Tinnitus classification based on resting-state functional connectivity using a convolutional neural network architecture

•A decomposed convolutional neural network model was established based on rs-fMRI connectivity.•The model paired with the Dos_160 atlas can be effectively applied to the diagnosis of tinnitus.•This study pinpointed key brain regions for subjective tinnitus using a data-driven approach. Many studies...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 290; p. 120566
Main Authors Xu, Qianhui, Zhou, Lei-Lei, Xing, Chunhua, Xu, Xiaomin, Feng, Yuan, Lv, Han, Zhao, Fei, Chen, Yu-Chen, Cai, Yuexin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.04.2024
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A decomposed convolutional neural network model was established based on rs-fMRI connectivity.•The model paired with the Dos_160 atlas can be effectively applied to the diagnosis of tinnitus.•This study pinpointed key brain regions for subjective tinnitus using a data-driven approach. Many studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients. However, no studies have verified the efficacy of resting-state FC as a diagnostic imaging marker. We established a convolutional neural network (CNN) model based on rs-fMRI FC to distinguish tinnitus patients from healthy controls, providing guidance and fast diagnostic tools for the clinical diagnosis of subjective tinnitus. A CNN architecture was trained on rs-fMRI data from 100 tinnitus patients and 100 healthy controls using an asymmetric convolutional layer. Additionally, a traditional machine learning model and a transfer learning model were included for comparison with the CNN, and each of the three models was tested on three different brain atlases. Of the three models, the CNN model outperformed the other two models with the highest area under the curve, especially on the Dos_160 atlas (AUC = 0.944). Meanwhile, the model with the best classification performance highlights the crucial role of the default mode network, salience network, and sensorimotor network in distinguishing between normal controls and patients with subjective tinnitus. Our CNN model could appropriately tackle the diagnosis of tinnitus patients using rs-fMRI and confirmed the diagnostic value of FC as measured by rs-fMRI.
AbstractList ObjectivesMany studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients. However, no studies have verified the efficacy of resting-state FC as a diagnostic imaging marker. We established a convolutional neural network (CNN) model based on rs-fMRI FC to distinguish tinnitus patients from healthy controls, providing guidance and fast diagnostic tools for the clinical diagnosis of subjective tinnitus.MethodsA CNN architecture was trained on rs-fMRI data from 100 tinnitus patients and 100 healthy controls using an asymmetric convolutional layer. Additionally, a traditional machine learning model and a transfer learning model were included for comparison with the CNN, and each of the three models was tested on three different brain atlases.ResultsOf the three models, the CNN model outperformed the other two models with the highest area under the curve, especially on the Dos_160 atlas (AUC = 0.944). Meanwhile, the model with the best classification performance highlights the crucial role of the default mode network, salience network, and sensorimotor network in distinguishing between normal controls and patients with subjective tinnitus.ConclusionOur CNN model could appropriately tackle the diagnosis of tinnitus patients using rs-fMRI and confirmed the diagnostic value of FC as measured by rs-fMRI.
•A decomposed convolutional neural network model was established based on rs-fMRI connectivity.•The model paired with the Dos_160 atlas can be effectively applied to the diagnosis of tinnitus.•This study pinpointed key brain regions for subjective tinnitus using a data-driven approach. Many studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients. However, no studies have verified the efficacy of resting-state FC as a diagnostic imaging marker. We established a convolutional neural network (CNN) model based on rs-fMRI FC to distinguish tinnitus patients from healthy controls, providing guidance and fast diagnostic tools for the clinical diagnosis of subjective tinnitus. A CNN architecture was trained on rs-fMRI data from 100 tinnitus patients and 100 healthy controls using an asymmetric convolutional layer. Additionally, a traditional machine learning model and a transfer learning model were included for comparison with the CNN, and each of the three models was tested on three different brain atlases. Of the three models, the CNN model outperformed the other two models with the highest area under the curve, especially on the Dos_160 atlas (AUC = 0.944). Meanwhile, the model with the best classification performance highlights the crucial role of the default mode network, salience network, and sensorimotor network in distinguishing between normal controls and patients with subjective tinnitus. Our CNN model could appropriately tackle the diagnosis of tinnitus patients using rs-fMRI and confirmed the diagnostic value of FC as measured by rs-fMRI.
Objectives: Many studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients. However, no studies have verified the efficacy of resting-state FC as a diagnostic imaging marker. We established a convolutional neural network (CNN) model based on rs-fMRI FC to distinguish tinnitus patients from healthy controls, providing guidance and fast diagnostic tools for the clinical diagnosis of subjective tinnitus. Methods: A CNN architecture was trained on rs-fMRI data from 100 tinnitus patients and 100 healthy controls using an asymmetric convolutional layer. Additionally, a traditional machine learning model and a transfer learning model were included for comparison with the CNN, and each of the three models was tested on three different brain atlases. Results: Of the three models, the CNN model outperformed the other two models with the highest area under the curve, especially on the Dos_160 atlas (AUC = 0.944). Meanwhile, the model with the best classification performance highlights the crucial role of the default mode network, salience network, and sensorimotor network in distinguishing between normal controls and patients with subjective tinnitus. Conclusion: Our CNN model could appropriately tackle the diagnosis of tinnitus patients using rs-fMRI and confirmed the diagnostic value of FC as measured by rs-fMRI.
Many studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients. However, no studies have verified the efficacy of resting-state FC as a diagnostic imaging marker. We established a convolutional neural network (CNN) model based on rs-fMRI FC to distinguish tinnitus patients from healthy controls, providing guidance and fast diagnostic tools for the clinical diagnosis of subjective tinnitus.OBJECTIVESMany studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients. However, no studies have verified the efficacy of resting-state FC as a diagnostic imaging marker. We established a convolutional neural network (CNN) model based on rs-fMRI FC to distinguish tinnitus patients from healthy controls, providing guidance and fast diagnostic tools for the clinical diagnosis of subjective tinnitus.A CNN architecture was trained on rs-fMRI data from 100 tinnitus patients and 100 healthy controls using an asymmetric convolutional layer. Additionally, a traditional machine learning model and a transfer learning model were included for comparison with the CNN, and each of the three models was tested on three different brain atlases.METHODSA CNN architecture was trained on rs-fMRI data from 100 tinnitus patients and 100 healthy controls using an asymmetric convolutional layer. Additionally, a traditional machine learning model and a transfer learning model were included for comparison with the CNN, and each of the three models was tested on three different brain atlases.Of the three models, the CNN model outperformed the other two models with the highest area under the curve, especially on the Dos_160 atlas (AUC = 0.944). Meanwhile, the model with the best classification performance highlights the crucial role of the default mode network, salience network, and sensorimotor network in distinguishing between normal controls and patients with subjective tinnitus.RESULTSOf the three models, the CNN model outperformed the other two models with the highest area under the curve, especially on the Dos_160 atlas (AUC = 0.944). Meanwhile, the model with the best classification performance highlights the crucial role of the default mode network, salience network, and sensorimotor network in distinguishing between normal controls and patients with subjective tinnitus.Our CNN model could appropriately tackle the diagnosis of tinnitus patients using rs-fMRI and confirmed the diagnostic value of FC as measured by rs-fMRI.CONCLUSIONOur CNN model could appropriately tackle the diagnosis of tinnitus patients using rs-fMRI and confirmed the diagnostic value of FC as measured by rs-fMRI.
Many studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients. However, no studies have verified the efficacy of resting-state FC as a diagnostic imaging marker. We established a convolutional neural network (CNN) model based on rs-fMRI FC to distinguish tinnitus patients from healthy controls, providing guidance and fast diagnostic tools for the clinical diagnosis of subjective tinnitus. A CNN architecture was trained on rs-fMRI data from 100 tinnitus patients and 100 healthy controls using an asymmetric convolutional layer. Additionally, a traditional machine learning model and a transfer learning model were included for comparison with the CNN, and each of the three models was tested on three different brain atlases. Of the three models, the CNN model outperformed the other two models with the highest area under the curve, especially on the Dos_160 atlas (AUC = 0.944). Meanwhile, the model with the best classification performance highlights the crucial role of the default mode network, salience network, and sensorimotor network in distinguishing between normal controls and patients with subjective tinnitus. Our CNN model could appropriately tackle the diagnosis of tinnitus patients using rs-fMRI and confirmed the diagnostic value of FC as measured by rs-fMRI.
ArticleNumber 120566
Author Xu, Qianhui
Xu, Xiaomin
Zhao, Fei
Zhou, Lei-Lei
Xing, Chunhua
Lv, Han
Cai, Yuexin
Chen, Yu-Chen
Feng, Yuan
Author_xml – sequence: 1
  givenname: Qianhui
  surname: Xu
  fullname: Xu, Qianhui
  organization: Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, Guangdong Province 510120, China
– sequence: 2
  givenname: Lei-Lei
  surname: Zhou
  fullname: Zhou, Lei-Lei
  organization: Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing 210006, China
– sequence: 3
  givenname: Chunhua
  surname: Xing
  fullname: Xing, Chunhua
  organization: Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing 210006, China
– sequence: 4
  givenname: Xiaomin
  surname: Xu
  fullname: Xu, Xiaomin
  organization: Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing 210006, China
– sequence: 5
  givenname: Yuan
  surname: Feng
  fullname: Feng, Yuan
  organization: Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing 210006, China
– sequence: 6
  givenname: Han
  surname: Lv
  fullname: Lv, Han
  organization: Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
– sequence: 7
  givenname: Fei
  orcidid: 0000-0002-0936-4447
  surname: Zhao
  fullname: Zhao, Fei
  organization: Department of Speech and Language Therapy and Hearing Science, Cardiff Metropolitan University, Cardiff, UK
– sequence: 8
  givenname: Yu-Chen
  surname: Chen
  fullname: Chen, Yu-Chen
  email: cycxwq@njmu.edu.cn
  organization: Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing 210006, China
– sequence: 9
  givenname: Yuexin
  surname: Cai
  fullname: Cai, Yuexin
  email: caiyx25@mail.sysu.edu.cn
  organization: Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, Guangdong Province 510120, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38467345$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wF1AkNmwy-BE79gYBVQuVKrEpa8txbganGbvYzsD8e5zJFKRZzcr29XePrXPPZXHmvIOiKDFaYYT5h2HlYArebvQaVgSReoUJYpy_KC4wkqySrCFn857RSmAsz4vLGAeEkMS1eFWcU1HzhtbsovjzYJ2zaYqlGXWMtrdGJ-td2eoIXZk3AWKybl3FpBOU_eTMfK_H0njnIB-2Nu3KKWam1HNx68fpgMy_3C_ptw-PpQ7mp025ZwrwunjZ6zHCm8N6Vfy4vXm4_lbdf_96d_35vjKsYalqOyp0L6kULUFSUiC1BEGFkIBbRnhHDEO9FEJ3XScbAsByrca053XXNJJeFXeLbuf1oJ5C9izslNdW7Qs-rJUOyZoRFCdUtkhkk_q-NsBl29QEWoFbYYyUkLXeL1pPwf-asi9qY6OBcdQO_BQVkYxjJgUSGX13hA5-CtmTmRJMUEwxz9TbAzW1G-j-fe95Phn4uAAm-BgD9MrYtB9QCtqOCiM1B0IN6n8g1BwItQQiC4gjgec3Tmj9srRCHs_WQlDRWHAGOhvyDLN_9hSRT0ciZrQuh2x8hN1pEn8Bt_zuNw
CitedBy_id crossref_primary_10_1117_1_JMI_11_6_064502
crossref_primary_10_3390_brainsci14050421
crossref_primary_10_1016_j_neuroscience_2024_06_034
Cites_doi 10.1371/journal.pone.0241695
10.3389/fnins.2021.621145
10.1016/j.knosys.2022.110040
10.1038/s41598-023-32599-0
10.1152/physrev.00029.2020
10.1016/S0140-6736(13)60142-7
10.1006/nimg.2001.0978
10.3389/fnins.2021.697168
10.1109/TMI.2019.2928790
10.3389/fnagi.2022.833437
10.1016/j.heliyon.2022.e10989
10.1001/jama.2020.0697
10.1088/1741-2552/acab33
10.1109/TMI.2018.2870343
10.1001/jamaneurol.2022.2189
10.1016/j.heares.2015.09.010
10.3390/bios10090124
10.3390/biom10070984
10.1148/radiol.2021204594
10.1007/s11263-015-0816-y
10.1016/j.nicl.2023.103379
10.1007/s13246-022-01185-5
10.1016/j.nicl.2017.08.017
10.3390/brainsci12081049
10.1016/j.nicl.2017.07.015
10.21053/ceo.2022.00815
10.1007/s12525-021-00475-2
10.1126/science.1194144
10.1111/psyp.13032
10.1016/j.heares.2013.07.010
10.3389/fnins.2019.00246
10.1371/journal.pone.0098860
10.1148/radiol.2018181928
10.1016/j.ebiom.2022.103862
10.1109/TCYB.2016.2538199
10.1016/j.nbd.2019.03.002
10.1016/j.gltp.2021.08.027
10.1007/s10162-023-00916-z
10.1038/nbt0308-303
10.1038/s41537-018-0070-8
10.1038/nrneurol.2016.12
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
2024. The Author(s)
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2024. The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOA
DOI 10.1016/j.neuroimage.2024.120566
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology


MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_6239b08091ff4ce69b742eb81b8cc99e
38467345
10_1016_j_neuroimage_2024_120566
S1053811924000612
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
0SF
6I.
AACTN
AAFTH
AAIAV
AFKWA
AJOXV
ALIPV
AMFUW
C45
HMQ
NCXOZ
RIG
SEW
SNS
29N
53G
AAQFI
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
WUQ
XPP
ZMT
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c575t-bd38af9398b20993e249e83889e1b526d2c50f988addd972ee56d2413f64d7793
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:30:37 EDT 2025
Fri Jul 11 15:10:57 EDT 2025
Sun Aug 17 05:42:31 EDT 2025
Thu Apr 03 07:03:38 EDT 2025
Tue Jul 01 03:02:28 EDT 2025
Thu Apr 24 22:53:29 EDT 2025
Sat Jul 20 16:36:20 EDT 2024
Tue Aug 26 17:21:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Functional connectivity
Resting state fMRI
Tinnitus
Convolutional neural network
Language English
License This is an open access article under the CC BY-NC license.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-bd38af9398b20993e249e83889e1b526d2c50f988addd972ee56d2413f64d7793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0936-4447
OpenAccessLink https://doaj.org/article/6239b08091ff4ce69b742eb81b8cc99e
PMID 38467345
PQID 2985831316
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_6239b08091ff4ce69b742eb81b8cc99e
proquest_miscellaneous_2956159808
proquest_journals_2985831316
pubmed_primary_38467345
crossref_citationtrail_10_1016_j_neuroimage_2024_120566
crossref_primary_10_1016_j_neuroimage_2024_120566
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2024_120566
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2024_120566
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-15
PublicationDateYYYYMMDD 2024-04-15
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2024
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Henton, Tzounopoulos (bib0010) 2021; 101
Zang, Huang, Kong, Lei, Ke, Li, Zhou, Xiong, Li, Chen, Li, Xiang, Ning, Wu, Wu (bib0044) 2021; 15
Heinsfeld, Franco, Craddock, Buchweitz, Meneguzzi (bib0009) 2018; 17
Nair, Hinton (bib0026) 2010
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Fei-Fei (bib0033) 2015; 115
Piccirillo, Rodebaugh, Lenze (bib0027) 2020; 323
Lin, Chen, Cao, Zhou, Zhang, Tang, Wang (bib0023) 2017; 47
Ma, Chen, Wang, Zhang, Dai, Ding, Yan, Shen, Yang (bib0024) 2022; 8
Miyata (bib0025) 2019; 131
Lin, Ghosh, Hinkley, Dale, Souza, Sabes, Hess, Adams, Cheung, Nagarajan (bib0022) 2023; 20
Xu, Jiao, Tang, Lu, Zhang, Salvi, Teng (bib0043) 2019; 13
De Ridder, Vanneste, Song, Adhia (bib0006) 2022; 15
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib0041) 2002; 15
Barayeu, Horlava, Libert, Van Hulle (bib0003) 2020; 10
Cao, Huang, He, Zong (bib0005) 2022; 258
Lan, Liu, Wu, Xu, Xu, Song, Salvi, Yin, Chen, Cai (bib0019) 2022; 76
Sukegawa, Yoshii, Hara, Yamashita, Nakano, Yamamoto, Nagatsuka, Furuki (bib0040) 2020; 10
Ai, Yang, Xie (bib0001) 2022; 45
Beheshtian, Jalilianhasanpour, Modir Shanechi, Sethi, Wang, Lindquist, Caffo, Agarwal, Pillai, Gujar, Sair (bib0004) 2021; 301
Kam, Zhang, Jiao, Shen (bib0018) 2020; 39
Ian, Yoshua, Aaron (bib0014) 2016
Zhou, Li, Chen, Wei, Yu, Guo, Yin, Tao, Zhang (bib0045) 2022; 14
Rudie, Rauschecker, Bryan, Davatzikos, Mohan (bib0032) 2019; 290
Baguley, McFerran, Hall (bib0002) 2013; 382
Husain (bib0012) 2016; 334
Husain, Schmidt (bib0013) 2014; 307
Shore, Roberts, Langguth (bib0037) 2016; 12
Victor Ikechukwu, Murali, Deepu, Shivamurthy (bib0042) 2021; 2
Ringnér (bib0029) 2008; 26
Rosazza, Aquino, D'Incerti, Cordella, Andronache, Zacà, Bruzzone, Tringali, Minati (bib0030) 2014; 9
Li, Ma, Wang, He, Qu, Zhang, Chen, Liu (bib0020) 2022; 12
Janiesch, Zschech, Heinrich (bib0015) 2021; 31
Dosenbach, Nardos, Cohen, Fair, Power, Church, Nelson, Wig, Vogel, Lessov-Schlaggar, Barnes, Dubis, Feczko, Coalson, Pruett, Barch, Petersen, Schlaggar (bib0007) 2010; 329
Gratton, Sun, Petersen (bib0008) 2018; 55
Samala, Heang-Ping, Hadjiiski, Helvie, Richter, Cha (bib0035) 2019; 38
Schmidt, Carpenter-Thompson, Husain (bib0036) 2017; 16
Simonyan, Zisserman (bib0039) 2014
Reisinger, Demarchi, Weisz (bib0028) 2023; 24
Hu, Cui, Xu, Yin, Wu, Qi (bib0011) 2021; 15
Salvari, Korth, Paraskevopoulos, Wollbrink, Ivansic, Guntinas-Lichius, Klingner, Pantev, Dobel (bib0034) 2023; 38
Shoushtarian, Alizadehsani, Khosravi, Acevedo, McKay, Nahavandi, Fallon (bib0038) 2020; 15
Rosemann, Rauschecker (bib0031) 2023; 13
Jarach, Lugo, Scala, van den Brandt, Cederroth, Odone, Garavello, Schlee, Langguth, Gallus (bib0016) 2022; 79
Li, Wang, Shen, Yang, Zhao, Hu, Wang, Liu, Xin, Zhang, Li, Zhang, Cai, Liang, Li (bib0021) 2021; 15
Kalmady, Greiner, Agrawal, Shivakumar, Narayanaswamy, Brown, Greenshaw, Dursun, Venkatasubramanian (bib0017) 2019; 5
Henton (10.1016/j.neuroimage.2024.120566_bib0010) 2021; 101
Janiesch (10.1016/j.neuroimage.2024.120566_bib0015) 2021; 31
De Ridder (10.1016/j.neuroimage.2024.120566_bib0006) 2022; 15
Beheshtian (10.1016/j.neuroimage.2024.120566_bib0004) 2021; 301
Rosemann (10.1016/j.neuroimage.2024.120566_bib0031) 2023; 13
Kam (10.1016/j.neuroimage.2024.120566_bib0018) 2020; 39
Dosenbach (10.1016/j.neuroimage.2024.120566_bib0007) 2010; 329
Lin (10.1016/j.neuroimage.2024.120566_bib0022) 2023; 20
Nair (10.1016/j.neuroimage.2024.120566_bib0026) 2010
Zhou (10.1016/j.neuroimage.2024.120566_bib0045) 2022; 14
Cao (10.1016/j.neuroimage.2024.120566_bib0005) 2022; 258
Heinsfeld (10.1016/j.neuroimage.2024.120566_bib0009) 2018; 17
Li (10.1016/j.neuroimage.2024.120566_bib0020) 2022; 12
Russakovsky (10.1016/j.neuroimage.2024.120566_bib0033) 2015; 115
Ian (10.1016/j.neuroimage.2024.120566_bib0014) 2016
Lan (10.1016/j.neuroimage.2024.120566_bib0019) 2022; 76
Sukegawa (10.1016/j.neuroimage.2024.120566_bib0040) 2020; 10
Zang (10.1016/j.neuroimage.2024.120566_bib0044) 2021; 15
Schmidt (10.1016/j.neuroimage.2024.120566_bib0036) 2017; 16
Salvari (10.1016/j.neuroimage.2024.120566_bib0034) 2023; 38
Tzourio-Mazoyer (10.1016/j.neuroimage.2024.120566_bib0041) 2002; 15
Gratton (10.1016/j.neuroimage.2024.120566_bib0008) 2018; 55
Piccirillo (10.1016/j.neuroimage.2024.120566_bib0027) 2020; 323
Ai (10.1016/j.neuroimage.2024.120566_bib0001) 2022; 45
Shoushtarian (10.1016/j.neuroimage.2024.120566_bib0038) 2020; 15
Li (10.1016/j.neuroimage.2024.120566_bib0021) 2021; 15
Shore (10.1016/j.neuroimage.2024.120566_bib0037) 2016; 12
Victor Ikechukwu (10.1016/j.neuroimage.2024.120566_bib0042) 2021; 2
Husain (10.1016/j.neuroimage.2024.120566_bib0012) 2016; 334
Baguley (10.1016/j.neuroimage.2024.120566_bib0002) 2013; 382
Miyata (10.1016/j.neuroimage.2024.120566_bib0025) 2019; 131
Simonyan (10.1016/j.neuroimage.2024.120566_bib0039) 2014
Rudie (10.1016/j.neuroimage.2024.120566_bib0032) 2019; 290
Jarach (10.1016/j.neuroimage.2024.120566_bib0016) 2022; 79
Xu (10.1016/j.neuroimage.2024.120566_bib0043) 2019; 13
Ma (10.1016/j.neuroimage.2024.120566_bib0024) 2022; 8
Hu (10.1016/j.neuroimage.2024.120566_bib0011) 2021; 15
Barayeu (10.1016/j.neuroimage.2024.120566_bib0003) 2020; 10
Reisinger (10.1016/j.neuroimage.2024.120566_bib0028) 2023; 24
Rosazza (10.1016/j.neuroimage.2024.120566_bib0030) 2014; 9
Ringnér (10.1016/j.neuroimage.2024.120566_bib0029) 2008; 26
Samala (10.1016/j.neuroimage.2024.120566_bib0035) 2019; 38
Husain (10.1016/j.neuroimage.2024.120566_bib0013) 2014; 307
Kalmady (10.1016/j.neuroimage.2024.120566_bib0017) 2019; 5
Lin (10.1016/j.neuroimage.2024.120566_bib0023) 2017; 47
References_xml – volume: 79
  start-page: 888
  year: 2022
  end-page: 900
  ident: bib0016
  article-title: Global prevalence and incidence of tinnitus: a systematic review and meta-analysis
  publication-title: JAMA Neurol.
– volume: 382
  start-page: 1600
  year: 2013
  end-page: 1607
  ident: bib0002
  article-title: Tinnitus
  publication-title: Lancet
– volume: 9
  start-page: e98860
  year: 2014
  ident: bib0030
  article-title: Preoperative mapping of the sensorimotor cortex: comparative assessment of task-based and resting-state FMRI
  publication-title: PLoS One
– volume: 16
  start-page: 196
  year: 2017
  end-page: 204
  ident: bib0036
  article-title: Connectivity of precuneus to the default mode and dorsal attention networks: a possible invariant marker of long-term tinnitus
  publication-title: Neuroimage Clin.
– volume: 301
  start-page: 178
  year: 2021
  end-page: 184
  ident: bib0004
  article-title: Identification of the somatomotor network from language task-based fMRI compared with resting-state fMRI in patients with brain lesions
  publication-title: Radiology
– volume: 12
  start-page: 150
  year: 2016
  end-page: 160
  ident: bib0037
  article-title: Maladaptive plasticity in tinnitus — Triggers, mechanisms and treatment
  publication-title: Nat. Rev. Neurol.
– volume: 26
  start-page: 303
  year: 2008
  end-page: 304
  ident: bib0029
  article-title: What is principal component analysis?
  publication-title: Nat. Biotechnol.
– volume: 334
  start-page: 37
  year: 2016
  end-page: 48
  ident: bib0012
  article-title: Neural networks of tinnitus in humans: elucidating severity and habituation
  publication-title: Hear. Res.
– volume: 39
  start-page: 478
  year: 2020
  end-page: 487
  ident: bib0018
  article-title: Deep learning of static and dynamic brain functional networks for early MCI detection
  publication-title: IEEE Trans. Med. Imaging
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib0033
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– volume: 307
  start-page: 153
  year: 2014
  end-page: 162
  ident: bib0013
  article-title: Using resting state functional connectivity to unravel networks of tinnitus
  publication-title: Hear. Res.
– year: 2016
  ident: bib0014
  article-title: Deep Learning
– volume: 31
  start-page: 685
  year: 2021
  end-page: 695
  ident: bib0015
  article-title: Machine learning and deep learning
  publication-title: Electron. Mark.
– volume: 101
  start-page: 1609
  year: 2021
  end-page: 1632
  ident: bib0010
  article-title: What's the buzz? The neuroscience and the treatment of tinnitus
  publication-title: Physiol. Rev.
– volume: 24
  start-page: 531
  year: 2023
  end-page: 547
  ident: bib0028
  article-title: Eavesdropping on tinnitus using MEG: lessons learned and future perspectives
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 15
  year: 2020
  ident: bib0038
  article-title: Objective measurement of tinnitus using functional near-infrared spectroscopy and machine learning
  publication-title: PLoS One
– volume: 45
  start-page: 1175
  year: 2022
  end-page: 1181
  ident: bib0001
  article-title: ACTNet: asymmetric convolutional transformer network for diabetic foot ulcers classification
  publication-title: Phys. Eng. Sci. Med.
– volume: 12
  start-page: 1049
  year: 2022
  ident: bib0020
  article-title: Intrinsic network changes in bilateral tinnitus patients with cognitive impairment: a resting-state functional MRI study
  publication-title: Brain Sci.
– volume: 14
  year: 2022
  ident: bib0045
  article-title: Disrupted intra- and inter-network connectivity in unilateral acute tinnitus with hearing loss
  publication-title: Front. Aging Neurosci.
– volume: 290
  start-page: 607
  year: 2019
  end-page: 618
  ident: bib0032
  article-title: Emerging applications of artificial intelligence in neuro-oncology
  publication-title: Radiology
– volume: 5
  start-page: 2
  year: 2019
  ident: bib0017
  article-title: Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning
  publication-title: npj Schizophr.
– volume: 38
  start-page: 686
  year: 2019
  end-page: 696
  ident: bib0035
  article-title: Breast cancer diagnosis in digital breast tomosynthesis: effects of training sample size on multi-stage transfer learning using deep neural nets
  publication-title: IEEE Trans. Med. Imaging
– volume: 15
  year: 2021
  ident: bib0011
  article-title: The neural mechanisms of tinnitus: a perspective from functional magnetic resonance imaging
  publication-title: Front. Neurosci.
– volume: 20
  start-page: 1090
  year: 2023
  end-page: 1101
  ident: bib0022
  article-title: Multi-tasking deep network for tinnitus classification and severity prediction from multimodal structural MR images
  publication-title: J. Neural Eng.
– volume: 17
  start-page: 16
  year: 2018
  end-page: 23
  ident: bib0009
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset
  publication-title: Neuroimage Clin.
– volume: 15
  year: 2021
  ident: bib0021
  article-title: Objective recognition of tinnitus location using electroencephalography connectivity features
  publication-title: Front. Neurosci.
– start-page: 1
  year: 2014
  end-page: 14
  ident: bib0039
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: International Conference on Learning Representations (ICLR)
– volume: 10
  year: 2020
  ident: bib0003
  article-title: Robust single-trial EEG-based authentication achieved with a 2-stage classifier
  publication-title: Biosensors
– volume: 258
  year: 2022
  ident: bib0005
  article-title: BND-VGG-19: a deep learning algorithm for COVID-19 identification utilizing X-ray images
  publication-title: Knowl. Based Syst.
– volume: 76
  year: 2022
  ident: bib0019
  article-title: Specific brain network predictors of interventions with different mechanisms for tinnitus patients
  publication-title: EBioMedicine
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: bib0041
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
– volume: 10
  start-page: 984
  year: 2020
  ident: bib0040
  article-title: Deep neural networks for dental implant system classification
  publication-title: Biomolecules
– volume: 13
  start-page: 5746
  year: 2023
  ident: bib0031
  article-title: Disruptions of default mode network and precuneus connectivity associated with cognitive dysfunctions in tinnitus
  publication-title: Sci. Rep.
– volume: 15
  start-page: 697168
  year: 2021
  ident: bib0044
  article-title: Effects of brain atlases and machine learning methods on the discrimination of schizophrenia patients: a multimodal MRI study
  publication-title: Front. Neurosci.
– volume: 38
  year: 2023
  ident: bib0034
  article-title: Tinnitus-frequency specific activity and connectivity: a MEG study
  publication-title: Neuroimage Clin.
– volume: 329
  start-page: 1358
  year: 2010
  end-page: 1361
  ident: bib0007
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
– volume: 8
  start-page: e10989
  year: 2022
  ident: bib0024
  article-title: Surface-based functional metrics and auditory cortex characteristics in chronic tinnitus
  publication-title: Heliyon
– volume: 55
  year: 2018
  ident: bib0008
  article-title: Control networks and hubs
  publication-title: Psychophysiology
– volume: 131
  year: 2019
  ident: bib0025
  article-title: Toward integrated understanding of salience in psychosis
  publication-title: Neurobiol. Dis.
– volume: 13
  start-page: 246
  year: 2019
  ident: bib0043
  article-title: Altered spatial and temporal brain connectivity in the salience network of sensorineural hearing loss and tinnitus
  publication-title: Front. Neurosci.
– volume: 323
  start-page: 1497
  year: 2020
  end-page: 1498
  ident: bib0027
  article-title: Tinnitus
  publication-title: JAMA
– volume: 2
  start-page: 375
  year: 2021
  end-page: 381
  ident: bib0042
  article-title: ResNet-50 vs VGG-19 vs training from scratch: a comparative analysis of the segmentation and classification of Pneumonia from chest X-ray images
  publication-title: Glob. Transit. Proc.
– volume: 15
  start-page: 205
  year: 2022
  end-page: 212
  ident: bib0006
  article-title: Tinnitus and the triple network model: a perspective
  publication-title: Clin. Exp. Otorhinolaryngol.
– start-page: 807
  year: 2010
  end-page: 814
  ident: bib0026
  article-title: Rectified linear units improve restricted boltzmann machines
  publication-title: Proceedings of the 27th International Conference on International Conference on Machine Learning
– volume: 47
  start-page: 1090
  year: 2017
  end-page: 1101
  ident: bib0023
  article-title: Cross-domain recognition by identifying joint subspaces of source domain and target domain
  publication-title: IEEE Trans. Cybern.
– volume: 15
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120566_bib0038
  article-title: Objective measurement of tinnitus using functional near-infrared spectroscopy and machine learning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0241695
– volume: 15
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120566_bib0011
  article-title: The neural mechanisms of tinnitus: a perspective from functional magnetic resonance imaging
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.621145
– volume: 15
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120566_bib0021
  article-title: Objective recognition of tinnitus location using electroencephalography connectivity features
  publication-title: Front. Neurosci.
– volume: 258
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120566_bib0005
  article-title: BND-VGG-19: a deep learning algorithm for COVID-19 identification utilizing X-ray images
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.110040
– year: 2016
  ident: 10.1016/j.neuroimage.2024.120566_bib0014
– volume: 13
  start-page: 5746
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120566_bib0031
  article-title: Disruptions of default mode network and precuneus connectivity associated with cognitive dysfunctions in tinnitus
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-32599-0
– volume: 101
  start-page: 1609
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120566_bib0010
  article-title: What's the buzz? The neuroscience and the treatment of tinnitus
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00029.2020
– volume: 382
  start-page: 1600
  year: 2013
  ident: 10.1016/j.neuroimage.2024.120566_bib0002
  article-title: Tinnitus
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)60142-7
– volume: 15
  start-page: 273
  year: 2002
  ident: 10.1016/j.neuroimage.2024.120566_bib0041
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 15
  start-page: 697168
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120566_bib0044
  article-title: Effects of brain atlases and machine learning methods on the discrimination of schizophrenia patients: a multimodal MRI study
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.697168
– volume: 39
  start-page: 478
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120566_bib0018
  article-title: Deep learning of static and dynamic brain functional networks for early MCI detection
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2928790
– volume: 14
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120566_bib0045
  article-title: Disrupted intra- and inter-network connectivity in unilateral acute tinnitus with hearing loss
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2022.833437
– volume: 8
  start-page: e10989
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120566_bib0024
  article-title: Surface-based functional metrics and auditory cortex characteristics in chronic tinnitus
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e10989
– volume: 323
  start-page: 1497
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120566_bib0027
  article-title: Tinnitus
  publication-title: JAMA
  doi: 10.1001/jama.2020.0697
– volume: 20
  start-page: 1090
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120566_bib0022
  article-title: Multi-tasking deep network for tinnitus classification and severity prediction from multimodal structural MR images
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/acab33
– volume: 38
  start-page: 686
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120566_bib0035
  article-title: Breast cancer diagnosis in digital breast tomosynthesis: effects of training sample size on multi-stage transfer learning using deep neural nets
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2870343
– volume: 79
  start-page: 888
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120566_bib0016
  article-title: Global prevalence and incidence of tinnitus: a systematic review and meta-analysis
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2022.2189
– start-page: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120566_bib0039
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: International Conference on Learning Representations (ICLR)
– volume: 334
  start-page: 37
  year: 2016
  ident: 10.1016/j.neuroimage.2024.120566_bib0012
  article-title: Neural networks of tinnitus in humans: elucidating severity and habituation
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2015.09.010
– volume: 10
  issue: 9
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120566_bib0003
  article-title: Robust single-trial EEG-based authentication achieved with a 2-stage classifier
  publication-title: Biosensors
  doi: 10.3390/bios10090124
– volume: 10
  start-page: 984
  issue: 7
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120566_bib0040
  article-title: Deep neural networks for dental implant system classification
  publication-title: Biomolecules
  doi: 10.3390/biom10070984
– volume: 301
  start-page: 178
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120566_bib0004
  article-title: Identification of the somatomotor network from language task-based fMRI compared with resting-state fMRI in patients with brain lesions
  publication-title: Radiology
  doi: 10.1148/radiol.2021204594
– volume: 115
  start-page: 211
  year: 2015
  ident: 10.1016/j.neuroimage.2024.120566_bib0033
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– volume: 38
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120566_bib0034
  article-title: Tinnitus-frequency specific activity and connectivity: a MEG study
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2023.103379
– volume: 45
  start-page: 1175
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120566_bib0001
  article-title: ACTNet: asymmetric convolutional transformer network for diabetic foot ulcers classification
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-022-01185-5
– volume: 17
  start-page: 16
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120566_bib0009
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2017.08.017
– volume: 12
  start-page: 1049
  issue: 8
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120566_bib0020
  article-title: Intrinsic network changes in bilateral tinnitus patients with cognitive impairment: a resting-state functional MRI study
  publication-title: Brain Sci.
  doi: 10.3390/brainsci12081049
– volume: 16
  start-page: 196
  year: 2017
  ident: 10.1016/j.neuroimage.2024.120566_bib0036
  article-title: Connectivity of precuneus to the default mode and dorsal attention networks: a possible invariant marker of long-term tinnitus
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2017.07.015
– volume: 15
  start-page: 205
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120566_bib0006
  article-title: Tinnitus and the triple network model: a perspective
  publication-title: Clin. Exp. Otorhinolaryngol.
  doi: 10.21053/ceo.2022.00815
– volume: 31
  start-page: 685
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120566_bib0015
  article-title: Machine learning and deep learning
  publication-title: Electron. Mark.
  doi: 10.1007/s12525-021-00475-2
– volume: 329
  start-page: 1358
  year: 2010
  ident: 10.1016/j.neuroimage.2024.120566_bib0007
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
  doi: 10.1126/science.1194144
– volume: 55
  issue: 3
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120566_bib0008
  article-title: Control networks and hubs
  publication-title: Psychophysiology
  doi: 10.1111/psyp.13032
– volume: 307
  start-page: 153
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120566_bib0013
  article-title: Using resting state functional connectivity to unravel networks of tinnitus
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2013.07.010
– volume: 13
  start-page: 246
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120566_bib0043
  article-title: Altered spatial and temporal brain connectivity in the salience network of sensorineural hearing loss and tinnitus
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00246
– volume: 9
  start-page: e98860
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120566_bib0030
  article-title: Preoperative mapping of the sensorimotor cortex: comparative assessment of task-based and resting-state FMRI
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0098860
– volume: 290
  start-page: 607
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120566_bib0032
  article-title: Emerging applications of artificial intelligence in neuro-oncology
  publication-title: Radiology
  doi: 10.1148/radiol.2018181928
– volume: 76
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120566_bib0019
  article-title: Specific brain network predictors of interventions with different mechanisms for tinnitus patients
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2022.103862
– volume: 47
  start-page: 1090
  year: 2017
  ident: 10.1016/j.neuroimage.2024.120566_bib0023
  article-title: Cross-domain recognition by identifying joint subspaces of source domain and target domain
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2538199
– start-page: 807
  year: 2010
  ident: 10.1016/j.neuroimage.2024.120566_bib0026
  article-title: Rectified linear units improve restricted boltzmann machines
– volume: 131
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120566_bib0025
  article-title: Toward integrated understanding of salience in psychosis
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2019.03.002
– volume: 2
  start-page: 375
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120566_bib0042
  article-title: ResNet-50 vs VGG-19 vs training from scratch: a comparative analysis of the segmentation and classification of Pneumonia from chest X-ray images
  publication-title: Glob. Transit. Proc.
  doi: 10.1016/j.gltp.2021.08.027
– volume: 24
  start-page: 531
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120566_bib0028
  article-title: Eavesdropping on tinnitus using MEG: lessons learned and future perspectives
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-023-00916-z
– volume: 26
  start-page: 303
  year: 2008
  ident: 10.1016/j.neuroimage.2024.120566_bib0029
  article-title: What is principal component analysis?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0308-303
– volume: 5
  start-page: 2
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120566_bib0017
  article-title: Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning
  publication-title: npj Schizophr.
  doi: 10.1038/s41537-018-0070-8
– volume: 12
  start-page: 150
  year: 2016
  ident: 10.1016/j.neuroimage.2024.120566_bib0037
  article-title: Maladaptive plasticity in tinnitus — Triggers, mechanisms and treatment
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2016.12
SSID ssj0009148
Score 2.4689815
Snippet •A decomposed convolutional neural network model was established based on rs-fMRI connectivity.•The model paired with the Dos_160 atlas can be effectively...
Many studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients. However, no...
ObjectivesMany studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients....
Objectives: Many studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients....
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 120566
SubjectTerms Artificial intelligence
Brain mapping
Brain research
Classification
Convolutional neural network
Deep learning
Diagnosis
Functional connectivity
Functional magnetic resonance imaging
Machine learning
Magnetic resonance imaging
Medical imaging
Neural networks
Neuroimaging
Otolaryngology
Resting state fMRI
Sensorimotor system
Support vector machines
Tinnitus
Transfer learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqDqgXBJTHFlq5EteU2HFiWz21iNWqEj2BxM2KH0GLICDYrfj5zNhOCgfEHnrKyo_IO8_P8XiGkCPLnGrBsRecd20hnJRFq0pXyNKXrmNeaosXnM_-NLML8fuyvnxR6gtjwlJ64ES4Y3DP2gKs0azrhAuNtrCZCxbQlnJO64DWFzqHzdSQbhdQfo7bSdFcMTvk_BZ0FPaEXHxnHDx_88oZxZz9r3zSW5gz-p7pJtnIoJH-TIvdIh9Cv03Wz_Kx-CfydD7vQTWXj9QhGMbon0hwij7KU_iBFTjASRXx_hBFZ5a-AVKHgS4ulZCgGAR_RVts_JtFEobgn4qPGDBOXx497JCL6en5yazIJRUKB7hsUVhfqbbTlVYW78xWAXZfQVVK6cBszRvPXV12Wikwe15LHkINbeDoukZ4Cbq8S9b6uz7sE-qFlI63AUtYiVIExX2rO7DjgAqC925C5EBb43K-cSx7cWOGwLJr848rBrliElcmhI0z71POjRXm_EL2jeMxa3ZsAFkyWZbMe7I0IXpgvhkupoIphRfNV1jAj3FuBi8JlKw4-3CQNZONyKPhWtWqYhWD7m9jN6g_num0fbhb4hgAwLVWpZqQvSSjIw0qxJaVqD__D9ockI-4XjxIY_UhWVs8LMMXwGML-zWq3jPSkjfJ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbxQhFCdND8aLsX6uVoOJV7oDAwPEkzY2jUm92Ca9kRlgmjE627S7xlP_dt8DZuoeTDbxtLsMbFje4_1-LO-DkPcd96YFYGdC9C2TXmvWmsozXYXK9zxo22GA89nX5vRCfrlUl3vkeIqFQbfKYvuzTU_WurQsy2our4dh-Q2YAcANHiAyUGMEu9So5Ud3924elsscDqdqhr2LN0_28Uo5I4efsHPhpCjkERfAB5otiEqZ_LeQ6l9MNCHSyWPyqFBJ-jHP9oDsxfEJeXBWLsufkt_nwwgbdnNLPVJk9AlKYqCIXIHCG6zLAdDFUlQRRYjL_wxSj-4vPheWoOgaf0VbbPxVFBW64I9KL8mNnP59IfGMXJx8Pj8-ZaXQAvPA1tasC7Vpe1tb02EkbR3hTBZNbYyNvFOiCcKrqrfGgDEMVosYFbQB_PWNDBp2-HOyP67G-JLQILX2oo1Y2EpWMhoRWtuDdQeuEEPwC6KntXW-ZCHHYhg_3ORu9t3dS8WhVFyWyoLweeR1zsSxw5hPKL65P-bSTg2rmytXlMkBAbQdEGfL-1762NhOSxE74PPGe2vjgthJ-G4KVwUDC1807DCBD_PYLbXecfThpGuumJZbJ6xRpuY1h8fv5sdgFPCmpx3jaoN9gBYrayqzIC-yjs5rUCPjrKV69V9Te00e4ie8V-PqkOyvbzbxDdCzdfc27b8_09I8Eg
  priority: 102
  providerName: Elsevier
Title Tinnitus classification based on resting-state functional connectivity using a convolutional neural network architecture
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811924000612
https://dx.doi.org/10.1016/j.neuroimage.2024.120566
https://www.ncbi.nlm.nih.gov/pubmed/38467345
https://www.proquest.com/docview/2985831316
https://www.proquest.com/docview/2956159808
https://doaj.org/article/6239b08091ff4ce69b742eb81b8cc99e
Volume 290
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfYJiEuiG8yRmUkrh6x48S2OKANbSqgVQhtUm9WYjtTJ0i3tUWc-Nt5z3FadgD15Mixo8TP771f_L4Iedtwp2tQ7EyItmbSKcVqnTumcp-7lntlGgxwPptU4wv5eVpO04HbIrlVDjIxCmo_d3hG_k4YXeqCF7z6cH3DsGoUWldTCY0dsoepy9ClS03VJukul30oXFkwDQOSJ0_v3xXzRc5-ANfCX6KQh1wAFqjuqKeYxf-OlvoXCo3a6PQReZhgJD3q6f6Y3AvdE3L_LBnKn5Jf57MOmHW1oA7hMfoDRRJQ1FqewgXW5AC1xWJEEUX11p8KUoeuL64vKkHRLf6S1tj5M21SGIIfFZvoQk7_NkY8IxenJ-cfxywVWWAOkNqSNb7QdWsKoxuMoi0C_I8FXWhtAm9KUXnhyrw1WoMg9EaJEEroA9XXVtIr4O7nZLebd-EloV4q5UQdsKiVzGXQwtemBckOOCF47zKihrW1LmUgx0IY3-3ganZlN1SxSBXbUyUjfD3zus_CscWcYyTfejzm0Y4d89tLm9jSAvgzDYBmw9tWulCZRkkRGsDy2jljQkbMQHw7hKqCcIUHzbZ4gffruQnO9DBly9kHw16zSaws7IYJMvJmfRsEAlp56i7MVzgGIHFpdK4z8qLfo-s1KBBtFrLc___DX5EH-CZoNOPlAdld3q7Ca8Bey2ZEdg5_81FksxHZO_r0ZTyB9vhk8vXbKJ5n_AFNTjYJ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTgJeEPcFBhgJHgOx48S2EEIMNnVsrRDqpL2ZxHamoi0da8vlT_EbOSdxUvYA6sueWrl2lObY3_lOzo2Q5yWzqgDFHnNeFbGwUsaFSmwsE5fYijmpS0xwHo3z4ZH4eJwdb5DfXS4MhlV2mNgAtZtZfEf-imuVqZSlLH97_i3GrlHoXe1aaLTb4sD_-gEm2_zN_geQ7wvO93Yn74dx6CoQW6Ami7h0qSoqnWpVYtpo6sEA8SpVSntWZjx33GZJpZWCk--05N5nMAZYX-XCSYnFlwDyN0UKpsyAbO7sjj99XpX5ZaJNvsvSWDGmQ-xQG1HWVKicngFOgF3KxUvGgX3klxRi0zfgkl78F-9t9N_eLXIzEFf6rt1pt8mGr--Qa6Pgmr9Lfk6mNcDDck4tEnKMQGqETlFPOgpfsAsIKMq4yWGiqFDb95DUYrCNbdtYUAzEP6EFDn4PxwKm4J9qPpqgdfq3--MeOboSAdwng3pW-y1CnZDS8sJjGy2RCK-4K3QFugSYiXfORkR2z9bYUPMcW2-cmi647atZScWgVEwrlYiwfuV5W_djjTU7KL5-PlbubgZmFycmAIEBuqlLoOmaVZWwPtelFNyXYD0oa7X2EdGd8E2XHAtwDhearnEDr_u1gUC1xGjN1dvdXjMByOZmdewi8qz_GSAI_UpF7WdLnAMkPNMqURF50O7R_hmkyG9TkT38_8WfkuvDyejQHO6PDx6RG3hX6LJj2TYZLC6W_jEwv0X5JBw3Sr5c9Qn_A0pUbkc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIlVcEG8CBYwER9PYsWNbCCGgrFpKKw6ttDeT2E61CHZLd5fHX-PXMZM4WXoA7aWnRF47yno833yO50HI05p7U4FhZ0I0FZNea1aZ3DOdh9w3PGhbY4Dz4VG5dyLfj9V4g_zuY2HQrbLHxBaow8zjN_IdYY0yBS94udMkt4iPu6NXZ98YVpDCk9a-nEa3RA7irx-wfZu_3N8FWT8TYvTu-O0eSxUGmAeasmB1KEzV2MKaGkNIiwibkWgKY2zktRJlEF7ljTUGUCBYLWJU0Aa435QyaI2JmAD-r-hCcdQxPdarhL9cdmF4qmCGc5u8iDrfsjZX5eQrIAbsUIV8zgXwkPKCaWwrCFywkP9iwK0lHF0n1xKFpa-7NXeDbMTpTbJ1mA7pb5Gfx5MpAMVyTj1Sc_RFasVP0WIGCjdYDwRMJmujmSia1u6LJPXoduO7ghYUXfJPaYWN35OCQBf8U-2ldV-nfx-E3CYnlzL9d8jmdDaN9wgNUmsvqogFtWQuoxGhsg1YFeAoMQSfEd3PrfMp-zkW4fjieje3z24lFYdScZ1UMsKHkWddBpA1xrxB8Q39MYd32zA7P3UJEhwQT1sDYbe8aaSPpa21FLGGfYTx3tqYEdsL3_VhsgDs8KDJGi_wYhibqFRHkdYcvd2vNZcgbe5WCpiRJ8PPAEZ4wlRN42yJfYCOK2tyk5G73Rod5qBApltIdf__D39MtkCv3Yf9o4MH5Cq-FJ7dcbVNNhfny_gQKOCiftTqGiWfLlu5_wAZbnEX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tinnitus+classification+based+on+resting-state+functional+connectivity+using+a+convolutional+neural+network+architecture&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Xu%2C+Qianhui&rft.au=Zhou%2C+Lei-Lei&rft.au=Xing%2C+Chunhua&rft.au=Xu%2C+Xiaomin&rft.date=2024-04-15&rft.eissn=1095-9572&rft.volume=290&rft.spage=120566&rft_id=info:doi/10.1016%2Fj.neuroimage.2024.120566&rft_id=info%3Apmid%2F38467345&rft.externalDocID=38467345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon