Improved sensitivity and microvascular weighting of 3T laminar fMRI with GE-BOLD using NORDIC and phase regression

•We tested the feasibility of laminar BOLD fMRI at 3T.•NORDIC denoising was used to improve tSNR by a factor of ∼3.•Phase regression reduced macrovascular contamination.•With these tools, layerprofiles could be obtained robustly within and across sessions.•Improved feasibility of 3T laminar fMRI is...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 271; p. 120011
Main Authors Knudsen, Lasse, Bailey, Christopher J., Blicher, Jakob U., Yang, Yan, Zhang, Peng, Lund, Torben E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2023
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2023.120011

Cover

Abstract •We tested the feasibility of laminar BOLD fMRI at 3T.•NORDIC denoising was used to improve tSNR by a factor of ∼3.•Phase regression reduced macrovascular contamination.•With these tools, layerprofiles could be obtained robustly within and across sessions.•Improved feasibility of 3T laminar fMRI is supported thus increasing its availability. Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is valuable as different types of cortical computations, e.g., feedforward versus feedback related activity, take place in different cortical layers. Laminar fMRI studies have almost exclusively employed 7T scanners to overcome the reduced signal stability associated with small voxels. However, such systems are relatively rare and only a subset of those are clinically approved. In the present study, we examined if the feasibility of laminar fMRI at 3T could be improved by use of NORDIC denoising and phase regression. 5 healthy subjects were scanned on a Siemens MAGNETOM Prisma 3T scanner. To assess across-session reliability, each subject was scanned in 3–8 sessions on 3–4 consecutive days. A 3D gradient echo EPI (GE-EPI) sequence was used for BOLD acquisitions (voxel size 0.82 mm isotopic, TR = 2.2 s) using a block design finger tapping paradigm. NORDIC denoising was applied to the magnitude and phase time series to overcome limitations in temporal signal-to-noise ratio (tSNR) and the denoised phase time series were subsequently used to correct for large vein contamination through phase regression. NORDIC denoising resulted in tSNR values comparable to or higher than commonly observed at 7T. Layer-dependent activation profiles could thus be extracted robustly, within and across sessions, from regions of interest located in the hand knob of the primary motor cortex (M1). Phase regression led to substantially reduced superficial bias in obtained layer profiles, although residual macrovascular contribution remained. We believe the present results support an improved feasibility of laminar fMRI at 3T.
AbstractList •We tested the feasibility of laminar BOLD fMRI at 3T.•NORDIC denoising was used to improve tSNR by a factor of ∼3.•Phase regression reduced macrovascular contamination.•With these tools, layerprofiles could be obtained robustly within and across sessions.•Improved feasibility of 3T laminar fMRI is supported thus increasing its availability. Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is valuable as different types of cortical computations, e.g., feedforward versus feedback related activity, take place in different cortical layers. Laminar fMRI studies have almost exclusively employed 7T scanners to overcome the reduced signal stability associated with small voxels. However, such systems are relatively rare and only a subset of those are clinically approved. In the present study, we examined if the feasibility of laminar fMRI at 3T could be improved by use of NORDIC denoising and phase regression. 5 healthy subjects were scanned on a Siemens MAGNETOM Prisma 3T scanner. To assess across-session reliability, each subject was scanned in 3–8 sessions on 3–4 consecutive days. A 3D gradient echo EPI (GE-EPI) sequence was used for BOLD acquisitions (voxel size 0.82 mm isotopic, TR = 2.2 s) using a block design finger tapping paradigm. NORDIC denoising was applied to the magnitude and phase time series to overcome limitations in temporal signal-to-noise ratio (tSNR) and the denoised phase time series were subsequently used to correct for large vein contamination through phase regression. NORDIC denoising resulted in tSNR values comparable to or higher than commonly observed at 7T. Layer-dependent activation profiles could thus be extracted robustly, within and across sessions, from regions of interest located in the hand knob of the primary motor cortex (M1). Phase regression led to substantially reduced superficial bias in obtained layer profiles, although residual macrovascular contribution remained. We believe the present results support an improved feasibility of laminar fMRI at 3T.
Introduction Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is valuable as different types of cortical computations, e.g., feedforward versus feedback related activity, take place in different cortical layers. Laminar fMRI studies have almost exclusively employed 7T scanners to overcome the reduced signal stability associated with small voxels. However, such systems are relatively rare and only a subset of those are clinically approved. In the present study, we examined if the feasibility of laminar fMRI at 3T could be improved by use of NORDIC denoising and phase regression. Methods 5 healthy subjects were scanned on a Siemens MAGNETOM Prisma 3T scanner. To assess across-session reliability, each subject was scanned in 3–8 sessions on 3–4 consecutive days. A 3D gradient echo EPI (GE-EPI) sequence was used for BOLD acquisitions (voxel size 0.82 mm isotopic, TR = 2.2 s) using a block design finger tapping paradigm. NORDIC denoising was applied to the magnitude and phase time series to overcome limitations in temporal signal-to-noise ratio (tSNR) and the denoised phase time series were subsequently used to correct for large vein contamination through phase regression. Results and conclusion NORDIC denoising resulted in tSNR values comparable to or higher than commonly observed at 7T. Layer-dependent activation profiles could thus be extracted robustly, within and across sessions, from regions of interest located in the hand knob of the primary motor cortex (M1). Phase regression led to substantially reduced superficial bias in obtained layer profiles, although residual macrovascular contribution remained. We believe the present results support an improved feasibility of laminar fMRI at 3T.
Introduction: Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is valuable as different types of cortical computations, e.g., feedforward versus feedback related activity, take place in different cortical layers. Laminar fMRI studies have almost exclusively employed 7T scanners to overcome the reduced signal stability associated with small voxels. However, such systems are relatively rare and only a subset of those are clinically approved. In the present study, we examined if the feasibility of laminar fMRI at 3T could be improved by use of NORDIC denoising and phase regression. Methods: 5 healthy subjects were scanned on a Siemens MAGNETOM Prisma 3T scanner. To assess across-session reliability, each subject was scanned in 3–8 sessions on 3–4 consecutive days. A 3D gradient echo EPI (GE-EPI) sequence was used for BOLD acquisitions (voxel size 0.82 mm isotopic, TR = 2.2 s) using a block design finger tapping paradigm. NORDIC denoising was applied to the magnitude and phase time series to overcome limitations in temporal signal-to-noise ratio (tSNR) and the denoised phase time series were subsequently used to correct for large vein contamination through phase regression. Results and conclusion: NORDIC denoising resulted in tSNR values comparable to or higher than commonly observed at 7T. Layer-dependent activation profiles could thus be extracted robustly, within and across sessions, from regions of interest located in the hand knob of the primary motor cortex (M1). Phase regression led to substantially reduced superficial bias in obtained layer profiles, although residual macrovascular contribution remained. We believe the present results support an improved feasibility of laminar fMRI at 3T.
Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is valuable as different types of cortical computations, e.g., feedforward versus feedback related activity, take place in different cortical layers. Laminar fMRI studies have almost exclusively employed 7T scanners to overcome the reduced signal stability associated with small voxels. However, such systems are relatively rare and only a subset of those are clinically approved. In the present study, we examined if the feasibility of laminar fMRI at 3T could be improved by use of NORDIC denoising and phase regression. 5 healthy subjects were scanned on a Siemens MAGNETOM Prisma 3T scanner. To assess across-session reliability, each subject was scanned in 3-8 sessions on 3-4 consecutive days. A 3D gradient echo EPI (GE-EPI) sequence was used for BOLD acquisitions (voxel size 0.82 mm isotopic, TR = 2.2 s) using a block design finger tapping paradigm. NORDIC denoising was applied to the magnitude and phase time series to overcome limitations in temporal signal-to-noise ratio (tSNR) and the denoised phase time series were subsequently used to correct for large vein contamination through phase regression. NORDIC denoising resulted in tSNR values comparable to or higher than commonly observed at 7T. Layer-dependent activation profiles could thus be extracted robustly, within and across sessions, from regions of interest located in the hand knob of the primary motor cortex (M1). Phase regression led to substantially reduced superficial bias in obtained layer profiles, although residual macrovascular contribution remained. We believe the present results support an improved feasibility of laminar fMRI at 3T.
Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is valuable as different types of cortical computations, e.g., feedforward versus feedback related activity, take place in different cortical layers. Laminar fMRI studies have almost exclusively employed 7T scanners to overcome the reduced signal stability associated with small voxels. However, such systems are relatively rare and only a subset of those are clinically approved. In the present study, we examined if the feasibility of laminar fMRI at 3T could be improved by use of NORDIC denoising and phase regression.INTRODUCTIONFunctional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is valuable as different types of cortical computations, e.g., feedforward versus feedback related activity, take place in different cortical layers. Laminar fMRI studies have almost exclusively employed 7T scanners to overcome the reduced signal stability associated with small voxels. However, such systems are relatively rare and only a subset of those are clinically approved. In the present study, we examined if the feasibility of laminar fMRI at 3T could be improved by use of NORDIC denoising and phase regression.5 healthy subjects were scanned on a Siemens MAGNETOM Prisma 3T scanner. To assess across-session reliability, each subject was scanned in 3-8 sessions on 3-4 consecutive days. A 3D gradient echo EPI (GE-EPI) sequence was used for BOLD acquisitions (voxel size 0.82 mm isotopic, TR = 2.2 s) using a block design finger tapping paradigm. NORDIC denoising was applied to the magnitude and phase time series to overcome limitations in temporal signal-to-noise ratio (tSNR) and the denoised phase time series were subsequently used to correct for large vein contamination through phase regression.METHODS5 healthy subjects were scanned on a Siemens MAGNETOM Prisma 3T scanner. To assess across-session reliability, each subject was scanned in 3-8 sessions on 3-4 consecutive days. A 3D gradient echo EPI (GE-EPI) sequence was used for BOLD acquisitions (voxel size 0.82 mm isotopic, TR = 2.2 s) using a block design finger tapping paradigm. NORDIC denoising was applied to the magnitude and phase time series to overcome limitations in temporal signal-to-noise ratio (tSNR) and the denoised phase time series were subsequently used to correct for large vein contamination through phase regression.NORDIC denoising resulted in tSNR values comparable to or higher than commonly observed at 7T. Layer-dependent activation profiles could thus be extracted robustly, within and across sessions, from regions of interest located in the hand knob of the primary motor cortex (M1). Phase regression led to substantially reduced superficial bias in obtained layer profiles, although residual macrovascular contribution remained. We believe the present results support an improved feasibility of laminar fMRI at 3T.RESULTS AND CONCLUSIONNORDIC denoising resulted in tSNR values comparable to or higher than commonly observed at 7T. Layer-dependent activation profiles could thus be extracted robustly, within and across sessions, from regions of interest located in the hand knob of the primary motor cortex (M1). Phase regression led to substantially reduced superficial bias in obtained layer profiles, although residual macrovascular contribution remained. We believe the present results support an improved feasibility of laminar fMRI at 3T.
ArticleNumber 120011
Author Yang, Yan
Zhang, Peng
Lund, Torben E.
Knudsen, Lasse
Blicher, Jakob U.
Bailey, Christopher J.
Author_xml – sequence: 1
  givenname: Lasse
  orcidid: 0000-0003-0186-4209
  surname: Knudsen
  fullname: Knudsen, Lasse
  email: lknud@cfin.au.dk
  organization: Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark
– sequence: 2
  givenname: Christopher J.
  orcidid: 0000-0003-3318-3344
  surname: Bailey
  fullname: Bailey, Christopher J.
  organization: Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark
– sequence: 3
  givenname: Jakob U.
  orcidid: 0000-0003-3443-4790
  surname: Blicher
  fullname: Blicher, Jakob U.
  organization: Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark
– sequence: 4
  givenname: Yan
  orcidid: 0000-0003-3001-9178
  surname: Yang
  fullname: Yang, Yan
  organization: Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101400, PR China
– sequence: 5
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  organization: Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101400, PR China
– sequence: 6
  givenname: Torben E.
  orcidid: 0000-0002-9002-4676
  surname: Lund
  fullname: Lund, Torben E.
  organization: Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36914107$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1v0zAUhiM0xD7gLyBL3HCT4o84cW4QrBsjUqHSNK4txzlpXRKn2E6n_nucdQypV73ykf2ex_Z73svkzA4WkgQRPCOY5J82MwujG0yvVjCjmLIZoRgT8iq5ILjkackLejbVnKWCkPI8ufR-gzEuSSbeJOcsjwXBxUXiqn7rhh00yIP1JpidCXukbIN6o-OB8nrslEOPYFbrYOwKDS1iD6hTvbFxv_1xX6FHE9bo7ja9Xi5u0Ogn1c_l_U01fwJt18oDcrBy4L0Z7Nvkdas6D--e16vk17fbh_n3dLG8q-ZfF6nmBQ9pXbNcMC04rgVhmFHIatAUZznPeKE4b3TLSUlw2xIGWGclzWve1NENACEEu0qqA7cZ1EZuXXTL7eWgjHzaGNxKKheM7kA2tNC0KViraJ7hOquLNuOEK6HrUhEOkfXxwIpm_RnBB9kbr6HrlIVh9JIWIo9G03K69sORdDOMzsafRlXJSlZkZFK9f1aNdQ_Ny_P-TSYKxEEQp-C9g_ZFQrCcQiA38n8I5BQCeQhBbP181KpNUCFaH5wy3SmA6wMA4nh2Bpz02oDV0BgHOkT_zCmQL0cQ3RlrtOp-w_40xF8k3efR
CitedBy_id crossref_primary_10_7554_eLife_92820_3
crossref_primary_10_1162_imag_a_00217
crossref_primary_10_1162_imag_a_00426
crossref_primary_10_3389_fnins_2024_1499762
crossref_primary_10_1016_j_biopsych_2024_07_003
crossref_primary_10_7554_eLife_92820
crossref_primary_10_1038_s41380_025_02957_7
crossref_primary_10_1162_imag_a_00270
crossref_primary_10_3389_fnins_2025_1537026
crossref_primary_10_52294_001c_124631
crossref_primary_10_1162_imag_a_00325
crossref_primary_10_7498_aps_74_20241759
crossref_primary_10_1016_j_clindermatol_2025_03_005
crossref_primary_10_1162_imag_a_00257
crossref_primary_10_1162_imag_a_00477
crossref_primary_10_1162_imag_a_00333
Cites_doi 10.1016/j.neuroimage.2005.04.021
10.1016/j.neuroimage.2018.06.025
10.1109/TBME.2014.2313619
10.1016/j.mri.2017.01.019
10.1016/j.neuroimage.2020.117683
10.1016/j.neuroimage.2016.02.073
10.1016/j.neuroimage.2009.05.051
10.1016/j.neuroimage.2006.08.020
10.1002/mrm.24916
10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
10.1038/nn.2303
10.1038/s41583-020-0315-1
10.1016/j.neuron.2017.11.005
10.1002/hbm.24683
10.1016/j.neuroimage.2006.01.015
10.1016/j.neuroimage.2005.01.007
10.1038/s41592-020-0941-6
10.1073/pnas.1522577113
10.1093/cercor/7.2.181
10.1016/j.neuroimage.2016.11.039
10.1093/brain/120.1.141
10.1002/mrm.10433
10.1016/j.neuroimage.2018.04.026
10.1016/j.neuroimage.2014.11.046
10.1006/nimg.2002.1082
10.1016/j.neuroimage.2015.10.025
10.1002/hbm.24042
10.1016/j.neuroimage.2017.05.022
10.1002/mrm.10041
10.1073/pnas.1907858116
10.1371/journal.pbio.3001023
10.1006/cbmr.1996.0014
10.1002/hbm.24926
10.1371/journal.pone.0060514
10.1016/j.mri.2005.12.032
10.1016/j.neuroimage.2019.02.006
10.1016/j.cobeha.2021.06.002
10.1038/s41598-019-41965-w
10.1016/j.neuroimage.2017.09.015
10.1016/0361-9230(81)90007-1
10.1016/j.cub.2020.02.046
10.1016/j.neuroimage.2010.09.025
10.1038/s41598-021-81249-w
10.1016/j.neuroimage.2017.03.063
10.1016/j.neuroimage.2017.01.028
10.1016/j.cub.2015.12.038
10.1002/mrm.1910350312
10.1177/0271678X20982382
10.1016/j.neuroimage.2014.05.079
10.1093/cercor/1.1.1
10.1016/j.neuroimage.2017.08.077
10.1016/j.neuroimage.2011.09.005
10.1016/j.neuroimage.2006.12.030
10.1126/sciadv.aav9053
10.1016/j.neuroimage.2016.06.030
10.1016/j.neuroimage.2014.06.072
10.1002/mrm.28486
10.1002/mrm.10519
10.1016/j.neuroimage.2019.116209
10.1016/j.neuroimage.2021.118724
10.1002/mrm.20221
10.1002/hbm.20936
10.1073/pnas.1507552112
10.1016/j.neuroimage.2009.10.002
10.1016/j.neuroimage.2013.03.078
10.1002/mrm.24135
10.1016/j.neuroimage.2017.04.053
10.1016/j.cub.2015.08.057
10.1016/j.neuroimage.2019.03.024
10.1093/clinchem/25.3.432
10.1016/j.neuroimage.2016.06.019
10.1038/s41598-018-35333-3
10.1002/mrm.28347
10.1016/j.mri.2017.04.008
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier Inc.
Copyright Elsevier Limited May 1, 2023
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited May 1, 2023
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOA
DOI 10.1016/j.neuroimage.2023.120011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Psychology

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_d27c2d73fa2640b4b7f4515a8cb9a15e
36914107
10_1016_j_neuroimage_2023_120011
S105381192300157X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SEW
SNS
ZA5
29N
53G
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
RIG
WUQ
XPP
ZMT
0SF
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c575t-bb3683c850b813032e4bec20465457a55dcf51910ff13e0c4926b5db023ee8883
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:26:43 EDT 2025
Fri Sep 05 11:29:03 EDT 2025
Wed Aug 13 06:22:38 EDT 2025
Wed Feb 19 02:23:55 EST 2025
Thu Apr 24 22:56:07 EDT 2025
Tue Jul 01 05:00:03 EDT 2025
Fri Feb 23 02:36:44 EST 2024
Tue Aug 26 17:21:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Primary motor cortex
3 Tesla
Laminar fMRI
NORDIC denoising
Cortical layers
Phase regression
Language English
License This is an open access article under the CC BY license.
Copyright © 2023. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-bb3683c850b813032e4bec20465457a55dcf51910ff13e0c4926b5db023ee8883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0186-4209
0000-0002-9002-4676
0000-0003-3318-3344
0000-0003-3443-4790
0000-0003-3001-9178
OpenAccessLink https://doaj.org/article/d27c2d73fa2640b4b7f4515a8cb9a15e
PMID 36914107
PQID 2793937418
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_d27c2d73fa2640b4b7f4515a8cb9a15e
proquest_miscellaneous_2786811298
proquest_journals_2793937418
pubmed_primary_36914107
crossref_primary_10_1016_j_neuroimage_2023_120011
crossref_citationtrail_10_1016_j_neuroimage_2023_120011
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2023_120011
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2023_120011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
2023-05-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2023
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Goense, Logothetis (bib0022) 2006; 24
Sharoh, van Mourik, Bains, Segaert, Weber, Hagoort, Norris (bib0080) 2019; 116
Engel, Glover, Wandell (bib0017) 1997
Curtis, Hutchison, Menon (bib0010) 2014; 100
Bandettini, Huber, Finn (bib0004) 2021; 40
De Martino, Moerel, Ugurbil, Goebel, Yacoub, Formisano (bib0012) 2015; 112
Uludaǧ, Müller-Bierl, Uǧurbil (bib0090) 2009; 48
Duvernoy, Delon, Vannson (bib0016) 1981; 7
de Hollander, van der Zwaag, Qian, Zhang, Knapen (bib0011) 2021; 228
Kashyap, Ivanov, Havlicek, Poser, Uludağ (bib0044) 2018; 168
Huber, Poser, Bandettini, Arora, Wagstyl, Cho, Goense, Nothnagel, Morgan, van den Hurk, Müller, Reynolds, Glen, Goebel, Gulban (bib0039) 2021; 237
Guidi, Huber, Lampe, Gauthier, Möller (bib0023) 2016; 141
Fracasso, Dumoulin, Petridou (bib0019) 2021; 202
Huber, Tse, Wiggins, Uludağ, Kashyap, Jangraw, Bandettini, Poser, Ivanov (bib0040) 2018; 178
Krause, Benjamins, Eck, Lührs, Hoof, Goebel (bib0053) 2019; 40
Stirnberg, Stöcker (bib0083) 2021; 85
Huber, Handwerker, Jangraw, Chen, Hall, Stüber, Gonzalez-Castillo, Ivanov, Marrett, Guidi, Goense, Poser, Bandettini (bib0035) 2017; 96
Puckett, Aquino, Robinson, Breakspear, Schira (bib0074) 2016; 139
Cox (bib0009) 1996; 29
Dumoulin, Fracasso, van der Zwaag, Siero, Petridou (bib0015) 2018; 168
Taso, Munsch, Zhao, Alsop (bib0084) 2021; 41
Dowdle, Vizioli, Moeller, Olman, Ghose, Yacoub, Ugurbil (bib0014) 2021; 2021
Klassen, L., and Menon, R.S. (2005). BOLD signal phase and magnitude dependence on vessel geometry. Proceedings of the 13th Annual Meeting ISMRM, Miami, FL, USA, 2005; 496.
Shmuel, Yacoub, Chaimow, Logothetis, Ugurbil (bib0081) 2007; 35
Yousry, Schmid, Alkadhi, Schmidt, Peraud, Buettner, Winkler (bib0097) 1997; 120
Yu, Huber, Yang, Jangraw, Handwerker, Molfese, Chen, Ejima, Wu, Bandettini (bib0099) 2019; 5
Scheeringa, Bonnefond, van Mourik, Jensen, Norris, Koopmans (bib0077) 2022
Markuerkiaga, Marques, Bains, Norris (bib0060) 2021; 11
Aitken, Menelaou, Warrington, Koolschijn, Corbin, Callaghan, Kok (bib0001) 2020; 18
Kok, Bains, Van Mourik, Norris, De Lange (bib0050) 2016; 26
Glover, Li, Ress (bib0021) 2000; 44
Kriegeskorte, Simmons, Bellgowan, Baker (bib0055) 2009; 12
Lu, Golay, Pekar, Van Zijl (bib0058) 2003; 50
Moeller, Pisharady, Ramanna, Lenglet, Wu, Dowdle, Yacoub, Uğurbil, Akçakaya (bib0067) 2021; 226
Shao, Guo, Shou, Wang, Jann, Yan, Toga, Zhang, Wang (bib0079) 2021; 245
Friston, Williams, Howard, Frackowiak, Turner (bib0020) 1996; 35
Krieger, Gauthier, Ivanov, Huber, Roggenhofer, Sehm, Turner, Egan (bib0054) 2014; 101
Menon (bib0065) 2002; 47
Koopmans, Barth, Norris (bib0051) 2010; 31
Zaretskaya, Bause, Polimeni, Grassi, Scheffler, Bartels (bib0101) 2020; 220
Cornbleet, Gochman (bib0008) 1979; 25
Huang, Correia, Rua, Rodgers, Henson, Carlin (bib0030) 2021; 15
Koopmans, Yacoub (bib0052) 2019; 197
Menon (bib0066) 2012; 62
Turner (bib0087) 2002; 16
Ress, Glover, Liu, Wandell (bib0075) 2007; 34
Avants, Tustison, Song, Cook, Klein, Gee (bib0002) 2011; 54
Marquardt, Schneider, Gulban, Ivanov, Uludağ (bib0062) 2018; 39
Liu, Guo, Qian, Zhang, Sun, Wang, He, Zhang (bib0057) 2020
Wu, Chu, Lin, Kuo, Lin (bib0095) 2018; 8
Kashyap, Ivanov, Havlicek, Huber, Poser, Uludağ (bib0043) 2021; 16
Muckli, De Martino, Vizioli, Petro, Smith, Ugurbil, Goebel, Yacoub (bib0070) 2015; 25
Kay, Jamison, Zhang, Uğurbil (bib0047) 2020; 17
Chai, Li, Huber, Poser, Bandettini (bib0006) 2020; 207
Huber, Finn, Handwerker, Bönstrup, Glen, Kashyap, Ivanov, Petridou, Marrett, Goense, Poser, Bandettini (bib0033) 2020; 208
Hall (bib0026) 2022
Uğurbil (bib0089) 2021; 18
Rua, Costagli, Symms, Biagi, Donatelli, Cosottini, Del Guerra, Tosetti (bib0076) 2017; 40
Persichetti, Avery, Huber, Merriam, Martin (bib0072) 2020; 30
Chaimow, Yacoub, Uğurbil, Shmuel (bib0007) 2018; 164
McColgan, Joubert, Tabrizi, Rees (bib0064) 2020; 21
Huber, Kronbichler, Stirnberg, Poser, Fernández-Cabello, Stöcker, Kronbichler (bib0031) 2021
Polimeni, Renvall, Zaretskaya, Fischl (bib0073) 2018; 168
Scheeringa, Koopmans, Van Mourik, Jensen, Norris (bib0078) 2016; 113
Huber, Kronbichler, Stirnberg, Kronbichler, Fernandez-Cabello, Stöcker, Poser (bib0032) 2021; 34
Huber, Ivanov, Handwerker, Marrett, Guidi, Uludağ, Bandettini, Poser (bib0037) 2018; 164
Moerel, De Martino, Kemper, Schmitter, Vu, Uğurbil, Formisano, Yacoub (bib0068) 2018; 164
Waehnert, Dinse, Weiss, Streicher, Waehnert, Geyer, Turner, Bazin (bib0094) 2014; 93
Huber, Goense, Kennerley, Trampel, Guidi, Reimer, Ivanov, Neef, Gauthier, Turner, Möller (bib0034) 2015; 107
Huber L, Ivanov D, Krieger SN, Streicher MN, Mildner T, Poser BA, Möller HE, Turner R. Slab-selective, BOLD-corrected VASO at 7 Tesla provides measures of cerebral blood volume reactivity with high signal-to-noise ratio. Magn Reson Med. 2014 Jul;72(1):137-48. doi: 10.1002/mrm.24916. Epub 2013 Aug 20. PMID: 23963641.
Pais-Roldán, Yun, Palomero-Gallagher, Shah (bib0071) 2020
van der Zwaag, Buur, Fracasso, van Doesum, Uludağ, Versluis, Marques (bib0091) 2018; 176
Moerel, De Martino, Uğurbil, Yacoub, Formisano (bib0069) 2019; 9
Jochimsen, Norris, Mildner, Möller (bib0041) 2004; 52
Kashyap, S., Huber, L., Ivanov, D., Kurban, D., Feinberg, D.A., Poser, B.A., 2020. Characterising the effect of flip angle in the acquisition of sub-millimetre resolution 3D GE-EPI at 7T. Proc. Intl. Soc. Mag. Reson. Med. 28 (2020), abstract #3824
Yacoub, Duong, Van De Moortele, Lindquist, Adriany, Kim, Uǧurbil, Hu (bib0096) 2003; 49
De Martino, Zimmermann, Muckli, Ugurbil, Yacoub, Goebel (bib0013) 2013; 8
Markuerkiaga, Barth, Norris (bib0059) 2016; 132
Kashyap, Ivanov, Havlicek, Sengupta, Poser, Uludağ (bib0045) 2018; 8
Havlicek, Uludağ (bib0028) 2020; 204
Li, Chang, Liu, Wang, Cui, Chen, Jin, Wang, Pei, Wisnieff, Spincemaille, Zhang, Wang (bib0056) 2012; 68
Beckett, Dadakova, Townsend, Huber, Park, Feinberg (bib0005) 2020; 84
Tjandra, Brooks, Figueiredo, Wise, Matthews, Tracey (bib0085) 2005; 27
Yu, Huber, Yang, Fukunaga, Chai, Jangraw, Chen, Handwerker, Molfese, Ejima, Sadato, Wu, Bandettini (bib0098) 2022; 248
Triantafyllou, Hoge, Krueger, Wiggins, Potthast, Wiggins, Wald (bib0086) 2005; 26
Kay, Jamison, Vizioli, Zhang, Margalit, Ugurbil (bib0046) 2019; 189
Marques, Kober, Krueger, van der Zwaag, Van de Moortele, Gruetter (bib0063) 2010; 49
Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (bib0100) 2006; 31
Han, Eun, Cho, Uluda, Kim (bib0027) 2021; 241
Haacke, Lindskogj, Lin (bib0025) 1991; 92
Vicente, I. De, Uruñuela, E., Termenon, M., Caballero-gaudes, C., 2021. Dephasing the speaking brain: cleaning covert sentence production activation maps with a phase-based fMRI data analysis. Proc. Intl. Soc. Mag. Reson. Med. 29 (2021), abstract #2691
Guidi, Huber, Lampe, Merola, Ihle, Möller (bib0024) 2020; 41
Heinzle, Koopmans, den Ouden, Raman, Stephan (bib0029) 2016; 125
Stanley, Kuurstra, Klassen, Menon, Gati (bib0082) 2020
Báez-Yánez, Ehses, Mirkes, Tsai, Kleinfeld, Scheffler (bib0003) 2017; 163
Markuerkiaga, Marques, Gallagher, Norris (bib0061) 2021; 353
Ugurbil (bib0088) 2014; 61
Vizioli, Moeller, Dowdle, Akçakaya, De Martino, Yacoub, Uğurbil (bib0093) 2021
Kim, Ress (bib0048) 2017; 39
Felleman, Van Essen (bib0018) 1991; 1
Puckett (10.1016/j.neuroimage.2023.120011_bib0074) 2016; 139
Huber (10.1016/j.neuroimage.2023.120011_bib0031) 2021
10.1016/j.neuroimage.2023.120011_bib0092
Kashyap (10.1016/j.neuroimage.2023.120011_bib0043) 2021; 16
Kriegeskorte (10.1016/j.neuroimage.2023.120011_bib0055) 2009; 12
Báez-Yánez (10.1016/j.neuroimage.2023.120011_bib0003) 2017; 163
Chaimow (10.1016/j.neuroimage.2023.120011_bib0007) 2018; 164
Markuerkiaga (10.1016/j.neuroimage.2023.120011_bib0059) 2016; 132
Koopmans (10.1016/j.neuroimage.2023.120011_bib0052) 2019; 197
Kashyap (10.1016/j.neuroimage.2023.120011_bib0044) 2018; 168
Glover (10.1016/j.neuroimage.2023.120011_bib0021) 2000; 44
Moerel (10.1016/j.neuroimage.2023.120011_bib0068) 2018; 164
Pais-Roldán (10.1016/j.neuroimage.2023.120011_bib0071) 2020
Shmuel (10.1016/j.neuroimage.2023.120011_bib0081) 2007; 35
Bandettini (10.1016/j.neuroimage.2023.120011_bib0004) 2021; 40
Zaretskaya (10.1016/j.neuroimage.2023.120011_bib0101) 2020; 220
Tjandra (10.1016/j.neuroimage.2023.120011_bib0085) 2005; 27
Cornbleet (10.1016/j.neuroimage.2023.120011_bib0008) 1979; 25
Curtis (10.1016/j.neuroimage.2023.120011_bib0010) 2014; 100
Marques (10.1016/j.neuroimage.2023.120011_bib0063) 2010; 49
Kay (10.1016/j.neuroimage.2023.120011_bib0046) 2019; 189
Yu (10.1016/j.neuroimage.2023.120011_bib0099) 2019; 5
Marquardt (10.1016/j.neuroimage.2023.120011_bib0062) 2018; 39
de Hollander (10.1016/j.neuroimage.2023.120011_bib0011) 2021; 228
Markuerkiaga (10.1016/j.neuroimage.2023.120011_bib0061) 2021; 353
Kok (10.1016/j.neuroimage.2023.120011_bib0050) 2016; 26
Wu (10.1016/j.neuroimage.2023.120011_bib0095) 2018; 8
Scheeringa (10.1016/j.neuroimage.2023.120011_bib0078) 2016; 113
Waehnert (10.1016/j.neuroimage.2023.120011_bib0094) 2014; 93
Markuerkiaga (10.1016/j.neuroimage.2023.120011_bib0060) 2021; 11
Menon (10.1016/j.neuroimage.2023.120011_bib0066) 2012; 62
Moerel (10.1016/j.neuroimage.2023.120011_bib0069) 2019; 9
Haacke (10.1016/j.neuroimage.2023.120011_bib0025) 1991; 92
Cox (10.1016/j.neuroimage.2023.120011_bib0009) 1996; 29
Aitken (10.1016/j.neuroimage.2023.120011_bib0001) 2020; 18
Friston (10.1016/j.neuroimage.2023.120011_bib0020) 1996; 35
Triantafyllou (10.1016/j.neuroimage.2023.120011_bib0086) 2005; 26
Turner (10.1016/j.neuroimage.2023.120011_bib0087) 2002; 16
Beckett (10.1016/j.neuroimage.2023.120011_bib0005) 2020; 84
Guidi (10.1016/j.neuroimage.2023.120011_bib0024) 2020; 41
Sharoh (10.1016/j.neuroimage.2023.120011_bib0080) 2019; 116
Persichetti (10.1016/j.neuroimage.2023.120011_bib0072) 2020; 30
Stanley (10.1016/j.neuroimage.2023.120011_bib0082) 2020
Huber (10.1016/j.neuroimage.2023.120011_bib0040) 2018; 178
Rua (10.1016/j.neuroimage.2023.120011_bib0076) 2017; 40
van der Zwaag (10.1016/j.neuroimage.2023.120011_bib0091) 2018; 176
Kim (10.1016/j.neuroimage.2023.120011_bib0048) 2017; 39
Menon (10.1016/j.neuroimage.2023.120011_bib0065) 2002; 47
Stirnberg (10.1016/j.neuroimage.2023.120011_bib0083) 2021; 85
Huber (10.1016/j.neuroimage.2023.120011_bib0032) 2021; 34
Engel (10.1016/j.neuroimage.2023.120011_bib0017) 1997
Krause (10.1016/j.neuroimage.2023.120011_bib0053) 2019; 40
Polimeni (10.1016/j.neuroimage.2023.120011_bib0073) 2018; 168
Heinzle (10.1016/j.neuroimage.2023.120011_bib0029) 2016; 125
Uğurbil (10.1016/j.neuroimage.2023.120011_bib0089) 2021; 18
Liu (10.1016/j.neuroimage.2023.120011_bib0057) 2020
Chai (10.1016/j.neuroimage.2023.120011_bib0006) 2020; 207
Han (10.1016/j.neuroimage.2023.120011_bib0027) 2021; 241
Lu (10.1016/j.neuroimage.2023.120011_bib0058) 2003; 50
Uludaǧ (10.1016/j.neuroimage.2023.120011_bib0090) 2009; 48
De Martino (10.1016/j.neuroimage.2023.120011_bib0012) 2015; 112
10.1016/j.neuroimage.2023.120011_bib0049
Huber (10.1016/j.neuroimage.2023.120011_bib0039) 2021; 237
Jochimsen (10.1016/j.neuroimage.2023.120011_bib0041) 2004; 52
Hall (10.1016/j.neuroimage.2023.120011_bib0026) 2022
Havlicek (10.1016/j.neuroimage.2023.120011_bib0028) 2020; 204
Moeller (10.1016/j.neuroimage.2023.120011_bib0067) 2021; 226
Dowdle (10.1016/j.neuroimage.2023.120011_bib0014) 2021; 2021
10.1016/j.neuroimage.2023.120011_bib0042
10.1016/j.neuroimage.2023.120011_bib0038
Muckli (10.1016/j.neuroimage.2023.120011_bib0070) 2015; 25
Goense (10.1016/j.neuroimage.2023.120011_bib0022) 2006; 24
Felleman (10.1016/j.neuroimage.2023.120011_bib0018) 1991; 1
Fracasso (10.1016/j.neuroimage.2023.120011_bib0019) 2021; 202
Kashyap (10.1016/j.neuroimage.2023.120011_bib0045) 2018; 8
Yushkevich (10.1016/j.neuroimage.2023.120011_bib0100) 2006; 31
Kay (10.1016/j.neuroimage.2023.120011_bib0047) 2020; 17
Huber (10.1016/j.neuroimage.2023.120011_bib0034) 2015; 107
Huber (10.1016/j.neuroimage.2023.120011_bib0037) 2018; 164
Vizioli (10.1016/j.neuroimage.2023.120011_bib0093) 2021
Yacoub (10.1016/j.neuroimage.2023.120011_bib0096) 2003; 49
McColgan (10.1016/j.neuroimage.2023.120011_bib0064) 2020; 21
Huang (10.1016/j.neuroimage.2023.120011_bib0030) 2021; 15
Ress (10.1016/j.neuroimage.2023.120011_bib0075) 2007; 34
Yu (10.1016/j.neuroimage.2023.120011_bib0098) 2022; 248
Shao (10.1016/j.neuroimage.2023.120011_bib0079) 2021; 245
Huber (10.1016/j.neuroimage.2023.120011_bib0035) 2017; 96
Ugurbil (10.1016/j.neuroimage.2023.120011_bib0088) 2014; 61
Li (10.1016/j.neuroimage.2023.120011_bib0056) 2012; 68
De Martino (10.1016/j.neuroimage.2023.120011_bib0013) 2013; 8
Koopmans (10.1016/j.neuroimage.2023.120011_bib0051) 2010; 31
Huber (10.1016/j.neuroimage.2023.120011_bib0033) 2020; 208
Taso (10.1016/j.neuroimage.2023.120011_bib0084) 2021; 41
Krieger (10.1016/j.neuroimage.2023.120011_bib0054) 2014; 101
Duvernoy (10.1016/j.neuroimage.2023.120011_bib0016) 1981; 7
Scheeringa (10.1016/j.neuroimage.2023.120011_bib0077) 2022
Dumoulin (10.1016/j.neuroimage.2023.120011_bib0015) 2018; 168
Yousry (10.1016/j.neuroimage.2023.120011_bib0097) 1997; 120
Avants (10.1016/j.neuroimage.2023.120011_bib0002) 2011; 54
Guidi (10.1016/j.neuroimage.2023.120011_bib0023) 2016; 141
References_xml – start-page: 1229
  year: 2021
  ident: bib0031
  article-title: Evaluating the capabilities and challenges of layer-fMRI VASO at 3T
  publication-title: Proceedings of the Annual Meeting of the Organization for Human Brain Mapping
– volume: 8
  start-page: 1
  year: 2018
  end-page: 14
  ident: bib0095
  article-title: Feature-dependent intrinsic functional connectivity across cortical depths in the human auditory cortex
  publication-title: Sci. Rep.
– volume: 26
  start-page: 371
  year: 2016
  end-page: 376
  ident: bib0050
  article-title: Selective activation of the deep layers of the human primary visual cortex by top-down feedback
  publication-title: Curr. Biol.
– volume: 113
  start-page: 6761
  year: 2016
  end-page: 6766
  ident: bib0078
  article-title: The relationship between oscillatory EEG activity and the laminar-specific BOLD signal
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 93
  start-page: 210
  year: 2014
  end-page: 220
  ident: bib0094
  article-title: Anatomically motivated modeling of cortical laminae
  publication-title: NeuroImage
– volume: 21
  start-page: 401
  year: 2020
  end-page: 415
  ident: bib0064
  article-title: The human motor cortex microcircuit: insights for neurodegenerative disease
  publication-title: Nat. Rev. Neurosci.
– volume: 178
  start-page: 769
  year: 2018
  end-page: 779
  ident: bib0040
  article-title: Ultra-high resolution blood volume fMRI and BOLD fMRI in humans at 9.4 T: capabilities and challenges
  publication-title: NeuroImage
– volume: 24
  start-page: 381
  year: 2006
  end-page: 392
  ident: bib0022
  article-title: Laminar specificity in monkey V1 using high-resolution SE-fMRI
  publication-title: Magn. Reson. Imaging
– year: 2020
  ident: bib0082
  article-title: Effects of phase regression on high-resolution functional MRI of the primary visual cortex
  publication-title: NeuroImage
– year: 2020
  ident: bib0057
  article-title: Layer-dependent multiplicative effects of spatial attention on contrast responses in human early visual cortex
  publication-title: Prog. Neurobiol.
– volume: 120
  start-page: 141
  year: 1997
  end-page: 157
  ident: bib0097
  article-title: Localization of the motor hand area to a knob on the precentral gyrus. A new landmark
  publication-title: Brain
– volume: 17
  start-page: 1033
  year: 2020
  end-page: 1039
  ident: bib0047
  article-title: A temporal decomposition method for identifying venous effects in task-based fMRI
  publication-title: Nat. Methods
– volume: 11
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib0060
  article-title: An
  publication-title: Sci. Rep.
– volume: 44
  start-page: 162
  year: 2000
  end-page: 167
  ident: bib0021
  article-title: Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR
  publication-title: Magn. Reson. Med.
– start-page: 1
  year: 2020
  end-page: 25
  ident: bib0071
  article-title: Cortical depth-dependent human fMRI of resting-state networks using EPIK
  publication-title: BioRxiv
– volume: 68
  start-page: 1563
  year: 2012
  end-page: 1569
  ident: bib0056
  article-title: Reducing the object orientation dependence of susceptibility effects in gradient echo MRI through quantitative susceptibility mapping
  publication-title: Magn. Reson. Med.
– volume: 27
  start-page: 393
  year: 2005
  end-page: 401
  ident: bib0085
  article-title: Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: implications for clinical trial design
  publication-title: NeuroImage
– volume: 96
  start-page: 1253
  year: 2017
  end-page: 1263
  ident: bib0035
  article-title: High-resolution CBV-fMRI allows mapping of laminar activity and connectivity of cortical input and output in human M1
  publication-title: Neuron
– volume: 12
  start-page: 535
  year: 2009
  end-page: 540
  ident: bib0055
  article-title: Circular analysis in systems neuroscience: the dangers of double dipping
  publication-title: Nat. Neurosci.
– volume: 50
  start-page: 263
  year: 2003
  end-page: 274
  ident: bib0058
  article-title: Functional magnetic resonance imaging based on changes in vascular space occupancy
  publication-title: Magn. Reson. Med.
– volume: 15
  start-page: 1
  year: 2021
  end-page: 16
  ident: bib0030
  article-title: Correcting for superficial bias in 7T gradient echo fMRI
  publication-title: Front. Neurosci.
– volume: 5
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib0099
  article-title: Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex
  publication-title: Sci. Adv.
– reference: Kashyap, S., Huber, L., Ivanov, D., Kurban, D., Feinberg, D.A., Poser, B.A., 2020. Characterising the effect of flip angle in the acquisition of sub-millimetre resolution 3D GE-EPI at 7T. Proc. Intl. Soc. Mag. Reson. Med. 28 (2020), abstract #3824
– volume: 85
  start-page: 1540
  year: 2021
  end-page: 1551
  ident: bib0083
  article-title: Segmented K-space blipped-controlled aliasing in parallel imaging for high spatiotemporal resolution EPI
  publication-title: Magn. Reson. Med.
– volume: 197
  start-page: 668
  year: 2019
  end-page: 676
  ident: bib0052
  article-title: Strategies and prospects for cortical depth dependent T2 and T2* weighted BOLD fMRI studies
  publication-title: NeuroImage
– volume: 52
  start-page: 724
  year: 2004
  end-page: 732
  ident: bib0041
  article-title: Quantifying the intra- and extravascular contributions to spin-echo fMRI at 3 T
  publication-title: Magn. Reson. Med.
– volume: 168
  start-page: 345
  year: 2018
  end-page: 357
  ident: bib0015
  article-title: Ultra-high field MRI: advancing systems neuroscience towards mesoscopic human brain function
  publication-title: NeuroImage
– volume: 40
  start-page: 98
  year: 2017
  end-page: 108
  ident: bib0076
  article-title: Characterization of high-resolution Gradient Echo and Spin Echo EPI for fMRI in the human visual cortex at 7 T
  publication-title: Magn. Reson. Imaging
– volume: 7
  start-page: 519
  year: 1981
  end-page: 579
  ident: bib0016
  article-title: Cortical blood vessels of the human brain
  publication-title: Brain Res. Bull.
– volume: 241
  year: 2021
  ident: bib0027
  article-title: Improvement of sensitivity and specificity for laminar BOLD fMRI with double spin-echo EPI in humans at 7 T
  publication-title: NeuroImage
– volume: 248
  year: 2022
  ident: bib0098
  article-title: Layer-specific activation in human primary somatosensory cortex during tactile temporal prediction error processing
  publication-title: NeuroImage
– volume: 18
  start-page: 1
  year: 2020
  end-page: 19
  ident: bib0001
  article-title: Prior expectations evoke stimulus-specific activity in the deep layers of the primary visual cortex
  publication-title: PLoS Biol.
– volume: 61
  start-page: 1364
  year: 2014
  end-page: 1379
  ident: bib0088
  article-title: Magnetic resonance imaging at ultrahigh fields
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 84
  start-page: 3128
  year: 2020
  end-page: 3145
  ident: bib0005
  article-title: Comparison of BOLD and CBV using 3D EPI and 3D GRASE for cortical layer functional MRI at 7 T
  publication-title: Magn. Reson. Med.
– year: 2022
  ident: bib0026
  article-title: Linear Deming Regression
– volume: 34
  start-page: 1
  year: 2021
  end-page: 204
  ident: bib0032
  article-title: Does the field strength matter? Comparing layer-fMRI VASO across 3 T, 7 T, and 9.4 T
  publication-title: ESMRMB
– volume: 237
  year: 2021
  ident: bib0039
  article-title: LayNii: a software suite for layer-fMRI
  publication-title: NeuroImage
– volume: 1
  start-page: 1
  year: 1991
  end-page: 47
  ident: bib0018
  article-title: Distributed hierarchical processing in the primate cerebral cortex
  publication-title: Cereb. Cortex
– volume: 202
  year: 2021
  ident: bib0019
  article-title: Point-spread function of the BOLD response across columns and cortical depth in human extra-striate cortex
  publication-title: Prog. Neurobiol.
– volume: 101
  start-page: 8
  year: 2014
  end-page: 20
  ident: bib0054
  article-title: Regional reproducibility of calibrated BOLD functional MRI: implications for the study of cognition and plasticity
  publication-title: NeuroImage
– volume: 41
  start-page: 1899
  year: 2021
  end-page: 1911
  ident: bib0084
  article-title: Regional and depth-dependence of cortical blood-flow assessed with high-resolution arterial spin labeling (ASL)
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib0069
  article-title: Processing complexity increases in superficial layers of human primary auditory cortex
  publication-title: Sci. Rep.
– volume: 54
  start-page: 2033
  year: 2011
  end-page: 2044
  ident: bib0002
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: NeuroImage
– volume: 228
  year: 2021
  ident: bib0011
  article-title: Ultra-high field fMRI reveals origins of feedforward and feedback activity within laminae of human ocular dominance columns
  publication-title: NeuroImage
– volume: 49
  start-page: 655
  year: 2003
  end-page: 664
  ident: bib0096
  article-title: Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields
  publication-title: Magn. Reson. Med.
– volume: 48
  start-page: 150
  year: 2009
  end-page: 165
  ident: bib0090
  article-title: An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging
  publication-title: NeuroImage
– volume: 8
  start-page: 30
  year: 2013
  end-page: 32
  ident: bib0013
  article-title: Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE
  publication-title: PLoS One
– volume: 139
  start-page: 240
  year: 2016
  end-page: 248
  ident: bib0074
  article-title: The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex
  publication-title: NeuroImage
– volume: 92
  start-page: 126
  year: 1991
  end-page: 145
  ident: bib0025
  article-title: A fast, iterative, partial-fourier technique capable of local phase recovery
  publication-title: J. Magn. Reson.
– volume: 208
  year: 2020
  ident: bib0033
  article-title: Sub-millimeter fMRI reveals multiple topographical digit representations that form action maps in human motor cortex
  publication-title: NeuroImage
– volume: 35
  start-page: 346
  year: 1996
  end-page: 355
  ident: bib0020
  article-title: Movement-related effects in fMRI time-series
  publication-title: Magn. Reson. Med.
– volume: 353
  year: 2021
  ident: bib0061
  article-title: Estimation of laminar BOLD activation profiles using deconvolution with a physiological point spread function
  publication-title: J. Neurosci. Methods
– volume: 18
  year: 2021
  ident: bib0089
  article-title: Ultrahigh field and ultrahigh resolution fMRI
  publication-title: Curr. Opin. Biomed. Eng.
– volume: 220
  year: 2020
  ident: bib0101
  article-title: Eye-selective fMRI activity in human primary visual cortex: comparison between 3 T and 9.4 T, and effects across cortical depth
  publication-title: NeuroImage
– volume: 207
  year: 2020
  ident: bib0006
  article-title: Integrated VASO and perfusion contrast: a new tool for laminar functional MRI
  publication-title: NeuroImage
– volume: 112
  start-page: 16036
  year: 2015
  end-page: 16041
  ident: bib0012
  article-title: Frequency preference and attention effects across cortical depths in the human primary auditory cortex
  publication-title: Proc. Natl. Acad. Sci.
– volume: 100
  start-page: 51
  year: 2014
  end-page: 59
  ident: bib0010
  article-title: Phase based venous suppression in resting-state BOLD GE-fMRI
  publication-title: NeuroImage
– reference: Huber L, Ivanov D, Krieger SN, Streicher MN, Mildner T, Poser BA, Möller HE, Turner R. Slab-selective, BOLD-corrected VASO at 7 Tesla provides measures of cerebral blood volume reactivity with high signal-to-noise ratio. Magn Reson Med. 2014 Jul;72(1):137-48. doi: 10.1002/mrm.24916. Epub 2013 Aug 20. PMID: 23963641.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib0045
  article-title: Resolving laminar activation in human V1 using ultra-high spatial resolution fMRI at 7T
  publication-title: Sci. Rep.
– volume: 31
  start-page: 1297
  year: 2010
  end-page: 1304
  ident: bib0051
  article-title: Layer-specific BOLD activation in human V1
  publication-title: Hum. Brain Mapp.
– volume: 25
  start-page: 432
  year: 1979
  ident: bib0008
  article-title: Incorrect least-squares regression coefficients in method comparison analysis
  publication-title: Clin. Chem.
– volume: 16
  start-page: 1062
  year: 2002
  end-page: 1067
  ident: bib0087
  article-title: How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes
  publication-title: NeuroImage
– volume: 62
  start-page: 970
  year: 2012
  end-page: 974
  ident: bib0066
  article-title: The great brain versus vein debate
  publication-title: NeuroImage
– start-page: 12
  year: 2021
  ident: bib0093
  article-title: Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging
  publication-title: Nat. Commun.
– volume: 226
  year: 2021
  ident: bib0067
  article-title: NOise reduction with distribution corrected (NORDIC) PCA in dMRI with complex-valued parameter-free locally low-rank processing
  publication-title: NeuroImage
– volume: 41
  start-page: 2014
  year: 2020
  end-page: 2027
  ident: bib0024
  article-title: Cortical laminar resting-state signal fluctuations scale with the hypercapnic blood oxygenation level-dependent response
  publication-title: Hum. Brain Mapp.
– volume: 49
  start-page: 1271
  year: 2010
  end-page: 1281
  ident: bib0063
  article-title: MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field
  publication-title: NeuroImage
– volume: 40
  start-page: 189
  year: 2021
  end-page: 200
  ident: bib0004
  article-title: Challenges and opportunities of mesoscopic brain mapping with fMRI
  publication-title: Curr. Opin. Behav. Sci.
– volume: 16
  start-page: 1
  year: 2021
  end-page: 23
  ident: bib0043
  article-title: Sub-millimetre resolution laminar fMRI using arterial spin labelling in humans at 7 T
  publication-title: PLoS One
– volume: 116
  start-page: 21185
  year: 2019
  end-page: 21190
  ident: bib0080
  article-title: Laminar specific fMRI reveals directed interactions in distributed networks during language processing
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 39
  start-page: 53
  year: 2017
  end-page: 63
  ident: bib0048
  article-title: Reliability of the depth-dependent high-resolution BOLD hemodynamic response in human visual cortex and vicinity
  publication-title: Magn. Reson. Imaging
– volume: 132
  start-page: 491
  year: 2016
  end-page: 498
  ident: bib0059
  article-title: A cortical vascular model for examining the specificity of the laminar BOLD signal
  publication-title: NeuroImage
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  ident: bib0100
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: NeuroImage
– volume: 40
  start-page: 4026
  year: 2019
  end-page: 4037
  ident: bib0053
  article-title: Active head motion reduction in magnetic resonance imaging using tactile feedback
  publication-title: Hum. Brain Mapp.
– volume: 204
  year: 2020
  ident: bib0028
  article-title: A dynamical model of the laminar BOLD response
  publication-title: NeuroImage
– volume: 176
  start-page: 41
  year: 2018
  end-page: 55
  ident: bib0091
  article-title: Distortion-matched T1 maps and unbiased T1-weighted images as anatomical reference for high-resolution fMRI
  publication-title: NeuroImage
– volume: 34
  start-page: 74
  year: 2007
  end-page: 84
  ident: bib0075
  article-title: Laminar profiles of functional activity in the human brain
  publication-title: NeuroImage
– volume: 39
  start-page: 2812
  year: 2018
  end-page: 2827
  ident: bib0062
  article-title: Cortical depth profiles of luminance contrast responses in human V1 and V2 using 7 T fMRI
  publication-title: Hum. Brain Mapp.
– volume: 47
  start-page: 1
  year: 2002
  end-page: 9
  ident: bib0065
  article-title: Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI
  publication-title: Magn. Reson. Med.
– start-page: 1
  year: 2022
  end-page: 13
  ident: bib0077
  article-title: Relating neural oscillations to laminar fMRI connectivity in visual cortex
  publication-title: Cereb. Cortex
– year: 1997
  ident: bib0017
  article-title: Retinotopic organization in human visual cortex and the spatial precision of functional MRI
  publication-title: Cereb. Cortex
– volume: 189
  start-page: 847
  year: 2019
  end-page: 869
  ident: bib0046
  article-title: A critical assessment of data quality and venous effects in sub-millimeter fMRI
  publication-title: NeuroImage
– volume: 35
  start-page: 539
  year: 2007
  end-page: 552
  ident: bib0081
  article-title: Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla
  publication-title: NeuroImage
– volume: 29
  start-page: 162
  year: 1996
  end-page: 173
  ident: bib0009
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput. Biomed. Res.
– volume: 164
  start-page: 18
  year: 2018
  end-page: 31
  ident: bib0068
  article-title: Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field
  publication-title: NeuroImage
– volume: 164
  start-page: 131
  year: 2018
  end-page: 143
  ident: bib0037
  article-title: Techniques for blood volume fMRI with VASO: from low-resolution mapping towards sub-millimeter layer-dependent applications
  publication-title: NeuroImage
– volume: 26
  start-page: 243
  year: 2005
  end-page: 250
  ident: bib0086
  article-title: Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters
  publication-title: NeuroImage
– volume: 2021
  year: 2021
  ident: bib0014
  article-title: Improving sensitivity to functional responses without a loss of spatiotemporal precision in human brain imaging
  publication-title: BioRxiv
– volume: 168
  start-page: 296
  year: 2018
  end-page: 320
  ident: bib0073
  article-title: Analysis strategies for high-resolution UHF-fMRI data
  publication-title: NeuroImage
– volume: 163
  start-page: 13
  year: 2017
  end-page: 23
  ident: bib0003
  article-title: The impact of vessel size, orientation and intravascular contribution on the neurovascular fingerprint of BOLD bSSFP fMRI
  publication-title: NeuroImage
– volume: 125
  start-page: 556
  year: 2016
  end-page: 570
  ident: bib0029
  article-title: A hemodynamic model for layered BOLD signals
  publication-title: NeuroImage
– reference: Klassen, L., and Menon, R.S. (2005). BOLD signal phase and magnitude dependence on vessel geometry. Proceedings of the 13th Annual Meeting ISMRM, Miami, FL, USA, 2005; 496.
– volume: 245
  year: 2021
  ident: bib0079
  article-title: Laminar perfusion imaging with zoomed arterial spin labeling at 7 Tesla
  publication-title: NeuroImage
– volume: 168
  start-page: 332
  year: 2018
  end-page: 344
  ident: bib0044
  article-title: Impact of acquisition and analysis strategies on cortical depth-dependent fMRI
  publication-title: NeuroImage
– volume: 30
  start-page: 1721
  year: 2020
  end-page: 1725
  ident: bib0072
  article-title: Layer-specific contributions to imagined and executed hand movements in human primary motor cortex
  publication-title: Curr. Biol.
– volume: 164
  start-page: 32
  year: 2018
  end-page: 47
  ident: bib0007
  article-title: Spatial specificity of the functional MRI blood oxygenation response relative to neuronal activity
  publication-title: NeuroImage
– volume: 107
  start-page: 23
  year: 2015
  end-page: 33
  ident: bib0034
  article-title: Cortical lamina-dependent blood volume changes in human brain at 7T
  publication-title: NeuroImage
– volume: 141
  start-page: 250
  year: 2016
  end-page: 261
  ident: bib0023
  article-title: Lamina-dependent calibrated BOLD response in human primary motor cortex
  publication-title: NeuroImage
– volume: 25
  start-page: 2690
  year: 2015
  end-page: 2695
  ident: bib0070
  article-title: Contextual feedback to superficial layers of V1
  publication-title: Curr. Biol.
– reference: Vicente, I. De, Uruñuela, E., Termenon, M., Caballero-gaudes, C., 2021. Dephasing the speaking brain: cleaning covert sentence production activation maps with a phase-based fMRI data analysis. Proc. Intl. Soc. Mag. Reson. Med. 29 (2021), abstract #2691
– volume: 27
  start-page: 393
  issue: 2
  year: 2005
  ident: 10.1016/j.neuroimage.2023.120011_bib0085
  article-title: Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: implications for clinical trial design
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.04.021
– volume: 178
  start-page: 769
  issue: May
  year: 2018
  ident: 10.1016/j.neuroimage.2023.120011_bib0040
  article-title: Ultra-high resolution blood volume fMRI and BOLD fMRI in humans at 9.4 T: capabilities and challenges
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.06.025
– volume: 61
  start-page: 1364
  issue: 5
  year: 2014
  ident: 10.1016/j.neuroimage.2023.120011_bib0088
  article-title: Magnetic resonance imaging at ultrahigh fields
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2313619
– volume: 39
  start-page: 53
  year: 2017
  ident: 10.1016/j.neuroimage.2023.120011_bib0048
  article-title: Reliability of the depth-dependent high-resolution BOLD hemodynamic response in human visual cortex and vicinity
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2017.01.019
– volume: 228
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120011_bib0011
  article-title: Ultra-high field fMRI reveals origins of feedforward and feedback activity within laminae of human ocular dominance columns
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117683
– volume: 132
  start-page: 491
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120011_bib0059
  article-title: A cortical vascular model for examining the specificity of the laminar BOLD signal
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.02.073
– volume: 48
  start-page: 150
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2023.120011_bib0090
  article-title: An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.05.051
– volume: 34
  start-page: 74
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2023.120011_bib0075
  article-title: Laminar profiles of functional activity in the human brain
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.08.020
– ident: 10.1016/j.neuroimage.2023.120011_bib0038
  doi: 10.1002/mrm.24916
– volume: 44
  start-page: 162
  issue: 1
  year: 2000
  ident: 10.1016/j.neuroimage.2023.120011_bib0021
  article-title: Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
– volume: 15
  start-page: 1
  issue: September
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120011_bib0030
  article-title: Correcting for superficial bias in 7T gradient echo fMRI
  publication-title: Front. Neurosci.
– volume: 12
  start-page: 535
  issue: 5
  year: 2009
  ident: 10.1016/j.neuroimage.2023.120011_bib0055
  article-title: Circular analysis in systems neuroscience: the dangers of double dipping
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2303
– volume: 21
  start-page: 401
  issue: 8
  year: 2020
  ident: 10.1016/j.neuroimage.2023.120011_bib0064
  article-title: The human motor cortex microcircuit: insights for neurodegenerative disease
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-020-0315-1
– volume: 96
  start-page: 1253
  issue: 6
  year: 2017
  ident: 10.1016/j.neuroimage.2023.120011_bib0035
  article-title: High-resolution CBV-fMRI allows mapping of laminar activity and connectivity of cortical input and output in human M1
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.11.005
– year: 2020
  ident: 10.1016/j.neuroimage.2023.120011_bib0082
  article-title: Effects of phase regression on high-resolution functional MRI of the primary visual cortex
  publication-title: NeuroImage
– volume: 40
  start-page: 4026
  issue: 14
  year: 2019
  ident: 10.1016/j.neuroimage.2023.120011_bib0053
  article-title: Active head motion reduction in magnetic resonance imaging using tactile feedback
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24683
– volume: 31
  start-page: 1116
  issue: 3
  year: 2006
  ident: 10.1016/j.neuroimage.2023.120011_bib0100
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 26
  start-page: 243
  issue: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2023.120011_bib0086
  article-title: Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.01.007
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2023.120011_bib0095
  article-title: Feature-dependent intrinsic functional connectivity across cortical depths in the human auditory cortex
  publication-title: Sci. Rep.
– volume: 17
  start-page: 1033
  issue: 10
  year: 2020
  ident: 10.1016/j.neuroimage.2023.120011_bib0047
  article-title: A temporal decomposition method for identifying venous effects in task-based fMRI
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-0941-6
– volume: 113
  start-page: 6761
  issue: 24
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120011_bib0078
  article-title: The relationship between oscillatory EEG activity and the laminar-specific BOLD signal
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1522577113
– year: 1997
  ident: 10.1016/j.neuroimage.2023.120011_bib0017
  article-title: Retinotopic organization in human visual cortex and the spatial precision of functional MRI
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/7.2.181
– volume: 164
  start-page: 131
  issue: November 2016
  year: 2018
  ident: 10.1016/j.neuroimage.2023.120011_bib0037
  article-title: Techniques for blood volume fMRI with VASO: from low-resolution mapping towards sub-millimeter layer-dependent applications
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.11.039
– volume: 120
  start-page: 141
  issue: 1
  year: 1997
  ident: 10.1016/j.neuroimage.2023.120011_bib0097
  article-title: Localization of the motor hand area to a knob on the precentral gyrus. A new landmark
  publication-title: Brain
  doi: 10.1093/brain/120.1.141
– volume: 49
  start-page: 655
  issue: 4
  year: 2003
  ident: 10.1016/j.neuroimage.2023.120011_bib0096
  article-title: Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10433
– volume: 176
  start-page: 41
  issue: January
  year: 2018
  ident: 10.1016/j.neuroimage.2023.120011_bib0091
  article-title: Distortion-matched T1 maps and unbiased T1-weighted images as anatomical reference for high-resolution fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.04.026
– volume: 220
  issue: October 2019
  year: 2020
  ident: 10.1016/j.neuroimage.2023.120011_bib0101
  article-title: Eye-selective fMRI activity in human primary visual cortex: comparison between 3 T and 9.4 T, and effects across cortical depth
  publication-title: NeuroImage
– volume: 241
  issue: July
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120011_bib0027
  article-title: Improvement of sensitivity and specificity for laminar BOLD fMRI with double spin-echo EPI in humans at 7 T
  publication-title: NeuroImage
– volume: 107
  start-page: 23
  year: 2015
  ident: 10.1016/j.neuroimage.2023.120011_bib0034
  article-title: Cortical lamina-dependent blood volume changes in human brain at 7T
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.11.046
– volume: 16
  start-page: 1062
  issue: 4
  year: 2002
  ident: 10.1016/j.neuroimage.2023.120011_bib0087
  article-title: How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1082
– volume: 125
  start-page: 556
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120011_bib0029
  article-title: A hemodynamic model for layered BOLD signals
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.10.025
– start-page: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2023.120011_bib0071
  article-title: Cortical depth-dependent human fMRI of resting-state networks using EPIK
  publication-title: BioRxiv
– volume: 39
  start-page: 2812
  issue: 7
  year: 2018
  ident: 10.1016/j.neuroimage.2023.120011_bib0062
  article-title: Cortical depth profiles of luminance contrast responses in human V1 and V2 using 7 T fMRI
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24042
– volume: 168
  start-page: 332
  issue: May 2017
  year: 2018
  ident: 10.1016/j.neuroimage.2023.120011_bib0044
  article-title: Impact of acquisition and analysis strategies on cortical depth-dependent fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.05.022
– volume: 207
  issue: August 2019
  year: 2020
  ident: 10.1016/j.neuroimage.2023.120011_bib0006
  article-title: Integrated VASO and perfusion contrast: a new tool for laminar functional MRI
  publication-title: NeuroImage
– volume: 34
  start-page: 1
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120011_bib0032
  article-title: Does the field strength matter? Comparing layer-fMRI VASO across 3 T, 7 T, and 9.4 T
  publication-title: ESMRMB
– start-page: 1
  year: 2022
  ident: 10.1016/j.neuroimage.2023.120011_bib0077
  article-title: Relating neural oscillations to laminar fMRI connectivity in visual cortex
  publication-title: Cereb. Cortex
– volume: 47
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2023.120011_bib0065
  article-title: Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10041
– volume: 116
  start-page: 21185
  issue: 42
  year: 2019
  ident: 10.1016/j.neuroimage.2023.120011_bib0080
  article-title: Laminar specific fMRI reveals directed interactions in distributed networks during language processing
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1907858116
– start-page: 12
  issue: 1
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120011_bib0093
  article-title: Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging
  publication-title: Nat. Commun.
– volume: 2021
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120011_bib0014
  article-title: Improving sensitivity to functional responses without a loss of spatiotemporal precision in human brain imaging
  publication-title: BioRxiv
– volume: 18
  start-page: 1
  issue: 12
  year: 2020
  ident: 10.1016/j.neuroimage.2023.120011_bib0001
  article-title: Prior expectations evoke stimulus-specific activity in the deep layers of the primary visual cortex
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3001023
– volume: 29
  start-page: 162
  issue: 3
  year: 1996
  ident: 10.1016/j.neuroimage.2023.120011_bib0009
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput. Biomed. Res.
  doi: 10.1006/cbmr.1996.0014
– ident: 10.1016/j.neuroimage.2023.120011_bib0042
– volume: 41
  start-page: 2014
  issue: 8
  year: 2020
  ident: 10.1016/j.neuroimage.2023.120011_bib0024
  article-title: Cortical laminar resting-state signal fluctuations scale with the hypercapnic blood oxygenation level-dependent response
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24926
– volume: 8
  start-page: 30
  issue: 3
  year: 2013
  ident: 10.1016/j.neuroimage.2023.120011_bib0013
  article-title: Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0060514
– volume: 24
  start-page: 381
  issue: 4
  year: 2006
  ident: 10.1016/j.neuroimage.2023.120011_bib0022
  article-title: Laminar specificity in monkey V1 using high-resolution SE-fMRI
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2005.12.032
– volume: 189
  start-page: 847
  year: 2019
  ident: 10.1016/j.neuroimage.2023.120011_bib0046
  article-title: A critical assessment of data quality and venous effects in sub-millimeter fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.02.006
– volume: 40
  start-page: 189
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120011_bib0004
  article-title: Challenges and opportunities of mesoscopic brain mapping with fMRI
  publication-title: Curr. Opin. Behav. Sci.
  doi: 10.1016/j.cobeha.2021.06.002
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2023.120011_bib0069
  article-title: Processing complexity increases in superficial layers of human primary auditory cortex
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41965-w
– volume: 163
  start-page: 13
  issue: August
  year: 2017
  ident: 10.1016/j.neuroimage.2023.120011_bib0003
  article-title: The impact of vessel size, orientation and intravascular contribution on the neurovascular fingerprint of BOLD bSSFP fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.09.015
– volume: 7
  start-page: 519
  issue: 5
  year: 1981
  ident: 10.1016/j.neuroimage.2023.120011_bib0016
  article-title: Cortical blood vessels of the human brain
  publication-title: Brain Res. Bull.
  doi: 10.1016/0361-9230(81)90007-1
– volume: 30
  start-page: 1721
  issue: 9
  year: 2020
  ident: 10.1016/j.neuroimage.2023.120011_bib0072
  article-title: Layer-specific contributions to imagined and executed hand movements in human primary motor cortex
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2020.02.046
– volume: 54
  start-page: 2033
  issue: 3
  year: 2011
  ident: 10.1016/j.neuroimage.2023.120011_bib0002
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.09.025
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120011_bib0060
  article-title: An in-vivo study of BOLD laminar responses as a function of echo time and static magnetic field strength
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-81249-w
– volume: 164
  start-page: 18
  issue: March 2017
  year: 2018
  ident: 10.1016/j.neuroimage.2023.120011_bib0068
  article-title: Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.03.063
– volume: 168
  start-page: 345
  issue: September 2016
  year: 2018
  ident: 10.1016/j.neuroimage.2023.120011_bib0015
  article-title: Ultra-high field MRI: advancing systems neuroscience towards mesoscopic human brain function
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.01.028
– volume: 26
  start-page: 371
  issue: 3
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120011_bib0050
  article-title: Selective activation of the deep layers of the human primary visual cortex by top-down feedback
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.12.038
– volume: 35
  start-page: 346
  issue: 3
  year: 1996
  ident: 10.1016/j.neuroimage.2023.120011_bib0020
  article-title: Movement-related effects in fMRI time-series
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910350312
– volume: 92
  start-page: 126
  issue: 1
  year: 1991
  ident: 10.1016/j.neuroimage.2023.120011_bib0025
  article-title: A fast, iterative, partial-fourier technique capable of local phase recovery
  publication-title: J. Magn. Reson.
– volume: 16
  start-page: 1
  issue: 4 April
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120011_bib0043
  article-title: Sub-millimetre resolution laminar fMRI using arterial spin labelling in humans at 7 T
  publication-title: PLoS One
– volume: 18
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120011_bib0089
  article-title: Ultrahigh field and ultrahigh resolution fMRI
  publication-title: Curr. Opin. Biomed. Eng.
– volume: 248
  issue: July 2021
  year: 2022
  ident: 10.1016/j.neuroimage.2023.120011_bib0098
  article-title: Layer-specific activation in human primary somatosensory cortex during tactile temporal prediction error processing
  publication-title: NeuroImage
– volume: 41
  start-page: 1899
  issue: 8
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120011_bib0084
  article-title: Regional and depth-dependence of cortical blood-flow assessed with high-resolution arterial spin labeling (ASL)
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1177/0271678X20982382
– volume: 100
  start-page: 51
  year: 2014
  ident: 10.1016/j.neuroimage.2023.120011_bib0010
  article-title: Phase based venous suppression in resting-state BOLD GE-fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.05.079
– volume: 1
  start-page: 1
  issue: 1
  year: 1991
  ident: 10.1016/j.neuroimage.2023.120011_bib0018
  article-title: Distributed hierarchical processing in the primate cerebral cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/1.1.1
– start-page: 1229
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120011_bib0031
  article-title: Evaluating the capabilities and challenges of layer-fMRI VASO at 3T
– volume: 237
  issue: July 2020
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120011_bib0039
  article-title: LayNii: a software suite for layer-fMRI
  publication-title: NeuroImage
– volume: 164
  start-page: 32
  issue: August
  year: 2018
  ident: 10.1016/j.neuroimage.2023.120011_bib0007
  article-title: Spatial specificity of the functional MRI blood oxygenation response relative to neuronal activity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.08.077
– volume: 62
  start-page: 970
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2023.120011_bib0066
  article-title: The great brain versus vein debate
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.005
– volume: 208
  issue: November 2019
  year: 2020
  ident: 10.1016/j.neuroimage.2023.120011_bib0033
  article-title: Sub-millimeter fMRI reveals multiple topographical digit representations that form action maps in human motor cortex
  publication-title: NeuroImage
– volume: 35
  start-page: 539
  issue: 2
  year: 2007
  ident: 10.1016/j.neuroimage.2023.120011_bib0081
  article-title: Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.12.030
– volume: 5
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.neuroimage.2023.120011_bib0099
  article-title: Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav9053
– volume: 141
  start-page: 250
  issue: June
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120011_bib0023
  article-title: Lamina-dependent calibrated BOLD response in human primary motor cortex
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.06.030
– ident: 10.1016/j.neuroimage.2023.120011_bib0092
– volume: 101
  start-page: 8
  year: 2014
  ident: 10.1016/j.neuroimage.2023.120011_bib0054
  article-title: Regional reproducibility of calibrated BOLD functional MRI: implications for the study of cognition and plasticity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.072
– ident: 10.1016/j.neuroimage.2023.120011_bib0049
– volume: 353
  issue: December 2020
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120011_bib0061
  article-title: Estimation of laminar BOLD activation profiles using deconvolution with a physiological point spread function
  publication-title: J. Neurosci. Methods
– volume: 202
  issue: March
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120011_bib0019
  article-title: Point-spread function of the BOLD response across columns and cortical depth in human extra-striate cortex
  publication-title: Prog. Neurobiol.
– volume: 85
  start-page: 1540
  issue: 3
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120011_bib0083
  article-title: Segmented K-space blipped-controlled aliasing in parallel imaging for high spatiotemporal resolution EPI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28486
– volume: 226
  issue: October 2020
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120011_bib0067
  article-title: NOise reduction with distribution corrected (NORDIC) PCA in dMRI with complex-valued parameter-free locally low-rank processing
  publication-title: NeuroImage
– volume: 50
  start-page: 263
  issue: 2
  year: 2003
  ident: 10.1016/j.neuroimage.2023.120011_bib0058
  article-title: Functional magnetic resonance imaging based on changes in vascular space occupancy
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10519
– volume: 204
  year: 2020
  ident: 10.1016/j.neuroimage.2023.120011_bib0028
  article-title: A dynamical model of the laminar BOLD response
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116209
– volume: 245
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120011_bib0079
  article-title: Laminar perfusion imaging with zoomed arterial spin labeling at 7 Tesla
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118724
– volume: 52
  start-page: 724
  issue: 4
  year: 2004
  ident: 10.1016/j.neuroimage.2023.120011_bib0041
  article-title: Quantifying the intra- and extravascular contributions to spin-echo fMRI at 3 T
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20221
– volume: 31
  start-page: 1297
  issue: 9
  year: 2010
  ident: 10.1016/j.neuroimage.2023.120011_bib0051
  article-title: Layer-specific BOLD activation in human V1
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20936
– year: 2022
  ident: 10.1016/j.neuroimage.2023.120011_bib0026
– volume: 112
  start-page: 16036
  issue: 52
  year: 2015
  ident: 10.1016/j.neuroimage.2023.120011_bib0012
  article-title: Frequency preference and attention effects across cortical depths in the human primary auditory cortex
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1507552112
– volume: 49
  start-page: 1271
  issue: 2
  year: 2010
  ident: 10.1016/j.neuroimage.2023.120011_bib0063
  article-title: MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.002
– volume: 93
  start-page: 210
  issue: December 2018
  year: 2014
  ident: 10.1016/j.neuroimage.2023.120011_bib0094
  article-title: Anatomically motivated modeling of cortical laminae
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.03.078
– volume: 68
  start-page: 1563
  issue: 5
  year: 2012
  ident: 10.1016/j.neuroimage.2023.120011_bib0056
  article-title: Reducing the object orientation dependence of susceptibility effects in gradient echo MRI through quantitative susceptibility mapping
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24135
– volume: 168
  start-page: 296
  year: 2018
  ident: 10.1016/j.neuroimage.2023.120011_bib0073
  article-title: Analysis strategies for high-resolution UHF-fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.04.053
– volume: 25
  start-page: 2690
  issue: 20
  year: 2015
  ident: 10.1016/j.neuroimage.2023.120011_bib0070
  article-title: Contextual feedback to superficial layers of V1
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.08.057
– volume: 197
  start-page: 668
  issue: February
  year: 2019
  ident: 10.1016/j.neuroimage.2023.120011_bib0052
  article-title: Strategies and prospects for cortical depth dependent T2 and T2* weighted BOLD fMRI studies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.03.024
– year: 2020
  ident: 10.1016/j.neuroimage.2023.120011_bib0057
  article-title: Layer-dependent multiplicative effects of spatial attention on contrast responses in human early visual cortex
  publication-title: Prog. Neurobiol.
– volume: 25
  start-page: 432
  issue: 3
  year: 1979
  ident: 10.1016/j.neuroimage.2023.120011_bib0008
  article-title: Incorrect least-squares regression coefficients in method comparison analysis
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/25.3.432
– volume: 139
  start-page: 240
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120011_bib0074
  article-title: The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.06.019
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2023.120011_bib0045
  article-title: Resolving laminar activation in human V1 using ultra-high spatial resolution fMRI at 7T
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-35333-3
– volume: 84
  start-page: 3128
  issue: 6
  year: 2020
  ident: 10.1016/j.neuroimage.2023.120011_bib0005
  article-title: Comparison of BOLD and CBV using 3D EPI and 3D GRASE for cortical layer functional MRI at 7 T
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28347
– volume: 40
  start-page: 98
  year: 2017
  ident: 10.1016/j.neuroimage.2023.120011_bib0076
  article-title: Characterization of high-resolution Gradient Echo and Spin Echo EPI for fMRI in the human visual cortex at 7 T
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2017.04.008
SSID ssj0009148
Score 2.5004983
Snippet •We tested the feasibility of laminar BOLD fMRI at 3T.•NORDIC denoising was used to improve tSNR by a factor of ∼3.•Phase regression reduced macrovascular...
Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is valuable as...
Introduction Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is...
Introduction: Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 120011
SubjectTerms 3 Tesla
Blood
Brain
Brain Mapping - methods
Contamination
Cortex (motor)
Cortical layers
Functional magnetic resonance imaging
Hand
Humans
Laminar fMRI
Magnetic Resonance Imaging - methods
Microvasculature
Motor task performance
NORDIC denoising
Phase regression
Primary motor cortex
Reproducibility of Results
Signal-To-Noise Ratio
Spatial discrimination
Temporal lobe
Time series
Upper Extremity
Veins & arteries
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqDohLVShtt6XISFwDdmInjjiVVwF1qYR2JW5W7Ng8xGZXy6L-_c7ETloOiD1wTezImofnG-fzDCG7srBMObwcw7hPsMR5oowowa_yGk2M-fa8Y3iZn43FxbW8_q_VF3LCQnngILj9Oi1sWheZryB0MyNM4QXE4EpZU1ZcOtx9Wcm6ZKortwsoP_J2ApurrQ55NwEf3cOG4XscuUT8WTBqa_Y_i0kvYc429px-IO8jaKQ_wmLXyTvXbJDVYfwt_pHMw9GAq-kj8tFDQwhaNTWdIN-uY5vSP-05KAQrOvU0G1GwBryOS_3w6pziiSz9eZIc_v51TJEOf0MvIUM8P2o_NLuFcEfn7ibwZptNMj49GR2dJbGZQmIBkS0SY0APmVWSGYVxK3UC1JcyrKcmi0rK2npAc5x5zzPHLBYSNLI2ICznIE3OPpGVZtq4LyBViSmsMNJxKyD9qbxCIAHOL-o889mAFJ1UtY2VxrHhxYPuKGX3-p8-NOpDB30MCO9nzkK1jSXmHKLi-vFYL7t9AFakoxXp16xoQMpO7bq7kgqbKHzobokFHPRzI2wJcGTJ2Vudlem4fTzqFHZNwI2CqwHZ6V-D4-PfnKpx0ycco3KFaBnGfA7W2csgy0vk7xZf30I238garjewPLfIymL-5L4DEluY7dbp_gIfrS6f
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swEBZdCmMvpfudrisa7NWNZUm2zJ7arF2yLRlsLeRNWLaUZaxOSFP67-_Okl3yUAjsMY7OiLvT3Sf5uxMhH2VWxspicUzMXIQtziNlRA7rKq3QxWLXnHdMpunoWnydydkeGba1MEirDLHfx_QmWocng6DNwWqxGPwCZADpBhEKJv5s9oTsJzxPZY_sn42_jaYPvXeZ8BVxkkcoEAg9nubVtI1c3MDiPcWbxE8ZkozYVpZqmvlvJavHwGiTlC4PyUFAk_TMT_g52bP1C_J0Er6XvyRrf2ZgK3qLRHV_UwQt6oreIBGvpaHS--aAFLIYXTrKryi4CdbpUjf5OaZ4VEu_XETnP75_psiTn9MpbB3Hw-ZFq9-QB-nazj2htn5Fri8vroajKNyyEJUA1TaRMWAgXioZG4UJLbEC7JrE2GhNZoWUVekA5rHYOcZtXGKHQSMrA8qyFvbP_DXp1cvavgWtStzbCiMtKwXsiwqnEGFAVBBVyh3vk6zVqi5DC3K8CeOvbrlmf_SDPTTaQ3t79AnrJFe-DccOMudouG48NtJuHizXcx08SVdJViZVxl0ByDA2wmROAMQrVGnygknbJ3lrdt3WqkJ0hRctdpjAp052y6d3lD5uvUyHuHKrEwinACgFU33yofsbIgJ-5ilqu7zDMSpVCKNhzBvvnZ0OeJojsTc7-q-pvSPP8JfnfR6T3mZ9Z98DNtuYk7D2_gHb1TQv
  priority: 102
  providerName: Elsevier
Title Improved sensitivity and microvascular weighting of 3T laminar fMRI with GE-BOLD using NORDIC and phase regression
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381192300157X
https://dx.doi.org/10.1016/j.neuroimage.2023.120011
https://www.ncbi.nlm.nih.gov/pubmed/36914107
https://www.proquest.com/docview/2793937418
https://www.proquest.com/docview/2786811298
https://doaj.org/article/d27c2d73fa2640b4b7f4515a8cb9a15e
Volume 271
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYJiFeEL8pjMpIvKbEiZ244gGto6MFWtC0SX2LYscuQywpbSfe-Nu5s51UewD1KVJiW5HvfPf5_PmOkDci17E0eDkmZjbCFOeRVHwI6yqrUMVi6-Ids3k2ueSfFmIRAm6bQKtsbaIz1FWjMUb-NgFFAlfKmXy_-hVh1Sg8XQ0lNA7IkUtdBvqcL_Jd0l3G_VU4kUYSGgQmj-d3uXyRV9ewagdYQnzAkF3Ebrknl8X_lpf6Fwp13ujsAbkfYCQ98XJ_SO6Y-hG5OwsH5Y_J2gcLTEU3yFD3JSJoWVf0Ghl4Lf-U_naRUXBftLE0vaCgH3hBl9rZ-ZRijJZ-HEejr18-UCTIL-kc9ozTUzfQ6js4QLo2S8-krZ-Qy7PxxekkCuUVIg0YbRspBZJJtRSxkujJEsNBoEmMGdZEXgpRaQv4jsXWstTEGlMLKlEpmCxjYOOcPiWHdVOb5zCrAje1XAnDNIcNUWklQgswB7zKUpv2SN7OaqFD7nEsgfGzaElmP4qdPAqUR-Hl0SOs67ny-Tf26DNCwXXtMYO2e9Gsl0VYkEWV5Dqp8tSWAAljxVVuOWC7Umo1LJkwPTJsxV60l1TBrMJAV3v8wLuubwAyHqDs2fu41bIiGJRNsVP_HnndfQZTgOc7ZW2aG2wjM4n4Gdo889rZzUGaDZHRm7_4_-AvyT38E8_oPCaH2_WNeQWoa6v65GDwh_XdAuuTo5Pp58kcnqPx_Nt530Uy_gJrXCzA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwEviG8KA4wEjxlxYudDCCG6dbSsLWjqpL2Z2LG7TSwpbaeJf4q_kbs4SbUHUF_22tiW6zvf_Wz_7o6QtyLWfmIwOMZn1sMU516ieAr7KspRxXxb3XeMJ9HgmH89ESdb5E8TC4O0ysYmVoY6LzXekb8PQJHAlXKWfJr_8rBqFL6uNiU0nFocmt9XcGRbfhzug3zfBcFBf7o38OqqAp4GaLLylIIJhToRvkrQgAeGw_8IfEwsJuJMiFxbgDXMt5aFxteYUU-JXIFzMwbOiyGMe4tsc4xo7ZDtXn_y_Wid5pdxF3wnQi9hLK25Q45RVmWoPLsAO7GLRct3GfKZ2DWHWNUNuOYX_4V7K_93cJ_cq4Er_ew07QHZMsVDcntcP80_Igt3PWFyukROvCtKQbMipxfI-WsYr_SquosFh0lLS8MpBY3EkGBqx0dDirfC9Evf630b7VOk5M_oBE6pw71qoPkpuFy6MDPH3S0ek-MbWfonpFOUhXkGqyrwGM2VMExzOIJlNkEwAwaI51Fowy6Jm1WVus52jkU3fsqG1nYu1_KQKA_p5NElrO05dxk_NujTQ8G17TFnd_VDuZjJ2gTIPIh1kMehzQCE-oqr2HJAk1miVZoxYbokbcQum7BYMOQw0NkGE_jQ9q2hk4NEG_beabRM1iZsKdcbrkvetJ_B-OCLUlaY8hLbJFGCiB3aPHXa2a5BGKXIIY6f_3_w1-TOYDoeydFwcviC3MVZOT7pDumsFpfmJWC-lXpVbzRKftz03v4LDStkig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkCZeEHcKA4wEj9niJI4dIYTYurKytSC0SX3zYscuQywpbaeJv8av45w4SbUHUF_22tiW63P7bH8-h5A3XJhQWnwcEzIXYIrzQOokA7tKC1Sx0NXnHaNxeniafJ7wyQb5076FQVpl6xNrR11UBs_IdyNQJAilCZO7rqFFfO0PPsx-BVhBCm9a23IaXkWO7O8r2L4t3g_7IOu3UTQ4ONk_DJoKA4EBmLIMtIbJxUbyUEt05pFN4D9FISYZ4yLnvDAOIA4LnWOxDQ1m19O80BDorIW9Ywzj3iK3RQyoCmxJTMQq4S9L_DM8HgeSsaxhEXluWZ2r8vwCPMYOli_fYchsYtdCY11B4FqE_BcCriPh4B6520BY-tHr3H2yYcsHZGvUXNI_JHN_UGELukB2vC9PQfOyoBfI_mu5r_SqPpWF0EkrR-MTCrqJj4OpG30bUjwfpp8Ogr0vx32K5PwpHcN-dbhfDzT7DsGXzu3Us3jLR-T0Rhb-Mdksq9I-hVXluKFONLfMJLAZy51EWAOuKCnS2MU9ItpVVabJe47lN36qluD2Q63koVAeysujR1jXc-Zzf6zRZw8F17XH7N31D9V8qhpnoIpImKgQscsBjoY60cIlgCtzaXSWM257JGvFrtoHsuDSYaDzNSbwruvbgCgPjtbsvd1qmWqc2UKtTK9HXnefwQ3h3VJe2uoS28hUInaHNk-8dnZrEKcZsonFs_8P_opsgUWr4-H46Dm5g5PyxNJtsrmcX9oXAP6W-mVtZZSc3bRZ_wWxTmdR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+sensitivity+and+microvascular+weighting+of+3T+laminar+fMRI+with+GE-BOLD+using+NORDIC+and+phase+regression&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Knudsen%2C+Lasse&rft.au=Bailey%2C+Christopher+J&rft.au=Blicher%2C+Jakob+U&rft.au=Yang%2C+Yan&rft.date=2023-05-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=271&rft_id=info:doi/10.1016%2Fj.neuroimage.2023.120011&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon