Tinnitus classification based on resting-state functional connectivity using a convolutional neural network architecture
•A decomposed convolutional neural network model was established based on rs-fMRI connectivity.•The model paired with the Dos_160 atlas can be effectively applied to the diagnosis of tinnitus.•This study pinpointed key brain regions for subjective tinnitus using a data-driven approach. Many studies...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 290; p. 120566 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.04.2024
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A decomposed convolutional neural network model was established based on rs-fMRI connectivity.•The model paired with the Dos_160 atlas can be effectively applied to the diagnosis of tinnitus.•This study pinpointed key brain regions for subjective tinnitus using a data-driven approach.
Many studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients. However, no studies have verified the efficacy of resting-state FC as a diagnostic imaging marker. We established a convolutional neural network (CNN) model based on rs-fMRI FC to distinguish tinnitus patients from healthy controls, providing guidance and fast diagnostic tools for the clinical diagnosis of subjective tinnitus.
A CNN architecture was trained on rs-fMRI data from 100 tinnitus patients and 100 healthy controls using an asymmetric convolutional layer. Additionally, a traditional machine learning model and a transfer learning model were included for comparison with the CNN, and each of the three models was tested on three different brain atlases.
Of the three models, the CNN model outperformed the other two models with the highest area under the curve, especially on the Dos_160 atlas (AUC = 0.944). Meanwhile, the model with the best classification performance highlights the crucial role of the default mode network, salience network, and sensorimotor network in distinguishing between normal controls and patients with subjective tinnitus.
Our CNN model could appropriately tackle the diagnosis of tinnitus patients using rs-fMRI and confirmed the diagnostic value of FC as measured by rs-fMRI. |
---|---|
AbstractList | ObjectivesMany studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients. However, no studies have verified the efficacy of resting-state FC as a diagnostic imaging marker. We established a convolutional neural network (CNN) model based on rs-fMRI FC to distinguish tinnitus patients from healthy controls, providing guidance and fast diagnostic tools for the clinical diagnosis of subjective tinnitus.MethodsA CNN architecture was trained on rs-fMRI data from 100 tinnitus patients and 100 healthy controls using an asymmetric convolutional layer. Additionally, a traditional machine learning model and a transfer learning model were included for comparison with the CNN, and each of the three models was tested on three different brain atlases.ResultsOf the three models, the CNN model outperformed the other two models with the highest area under the curve, especially on the Dos_160 atlas (AUC = 0.944). Meanwhile, the model with the best classification performance highlights the crucial role of the default mode network, salience network, and sensorimotor network in distinguishing between normal controls and patients with subjective tinnitus.ConclusionOur CNN model could appropriately tackle the diagnosis of tinnitus patients using rs-fMRI and confirmed the diagnostic value of FC as measured by rs-fMRI. •A decomposed convolutional neural network model was established based on rs-fMRI connectivity.•The model paired with the Dos_160 atlas can be effectively applied to the diagnosis of tinnitus.•This study pinpointed key brain regions for subjective tinnitus using a data-driven approach. Many studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients. However, no studies have verified the efficacy of resting-state FC as a diagnostic imaging marker. We established a convolutional neural network (CNN) model based on rs-fMRI FC to distinguish tinnitus patients from healthy controls, providing guidance and fast diagnostic tools for the clinical diagnosis of subjective tinnitus. A CNN architecture was trained on rs-fMRI data from 100 tinnitus patients and 100 healthy controls using an asymmetric convolutional layer. Additionally, a traditional machine learning model and a transfer learning model were included for comparison with the CNN, and each of the three models was tested on three different brain atlases. Of the three models, the CNN model outperformed the other two models with the highest area under the curve, especially on the Dos_160 atlas (AUC = 0.944). Meanwhile, the model with the best classification performance highlights the crucial role of the default mode network, salience network, and sensorimotor network in distinguishing between normal controls and patients with subjective tinnitus. Our CNN model could appropriately tackle the diagnosis of tinnitus patients using rs-fMRI and confirmed the diagnostic value of FC as measured by rs-fMRI. Objectives: Many studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients. However, no studies have verified the efficacy of resting-state FC as a diagnostic imaging marker. We established a convolutional neural network (CNN) model based on rs-fMRI FC to distinguish tinnitus patients from healthy controls, providing guidance and fast diagnostic tools for the clinical diagnosis of subjective tinnitus. Methods: A CNN architecture was trained on rs-fMRI data from 100 tinnitus patients and 100 healthy controls using an asymmetric convolutional layer. Additionally, a traditional machine learning model and a transfer learning model were included for comparison with the CNN, and each of the three models was tested on three different brain atlases. Results: Of the three models, the CNN model outperformed the other two models with the highest area under the curve, especially on the Dos_160 atlas (AUC = 0.944). Meanwhile, the model with the best classification performance highlights the crucial role of the default mode network, salience network, and sensorimotor network in distinguishing between normal controls and patients with subjective tinnitus. Conclusion: Our CNN model could appropriately tackle the diagnosis of tinnitus patients using rs-fMRI and confirmed the diagnostic value of FC as measured by rs-fMRI. Many studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients. However, no studies have verified the efficacy of resting-state FC as a diagnostic imaging marker. We established a convolutional neural network (CNN) model based on rs-fMRI FC to distinguish tinnitus patients from healthy controls, providing guidance and fast diagnostic tools for the clinical diagnosis of subjective tinnitus.OBJECTIVESMany studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients. However, no studies have verified the efficacy of resting-state FC as a diagnostic imaging marker. We established a convolutional neural network (CNN) model based on rs-fMRI FC to distinguish tinnitus patients from healthy controls, providing guidance and fast diagnostic tools for the clinical diagnosis of subjective tinnitus.A CNN architecture was trained on rs-fMRI data from 100 tinnitus patients and 100 healthy controls using an asymmetric convolutional layer. Additionally, a traditional machine learning model and a transfer learning model were included for comparison with the CNN, and each of the three models was tested on three different brain atlases.METHODSA CNN architecture was trained on rs-fMRI data from 100 tinnitus patients and 100 healthy controls using an asymmetric convolutional layer. Additionally, a traditional machine learning model and a transfer learning model were included for comparison with the CNN, and each of the three models was tested on three different brain atlases.Of the three models, the CNN model outperformed the other two models with the highest area under the curve, especially on the Dos_160 atlas (AUC = 0.944). Meanwhile, the model with the best classification performance highlights the crucial role of the default mode network, salience network, and sensorimotor network in distinguishing between normal controls and patients with subjective tinnitus.RESULTSOf the three models, the CNN model outperformed the other two models with the highest area under the curve, especially on the Dos_160 atlas (AUC = 0.944). Meanwhile, the model with the best classification performance highlights the crucial role of the default mode network, salience network, and sensorimotor network in distinguishing between normal controls and patients with subjective tinnitus.Our CNN model could appropriately tackle the diagnosis of tinnitus patients using rs-fMRI and confirmed the diagnostic value of FC as measured by rs-fMRI.CONCLUSIONOur CNN model could appropriately tackle the diagnosis of tinnitus patients using rs-fMRI and confirmed the diagnostic value of FC as measured by rs-fMRI. Many studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients. However, no studies have verified the efficacy of resting-state FC as a diagnostic imaging marker. We established a convolutional neural network (CNN) model based on rs-fMRI FC to distinguish tinnitus patients from healthy controls, providing guidance and fast diagnostic tools for the clinical diagnosis of subjective tinnitus. A CNN architecture was trained on rs-fMRI data from 100 tinnitus patients and 100 healthy controls using an asymmetric convolutional layer. Additionally, a traditional machine learning model and a transfer learning model were included for comparison with the CNN, and each of the three models was tested on three different brain atlases. Of the three models, the CNN model outperformed the other two models with the highest area under the curve, especially on the Dos_160 atlas (AUC = 0.944). Meanwhile, the model with the best classification performance highlights the crucial role of the default mode network, salience network, and sensorimotor network in distinguishing between normal controls and patients with subjective tinnitus. Our CNN model could appropriately tackle the diagnosis of tinnitus patients using rs-fMRI and confirmed the diagnostic value of FC as measured by rs-fMRI. |
ArticleNumber | 120566 |
Author | Xu, Qianhui Xu, Xiaomin Zhao, Fei Zhou, Lei-Lei Xing, Chunhua Lv, Han Cai, Yuexin Chen, Yu-Chen Feng, Yuan |
Author_xml | – sequence: 1 givenname: Qianhui surname: Xu fullname: Xu, Qianhui organization: Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, Guangdong Province 510120, China – sequence: 2 givenname: Lei-Lei surname: Zhou fullname: Zhou, Lei-Lei organization: Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing 210006, China – sequence: 3 givenname: Chunhua surname: Xing fullname: Xing, Chunhua organization: Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing 210006, China – sequence: 4 givenname: Xiaomin surname: Xu fullname: Xu, Xiaomin organization: Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing 210006, China – sequence: 5 givenname: Yuan surname: Feng fullname: Feng, Yuan organization: Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing 210006, China – sequence: 6 givenname: Han surname: Lv fullname: Lv, Han organization: Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China – sequence: 7 givenname: Fei orcidid: 0000-0002-0936-4447 surname: Zhao fullname: Zhao, Fei organization: Department of Speech and Language Therapy and Hearing Science, Cardiff Metropolitan University, Cardiff, UK – sequence: 8 givenname: Yu-Chen surname: Chen fullname: Chen, Yu-Chen email: cycxwq@njmu.edu.cn organization: Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing 210006, China – sequence: 9 givenname: Yuexin surname: Cai fullname: Cai, Yuexin email: caiyx25@mail.sysu.edu.cn organization: Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, Guangdong Province 510120, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38467345$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhSNURB_wF1AkNmwy-BE79gYBVQuVKrEpa8txbganGbvYzsD8e5zJFKRZzcr29XePrXPPZXHmvIOiKDFaYYT5h2HlYArebvQaVgSReoUJYpy_KC4wkqySrCFn857RSmAsz4vLGAeEkMS1eFWcU1HzhtbsovjzYJ2zaYqlGXWMtrdGJ-td2eoIXZk3AWKybl3FpBOU_eTMfK_H0njnIB-2Nu3KKWam1HNx68fpgMy_3C_ptw-PpQ7mp025ZwrwunjZ6zHCm8N6Vfy4vXm4_lbdf_96d_35vjKsYalqOyp0L6kULUFSUiC1BEGFkIBbRnhHDEO9FEJ3XScbAsByrca053XXNJJeFXeLbuf1oJ5C9izslNdW7Qs-rJUOyZoRFCdUtkhkk_q-NsBl29QEWoFbYYyUkLXeL1pPwf-asi9qY6OBcdQO_BQVkYxjJgUSGX13hA5-CtmTmRJMUEwxz9TbAzW1G-j-fe95Phn4uAAm-BgD9MrYtB9QCtqOCiM1B0IN6n8g1BwItQQiC4gjgec3Tmj9srRCHs_WQlDRWHAGOhvyDLN_9hSRT0ciZrQuh2x8hN1pEn8Bt_zuNw |
CitedBy_id | crossref_primary_10_1117_1_JMI_11_6_064502 crossref_primary_10_3390_brainsci14050421 crossref_primary_10_1016_j_neuroscience_2024_06_034 |
Cites_doi | 10.1371/journal.pone.0241695 10.3389/fnins.2021.621145 10.1016/j.knosys.2022.110040 10.1038/s41598-023-32599-0 10.1152/physrev.00029.2020 10.1016/S0140-6736(13)60142-7 10.1006/nimg.2001.0978 10.3389/fnins.2021.697168 10.1109/TMI.2019.2928790 10.3389/fnagi.2022.833437 10.1016/j.heliyon.2022.e10989 10.1001/jama.2020.0697 10.1088/1741-2552/acab33 10.1109/TMI.2018.2870343 10.1001/jamaneurol.2022.2189 10.1016/j.heares.2015.09.010 10.3390/bios10090124 10.3390/biom10070984 10.1148/radiol.2021204594 10.1007/s11263-015-0816-y 10.1016/j.nicl.2023.103379 10.1007/s13246-022-01185-5 10.1016/j.nicl.2017.08.017 10.3390/brainsci12081049 10.1016/j.nicl.2017.07.015 10.21053/ceo.2022.00815 10.1007/s12525-021-00475-2 10.1126/science.1194144 10.1111/psyp.13032 10.1016/j.heares.2013.07.010 10.3389/fnins.2019.00246 10.1371/journal.pone.0098860 10.1148/radiol.2018181928 10.1016/j.ebiom.2022.103862 10.1109/TCYB.2016.2538199 10.1016/j.nbd.2019.03.002 10.1016/j.gltp.2021.08.027 10.1007/s10162-023-00916-z 10.1038/nbt0308-303 10.1038/s41537-018-0070-8 10.1038/nrneurol.2016.12 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. 2024. The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2024. The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 DOA |
DOI | 10.1016/j.neuroimage.2024.120566 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
ExternalDocumentID | oai_doaj_org_article_6239b08091ff4ce69b742eb81b8cc99e 38467345 10_1016_j_neuroimage_2024_120566 S1053811924000612 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 0SF 6I. AACTN AAFTH AAIAV AFKWA AJOXV ALIPV AMFUW C45 HMQ NCXOZ RIG SEW SNS 29N 53G AAQFI AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- WUQ XPP ZMT NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c575t-bd38af9398b20993e249e83889e1b526d2c50f988addd972ee56d2413f64d7793 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:30:37 EDT 2025 Fri Jul 11 15:10:57 EDT 2025 Sun Aug 17 05:42:31 EDT 2025 Thu Apr 03 07:03:38 EDT 2025 Tue Jul 01 03:02:28 EDT 2025 Thu Apr 24 22:53:29 EDT 2025 Sat Jul 20 16:36:20 EDT 2024 Tue Aug 26 17:21:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Functional connectivity Resting state fMRI Tinnitus Convolutional neural network |
Language | English |
License | This is an open access article under the CC BY-NC license. Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-bd38af9398b20993e249e83889e1b526d2c50f988addd972ee56d2413f64d7793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0936-4447 |
OpenAccessLink | https://doaj.org/article/6239b08091ff4ce69b742eb81b8cc99e |
PMID | 38467345 |
PQID | 2985831316 |
PQPubID | 2031077 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6239b08091ff4ce69b742eb81b8cc99e proquest_miscellaneous_2956159808 proquest_journals_2985831316 pubmed_primary_38467345 crossref_citationtrail_10_1016_j_neuroimage_2024_120566 crossref_primary_10_1016_j_neuroimage_2024_120566 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2024_120566 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2024_120566 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-15 |
PublicationDateYYYYMMDD | 2024-04-15 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2024 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Henton, Tzounopoulos (bib0010) 2021; 101 Zang, Huang, Kong, Lei, Ke, Li, Zhou, Xiong, Li, Chen, Li, Xiang, Ning, Wu, Wu (bib0044) 2021; 15 Heinsfeld, Franco, Craddock, Buchweitz, Meneguzzi (bib0009) 2018; 17 Nair, Hinton (bib0026) 2010 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Fei-Fei (bib0033) 2015; 115 Piccirillo, Rodebaugh, Lenze (bib0027) 2020; 323 Lin, Chen, Cao, Zhou, Zhang, Tang, Wang (bib0023) 2017; 47 Ma, Chen, Wang, Zhang, Dai, Ding, Yan, Shen, Yang (bib0024) 2022; 8 Miyata (bib0025) 2019; 131 Lin, Ghosh, Hinkley, Dale, Souza, Sabes, Hess, Adams, Cheung, Nagarajan (bib0022) 2023; 20 Xu, Jiao, Tang, Lu, Zhang, Salvi, Teng (bib0043) 2019; 13 De Ridder, Vanneste, Song, Adhia (bib0006) 2022; 15 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib0041) 2002; 15 Barayeu, Horlava, Libert, Van Hulle (bib0003) 2020; 10 Cao, Huang, He, Zong (bib0005) 2022; 258 Lan, Liu, Wu, Xu, Xu, Song, Salvi, Yin, Chen, Cai (bib0019) 2022; 76 Sukegawa, Yoshii, Hara, Yamashita, Nakano, Yamamoto, Nagatsuka, Furuki (bib0040) 2020; 10 Ai, Yang, Xie (bib0001) 2022; 45 Beheshtian, Jalilianhasanpour, Modir Shanechi, Sethi, Wang, Lindquist, Caffo, Agarwal, Pillai, Gujar, Sair (bib0004) 2021; 301 Kam, Zhang, Jiao, Shen (bib0018) 2020; 39 Ian, Yoshua, Aaron (bib0014) 2016 Zhou, Li, Chen, Wei, Yu, Guo, Yin, Tao, Zhang (bib0045) 2022; 14 Rudie, Rauschecker, Bryan, Davatzikos, Mohan (bib0032) 2019; 290 Baguley, McFerran, Hall (bib0002) 2013; 382 Husain (bib0012) 2016; 334 Husain, Schmidt (bib0013) 2014; 307 Shore, Roberts, Langguth (bib0037) 2016; 12 Victor Ikechukwu, Murali, Deepu, Shivamurthy (bib0042) 2021; 2 Ringnér (bib0029) 2008; 26 Rosazza, Aquino, D'Incerti, Cordella, Andronache, Zacà, Bruzzone, Tringali, Minati (bib0030) 2014; 9 Li, Ma, Wang, He, Qu, Zhang, Chen, Liu (bib0020) 2022; 12 Janiesch, Zschech, Heinrich (bib0015) 2021; 31 Dosenbach, Nardos, Cohen, Fair, Power, Church, Nelson, Wig, Vogel, Lessov-Schlaggar, Barnes, Dubis, Feczko, Coalson, Pruett, Barch, Petersen, Schlaggar (bib0007) 2010; 329 Gratton, Sun, Petersen (bib0008) 2018; 55 Samala, Heang-Ping, Hadjiiski, Helvie, Richter, Cha (bib0035) 2019; 38 Schmidt, Carpenter-Thompson, Husain (bib0036) 2017; 16 Simonyan, Zisserman (bib0039) 2014 Reisinger, Demarchi, Weisz (bib0028) 2023; 24 Hu, Cui, Xu, Yin, Wu, Qi (bib0011) 2021; 15 Salvari, Korth, Paraskevopoulos, Wollbrink, Ivansic, Guntinas-Lichius, Klingner, Pantev, Dobel (bib0034) 2023; 38 Shoushtarian, Alizadehsani, Khosravi, Acevedo, McKay, Nahavandi, Fallon (bib0038) 2020; 15 Rosemann, Rauschecker (bib0031) 2023; 13 Jarach, Lugo, Scala, van den Brandt, Cederroth, Odone, Garavello, Schlee, Langguth, Gallus (bib0016) 2022; 79 Li, Wang, Shen, Yang, Zhao, Hu, Wang, Liu, Xin, Zhang, Li, Zhang, Cai, Liang, Li (bib0021) 2021; 15 Kalmady, Greiner, Agrawal, Shivakumar, Narayanaswamy, Brown, Greenshaw, Dursun, Venkatasubramanian (bib0017) 2019; 5 Henton (10.1016/j.neuroimage.2024.120566_bib0010) 2021; 101 Janiesch (10.1016/j.neuroimage.2024.120566_bib0015) 2021; 31 De Ridder (10.1016/j.neuroimage.2024.120566_bib0006) 2022; 15 Beheshtian (10.1016/j.neuroimage.2024.120566_bib0004) 2021; 301 Rosemann (10.1016/j.neuroimage.2024.120566_bib0031) 2023; 13 Kam (10.1016/j.neuroimage.2024.120566_bib0018) 2020; 39 Dosenbach (10.1016/j.neuroimage.2024.120566_bib0007) 2010; 329 Lin (10.1016/j.neuroimage.2024.120566_bib0022) 2023; 20 Nair (10.1016/j.neuroimage.2024.120566_bib0026) 2010 Zhou (10.1016/j.neuroimage.2024.120566_bib0045) 2022; 14 Cao (10.1016/j.neuroimage.2024.120566_bib0005) 2022; 258 Heinsfeld (10.1016/j.neuroimage.2024.120566_bib0009) 2018; 17 Li (10.1016/j.neuroimage.2024.120566_bib0020) 2022; 12 Russakovsky (10.1016/j.neuroimage.2024.120566_bib0033) 2015; 115 Ian (10.1016/j.neuroimage.2024.120566_bib0014) 2016 Lan (10.1016/j.neuroimage.2024.120566_bib0019) 2022; 76 Sukegawa (10.1016/j.neuroimage.2024.120566_bib0040) 2020; 10 Zang (10.1016/j.neuroimage.2024.120566_bib0044) 2021; 15 Schmidt (10.1016/j.neuroimage.2024.120566_bib0036) 2017; 16 Salvari (10.1016/j.neuroimage.2024.120566_bib0034) 2023; 38 Tzourio-Mazoyer (10.1016/j.neuroimage.2024.120566_bib0041) 2002; 15 Gratton (10.1016/j.neuroimage.2024.120566_bib0008) 2018; 55 Piccirillo (10.1016/j.neuroimage.2024.120566_bib0027) 2020; 323 Ai (10.1016/j.neuroimage.2024.120566_bib0001) 2022; 45 Shoushtarian (10.1016/j.neuroimage.2024.120566_bib0038) 2020; 15 Li (10.1016/j.neuroimage.2024.120566_bib0021) 2021; 15 Shore (10.1016/j.neuroimage.2024.120566_bib0037) 2016; 12 Victor Ikechukwu (10.1016/j.neuroimage.2024.120566_bib0042) 2021; 2 Husain (10.1016/j.neuroimage.2024.120566_bib0012) 2016; 334 Baguley (10.1016/j.neuroimage.2024.120566_bib0002) 2013; 382 Miyata (10.1016/j.neuroimage.2024.120566_bib0025) 2019; 131 Simonyan (10.1016/j.neuroimage.2024.120566_bib0039) 2014 Rudie (10.1016/j.neuroimage.2024.120566_bib0032) 2019; 290 Jarach (10.1016/j.neuroimage.2024.120566_bib0016) 2022; 79 Xu (10.1016/j.neuroimage.2024.120566_bib0043) 2019; 13 Ma (10.1016/j.neuroimage.2024.120566_bib0024) 2022; 8 Hu (10.1016/j.neuroimage.2024.120566_bib0011) 2021; 15 Barayeu (10.1016/j.neuroimage.2024.120566_bib0003) 2020; 10 Reisinger (10.1016/j.neuroimage.2024.120566_bib0028) 2023; 24 Rosazza (10.1016/j.neuroimage.2024.120566_bib0030) 2014; 9 Ringnér (10.1016/j.neuroimage.2024.120566_bib0029) 2008; 26 Samala (10.1016/j.neuroimage.2024.120566_bib0035) 2019; 38 Husain (10.1016/j.neuroimage.2024.120566_bib0013) 2014; 307 Kalmady (10.1016/j.neuroimage.2024.120566_bib0017) 2019; 5 Lin (10.1016/j.neuroimage.2024.120566_bib0023) 2017; 47 |
References_xml | – volume: 79 start-page: 888 year: 2022 end-page: 900 ident: bib0016 article-title: Global prevalence and incidence of tinnitus: a systematic review and meta-analysis publication-title: JAMA Neurol. – volume: 382 start-page: 1600 year: 2013 end-page: 1607 ident: bib0002 article-title: Tinnitus publication-title: Lancet – volume: 9 start-page: e98860 year: 2014 ident: bib0030 article-title: Preoperative mapping of the sensorimotor cortex: comparative assessment of task-based and resting-state FMRI publication-title: PLoS One – volume: 16 start-page: 196 year: 2017 end-page: 204 ident: bib0036 article-title: Connectivity of precuneus to the default mode and dorsal attention networks: a possible invariant marker of long-term tinnitus publication-title: Neuroimage Clin. – volume: 301 start-page: 178 year: 2021 end-page: 184 ident: bib0004 article-title: Identification of the somatomotor network from language task-based fMRI compared with resting-state fMRI in patients with brain lesions publication-title: Radiology – volume: 12 start-page: 150 year: 2016 end-page: 160 ident: bib0037 article-title: Maladaptive plasticity in tinnitus — Triggers, mechanisms and treatment publication-title: Nat. Rev. Neurol. – volume: 26 start-page: 303 year: 2008 end-page: 304 ident: bib0029 article-title: What is principal component analysis? publication-title: Nat. Biotechnol. – volume: 334 start-page: 37 year: 2016 end-page: 48 ident: bib0012 article-title: Neural networks of tinnitus in humans: elucidating severity and habituation publication-title: Hear. Res. – volume: 39 start-page: 478 year: 2020 end-page: 487 ident: bib0018 article-title: Deep learning of static and dynamic brain functional networks for early MCI detection publication-title: IEEE Trans. Med. Imaging – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: bib0033 article-title: ImageNet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. – volume: 307 start-page: 153 year: 2014 end-page: 162 ident: bib0013 article-title: Using resting state functional connectivity to unravel networks of tinnitus publication-title: Hear. Res. – year: 2016 ident: bib0014 article-title: Deep Learning – volume: 31 start-page: 685 year: 2021 end-page: 695 ident: bib0015 article-title: Machine learning and deep learning publication-title: Electron. Mark. – volume: 101 start-page: 1609 year: 2021 end-page: 1632 ident: bib0010 article-title: What's the buzz? The neuroscience and the treatment of tinnitus publication-title: Physiol. Rev. – volume: 24 start-page: 531 year: 2023 end-page: 547 ident: bib0028 article-title: Eavesdropping on tinnitus using MEG: lessons learned and future perspectives publication-title: J. Assoc. Res. Otolaryngol. – volume: 15 year: 2020 ident: bib0038 article-title: Objective measurement of tinnitus using functional near-infrared spectroscopy and machine learning publication-title: PLoS One – volume: 45 start-page: 1175 year: 2022 end-page: 1181 ident: bib0001 article-title: ACTNet: asymmetric convolutional transformer network for diabetic foot ulcers classification publication-title: Phys. Eng. Sci. Med. – volume: 12 start-page: 1049 year: 2022 ident: bib0020 article-title: Intrinsic network changes in bilateral tinnitus patients with cognitive impairment: a resting-state functional MRI study publication-title: Brain Sci. – volume: 14 year: 2022 ident: bib0045 article-title: Disrupted intra- and inter-network connectivity in unilateral acute tinnitus with hearing loss publication-title: Front. Aging Neurosci. – volume: 290 start-page: 607 year: 2019 end-page: 618 ident: bib0032 article-title: Emerging applications of artificial intelligence in neuro-oncology publication-title: Radiology – volume: 5 start-page: 2 year: 2019 ident: bib0017 article-title: Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning publication-title: npj Schizophr. – volume: 38 start-page: 686 year: 2019 end-page: 696 ident: bib0035 article-title: Breast cancer diagnosis in digital breast tomosynthesis: effects of training sample size on multi-stage transfer learning using deep neural nets publication-title: IEEE Trans. Med. Imaging – volume: 15 year: 2021 ident: bib0011 article-title: The neural mechanisms of tinnitus: a perspective from functional magnetic resonance imaging publication-title: Front. Neurosci. – volume: 20 start-page: 1090 year: 2023 end-page: 1101 ident: bib0022 article-title: Multi-tasking deep network for tinnitus classification and severity prediction from multimodal structural MR images publication-title: J. Neural Eng. – volume: 17 start-page: 16 year: 2018 end-page: 23 ident: bib0009 article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset publication-title: Neuroimage Clin. – volume: 15 year: 2021 ident: bib0021 article-title: Objective recognition of tinnitus location using electroencephalography connectivity features publication-title: Front. Neurosci. – start-page: 1 year: 2014 end-page: 14 ident: bib0039 article-title: Very deep convolutional networks for large-scale image recognition publication-title: International Conference on Learning Representations (ICLR) – volume: 10 year: 2020 ident: bib0003 article-title: Robust single-trial EEG-based authentication achieved with a 2-stage classifier publication-title: Biosensors – volume: 258 year: 2022 ident: bib0005 article-title: BND-VGG-19: a deep learning algorithm for COVID-19 identification utilizing X-ray images publication-title: Knowl. Based Syst. – volume: 76 year: 2022 ident: bib0019 article-title: Specific brain network predictors of interventions with different mechanisms for tinnitus patients publication-title: EBioMedicine – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: bib0041 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage – volume: 10 start-page: 984 year: 2020 ident: bib0040 article-title: Deep neural networks for dental implant system classification publication-title: Biomolecules – volume: 13 start-page: 5746 year: 2023 ident: bib0031 article-title: Disruptions of default mode network and precuneus connectivity associated with cognitive dysfunctions in tinnitus publication-title: Sci. Rep. – volume: 15 start-page: 697168 year: 2021 ident: bib0044 article-title: Effects of brain atlases and machine learning methods on the discrimination of schizophrenia patients: a multimodal MRI study publication-title: Front. Neurosci. – volume: 38 year: 2023 ident: bib0034 article-title: Tinnitus-frequency specific activity and connectivity: a MEG study publication-title: Neuroimage Clin. – volume: 329 start-page: 1358 year: 2010 end-page: 1361 ident: bib0007 article-title: Prediction of individual brain maturity using fMRI publication-title: Science – volume: 8 start-page: e10989 year: 2022 ident: bib0024 article-title: Surface-based functional metrics and auditory cortex characteristics in chronic tinnitus publication-title: Heliyon – volume: 55 year: 2018 ident: bib0008 article-title: Control networks and hubs publication-title: Psychophysiology – volume: 131 year: 2019 ident: bib0025 article-title: Toward integrated understanding of salience in psychosis publication-title: Neurobiol. Dis. – volume: 13 start-page: 246 year: 2019 ident: bib0043 article-title: Altered spatial and temporal brain connectivity in the salience network of sensorineural hearing loss and tinnitus publication-title: Front. Neurosci. – volume: 323 start-page: 1497 year: 2020 end-page: 1498 ident: bib0027 article-title: Tinnitus publication-title: JAMA – volume: 2 start-page: 375 year: 2021 end-page: 381 ident: bib0042 article-title: ResNet-50 vs VGG-19 vs training from scratch: a comparative analysis of the segmentation and classification of Pneumonia from chest X-ray images publication-title: Glob. Transit. Proc. – volume: 15 start-page: 205 year: 2022 end-page: 212 ident: bib0006 article-title: Tinnitus and the triple network model: a perspective publication-title: Clin. Exp. Otorhinolaryngol. – start-page: 807 year: 2010 end-page: 814 ident: bib0026 article-title: Rectified linear units improve restricted boltzmann machines publication-title: Proceedings of the 27th International Conference on International Conference on Machine Learning – volume: 47 start-page: 1090 year: 2017 end-page: 1101 ident: bib0023 article-title: Cross-domain recognition by identifying joint subspaces of source domain and target domain publication-title: IEEE Trans. Cybern. – volume: 15 year: 2020 ident: 10.1016/j.neuroimage.2024.120566_bib0038 article-title: Objective measurement of tinnitus using functional near-infrared spectroscopy and machine learning publication-title: PLoS One doi: 10.1371/journal.pone.0241695 – volume: 15 year: 2021 ident: 10.1016/j.neuroimage.2024.120566_bib0011 article-title: The neural mechanisms of tinnitus: a perspective from functional magnetic resonance imaging publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.621145 – volume: 15 year: 2021 ident: 10.1016/j.neuroimage.2024.120566_bib0021 article-title: Objective recognition of tinnitus location using electroencephalography connectivity features publication-title: Front. Neurosci. – volume: 258 year: 2022 ident: 10.1016/j.neuroimage.2024.120566_bib0005 article-title: BND-VGG-19: a deep learning algorithm for COVID-19 identification utilizing X-ray images publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2022.110040 – year: 2016 ident: 10.1016/j.neuroimage.2024.120566_bib0014 – volume: 13 start-page: 5746 year: 2023 ident: 10.1016/j.neuroimage.2024.120566_bib0031 article-title: Disruptions of default mode network and precuneus connectivity associated with cognitive dysfunctions in tinnitus publication-title: Sci. Rep. doi: 10.1038/s41598-023-32599-0 – volume: 101 start-page: 1609 year: 2021 ident: 10.1016/j.neuroimage.2024.120566_bib0010 article-title: What's the buzz? The neuroscience and the treatment of tinnitus publication-title: Physiol. Rev. doi: 10.1152/physrev.00029.2020 – volume: 382 start-page: 1600 year: 2013 ident: 10.1016/j.neuroimage.2024.120566_bib0002 article-title: Tinnitus publication-title: Lancet doi: 10.1016/S0140-6736(13)60142-7 – volume: 15 start-page: 273 year: 2002 ident: 10.1016/j.neuroimage.2024.120566_bib0041 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 15 start-page: 697168 year: 2021 ident: 10.1016/j.neuroimage.2024.120566_bib0044 article-title: Effects of brain atlases and machine learning methods on the discrimination of schizophrenia patients: a multimodal MRI study publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.697168 – volume: 39 start-page: 478 year: 2020 ident: 10.1016/j.neuroimage.2024.120566_bib0018 article-title: Deep learning of static and dynamic brain functional networks for early MCI detection publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2928790 – volume: 14 year: 2022 ident: 10.1016/j.neuroimage.2024.120566_bib0045 article-title: Disrupted intra- and inter-network connectivity in unilateral acute tinnitus with hearing loss publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2022.833437 – volume: 8 start-page: e10989 year: 2022 ident: 10.1016/j.neuroimage.2024.120566_bib0024 article-title: Surface-based functional metrics and auditory cortex characteristics in chronic tinnitus publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e10989 – volume: 323 start-page: 1497 year: 2020 ident: 10.1016/j.neuroimage.2024.120566_bib0027 article-title: Tinnitus publication-title: JAMA doi: 10.1001/jama.2020.0697 – volume: 20 start-page: 1090 year: 2023 ident: 10.1016/j.neuroimage.2024.120566_bib0022 article-title: Multi-tasking deep network for tinnitus classification and severity prediction from multimodal structural MR images publication-title: J. Neural Eng. doi: 10.1088/1741-2552/acab33 – volume: 38 start-page: 686 year: 2019 ident: 10.1016/j.neuroimage.2024.120566_bib0035 article-title: Breast cancer diagnosis in digital breast tomosynthesis: effects of training sample size on multi-stage transfer learning using deep neural nets publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2870343 – volume: 79 start-page: 888 year: 2022 ident: 10.1016/j.neuroimage.2024.120566_bib0016 article-title: Global prevalence and incidence of tinnitus: a systematic review and meta-analysis publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2022.2189 – start-page: 1 year: 2014 ident: 10.1016/j.neuroimage.2024.120566_bib0039 article-title: Very deep convolutional networks for large-scale image recognition publication-title: International Conference on Learning Representations (ICLR) – volume: 334 start-page: 37 year: 2016 ident: 10.1016/j.neuroimage.2024.120566_bib0012 article-title: Neural networks of tinnitus in humans: elucidating severity and habituation publication-title: Hear. Res. doi: 10.1016/j.heares.2015.09.010 – volume: 10 issue: 9 year: 2020 ident: 10.1016/j.neuroimage.2024.120566_bib0003 article-title: Robust single-trial EEG-based authentication achieved with a 2-stage classifier publication-title: Biosensors doi: 10.3390/bios10090124 – volume: 10 start-page: 984 issue: 7 year: 2020 ident: 10.1016/j.neuroimage.2024.120566_bib0040 article-title: Deep neural networks for dental implant system classification publication-title: Biomolecules doi: 10.3390/biom10070984 – volume: 301 start-page: 178 year: 2021 ident: 10.1016/j.neuroimage.2024.120566_bib0004 article-title: Identification of the somatomotor network from language task-based fMRI compared with resting-state fMRI in patients with brain lesions publication-title: Radiology doi: 10.1148/radiol.2021204594 – volume: 115 start-page: 211 year: 2015 ident: 10.1016/j.neuroimage.2024.120566_bib0033 article-title: ImageNet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – volume: 38 year: 2023 ident: 10.1016/j.neuroimage.2024.120566_bib0034 article-title: Tinnitus-frequency specific activity and connectivity: a MEG study publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2023.103379 – volume: 45 start-page: 1175 year: 2022 ident: 10.1016/j.neuroimage.2024.120566_bib0001 article-title: ACTNet: asymmetric convolutional transformer network for diabetic foot ulcers classification publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-022-01185-5 – volume: 17 start-page: 16 year: 2018 ident: 10.1016/j.neuroimage.2024.120566_bib0009 article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2017.08.017 – volume: 12 start-page: 1049 issue: 8 year: 2022 ident: 10.1016/j.neuroimage.2024.120566_bib0020 article-title: Intrinsic network changes in bilateral tinnitus patients with cognitive impairment: a resting-state functional MRI study publication-title: Brain Sci. doi: 10.3390/brainsci12081049 – volume: 16 start-page: 196 year: 2017 ident: 10.1016/j.neuroimage.2024.120566_bib0036 article-title: Connectivity of precuneus to the default mode and dorsal attention networks: a possible invariant marker of long-term tinnitus publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2017.07.015 – volume: 15 start-page: 205 year: 2022 ident: 10.1016/j.neuroimage.2024.120566_bib0006 article-title: Tinnitus and the triple network model: a perspective publication-title: Clin. Exp. Otorhinolaryngol. doi: 10.21053/ceo.2022.00815 – volume: 31 start-page: 685 year: 2021 ident: 10.1016/j.neuroimage.2024.120566_bib0015 article-title: Machine learning and deep learning publication-title: Electron. Mark. doi: 10.1007/s12525-021-00475-2 – volume: 329 start-page: 1358 year: 2010 ident: 10.1016/j.neuroimage.2024.120566_bib0007 article-title: Prediction of individual brain maturity using fMRI publication-title: Science doi: 10.1126/science.1194144 – volume: 55 issue: 3 year: 2018 ident: 10.1016/j.neuroimage.2024.120566_bib0008 article-title: Control networks and hubs publication-title: Psychophysiology doi: 10.1111/psyp.13032 – volume: 307 start-page: 153 year: 2014 ident: 10.1016/j.neuroimage.2024.120566_bib0013 article-title: Using resting state functional connectivity to unravel networks of tinnitus publication-title: Hear. Res. doi: 10.1016/j.heares.2013.07.010 – volume: 13 start-page: 246 year: 2019 ident: 10.1016/j.neuroimage.2024.120566_bib0043 article-title: Altered spatial and temporal brain connectivity in the salience network of sensorineural hearing loss and tinnitus publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00246 – volume: 9 start-page: e98860 year: 2014 ident: 10.1016/j.neuroimage.2024.120566_bib0030 article-title: Preoperative mapping of the sensorimotor cortex: comparative assessment of task-based and resting-state FMRI publication-title: PLoS One doi: 10.1371/journal.pone.0098860 – volume: 290 start-page: 607 year: 2019 ident: 10.1016/j.neuroimage.2024.120566_bib0032 article-title: Emerging applications of artificial intelligence in neuro-oncology publication-title: Radiology doi: 10.1148/radiol.2018181928 – volume: 76 year: 2022 ident: 10.1016/j.neuroimage.2024.120566_bib0019 article-title: Specific brain network predictors of interventions with different mechanisms for tinnitus patients publication-title: EBioMedicine doi: 10.1016/j.ebiom.2022.103862 – volume: 47 start-page: 1090 year: 2017 ident: 10.1016/j.neuroimage.2024.120566_bib0023 article-title: Cross-domain recognition by identifying joint subspaces of source domain and target domain publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2538199 – start-page: 807 year: 2010 ident: 10.1016/j.neuroimage.2024.120566_bib0026 article-title: Rectified linear units improve restricted boltzmann machines – volume: 131 year: 2019 ident: 10.1016/j.neuroimage.2024.120566_bib0025 article-title: Toward integrated understanding of salience in psychosis publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2019.03.002 – volume: 2 start-page: 375 year: 2021 ident: 10.1016/j.neuroimage.2024.120566_bib0042 article-title: ResNet-50 vs VGG-19 vs training from scratch: a comparative analysis of the segmentation and classification of Pneumonia from chest X-ray images publication-title: Glob. Transit. Proc. doi: 10.1016/j.gltp.2021.08.027 – volume: 24 start-page: 531 year: 2023 ident: 10.1016/j.neuroimage.2024.120566_bib0028 article-title: Eavesdropping on tinnitus using MEG: lessons learned and future perspectives publication-title: J. Assoc. Res. Otolaryngol. doi: 10.1007/s10162-023-00916-z – volume: 26 start-page: 303 year: 2008 ident: 10.1016/j.neuroimage.2024.120566_bib0029 article-title: What is principal component analysis? publication-title: Nat. Biotechnol. doi: 10.1038/nbt0308-303 – volume: 5 start-page: 2 year: 2019 ident: 10.1016/j.neuroimage.2024.120566_bib0017 article-title: Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning publication-title: npj Schizophr. doi: 10.1038/s41537-018-0070-8 – volume: 12 start-page: 150 year: 2016 ident: 10.1016/j.neuroimage.2024.120566_bib0037 article-title: Maladaptive plasticity in tinnitus — Triggers, mechanisms and treatment publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2016.12 |
SSID | ssj0009148 |
Score | 2.4689815 |
Snippet | •A decomposed convolutional neural network model was established based on rs-fMRI connectivity.•The model paired with the Dos_160 atlas can be effectively... Many studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients. However, no... ObjectivesMany studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients.... Objectives: Many studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients.... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 120566 |
SubjectTerms | Artificial intelligence Brain mapping Brain research Classification Convolutional neural network Deep learning Diagnosis Functional connectivity Functional magnetic resonance imaging Machine learning Magnetic resonance imaging Medical imaging Neural networks Neuroimaging Otolaryngology Resting state fMRI Sensorimotor system Support vector machines Tinnitus Transfer learning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqDqgXBJTHFlq5EteU2HFiWz21iNWqEj2BxM2KH0GLICDYrfj5zNhOCgfEHnrKyo_IO8_P8XiGkCPLnGrBsRecd20hnJRFq0pXyNKXrmNeaosXnM_-NLML8fuyvnxR6gtjwlJ64ES4Y3DP2gKs0azrhAuNtrCZCxbQlnJO64DWFzqHzdSQbhdQfo7bSdFcMTvk_BZ0FPaEXHxnHDx_88oZxZz9r3zSW5gz-p7pJtnIoJH-TIvdIh9Cv03Wz_Kx-CfydD7vQTWXj9QhGMbon0hwij7KU_iBFTjASRXx_hBFZ5a-AVKHgS4ulZCgGAR_RVts_JtFEobgn4qPGDBOXx497JCL6en5yazIJRUKB7hsUVhfqbbTlVYW78xWAXZfQVVK6cBszRvPXV12Wikwe15LHkINbeDoukZ4Cbq8S9b6uz7sE-qFlI63AUtYiVIExX2rO7DjgAqC925C5EBb43K-cSx7cWOGwLJr848rBrliElcmhI0z71POjRXm_EL2jeMxa3ZsAFkyWZbMe7I0IXpgvhkupoIphRfNV1jAj3FuBi8JlKw4-3CQNZONyKPhWtWqYhWD7m9jN6g_num0fbhb4hgAwLVWpZqQvSSjIw0qxJaVqD__D9ockI-4XjxIY_UhWVs8LMMXwGML-zWq3jPSkjfJ priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbxQhFCdND8aLsX6uVoOJV7oDAwPEkzY2jUm92Ca9kRlgmjE627S7xlP_dt8DZuoeTDbxtLsMbFje4_1-LO-DkPcd96YFYGdC9C2TXmvWmsozXYXK9zxo22GA89nX5vRCfrlUl3vkeIqFQbfKYvuzTU_WurQsy2our4dh-Q2YAcANHiAyUGMEu9So5Ud3924elsscDqdqhr2LN0_28Uo5I4efsHPhpCjkERfAB5otiEqZ_LeQ6l9MNCHSyWPyqFBJ-jHP9oDsxfEJeXBWLsufkt_nwwgbdnNLPVJk9AlKYqCIXIHCG6zLAdDFUlQRRYjL_wxSj-4vPheWoOgaf0VbbPxVFBW64I9KL8mNnP59IfGMXJx8Pj8-ZaXQAvPA1tasC7Vpe1tb02EkbR3hTBZNbYyNvFOiCcKrqrfGgDEMVosYFbQB_PWNDBp2-HOyP67G-JLQILX2oo1Y2EpWMhoRWtuDdQeuEEPwC6KntXW-ZCHHYhg_3ORu9t3dS8WhVFyWyoLweeR1zsSxw5hPKL65P-bSTg2rmytXlMkBAbQdEGfL-1762NhOSxE74PPGe2vjgthJ-G4KVwUDC1807DCBD_PYLbXecfThpGuumJZbJ6xRpuY1h8fv5sdgFPCmpx3jaoN9gBYrayqzIC-yjs5rUCPjrKV69V9Te00e4ie8V-PqkOyvbzbxDdCzdfc27b8_09I8Eg priority: 102 providerName: Elsevier |
Title | Tinnitus classification based on resting-state functional connectivity using a convolutional neural network architecture |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811924000612 https://dx.doi.org/10.1016/j.neuroimage.2024.120566 https://www.ncbi.nlm.nih.gov/pubmed/38467345 https://www.proquest.com/docview/2985831316 https://www.proquest.com/docview/2956159808 https://doaj.org/article/6239b08091ff4ce69b742eb81b8cc99e |
Volume | 290 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfYJiEuiG8yRmUkrh6x48S2OKANbSqgVQhtUm9WYjtTJ0i3tUWc-Nt5z3FadgD15Mixo8TP771f_L4Iedtwp2tQ7EyItmbSKcVqnTumcp-7lntlGgxwPptU4wv5eVpO04HbIrlVDjIxCmo_d3hG_k4YXeqCF7z6cH3DsGoUWldTCY0dsoepy9ClS03VJukul30oXFkwDQOSJ0_v3xXzRc5-ANfCX6KQh1wAFqjuqKeYxf-OlvoXCo3a6PQReZhgJD3q6f6Y3AvdE3L_LBnKn5Jf57MOmHW1oA7hMfoDRRJQ1FqewgXW5AC1xWJEEUX11p8KUoeuL64vKkHRLf6S1tj5M21SGIIfFZvoQk7_NkY8IxenJ-cfxywVWWAOkNqSNb7QdWsKoxuMoi0C_I8FXWhtAm9KUXnhyrw1WoMg9EaJEEroA9XXVtIr4O7nZLebd-EloV4q5UQdsKiVzGXQwtemBckOOCF47zKihrW1LmUgx0IY3-3ganZlN1SxSBXbUyUjfD3zus_CscWcYyTfejzm0Y4d89tLm9jSAvgzDYBmw9tWulCZRkkRGsDy2jljQkbMQHw7hKqCcIUHzbZ4gffruQnO9DBly9kHw16zSaws7IYJMvJmfRsEAlp56i7MVzgGIHFpdK4z8qLfo-s1KBBtFrLc___DX5EH-CZoNOPlAdld3q7Ca8Bey2ZEdg5_81FksxHZO_r0ZTyB9vhk8vXbKJ5n_AFNTjYJ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTgJeEPcFBhgJHgOx48S2EEIMNnVsrRDqpL2ZxHamoi0da8vlT_EbOSdxUvYA6sueWrl2lObY3_lOzo2Q5yWzqgDFHnNeFbGwUsaFSmwsE5fYijmpS0xwHo3z4ZH4eJwdb5DfXS4MhlV2mNgAtZtZfEf-imuVqZSlLH97_i3GrlHoXe1aaLTb4sD_-gEm2_zN_geQ7wvO93Yn74dx6CoQW6Ami7h0qSoqnWpVYtpo6sEA8SpVSntWZjx33GZJpZWCk--05N5nMAZYX-XCSYnFlwDyN0UKpsyAbO7sjj99XpX5ZaJNvsvSWDGmQ-xQG1HWVKicngFOgF3KxUvGgX3klxRi0zfgkl78F-9t9N_eLXIzEFf6rt1pt8mGr--Qa6Pgmr9Lfk6mNcDDck4tEnKMQGqETlFPOgpfsAsIKMq4yWGiqFDb95DUYrCNbdtYUAzEP6EFDn4PxwKm4J9qPpqgdfq3--MeOboSAdwng3pW-y1CnZDS8sJjGy2RCK-4K3QFugSYiXfORkR2z9bYUPMcW2-cmi647atZScWgVEwrlYiwfuV5W_djjTU7KL5-PlbubgZmFycmAIEBuqlLoOmaVZWwPtelFNyXYD0oa7X2EdGd8E2XHAtwDhearnEDr_u1gUC1xGjN1dvdXjMByOZmdewi8qz_GSAI_UpF7WdLnAMkPNMqURF50O7R_hmkyG9TkT38_8WfkuvDyejQHO6PDx6RG3hX6LJj2TYZLC6W_jEwv0X5JBw3Sr5c9Qn_A0pUbkc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIlVcEG8CBYwER9PYsWNbCCGgrFpKKw6ttDeT2E61CHZLd5fHX-PXMZM4WXoA7aWnRF47yno833yO50HI05p7U4FhZ0I0FZNea1aZ3DOdh9w3PGhbY4Dz4VG5dyLfj9V4g_zuY2HQrbLHxBaow8zjN_IdYY0yBS94udMkt4iPu6NXZ98YVpDCk9a-nEa3RA7irx-wfZu_3N8FWT8TYvTu-O0eSxUGmAeasmB1KEzV2MKaGkNIiwibkWgKY2zktRJlEF7ljTUGUCBYLWJU0Aa435QyaI2JmAD-r-hCcdQxPdarhL9cdmF4qmCGc5u8iDrfsjZX5eQrIAbsUIV8zgXwkPKCaWwrCFywkP9iwK0lHF0n1xKFpa-7NXeDbMTpTbJ1mA7pb5Gfx5MpAMVyTj1Sc_RFasVP0WIGCjdYDwRMJmujmSia1u6LJPXoduO7ghYUXfJPaYWN35OCQBf8U-2ldV-nfx-E3CYnlzL9d8jmdDaN9wgNUmsvqogFtWQuoxGhsg1YFeAoMQSfEd3PrfMp-zkW4fjieje3z24lFYdScZ1UMsKHkWddBpA1xrxB8Q39MYd32zA7P3UJEhwQT1sDYbe8aaSPpa21FLGGfYTx3tqYEdsL3_VhsgDs8KDJGi_wYhibqFRHkdYcvd2vNZcgbe5WCpiRJ8PPAEZ4wlRN42yJfYCOK2tyk5G73Rod5qBApltIdf__D39MtkCv3Yf9o4MH5Cq-FJ7dcbVNNhfny_gQKOCiftTqGiWfLlu5_wAZbnEX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tinnitus+classification+based+on+resting-state+functional+connectivity+using+a+convolutional+neural+network+architecture&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Xu%2C+Qianhui&rft.au=Zhou%2C+Lei-Lei&rft.au=Xing%2C+Chunhua&rft.au=Xu%2C+Xiaomin&rft.date=2024-04-15&rft.eissn=1095-9572&rft.volume=290&rft.spage=120566&rft_id=info:doi/10.1016%2Fj.neuroimage.2024.120566&rft_id=info%3Apmid%2F38467345&rft.externalDocID=38467345 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |