Improved sensitivity and microvascular weighting of 3T laminar fMRI with GE-BOLD using NORDIC and phase regression
•We tested the feasibility of laminar BOLD fMRI at 3T.•NORDIC denoising was used to improve tSNR by a factor of ∼3.•Phase regression reduced macrovascular contamination.•With these tools, layerprofiles could be obtained robustly within and across sessions.•Improved feasibility of 3T laminar fMRI is...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 271; p. 120011 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2023
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2023.120011 |
Cover
Abstract | •We tested the feasibility of laminar BOLD fMRI at 3T.•NORDIC denoising was used to improve tSNR by a factor of ∼3.•Phase regression reduced macrovascular contamination.•With these tools, layerprofiles could be obtained robustly within and across sessions.•Improved feasibility of 3T laminar fMRI is supported thus increasing its availability.
Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is valuable as different types of cortical computations, e.g., feedforward versus feedback related activity, take place in different cortical layers. Laminar fMRI studies have almost exclusively employed 7T scanners to overcome the reduced signal stability associated with small voxels. However, such systems are relatively rare and only a subset of those are clinically approved. In the present study, we examined if the feasibility of laminar fMRI at 3T could be improved by use of NORDIC denoising and phase regression.
5 healthy subjects were scanned on a Siemens MAGNETOM Prisma 3T scanner. To assess across-session reliability, each subject was scanned in 3–8 sessions on 3–4 consecutive days. A 3D gradient echo EPI (GE-EPI) sequence was used for BOLD acquisitions (voxel size 0.82 mm isotopic, TR = 2.2 s) using a block design finger tapping paradigm. NORDIC denoising was applied to the magnitude and phase time series to overcome limitations in temporal signal-to-noise ratio (tSNR) and the denoised phase time series were subsequently used to correct for large vein contamination through phase regression.
NORDIC denoising resulted in tSNR values comparable to or higher than commonly observed at 7T. Layer-dependent activation profiles could thus be extracted robustly, within and across sessions, from regions of interest located in the hand knob of the primary motor cortex (M1). Phase regression led to substantially reduced superficial bias in obtained layer profiles, although residual macrovascular contribution remained. We believe the present results support an improved feasibility of laminar fMRI at 3T. |
---|---|
AbstractList | •We tested the feasibility of laminar BOLD fMRI at 3T.•NORDIC denoising was used to improve tSNR by a factor of ∼3.•Phase regression reduced macrovascular contamination.•With these tools, layerprofiles could be obtained robustly within and across sessions.•Improved feasibility of 3T laminar fMRI is supported thus increasing its availability.
Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is valuable as different types of cortical computations, e.g., feedforward versus feedback related activity, take place in different cortical layers. Laminar fMRI studies have almost exclusively employed 7T scanners to overcome the reduced signal stability associated with small voxels. However, such systems are relatively rare and only a subset of those are clinically approved. In the present study, we examined if the feasibility of laminar fMRI at 3T could be improved by use of NORDIC denoising and phase regression.
5 healthy subjects were scanned on a Siemens MAGNETOM Prisma 3T scanner. To assess across-session reliability, each subject was scanned in 3–8 sessions on 3–4 consecutive days. A 3D gradient echo EPI (GE-EPI) sequence was used for BOLD acquisitions (voxel size 0.82 mm isotopic, TR = 2.2 s) using a block design finger tapping paradigm. NORDIC denoising was applied to the magnitude and phase time series to overcome limitations in temporal signal-to-noise ratio (tSNR) and the denoised phase time series were subsequently used to correct for large vein contamination through phase regression.
NORDIC denoising resulted in tSNR values comparable to or higher than commonly observed at 7T. Layer-dependent activation profiles could thus be extracted robustly, within and across sessions, from regions of interest located in the hand knob of the primary motor cortex (M1). Phase regression led to substantially reduced superficial bias in obtained layer profiles, although residual macrovascular contribution remained. We believe the present results support an improved feasibility of laminar fMRI at 3T. Introduction Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is valuable as different types of cortical computations, e.g., feedforward versus feedback related activity, take place in different cortical layers. Laminar fMRI studies have almost exclusively employed 7T scanners to overcome the reduced signal stability associated with small voxels. However, such systems are relatively rare and only a subset of those are clinically approved. In the present study, we examined if the feasibility of laminar fMRI at 3T could be improved by use of NORDIC denoising and phase regression. Methods 5 healthy subjects were scanned on a Siemens MAGNETOM Prisma 3T scanner. To assess across-session reliability, each subject was scanned in 3–8 sessions on 3–4 consecutive days. A 3D gradient echo EPI (GE-EPI) sequence was used for BOLD acquisitions (voxel size 0.82 mm isotopic, TR = 2.2 s) using a block design finger tapping paradigm. NORDIC denoising was applied to the magnitude and phase time series to overcome limitations in temporal signal-to-noise ratio (tSNR) and the denoised phase time series were subsequently used to correct for large vein contamination through phase regression. Results and conclusion NORDIC denoising resulted in tSNR values comparable to or higher than commonly observed at 7T. Layer-dependent activation profiles could thus be extracted robustly, within and across sessions, from regions of interest located in the hand knob of the primary motor cortex (M1). Phase regression led to substantially reduced superficial bias in obtained layer profiles, although residual macrovascular contribution remained. We believe the present results support an improved feasibility of laminar fMRI at 3T. Introduction: Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is valuable as different types of cortical computations, e.g., feedforward versus feedback related activity, take place in different cortical layers. Laminar fMRI studies have almost exclusively employed 7T scanners to overcome the reduced signal stability associated with small voxels. However, such systems are relatively rare and only a subset of those are clinically approved. In the present study, we examined if the feasibility of laminar fMRI at 3T could be improved by use of NORDIC denoising and phase regression. Methods: 5 healthy subjects were scanned on a Siemens MAGNETOM Prisma 3T scanner. To assess across-session reliability, each subject was scanned in 3–8 sessions on 3–4 consecutive days. A 3D gradient echo EPI (GE-EPI) sequence was used for BOLD acquisitions (voxel size 0.82 mm isotopic, TR = 2.2 s) using a block design finger tapping paradigm. NORDIC denoising was applied to the magnitude and phase time series to overcome limitations in temporal signal-to-noise ratio (tSNR) and the denoised phase time series were subsequently used to correct for large vein contamination through phase regression. Results and conclusion: NORDIC denoising resulted in tSNR values comparable to or higher than commonly observed at 7T. Layer-dependent activation profiles could thus be extracted robustly, within and across sessions, from regions of interest located in the hand knob of the primary motor cortex (M1). Phase regression led to substantially reduced superficial bias in obtained layer profiles, although residual macrovascular contribution remained. We believe the present results support an improved feasibility of laminar fMRI at 3T. Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is valuable as different types of cortical computations, e.g., feedforward versus feedback related activity, take place in different cortical layers. Laminar fMRI studies have almost exclusively employed 7T scanners to overcome the reduced signal stability associated with small voxels. However, such systems are relatively rare and only a subset of those are clinically approved. In the present study, we examined if the feasibility of laminar fMRI at 3T could be improved by use of NORDIC denoising and phase regression. 5 healthy subjects were scanned on a Siemens MAGNETOM Prisma 3T scanner. To assess across-session reliability, each subject was scanned in 3-8 sessions on 3-4 consecutive days. A 3D gradient echo EPI (GE-EPI) sequence was used for BOLD acquisitions (voxel size 0.82 mm isotopic, TR = 2.2 s) using a block design finger tapping paradigm. NORDIC denoising was applied to the magnitude and phase time series to overcome limitations in temporal signal-to-noise ratio (tSNR) and the denoised phase time series were subsequently used to correct for large vein contamination through phase regression. NORDIC denoising resulted in tSNR values comparable to or higher than commonly observed at 7T. Layer-dependent activation profiles could thus be extracted robustly, within and across sessions, from regions of interest located in the hand knob of the primary motor cortex (M1). Phase regression led to substantially reduced superficial bias in obtained layer profiles, although residual macrovascular contribution remained. We believe the present results support an improved feasibility of laminar fMRI at 3T. Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is valuable as different types of cortical computations, e.g., feedforward versus feedback related activity, take place in different cortical layers. Laminar fMRI studies have almost exclusively employed 7T scanners to overcome the reduced signal stability associated with small voxels. However, such systems are relatively rare and only a subset of those are clinically approved. In the present study, we examined if the feasibility of laminar fMRI at 3T could be improved by use of NORDIC denoising and phase regression.INTRODUCTIONFunctional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is valuable as different types of cortical computations, e.g., feedforward versus feedback related activity, take place in different cortical layers. Laminar fMRI studies have almost exclusively employed 7T scanners to overcome the reduced signal stability associated with small voxels. However, such systems are relatively rare and only a subset of those are clinically approved. In the present study, we examined if the feasibility of laminar fMRI at 3T could be improved by use of NORDIC denoising and phase regression.5 healthy subjects were scanned on a Siemens MAGNETOM Prisma 3T scanner. To assess across-session reliability, each subject was scanned in 3-8 sessions on 3-4 consecutive days. A 3D gradient echo EPI (GE-EPI) sequence was used for BOLD acquisitions (voxel size 0.82 mm isotopic, TR = 2.2 s) using a block design finger tapping paradigm. NORDIC denoising was applied to the magnitude and phase time series to overcome limitations in temporal signal-to-noise ratio (tSNR) and the denoised phase time series were subsequently used to correct for large vein contamination through phase regression.METHODS5 healthy subjects were scanned on a Siemens MAGNETOM Prisma 3T scanner. To assess across-session reliability, each subject was scanned in 3-8 sessions on 3-4 consecutive days. A 3D gradient echo EPI (GE-EPI) sequence was used for BOLD acquisitions (voxel size 0.82 mm isotopic, TR = 2.2 s) using a block design finger tapping paradigm. NORDIC denoising was applied to the magnitude and phase time series to overcome limitations in temporal signal-to-noise ratio (tSNR) and the denoised phase time series were subsequently used to correct for large vein contamination through phase regression.NORDIC denoising resulted in tSNR values comparable to or higher than commonly observed at 7T. Layer-dependent activation profiles could thus be extracted robustly, within and across sessions, from regions of interest located in the hand knob of the primary motor cortex (M1). Phase regression led to substantially reduced superficial bias in obtained layer profiles, although residual macrovascular contribution remained. We believe the present results support an improved feasibility of laminar fMRI at 3T.RESULTS AND CONCLUSIONNORDIC denoising resulted in tSNR values comparable to or higher than commonly observed at 7T. Layer-dependent activation profiles could thus be extracted robustly, within and across sessions, from regions of interest located in the hand knob of the primary motor cortex (M1). Phase regression led to substantially reduced superficial bias in obtained layer profiles, although residual macrovascular contribution remained. We believe the present results support an improved feasibility of laminar fMRI at 3T. |
ArticleNumber | 120011 |
Author | Yang, Yan Zhang, Peng Lund, Torben E. Knudsen, Lasse Blicher, Jakob U. Bailey, Christopher J. |
Author_xml | – sequence: 1 givenname: Lasse orcidid: 0000-0003-0186-4209 surname: Knudsen fullname: Knudsen, Lasse email: lknud@cfin.au.dk organization: Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark – sequence: 2 givenname: Christopher J. orcidid: 0000-0003-3318-3344 surname: Bailey fullname: Bailey, Christopher J. organization: Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark – sequence: 3 givenname: Jakob U. orcidid: 0000-0003-3443-4790 surname: Blicher fullname: Blicher, Jakob U. organization: Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark – sequence: 4 givenname: Yan orcidid: 0000-0003-3001-9178 surname: Yang fullname: Yang, Yan organization: Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101400, PR China – sequence: 5 givenname: Peng surname: Zhang fullname: Zhang, Peng organization: Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101400, PR China – sequence: 6 givenname: Torben E. orcidid: 0000-0002-9002-4676 surname: Lund fullname: Lund, Torben E. organization: Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36914107$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1v0zAUhiM0xD7gLyBL3HCT4o84cW4QrBsjUqHSNK4txzlpXRKn2E6n_nucdQypV73ykf2ex_Z73svkzA4WkgQRPCOY5J82MwujG0yvVjCjmLIZoRgT8iq5ILjkackLejbVnKWCkPI8ufR-gzEuSSbeJOcsjwXBxUXiqn7rhh00yIP1JpidCXukbIN6o-OB8nrslEOPYFbrYOwKDS1iD6hTvbFxv_1xX6FHE9bo7ja9Xi5u0Ogn1c_l_U01fwJt18oDcrBy4L0Z7Nvkdas6D--e16vk17fbh_n3dLG8q-ZfF6nmBQ9pXbNcMC04rgVhmFHIatAUZznPeKE4b3TLSUlw2xIGWGclzWve1NENACEEu0qqA7cZ1EZuXXTL7eWgjHzaGNxKKheM7kA2tNC0KViraJ7hOquLNuOEK6HrUhEOkfXxwIpm_RnBB9kbr6HrlIVh9JIWIo9G03K69sORdDOMzsafRlXJSlZkZFK9f1aNdQ_Ny_P-TSYKxEEQp-C9g_ZFQrCcQiA38n8I5BQCeQhBbP181KpNUCFaH5wy3SmA6wMA4nh2Bpz02oDV0BgHOkT_zCmQL0cQ3RlrtOp-w_40xF8k3efR |
CitedBy_id | crossref_primary_10_7554_eLife_92820_3 crossref_primary_10_1162_imag_a_00217 crossref_primary_10_1162_imag_a_00426 crossref_primary_10_3389_fnins_2024_1499762 crossref_primary_10_1016_j_biopsych_2024_07_003 crossref_primary_10_7554_eLife_92820 crossref_primary_10_1038_s41380_025_02957_7 crossref_primary_10_1162_imag_a_00270 crossref_primary_10_3389_fnins_2025_1537026 crossref_primary_10_52294_001c_124631 crossref_primary_10_1162_imag_a_00325 crossref_primary_10_7498_aps_74_20241759 crossref_primary_10_1016_j_clindermatol_2025_03_005 crossref_primary_10_1162_imag_a_00257 crossref_primary_10_1162_imag_a_00477 crossref_primary_10_1162_imag_a_00333 |
Cites_doi | 10.1016/j.neuroimage.2005.04.021 10.1016/j.neuroimage.2018.06.025 10.1109/TBME.2014.2313619 10.1016/j.mri.2017.01.019 10.1016/j.neuroimage.2020.117683 10.1016/j.neuroimage.2016.02.073 10.1016/j.neuroimage.2009.05.051 10.1016/j.neuroimage.2006.08.020 10.1002/mrm.24916 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E 10.1038/nn.2303 10.1038/s41583-020-0315-1 10.1016/j.neuron.2017.11.005 10.1002/hbm.24683 10.1016/j.neuroimage.2006.01.015 10.1016/j.neuroimage.2005.01.007 10.1038/s41592-020-0941-6 10.1073/pnas.1522577113 10.1093/cercor/7.2.181 10.1016/j.neuroimage.2016.11.039 10.1093/brain/120.1.141 10.1002/mrm.10433 10.1016/j.neuroimage.2018.04.026 10.1016/j.neuroimage.2014.11.046 10.1006/nimg.2002.1082 10.1016/j.neuroimage.2015.10.025 10.1002/hbm.24042 10.1016/j.neuroimage.2017.05.022 10.1002/mrm.10041 10.1073/pnas.1907858116 10.1371/journal.pbio.3001023 10.1006/cbmr.1996.0014 10.1002/hbm.24926 10.1371/journal.pone.0060514 10.1016/j.mri.2005.12.032 10.1016/j.neuroimage.2019.02.006 10.1016/j.cobeha.2021.06.002 10.1038/s41598-019-41965-w 10.1016/j.neuroimage.2017.09.015 10.1016/0361-9230(81)90007-1 10.1016/j.cub.2020.02.046 10.1016/j.neuroimage.2010.09.025 10.1038/s41598-021-81249-w 10.1016/j.neuroimage.2017.03.063 10.1016/j.neuroimage.2017.01.028 10.1016/j.cub.2015.12.038 10.1002/mrm.1910350312 10.1177/0271678X20982382 10.1016/j.neuroimage.2014.05.079 10.1093/cercor/1.1.1 10.1016/j.neuroimage.2017.08.077 10.1016/j.neuroimage.2011.09.005 10.1016/j.neuroimage.2006.12.030 10.1126/sciadv.aav9053 10.1016/j.neuroimage.2016.06.030 10.1016/j.neuroimage.2014.06.072 10.1002/mrm.28486 10.1002/mrm.10519 10.1016/j.neuroimage.2019.116209 10.1016/j.neuroimage.2021.118724 10.1002/mrm.20221 10.1002/hbm.20936 10.1073/pnas.1507552112 10.1016/j.neuroimage.2009.10.002 10.1016/j.neuroimage.2013.03.078 10.1002/mrm.24135 10.1016/j.neuroimage.2017.04.053 10.1016/j.cub.2015.08.057 10.1016/j.neuroimage.2019.03.024 10.1093/clinchem/25.3.432 10.1016/j.neuroimage.2016.06.019 10.1038/s41598-018-35333-3 10.1002/mrm.28347 10.1016/j.mri.2017.04.008 |
ContentType | Journal Article |
Copyright | 2023 Copyright © 2023. Published by Elsevier Inc. Copyright Elsevier Limited May 1, 2023 |
Copyright_xml | – notice: 2023 – notice: Copyright © 2023. Published by Elsevier Inc. – notice: Copyright Elsevier Limited May 1, 2023 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 DOA |
DOI | 10.1016/j.neuroimage.2023.120011 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central (subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
ExternalDocumentID | oai_doaj_org_article_d27c2d73fa2640b4b7f4515a8cb9a15e 36914107 10_1016_j_neuroimage_2023_120011 S105381192300157X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SEW SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- RIG WUQ XPP ZMT 0SF CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c575t-bb3683c850b813032e4bec20465457a55dcf51910ff13e0c4926b5db023ee8883 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:26:43 EDT 2025 Fri Sep 05 11:29:03 EDT 2025 Wed Aug 13 06:22:38 EDT 2025 Wed Feb 19 02:23:55 EST 2025 Thu Apr 24 22:56:07 EDT 2025 Tue Jul 01 05:00:03 EDT 2025 Fri Feb 23 02:36:44 EST 2024 Tue Aug 26 17:21:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Primary motor cortex 3 Tesla Laminar fMRI NORDIC denoising Cortical layers Phase regression |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2023. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-bb3683c850b813032e4bec20465457a55dcf51910ff13e0c4926b5db023ee8883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0186-4209 0000-0002-9002-4676 0000-0003-3318-3344 0000-0003-3443-4790 0000-0003-3001-9178 |
OpenAccessLink | https://doaj.org/article/d27c2d73fa2640b4b7f4515a8cb9a15e |
PMID | 36914107 |
PQID | 2793937418 |
PQPubID | 2031077 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d27c2d73fa2640b4b7f4515a8cb9a15e proquest_miscellaneous_2786811298 proquest_journals_2793937418 pubmed_primary_36914107 crossref_primary_10_1016_j_neuroimage_2023_120011 crossref_citationtrail_10_1016_j_neuroimage_2023_120011 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2023_120011 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2023_120011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 2023-05-00 20230501 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2023 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Goense, Logothetis (bib0022) 2006; 24 Sharoh, van Mourik, Bains, Segaert, Weber, Hagoort, Norris (bib0080) 2019; 116 Engel, Glover, Wandell (bib0017) 1997 Curtis, Hutchison, Menon (bib0010) 2014; 100 Bandettini, Huber, Finn (bib0004) 2021; 40 De Martino, Moerel, Ugurbil, Goebel, Yacoub, Formisano (bib0012) 2015; 112 Uludaǧ, Müller-Bierl, Uǧurbil (bib0090) 2009; 48 Duvernoy, Delon, Vannson (bib0016) 1981; 7 de Hollander, van der Zwaag, Qian, Zhang, Knapen (bib0011) 2021; 228 Kashyap, Ivanov, Havlicek, Poser, Uludağ (bib0044) 2018; 168 Huber, Poser, Bandettini, Arora, Wagstyl, Cho, Goense, Nothnagel, Morgan, van den Hurk, Müller, Reynolds, Glen, Goebel, Gulban (bib0039) 2021; 237 Guidi, Huber, Lampe, Gauthier, Möller (bib0023) 2016; 141 Fracasso, Dumoulin, Petridou (bib0019) 2021; 202 Huber, Tse, Wiggins, Uludağ, Kashyap, Jangraw, Bandettini, Poser, Ivanov (bib0040) 2018; 178 Krause, Benjamins, Eck, Lührs, Hoof, Goebel (bib0053) 2019; 40 Stirnberg, Stöcker (bib0083) 2021; 85 Huber, Handwerker, Jangraw, Chen, Hall, Stüber, Gonzalez-Castillo, Ivanov, Marrett, Guidi, Goense, Poser, Bandettini (bib0035) 2017; 96 Puckett, Aquino, Robinson, Breakspear, Schira (bib0074) 2016; 139 Cox (bib0009) 1996; 29 Dumoulin, Fracasso, van der Zwaag, Siero, Petridou (bib0015) 2018; 168 Taso, Munsch, Zhao, Alsop (bib0084) 2021; 41 Dowdle, Vizioli, Moeller, Olman, Ghose, Yacoub, Ugurbil (bib0014) 2021; 2021 Klassen, L., and Menon, R.S. (2005). BOLD signal phase and magnitude dependence on vessel geometry. Proceedings of the 13th Annual Meeting ISMRM, Miami, FL, USA, 2005; 496. Shmuel, Yacoub, Chaimow, Logothetis, Ugurbil (bib0081) 2007; 35 Yousry, Schmid, Alkadhi, Schmidt, Peraud, Buettner, Winkler (bib0097) 1997; 120 Yu, Huber, Yang, Jangraw, Handwerker, Molfese, Chen, Ejima, Wu, Bandettini (bib0099) 2019; 5 Scheeringa, Bonnefond, van Mourik, Jensen, Norris, Koopmans (bib0077) 2022 Markuerkiaga, Marques, Bains, Norris (bib0060) 2021; 11 Aitken, Menelaou, Warrington, Koolschijn, Corbin, Callaghan, Kok (bib0001) 2020; 18 Kok, Bains, Van Mourik, Norris, De Lange (bib0050) 2016; 26 Glover, Li, Ress (bib0021) 2000; 44 Kriegeskorte, Simmons, Bellgowan, Baker (bib0055) 2009; 12 Lu, Golay, Pekar, Van Zijl (bib0058) 2003; 50 Moeller, Pisharady, Ramanna, Lenglet, Wu, Dowdle, Yacoub, Uğurbil, Akçakaya (bib0067) 2021; 226 Shao, Guo, Shou, Wang, Jann, Yan, Toga, Zhang, Wang (bib0079) 2021; 245 Friston, Williams, Howard, Frackowiak, Turner (bib0020) 1996; 35 Krieger, Gauthier, Ivanov, Huber, Roggenhofer, Sehm, Turner, Egan (bib0054) 2014; 101 Menon (bib0065) 2002; 47 Koopmans, Barth, Norris (bib0051) 2010; 31 Zaretskaya, Bause, Polimeni, Grassi, Scheffler, Bartels (bib0101) 2020; 220 Cornbleet, Gochman (bib0008) 1979; 25 Huang, Correia, Rua, Rodgers, Henson, Carlin (bib0030) 2021; 15 Koopmans, Yacoub (bib0052) 2019; 197 Menon (bib0066) 2012; 62 Turner (bib0087) 2002; 16 Ress, Glover, Liu, Wandell (bib0075) 2007; 34 Avants, Tustison, Song, Cook, Klein, Gee (bib0002) 2011; 54 Marquardt, Schneider, Gulban, Ivanov, Uludağ (bib0062) 2018; 39 Liu, Guo, Qian, Zhang, Sun, Wang, He, Zhang (bib0057) 2020 Wu, Chu, Lin, Kuo, Lin (bib0095) 2018; 8 Kashyap, Ivanov, Havlicek, Huber, Poser, Uludağ (bib0043) 2021; 16 Muckli, De Martino, Vizioli, Petro, Smith, Ugurbil, Goebel, Yacoub (bib0070) 2015; 25 Kay, Jamison, Zhang, Uğurbil (bib0047) 2020; 17 Chai, Li, Huber, Poser, Bandettini (bib0006) 2020; 207 Huber, Finn, Handwerker, Bönstrup, Glen, Kashyap, Ivanov, Petridou, Marrett, Goense, Poser, Bandettini (bib0033) 2020; 208 Hall (bib0026) 2022 Uğurbil (bib0089) 2021; 18 Rua, Costagli, Symms, Biagi, Donatelli, Cosottini, Del Guerra, Tosetti (bib0076) 2017; 40 Persichetti, Avery, Huber, Merriam, Martin (bib0072) 2020; 30 Chaimow, Yacoub, Uğurbil, Shmuel (bib0007) 2018; 164 McColgan, Joubert, Tabrizi, Rees (bib0064) 2020; 21 Huber, Kronbichler, Stirnberg, Poser, Fernández-Cabello, Stöcker, Kronbichler (bib0031) 2021 Polimeni, Renvall, Zaretskaya, Fischl (bib0073) 2018; 168 Scheeringa, Koopmans, Van Mourik, Jensen, Norris (bib0078) 2016; 113 Huber, Kronbichler, Stirnberg, Kronbichler, Fernandez-Cabello, Stöcker, Poser (bib0032) 2021; 34 Huber, Ivanov, Handwerker, Marrett, Guidi, Uludağ, Bandettini, Poser (bib0037) 2018; 164 Moerel, De Martino, Kemper, Schmitter, Vu, Uğurbil, Formisano, Yacoub (bib0068) 2018; 164 Waehnert, Dinse, Weiss, Streicher, Waehnert, Geyer, Turner, Bazin (bib0094) 2014; 93 Huber, Goense, Kennerley, Trampel, Guidi, Reimer, Ivanov, Neef, Gauthier, Turner, Möller (bib0034) 2015; 107 Huber L, Ivanov D, Krieger SN, Streicher MN, Mildner T, Poser BA, Möller HE, Turner R. Slab-selective, BOLD-corrected VASO at 7 Tesla provides measures of cerebral blood volume reactivity with high signal-to-noise ratio. Magn Reson Med. 2014 Jul;72(1):137-48. doi: 10.1002/mrm.24916. Epub 2013 Aug 20. PMID: 23963641. Pais-Roldán, Yun, Palomero-Gallagher, Shah (bib0071) 2020 van der Zwaag, Buur, Fracasso, van Doesum, Uludağ, Versluis, Marques (bib0091) 2018; 176 Moerel, De Martino, Uğurbil, Yacoub, Formisano (bib0069) 2019; 9 Jochimsen, Norris, Mildner, Möller (bib0041) 2004; 52 Kashyap, S., Huber, L., Ivanov, D., Kurban, D., Feinberg, D.A., Poser, B.A., 2020. Characterising the effect of flip angle in the acquisition of sub-millimetre resolution 3D GE-EPI at 7T. Proc. Intl. Soc. Mag. Reson. Med. 28 (2020), abstract #3824 Yacoub, Duong, Van De Moortele, Lindquist, Adriany, Kim, Uǧurbil, Hu (bib0096) 2003; 49 De Martino, Zimmermann, Muckli, Ugurbil, Yacoub, Goebel (bib0013) 2013; 8 Markuerkiaga, Barth, Norris (bib0059) 2016; 132 Kashyap, Ivanov, Havlicek, Sengupta, Poser, Uludağ (bib0045) 2018; 8 Havlicek, Uludağ (bib0028) 2020; 204 Li, Chang, Liu, Wang, Cui, Chen, Jin, Wang, Pei, Wisnieff, Spincemaille, Zhang, Wang (bib0056) 2012; 68 Beckett, Dadakova, Townsend, Huber, Park, Feinberg (bib0005) 2020; 84 Tjandra, Brooks, Figueiredo, Wise, Matthews, Tracey (bib0085) 2005; 27 Yu, Huber, Yang, Fukunaga, Chai, Jangraw, Chen, Handwerker, Molfese, Ejima, Sadato, Wu, Bandettini (bib0098) 2022; 248 Triantafyllou, Hoge, Krueger, Wiggins, Potthast, Wiggins, Wald (bib0086) 2005; 26 Kay, Jamison, Vizioli, Zhang, Margalit, Ugurbil (bib0046) 2019; 189 Marques, Kober, Krueger, van der Zwaag, Van de Moortele, Gruetter (bib0063) 2010; 49 Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (bib0100) 2006; 31 Han, Eun, Cho, Uluda, Kim (bib0027) 2021; 241 Haacke, Lindskogj, Lin (bib0025) 1991; 92 Vicente, I. De, Uruñuela, E., Termenon, M., Caballero-gaudes, C., 2021. Dephasing the speaking brain: cleaning covert sentence production activation maps with a phase-based fMRI data analysis. Proc. Intl. Soc. Mag. Reson. Med. 29 (2021), abstract #2691 Guidi, Huber, Lampe, Merola, Ihle, Möller (bib0024) 2020; 41 Heinzle, Koopmans, den Ouden, Raman, Stephan (bib0029) 2016; 125 Stanley, Kuurstra, Klassen, Menon, Gati (bib0082) 2020 Báez-Yánez, Ehses, Mirkes, Tsai, Kleinfeld, Scheffler (bib0003) 2017; 163 Markuerkiaga, Marques, Gallagher, Norris (bib0061) 2021; 353 Ugurbil (bib0088) 2014; 61 Vizioli, Moeller, Dowdle, Akçakaya, De Martino, Yacoub, Uğurbil (bib0093) 2021 Kim, Ress (bib0048) 2017; 39 Felleman, Van Essen (bib0018) 1991; 1 Puckett (10.1016/j.neuroimage.2023.120011_bib0074) 2016; 139 Huber (10.1016/j.neuroimage.2023.120011_bib0031) 2021 10.1016/j.neuroimage.2023.120011_bib0092 Kashyap (10.1016/j.neuroimage.2023.120011_bib0043) 2021; 16 Kriegeskorte (10.1016/j.neuroimage.2023.120011_bib0055) 2009; 12 Báez-Yánez (10.1016/j.neuroimage.2023.120011_bib0003) 2017; 163 Chaimow (10.1016/j.neuroimage.2023.120011_bib0007) 2018; 164 Markuerkiaga (10.1016/j.neuroimage.2023.120011_bib0059) 2016; 132 Koopmans (10.1016/j.neuroimage.2023.120011_bib0052) 2019; 197 Kashyap (10.1016/j.neuroimage.2023.120011_bib0044) 2018; 168 Glover (10.1016/j.neuroimage.2023.120011_bib0021) 2000; 44 Moerel (10.1016/j.neuroimage.2023.120011_bib0068) 2018; 164 Pais-Roldán (10.1016/j.neuroimage.2023.120011_bib0071) 2020 Shmuel (10.1016/j.neuroimage.2023.120011_bib0081) 2007; 35 Bandettini (10.1016/j.neuroimage.2023.120011_bib0004) 2021; 40 Zaretskaya (10.1016/j.neuroimage.2023.120011_bib0101) 2020; 220 Tjandra (10.1016/j.neuroimage.2023.120011_bib0085) 2005; 27 Cornbleet (10.1016/j.neuroimage.2023.120011_bib0008) 1979; 25 Curtis (10.1016/j.neuroimage.2023.120011_bib0010) 2014; 100 Marques (10.1016/j.neuroimage.2023.120011_bib0063) 2010; 49 Kay (10.1016/j.neuroimage.2023.120011_bib0046) 2019; 189 Yu (10.1016/j.neuroimage.2023.120011_bib0099) 2019; 5 Marquardt (10.1016/j.neuroimage.2023.120011_bib0062) 2018; 39 de Hollander (10.1016/j.neuroimage.2023.120011_bib0011) 2021; 228 Markuerkiaga (10.1016/j.neuroimage.2023.120011_bib0061) 2021; 353 Kok (10.1016/j.neuroimage.2023.120011_bib0050) 2016; 26 Wu (10.1016/j.neuroimage.2023.120011_bib0095) 2018; 8 Scheeringa (10.1016/j.neuroimage.2023.120011_bib0078) 2016; 113 Waehnert (10.1016/j.neuroimage.2023.120011_bib0094) 2014; 93 Markuerkiaga (10.1016/j.neuroimage.2023.120011_bib0060) 2021; 11 Menon (10.1016/j.neuroimage.2023.120011_bib0066) 2012; 62 Moerel (10.1016/j.neuroimage.2023.120011_bib0069) 2019; 9 Haacke (10.1016/j.neuroimage.2023.120011_bib0025) 1991; 92 Cox (10.1016/j.neuroimage.2023.120011_bib0009) 1996; 29 Aitken (10.1016/j.neuroimage.2023.120011_bib0001) 2020; 18 Friston (10.1016/j.neuroimage.2023.120011_bib0020) 1996; 35 Triantafyllou (10.1016/j.neuroimage.2023.120011_bib0086) 2005; 26 Turner (10.1016/j.neuroimage.2023.120011_bib0087) 2002; 16 Beckett (10.1016/j.neuroimage.2023.120011_bib0005) 2020; 84 Guidi (10.1016/j.neuroimage.2023.120011_bib0024) 2020; 41 Sharoh (10.1016/j.neuroimage.2023.120011_bib0080) 2019; 116 Persichetti (10.1016/j.neuroimage.2023.120011_bib0072) 2020; 30 Stanley (10.1016/j.neuroimage.2023.120011_bib0082) 2020 Huber (10.1016/j.neuroimage.2023.120011_bib0040) 2018; 178 Rua (10.1016/j.neuroimage.2023.120011_bib0076) 2017; 40 van der Zwaag (10.1016/j.neuroimage.2023.120011_bib0091) 2018; 176 Kim (10.1016/j.neuroimage.2023.120011_bib0048) 2017; 39 Menon (10.1016/j.neuroimage.2023.120011_bib0065) 2002; 47 Stirnberg (10.1016/j.neuroimage.2023.120011_bib0083) 2021; 85 Huber (10.1016/j.neuroimage.2023.120011_bib0032) 2021; 34 Engel (10.1016/j.neuroimage.2023.120011_bib0017) 1997 Krause (10.1016/j.neuroimage.2023.120011_bib0053) 2019; 40 Polimeni (10.1016/j.neuroimage.2023.120011_bib0073) 2018; 168 Heinzle (10.1016/j.neuroimage.2023.120011_bib0029) 2016; 125 Uğurbil (10.1016/j.neuroimage.2023.120011_bib0089) 2021; 18 Liu (10.1016/j.neuroimage.2023.120011_bib0057) 2020 Chai (10.1016/j.neuroimage.2023.120011_bib0006) 2020; 207 Han (10.1016/j.neuroimage.2023.120011_bib0027) 2021; 241 Lu (10.1016/j.neuroimage.2023.120011_bib0058) 2003; 50 Uludaǧ (10.1016/j.neuroimage.2023.120011_bib0090) 2009; 48 De Martino (10.1016/j.neuroimage.2023.120011_bib0012) 2015; 112 10.1016/j.neuroimage.2023.120011_bib0049 Huber (10.1016/j.neuroimage.2023.120011_bib0039) 2021; 237 Jochimsen (10.1016/j.neuroimage.2023.120011_bib0041) 2004; 52 Hall (10.1016/j.neuroimage.2023.120011_bib0026) 2022 Havlicek (10.1016/j.neuroimage.2023.120011_bib0028) 2020; 204 Moeller (10.1016/j.neuroimage.2023.120011_bib0067) 2021; 226 Dowdle (10.1016/j.neuroimage.2023.120011_bib0014) 2021; 2021 10.1016/j.neuroimage.2023.120011_bib0042 10.1016/j.neuroimage.2023.120011_bib0038 Muckli (10.1016/j.neuroimage.2023.120011_bib0070) 2015; 25 Goense (10.1016/j.neuroimage.2023.120011_bib0022) 2006; 24 Felleman (10.1016/j.neuroimage.2023.120011_bib0018) 1991; 1 Fracasso (10.1016/j.neuroimage.2023.120011_bib0019) 2021; 202 Kashyap (10.1016/j.neuroimage.2023.120011_bib0045) 2018; 8 Yushkevich (10.1016/j.neuroimage.2023.120011_bib0100) 2006; 31 Kay (10.1016/j.neuroimage.2023.120011_bib0047) 2020; 17 Huber (10.1016/j.neuroimage.2023.120011_bib0034) 2015; 107 Huber (10.1016/j.neuroimage.2023.120011_bib0037) 2018; 164 Vizioli (10.1016/j.neuroimage.2023.120011_bib0093) 2021 Yacoub (10.1016/j.neuroimage.2023.120011_bib0096) 2003; 49 McColgan (10.1016/j.neuroimage.2023.120011_bib0064) 2020; 21 Huang (10.1016/j.neuroimage.2023.120011_bib0030) 2021; 15 Ress (10.1016/j.neuroimage.2023.120011_bib0075) 2007; 34 Yu (10.1016/j.neuroimage.2023.120011_bib0098) 2022; 248 Shao (10.1016/j.neuroimage.2023.120011_bib0079) 2021; 245 Huber (10.1016/j.neuroimage.2023.120011_bib0035) 2017; 96 Ugurbil (10.1016/j.neuroimage.2023.120011_bib0088) 2014; 61 Li (10.1016/j.neuroimage.2023.120011_bib0056) 2012; 68 De Martino (10.1016/j.neuroimage.2023.120011_bib0013) 2013; 8 Koopmans (10.1016/j.neuroimage.2023.120011_bib0051) 2010; 31 Huber (10.1016/j.neuroimage.2023.120011_bib0033) 2020; 208 Taso (10.1016/j.neuroimage.2023.120011_bib0084) 2021; 41 Krieger (10.1016/j.neuroimage.2023.120011_bib0054) 2014; 101 Duvernoy (10.1016/j.neuroimage.2023.120011_bib0016) 1981; 7 Scheeringa (10.1016/j.neuroimage.2023.120011_bib0077) 2022 Dumoulin (10.1016/j.neuroimage.2023.120011_bib0015) 2018; 168 Yousry (10.1016/j.neuroimage.2023.120011_bib0097) 1997; 120 Avants (10.1016/j.neuroimage.2023.120011_bib0002) 2011; 54 Guidi (10.1016/j.neuroimage.2023.120011_bib0023) 2016; 141 |
References_xml | – start-page: 1229 year: 2021 ident: bib0031 article-title: Evaluating the capabilities and challenges of layer-fMRI VASO at 3T publication-title: Proceedings of the Annual Meeting of the Organization for Human Brain Mapping – volume: 8 start-page: 1 year: 2018 end-page: 14 ident: bib0095 article-title: Feature-dependent intrinsic functional connectivity across cortical depths in the human auditory cortex publication-title: Sci. Rep. – volume: 26 start-page: 371 year: 2016 end-page: 376 ident: bib0050 article-title: Selective activation of the deep layers of the human primary visual cortex by top-down feedback publication-title: Curr. Biol. – volume: 113 start-page: 6761 year: 2016 end-page: 6766 ident: bib0078 article-title: The relationship between oscillatory EEG activity and the laminar-specific BOLD signal publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 93 start-page: 210 year: 2014 end-page: 220 ident: bib0094 article-title: Anatomically motivated modeling of cortical laminae publication-title: NeuroImage – volume: 21 start-page: 401 year: 2020 end-page: 415 ident: bib0064 article-title: The human motor cortex microcircuit: insights for neurodegenerative disease publication-title: Nat. Rev. Neurosci. – volume: 178 start-page: 769 year: 2018 end-page: 779 ident: bib0040 article-title: Ultra-high resolution blood volume fMRI and BOLD fMRI in humans at 9.4 T: capabilities and challenges publication-title: NeuroImage – volume: 24 start-page: 381 year: 2006 end-page: 392 ident: bib0022 article-title: Laminar specificity in monkey V1 using high-resolution SE-fMRI publication-title: Magn. Reson. Imaging – year: 2020 ident: bib0082 article-title: Effects of phase regression on high-resolution functional MRI of the primary visual cortex publication-title: NeuroImage – year: 2020 ident: bib0057 article-title: Layer-dependent multiplicative effects of spatial attention on contrast responses in human early visual cortex publication-title: Prog. Neurobiol. – volume: 120 start-page: 141 year: 1997 end-page: 157 ident: bib0097 article-title: Localization of the motor hand area to a knob on the precentral gyrus. A new landmark publication-title: Brain – volume: 17 start-page: 1033 year: 2020 end-page: 1039 ident: bib0047 article-title: A temporal decomposition method for identifying venous effects in task-based fMRI publication-title: Nat. Methods – volume: 11 start-page: 1 year: 2021 end-page: 13 ident: bib0060 article-title: An publication-title: Sci. Rep. – volume: 44 start-page: 162 year: 2000 end-page: 167 ident: bib0021 article-title: Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR publication-title: Magn. Reson. Med. – start-page: 1 year: 2020 end-page: 25 ident: bib0071 article-title: Cortical depth-dependent human fMRI of resting-state networks using EPIK publication-title: BioRxiv – volume: 68 start-page: 1563 year: 2012 end-page: 1569 ident: bib0056 article-title: Reducing the object orientation dependence of susceptibility effects in gradient echo MRI through quantitative susceptibility mapping publication-title: Magn. Reson. Med. – volume: 27 start-page: 393 year: 2005 end-page: 401 ident: bib0085 article-title: Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: implications for clinical trial design publication-title: NeuroImage – volume: 96 start-page: 1253 year: 2017 end-page: 1263 ident: bib0035 article-title: High-resolution CBV-fMRI allows mapping of laminar activity and connectivity of cortical input and output in human M1 publication-title: Neuron – volume: 12 start-page: 535 year: 2009 end-page: 540 ident: bib0055 article-title: Circular analysis in systems neuroscience: the dangers of double dipping publication-title: Nat. Neurosci. – volume: 50 start-page: 263 year: 2003 end-page: 274 ident: bib0058 article-title: Functional magnetic resonance imaging based on changes in vascular space occupancy publication-title: Magn. Reson. Med. – volume: 15 start-page: 1 year: 2021 end-page: 16 ident: bib0030 article-title: Correcting for superficial bias in 7T gradient echo fMRI publication-title: Front. Neurosci. – volume: 5 start-page: 1 year: 2019 end-page: 10 ident: bib0099 article-title: Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex publication-title: Sci. Adv. – reference: Kashyap, S., Huber, L., Ivanov, D., Kurban, D., Feinberg, D.A., Poser, B.A., 2020. Characterising the effect of flip angle in the acquisition of sub-millimetre resolution 3D GE-EPI at 7T. Proc. Intl. Soc. Mag. Reson. Med. 28 (2020), abstract #3824 – volume: 85 start-page: 1540 year: 2021 end-page: 1551 ident: bib0083 article-title: Segmented K-space blipped-controlled aliasing in parallel imaging for high spatiotemporal resolution EPI publication-title: Magn. Reson. Med. – volume: 197 start-page: 668 year: 2019 end-page: 676 ident: bib0052 article-title: Strategies and prospects for cortical depth dependent T2 and T2* weighted BOLD fMRI studies publication-title: NeuroImage – volume: 52 start-page: 724 year: 2004 end-page: 732 ident: bib0041 article-title: Quantifying the intra- and extravascular contributions to spin-echo fMRI at 3 T publication-title: Magn. Reson. Med. – volume: 168 start-page: 345 year: 2018 end-page: 357 ident: bib0015 article-title: Ultra-high field MRI: advancing systems neuroscience towards mesoscopic human brain function publication-title: NeuroImage – volume: 40 start-page: 98 year: 2017 end-page: 108 ident: bib0076 article-title: Characterization of high-resolution Gradient Echo and Spin Echo EPI for fMRI in the human visual cortex at 7 T publication-title: Magn. Reson. Imaging – volume: 7 start-page: 519 year: 1981 end-page: 579 ident: bib0016 article-title: Cortical blood vessels of the human brain publication-title: Brain Res. Bull. – volume: 241 year: 2021 ident: bib0027 article-title: Improvement of sensitivity and specificity for laminar BOLD fMRI with double spin-echo EPI in humans at 7 T publication-title: NeuroImage – volume: 248 year: 2022 ident: bib0098 article-title: Layer-specific activation in human primary somatosensory cortex during tactile temporal prediction error processing publication-title: NeuroImage – volume: 18 start-page: 1 year: 2020 end-page: 19 ident: bib0001 article-title: Prior expectations evoke stimulus-specific activity in the deep layers of the primary visual cortex publication-title: PLoS Biol. – volume: 61 start-page: 1364 year: 2014 end-page: 1379 ident: bib0088 article-title: Magnetic resonance imaging at ultrahigh fields publication-title: IEEE Trans. Biomed. Eng. – volume: 84 start-page: 3128 year: 2020 end-page: 3145 ident: bib0005 article-title: Comparison of BOLD and CBV using 3D EPI and 3D GRASE for cortical layer functional MRI at 7 T publication-title: Magn. Reson. Med. – year: 2022 ident: bib0026 article-title: Linear Deming Regression – volume: 34 start-page: 1 year: 2021 end-page: 204 ident: bib0032 article-title: Does the field strength matter? Comparing layer-fMRI VASO across 3 T, 7 T, and 9.4 T publication-title: ESMRMB – volume: 237 year: 2021 ident: bib0039 article-title: LayNii: a software suite for layer-fMRI publication-title: NeuroImage – volume: 1 start-page: 1 year: 1991 end-page: 47 ident: bib0018 article-title: Distributed hierarchical processing in the primate cerebral cortex publication-title: Cereb. Cortex – volume: 202 year: 2021 ident: bib0019 article-title: Point-spread function of the BOLD response across columns and cortical depth in human extra-striate cortex publication-title: Prog. Neurobiol. – volume: 101 start-page: 8 year: 2014 end-page: 20 ident: bib0054 article-title: Regional reproducibility of calibrated BOLD functional MRI: implications for the study of cognition and plasticity publication-title: NeuroImage – volume: 41 start-page: 1899 year: 2021 end-page: 1911 ident: bib0084 article-title: Regional and depth-dependence of cortical blood-flow assessed with high-resolution arterial spin labeling (ASL) publication-title: J. Cereb. Blood Flow Metab. – volume: 9 start-page: 1 year: 2019 end-page: 9 ident: bib0069 article-title: Processing complexity increases in superficial layers of human primary auditory cortex publication-title: Sci. Rep. – volume: 54 start-page: 2033 year: 2011 end-page: 2044 ident: bib0002 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: NeuroImage – volume: 228 year: 2021 ident: bib0011 article-title: Ultra-high field fMRI reveals origins of feedforward and feedback activity within laminae of human ocular dominance columns publication-title: NeuroImage – volume: 49 start-page: 655 year: 2003 end-page: 664 ident: bib0096 article-title: Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields publication-title: Magn. Reson. Med. – volume: 48 start-page: 150 year: 2009 end-page: 165 ident: bib0090 article-title: An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging publication-title: NeuroImage – volume: 8 start-page: 30 year: 2013 end-page: 32 ident: bib0013 article-title: Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE publication-title: PLoS One – volume: 139 start-page: 240 year: 2016 end-page: 248 ident: bib0074 article-title: The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex publication-title: NeuroImage – volume: 92 start-page: 126 year: 1991 end-page: 145 ident: bib0025 article-title: A fast, iterative, partial-fourier technique capable of local phase recovery publication-title: J. Magn. Reson. – volume: 208 year: 2020 ident: bib0033 article-title: Sub-millimeter fMRI reveals multiple topographical digit representations that form action maps in human motor cortex publication-title: NeuroImage – volume: 35 start-page: 346 year: 1996 end-page: 355 ident: bib0020 article-title: Movement-related effects in fMRI time-series publication-title: Magn. Reson. Med. – volume: 353 year: 2021 ident: bib0061 article-title: Estimation of laminar BOLD activation profiles using deconvolution with a physiological point spread function publication-title: J. Neurosci. Methods – volume: 18 year: 2021 ident: bib0089 article-title: Ultrahigh field and ultrahigh resolution fMRI publication-title: Curr. Opin. Biomed. Eng. – volume: 220 year: 2020 ident: bib0101 article-title: Eye-selective fMRI activity in human primary visual cortex: comparison between 3 T and 9.4 T, and effects across cortical depth publication-title: NeuroImage – volume: 207 year: 2020 ident: bib0006 article-title: Integrated VASO and perfusion contrast: a new tool for laminar functional MRI publication-title: NeuroImage – volume: 112 start-page: 16036 year: 2015 end-page: 16041 ident: bib0012 article-title: Frequency preference and attention effects across cortical depths in the human primary auditory cortex publication-title: Proc. Natl. Acad. Sci. – volume: 100 start-page: 51 year: 2014 end-page: 59 ident: bib0010 article-title: Phase based venous suppression in resting-state BOLD GE-fMRI publication-title: NeuroImage – reference: Huber L, Ivanov D, Krieger SN, Streicher MN, Mildner T, Poser BA, Möller HE, Turner R. Slab-selective, BOLD-corrected VASO at 7 Tesla provides measures of cerebral blood volume reactivity with high signal-to-noise ratio. Magn Reson Med. 2014 Jul;72(1):137-48. doi: 10.1002/mrm.24916. Epub 2013 Aug 20. PMID: 23963641. – volume: 8 start-page: 1 year: 2018 end-page: 11 ident: bib0045 article-title: Resolving laminar activation in human V1 using ultra-high spatial resolution fMRI at 7T publication-title: Sci. Rep. – volume: 31 start-page: 1297 year: 2010 end-page: 1304 ident: bib0051 article-title: Layer-specific BOLD activation in human V1 publication-title: Hum. Brain Mapp. – volume: 25 start-page: 432 year: 1979 ident: bib0008 article-title: Incorrect least-squares regression coefficients in method comparison analysis publication-title: Clin. Chem. – volume: 16 start-page: 1062 year: 2002 end-page: 1067 ident: bib0087 article-title: How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes publication-title: NeuroImage – volume: 62 start-page: 970 year: 2012 end-page: 974 ident: bib0066 article-title: The great brain versus vein debate publication-title: NeuroImage – start-page: 12 year: 2021 ident: bib0093 article-title: Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging publication-title: Nat. Commun. – volume: 226 year: 2021 ident: bib0067 article-title: NOise reduction with distribution corrected (NORDIC) PCA in dMRI with complex-valued parameter-free locally low-rank processing publication-title: NeuroImage – volume: 41 start-page: 2014 year: 2020 end-page: 2027 ident: bib0024 article-title: Cortical laminar resting-state signal fluctuations scale with the hypercapnic blood oxygenation level-dependent response publication-title: Hum. Brain Mapp. – volume: 49 start-page: 1271 year: 2010 end-page: 1281 ident: bib0063 article-title: MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field publication-title: NeuroImage – volume: 40 start-page: 189 year: 2021 end-page: 200 ident: bib0004 article-title: Challenges and opportunities of mesoscopic brain mapping with fMRI publication-title: Curr. Opin. Behav. Sci. – volume: 16 start-page: 1 year: 2021 end-page: 23 ident: bib0043 article-title: Sub-millimetre resolution laminar fMRI using arterial spin labelling in humans at 7 T publication-title: PLoS One – volume: 116 start-page: 21185 year: 2019 end-page: 21190 ident: bib0080 article-title: Laminar specific fMRI reveals directed interactions in distributed networks during language processing publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 39 start-page: 53 year: 2017 end-page: 63 ident: bib0048 article-title: Reliability of the depth-dependent high-resolution BOLD hemodynamic response in human visual cortex and vicinity publication-title: Magn. Reson. Imaging – volume: 132 start-page: 491 year: 2016 end-page: 498 ident: bib0059 article-title: A cortical vascular model for examining the specificity of the laminar BOLD signal publication-title: NeuroImage – volume: 31 start-page: 1116 year: 2006 end-page: 1128 ident: bib0100 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: NeuroImage – volume: 40 start-page: 4026 year: 2019 end-page: 4037 ident: bib0053 article-title: Active head motion reduction in magnetic resonance imaging using tactile feedback publication-title: Hum. Brain Mapp. – volume: 204 year: 2020 ident: bib0028 article-title: A dynamical model of the laminar BOLD response publication-title: NeuroImage – volume: 176 start-page: 41 year: 2018 end-page: 55 ident: bib0091 article-title: Distortion-matched T1 maps and unbiased T1-weighted images as anatomical reference for high-resolution fMRI publication-title: NeuroImage – volume: 34 start-page: 74 year: 2007 end-page: 84 ident: bib0075 article-title: Laminar profiles of functional activity in the human brain publication-title: NeuroImage – volume: 39 start-page: 2812 year: 2018 end-page: 2827 ident: bib0062 article-title: Cortical depth profiles of luminance contrast responses in human V1 and V2 using 7 T fMRI publication-title: Hum. Brain Mapp. – volume: 47 start-page: 1 year: 2002 end-page: 9 ident: bib0065 article-title: Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI publication-title: Magn. Reson. Med. – start-page: 1 year: 2022 end-page: 13 ident: bib0077 article-title: Relating neural oscillations to laminar fMRI connectivity in visual cortex publication-title: Cereb. Cortex – year: 1997 ident: bib0017 article-title: Retinotopic organization in human visual cortex and the spatial precision of functional MRI publication-title: Cereb. Cortex – volume: 189 start-page: 847 year: 2019 end-page: 869 ident: bib0046 article-title: A critical assessment of data quality and venous effects in sub-millimeter fMRI publication-title: NeuroImage – volume: 35 start-page: 539 year: 2007 end-page: 552 ident: bib0081 article-title: Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla publication-title: NeuroImage – volume: 29 start-page: 162 year: 1996 end-page: 173 ident: bib0009 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput. Biomed. Res. – volume: 164 start-page: 18 year: 2018 end-page: 31 ident: bib0068 article-title: Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field publication-title: NeuroImage – volume: 164 start-page: 131 year: 2018 end-page: 143 ident: bib0037 article-title: Techniques for blood volume fMRI with VASO: from low-resolution mapping towards sub-millimeter layer-dependent applications publication-title: NeuroImage – volume: 26 start-page: 243 year: 2005 end-page: 250 ident: bib0086 article-title: Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters publication-title: NeuroImage – volume: 2021 year: 2021 ident: bib0014 article-title: Improving sensitivity to functional responses without a loss of spatiotemporal precision in human brain imaging publication-title: BioRxiv – volume: 168 start-page: 296 year: 2018 end-page: 320 ident: bib0073 article-title: Analysis strategies for high-resolution UHF-fMRI data publication-title: NeuroImage – volume: 163 start-page: 13 year: 2017 end-page: 23 ident: bib0003 article-title: The impact of vessel size, orientation and intravascular contribution on the neurovascular fingerprint of BOLD bSSFP fMRI publication-title: NeuroImage – volume: 125 start-page: 556 year: 2016 end-page: 570 ident: bib0029 article-title: A hemodynamic model for layered BOLD signals publication-title: NeuroImage – reference: Klassen, L., and Menon, R.S. (2005). BOLD signal phase and magnitude dependence on vessel geometry. Proceedings of the 13th Annual Meeting ISMRM, Miami, FL, USA, 2005; 496. – volume: 245 year: 2021 ident: bib0079 article-title: Laminar perfusion imaging with zoomed arterial spin labeling at 7 Tesla publication-title: NeuroImage – volume: 168 start-page: 332 year: 2018 end-page: 344 ident: bib0044 article-title: Impact of acquisition and analysis strategies on cortical depth-dependent fMRI publication-title: NeuroImage – volume: 30 start-page: 1721 year: 2020 end-page: 1725 ident: bib0072 article-title: Layer-specific contributions to imagined and executed hand movements in human primary motor cortex publication-title: Curr. Biol. – volume: 164 start-page: 32 year: 2018 end-page: 47 ident: bib0007 article-title: Spatial specificity of the functional MRI blood oxygenation response relative to neuronal activity publication-title: NeuroImage – volume: 107 start-page: 23 year: 2015 end-page: 33 ident: bib0034 article-title: Cortical lamina-dependent blood volume changes in human brain at 7T publication-title: NeuroImage – volume: 141 start-page: 250 year: 2016 end-page: 261 ident: bib0023 article-title: Lamina-dependent calibrated BOLD response in human primary motor cortex publication-title: NeuroImage – volume: 25 start-page: 2690 year: 2015 end-page: 2695 ident: bib0070 article-title: Contextual feedback to superficial layers of V1 publication-title: Curr. Biol. – reference: Vicente, I. De, Uruñuela, E., Termenon, M., Caballero-gaudes, C., 2021. Dephasing the speaking brain: cleaning covert sentence production activation maps with a phase-based fMRI data analysis. Proc. Intl. Soc. Mag. Reson. Med. 29 (2021), abstract #2691 – volume: 27 start-page: 393 issue: 2 year: 2005 ident: 10.1016/j.neuroimage.2023.120011_bib0085 article-title: Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: implications for clinical trial design publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.04.021 – volume: 178 start-page: 769 issue: May year: 2018 ident: 10.1016/j.neuroimage.2023.120011_bib0040 article-title: Ultra-high resolution blood volume fMRI and BOLD fMRI in humans at 9.4 T: capabilities and challenges publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.06.025 – volume: 61 start-page: 1364 issue: 5 year: 2014 ident: 10.1016/j.neuroimage.2023.120011_bib0088 article-title: Magnetic resonance imaging at ultrahigh fields publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2313619 – volume: 39 start-page: 53 year: 2017 ident: 10.1016/j.neuroimage.2023.120011_bib0048 article-title: Reliability of the depth-dependent high-resolution BOLD hemodynamic response in human visual cortex and vicinity publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2017.01.019 – volume: 228 year: 2021 ident: 10.1016/j.neuroimage.2023.120011_bib0011 article-title: Ultra-high field fMRI reveals origins of feedforward and feedback activity within laminae of human ocular dominance columns publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117683 – volume: 132 start-page: 491 year: 2016 ident: 10.1016/j.neuroimage.2023.120011_bib0059 article-title: A cortical vascular model for examining the specificity of the laminar BOLD signal publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.02.073 – volume: 48 start-page: 150 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2023.120011_bib0090 article-title: An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.051 – volume: 34 start-page: 74 issue: 1 year: 2007 ident: 10.1016/j.neuroimage.2023.120011_bib0075 article-title: Laminar profiles of functional activity in the human brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.08.020 – ident: 10.1016/j.neuroimage.2023.120011_bib0038 doi: 10.1002/mrm.24916 – volume: 44 start-page: 162 issue: 1 year: 2000 ident: 10.1016/j.neuroimage.2023.120011_bib0021 article-title: Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E – volume: 15 start-page: 1 issue: September year: 2021 ident: 10.1016/j.neuroimage.2023.120011_bib0030 article-title: Correcting for superficial bias in 7T gradient echo fMRI publication-title: Front. Neurosci. – volume: 12 start-page: 535 issue: 5 year: 2009 ident: 10.1016/j.neuroimage.2023.120011_bib0055 article-title: Circular analysis in systems neuroscience: the dangers of double dipping publication-title: Nat. Neurosci. doi: 10.1038/nn.2303 – volume: 21 start-page: 401 issue: 8 year: 2020 ident: 10.1016/j.neuroimage.2023.120011_bib0064 article-title: The human motor cortex microcircuit: insights for neurodegenerative disease publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-020-0315-1 – volume: 96 start-page: 1253 issue: 6 year: 2017 ident: 10.1016/j.neuroimage.2023.120011_bib0035 article-title: High-resolution CBV-fMRI allows mapping of laminar activity and connectivity of cortical input and output in human M1 publication-title: Neuron doi: 10.1016/j.neuron.2017.11.005 – year: 2020 ident: 10.1016/j.neuroimage.2023.120011_bib0082 article-title: Effects of phase regression on high-resolution functional MRI of the primary visual cortex publication-title: NeuroImage – volume: 40 start-page: 4026 issue: 14 year: 2019 ident: 10.1016/j.neuroimage.2023.120011_bib0053 article-title: Active head motion reduction in magnetic resonance imaging using tactile feedback publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24683 – volume: 31 start-page: 1116 issue: 3 year: 2006 ident: 10.1016/j.neuroimage.2023.120011_bib0100 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 26 start-page: 243 issue: 1 year: 2005 ident: 10.1016/j.neuroimage.2023.120011_bib0086 article-title: Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.01.007 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.neuroimage.2023.120011_bib0095 article-title: Feature-dependent intrinsic functional connectivity across cortical depths in the human auditory cortex publication-title: Sci. Rep. – volume: 17 start-page: 1033 issue: 10 year: 2020 ident: 10.1016/j.neuroimage.2023.120011_bib0047 article-title: A temporal decomposition method for identifying venous effects in task-based fMRI publication-title: Nat. Methods doi: 10.1038/s41592-020-0941-6 – volume: 113 start-page: 6761 issue: 24 year: 2016 ident: 10.1016/j.neuroimage.2023.120011_bib0078 article-title: The relationship between oscillatory EEG activity and the laminar-specific BOLD signal publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1522577113 – year: 1997 ident: 10.1016/j.neuroimage.2023.120011_bib0017 article-title: Retinotopic organization in human visual cortex and the spatial precision of functional MRI publication-title: Cereb. Cortex doi: 10.1093/cercor/7.2.181 – volume: 164 start-page: 131 issue: November 2016 year: 2018 ident: 10.1016/j.neuroimage.2023.120011_bib0037 article-title: Techniques for blood volume fMRI with VASO: from low-resolution mapping towards sub-millimeter layer-dependent applications publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.11.039 – volume: 120 start-page: 141 issue: 1 year: 1997 ident: 10.1016/j.neuroimage.2023.120011_bib0097 article-title: Localization of the motor hand area to a knob on the precentral gyrus. A new landmark publication-title: Brain doi: 10.1093/brain/120.1.141 – volume: 49 start-page: 655 issue: 4 year: 2003 ident: 10.1016/j.neuroimage.2023.120011_bib0096 article-title: Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10433 – volume: 176 start-page: 41 issue: January year: 2018 ident: 10.1016/j.neuroimage.2023.120011_bib0091 article-title: Distortion-matched T1 maps and unbiased T1-weighted images as anatomical reference for high-resolution fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.04.026 – volume: 220 issue: October 2019 year: 2020 ident: 10.1016/j.neuroimage.2023.120011_bib0101 article-title: Eye-selective fMRI activity in human primary visual cortex: comparison between 3 T and 9.4 T, and effects across cortical depth publication-title: NeuroImage – volume: 241 issue: July year: 2021 ident: 10.1016/j.neuroimage.2023.120011_bib0027 article-title: Improvement of sensitivity and specificity for laminar BOLD fMRI with double spin-echo EPI in humans at 7 T publication-title: NeuroImage – volume: 107 start-page: 23 year: 2015 ident: 10.1016/j.neuroimage.2023.120011_bib0034 article-title: Cortical lamina-dependent blood volume changes in human brain at 7T publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.11.046 – volume: 16 start-page: 1062 issue: 4 year: 2002 ident: 10.1016/j.neuroimage.2023.120011_bib0087 article-title: How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes publication-title: NeuroImage doi: 10.1006/nimg.2002.1082 – volume: 125 start-page: 556 year: 2016 ident: 10.1016/j.neuroimage.2023.120011_bib0029 article-title: A hemodynamic model for layered BOLD signals publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.10.025 – start-page: 1 year: 2020 ident: 10.1016/j.neuroimage.2023.120011_bib0071 article-title: Cortical depth-dependent human fMRI of resting-state networks using EPIK publication-title: BioRxiv – volume: 39 start-page: 2812 issue: 7 year: 2018 ident: 10.1016/j.neuroimage.2023.120011_bib0062 article-title: Cortical depth profiles of luminance contrast responses in human V1 and V2 using 7 T fMRI publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24042 – volume: 168 start-page: 332 issue: May 2017 year: 2018 ident: 10.1016/j.neuroimage.2023.120011_bib0044 article-title: Impact of acquisition and analysis strategies on cortical depth-dependent fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.05.022 – volume: 207 issue: August 2019 year: 2020 ident: 10.1016/j.neuroimage.2023.120011_bib0006 article-title: Integrated VASO and perfusion contrast: a new tool for laminar functional MRI publication-title: NeuroImage – volume: 34 start-page: 1 year: 2021 ident: 10.1016/j.neuroimage.2023.120011_bib0032 article-title: Does the field strength matter? Comparing layer-fMRI VASO across 3 T, 7 T, and 9.4 T publication-title: ESMRMB – start-page: 1 year: 2022 ident: 10.1016/j.neuroimage.2023.120011_bib0077 article-title: Relating neural oscillations to laminar fMRI connectivity in visual cortex publication-title: Cereb. Cortex – volume: 47 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2023.120011_bib0065 article-title: Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10041 – volume: 116 start-page: 21185 issue: 42 year: 2019 ident: 10.1016/j.neuroimage.2023.120011_bib0080 article-title: Laminar specific fMRI reveals directed interactions in distributed networks during language processing publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1907858116 – start-page: 12 issue: 1 year: 2021 ident: 10.1016/j.neuroimage.2023.120011_bib0093 article-title: Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging publication-title: Nat. Commun. – volume: 2021 year: 2021 ident: 10.1016/j.neuroimage.2023.120011_bib0014 article-title: Improving sensitivity to functional responses without a loss of spatiotemporal precision in human brain imaging publication-title: BioRxiv – volume: 18 start-page: 1 issue: 12 year: 2020 ident: 10.1016/j.neuroimage.2023.120011_bib0001 article-title: Prior expectations evoke stimulus-specific activity in the deep layers of the primary visual cortex publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3001023 – volume: 29 start-page: 162 issue: 3 year: 1996 ident: 10.1016/j.neuroimage.2023.120011_bib0009 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput. Biomed. Res. doi: 10.1006/cbmr.1996.0014 – ident: 10.1016/j.neuroimage.2023.120011_bib0042 – volume: 41 start-page: 2014 issue: 8 year: 2020 ident: 10.1016/j.neuroimage.2023.120011_bib0024 article-title: Cortical laminar resting-state signal fluctuations scale with the hypercapnic blood oxygenation level-dependent response publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24926 – volume: 8 start-page: 30 issue: 3 year: 2013 ident: 10.1016/j.neuroimage.2023.120011_bib0013 article-title: Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE publication-title: PLoS One doi: 10.1371/journal.pone.0060514 – volume: 24 start-page: 381 issue: 4 year: 2006 ident: 10.1016/j.neuroimage.2023.120011_bib0022 article-title: Laminar specificity in monkey V1 using high-resolution SE-fMRI publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2005.12.032 – volume: 189 start-page: 847 year: 2019 ident: 10.1016/j.neuroimage.2023.120011_bib0046 article-title: A critical assessment of data quality and venous effects in sub-millimeter fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.02.006 – volume: 40 start-page: 189 year: 2021 ident: 10.1016/j.neuroimage.2023.120011_bib0004 article-title: Challenges and opportunities of mesoscopic brain mapping with fMRI publication-title: Curr. Opin. Behav. Sci. doi: 10.1016/j.cobeha.2021.06.002 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.neuroimage.2023.120011_bib0069 article-title: Processing complexity increases in superficial layers of human primary auditory cortex publication-title: Sci. Rep. doi: 10.1038/s41598-019-41965-w – volume: 163 start-page: 13 issue: August year: 2017 ident: 10.1016/j.neuroimage.2023.120011_bib0003 article-title: The impact of vessel size, orientation and intravascular contribution on the neurovascular fingerprint of BOLD bSSFP fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.09.015 – volume: 7 start-page: 519 issue: 5 year: 1981 ident: 10.1016/j.neuroimage.2023.120011_bib0016 article-title: Cortical blood vessels of the human brain publication-title: Brain Res. Bull. doi: 10.1016/0361-9230(81)90007-1 – volume: 30 start-page: 1721 issue: 9 year: 2020 ident: 10.1016/j.neuroimage.2023.120011_bib0072 article-title: Layer-specific contributions to imagined and executed hand movements in human primary motor cortex publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.02.046 – volume: 54 start-page: 2033 issue: 3 year: 2011 ident: 10.1016/j.neuroimage.2023.120011_bib0002 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.025 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.neuroimage.2023.120011_bib0060 article-title: An in-vivo study of BOLD laminar responses as a function of echo time and static magnetic field strength publication-title: Sci. Rep. doi: 10.1038/s41598-021-81249-w – volume: 164 start-page: 18 issue: March 2017 year: 2018 ident: 10.1016/j.neuroimage.2023.120011_bib0068 article-title: Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.03.063 – volume: 168 start-page: 345 issue: September 2016 year: 2018 ident: 10.1016/j.neuroimage.2023.120011_bib0015 article-title: Ultra-high field MRI: advancing systems neuroscience towards mesoscopic human brain function publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.01.028 – volume: 26 start-page: 371 issue: 3 year: 2016 ident: 10.1016/j.neuroimage.2023.120011_bib0050 article-title: Selective activation of the deep layers of the human primary visual cortex by top-down feedback publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.12.038 – volume: 35 start-page: 346 issue: 3 year: 1996 ident: 10.1016/j.neuroimage.2023.120011_bib0020 article-title: Movement-related effects in fMRI time-series publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910350312 – volume: 92 start-page: 126 issue: 1 year: 1991 ident: 10.1016/j.neuroimage.2023.120011_bib0025 article-title: A fast, iterative, partial-fourier technique capable of local phase recovery publication-title: J. Magn. Reson. – volume: 16 start-page: 1 issue: 4 April year: 2021 ident: 10.1016/j.neuroimage.2023.120011_bib0043 article-title: Sub-millimetre resolution laminar fMRI using arterial spin labelling in humans at 7 T publication-title: PLoS One – volume: 18 year: 2021 ident: 10.1016/j.neuroimage.2023.120011_bib0089 article-title: Ultrahigh field and ultrahigh resolution fMRI publication-title: Curr. Opin. Biomed. Eng. – volume: 248 issue: July 2021 year: 2022 ident: 10.1016/j.neuroimage.2023.120011_bib0098 article-title: Layer-specific activation in human primary somatosensory cortex during tactile temporal prediction error processing publication-title: NeuroImage – volume: 41 start-page: 1899 issue: 8 year: 2021 ident: 10.1016/j.neuroimage.2023.120011_bib0084 article-title: Regional and depth-dependence of cortical blood-flow assessed with high-resolution arterial spin labeling (ASL) publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678X20982382 – volume: 100 start-page: 51 year: 2014 ident: 10.1016/j.neuroimage.2023.120011_bib0010 article-title: Phase based venous suppression in resting-state BOLD GE-fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.05.079 – volume: 1 start-page: 1 issue: 1 year: 1991 ident: 10.1016/j.neuroimage.2023.120011_bib0018 article-title: Distributed hierarchical processing in the primate cerebral cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/1.1.1 – start-page: 1229 year: 2021 ident: 10.1016/j.neuroimage.2023.120011_bib0031 article-title: Evaluating the capabilities and challenges of layer-fMRI VASO at 3T – volume: 237 issue: July 2020 year: 2021 ident: 10.1016/j.neuroimage.2023.120011_bib0039 article-title: LayNii: a software suite for layer-fMRI publication-title: NeuroImage – volume: 164 start-page: 32 issue: August year: 2018 ident: 10.1016/j.neuroimage.2023.120011_bib0007 article-title: Spatial specificity of the functional MRI blood oxygenation response relative to neuronal activity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.08.077 – volume: 62 start-page: 970 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2023.120011_bib0066 article-title: The great brain versus vein debate publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.005 – volume: 208 issue: November 2019 year: 2020 ident: 10.1016/j.neuroimage.2023.120011_bib0033 article-title: Sub-millimeter fMRI reveals multiple topographical digit representations that form action maps in human motor cortex publication-title: NeuroImage – volume: 35 start-page: 539 issue: 2 year: 2007 ident: 10.1016/j.neuroimage.2023.120011_bib0081 article-title: Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.12.030 – volume: 5 start-page: 1 issue: 5 year: 2019 ident: 10.1016/j.neuroimage.2023.120011_bib0099 article-title: Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex publication-title: Sci. Adv. doi: 10.1126/sciadv.aav9053 – volume: 141 start-page: 250 issue: June year: 2016 ident: 10.1016/j.neuroimage.2023.120011_bib0023 article-title: Lamina-dependent calibrated BOLD response in human primary motor cortex publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.06.030 – ident: 10.1016/j.neuroimage.2023.120011_bib0092 – volume: 101 start-page: 8 year: 2014 ident: 10.1016/j.neuroimage.2023.120011_bib0054 article-title: Regional reproducibility of calibrated BOLD functional MRI: implications for the study of cognition and plasticity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.06.072 – ident: 10.1016/j.neuroimage.2023.120011_bib0049 – volume: 353 issue: December 2020 year: 2021 ident: 10.1016/j.neuroimage.2023.120011_bib0061 article-title: Estimation of laminar BOLD activation profiles using deconvolution with a physiological point spread function publication-title: J. Neurosci. Methods – volume: 202 issue: March year: 2021 ident: 10.1016/j.neuroimage.2023.120011_bib0019 article-title: Point-spread function of the BOLD response across columns and cortical depth in human extra-striate cortex publication-title: Prog. Neurobiol. – volume: 85 start-page: 1540 issue: 3 year: 2021 ident: 10.1016/j.neuroimage.2023.120011_bib0083 article-title: Segmented K-space blipped-controlled aliasing in parallel imaging for high spatiotemporal resolution EPI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28486 – volume: 226 issue: October 2020 year: 2021 ident: 10.1016/j.neuroimage.2023.120011_bib0067 article-title: NOise reduction with distribution corrected (NORDIC) PCA in dMRI with complex-valued parameter-free locally low-rank processing publication-title: NeuroImage – volume: 50 start-page: 263 issue: 2 year: 2003 ident: 10.1016/j.neuroimage.2023.120011_bib0058 article-title: Functional magnetic resonance imaging based on changes in vascular space occupancy publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10519 – volume: 204 year: 2020 ident: 10.1016/j.neuroimage.2023.120011_bib0028 article-title: A dynamical model of the laminar BOLD response publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.116209 – volume: 245 year: 2021 ident: 10.1016/j.neuroimage.2023.120011_bib0079 article-title: Laminar perfusion imaging with zoomed arterial spin labeling at 7 Tesla publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.118724 – volume: 52 start-page: 724 issue: 4 year: 2004 ident: 10.1016/j.neuroimage.2023.120011_bib0041 article-title: Quantifying the intra- and extravascular contributions to spin-echo fMRI at 3 T publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20221 – volume: 31 start-page: 1297 issue: 9 year: 2010 ident: 10.1016/j.neuroimage.2023.120011_bib0051 article-title: Layer-specific BOLD activation in human V1 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20936 – year: 2022 ident: 10.1016/j.neuroimage.2023.120011_bib0026 – volume: 112 start-page: 16036 issue: 52 year: 2015 ident: 10.1016/j.neuroimage.2023.120011_bib0012 article-title: Frequency preference and attention effects across cortical depths in the human primary auditory cortex publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1507552112 – volume: 49 start-page: 1271 issue: 2 year: 2010 ident: 10.1016/j.neuroimage.2023.120011_bib0063 article-title: MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.002 – volume: 93 start-page: 210 issue: December 2018 year: 2014 ident: 10.1016/j.neuroimage.2023.120011_bib0094 article-title: Anatomically motivated modeling of cortical laminae publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.03.078 – volume: 68 start-page: 1563 issue: 5 year: 2012 ident: 10.1016/j.neuroimage.2023.120011_bib0056 article-title: Reducing the object orientation dependence of susceptibility effects in gradient echo MRI through quantitative susceptibility mapping publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24135 – volume: 168 start-page: 296 year: 2018 ident: 10.1016/j.neuroimage.2023.120011_bib0073 article-title: Analysis strategies for high-resolution UHF-fMRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.04.053 – volume: 25 start-page: 2690 issue: 20 year: 2015 ident: 10.1016/j.neuroimage.2023.120011_bib0070 article-title: Contextual feedback to superficial layers of V1 publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.08.057 – volume: 197 start-page: 668 issue: February year: 2019 ident: 10.1016/j.neuroimage.2023.120011_bib0052 article-title: Strategies and prospects for cortical depth dependent T2 and T2* weighted BOLD fMRI studies publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.03.024 – year: 2020 ident: 10.1016/j.neuroimage.2023.120011_bib0057 article-title: Layer-dependent multiplicative effects of spatial attention on contrast responses in human early visual cortex publication-title: Prog. Neurobiol. – volume: 25 start-page: 432 issue: 3 year: 1979 ident: 10.1016/j.neuroimage.2023.120011_bib0008 article-title: Incorrect least-squares regression coefficients in method comparison analysis publication-title: Clin. Chem. doi: 10.1093/clinchem/25.3.432 – volume: 139 start-page: 240 year: 2016 ident: 10.1016/j.neuroimage.2023.120011_bib0074 article-title: The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.06.019 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.neuroimage.2023.120011_bib0045 article-title: Resolving laminar activation in human V1 using ultra-high spatial resolution fMRI at 7T publication-title: Sci. Rep. doi: 10.1038/s41598-018-35333-3 – volume: 84 start-page: 3128 issue: 6 year: 2020 ident: 10.1016/j.neuroimage.2023.120011_bib0005 article-title: Comparison of BOLD and CBV using 3D EPI and 3D GRASE for cortical layer functional MRI at 7 T publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28347 – volume: 40 start-page: 98 year: 2017 ident: 10.1016/j.neuroimage.2023.120011_bib0076 article-title: Characterization of high-resolution Gradient Echo and Spin Echo EPI for fMRI in the human visual cortex at 7 T publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2017.04.008 |
SSID | ssj0009148 |
Score | 2.5004983 |
Snippet | •We tested the feasibility of laminar BOLD fMRI at 3T.•NORDIC denoising was used to improve tSNR by a factor of ∼3.•Phase regression reduced macrovascular... Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is valuable as... Introduction Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is... Introduction: Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 120011 |
SubjectTerms | 3 Tesla Blood Brain Brain Mapping - methods Contamination Cortex (motor) Cortical layers Functional magnetic resonance imaging Hand Humans Laminar fMRI Magnetic Resonance Imaging - methods Microvasculature Motor task performance NORDIC denoising Phase regression Primary motor cortex Reproducibility of Results Signal-To-Noise Ratio Spatial discrimination Temporal lobe Time series Upper Extremity Veins & arteries |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqDohLVShtt6XISFwDdmInjjiVVwF1qYR2JW5W7Ng8xGZXy6L-_c7ETloOiD1wTezImofnG-fzDCG7srBMObwcw7hPsMR5oowowa_yGk2M-fa8Y3iZn43FxbW8_q_VF3LCQnngILj9Oi1sWheZryB0MyNM4QXE4EpZU1ZcOtx9Wcm6ZKortwsoP_J2ApurrQ55NwEf3cOG4XscuUT8WTBqa_Y_i0kvYc429px-IO8jaKQ_wmLXyTvXbJDVYfwt_pHMw9GAq-kj8tFDQwhaNTWdIN-uY5vSP-05KAQrOvU0G1GwBryOS_3w6pziiSz9eZIc_v51TJEOf0MvIUM8P2o_NLuFcEfn7ibwZptNMj49GR2dJbGZQmIBkS0SY0APmVWSGYVxK3UC1JcyrKcmi0rK2npAc5x5zzPHLBYSNLI2ICznIE3OPpGVZtq4LyBViSmsMNJxKyD9qbxCIAHOL-o889mAFJ1UtY2VxrHhxYPuKGX3-p8-NOpDB30MCO9nzkK1jSXmHKLi-vFYL7t9AFakoxXp16xoQMpO7bq7kgqbKHzobokFHPRzI2wJcGTJ2Vudlem4fTzqFHZNwI2CqwHZ6V-D4-PfnKpx0ycco3KFaBnGfA7W2csgy0vk7xZf30I238garjewPLfIymL-5L4DEluY7dbp_gIfrS6f priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swEBZdCmMvpfudrisa7NWNZUm2zJ7arF2yLRlsLeRNWLaUZaxOSFP67-_Okl3yUAjsMY7OiLvT3Sf5uxMhH2VWxspicUzMXIQtziNlRA7rKq3QxWLXnHdMpunoWnydydkeGba1MEirDLHfx_QmWocng6DNwWqxGPwCZADpBhEKJv5s9oTsJzxPZY_sn42_jaYPvXeZ8BVxkkcoEAg9nubVtI1c3MDiPcWbxE8ZkozYVpZqmvlvJavHwGiTlC4PyUFAk_TMT_g52bP1C_J0Er6XvyRrf2ZgK3qLRHV_UwQt6oreIBGvpaHS--aAFLIYXTrKryi4CdbpUjf5OaZ4VEu_XETnP75_psiTn9MpbB3Hw-ZFq9-QB-nazj2htn5Fri8vroajKNyyEJUA1TaRMWAgXioZG4UJLbEC7JrE2GhNZoWUVekA5rHYOcZtXGKHQSMrA8qyFvbP_DXp1cvavgWtStzbCiMtKwXsiwqnEGFAVBBVyh3vk6zVqi5DC3K8CeOvbrlmf_SDPTTaQ3t79AnrJFe-DccOMudouG48NtJuHizXcx08SVdJViZVxl0ByDA2wmROAMQrVGnygknbJ3lrdt3WqkJ0hRctdpjAp052y6d3lD5uvUyHuHKrEwinACgFU33yofsbIgJ-5ilqu7zDMSpVCKNhzBvvnZ0OeJojsTc7-q-pvSPP8JfnfR6T3mZ9Z98DNtuYk7D2_gHb1TQv priority: 102 providerName: Elsevier |
Title | Improved sensitivity and microvascular weighting of 3T laminar fMRI with GE-BOLD using NORDIC and phase regression |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381192300157X https://dx.doi.org/10.1016/j.neuroimage.2023.120011 https://www.ncbi.nlm.nih.gov/pubmed/36914107 https://www.proquest.com/docview/2793937418 https://www.proquest.com/docview/2786811298 https://doaj.org/article/d27c2d73fa2640b4b7f4515a8cb9a15e |
Volume | 271 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYJiFeEL8pjMpIvKbEiZ244gGto6MFWtC0SX2LYscuQywpbSfe-Nu5s51UewD1KVJiW5HvfPf5_PmOkDci17E0eDkmZjbCFOeRVHwI6yqrUMVi6-Ids3k2ueSfFmIRAm6bQKtsbaIz1FWjMUb-NgFFAlfKmXy_-hVh1Sg8XQ0lNA7IkUtdBvqcL_Jd0l3G_VU4kUYSGgQmj-d3uXyRV9ewagdYQnzAkF3Ebrknl8X_lpf6Fwp13ujsAbkfYCQ98XJ_SO6Y-hG5OwsH5Y_J2gcLTEU3yFD3JSJoWVf0Ghl4Lf-U_naRUXBftLE0vaCgH3hBl9rZ-ZRijJZ-HEejr18-UCTIL-kc9ozTUzfQ6js4QLo2S8-krZ-Qy7PxxekkCuUVIg0YbRspBZJJtRSxkujJEsNBoEmMGdZEXgpRaQv4jsXWstTEGlMLKlEpmCxjYOOcPiWHdVOb5zCrAje1XAnDNIcNUWklQgswB7zKUpv2SN7OaqFD7nEsgfGzaElmP4qdPAqUR-Hl0SOs67ny-Tf26DNCwXXtMYO2e9Gsl0VYkEWV5Dqp8tSWAAljxVVuOWC7Umo1LJkwPTJsxV60l1TBrMJAV3v8wLuubwAyHqDs2fu41bIiGJRNsVP_HnndfQZTgOc7ZW2aG2wjM4n4Gdo889rZzUGaDZHRm7_4_-AvyT38E8_oPCaH2_WNeQWoa6v65GDwh_XdAuuTo5Pp58kcnqPx_Nt530Uy_gJrXCzA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwEviG8KA4wEjxlxYudDCCG6dbSsLWjqpL2Z2LG7TSwpbaeJf4q_kbs4SbUHUF_22tiW6zvf_Wz_7o6QtyLWfmIwOMZn1sMU516ieAr7KspRxXxb3XeMJ9HgmH89ESdb5E8TC4O0ysYmVoY6LzXekb8PQJHAlXKWfJr_8rBqFL6uNiU0nFocmt9XcGRbfhzug3zfBcFBf7o38OqqAp4GaLLylIIJhToRvkrQgAeGw_8IfEwsJuJMiFxbgDXMt5aFxteYUU-JXIFzMwbOiyGMe4tsc4xo7ZDtXn_y_Wid5pdxF3wnQi9hLK25Q45RVmWoPLsAO7GLRct3GfKZ2DWHWNUNuOYX_4V7K_93cJ_cq4Er_ew07QHZMsVDcntcP80_Igt3PWFyukROvCtKQbMipxfI-WsYr_SquosFh0lLS8MpBY3EkGBqx0dDirfC9Evf630b7VOk5M_oBE6pw71qoPkpuFy6MDPH3S0ek-MbWfonpFOUhXkGqyrwGM2VMExzOIJlNkEwAwaI51Fowy6Jm1WVus52jkU3fsqG1nYu1_KQKA_p5NElrO05dxk_NujTQ8G17TFnd_VDuZjJ2gTIPIh1kMehzQCE-oqr2HJAk1miVZoxYbokbcQum7BYMOQw0NkGE_jQ9q2hk4NEG_beabRM1iZsKdcbrkvetJ_B-OCLUlaY8hLbJFGCiB3aPHXa2a5BGKXIIY6f_3_w1-TOYDoeydFwcviC3MVZOT7pDumsFpfmJWC-lXpVbzRKftz03v4LDStkig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkCZeEHcKA4wEj9niJI4dIYTYurKytSC0SX3zYscuQywpbaeJv8av45w4SbUHUF_22tiW63P7bH8-h5A3XJhQWnwcEzIXYIrzQOokA7tKC1Sx0NXnHaNxeniafJ7wyQb5076FQVpl6xNrR11UBs_IdyNQJAilCZO7rqFFfO0PPsx-BVhBCm9a23IaXkWO7O8r2L4t3g_7IOu3UTQ4ONk_DJoKA4EBmLIMtIbJxUbyUEt05pFN4D9FISYZ4yLnvDAOIA4LnWOxDQ1m19O80BDorIW9Ywzj3iK3RQyoCmxJTMQq4S9L_DM8HgeSsaxhEXluWZ2r8vwCPMYOli_fYchsYtdCY11B4FqE_BcCriPh4B6520BY-tHr3H2yYcsHZGvUXNI_JHN_UGELukB2vC9PQfOyoBfI_mu5r_SqPpWF0EkrR-MTCrqJj4OpG30bUjwfpp8Ogr0vx32K5PwpHcN-dbhfDzT7DsGXzu3Us3jLR-T0Rhb-Mdksq9I-hVXluKFONLfMJLAZy51EWAOuKCnS2MU9ItpVVabJe47lN36qluD2Q63koVAeysujR1jXc-Zzf6zRZw8F17XH7N31D9V8qhpnoIpImKgQscsBjoY60cIlgCtzaXSWM257JGvFrtoHsuDSYaDzNSbwruvbgCgPjtbsvd1qmWqc2UKtTK9HXnefwQ3h3VJe2uoS28hUInaHNk-8dnZrEKcZsonFs_8P_opsgUWr4-H46Dm5g5PyxNJtsrmcX9oXAP6W-mVtZZSc3bRZ_wWxTmdR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+sensitivity+and+microvascular+weighting+of+3T+laminar+fMRI+with+GE-BOLD+using+NORDIC+and+phase+regression&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Knudsen%2C+Lasse&rft.au=Bailey%2C+Christopher+J&rft.au=Blicher%2C+Jakob+U&rft.au=Yang%2C+Yan&rft.date=2023-05-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=271&rft_id=info:doi/10.1016%2Fj.neuroimage.2023.120011&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |