Methane prediction equations including genera of rumen bacteria as predictor variables improve prediction accuracy

Methane (CH 4 ) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH 4 . To address thi...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 21305 - 11
Main Authors Zhang, Boyang, Lin, Shili, Moraes, Luis, Firkins, Jeffrey, Hristov, Alexander N., Kebreab, Ermias, Janssen, Peter H., Bannink, André, Bayat, Alireza R., Crompton, Les A., Dijkstra, Jan, Eugène, Maguy A., Kreuzer, Michael, McGee, Mark, Reynolds, Christopher K., Schwarm, Angela, Yáñez-Ruiz, David R., Yu, Zhongtang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.12.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-023-48449-y

Cover

Loading…
Abstract Methane (CH 4 ) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH 4 . To address this limitation, we developed novel CH 4 prediction models incorporating rumen microbes as predictors, alongside animal- and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH 4 production (g CH 4 /animal·d, ANIM-B models) and CH 4 yield (g CH 4 /kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin’s concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH 4 prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH 4 emissions from sheep, providing valuable insights for future research and mitigation strategies.
AbstractList Methane (CH4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH4. To address this limitation, we developed novel CH4 prediction models incorporating rumen microbes as predictors, alongside animal- and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH4 production (g CH4/animal·d, ANIM-B models) and CH4 yield (g CH4/kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin's concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH4 prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH4 emissions from sheep, providing valuable insights for future research and mitigation strategies.Methane (CH4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH4. To address this limitation, we developed novel CH4 prediction models incorporating rumen microbes as predictors, alongside animal- and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH4 production (g CH4/animal·d, ANIM-B models) and CH4 yield (g CH4/kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin's concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH4 prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH4 emissions from sheep, providing valuable insights for future research and mitigation strategies.
Methane (CH 4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animalrelated data, ignoring the predicting power of rumen microbiota, the source of CH 4. To address this limitation, we developed novel CH 4 prediction models incorporating rumen microbes as predictors, alongside animal-and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH 4 production (g CH 4 /animal•d, ANIM-B models) and CH 4 yield (g CH 4 /kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin's concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH 4 prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH 4 emissions from sheep, providing valuable insights for future research and mitigation strategies.
Methane (CH 4 ) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH 4 . To address this limitation, we developed novel CH 4 prediction models incorporating rumen microbes as predictors, alongside animal- and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH 4 production (g CH 4 /animal·d, ANIM-B models) and CH 4 yield (g CH 4 /kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin’s concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH 4 prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH 4 emissions from sheep, providing valuable insights for future research and mitigation strategies.
Abstract Methane (CH4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH4. To address this limitation, we developed novel CH4 prediction models incorporating rumen microbes as predictors, alongside animal- and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH4 production (g CH4/animal·d, ANIM-B models) and CH4 yield (g CH4/kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin’s concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH4 prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH4 emissions from sheep, providing valuable insights for future research and mitigation strategies.
Methane (CH ) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH . To address this limitation, we developed novel CH prediction models incorporating rumen microbes as predictors, alongside animal- and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH production (g CH /animal·d, ANIM-B models) and CH yield (g CH /kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin's concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH emissions from sheep, providing valuable insights for future research and mitigation strategies.
Methane (CH4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH4. To address this limitation, we developed novel CH4 prediction models incorporating rumen microbes as predictors, alongside animal- and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH4 production (g CH4/animal·d, ANIM-B models) and CH4 yield (g CH4/kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin’s concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH4 prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH4 emissions from sheep, providing valuable insights for future research and mitigation strategies.
ArticleNumber 21305
Author Firkins, Jeffrey
Eugène, Maguy A.
Zhang, Boyang
McGee, Mark
Kreuzer, Michael
Crompton, Les A.
Kebreab, Ermias
Reynolds, Christopher K.
Schwarm, Angela
Dijkstra, Jan
Hristov, Alexander N.
Bannink, André
Bayat, Alireza R.
Yáñez-Ruiz, David R.
Janssen, Peter H.
Lin, Shili
Moraes, Luis
Yu, Zhongtang
Author_xml – sequence: 1
  givenname: Boyang
  surname: Zhang
  fullname: Zhang, Boyang
  organization: Department of Animal Sciences, The Ohio State University
– sequence: 2
  givenname: Shili
  surname: Lin
  fullname: Lin, Shili
  email: shili@stat.osu.edu
  organization: Department of Statistics, The Ohio State University
– sequence: 3
  givenname: Luis
  surname: Moraes
  fullname: Moraes, Luis
  organization: Department of Animal Sciences, The Ohio State University, Consultoria
– sequence: 4
  givenname: Jeffrey
  surname: Firkins
  fullname: Firkins, Jeffrey
  organization: Department of Animal Sciences, The Ohio State University
– sequence: 5
  givenname: Alexander N.
  surname: Hristov
  fullname: Hristov, Alexander N.
  organization: Department of Animal Science, The Pennsylvania State University
– sequence: 6
  givenname: Ermias
  surname: Kebreab
  fullname: Kebreab, Ermias
  organization: Department of Animal Science, University of California
– sequence: 7
  givenname: Peter H.
  surname: Janssen
  fullname: Janssen, Peter H.
  organization: AgResearch Limited, Grasslands Research Centre
– sequence: 8
  givenname: André
  surname: Bannink
  fullname: Bannink, André
  organization: Wageningen Livestock Research, Wageningen University & Research
– sequence: 9
  givenname: Alireza R.
  surname: Bayat
  fullname: Bayat, Alireza R.
  organization: Milk Production, Production Systems, Natural Resources Institute Finland (Luke)
– sequence: 10
  givenname: Les A.
  surname: Crompton
  fullname: Crompton, Les A.
  organization: School of Agriculture, Policy, and Development, University of Reading
– sequence: 11
  givenname: Jan
  surname: Dijkstra
  fullname: Dijkstra, Jan
  organization: Animal Nutrition Group, Wageningen University & Research
– sequence: 12
  givenname: Maguy A.
  surname: Eugène
  fullname: Eugène, Maguy A.
  organization: INRAE UMR Herbivores, VetAgro Sup, Université Clermont Auvergne
– sequence: 13
  givenname: Michael
  surname: Kreuzer
  fullname: Kreuzer, Michael
  organization: Institute of Agricultural Sciences, ETH Zurich
– sequence: 14
  givenname: Mark
  surname: McGee
  fullname: McGee, Mark
  organization: Teagasc, AGRIC, Grange, Dunsany., CO
– sequence: 15
  givenname: Christopher K.
  surname: Reynolds
  fullname: Reynolds, Christopher K.
  organization: School of Agriculture, Policy, and Development, University of Reading
– sequence: 16
  givenname: Angela
  surname: Schwarm
  fullname: Schwarm, Angela
  organization: Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences
– sequence: 17
  givenname: David R.
  surname: Yáñez-Ruiz
  fullname: Yáñez-Ruiz, David R.
  organization: Estación Experimental del Zaidin (CSIC)
– sequence: 18
  givenname: Zhongtang
  surname: Yu
  fullname: Yu, Zhongtang
  email: yu.226@osu.edu
  organization: Department of Animal Sciences, The Ohio State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38042941$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04331242$$DView record in HAL
BookMark eNp9Uk1v0zAYjtAQG2N_gAOKxAUOAX8m9glNE7BJRVx2txz7TesqtTs7qdR_j9NsY-1hvvjV6-fDfv28L8588FAUHzH6hhEV3xPDXIoKEVoxwZis9m-KC4IYrwgl5OxFfV5cpbRGeXEiGZbvinMqEJvqiyL-gWGlPZTbCNaZwQVfwsOopyKVzpt-tM4vyyV4iLoMXRnHDfiy1WaA6HSp0xM1xHKnc6vtITM32xh2R7LamDFqs_9QvO10n-Dqcb8s7n_9vL-5rRZ_f9_dXC8qwxs-VEA6zVsmG9kAga4xVNctE4gjI1rLJBFEWGYBaikQlVgKzqCmxlpjqUT0sribZW3Qa7WNbqPjXgXt1KER4lLpODjTg8oGVmrcMosJszQLNpJn-VrWmBvCstaPWWs7thuwBvwQdX8kenzi3Uotw05hVEvK-aTwdVZYnfBurxdq6iFGaXYnO5yxXx7dYngYIQ1q45KBvs__FMakiJB1noNspkd-PoGuwxh9HusBhSUhRGbUp5fXf_Z_ikEGkBlgYkgpQvcMwUhNcVNz3FSOmzrETe0zSZyQjBsOwckjcP3rVDpTU_bxS4j_r_0K6x98Yupn
CitedBy_id crossref_primary_10_1016_j_apenergy_2024_124613
Cites_doi 10.2527/1995.7382483x
10.1093/nar/gky1022
10.1007/s11222-012-9359-z
10.1079/bjn19760053
10.7717/peerj.6496
10.1371/journal.pone.0214777
10.1016/S0921-4488(97)00031-X
10.2527/jas.2013-6583
10.3389/fmicb.2019.00162
10.1186/s40168-016-0201-2
10.1016/j.anifeedsci.2016.05.018
10.1007/978-1-0716-1418-1
10.1017/S1751731119003252
10.3389/fmicb.2018.01647
10.1038/s41396-019-0464-2
10.1371/journal.pone.0242158
10.1128/AEM.00010-10
10.3168/jds.2017-13536
10.18637/jss.v083.i02
10.1111/gcb.14094
10.1186/s40104-017-0141-0
10.1093/nar/gks1219
10.1016/j.biortech.2013.12.099
10.1016/j.agee.2019.106575
10.1371/journal.pone.0103171
10.2527/jas.2016.1222
10.3389/fmicb.2015.01087
10.3389/fmicb.2020.01981
10.1016/j.smallrumres.2017.08.009
10.1002/jsfa.9162
10.1111/gcb.13339
10.1111/asj.12877
10.3389/fmicb.2019.00614
10.1038/nmeth.3869
10.1093/gigascience/giab088
10.3168/jds.2016-12367
10.3168/jds.2018-16105
10.2527/jas.2016-0334
10.18637/jss.v033.i01
10.1186/s12866-020-02037-6
10.18637/jss.v067.i01
10.1017/S1751731113000864
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.1038/s41598-023-48449-y
DatabaseName Springer Nature OA/Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic




MEDLINE
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_7e2d9a1b4d124d369879582869615c24
PMC10693554
oai_HAL_hal_04331242v1
38042941
10_1038_s41598_023_48449_y
Genre Journal Article
GrantInformation_xml – fundername: National Institute of Food and Agriculture
  grantid: 2014-67003-21979
– fundername: ;
  grantid: 2014-67003-21979
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
1XC
PMFND
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c575t-e2fa5b49797e2ef7c3a6b48050c8bd492828d4dee69803919854e63cddcd3903
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:13:53 EDT 2025
Thu Aug 21 18:36:03 EDT 2025
Thu May 29 05:52:36 EDT 2025
Tue Aug 05 11:33:50 EDT 2025
Wed Aug 13 06:12:33 EDT 2025
Thu Apr 03 07:05:21 EDT 2025
Tue Jul 01 03:58:00 EDT 2025
Thu Apr 24 23:08:10 EDT 2025
Fri Feb 21 02:37:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Attribution: http://creativecommons.org/licenses/by
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-e2fa5b49797e2ef7c3a6b48050c8bd492828d4dee69803919854e63cddcd3903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2111-0597
OpenAccessLink https://doaj.org/article/7e2d9a1b4d124d369879582869615c24
PMID 38042941
PQID 2896192229
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_7e2d9a1b4d124d369879582869615c24
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10693554
hal_primary_oai_HAL_hal_04331242v1
proquest_miscellaneous_2896805970
proquest_journals_2896192229
pubmed_primary_38042941
crossref_primary_10_1038_s41598_023_48449_y
crossref_citationtrail_10_1038_s41598_023_48449_y
springer_journals_10_1038_s41598_023_48449_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-02
PublicationDateYYYYMMDD 2023-12-02
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References OhSKoikeSKobayashiYEffect of ginkgo extract supplementation on in vitro rumen fermentation and bacterial profiles under different dietary conditionsAnim. Sci. J.201788173717431:CAS:528:DC%2BC2sXhslyms77I10.1111/asj.1287728707415
NewboldCJRamos-MoralesEReview: Ruminal microbiome and microbial metabolome: Effects of diet and ruminant hostAnimal202014s78s861:STN:280:DC%2BB38%2FoslKlsg%3D%3D10.1017/S175173111900325232024572
Aguilar-MarinSBBetancur-MurilloCLIsazaGAMesaHJovelJLower methane emissions were associated with higher abundance of ruminal Prevotella in a cohort of Colombian buffalosBMC Microbiol.2020203641:CAS:528:DC%2BB3cXislWju7vF10.1186/s12866-020-02037-6332464127694292
CallahanBJMcMurdiePJRosenMJHanAWJohnsonAJHolmesSPDADA2: High-resolution sample inference from Illumina amplicon dataNat. Methods2016135815831:CAS:528:DC%2BC28XosVWitb4%3D10.1038/nmeth.3869272140474927377
Team, R. C. R: A Language and Environment for Statistical Computing (v. 4.0. 2) [Computer Software] (R Foundation for Statistical Computing, 2020).
ChenLMegasphaeraelsdenii lactate degradation pattern shifts in rumen acidosis modelsFront. Microbiol.20191016210.3389/fmicb.2019.00162307927046374331
MarchandinHJuvonenRHaikaraATrujilloMEMegasphaeraBergey's Manual of Systematics of Archaea and Bacteria2015Wiley116
NiuMPrediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental databaseGlob. Chang. Biol.201824336833892018GCBio..24.3368N10.1111/gcb.14094294509806055644
RamosAFOTucuma oil shifted ruminal fermentation, reducing methane production and altering the microbiome but decreased substrate digestibility within a RUSITEC fed a mixed hay–concentrate dietFront. Microbiol.20189164710.3389/fmicb.2018.01647300938886071481
JamesGWittenDHastieTTibshiraniRTaylorJAn Introduction to Statistical Learning with Applications in R20212Springer44510.1007/978-1-0716-1418-11469.62002
Lopez-GarciaAFungal and ciliate protozoa are the main rumen microbes associated with methane emissions in dairy cattleGigascience202211881:CAS:528:DC%2BB3sXosF2nsrg%3D10.1093/gigascience/giab088
KittelmannSTwo different bacterial community types are linked with the low-methane emission trait in sheepPLoS ONE201492014PLoSO...9j3171K1:CAS:528:DC%2BC2cXhs1ertbfO10.1371/journal.pone.0103171250785644117531
DenmanSEMartinez FernandezGShinkaiTMitsumoriMMcSweeneyCSMetagenomic analysis of the rumen microbial community following inhibition of methane formation by a halogenated methane analogFront. Microbiol.20156108710.3389/fmicb.2015.01087265282534602129
HammondKJReview of current in vivo measurement techniques for quantifying enteric methane emission from ruminantsAnim. Feed Sci. Technol.201621913301:CAS:528:DC%2BC28XpvFakurc%3D10.1016/j.anifeedsci.2016.05.018
GreeningCDiverse hydrogen production and consumption pathways influence methane production in ruminantsISME J.201913261726321:CAS:528:DC%2BC1MXhtlGgs7rL10.1038/s41396-019-0464-2312433326776011
EllisonMJDiet and feed efficiency status affect rumen microbial profiles of sheepSmall Rumin. Res.2017156121910.1016/j.smallrumres.2017.08.009
HendersonGImproved taxonomic assignment of rumen bacterial 16S rRNA sequences using a revised SILVA taxonomic frameworkPeerJ201971:CAS:528:DC%2BC1MXitl2jsrbF10.7717/peerj.6496308636736407505
JohnsonKAJohnsonDEMethane emissions from cattleJ. Anim. Sci.199573248324921:CAS:528:DyaK2MXnsVCntb8%3D10.2527/1995.7382483x8567486
TapioISnellingTJStrozziFWallaceRJThe ruminal microbiome associated with methane emissions from ruminant livestockJ. Anim. Sci. Biotechnol.2017871:CAS:528:DC%2BC1cXlsVCru78%3D10.1186/s40104-017-0141-0281236985244708
Pinares-PatinoCSHeritability estimates of methane emissions from sheepAnimal20137Suppl 231632110.1017/S1751731113000864237394733691003
PatraAKYuZCombinations of nitrate, saponin, and sulfate additively reduce methane production by rumen cultures in vitro while not adversely affecting feed digestion, fermentation or microbial communitiesBioresour. Technol.20141551291351:CAS:528:DC%2BC2cXmslWqtbY%3D10.1016/j.biortech.2013.12.09924440491
NilssonRHThe UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classificationsNucleic Acids Res.201947D259D2641:CAS:528:DC%2BC1MXhs1Cgt7nF10.1093/nar/gky102230371820
KamkeJRumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisationMicrobiome201645610.1186/s40168-016-0201-2277605705069950
FriedmanJHastieTTibshiraniRRegularization paths for generalized linear models via coordinate descentJ. Stat. Softw.20103312210.18637/jss.v033.i01208087282929880
CunhaCSCompositional and structural dynamics of the ruminal microbiota in dairy heifers and its relationship to methane productionJ. Sci. Food Agric.2019992102181:CAS:528:DC%2BC1cXht12lsLfE10.1002/jsfa.916229851082
QuastCThe SILVA ribosomal RNA gene database project: Improved data processing and web-based toolsNucleic Acids Res.201341D5905961:CAS:528:DC%2BC38XhvV2ksb%2FN10.1093/nar/gks121923193283
AppuhamyJAFranceJKebreabEModels for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New ZealandGlob. Chang. Biol.201622303930562016GCBio..22.3039A10.1111/gcb.1333927148862
van LingenHJPrediction of enteric methane production, yield and intensity of beef cattle using an intercontinental databaseAgric. Ecosyst. Environ.20192831:CAS:528:DC%2BC1MXhtlejurbF10.1016/j.agee.2019.106575
Stevenson, M. et al.EpiR: An R Package for the Analysis of Epidemiological Data v. 2.0.62 (2013).
Granja-SalcedoYTLong-term encapsulated nitrate supplementation modulates rumen microbial diversity and rumen fermentation to reduce methane emission in grazing steersFront. Microbiol.20191061410.3389/fmicb.2019.00614309841416449429
LiREffect of different forage-to-concentrate ratios on ruminal bacterial structure and real-time methane production in sheepPLoS ONE2019141:CAS:528:DC%2BC1MXhtV2jtb3O10.1371/journal.pone.0214777311167576530836
SatoYCalcium salts of long-chain fatty acids from linseed oil decrease methane production by altering the rumen microbiome in vitroPLoS ONE2020151:CAS:528:DC%2BB3cXitlGgur3P10.1371/journal.pone.0242158331708867654805
Greg, R. gbm: Generalized Boosted Regression Models v. 2.1.8.1 (2010).
BatesDMächlerMBolkerBWalkerSFitting linear mixed-effects models using lme4J. Stat. Softw.20156714810.18637/jss.v067.i01
van GastelenSLinseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cowsJ. Dairy Sci.2017100893989571:CAS:528:DC%2BC2sXhsFSmt7vF10.3168/jds.2016-1236728918153
ZhouMHernandez-SanabriaEGuanLLCharacterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysisAppl. Environ. Microbiol.201076377637862010ApEnM..76.3776Z1:CAS:528:DC%2BC3cXptVenurY%3D10.1128/AEM.00010-10204184362893468
PereaKFeed efficiency phenotypes in lambs involve changes in ruminal, colonic, and small-intestine-located microbiotaJ. Anim. Sci.201795258525921:CAS:528:DC%2BC2sXht1Kns7vF10.2527/jas.2016.122228727071
HristovANSpecial topics–mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation optionsJ. Anim. Sci.201391504550691:CAS:528:DC%2BC3sXhslKktrrL10.2527/jas.2013-658324045497
ZhaoYGO'ConnellNEYanTPrediction of enteric methane emissions from sheep offered fresh perennial ryegrass (Lolium perenne) using data measured in indirect open-circuit respiration chambersJ. Anim. Sci.201694242524351:CAS:528:DC%2BC28XhsFejurzJ10.2527/jas.2016-033427285918
HristovANSymposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction modelsJ. Dairy Sci.2018101665566741:CAS:528:DC%2BC1cXnvFemsbg%3D10.3168/jds.2017-1353629680642
PelchenAPetersKJMethane emissions from sheepSmall Rumin. Res.19982713715010.1016/S0921-4488(97)00031-X
Yang, L. Model-Based Clustering of Longitudinal Data in High Dimensions Thesis (Ph.D.) thesis (University of Rochester, 2021).
MurrayRMBryantAMLengRARates of production of methane in the rumen and large intestine of sheepBr. J. Nutr.1976361141:CAS:528:DyaE28XkvFSqt7o%3D10.1079/bjn19760053949464
BachAChanges in the rumen and colon microbiota and effects of live yeast dietary supplementation during the transition from the dry period to lactation of dairy cowsJ. Dairy Sci.2019102618061981:CAS:528:DC%2BC1MXovVOmsrs%3D10.3168/jds.2018-1610531056321
GrollATutzGVariable selection for generalized linear mixed models by L 1-penalized estimationStat. Comput.201224137154316554410.1007/s11222-012-9359-z1325.62139
McLoughlinSRumen microbiome composition is altered in sheep divergent in feed efficiencyFront. Microbiol.202011198110.3389/fmicb.2020.01981329830097477290
Masson-Delmotte, V. et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).
SaldanaDFFengYSIS: An R package for sure independence screening in ultrahigh-dimensional statistical modelsJ. Stat. Softw.201810.18637/jss.v083.i02
YG Zhao (48449_CR5) 2016; 94
YT Granja-Salcedo (48449_CR45) 2019; 10
AN Hristov (48449_CR9) 2018; 101
BJ Callahan (48449_CR15) 2016; 13
R Li (48449_CR40) 2019; 14
SE Denman (48449_CR39) 2015; 6
S van Gastelen (48449_CR30) 2017; 100
MJ Ellison (48449_CR36) 2017; 156
J Kamke (48449_CR46) 2016; 4
C Quast (48449_CR16) 2013; 41
DF Saldana (48449_CR24) 2018
AFO Ramos (48449_CR43) 2018; 9
A Pelchen (48449_CR3) 1998; 27
H Marchandin (48449_CR48) 2015
KJ Hammond (48449_CR4) 2016; 219
SB Aguilar-Marin (48449_CR38) 2020; 20
G James (48449_CR25) 2021
S Oh (48449_CR44) 2017; 88
JA Appuhamy (48449_CR8) 2016; 22
A Bach (48449_CR31) 2019; 102
S McLoughlin (48449_CR41) 2020; 11
K Perea (48449_CR32) 2017; 95
L Chen (48449_CR47) 2019; 10
CJ Newbold (48449_CR11) 2020; 14
48449_CR18
A Groll (48449_CR20) 2012; 24
I Tapio (48449_CR12) 2017; 8
S Kittelmann (48449_CR13) 2014; 9
HJ van Lingen (48449_CR6) 2019; 283
RM Murray (48449_CR27) 1976; 36
KA Johnson (48449_CR2) 1995; 73
Y Sato (48449_CR42) 2020; 15
RH Nilsson (48449_CR17) 2019; 47
J Friedman (48449_CR19) 2010; 33
C Greening (48449_CR33) 2019; 13
A Lopez-Garcia (48449_CR34) 2022; 11
48449_CR1
D Bates (48449_CR22) 2015; 67
AK Patra (48449_CR10) 2014; 155
G Henderson (48449_CR35) 2019; 7
48449_CR23
M Niu (48449_CR7) 2018; 24
48449_CR21
M Zhou (48449_CR28) 2010; 76
AN Hristov (48449_CR37) 2013; 91
CS Cunha (48449_CR29) 2019; 99
CS Pinares-Patino (48449_CR14) 2013; 7
48449_CR26
References_xml – reference: PelchenAPetersKJMethane emissions from sheepSmall Rumin. Res.19982713715010.1016/S0921-4488(97)00031-X
– reference: MarchandinHJuvonenRHaikaraATrujilloMEMegasphaeraBergey's Manual of Systematics of Archaea and Bacteria2015Wiley116
– reference: NewboldCJRamos-MoralesEReview: Ruminal microbiome and microbial metabolome: Effects of diet and ruminant hostAnimal202014s78s861:STN:280:DC%2BB38%2FoslKlsg%3D%3D10.1017/S175173111900325232024572
– reference: Lopez-GarciaAFungal and ciliate protozoa are the main rumen microbes associated with methane emissions in dairy cattleGigascience202211881:CAS:528:DC%2BB3sXosF2nsrg%3D10.1093/gigascience/giab088
– reference: PereaKFeed efficiency phenotypes in lambs involve changes in ruminal, colonic, and small-intestine-located microbiotaJ. Anim. Sci.201795258525921:CAS:528:DC%2BC2sXht1Kns7vF10.2527/jas.2016.122228727071
– reference: AppuhamyJAFranceJKebreabEModels for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New ZealandGlob. Chang. Biol.201622303930562016GCBio..22.3039A10.1111/gcb.1333927148862
– reference: HristovANSpecial topics–mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation optionsJ. Anim. Sci.201391504550691:CAS:528:DC%2BC3sXhslKktrrL10.2527/jas.2013-658324045497
– reference: Stevenson, M. et al.EpiR: An R Package for the Analysis of Epidemiological Data v. 2.0.62 (2013).
– reference: JamesGWittenDHastieTTibshiraniRTaylorJAn Introduction to Statistical Learning with Applications in R20212Springer44510.1007/978-1-0716-1418-11469.62002
– reference: HristovANSymposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction modelsJ. Dairy Sci.2018101665566741:CAS:528:DC%2BC1cXnvFemsbg%3D10.3168/jds.2017-1353629680642
– reference: EllisonMJDiet and feed efficiency status affect rumen microbial profiles of sheepSmall Rumin. Res.2017156121910.1016/j.smallrumres.2017.08.009
– reference: McLoughlinSRumen microbiome composition is altered in sheep divergent in feed efficiencyFront. Microbiol.202011198110.3389/fmicb.2020.01981329830097477290
– reference: Pinares-PatinoCSHeritability estimates of methane emissions from sheepAnimal20137Suppl 231632110.1017/S1751731113000864237394733691003
– reference: MurrayRMBryantAMLengRARates of production of methane in the rumen and large intestine of sheepBr. J. Nutr.1976361141:CAS:528:DyaE28XkvFSqt7o%3D10.1079/bjn19760053949464
– reference: GreeningCDiverse hydrogen production and consumption pathways influence methane production in ruminantsISME J.201913261726321:CAS:528:DC%2BC1MXhtlGgs7rL10.1038/s41396-019-0464-2312433326776011
– reference: Greg, R. gbm: Generalized Boosted Regression Models v. 2.1.8.1 (2010).
– reference: SaldanaDFFengYSIS: An R package for sure independence screening in ultrahigh-dimensional statistical modelsJ. Stat. Softw.201810.18637/jss.v083.i02
– reference: HendersonGImproved taxonomic assignment of rumen bacterial 16S rRNA sequences using a revised SILVA taxonomic frameworkPeerJ201971:CAS:528:DC%2BC1MXitl2jsrbF10.7717/peerj.6496308636736407505
– reference: BachAChanges in the rumen and colon microbiota and effects of live yeast dietary supplementation during the transition from the dry period to lactation of dairy cowsJ. Dairy Sci.2019102618061981:CAS:528:DC%2BC1MXovVOmsrs%3D10.3168/jds.2018-1610531056321
– reference: OhSKoikeSKobayashiYEffect of ginkgo extract supplementation on in vitro rumen fermentation and bacterial profiles under different dietary conditionsAnim. Sci. J.201788173717431:CAS:528:DC%2BC2sXhslyms77I10.1111/asj.1287728707415
– reference: GrollATutzGVariable selection for generalized linear mixed models by L 1-penalized estimationStat. Comput.201224137154316554410.1007/s11222-012-9359-z1325.62139
– reference: BatesDMächlerMBolkerBWalkerSFitting linear mixed-effects models using lme4J. Stat. Softw.20156714810.18637/jss.v067.i01
– reference: FriedmanJHastieTTibshiraniRRegularization paths for generalized linear models via coordinate descentJ. Stat. Softw.20103312210.18637/jss.v033.i01208087282929880
– reference: Masson-Delmotte, V. et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).
– reference: DenmanSEMartinez FernandezGShinkaiTMitsumoriMMcSweeneyCSMetagenomic analysis of the rumen microbial community following inhibition of methane formation by a halogenated methane analogFront. Microbiol.20156108710.3389/fmicb.2015.01087265282534602129
– reference: RamosAFOTucuma oil shifted ruminal fermentation, reducing methane production and altering the microbiome but decreased substrate digestibility within a RUSITEC fed a mixed hay–concentrate dietFront. Microbiol.20189164710.3389/fmicb.2018.01647300938886071481
– reference: ChenLMegasphaeraelsdenii lactate degradation pattern shifts in rumen acidosis modelsFront. Microbiol.20191016210.3389/fmicb.2019.00162307927046374331
– reference: PatraAKYuZCombinations of nitrate, saponin, and sulfate additively reduce methane production by rumen cultures in vitro while not adversely affecting feed digestion, fermentation or microbial communitiesBioresour. Technol.20141551291351:CAS:528:DC%2BC2cXmslWqtbY%3D10.1016/j.biortech.2013.12.09924440491
– reference: KittelmannSTwo different bacterial community types are linked with the low-methane emission trait in sheepPLoS ONE201492014PLoSO...9j3171K1:CAS:528:DC%2BC2cXhs1ertbfO10.1371/journal.pone.0103171250785644117531
– reference: QuastCThe SILVA ribosomal RNA gene database project: Improved data processing and web-based toolsNucleic Acids Res.201341D5905961:CAS:528:DC%2BC38XhvV2ksb%2FN10.1093/nar/gks121923193283
– reference: CunhaCSCompositional and structural dynamics of the ruminal microbiota in dairy heifers and its relationship to methane productionJ. Sci. Food Agric.2019992102181:CAS:528:DC%2BC1cXht12lsLfE10.1002/jsfa.916229851082
– reference: CallahanBJMcMurdiePJRosenMJHanAWJohnsonAJHolmesSPDADA2: High-resolution sample inference from Illumina amplicon dataNat. Methods2016135815831:CAS:528:DC%2BC28XosVWitb4%3D10.1038/nmeth.3869272140474927377
– reference: SatoYCalcium salts of long-chain fatty acids from linseed oil decrease methane production by altering the rumen microbiome in vitroPLoS ONE2020151:CAS:528:DC%2BB3cXitlGgur3P10.1371/journal.pone.0242158331708867654805
– reference: LiREffect of different forage-to-concentrate ratios on ruminal bacterial structure and real-time methane production in sheepPLoS ONE2019141:CAS:528:DC%2BC1MXhtV2jtb3O10.1371/journal.pone.0214777311167576530836
– reference: Yang, L. Model-Based Clustering of Longitudinal Data in High Dimensions Thesis (Ph.D.) thesis (University of Rochester, 2021).
– reference: ZhouMHernandez-SanabriaEGuanLLCharacterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysisAppl. Environ. Microbiol.201076377637862010ApEnM..76.3776Z1:CAS:528:DC%2BC3cXptVenurY%3D10.1128/AEM.00010-10204184362893468
– reference: ZhaoYGO'ConnellNEYanTPrediction of enteric methane emissions from sheep offered fresh perennial ryegrass (Lolium perenne) using data measured in indirect open-circuit respiration chambersJ. Anim. Sci.201694242524351:CAS:528:DC%2BC28XhsFejurzJ10.2527/jas.2016-033427285918
– reference: TapioISnellingTJStrozziFWallaceRJThe ruminal microbiome associated with methane emissions from ruminant livestockJ. Anim. Sci. Biotechnol.2017871:CAS:528:DC%2BC1cXlsVCru78%3D10.1186/s40104-017-0141-0281236985244708
– reference: JohnsonKAJohnsonDEMethane emissions from cattleJ. Anim. Sci.199573248324921:CAS:528:DyaK2MXnsVCntb8%3D10.2527/1995.7382483x8567486
– reference: HammondKJReview of current in vivo measurement techniques for quantifying enteric methane emission from ruminantsAnim. Feed Sci. Technol.201621913301:CAS:528:DC%2BC28XpvFakurc%3D10.1016/j.anifeedsci.2016.05.018
– reference: NiuMPrediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental databaseGlob. Chang. Biol.201824336833892018GCBio..24.3368N10.1111/gcb.14094294509806055644
– reference: van LingenHJPrediction of enteric methane production, yield and intensity of beef cattle using an intercontinental databaseAgric. Ecosyst. Environ.20192831:CAS:528:DC%2BC1MXhtlejurbF10.1016/j.agee.2019.106575
– reference: Team, R. C. R: A Language and Environment for Statistical Computing (v. 4.0. 2) [Computer Software] (R Foundation for Statistical Computing, 2020).
– reference: Aguilar-MarinSBBetancur-MurilloCLIsazaGAMesaHJovelJLower methane emissions were associated with higher abundance of ruminal Prevotella in a cohort of Colombian buffalosBMC Microbiol.2020203641:CAS:528:DC%2BB3cXislWju7vF10.1186/s12866-020-02037-6332464127694292
– reference: van GastelenSLinseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cowsJ. Dairy Sci.2017100893989571:CAS:528:DC%2BC2sXhsFSmt7vF10.3168/jds.2016-1236728918153
– reference: KamkeJRumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisationMicrobiome201645610.1186/s40168-016-0201-2277605705069950
– reference: Granja-SalcedoYTLong-term encapsulated nitrate supplementation modulates rumen microbial diversity and rumen fermentation to reduce methane emission in grazing steersFront. Microbiol.20191061410.3389/fmicb.2019.00614309841416449429
– reference: NilssonRHThe UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classificationsNucleic Acids Res.201947D259D2641:CAS:528:DC%2BC1MXhs1Cgt7nF10.1093/nar/gky102230371820
– volume: 73
  start-page: 2483
  year: 1995
  ident: 48449_CR2
  publication-title: J. Anim. Sci.
  doi: 10.2527/1995.7382483x
– volume: 47
  start-page: D259
  year: 2019
  ident: 48449_CR17
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1022
– volume: 24
  start-page: 137
  year: 2012
  ident: 48449_CR20
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-012-9359-z
– volume: 36
  start-page: 1
  year: 1976
  ident: 48449_CR27
  publication-title: Br. J. Nutr.
  doi: 10.1079/bjn19760053
– volume: 7
  year: 2019
  ident: 48449_CR35
  publication-title: PeerJ
  doi: 10.7717/peerj.6496
– volume: 14
  year: 2019
  ident: 48449_CR40
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0214777
– volume: 27
  start-page: 137
  year: 1998
  ident: 48449_CR3
  publication-title: Small Rumin. Res.
  doi: 10.1016/S0921-4488(97)00031-X
– volume: 91
  start-page: 5045
  year: 2013
  ident: 48449_CR37
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2013-6583
– volume: 10
  start-page: 162
  year: 2019
  ident: 48449_CR47
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.00162
– start-page: 1
  volume-title: Bergey's Manual of Systematics of Archaea and Bacteria
  year: 2015
  ident: 48449_CR48
– volume: 4
  start-page: 56
  year: 2016
  ident: 48449_CR46
  publication-title: Microbiome
  doi: 10.1186/s40168-016-0201-2
– volume: 219
  start-page: 13
  year: 2016
  ident: 48449_CR4
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2016.05.018
– start-page: 445
  volume-title: An Introduction to Statistical Learning with Applications in R
  year: 2021
  ident: 48449_CR25
  doi: 10.1007/978-1-0716-1418-1
– volume: 14
  start-page: s78
  year: 2020
  ident: 48449_CR11
  publication-title: Animal
  doi: 10.1017/S1751731119003252
– volume: 9
  start-page: 1647
  year: 2018
  ident: 48449_CR43
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.01647
– volume: 13
  start-page: 2617
  year: 2019
  ident: 48449_CR33
  publication-title: ISME J.
  doi: 10.1038/s41396-019-0464-2
– volume: 15
  year: 2020
  ident: 48449_CR42
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0242158
– volume: 76
  start-page: 3776
  year: 2010
  ident: 48449_CR28
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00010-10
– volume: 101
  start-page: 6655
  year: 2018
  ident: 48449_CR9
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2017-13536
– ident: 48449_CR26
– year: 2018
  ident: 48449_CR24
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v083.i02
– volume: 24
  start-page: 3368
  year: 2018
  ident: 48449_CR7
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14094
– volume: 8
  start-page: 7
  year: 2017
  ident: 48449_CR12
  publication-title: J. Anim. Sci. Biotechnol.
  doi: 10.1186/s40104-017-0141-0
– volume: 41
  start-page: D590
  year: 2013
  ident: 48449_CR16
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1219
– volume: 155
  start-page: 129
  year: 2014
  ident: 48449_CR10
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.12.099
– volume: 283
  year: 2019
  ident: 48449_CR6
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2019.106575
– volume: 9
  year: 2014
  ident: 48449_CR13
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0103171
– volume: 95
  start-page: 2585
  year: 2017
  ident: 48449_CR32
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2016.1222
– volume: 6
  start-page: 1087
  year: 2015
  ident: 48449_CR39
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.01087
– ident: 48449_CR1
– volume: 11
  start-page: 1981
  year: 2020
  ident: 48449_CR41
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.01981
– volume: 156
  start-page: 12
  year: 2017
  ident: 48449_CR36
  publication-title: Small Rumin. Res.
  doi: 10.1016/j.smallrumres.2017.08.009
– volume: 99
  start-page: 210
  year: 2019
  ident: 48449_CR29
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.9162
– volume: 22
  start-page: 3039
  year: 2016
  ident: 48449_CR8
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13339
– volume: 88
  start-page: 1737
  year: 2017
  ident: 48449_CR44
  publication-title: Anim. Sci. J.
  doi: 10.1111/asj.12877
– volume: 10
  start-page: 614
  year: 2019
  ident: 48449_CR45
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.00614
– ident: 48449_CR18
– volume: 13
  start-page: 581
  year: 2016
  ident: 48449_CR15
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3869
– volume: 11
  start-page: 88
  year: 2022
  ident: 48449_CR34
  publication-title: Gigascience
  doi: 10.1093/gigascience/giab088
– volume: 100
  start-page: 8939
  year: 2017
  ident: 48449_CR30
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2016-12367
– volume: 102
  start-page: 6180
  year: 2019
  ident: 48449_CR31
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2018-16105
– volume: 94
  start-page: 2425
  year: 2016
  ident: 48449_CR5
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2016-0334
– ident: 48449_CR23
– volume: 33
  start-page: 1
  year: 2010
  ident: 48449_CR19
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– volume: 20
  start-page: 364
  year: 2020
  ident: 48449_CR38
  publication-title: BMC Microbiol.
  doi: 10.1186/s12866-020-02037-6
– ident: 48449_CR21
– volume: 67
  start-page: 1
  year: 2015
  ident: 48449_CR22
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v067.i01
– volume: 7
  start-page: 316
  issue: Suppl 2
  year: 2013
  ident: 48449_CR14
  publication-title: Animal
  doi: 10.1017/S1751731113000864
SSID ssj0000529419
Score 2.4328268
Snippet Methane (CH 4 ) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing...
Methane (CH ) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models...
Methane (CH4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models...
Methane (CH 4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models...
Abstract Methane (CH4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories....
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21305
SubjectTerms 631/326
631/326/171
631/326/2565
Animal Feed - analysis
Animal models
Animals
Bacteria
Bacteria - genetics
Bayes Theorem
Bayesian analysis
Correlation coefficient
Diet - veterinary
Dry matter
Emission inventories
Emissions
Environmental perception
Female
Food and Nutrition
Humanities and Social Sciences
Lactation
Life Sciences
Mathematical models
Methane
Microbiota
multidisciplinary
Prediction models
Rumen
Ruminants
Science
Science (multidisciplinary)
Sheep
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBggziBlET20k8x4KoVohyKlJvll-hlapsu49K---ZsbNLQwVcuESR7XGsmXFmxo9vGHtnndegK1sGhQ8VXVsC_inLLmiwjWugsrQ0cPytnX1XX06b0xupvuhMWIYHzow76KIIYGunAlqiIFug7Nh09xnQFnuRkEDR5t0IpjKqtwBVw3hLppL6YImWim6TCVkqrRSUm4klSoD9aF_O6DjkbV_z9pHJ3_ZNkzk6esDuj34kP8zjf8juxOERu5szS24es8VxpDXxyC8XtBND3OfxKsN6L_n54C_WZLT4j4Q6zec9JxCFgbsM3my5XW5J5wt-jQE1XbFCyrQGMenWer9eWL95wk6OPp98mpVjeoXSo4-2KqPoURoKOkAex77z0rZO6aqpvHZBAQVjQYUYkeeEIw-6UbGVPgQfJFTyKdsb5kN8zrise6v72rreStUjYQDp0JXp8b2tfFewestp40foccqAcWHSFrjUJkvHoHRMko7ZFOz9juYyA2_8tfVHEuCuJYFmpwJUJTOqkvmXKhXsLYp_0sfs8KuhMoJ5QyJxXRdsf6sdZpzuS4NRKwWiQkDB3uyqcaLS7gsKe77ObZC50FUFe5aVafcpqckvUNi5nqjZZCzTmuH8LIGBY0hPEPk4-A9bjfw1rj8z7MX_YNhLdk_QhKLTPWKf7a0W6_gKfbSVe52m40_U5zZW
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtSqGXkqYvN2lQS2-tiW3JtnQqaUhYStNTCnsTejkJBHtj7wb233dGfgQ3NJdlsSVZ0ow0L-kbQr5oY4UUiY4dhx_uTRFL2Cnj0gmpc5PLRKNr4Px3sfjDfy7z5eBw64ZjleOeGDZq11j0kR-BYYC6fpbJ76vbGLNGYXR1SKHxlDxD6DI0vsplOflYMIrFUznclUmYOOpAXuGdsozFXHAu4-1MHgXYfpAyV3go8qHG-fDg5D_R0yCUznbJy0GbpMc9-V-RJ77eI8_7_JLb16Q99-gZ93TVYjwGaUD9bQ_u3dHr2t5sUHTRy4A9TZuKIpRCTU0P4ayp7saqTUvvwKzGi1ZQM3giZs1qazettts35OLs9OJkEQ9JFmILmto69lkFNOGylKXPfFVapgvDRZInVhjHJZpkjjvvCyApk6kUOfcFs85Zx2TC3pKduqn9e0JZWmlRpdpUmvEKKjrJDCg0FfwvEltGJB1nWtkBgBzzYNyoEAhnQvXUUUAdFaijthH5OtVZ9fAbj5b-gQScSiJ0dnjQtJdqWIkKhumkTg13oNo4BsMqJcYOC-Cv3GY8Ip-B_LM2Fse_FD5DsDeolN2lETkYuUMNi75T9ywakU_Ta1iuGIMBYjebvgxMriyTiLzrmWn6FBOoHXBoXMzYbNaX-Zv6-ipAgoNhj0D50PlvI0fe9-v_E_bh8WHskxcZLhU8vZMdkJ11u_EfQQdbm8Ow0P4ChuYvhg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA/Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERKXincDpTKIG0QktpPYx7KiWiHKqUi9WX6lrVQlbXa30v57ZpwHCgWkXqIo9jiOZ5yZ8Yw_E_LBWCeVzEzqBVxEsGWq4E-ZVl4qU9hCZQaXBk5-lMuf4ttZcbZD2LgXJibtR0jL-Jses8M-r0DR4GYwxlMhhVDp9gF5iNDtmMa3KBfTugpGrkSuhv0xGZd_IZ3poAjVD5rlAhMh71qZd5Ml_4iYRkV0_ITsDRYkPer7_JTshOYZedSfKbl9TrqTgKvhgV53GIPBcafhpgf0XtHLxl1tUF3R84g3TduaInxCQ20P22yoWY2kbUdvwZXGzVVAGVcfZs0a5zadcdsX5PT46-limQ4HK6QOrLN1GlgNfBCqUlVgoa4cN6UVMisyJ60XCt0wL3wIJbCRq1zJQoSSO--d5yrjL8lu0zZhn1Ce10bWubG14aIGQq-4BSOmhvsyc1VC8nGktRtAx_Hsiysdg99c6p47GrijI3f0NiEfJ5rrHnLjv7W_IAOnmgiXHR-03bkexEfDZ3plcis8mDOew2dVCuOFpQKDzjGRkPfA_lkby6PvGp8hwBsQsds8IQejdOhhoq80-KvogjKmEvJuKoYpinEXYHa76evA4KoqS8irXpimV3GJFoGAxuVMzGZ9mZc0lxcRBhyceQTHh85_GiXyd7_-PWCv71f9DXnMcOpgBg87ILvrbhPegh22todx4v0CpTMt4g
  priority: 102
  providerName: Springer Nature
Title Methane prediction equations including genera of rumen bacteria as predictor variables improve prediction accuracy
URI https://link.springer.com/article/10.1038/s41598-023-48449-y
https://www.ncbi.nlm.nih.gov/pubmed/38042941
https://www.proquest.com/docview/2896192229
https://www.proquest.com/docview/2896805970
https://hal.science/hal-04331242
https://pubmed.ncbi.nlm.nih.gov/PMC10693554
https://doaj.org/article/7e2d9a1b4d124d369879582869615c24
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEN8ERmUQbxBIbDexHxDqqk1VRScEm9S3yLGdbVKVbGk70f-eOycpChuIlzRybNfx3eXufPbvCHmncyOVjHRoBVyEy5NQwZcyTK1UepgPVaRxaWB2kkzOxHQ-nO-QLt1RO4HLO107zCd1Vi8-_rzefAGB_9wcGZeflqCE8KAY46GQQqhws0v2QTOlmMph1pr7DdY3U8Ln-kAQ9hCMCdaeo7m7m56u8pD-oIEucMPkbWv09qbKPyKrXmEdPyQPWkuTjhrWeER2XPmY3GtyT26ekHrmcNXc0asaYzVIH-quG-DvJb0szWKNao2ee1xqWhUUYRZKmjfwzprqZde0qukNuNx4CAta-lWKXrfamHWtzeYpOT0-Oh1PwjYBQ2jAiluFjhVAL6FSlTrmitRwneRCRsPIyNwKhe6aFda5BMjNVazkULiEG2uN5Sriz8heWZXuBaE8LrQsYp0XmosCGlrFczB2CrhPIpMGJO5mOjMtODnmyFhkPkjOZdZQJwPqZJ462SYg77dtrhpojn_WPkQCbmsirLYvqOrzrJXSDF7TKh3nwoLZYzm8VqowrpgoMPwMEwF5C-Tv9TEZfc2wDIHgoBG7iQNy0HFH1vFzBn4tuqqMqYC82T4GUcb4DBC7Wjd1YHJVGgXkecNM27_iEi0HAZ3LHpv1xtJ_Ul5eeLhwcPoRRB8G_6HjyN_j-vuEvfyPcb4i9xnKC27vYQdkb1Wv3Wsw0lb5gOym83RA9kej6Y8p_B4enXz7DqXjZDzwCx8DL5u_ADpaPLg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BqdELwgPkdggEHwBNES2_nwA0IbbOpYWyFUpL1Zju1sk6akS9uh_ij-I3f56BQm9raXqkp8ju27833Zd4S815lJZRpo3wr4ES6LfQk7pZ_YVOooi2Sg0TUwnsTDX-L7cXS8Qf50d2HwWGW3J9YbtS0N-sh3wDBAXZ8x-WV24WPVKIyudiU0GrI4cqvfYLLNPx9-A_x-YOxgf_p16LdVBXwDqsnCdyyHQQiZyMQxlyeG6zgTaRAFJs2skGiDWGGdi2EOXIJRHgkXc2OtsVwGHLq9QzYFB01hQDb39ic_fq6dOhg2E6FsL-cEPN2Zg4DES2yM-yIVQvqrngCs6wSAWDvFU5jXVdzrJzX_CdfWUvDgIXnQqq90t6G3R2TDFY_J3aag5eoJqcYOXfGOzioMACHSqbtosonP6VlhzpcoK-lJneyaljnF3A0FzZqc0ZrqeQdaVvQS7Hi82QWQteuj1602Zllps3pKprex_s_IoCgL95xQHuY6zUOd5ZqLHACt5BloUDn8jwOTeCTsVlqZNuM5Ft44V3XknaeqwY4C7KgaO2rlkY9rmFmT7-PG1nuIwHVLzNVdPyirE9WyvoJpWqnDTFjQpSyHaSUSg5UxEHRkmPDIO0B_r4_h7kjhM8wuB0DsMvTIdkcdqt1l5uqKJzzydv0a9gcM-gCyy2XTBhZXJoFHthpiWn-Kp6iOCOg87ZFZbyz9N8XZaZ2DPAxizMwPg__UUeTVuP6_YC9unsYbcm84HY_U6HBy9JLcZ8g2eHSIbZPBolq6V6AALrLXLdtRom6Z0f8CNzZtEQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFIC6IN4ECBsEJok1sJ7EPCBXKaksf4lCkvVmO7bSVqmSb3S3aT-PvmMljq1DRWy-rVeJxbM_TnvEMIe9NbqWSkQmdgB_h8zRUICnDzEllkjxRkcGjgYPDdPJL_Jgm0w3yp78Lg2GVvUxsBLWrLJ6Rj2BjgLY-Y2pUdGERP3fGX2bnIVaQQk9rX06jJZE9v_oN27f5590dwPUHxsbfj75Nwq7CQGjBTFmEnhUwIKEylXnmi8xyk-ZCRklkZe6Ewv2IE877FObDFWzQE-FTbp2zjquIQ7e3yO2Mg9YEVsqm2fp4Bx1oIlbdNZ2Iy9EcVCVeZ2M8FFIIFa4GqrCpGAAK7gTjMa8au1djNv9x3Db6cPyA3O8MWbrdUt5DsuHLR-ROW9py9ZjUBx4P5T2d1egKQvRTf97mFZ_T09KeLVFr0uMm7TWtCopZHEqat9mjDTXzHrSq6QXs6PGOF0A2hyCDbo21y9rY1RNydBOr_5RsllXpnxPK48LIIjZ5YbgoANApnoMtVcD_NLJZQOJ-pbXtcp9jCY4z3fjgudQtdjRgRzfY0auAfFzDzNrMH9e2_ooIXLfErN3Ng6o-1p0Q0DBNp0ycCwdWleMwrUyh2zIF0k4sEwF5B-gf9DHZ3tf4DPPMARC7iAOy1VOH7uTNXF9yR0Derl-DpED3DyC7WrZtYHFVFgXkWUtM609xiYaJgM7lgMwGYxm-KU9PmmzkcZRijn4Y_KeeIi_H9f8Fe3H9NN6Qu8Deen_3cO8luceQazCGiG2RzUW99K_AElzkrxueo0TfMI__BR5Yb-E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methane+prediction+equations+including+genera+of+rumen+bacteria+as+predictor+variables+improve+prediction+accuracy&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Boyang&rft.au=Lin%2C+Shili&rft.au=Moraes%2C+Luis&rft.au=Firkins%2C+Jeffrey&rft.date=2023-12-02&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=21305&rft_id=info:doi/10.1038%2Fs41598-023-48449-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon