Lower resting brain entropy is associated with stronger task activation and deactivation

•Correlations between rest brain entropy and task activation were assessed.•In activated brain regions, lower rest entropy correlates with stronger activation.•In deactivated area, lower rest entropy correlates with stronger deactivation.•Rest brain entropy predicts the magnitude of brain activation...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 249; p. 118875
Main Authors Lin, Liandong, Chang, Da, Song, Donghui, Li, Yiran, Wang, Ze
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2022
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2022.118875

Cover

Loading…
Abstract •Correlations between rest brain entropy and task activation were assessed.•In activated brain regions, lower rest entropy correlates with stronger activation.•In deactivated area, lower rest entropy correlates with stronger deactivation.•Rest brain entropy predicts the magnitude of brain activation or deactivation.•Rest entropy explains the individual differences of activation/deactivations. Brain entropy (BEN) calculated from resting state fMRI has been the subject of increasing research interest in recent years. Previous studies have shown the correlations between rest BEN and neurocognition and task performance, but how this relates to task-evoked brain activations and deactivations remains unknown. The purpose of this study is to address this open question using large data (n = 862). Voxel wise correlations were calculated between rest BEN and task activations/deactivations of five different tasks. For most of the assessed tasks, lower rest BEN was found to be associated with stronger activations (negative correlations) and stronger deactivations (positive correlations) only in brain regions activated or deactivated by the tasks. Higher workload evoked spatially more extended negative correlations between rest BEN and task activations. These results not only confirm that resting brain activity can predict brain activity during task performance but also for the first time show that resting brain activity may facilitate both task activations and deactivations. In addition, the results provide a clue to understanding the individual differences of task performance and brain activations.
AbstractList •Correlations between rest brain entropy and task activation were assessed.•In activated brain regions, lower rest entropy correlates with stronger activation.•In deactivated area, lower rest entropy correlates with stronger deactivation.•Rest brain entropy predicts the magnitude of brain activation or deactivation.•Rest entropy explains the individual differences of activation/deactivations. Brain entropy (BEN) calculated from resting state fMRI has been the subject of increasing research interest in recent years. Previous studies have shown the correlations between rest BEN and neurocognition and task performance, but how this relates to task-evoked brain activations and deactivations remains unknown. The purpose of this study is to address this open question using large data (n = 862). Voxel wise correlations were calculated between rest BEN and task activations/deactivations of five different tasks. For most of the assessed tasks, lower rest BEN was found to be associated with stronger activations (negative correlations) and stronger deactivations (positive correlations) only in brain regions activated or deactivated by the tasks. Higher workload evoked spatially more extended negative correlations between rest BEN and task activations. These results not only confirm that resting brain activity can predict brain activity during task performance but also for the first time show that resting brain activity may facilitate both task activations and deactivations. In addition, the results provide a clue to understanding the individual differences of task performance and brain activations.
Brain entropy (BEN) calculated from resting state fMRI has been the subject of increasing research interest in recent years. Previous studies have shown the correlations between rest BEN and neurocognition and task performance, but how this relates to task-evoked brain activations and deactivations remains unknown. The purpose of this study is to address this open question using large data (n = 862). Voxel wise correlations were calculated between rest BEN and task activations/deactivations of five different tasks. For most of the assessed tasks, lower rest BEN was found to be associated with stronger activations (negative correlations) and stronger deactivations (positive correlations) only in brain regions activated or deactivated by the tasks. Higher workload evoked spatially more extended negative correlations between rest BEN and task activations. These results not only confirm that resting brain activity can predict brain activity during task performance but also for the first time show that resting brain activity may facilitate both task activations and deactivations. In addition, the results provide a clue to understanding the individual differences of task performance and brain activations.
Brain entropy (BEN) calculated from resting state fMRI has been the subject of increasing research interest in recent years. Previous studies have shown the correlations between rest BEN and neurocognition and task performance, but how this relates to task-evoked brain activations and deactivations remains unknown. The purpose of this study is to address this open question using large data (n = 862). Voxel wise correlations were calculated between rest BEN and task activations/deactivations of five different tasks. For most of the assessed tasks, lower rest BEN was found to be associated with stronger activations (negative correlations) and stronger deactivations (positive correlations) only in brain regions activated or deactivated by the tasks. Higher workload evoked spatially more extended negative correlations between rest BEN and task activations. These results not only confirm that resting brain activity can predict brain activity during task performance but also for the first time show that resting brain activity may facilitate both task activations and deactivations. In addition, the results provide a clue to understanding the individual differences of task performance and brain activations.Brain entropy (BEN) calculated from resting state fMRI has been the subject of increasing research interest in recent years. Previous studies have shown the correlations between rest BEN and neurocognition and task performance, but how this relates to task-evoked brain activations and deactivations remains unknown. The purpose of this study is to address this open question using large data (n = 862). Voxel wise correlations were calculated between rest BEN and task activations/deactivations of five different tasks. For most of the assessed tasks, lower rest BEN was found to be associated with stronger activations (negative correlations) and stronger deactivations (positive correlations) only in brain regions activated or deactivated by the tasks. Higher workload evoked spatially more extended negative correlations between rest BEN and task activations. These results not only confirm that resting brain activity can predict brain activity during task performance but also for the first time show that resting brain activity may facilitate both task activations and deactivations. In addition, the results provide a clue to understanding the individual differences of task performance and brain activations.
Brain entropy (BEN) calculated from resting state fMRI has been the subject of increasing research interest in recent years. Previous studies have shown the correlations between rest BEN and neurocognition and task performance, but how this relates to task-evoked brain activations and deactivations remains unknown. The purpose of this study is to address this open question using large data (n = 862). Voxel wise correlations were calculated between rest BEN and task activations/deactivations of five different tasks. For most of the assessed tasks, lower rest BEN was found to be associated with stronger activations (negative correlations) and stronger deactivations (positive correlations) only in brain regions activated or deactivated by the tasks. Higher workload evoked spatially more extended negative correlations between rest BEN and task activations. These results not only confirm that resting brain activity can predict brain activity during task performance but also for the first time show that resting brain activity may facilitate both task activations and deactivations. In addition, the results provide a clue to understanding the individual differences of task performance and brain activations.
ArticleNumber 118875
Author Chang, Da
Song, Donghui
Lin, Liandong
Wang, Ze
Li, Yiran
Author_xml – sequence: 1
  givenname: Liandong
  surname: Lin
  fullname: Lin, Liandong
  organization: College of Electronic Engineering, Heilongjiang University, Harbin 150080, China
– sequence: 2
  givenname: Da
  surname: Chang
  fullname: Chang, Da
  organization: State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
– sequence: 3
  givenname: Donghui
  surname: Song
  fullname: Song, Donghui
  organization: State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
– sequence: 4
  givenname: Yiran
  surname: Li
  fullname: Li, Yiran
  organization: Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W Baltimore St, Room 1173, Baltimore, MD 21201, United States
– sequence: 5
  givenname: Ze
  surname: Wang
  fullname: Wang, Ze
  email: Ze.Wang@som.umaryland.edu
  organization: Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W Baltimore St, Room 1173, Baltimore, MD 21201, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34998971$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1uEzEUhUeoiP7AKyBLbNgk-HrGY3uDoBU_lSKxAYmd5bHvBKcTO9hOq7w9TlNaKauubHm--2nuOefNSYgBm4YAnQOF_sNqHnCbol-bJc4ZZWwOIKXgL5ozoIrPFBfsZH_n7UwCqNPmPOcVpVRBJ181p22nlFQCzprfi3iHiSTMxYclGZLxgWAoKW52xGdico7Wm4KO3Pnyh-T6JSzrRDH5hhhb_K0pPgZigiMOnx5eNy9HM2V883BeNL--fvl59X22-PHt-urzYma54GXmVCvajrWWomOWigGxc1C36cZB8lY4UxcW3HHe2d4qC0wg5YIigJFcje1Fc33wumhWepNqJmmno_H6_iGmpTapeDuhBgWGs25kIxs6RkE6yW3ft653LR1aXl3vD65Nin-3NRK99tniNJmAcZs160FyEB1TFX13hK7iNoW6aaWYAMag21NvH6jtsEb3-Hv_86-APAA2xZwTjo8IUL2vWq_0U9V6X7U-VF1HPx6NWl_uoy-1xOk5gsuDAGs9tx6TztZjsOh8Qltqfv45kk9HEjv54K2ZbnD3PMU_MA7gSA
CitedBy_id crossref_primary_10_1016_j_jad_2024_10_066
crossref_primary_10_1016_j_psychres_2024_116092
crossref_primary_10_3389_fneur_2023_1273336
crossref_primary_10_1007_s00429_025_02897_6
crossref_primary_10_1002_jnr_25341
crossref_primary_10_1002_jnr_25310
crossref_primary_10_1016_j_envres_2023_117788
crossref_primary_10_1093_cercor_bhad393
crossref_primary_10_1016_j_bspc_2024_107113
crossref_primary_10_1016_j_jneumeth_2024_110205
crossref_primary_10_1016_j_jad_2024_01_205
crossref_primary_10_1007_s11517_023_02932_w
crossref_primary_10_1007_s11682_024_00923_5
crossref_primary_10_1016_j_neurot_2025_e00556
crossref_primary_10_3389_fnins_2024_1352409
crossref_primary_10_1002_hbm_26129
crossref_primary_10_3233_JAD_230295
crossref_primary_10_1016_j_jad_2023_03_062
crossref_primary_10_1016_j_neuroimage_2024_120657
Cites_doi 10.1038/nn1616
10.1016/j.neuroimage.2021.117893
10.1007/s11682-018-9866-4
10.1016/j.neuroimage.2010.10.046
10.1371/journal.pcbi.1002038
10.3389/fnins.2020.00700
10.1016/j.neuroimage.2007.09.040
10.1016/j.neuroimage.2010.01.002
10.1126/science.1099745
10.1016/j.neuroimage.2013.05.041
10.1016/j.jad.2019.09.067
10.1002/dev.420020304
10.1038/ncomms13900
10.1002/hbm.22136
10.1002/mrm.22361
10.1038/nature04258
10.1016/j.neuroimage.2010.09.048
10.3390/e23060659
10.1523/JNEUROSCI.2111-11.2011
10.1038/nn890
10.1038/s41593-019-0371-x
10.1016/j.braindev.2006.07.002
10.3389/fnagi.2020.596122
10.1016/j.neuroimage.2005.12.016
10.1038/srep29435
10.1109/CIC.2002.1166726
10.1016/j.cub.2012.06.061
10.1016/j.neuron.2010.02.001
10.1162/jocn.1997.9.5.624
10.1073/pnas.98.2.676
10.1016/j.neuron.2015.09.034
10.1002/andp.18652010702
10.1007/s11682-018-9963-4
10.1016/j.neuroimage.2013.05.033
10.7554/eLife.00699
10.1371/journal.pone.0089948
10.1523/JNEUROSCI.2523-11.2012
10.1016/j.tics.2005.08.011
10.1111/adb.12459
10.1017/S1062798709000751
10.1038/s41598-018-21008-6
10.1016/j.comppsych.2018.11.015
10.1016/j.neuroimage.2010.10.001
10.1016/j.neuron.2011.12.035
10.1191/0962280203sm341ra
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier Inc.
Copyright Elsevier Limited Apr 1, 2022
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Apr 1, 2022
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOA
DOI 10.1016/j.neuroimage.2022.118875
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

ProQuest One Psychology
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_191a524f2f2b42018d85c663d6d30b35
34998971
10_1016_j_neuroimage_2022_118875
S1053811922000052
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: NIA NIH HHS
  grantid: R01 AG070227
– fundername: NIA NIH HHS
  grantid: R01 AG060054
– fundername: NCATS NIH HHS
  grantid: UL1 TR003098
– fundername: NIBIB NIH HHS
  grantid: P41 EB029460
– fundername: NIBIB NIH HHS
  grantid: R01 EB003108
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
RIG
SEW
WUQ
XPP
ZMT
0SF
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c575t-d9373423c0ed2c07bee4d11184fb8537da10175d554c6c9c127e0570e11a859f3
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:15:44 EDT 2025
Fri Jul 11 10:47:41 EDT 2025
Wed Aug 13 07:41:00 EDT 2025
Wed Feb 19 02:05:13 EST 2025
Thu Apr 24 22:53:10 EDT 2025
Tue Jul 01 03:02:21 EDT 2025
Fri Feb 23 02:40:58 EST 2024
Tue Aug 26 17:21:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Task deactivation
Task
DMN
Resting state fMRI
Entropy
BEN
fALFF
BENtbx
fMRI
ECN
rsfMRI
Task activation
HCP
LRTC
FC
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-d9373423c0ed2c07bee4d11184fb8537da10175d554c6c9c127e0570e11a859f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811922000052
PMID 34998971
PQID 2627122149
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_191a524f2f2b42018d85c663d6d30b35
proquest_miscellaneous_2618517429
proquest_journals_2627122149
pubmed_primary_34998971
crossref_primary_10_1016_j_neuroimage_2022_118875
crossref_citationtrail_10_1016_j_neuroimage_2022_118875
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2022_118875
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2022_118875
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2022
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Wang, Li, Childress, Detre (bib0044) 2014; 9
Shulman, Corbetta, Buckner, Fiez, Miezin, Raichle, Petersen (bib0034) 1997; 9
Costa, Goldberger, Peng (bib0006) 2002; 29
Wang (bib0043) 2020; 12
Dean, Hagan, Pesaran (bib0009) 2012; 73
Pinker (bib0028) 1997
Binder, Gross, Allendorfer, Bonilha, Chapin, Edwards, Grabowski, Langfitt, Loring, Lowe, Koenig, Morgan, Ojemann, Rorden, Szaflarski, Tivarus, Weaver (bib0003) 2011; 54
Chang, Song, Zhang, Shang, Ge, Wang (bib0008) 2018; 8
Rubinov, Sporns, Thivierge, Breakspear (bib0031) 2011; 7
Schrödinger (bib0033) 1944
He (bib0016) 2011; 31
Zhou, Zhuang, Gong, Zhan, Grossman, Wang (bib0050) 2016; 11
Raichle, MacLeod, Snyder, Powers, Gusnard, Shulman (bib0029) 2001; 98
Suh, Wang, Duan, Darnley, Jing, Zhang, O'Brien, Childress (bib0049) 2017; 22
Chang, Ge, Zhang, Wang (bib0007) 2017
Liu, Zhu, Chen (bib0020) 2011; 54
Teki, Chait, Kumar, Shamma, Griffiths (bib0037) 2013; 2
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib0039) 2013; 80
.
Bergstrom (bib0002) 1969; 2
Buzsáki, Draguhn (bib0004) 2004; 304
Lu, Xu, Yin, Oxenham, Fritz, Shamma (bib0022) 2017; 8
Wang (bib0041) 2020
Moeller, Yacoub, Olman, Auerbach, Strupp, Harel, Ugurbil (bib0025) 2010; 63
doi
Deco, Jirsa (bib0010) 2012; 32
Nichols, Hayasaka (bib0052) 2003; 12
Fries (bib0014) 2005; 9
Thut, Miniussi, Gross (bib0038) 2012; 22
Singer (bib0035) 2009; 17
Drobyshevsky, Baumann, Schneider (bib0012) 2006; 31
Zang, He, Zhu, Cao, Sui, Liang, Tian, Jiang, Wang (bib0047) 2007; 29
Suh, Wang, O'Brien, Franklin, Childress (bib0048) 2014
Barch, Burgess, Harms, Petersen, Schlaggar, Corbetta, Glasser, Curtiss, Dixit, Feldt, Nolan, Bryant, Hartley, Footer, Bjork, Poldrack, Smith, Johansen-Berg, Snyder, Van Essen (bib0001) 2013; 80
Z. Wang, 2020. Assessing the neurocognitive correlates of resting brain entropy. arXiv preprint arXiv
Saleh, Reimer, Penn, Ojakangas, Hatsopoulos (bib0032) 2010; 65
Kannurpatti, Biswal (bib0017) 2008; 40
Pesaran, Pezaris, Sahani, Mitra, Andersen (bib0027) 2002; 5
Mennes, Zuo, Kelly, Di Martino, Zang, Biswal, Castellanos, Milham (bib0024) 2011; 54
Nezafati, Temmar, Keilholz (bib0026) 2020; 14
Clausius (bib0005) 1865; 201
Li, Fang, Hager, Rao, Wang (bib0018) 2016; 6
Mennes, Kelly, Zuo, Di Martino, Biswal, Castellanos, Milham (bib0023) 2010; 50
Song, Chang, Zhang, Ge, Zang, Wang (bib0011) 2019; 13
Womelsdorf, Fries, Mitra, Desimone (bib0045) 2006; 439
Lu, Wang (bib0021) 2021; 23
Liu, Song, Yin, Xie, Zhang, Zhang, Zhang, Wang, Yuan (bib0019) 2020; 260
Fox, Snyder, Zacks, Raichle (bib0013) 2006; 9
Xue, Yu, Guo, Song, Wang (bib0046) 2019; 89
Wang (bib0042) 2021; 232
Song, Chang, Zhang, Peng, Shang, Gao, Wang (bib0036) 2019; 13
Reinhart, Nguyen (bib0030) 2019; 22
Zou, Ross, Gu, Geng, Zuo, Hong, Gao, Stein, Zang, Yang (bib0051) 2013; 34
Fries (bib0015) 2015; 88
Suh (10.1016/j.neuroimage.2022.118875_bib0048) 2014
Bergstrom (10.1016/j.neuroimage.2022.118875_bib0002) 1969; 2
Wang (10.1016/j.neuroimage.2022.118875_bib0044) 2014; 9
Deco (10.1016/j.neuroimage.2022.118875_bib0010) 2012; 32
Drobyshevsky (10.1016/j.neuroimage.2022.118875_bib0012) 2006; 31
Pesaran (10.1016/j.neuroimage.2022.118875_bib0027) 2002; 5
Zang (10.1016/j.neuroimage.2022.118875_bib0047) 2007; 29
Thut (10.1016/j.neuroimage.2022.118875_bib0038) 2012; 22
Wang (10.1016/j.neuroimage.2022.118875_bib0041) 2020
Singer (10.1016/j.neuroimage.2022.118875_bib0035) 2009; 17
Barch (10.1016/j.neuroimage.2022.118875_bib0001) 2013; 80
Lu (10.1016/j.neuroimage.2022.118875_bib0022) 2017; 8
Pinker (10.1016/j.neuroimage.2022.118875_bib0028) 1997
Shulman (10.1016/j.neuroimage.2022.118875_bib0034) 1997; 9
Clausius (10.1016/j.neuroimage.2022.118875_bib0005) 1865; 201
Raichle (10.1016/j.neuroimage.2022.118875_bib0029) 2001; 98
Saleh (10.1016/j.neuroimage.2022.118875_bib0032) 2010; 65
Li (10.1016/j.neuroimage.2022.118875_bib0018) 2016; 6
Kannurpatti (10.1016/j.neuroimage.2022.118875_bib0017) 2008; 40
He (10.1016/j.neuroimage.2022.118875_bib0016) 2011; 31
Chang (10.1016/j.neuroimage.2022.118875_bib0008) 2018; 8
Teki (10.1016/j.neuroimage.2022.118875_bib0037) 2013; 2
Nichols (10.1016/j.neuroimage.2022.118875_bib0052) 2003; 12
Xue (10.1016/j.neuroimage.2022.118875_bib0046) 2019; 89
Liu (10.1016/j.neuroimage.2022.118875_bib0019) 2020; 260
Reinhart (10.1016/j.neuroimage.2022.118875_bib0030) 2019; 22
Mennes (10.1016/j.neuroimage.2022.118875_bib0023) 2010; 50
Buzsáki (10.1016/j.neuroimage.2022.118875_bib0004) 2004; 304
Schrödinger (10.1016/j.neuroimage.2022.118875_bib0033) 1944
Wang (10.1016/j.neuroimage.2022.118875_bib0042) 2021; 232
Womelsdorf (10.1016/j.neuroimage.2022.118875_bib0045) 2006; 439
Fries (10.1016/j.neuroimage.2022.118875_bib0015) 2015; 88
Suh (10.1016/j.neuroimage.2022.118875_bib0049) 2017; 22
Fox (10.1016/j.neuroimage.2022.118875_bib0013) 2006; 9
Nezafati (10.1016/j.neuroimage.2022.118875_bib0026) 2020; 14
Rubinov (10.1016/j.neuroimage.2022.118875_bib0031) 2011; 7
Costa (10.1016/j.neuroimage.2022.118875_bib0006) 2002; 29
Liu (10.1016/j.neuroimage.2022.118875_bib0020) 2011; 54
Song (10.1016/j.neuroimage.2022.118875_bib0011) 2019; 13
Dean (10.1016/j.neuroimage.2022.118875_bib0009) 2012; 73
Van Essen (10.1016/j.neuroimage.2022.118875_bib0039) 2013; 80
Zou (10.1016/j.neuroimage.2022.118875_bib0051) 2013; 34
10.1016/j.neuroimage.2022.118875_bib0040
Binder (10.1016/j.neuroimage.2022.118875_bib0003) 2011; 54
Moeller (10.1016/j.neuroimage.2022.118875_bib0025) 2010; 63
Zhou (10.1016/j.neuroimage.2022.118875_bib0050) 2016; 11
Wang (10.1016/j.neuroimage.2022.118875_bib0043) 2020; 12
Lu (10.1016/j.neuroimage.2022.118875_bib0021) 2021; 23
Mennes (10.1016/j.neuroimage.2022.118875_bib0024) 2011; 54
Song (10.1016/j.neuroimage.2022.118875_bib0036) 2019; 13
Fries (10.1016/j.neuroimage.2022.118875_bib0014) 2005; 9
Chang (10.1016/j.neuroimage.2022.118875_bib0007) 2017
References_xml – volume: 6
  start-page: 29435
  year: 2016
  ident: bib0018
  article-title: Hyper-resting brain entropy within chronic smokers and its moderation by sex
  publication-title: Sci. Rep.
– volume: 14
  start-page: 700
  year: 2020
  ident: bib0026
  article-title: Functional MRI signal complexity analysis using sample entropy
  publication-title: Front. Neurosci.
– volume: 40
  start-page: 1567
  year: 2008
  end-page: 1574
  ident: bib0017
  article-title: Detection and scaling of task-induced fMRI-BOLD response using resting state fluctuations
  publication-title: Neuroimage
– volume: 201
  start-page: 353
  year: 1865
  end-page: 400
  ident: bib0005
  article-title: Über die Wärmeleitung gasförmiger Körper
  publication-title: Ann. Phys.
– volume: 54
  start-page: 2278
  year: 2011
  end-page: 2286
  ident: bib0020
  article-title: Baseline BOLD correlation predicts individuals' stimulus-evoked BOLD responses
  publication-title: Neuroimage
– volume: 439
  start-page: 733
  year: 2006
  ident: bib0045
  article-title: Gamma-band synchronization in visual cortex predicts speed of change detection
  publication-title: Nature
– volume: 9
  start-page: 474
  year: 2005
  end-page: 480
  ident: bib0014
  article-title: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence
  publication-title: Trends Cogn. Sci.
– volume: 31
  start-page: 13786
  year: 2011
  end-page: 13795
  ident: bib0016
  article-title: Scale-free properties of the functional magnetic resonance imaging signal during rest and task
  publication-title: J. Neurosci.
– volume: 13
  start-page: 421
  year: 2019
  end-page: 429
  ident: bib0036
  article-title: Reduced brain entropy by repetitive transcranial magnetic stimulation on the left dorsolateral prefrontal cortex in healthy young adults
  publication-title: Brain Imaging Behav
– volume: 7
  start-page: e1002038
  year: 2011
  ident: bib0031
  article-title: Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons
  publication-title: PLoS Comput. Biol.
– volume: 9
  start-page: e89948
  year: 2014
  ident: bib0044
  article-title: Brain Entropy Mapping Using fMRI
  publication-title: PLoS One
– volume: 31
  start-page: 732
  year: 2006
  end-page: 744
  ident: bib0012
  article-title: A rapid fMRI task battery for mapping of visual, motor, cognitive, and emotional function
  publication-title: Neuroimage
– volume: 8
  start-page: 13900
  year: 2017
  ident: bib0022
  article-title: Temporal coherence structure rapidly shapes neuronal interactions
  publication-title: Nat. Commun.
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib0039
  article-title: The WU-Minn Human Connectome Project: an overview
  publication-title: Neuroimage
– year: 2014
  ident: bib0048
  article-title: A Hypo-Status Revealed By Multi-modal Neuroimaging in Drug Addicted Brain
– volume: 13
  start-page: 486
  year: 2019
  end-page: 1495
  ident: bib0011
  article-title: Associations of brain entropy (BEN) to cerebral blood flow and fractional amplitude of low-frequency fluctuations in the resting brain
  publication-title: Brain Imaging Behav.
– volume: 63
  start-page: 1144
  year: 2010
  end-page: 1153
  ident: bib0025
  article-title: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI
  publication-title: Magn. Reson. Med.
– volume: 232
  year: 2021
  ident: bib0042
  article-title: The neurocognitive correlates of brain entropy estimated by resting state fMRI
  publication-title: Neuroimage
– volume: 29
  start-page: 137
  year: 2002
  end-page: 140
  ident: bib0006
  article-title: Multiscale entropy to distinguish physiologic and synthetic RR time series
  publication-title: Comput. Cardiol.
– volume: 89
  start-page: 16
  year: 2019
  end-page: 21
  ident: bib0046
  article-title: Resting-state brain entropy in schizophrenia
  publication-title: Compr. Psychiatry
– start-page: 603
  year: 2017
  ident: bib0007
  article-title: Caffeine caused a widespread increase of resting brain entropy
  publication-title: Proceedings of the Annual Meeting of Society for Neuroscience
– volume: 22
  start-page: 1622
  year: 2017
  end-page: 1631
  ident: bib0049
  article-title: A hypo-status in drug dependent brain revealed by multi-modal MRI
  publication-title: Addict. Biol.
– volume: 23
  start-page: 659
  year: 2021
  ident: bib0021
  article-title: The systematic bias of entropy calculation in the multi-scale entropy algorithm
  publication-title: Entropy
– volume: 22
  start-page: R658
  year: 2012
  end-page: R663
  ident: bib0038
  article-title: The functional importance of rhythmic activity in the brain
  publication-title: Curr. Biol.
– volume: 50
  start-page: 1690
  year: 2010
  end-page: 1701
  ident: bib0023
  article-title: Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity
  publication-title: Neuroimage
– volume: 29
  start-page: 83
  year: 2007
  end-page: 91
  ident: bib0047
  article-title: Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI
  publication-title: Brain Dev.
– volume: 54
  start-page: 1465
  year: 2011
  end-page: 1475
  ident: bib0003
  article-title: Mapping anterior temporal lobe language areas with fMRI: a multicenter normative study
  publication-title: Neuroimage
– volume: 17
  start-page: 321
  year: 2009
  end-page: 329
  ident: bib0035
  article-title: The brain, a complex self-organizing system
  publication-title: Eur. Rev.
– reference: . doi:
– volume: 2
  start-page: 139
  year: 1969
  end-page: 152
  ident: bib0002
  article-title: An entropy model of the developing brain
  publication-title: Dev. Psychobiol.
– volume: 304
  start-page: 1926
  year: 2004
  end-page: 1929
  ident: bib0004
  article-title: Neuronal oscillations in cortical networks
  publication-title: Science
– start-page: 1794
  year: 2020
  ident: bib0041
  article-title: Resting brain entropy in the default mode network and the executive network may serve as a functional brain reserve
  publication-title: Proceedings of the 28th Annual Meeting of ISMRM
– volume: 32
  start-page: 3366
  year: 2012
  end-page: 3375
  ident: bib0010
  article-title: Ongoing cortical activity at rest: criticality, multistability, and ghost attractors
  publication-title: J. Neurosci.
– volume: 9
  start-page: 23
  year: 2006
  end-page: 25
  ident: bib0013
  article-title: Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses
  publication-title: Nat. Neurosci.
– volume: 88
  start-page: 220
  year: 2015
  end-page: 235
  ident: bib0015
  article-title: Rhythms for cognition: communication through coherence
  publication-title: Neuron
– volume: 65
  start-page: 461
  year: 2010
  end-page: 471
  ident: bib0032
  article-title: Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues
  publication-title: Neuron
– volume: 73
  start-page: 829
  year: 2012
  end-page: 841
  ident: bib0009
  article-title: Only coherent spiking in posterior parietal cortex coordinates looking and reaching
  publication-title: Neuron
– volume: 260
  start-page: 716
  year: 2020
  end-page: 721
  ident: bib0019
  article-title: Altered brain entropy as a predictor of antidepressant response in major depressive disorder
  publication-title: J. Affect. Disord.
– volume: 54
  start-page: 2950
  year: 2011
  end-page: 2959
  ident: bib0024
  article-title: Linking inter-individual differences in neural activation and behavior to intrinsic brain dynamics
  publication-title: Neuroimage
– volume: 11
  year: 2016
  ident: bib0050
  article-title: Resting state brain entropy alterations in relapsing remitting multiple sclerosis
  publication-title: PLoS One
– volume: 5
  start-page: 805
  year: 2002
  end-page: 811
  ident: bib0027
  article-title: Temporal structure in neuronal activity during working memory in macaque parietal cortex
  publication-title: Nat. Neurosci.
– reference: Z. Wang, 2020. Assessing the neurocognitive correlates of resting brain entropy. arXiv preprint arXiv:
– volume: 22
  start-page: 820
  year: 2019
  end-page: 827
  ident: bib0030
  article-title: Working memory revived in older adults by synchronizing rhythmic brain circuits
  publication-title: Nat. Neurosci.
– year: 1944
  ident: bib0033
  article-title: What is Life - the Physical Aspect of the Living Cell
– reference: .
– volume: 2
  start-page: e00699
  year: 2013
  ident: bib0037
  article-title: Segregation of complex acoustic scenes based on temporal coherence
  publication-title: eLife
– volume: 12
  start-page: 596122
  year: 2020
  ident: bib0043
  article-title: Brain entropy mapping in healthy aging and Alzheimer’s disease
  publication-title: Front. Aging Neurosci.
– year: 1997
  ident: bib0028
  article-title: How the Mind Works
– volume: 8
  start-page: 2700
  year: 2018
  ident: bib0008
  article-title: Caffeine caused a widespread increase of resting brain entropy
  publication-title: Sci. Rep.
– volume: 98
  start-page: 676
  year: 2001
  end-page: 682
  ident: bib0029
  article-title: A default mode of brain function
  publication-title: Proc. Natl. Acad. Sci.
– volume: 34
  start-page: 3204
  year: 2013
  end-page: 3215
  ident: bib0051
  article-title: Intrinsic resting-state activity predicts working memory brain activation and behavioral performance
  publication-title: Hum. Brain Mapp.
– volume: 9
  start-page: 624
  year: 1997
  end-page: 647
  ident: bib0034
  article-title: Common blood flow changes across visual tasks: I. Increases in subcortical structures and cerebellum but not in nonvisual cortex
  publication-title: J. Cogn. Neurosci.
– volume: 12
  start-page: 419
  year: 2003
  end-page: 446
  ident: bib0052
  article-title: Controlling the familywise error rate in functional neuroimaging: a comparative review
  publication-title: Stat. Methods Med. Res.
– volume: 80
  start-page: 169
  year: 2013
  end-page: 189
  ident: bib0001
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: Neuroimage
– volume: 9
  start-page: 23
  year: 2006
  ident: 10.1016/j.neuroimage.2022.118875_bib0013
  article-title: Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1616
– volume: 232
  year: 2021
  ident: 10.1016/j.neuroimage.2022.118875_bib0042
  article-title: The neurocognitive correlates of brain entropy estimated by resting state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.117893
– volume: 13
  start-page: 421
  issue: 2
  year: 2019
  ident: 10.1016/j.neuroimage.2022.118875_bib0036
  article-title: Reduced brain entropy by repetitive transcranial magnetic stimulation on the left dorsolateral prefrontal cortex in healthy young adults
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-018-9866-4
– start-page: 1794
  year: 2020
  ident: 10.1016/j.neuroimage.2022.118875_bib0041
  article-title: Resting brain entropy in the default mode network and the executive network may serve as a functional brain reserve
– volume: 54
  start-page: 2950
  year: 2011
  ident: 10.1016/j.neuroimage.2022.118875_bib0024
  article-title: Linking inter-individual differences in neural activation and behavior to intrinsic brain dynamics
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.10.046
– volume: 7
  start-page: e1002038
  issue: 6
  year: 2011
  ident: 10.1016/j.neuroimage.2022.118875_bib0031
  article-title: Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002038
– volume: 14
  start-page: 700
  year: 2020
  ident: 10.1016/j.neuroimage.2022.118875_bib0026
  article-title: Functional MRI signal complexity analysis using sample entropy
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00700
– volume: 40
  start-page: 1567
  year: 2008
  ident: 10.1016/j.neuroimage.2022.118875_bib0017
  article-title: Detection and scaling of task-induced fMRI-BOLD response using resting state fluctuations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.09.040
– volume: 50
  start-page: 1690
  year: 2010
  ident: 10.1016/j.neuroimage.2022.118875_bib0023
  article-title: Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.01.002
– volume: 304
  start-page: 1926
  year: 2004
  ident: 10.1016/j.neuroimage.2022.118875_bib0004
  article-title: Neuronal oscillations in cortical networks
  publication-title: Science
  doi: 10.1126/science.1099745
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2022.118875_bib0039
  article-title: The WU-Minn Human Connectome Project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 260
  start-page: 716
  year: 2020
  ident: 10.1016/j.neuroimage.2022.118875_bib0019
  article-title: Altered brain entropy as a predictor of antidepressant response in major depressive disorder
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2019.09.067
– volume: 2
  start-page: 139
  year: 1969
  ident: 10.1016/j.neuroimage.2022.118875_bib0002
  article-title: An entropy model of the developing brain
  publication-title: Dev. Psychobiol.
  doi: 10.1002/dev.420020304
– volume: 8
  start-page: 13900
  year: 2017
  ident: 10.1016/j.neuroimage.2022.118875_bib0022
  article-title: Temporal coherence structure rapidly shapes neuronal interactions
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13900
– volume: 34
  start-page: 3204
  year: 2013
  ident: 10.1016/j.neuroimage.2022.118875_bib0051
  article-title: Intrinsic resting-state activity predicts working memory brain activation and behavioral performance
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22136
– volume: 63
  start-page: 1144
  year: 2010
  ident: 10.1016/j.neuroimage.2022.118875_bib0025
  article-title: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22361
– volume: 439
  start-page: 733
  year: 2006
  ident: 10.1016/j.neuroimage.2022.118875_bib0045
  article-title: Gamma-band synchronization in visual cortex predicts speed of change detection
  publication-title: Nature
  doi: 10.1038/nature04258
– volume: 54
  start-page: 1465
  year: 2011
  ident: 10.1016/j.neuroimage.2022.118875_bib0003
  article-title: Mapping anterior temporal lobe language areas with fMRI: a multicenter normative study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.048
– start-page: 603
  year: 2017
  ident: 10.1016/j.neuroimage.2022.118875_bib0007
  article-title: Caffeine caused a widespread increase of resting brain entropy
– volume: 23
  start-page: 659
  year: 2021
  ident: 10.1016/j.neuroimage.2022.118875_bib0021
  article-title: The systematic bias of entropy calculation in the multi-scale entropy algorithm
  publication-title: Entropy
  doi: 10.3390/e23060659
– ident: 10.1016/j.neuroimage.2022.118875_bib0040
  doi: 10.1016/j.neuroimage.2021.117893
– volume: 31
  start-page: 13786
  year: 2011
  ident: 10.1016/j.neuroimage.2022.118875_bib0016
  article-title: Scale-free properties of the functional magnetic resonance imaging signal during rest and task
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2111-11.2011
– volume: 5
  start-page: 805
  year: 2002
  ident: 10.1016/j.neuroimage.2022.118875_bib0027
  article-title: Temporal structure in neuronal activity during working memory in macaque parietal cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn890
– volume: 22
  start-page: 820
  year: 2019
  ident: 10.1016/j.neuroimage.2022.118875_bib0030
  article-title: Working memory revived in older adults by synchronizing rhythmic brain circuits
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0371-x
– volume: 29
  start-page: 83
  year: 2007
  ident: 10.1016/j.neuroimage.2022.118875_bib0047
  article-title: Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI
  publication-title: Brain Dev.
  doi: 10.1016/j.braindev.2006.07.002
– year: 1944
  ident: 10.1016/j.neuroimage.2022.118875_bib0033
– volume: 12
  start-page: 596122
  year: 2020
  ident: 10.1016/j.neuroimage.2022.118875_bib0043
  article-title: Brain entropy mapping in healthy aging and Alzheimer’s disease
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2020.596122
– volume: 31
  start-page: 732
  year: 2006
  ident: 10.1016/j.neuroimage.2022.118875_bib0012
  article-title: A rapid fMRI task battery for mapping of visual, motor, cognitive, and emotional function
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.12.016
– volume: 6
  start-page: 29435
  year: 2016
  ident: 10.1016/j.neuroimage.2022.118875_bib0018
  article-title: Hyper-resting brain entropy within chronic smokers and its moderation by sex
  publication-title: Sci. Rep.
  doi: 10.1038/srep29435
– volume: 29
  start-page: 137
  year: 2002
  ident: 10.1016/j.neuroimage.2022.118875_bib0006
  article-title: Multiscale entropy to distinguish physiologic and synthetic RR time series
  publication-title: Comput. Cardiol.
  doi: 10.1109/CIC.2002.1166726
– volume: 22
  start-page: R658
  year: 2012
  ident: 10.1016/j.neuroimage.2022.118875_bib0038
  article-title: The functional importance of rhythmic activity in the brain
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2012.06.061
– volume: 65
  start-page: 461
  year: 2010
  ident: 10.1016/j.neuroimage.2022.118875_bib0032
  article-title: Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.02.001
– volume: 9
  start-page: 624
  year: 1997
  ident: 10.1016/j.neuroimage.2022.118875_bib0034
  article-title: Common blood flow changes across visual tasks: I. Increases in subcortical structures and cerebellum but not in nonvisual cortex
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1997.9.5.624
– volume: 98
  start-page: 676
  year: 2001
  ident: 10.1016/j.neuroimage.2022.118875_bib0029
  article-title: A default mode of brain function
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.98.2.676
– volume: 88
  start-page: 220
  year: 2015
  ident: 10.1016/j.neuroimage.2022.118875_bib0015
  article-title: Rhythms for cognition: communication through coherence
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.09.034
– volume: 201
  start-page: 353
  issue: 7
  year: 1865
  ident: 10.1016/j.neuroimage.2022.118875_bib0005
  article-title: Über die Wärmeleitung gasförmiger Körper
  publication-title: Ann. Phys.
  doi: 10.1002/andp.18652010702
– volume: 13
  start-page: 486
  year: 2019
  ident: 10.1016/j.neuroimage.2022.118875_bib0011
  article-title: Associations of brain entropy (BEN) to cerebral blood flow and fractional amplitude of low-frequency fluctuations in the resting brain
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-018-9963-4
– volume: 80
  start-page: 169
  year: 2013
  ident: 10.1016/j.neuroimage.2022.118875_bib0001
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.033
– volume: 2
  start-page: e00699
  year: 2013
  ident: 10.1016/j.neuroimage.2022.118875_bib0037
  article-title: Segregation of complex acoustic scenes based on temporal coherence
  publication-title: eLife
  doi: 10.7554/eLife.00699
– year: 2014
  ident: 10.1016/j.neuroimage.2022.118875_bib0048
– volume: 9
  start-page: e89948
  year: 2014
  ident: 10.1016/j.neuroimage.2022.118875_bib0044
  article-title: Brain Entropy Mapping Using fMRI
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0089948
– volume: 32
  start-page: 3366
  year: 2012
  ident: 10.1016/j.neuroimage.2022.118875_bib0010
  article-title: Ongoing cortical activity at rest: criticality, multistability, and ghost attractors
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2523-11.2012
– volume: 9
  start-page: 474
  year: 2005
  ident: 10.1016/j.neuroimage.2022.118875_bib0014
  article-title: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2005.08.011
– volume: 22
  start-page: 1622
  year: 2017
  ident: 10.1016/j.neuroimage.2022.118875_bib0049
  article-title: A hypo-status in drug dependent brain revealed by multi-modal MRI
  publication-title: Addict. Biol.
  doi: 10.1111/adb.12459
– volume: 17
  start-page: 321
  year: 2009
  ident: 10.1016/j.neuroimage.2022.118875_bib0035
  article-title: The brain, a complex self-organizing system
  publication-title: Eur. Rev.
  doi: 10.1017/S1062798709000751
– volume: 8
  start-page: 2700
  year: 2018
  ident: 10.1016/j.neuroimage.2022.118875_bib0008
  article-title: Caffeine caused a widespread increase of resting brain entropy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21008-6
– volume: 89
  start-page: 16
  year: 2019
  ident: 10.1016/j.neuroimage.2022.118875_bib0046
  article-title: Resting-state brain entropy in schizophrenia
  publication-title: Compr. Psychiatry
  doi: 10.1016/j.comppsych.2018.11.015
– volume: 11
  year: 2016
  ident: 10.1016/j.neuroimage.2022.118875_bib0050
  article-title: Resting state brain entropy alterations in relapsing remitting multiple sclerosis
  publication-title: PLoS One
– year: 1997
  ident: 10.1016/j.neuroimage.2022.118875_bib0028
– volume: 54
  start-page: 2278
  year: 2011
  ident: 10.1016/j.neuroimage.2022.118875_bib0020
  article-title: Baseline BOLD correlation predicts individuals' stimulus-evoked BOLD responses
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.10.001
– volume: 73
  start-page: 829
  year: 2012
  ident: 10.1016/j.neuroimage.2022.118875_bib0009
  article-title: Only coherent spiking in posterior parietal cortex coordinates looking and reaching
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.12.035
– volume: 12
  start-page: 419
  issue: 5
  year: 2003
  ident: 10.1016/j.neuroimage.2022.118875_bib0052
  article-title: Controlling the familywise error rate in functional neuroimaging: a comparative review
  publication-title: Stat. Methods Med. Res.
  doi: 10.1191/0962280203sm341ra
SSID ssj0009148
Score 2.4940698
Snippet •Correlations between rest brain entropy and task activation were assessed.•In activated brain regions, lower rest entropy correlates with stronger...
Brain entropy (BEN) calculated from resting state fMRI has been the subject of increasing research interest in recent years. Previous studies have shown the...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118875
SubjectTerms Adult
Alzheimer's disease
BENtbx
Biological Variation, Population - physiology
Brain
Brain - physiology
Brain Mapping
Deactivation
Entropy
fMRI
Functional magnetic resonance imaging
Humans
Magnetic Resonance Imaging
Probability distribution
Psychomotor Performance - physiology
Rest - physiology
Resting state fMRI
Singers
Task
Task activation
Task deactivation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QDogL4s1goCBxrWjTRxpxAsQ0IcaJSbtFaZKh8egmth3499hN2o0DYgcOvbRxFdmO_TlxbEIulWZxESkbFFyFEKBkJlAi5SAQwaxOokileBu5_5T1BsnDMB2utPrCnDBXHtgx7griCZWyZMRGrEjAW-UmTzW4SZOZOCziqnop-Lw6mKrL7QLK93k7Lpurqg45_oA1CjEhY2Ap8iq3cMUZVTX7f_ik3zBn5Xu6O2Tbg0Z64ya7SzZsuUc2-_5YfJ8MH7HXGcU2G-CJaIFtHyhu206mX3Q8o8rLwBqK-650hvvfL0AxV7M3ilcb3MYsVaWhxi5fHJBB9_75rhf4lgmBBtw1DwygDazpp0NrmA55YW1iwJzlyagAx8yNwiWYGgAROtNCR4xbQGyhBaHkqRjFh6RVTkp7TCgXNrFgAeDRiTAp4ChuYpEJFtlcmLxNeM07qX09cWxr8S7rxLFXueS6RK5Lx_U2iRrKqaupsQbNLYqnGY9VsasXoCvS64r8S1faRNTClfXFUzCV8KPxGhO4bmg9OHGgY03qTq1L0huJmWQZ4xFjEKO2yUXzGZY3ntmo0k4WOAYAFUSNDMYcOR1seBBDtJoLHp38B29OyRbO1yUldUhr_rmwZ4C35sV5tbS-Ad-tJwg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgLAspjaUGu1GvU2LFjWxwqWrWqEO2plfZmOba3Wh7J0mwP_ffMxE4WDqA95JJ4rGjGM_5mPJ4h5NB5XjXMxaJRrgQHpQ6FM1KBQAyPXjDmJN5GvryqL27El7mc54Bbn9MqR5s4GOrQeYyRH_GaK8Y5APrj1a8Cu0bh6WpuofGYPMHSZeh8qbnaFN1lIl2Fk1WhYUDO5En5XUO9yOVP0FrwEjkH26GHbMM_tqehiv9fu9S_UOiwG52_IM8zjKSfk9xfkkexfUWeXuaD8l0y_4rdzyg23oC9iTbYCIJiILdbPdBlT12WSgwUI7G0x4j4LVCsXf-d4mWHFKqlrg00xM2L1-Tm_Oz69KLITRQKD0hsXQTAH1jlz5cxcF-qJkYRwMBpsWhgq1bBoVLKALDC1954xlUEDFdGEJOWZlG9ITtt18Z3hCoTRQSbAI8XJkhAVipUpjacRW2CnhE18s76XGEcG138sGMq2Te74bpFrtvE9RlhE-UqVdnYguYExTONxzrZw4vu7tZmtbPgjTrJxYIveCMA6-igpQeQFepQlU0Fk5hRuHa8igrGEyZabvEDnybaDFcSDNmSen9cSzabjd5uFvmMHEyfQeHxFMe1sbvHMQCxwI_kMOZtWoMTDyrwX7VR7P3_J98jz_BPUgLSPtlZ393HD4Ct1s3HQYF-A4FhIXY
  priority: 102
  providerName: ProQuest
Title Lower resting brain entropy is associated with stronger task activation and deactivation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811922000052
https://dx.doi.org/10.1016/j.neuroimage.2022.118875
https://www.ncbi.nlm.nih.gov/pubmed/34998971
https://www.proquest.com/docview/2627122149
https://www.proquest.com/docview/2618517429
https://doaj.org/article/191a524f2f2b42018d85c663d6d30b35
Volume 249
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelg7GX0X1n7YIGe_ViyZJlsae2tGQfDWNbIW9ClpTibnNCkz7sZX_77izZWR8GgT3EwbJkxN3p7nfy3YmQN9bxomY2ZLWyOTgopc-slgoYonlwgjErMRv5YlZOL8WHuZzvkdM-FwbDKpPujzq909apZZKoOVk1zeQrIAMwN4BQMNskl6iHsXodyPTb39swD81ETIeTRYa9UzRPjPHqakY2P2HlgqfIOeiPqos4_MtEdZX871iqfyHRziKdH5CHCUrS4zjbR2QvtI_J_Yv0sfwJmX_CE9AoHr4B9onWeBgExc3c5eoXbdbUJs4ET3E3lq5xV_wKRmzs-jvFhIe4XUtt66kP24an5PL87NvpNEsHKWQO0Ngm84BBsNKfy4PnLld1CMKDkqvEogZzrbzFhSk9QAtXOu0YVwFwXB6AVZXUi-IZ2W-XbXhBqNJBBNAL8HNCewnoSvlCl5qzUGlfjYjqaWdcqjKOh138MH042bXZUt0g1U2k-oiwYeQqVtrYYcwJsmfoj7Wyu4blzZVJwmLAI7WSiwVf8FoA3ql8JR0ALV_6Iq8LeInumWv6dFRQoPCiZocJvBvG3hHbHUcf9bJkkupYG15yxTgHz3VEXg-PYdHjlxzbhuUt9gGYBb4khz7PowwONCjAh620Yi__a2qH5AHexRilI7K_ubkNrwB-bepxt77gquZqTO4dv_84ncH_ydns85dxt6XxBwZgMbY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkYAL4lkCBYwExxVr78O2EEK8qpQmPbVSbsZrO1Wg3Q3dVKh_it_IzNq7gQMolx5y2XgsazyPb-zxDCEvjeVZxYxPKmFSCFBKlxhVCNgQxb3NGTMFvkaeHpbj4_zLrJhtkV_9WxhMq-xtYmeoXWPxjPw1L7lgnAOgf7f8kWDXKLxd7VtoBLE48Jc_IWRr3-5_gv19xfne56OP4yR2FUgsQJNV4sAhY9k7m3rHbSoq73MHGi_zeQW-SziDUlo48LO2tMoyLjyAmtTDumWh5hnMe41cB8ebYgqhmIl1kV-Wh6d3RZZIxlTMHAr5ZF19ysUZWAmISjkHWyW77MY_3GHXNeAvr_gv1Nt5v7075HaErfR9kLO7ZMvX98iNabyYv09mE-y2RrHRB_hCWmHjCYoHx83yki5aaqIUeEfx5Je2eAJ_AhQr036n-LgiHA1TUzvq_PrDA3J8Jex9SLbrpvaPCBXK5x5sEPxsrlwBSE64TJWKMy-VkyMiet5pGyuaY2ONU92nrn3Ta65r5LoOXB8RNlAuQ1WPDWg-4PYM47Eud_ehOT_RUc01RL-m4Pmcz3mVA7aSThYWQJ0rXZZWGUyi-s3V_dNXMNYw0WKDBbwZaCM8CrBnQ-rdXpZ0NFOtXivViLwY_gYDg7dGpvbNBY4BSAdxK4cxO0EGBx5kEC9LJdjj_0_-nNwcH00nerJ_ePCE3MJVheSnXbK9Or_wTwHXrapnnTJR8vWqtfc3L4pc5w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiHcXChgJjlFjJ45jIYSAsmrpQxyotDfj2E61PJKl2Qr1r_HrmImdLBxAe-lhL1nbSsbz-GY8niHkubE8q5jxSSVNCg5K4RKjhIQNUdzbnDEj8Dby8Umxf5p_mInZBvk13IXBtMpBJ_aK2rUWY-S7vOCScQ6AfreOaREf96avFz8S7CCFJ61DO43AIof-8ie4b92rgz3Y6xecT99_erefxA4DiQWYskwcGGcsgWdT77hNZeV97kD6y7yuwI5JZ5BjhQObawurLOPSA8BJPXxDKVSdwbrXyHWZgdkEWZIzuSr4y_JwDU9kScmYillEIbesr1U5_w4aAzxUzkFvlX2m4x-mse8g8JeF_BcC7i3h9Ba5GSEsfRN47jbZ8M0dsnUcD-nvktkRdl6j2PQD7CKtsAkFxSByu7ik846ayBHeUYwC0w6j8WcwY2m6rxQvWoQwMTWNo86vHtwjp1dC3vtks2kbv02oVD73oI_gZ3PlBKA66TJVKM58qVw5IXKgnbaxujk22fimhzS2L3pFdY1U14HqE8LGmYtQ4WONOW9xe8bxWKO7f9Cen-ko8ho8YSN4XvOaVzngrNKVwgLAc4XL0iqDRdSwuXq4BguKGxaar_ECL8e5ESoFCLTm7J2Bl3RUWZ1eCdiEPBv_BmWDJ0im8e0FjgF4Bz4shzEPAg-ONMjAdy6VZA__v_hTsgVyq48OTg4fkRv4UiEPaodsLs8v_GOAeMvqSS9LlHy-auH9DZxQYR0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lower+resting+brain+entropy+is+associated+with+stronger+task+activation+and+deactivation&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Lin%2C+Liandong&rft.au=Chang%2C+Da&rft.au=Song%2C+Donghui&rft.au=Li%2C+Yiran&rft.date=2022-04-01&rft.eissn=1095-9572&rft.volume=249&rft.spage=118875&rft_id=info:doi/10.1016%2Fj.neuroimage.2022.118875&rft_id=info%3Apmid%2F34998971&rft.externalDocID=34998971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon