds.2018-1610531056321 – reference: OhSKoikeSKobayashiYEffect of ginkgo extract supplementation on in vitro rumen fermentation and bacterial profiles under different dietary conditionsAnim. Sci. J.201788173717431:CAS:528:DC%2BC2sXhslyms77I10.1111/asj.1287728707415 – reference: GrollATutzGVariable selection for generalized linear mixed models by L 1-penalized estimationStat. Comput.201224137154316554410.1007/s11222-012-9359-z1325.62139 – reference: BatesDMächlerMBolkerBWalkerSFitting linear mixed-effects models using lme4J. Stat. Softw.20156714810.18637/jss.v067.i01 – reference: FriedmanJHastieTTibshiraniRRegularization paths for generalized linear models via coordinate descentJ. Stat. Softw.20103312210.18637/jss.v033.i01208087282929880 – reference: Masson-Delmotte, V. et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021). – reference: DenmanSEMartinez FernandezGShinkaiTMitsumoriMMcSweeneyCSMetagenomic analysis of the rumen microbial community following inhibition of methane formation by a halogenated methane analogFront. Microbiol.20156108710.3389/fmicb.2015.01087265282534602129 – reference: RamosAFOTucuma oil shifted ruminal fermentation, reducing methane production and altering the microbiome but decreased substrate digestibility within a RUSITEC fed a mixed hay–concentrate dietFront. Microbiol.20189164710.3389/fmicb.2018.01647300938886071481 – reference: ChenLMegasphaeraelsdenii lactate degradation pattern shifts in rumen acidosis modelsFront. Microbiol.20191016210.3389/fmicb.2019.00162307927046374331 – reference: PatraAKYuZCombinations of nitrate, saponin, and sulfate additively reduce methane production by rumen cultures in vitro while not adversely affecting feed digestion, fermentation or microbial communitiesBioresour. Technol.20141551291351:CAS:528:DC%2BC2cXmslWqtbY%3D10.1016/j.biortech.2013.12.09924440491 – reference: KittelmannSTwo different bacterial community types are linked with the low-methane emission trait in sheepPLoS ONE201492014PLoSO...9j3171K1:CAS:528:DC%2BC2cXhs1ertbfO10.1371/journal.pone.0103171250785644117531 – reference: QuastCThe SILVA ribosomal RNA gene database project: Improved data processing and web-based toolsNucleic Acids Res.201341D5905961:CAS:528:DC%2BC38XhvV2ksb%2FN10.1093/nar/gks121923193283 – reference: CunhaCSCompositional and structural dynamics of the ruminal microbiota in dairy heifers and its relationship to methane productionJ. Sci. Food Agric.2019992102181:CAS:528:DC%2BC1cXht12lsLfE10.1002/jsfa.916229851082 – reference: CallahanBJMcMurdiePJRosenMJHanAWJohnsonAJHolmesSPDADA2: High-resolution sample inference from Illumina amplicon dataNat. Methods2016135815831:CAS:528:DC%2BC28XosVWitb4%3D10.1038/nmeth.3869272140474927377 – reference: SatoYCalcium salts of long-chain fatty acids from linseed oil decrease methane production by altering the rumen microbiome in vitroPLoS ONE2020151:CAS:528:DC%2BB3cXitlGgur3P10.1371/journal.pone.0242158331708867654805 – reference: LiREffect of different forage-to-concentrate ratios on ruminal bacterial structure and real-time methane production in sheepPLoS ONE2019141:CAS:528:DC%2BC1MXhtV2jtb3O10.1371/journal.pone.0214777311167576530836 – reference: Yang, L. Model-Based Clustering of Longitudinal Data in High Dimensions Thesis (Ph.D.) thesis (University of Rochester, 2021). – reference: ZhouMHernandez-SanabriaEGuanLLCharacterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysisAppl. Environ. Microbiol.201076377637862010ApEnM..76.3776Z1:CAS:528:DC%2BC3cXptVenurY%3D10.1128/AEM.00010-10204184362893468 – reference: ZhaoYGO'ConnellNEYanTPrediction of enteric methane emissions from sheep offered fresh perennial ryegrass (Lolium perenne) using data measured in indirect open-circuit respiration chambersJ. Anim. Sci.201694242524351:CAS:528:DC%2BC28XhsFejurzJ10.2527/jas.2016-033427285918 – reference: TapioISnellingTJStrozziFWallaceRJThe ruminal microbiome associated with methane emissions from ruminant livestockJ. Anim. Sci. Biotechnol.2017871:CAS:528:DC%2BC1cXlsVCru78%3D10.1186/s40104-017-0141-0281236985244708 – reference: JohnsonKAJohnsonDEMethane emissions from cattleJ. Anim. Sci.199573248324921:CAS:528:DyaK2MXnsVCntb8%3D10.2527/1995.7382483x8567486 – reference: HammondKJReview of current in vivo measurement techniques for quantifying enteric methane emission from ruminantsAnim. Feed Sci. Technol.201621913301:CAS:528:DC%2BC28XpvFakurc%3D10.1016/j.anifeedsci.2016.05.018 – reference: NiuMPrediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental databaseGlob. Chang. Biol.201824336833892018GCBio..24.3368N10.1111/gcb.14094294509806055644 – reference: van LingenHJPrediction of enteric methane production, yield and intensity of beef cattle using an intercontinental databaseAgric. Ecosyst. Environ.20192831:CAS:528:DC%2BC1MXhtlejurbF10.1016/j.agee.2019.106575 – reference: Team, R. C. R: A Language and Environment for Statistical Computing (v. 4.0. 2) [Computer Software] (R Foundation for Statistical Computing, 2020). – reference: Aguilar-MarinSBBetancur-MurilloCLIsazaGAMesaHJovelJLower methane emissions were associated with higher abundance of ruminal Prevotella in a cohort of Colombian buffalosBMC Microbiol.2020203641:CAS:528:DC%2BB3cXislWju7vF10.1186/s12866-020-02037-6332464127694292 – reference: van GastelenSLinseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cowsJ. Dairy Sci.2017100893989571:CAS:528:DC%2BC2sXhsFSmt7vF10.3168/jds.2016-1236728918153 – reference: KamkeJRumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisationMicrobiome201645610.1186/s40168-016-0201-2277605705069950 – reference: Granja-SalcedoYTLong-term encapsulated nitrate supplementation modulates rumen microbial diversity and rumen fermentation to reduce methane emission in grazing steersFront. Microbiol.20191061410.3389/fmicb.2019.00614309841416449429 – reference: NilssonRHThe UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classificationsNucleic Acids Res.201947D259D2641:CAS:528:DC%2BC1MXhs1Cgt7nF10.1093/nar/gky102230371820 – volume: 73 start-page: 2483 year: 1995 ident: 48449_CR2 publication-title: J. Anim. Sci. doi: 10.2527/1995.7382483x – volume: 47 start-page: D259 year: 2019 ident: 48449_CR17 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1022 – volume: 24 start-page: 137 year: 2012 ident: 48449_CR20 publication-title: Stat. Comput. doi: 10.1007/s11222-012-9359-z – volume: 36 start-page: 1 year: 1976 ident: 48449_CR27 publication-title: Br. J. Nutr. doi: 10.1079/bjn19760053 – volume: 7 year: 2019 ident: 48449_CR35 publication-title: PeerJ doi: 10.7717/peerj.6496 – volume: 14 year: 2019 ident: 48449_CR40 publication-title: PLoS ONE doi: 10.1371/journal.pone.0214777 – volume: 27 start-page: 137 year: 1998 ident: 48449_CR3 publication-title: Small Rumin. Res. doi: 10.1016/S0921-4488(97)00031-X – volume: 91 start-page: 5045 year: 2013 ident: 48449_CR37 publication-title: J. Anim. Sci. doi: 10.2527/jas.2013-6583 – volume: 10 start-page: 162 year: 2019 ident: 48449_CR47 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.00162 – start-page: 1 volume-title: Bergey's Manual of Systematics of Archaea and Bacteria year: 2015 ident: 48449_CR48 – volume: 4 start-page: 56 year: 2016 ident: 48449_CR46 publication-title: Microbiome doi: 10.1186/s40168-016-0201-2 – volume: 219 start-page: 13 year: 2016 ident: 48449_CR4 publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2016.05.018 – start-page: 445 volume-title: An Introduction to Statistical Learning with Applications in R year: 2021 ident: 48449_CR25 doi: 10.1007/978-1-0716-1418-1 – volume: 14 start-page: s78 year: 2020 ident: 48449_CR11 publication-title: Animal doi: 10.1017/S1751731119003252 – volume: 9 start-page: 1647 year: 2018 ident: 48449_CR43 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.01647 – volume: 13 start-page: 2617 year: 2019 ident: 48449_CR33 publication-title: ISME J. doi: 10.1038/s41396-019-0464-2 – volume: 15 year: 2020 ident: 48449_CR42 publication-title: PLoS ONE doi: 10.1371/journal.pone.0242158 – volume: 76 start-page: 3776 year: 2010 ident: 48449_CR28 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00010-10 – volume: 101 start-page: 6655 year: 2018 ident: 48449_CR9 publication-title: J. Dairy Sci. doi: 10.3168/jds.2017-13536 – ident: 48449_CR26 – year: 2018 ident: 48449_CR24 publication-title: J. Stat. Softw. doi: 10.18637/jss.v083.i02 – volume: 24 start-page: 3368 year: 2018 ident: 48449_CR7 publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14094 – volume: 8 start-page: 7 year: 2017 ident: 48449_CR12 publication-title: J. Anim. Sci. Biotechnol. doi: 10.1186/s40104-017-0141-0 – volume: 41 start-page: D590 year: 2013 ident: 48449_CR16 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1219 – volume: 155 start-page: 129 year: 2014 ident: 48449_CR10 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.12.099 – volume: 283 year: 2019 ident: 48449_CR6 publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2019.106575 – volume: 9 year: 2014 ident: 48449_CR13 publication-title: PLoS ONE doi: 10.1371/journal.pone.0103171 – volume: 95 start-page: 2585 year: 2017 ident: 48449_CR32 publication-title: J. Anim. Sci. doi: 10.2527/jas.2016.1222 – volume: 6 start-page: 1087 year: 2015 ident: 48449_CR39 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.01087 – ident: 48449_CR1 – volume: 11 start-page: 1981 year: 2020 ident: 48449_CR41 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.01981 – volume: 156 start-page: 12 year: 2017 ident: 48449_CR36 publication-title: Small Rumin. Res. doi: 10.1016/j.smallrumres.2017.08.009 – volume: 99 start-page: 210 year: 2019 ident: 48449_CR29 publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.9162 – volume: 22 start-page: 3039 year: 2016 ident: 48449_CR8 publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13339 – volume: 88 start-page: 1737 year: 2017 ident: 48449_CR44 publication-title: Anim. Sci. J. doi: 10.1111/asj.12877 – volume: 10 start-page: 614 year: 2019 ident: 48449_CR45 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.00614 – ident: 48449_CR18 – volume: 13 start-page: 581 year: 2016 ident: 48449_CR15 publication-title: Nat. Methods doi: 10.1038/nmeth.3869 – volume: 11 start-page: 88 year: 2022 ident: 48449_CR34 publication-title: Gigascience doi: 10.1093/gigascience/giab088 – volume: 100 start-page: 8939 year: 2017 ident: 48449_CR30 publication-title: J. Dairy Sci. doi: 10.3168/jds.2016-12367 – volume: 102 start-page: 6180 year: 2019 ident: 48449_CR31 publication-title: J. Dairy Sci. doi: 10.3168/jds.2018-16105 – volume: 94 start-page: 2425 year: 2016 ident: 48449_CR5 publication-title: J. Anim. Sci. doi: 10.2527/jas.2016-0334 – ident: 48449_CR23 – volume: 33 start-page: 1 year: 2010 ident: 48449_CR19 publication-title: J. Stat. Softw. doi: 10.18637/jss.v033.i01 – volume: 20 start-page: 364 year: 2020 ident: 48449_CR38 publication-title: BMC Microbiol. doi: 10.1186/s12866-020-02037-6 – ident: 48449_CR21 – volume: 67 start-page: 1 year: 2015 ident: 48449_CR22 publication-title: J. Stat. Softw. doi: 10.18637/jss.v067.i01 – volume: 7 start-page: 316 issue: Suppl 2 year: 2013 ident: 48449_CR14 publication-title: Animal doi: 10.1017/S1751731113000864 |
SSID | ssj0000529419 |
Score | 2.4328268 |
Snippet | Methane (CH
4
) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing... Methane (CH ) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models... Methane (CH4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models... Methane (CH 4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models... Abstract Methane (CH4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories.... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 21305 |
SubjectTerms | 631/326 631/326/171 631/326/2565 Animal Feed - analysis Animal models Animals Bacteria Bacteria - genetics Bayes Theorem Bayesian analysis Correlation coefficient Diet - veterinary Dry matter Emission inventories Emissions Environmental perception Female Food and Nutrition Humanities and Social Sciences Lactation Life Sciences Mathematical models Methane Microbiota multidisciplinary Prediction models Rumen Ruminants Science Science (multidisciplinary) Sheep |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBggziBlET20k8x4KoVohyKlJvll-hlapsu49K---ZsbNLQwVcuESR7XGsmXFmxo9vGHtnndegK1sGhQ8VXVsC_inLLmiwjWugsrQ0cPytnX1XX06b0xupvuhMWIYHzow76KIIYGunAlqiIFug7Nh09xnQFnuRkEDR5t0IpjKqtwBVw3hLppL6YImWim6TCVkqrRSUm4klSoD9aF_O6DjkbV_z9pHJ3_ZNkzk6esDuj34kP8zjf8juxOERu5szS24es8VxpDXxyC8XtBND3OfxKsN6L_n54C_WZLT4j4Q6zec9JxCFgbsM3my5XW5J5wt-jQE1XbFCyrQGMenWer9eWL95wk6OPp98mpVjeoXSo4-2KqPoURoKOkAex77z0rZO6aqpvHZBAQVjQYUYkeeEIw-6UbGVPgQfJFTyKdsb5kN8zrise6v72rreStUjYQDp0JXp8b2tfFewestp40foccqAcWHSFrjUJkvHoHRMko7ZFOz9juYyA2_8tfVHEuCuJYFmpwJUJTOqkvmXKhXsLYp_0sfs8KuhMoJ5QyJxXRdsf6sdZpzuS4NRKwWiQkDB3uyqcaLS7gsKe77ObZC50FUFe5aVafcpqckvUNi5nqjZZCzTmuH8LIGBY0hPEPk4-A9bjfw1rj8z7MX_YNhLdk_QhKLTPWKf7a0W6_gKfbSVe52m40_U5zZW priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtSqGXkqYvN2lQS2-tiW3JtnQqaUhYStNTCnsTejkJBHtj7wb233dGfgQ3NJdlsSVZ0ow0L-kbQr5oY4UUiY4dhx_uTRFL2Cnj0gmpc5PLRKNr4Px3sfjDfy7z5eBw64ZjleOeGDZq11j0kR-BYYC6fpbJ76vbGLNGYXR1SKHxlDxD6DI0vsplOflYMIrFUznclUmYOOpAXuGdsozFXHAu4-1MHgXYfpAyV3go8qHG-fDg5D_R0yCUznbJy0GbpMc9-V-RJ77eI8_7_JLb16Q99-gZ93TVYjwGaUD9bQ_u3dHr2t5sUHTRy4A9TZuKIpRCTU0P4ayp7saqTUvvwKzGi1ZQM3giZs1qazettts35OLs9OJkEQ9JFmILmto69lkFNOGylKXPfFVapgvDRZInVhjHJZpkjjvvCyApk6kUOfcFs85Zx2TC3pKduqn9e0JZWmlRpdpUmvEKKjrJDCg0FfwvEltGJB1nWtkBgBzzYNyoEAhnQvXUUUAdFaijthH5OtVZ9fAbj5b-gQScSiJ0dnjQtJdqWIkKhumkTg13oNo4BsMqJcYOC-Cv3GY8Ip-B_LM2Fse_FD5DsDeolN2lETkYuUMNi75T9ywakU_Ta1iuGIMBYjebvgxMriyTiLzrmWn6FBOoHXBoXMzYbNaX-Zv6-ipAgoNhj0D50PlvI0fe9-v_E_bh8WHskxcZLhU8vZMdkJ11u_EfQQdbm8Ow0P4ChuYvhg priority: 102 providerName: ProQuest – databaseName: Springer Nature OA/Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERKXincDpTKIG0QktpPYx7KiWiHKqUi9WX6lrVQlbXa30v57ZpwHCgWkXqIo9jiOZ5yZ8Yw_E_LBWCeVzEzqBVxEsGWq4E-ZVl4qU9hCZQaXBk5-lMuf4ttZcbZD2LgXJibtR0jL-Jses8M-r0DR4GYwxlMhhVDp9gF5iNDtmMa3KBfTugpGrkSuhv0xGZd_IZ3poAjVD5rlAhMh71qZd5Ml_4iYRkV0_ITsDRYkPer7_JTshOYZedSfKbl9TrqTgKvhgV53GIPBcafhpgf0XtHLxl1tUF3R84g3TduaInxCQ20P22yoWY2kbUdvwZXGzVVAGVcfZs0a5zadcdsX5PT46-limQ4HK6QOrLN1GlgNfBCqUlVgoa4cN6UVMisyJ60XCt0wL3wIJbCRq1zJQoSSO--d5yrjL8lu0zZhn1Ce10bWubG14aIGQq-4BSOmhvsyc1VC8nGktRtAx_Hsiysdg99c6p47GrijI3f0NiEfJ5rrHnLjv7W_IAOnmgiXHR-03bkexEfDZ3plcis8mDOew2dVCuOFpQKDzjGRkPfA_lkby6PvGp8hwBsQsds8IQejdOhhoq80-KvogjKmEvJuKoYpinEXYHa76evA4KoqS8irXpimV3GJFoGAxuVMzGZ9mZc0lxcRBhyceQTHh85_GiXyd7_-PWCv71f9DXnMcOpgBg87ILvrbhPegh22todx4v0CpTMt4g priority: 102 providerName: Springer Nature |
Title | Methane prediction equations including genera of rumen bacteria as predictor variables improve prediction accuracy |
URI | https://link.springer.com/article/10.1038/s41598-023-48449-y https://www.ncbi.nlm.nih.gov/pubmed/38042941 https://www.proquest.com/docview/2896192229 https://www.proquest.com/docview/2896805970 https://hal.science/hal-04331242 https://pubmed.ncbi.nlm.nih.gov/PMC10693554 https://doaj.org/article/7e2d9a1b4d124d369879582869615c24 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEN8ERmUQbxBIbDexHxDqqk1VRScEm9S3yLGdbVKVbGk70f-eOycpChuIlzRybNfx3eXufPbvCHmncyOVjHRoBVyEy5NQwZcyTK1UepgPVaRxaWB2kkzOxHQ-nO-QLt1RO4HLO107zCd1Vi8-_rzefAGB_9wcGZeflqCE8KAY46GQQqhws0v2QTOlmMph1pr7DdY3U8Ln-kAQ9hCMCdaeo7m7m56u8pD-oIEucMPkbWv09qbKPyKrXmEdPyQPWkuTjhrWeER2XPmY3GtyT26ekHrmcNXc0asaYzVIH-quG-DvJb0szWKNao2ee1xqWhUUYRZKmjfwzprqZde0qukNuNx4CAta-lWKXrfamHWtzeYpOT0-Oh1PwjYBQ2jAiluFjhVAL6FSlTrmitRwneRCRsPIyNwKhe6aFda5BMjNVazkULiEG2uN5Sriz8heWZXuBaE8LrQsYp0XmosCGlrFczB2CrhPIpMGJO5mOjMtODnmyFhkPkjOZdZQJwPqZJ462SYg77dtrhpojn_WPkQCbmsirLYvqOrzrJXSDF7TKh3nwoLZYzm8VqowrpgoMPwMEwF5C-Tv9TEZfc2wDIHgoBG7iQNy0HFH1vFzBn4tuqqMqYC82T4GUcb4DBC7Wjd1YHJVGgXkecNM27_iEi0HAZ3LHpv1xtJ_Ul5eeLhwcPoRRB8G_6HjyN_j-vuEvfyPcb4i9xnKC27vYQdkb1Wv3Wsw0lb5gOym83RA9kej6Y8p_B4enXz7DqXjZDzwCx8DL5u_ADpaPLg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BqdELwgPkdggEHwBNES2_nwA0IbbOpYWyFUpL1Zju1sk6akS9uh_ij-I3f56BQm9raXqkp8ju27833Zd4S815lJZRpo3wr4ES6LfQk7pZ_YVOooi2Sg0TUwnsTDX-L7cXS8Qf50d2HwWGW3J9YbtS0N-sh3wDBAXZ8x-WV24WPVKIyudiU0GrI4cqvfYLLNPx9-A_x-YOxgf_p16LdVBXwDqsnCdyyHQQiZyMQxlyeG6zgTaRAFJs2skGiDWGGdi2EOXIJRHgkXc2OtsVwGHLq9QzYFB01hQDb39ic_fq6dOhg2E6FsL-cEPN2Zg4DES2yM-yIVQvqrngCs6wSAWDvFU5jXVdzrJzX_CdfWUvDgIXnQqq90t6G3R2TDFY_J3aag5eoJqcYOXfGOzioMACHSqbtosonP6VlhzpcoK-lJneyaljnF3A0FzZqc0ZrqeQdaVvQS7Hi82QWQteuj1602Zllps3pKprex_s_IoCgL95xQHuY6zUOd5ZqLHACt5BloUDn8jwOTeCTsVlqZNuM5Ft44V3XknaeqwY4C7KgaO2rlkY9rmFmT7-PG1nuIwHVLzNVdPyirE9WyvoJpWqnDTFjQpSyHaSUSg5UxEHRkmPDIO0B_r4_h7kjhM8wuB0DsMvTIdkcdqt1l5uqKJzzydv0a9gcM-gCyy2XTBhZXJoFHthpiWn-Kp6iOCOg87ZFZbyz9N8XZaZ2DPAxizMwPg__UUeTVuP6_YC9unsYbcm84HY_U6HBy9JLcZ8g2eHSIbZPBolq6V6AALrLXLdtRom6Z0f8CNzZtEQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFIC6IN4ECBsEJok1sJ7EPCBXKaksf4lCkvVmO7bSVqmSb3S3aT-PvmMljq1DRWy-rVeJxbM_TnvEMIe9NbqWSkQmdgB_h8zRUICnDzEllkjxRkcGjgYPDdPJL_Jgm0w3yp78Lg2GVvUxsBLWrLJ6Rj2BjgLY-Y2pUdGERP3fGX2bnIVaQQk9rX06jJZE9v_oN27f5590dwPUHxsbfj75Nwq7CQGjBTFmEnhUwIKEylXnmi8xyk-ZCRklkZe6Ewv2IE877FObDFWzQE-FTbp2zjquIQ7e3yO2Mg9YEVsqm2fp4Bx1oIlbdNZ2Iy9EcVCVeZ2M8FFIIFa4GqrCpGAAK7gTjMa8au1djNv9x3Db6cPyA3O8MWbrdUt5DsuHLR-ROW9py9ZjUBx4P5T2d1egKQvRTf97mFZ_T09KeLVFr0uMm7TWtCopZHEqat9mjDTXzHrSq6QXs6PGOF0A2hyCDbo21y9rY1RNydBOr_5RsllXpnxPK48LIIjZ5YbgoANApnoMtVcD_NLJZQOJ-pbXtcp9jCY4z3fjgudQtdjRgRzfY0auAfFzDzNrMH9e2_ooIXLfErN3Ng6o-1p0Q0DBNp0ycCwdWleMwrUyh2zIF0k4sEwF5B-gf9DHZ3tf4DPPMARC7iAOy1VOH7uTNXF9yR0Derl-DpED3DyC7WrZtYHFVFgXkWUtM609xiYaJgM7lgMwGYxm-KU9PmmzkcZRijn4Y_KeeIi_H9f8Fe3H9NN6Qu8Deen_3cO8luceQazCGiG2RzUW99K_AElzkrxueo0TfMI__BR5Yb-E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methane+prediction+equations+including+genera+of+rumen+bacteria+as+predictor+variables+improve+prediction+accuracy&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Boyang&rft.au=Lin%2C+Shili&rft.au=Moraes%2C+Luis&rft.au=Firkins%2C+Jeffrey&rft.date=2023-12-02&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=21305&rft_id=info:doi/10.1038%2Fs41598-023-48449-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |