Propensity for somatic expansion increases over the course of life in Huntington disease

Recent work on Huntington disease (HD) suggests that somatic instability of CAG repeat tracts, which can expand into the hundreds in neurons, explains clinical outcomes better than the length of the inherited allele. Here, we measured somatic expansion in blood samples collected from the same 50 HD...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 10
Main Authors Kacher, Radhia, Lejeune, François-Xavier, Noël, Sandrine, Cazeneuve, Cécile, Brice, Alexis, Humbert, Sandrine, Durr, Alexandra
Format Journal Article
LanguageEnglish
Published England eLife Sciences Publications Ltd 13.05.2021
eLife Sciences Publication
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text
ISSN2050-084X
2050-084X
DOI10.7554/eLife.64674

Cover

Loading…
Abstract Recent work on Huntington disease (HD) suggests that somatic instability of CAG repeat tracts, which can expand into the hundreds in neurons, explains clinical outcomes better than the length of the inherited allele. Here, we measured somatic expansion in blood samples collected from the same 50 HD mutation carriers over a twenty-year period, along with post-mortem tissue from 15 adults and 7 fetal mutation carriers, to examine somatic expansions at different stages of life. Post-mortem brains, as previously reported, had the greatest expansions, but fetal cortex had virtually none. Somatic instability in blood increased with age, despite blood cells being short-lived compared to neurons, and was driven mostly by CAG repeat length, then by age at sampling and by interaction between these two variables. Expansion rates were higher in symptomatic subjects. These data lend support to a previously proposed computational model of somatic instability-driven disease.
AbstractList Recent work on Huntington disease (HD) suggests that somatic instability of CAG repeat tracts, which can expand into the hundreds in neurons, explains clinical outcomes better than the length of the inherited allele. Here, we measured somatic expansion in blood samples collected from the same 50 HD mutation carriers over a twenty-year period, along with post-mortem tissue from 15 adults and 7 fetal mutation carriers, to examine somatic expansions at different stages of life. Post-mortem brains, as previously reported, had the greatest expansions, but fetal cortex had virtually none. Somatic instability in blood increased with age, despite blood cells being short-lived compared to neurons, and was driven mostly by CAG repeat length, then by age at sampling and by interaction between these two variables. Expansion rates were higher in symptomatic subjects. These data lend support to a previously proposed computational model of somatic instability-driven disease.
Recent work on Huntington disease (HD) suggests that somatic instability of CAG repeat tracts, which can expand into the hundreds in neurons, explains clinical outcomes better than the length of the inherited allele. Here, we measured somatic expansion in blood samples collected from the same 50 HD mutation carriers over a twenty-year period, along with post-mortem tissue from 15 adults and 7 fetal mutation carriers, to examine somatic expansions at different stages of life. Post-mortem brains, as previously reported, had the greatest expansions, but fetal cortex had virtually none. Somatic instability in blood increased with age, despite blood cells being short-lived compared to neurons, and was driven mostly by CAG repeat length, then by age at sampling and by interaction between these two variables. Expansion rates were higher in symptomatic subjects. These data lend support to a previously proposed computational model of somatic instability-driven disease.Recent work on Huntington disease (HD) suggests that somatic instability of CAG repeat tracts, which can expand into the hundreds in neurons, explains clinical outcomes better than the length of the inherited allele. Here, we measured somatic expansion in blood samples collected from the same 50 HD mutation carriers over a twenty-year period, along with post-mortem tissue from 15 adults and 7 fetal mutation carriers, to examine somatic expansions at different stages of life. Post-mortem brains, as previously reported, had the greatest expansions, but fetal cortex had virtually none. Somatic instability in blood increased with age, despite blood cells being short-lived compared to neurons, and was driven mostly by CAG repeat length, then by age at sampling and by interaction between these two variables. Expansion rates were higher in symptomatic subjects. These data lend support to a previously proposed computational model of somatic instability-driven disease.
Author Noël, Sandrine
Cazeneuve, Cécile
Humbert, Sandrine
Durr, Alexandra
Brice, Alexis
Lejeune, François-Xavier
Kacher, Radhia
Author_xml – sequence: 1
  givenname: Radhia
  orcidid: 0000-0003-4679-7361
  surname: Kacher
  fullname: Kacher, Radhia
  organization: Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France, Univ. Grenoble Alpes, INSERM, U 1216, Grenoble Institut Neurosciences, Grenoble, France
– sequence: 2
  givenname: François-Xavier
  surname: Lejeune
  fullname: Lejeune, François-Xavier
  organization: Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France, Paris Brain Institute’s Data and Analysis Core, University Hospital Pitié-Salpêtrière, Paris, France
– sequence: 3
  givenname: Sandrine
  surname: Noël
  fullname: Noël, Sandrine
  organization: Neurogenetics Laboratory, Department of Genetics, Assistance Publique–Hôpitaux de Paris, University Hospital Pitié-Salpêtrière, Paris, France
– sequence: 4
  givenname: Cécile
  surname: Cazeneuve
  fullname: Cazeneuve, Cécile
  organization: Neurogenetics Laboratory, Department of Genetics, Assistance Publique–Hôpitaux de Paris, University Hospital Pitié-Salpêtrière, Paris, France
– sequence: 5
  givenname: Alexis
  surname: Brice
  fullname: Brice, Alexis
  organization: Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
– sequence: 6
  givenname: Sandrine
  orcidid: 0000-0002-9501-2658
  surname: Humbert
  fullname: Humbert, Sandrine
  organization: Univ. Grenoble Alpes, INSERM, U 1216, Grenoble Institut Neurosciences, Grenoble, France
– sequence: 7
  givenname: Alexandra
  orcidid: 0000-0002-8921-7104
  surname: Durr
  fullname: Durr, Alexandra
  organization: Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France, Neurogenetics Laboratory, Department of Genetics, Assistance Publique–Hôpitaux de Paris, University Hospital Pitié-Salpêtrière, Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33983118$$D View this record in MEDLINE/PubMed
https://hal.sorbonne-universite.fr/hal-03230958$$DView record in HAL
BookMark eNptkt9rWyEUxy-jY-26Pu19CHvZGOnUq1d9KZSyLYXA9rBB38Srx8Rwo5nehPW_n0na0Yb5ohw_53t-vm5OYorQNG8JvhScs88wCx4uO9YJ9qI5o5jjCZbs7uTJ-7S5KGWJ6xFMSqJeNadtq2RLiDxr7n7ktIZYwniPfMqopJUZg0XwZ22qNUUUos1gChSUtpDRuABk0yYXQMmjoUavBJpu4hjifKy8C2WHv2leejMUuHi4z5tfX7_8vJlOZt-_3d5czyaWCz5OeuIsJ0o47qmUmELPiOXGeSylIsKC6Y1ymHLVO0UYBWGJMV60mBNHvGzPm9uDrktmqdc5rEy-18kEvTekPNcm14oG0KK3Xghrvesow5Ia20nWMtkLIEQ5VrWuDlrrTb8CZyGO2QzPRJ__xLDQ87TVsvay420V-HgQWBy5Ta9nemfDLW2x4nJLKvvhIVhOvzdQRr0KxcIwmAhpUzTltKtVdlJV9P0RuqwTiLWtlVK1fVQQXql3T7P_F_9x2BUgB8DmVEoGr20Y67TTrpgwaIL1bqf0fqf0fqeqz6cjn0fZ_9F_ATexzbI
CitedBy_id crossref_primary_10_1093_brain_awad275
crossref_primary_10_3390_ijms242216154
crossref_primary_10_1038_s41598_022_18848_8
crossref_primary_10_1042_ETLS20230074
crossref_primary_10_1111_nyas_14786
crossref_primary_10_1080_14737175_2022_2029703
crossref_primary_10_1167_iovs_64_5_16
crossref_primary_10_1038_s41598_023_33528_x
crossref_primary_10_1016_j_neurol_2022_03_009
crossref_primary_10_1038_s41431_024_01546_6
crossref_primary_10_1016_j_jmoldx_2024_02_007
crossref_primary_10_1002_mds_29605
crossref_primary_10_3233_JHD_231516
crossref_primary_10_1016_S1474_4422_25_00071_7
crossref_primary_10_1016_j_tig_2022_03_016
crossref_primary_10_3390_biomedicines11082275
crossref_primary_10_1038_s41431_024_01587_x
crossref_primary_10_3390_ijms25084354
crossref_primary_10_1093_brain_awad128
crossref_primary_10_1016_j_cell_2023_09_008
crossref_primary_10_1016_j_ajhg_2024_04_015
crossref_primary_10_1038_s41398_023_02689_8
crossref_primary_10_1093_brain_awae312
crossref_primary_10_7554_eLife_89782
crossref_primary_10_7554_eLife_70217
crossref_primary_10_1016_j_ebiom_2023_104720
crossref_primary_10_1038_s41598_022_14183_0
crossref_primary_10_1093_hmg_ddae137
crossref_primary_10_1038_s41598_023_32630_4
crossref_primary_10_3390_cells11030517
crossref_primary_10_1016_j_ajhg_2024_03_015
crossref_primary_10_1038_s41593_024_01850_w
crossref_primary_10_1242_dmm_049453
crossref_primary_10_1038_s41598_023_46852_z
crossref_primary_10_1111_jeb_14106
crossref_primary_10_7554_eLife_89782_2
crossref_primary_10_1016_j_cell_2025_01_031
crossref_primary_10_1093_gbe_evae153
crossref_primary_10_1007_s11910_024_01400_8
crossref_primary_10_1093_hmg_ddae087
crossref_primary_10_3390_ijms23105411
crossref_primary_10_1007_s00415_023_11572_x
crossref_primary_10_1016_j_bpr_2022_100070
Cites_doi 10.1038/nrdp.2015.5
10.1007/s12035-015-9662-8
10.1016/j.bbr.2021.113230
10.1371/journal.pcbi.0030235
10.1126/science.aax3338
10.1073/pnas.1525564113
10.1093/nar/gkaa036
10.1074/jbc.REV119.007678
10.1093/hmg/ddy375
10.1038/s41582-020-0389-4
10.1016/j.ajhg.2020.05.012
10.1111/j.1750-3639.1997.tb00894.x
10.1038/s41588-019-0575-8
10.1093/brain/awz115
10.1016/j.neuron.2010.01.008
10.1073/pnas.94.8.3872
10.1002/ana.24656
10.1002/1531-8249(199901)45:1<25::AID-ART6>3.0.CO;2-E
10.1016/j.nbd.2015.01.004
10.1073/pnas.0308679101
10.1073/pnas.0800048105
10.1186/1752-0509-4-29
10.1016/j.ajhg.2019.04.007
10.1093/hmg/9.17.2539
10.1093/hmg/ddaa139
10.1016/S1097-2765(00)00146-5
10.1038/263517a0
10.1172/JCI45691
10.1016/j.ebiom.2019.09.020
10.1097/WCO.0b013e328304b692
10.1074/jbc.M111.309849
10.1038/263244a0
10.1093/nar/gkm756
10.1371/journal.pgen.1001242
10.1093/hmg/ddm054
10.1016/j.ygeno.2007.04.001
10.1111/j.1399-0004.2004.00241.x
10.1007/978-0-387-98141-3
10.1093/hmg/ddg352
10.1038/ng0494-409
10.1016/j.arcmed.2007.11.011
10.1038/ng0893-398
10.1371/journal.pgen.1003280
10.1111/j.1468-1331.2006.01264.x
10.3233/JHD-200438
10.1016/j.nbd.2008.09.014
10.1371/journal.pgen.1003930
10.1093/hmg/6.6.877
10.1212/WNL.0000000000009364
10.1126/scitranslmed.3010523
10.1093/hmg/ddp242
10.1016/j.cell.2019.06.036
10.1093/hmg/ddaa196
10.18637/jss.v067.i01
10.1111/nan.12465
ContentType Journal Article
Copyright 2021, Kacher et al.
2021, Kacher et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
2021, Kacher et al 2021 Kacher et al
Copyright_xml – notice: 2021, Kacher et al.
– notice: 2021, Kacher et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2021, Kacher et al 2021 Kacher et al
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.7554/eLife.64674
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
MEDLINE - Academic

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_7bcf77ccfd624082ac684348b7e119d4
PMC8118653
oai_HAL_hal_03230958v1
33983118
10_7554_eLife_64674
Genre Journal Article
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  grantid: ANR-16-COEN-0006-02
– fundername: Fondation pour la Recherche Médicale
  grantid: DEQ20170336752
– fundername: ;
  grantid: ANR-16-COEN-0006-02
– fundername: ;
  grantid: DEQ20170336752
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
NPM
PJZUB
PPXIY
PQGLB
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
1XC
H13
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c575t-b1dc5197d5f28802eb41c5adf088917ceaba9d0259bd9142e7c1aaf73051d1f83
IEDL.DBID M48
ISSN 2050-084X
IngestDate Wed Aug 27 00:55:51 EDT 2025
Thu Aug 21 18:45:37 EDT 2025
Fri May 09 12:20:51 EDT 2025
Fri Jul 11 12:17:08 EDT 2025
Fri Jul 25 11:49:40 EDT 2025
Mon Jul 21 05:55:47 EDT 2025
Tue Jul 01 04:13:13 EDT 2025
Thu Apr 24 23:12:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords genetics
neuroscience
Huntington disease
genomics
somatic instability
CAG expansion
longitudinal study
human
human data
HD mutation carrier
Language English
License 2021, Kacher et al.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-b1dc5197d5f28802eb41c5adf088917ceaba9d0259bd9142e7c1aaf73051d1f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8921-7104
0000-0003-4679-7361
0000-0002-9501-2658
0000-0002-0941-3990
0000-0002-6229-5364
0000-0002-5195-9348
OpenAccessLink https://www.proquest.com/docview/2595192715?pq-origsite=%requestingapplication%
PMID 33983118
PQID 2595192715
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_7bcf77ccfd624082ac684348b7e119d4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8118653
hal_primary_oai_HAL_hal_03230958v1
proquest_miscellaneous_2526305689
proquest_journals_2595192715
pubmed_primary_33983118
crossref_citationtrail_10_7554_eLife_64674
crossref_primary_10_7554_eLife_64674
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-13
PublicationDateYYYYMMDD 2021-05-13
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-13
  day: 13
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2021
Publisher eLife Sciences Publications Ltd
eLife Sciences Publication
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Sciences Publications Ltd
– name: eLife Sciences Publication
– name: eLife Sciences Publications, Ltd
References Goold (bib14) 2019; 28
Xu (bib56) 2020; 48
Swami (bib47) 2009; 18
Leija-Salazar (bib27) 2018; 44
Wright (bib55) 2019; 104
Bates (bib4) 2015; 67
Tabrizi (bib49) 2020; 16
Kennedy (bib18) 2003; 12
Andrew (bib1) 1993; 4
Barnat (bib3) 2020; 369
Larson (bib24) 2015; 76
Møllersen (bib35) 2010; 6
Mochel (bib33) 2012; 287
Wexler (bib53) 2004; 101
Kaplan (bib17) 2007; 3
Squitieri (bib45) 2006; 13
Wickham (bib54) 2009
Tereshchenko (bib51) 2020; 94
Lee (bib25) 2010; 4
Gorbunova (bib15) 2007; 35
Schwer (bib43) 2016; 113
Loupe (bib28) 2020; 29
Koshy (bib22) 1997; 7
Tomé (bib52) 2013; 9
Lee (bib26) 2019; 178
Bettencourt (bib6) 2016; 79
Coyle (bib8) 1976; 263
De Biase (bib9) 2007; 90
Langbehn (bib23) 2004; 65
Dragileva (bib10) 2009; 33
Mochel (bib34) 2011; 121
Tabrizi (bib48) 1999; 45
Estrada Sánchez (bib11) 2008; 39
Sun (bib46) 2017; 54
Angeles-López (bib2) 2021; 408
Bates (bib5) 2015; 1
Nakamori (bib37) 2020; 52
Pinto (bib38) 2013; 9
Mouro Pinto (bib36) 2020; 29
Mcgeer (bib31) 1976; 263
Flower (bib12) 2019; 142
Milnerwood (bib32) 2010; 65
Khristich (bib20) 2020; 295
Rubinsztein (bib42) 1997; 94
Kennedy (bib19) 2000; 9
Shelbourne (bib44) 2007; 16
Lu (bib29) 2014; 6
R Development Core Team (bib39) 2019
Ciosi (bib7) 2019; 48
Iyer (bib16) 2021; 10
Roze (bib41) 2008; 21
Kim (bib21) 2020; 107
Gonitel (bib13) 2008; 105
Telenius (bib50) 1994; 6
Rolfsmeier (bib40) 2000; 6
Martorell (bib30) 1997; 6
References_xml – volume: 1
  start-page: 1
  year: 2015
  ident: bib5
  article-title: Huntington disease
  publication-title: Nature Reviews Disease Primers
  doi: 10.1038/nrdp.2015.5
– volume: 54
  start-page: 342
  year: 2017
  ident: bib46
  article-title: Huntington’s Disease: Relationship Between Phenotype and Genotype
  publication-title: Molecular Neurobiology
  doi: 10.1007/s12035-015-9662-8
– volume: 408
  year: 2021
  ident: bib2
  article-title: The absence of the aryl hydrocarbon receptor in the R6/1 transgenic mouse model of Huntington's disease improves the neurological phenotype
  publication-title: Behavioural Brain Research
  doi: 10.1016/j.bbr.2021.113230
– volume: 3
  year: 2007
  ident: bib17
  article-title: A Universal Mechanism Ties Genotype to Phenotype in Trinucleotide Diseases
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.0030235
– volume: 369
  start-page: 787
  year: 2020
  ident: bib3
  article-title: Huntington’s disease alters human neurodevelopment
  publication-title: Science
  doi: 10.1126/science.aax3338
– volume: 113
  start-page: 2258
  year: 2016
  ident: bib43
  article-title: Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells
  publication-title: PNAS
  doi: 10.1073/pnas.1525564113
– volume: 48
  start-page: 2232
  year: 2020
  ident: bib56
  article-title: Dynamics of strand slippage in DNA hairpins formed by CAG repeats: roles of sequence parity and trinucleotide interrupts
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkaa036
– volume: 295
  start-page: 4134
  year: 2020
  ident: bib20
  article-title: On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.REV119.007678
– volume: 28
  start-page: 650
  year: 2019
  ident: bib14
  article-title: FAN1 modifies Huntington’s disease progression by stabilizing the expanded HTT CAG repeat
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/ddy375
– volume: 16
  start-page: 529
  year: 2020
  ident: bib49
  article-title: Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities
  publication-title: Nature Reviews Neurology
  doi: 10.1038/s41582-020-0389-4
– volume: 107
  start-page: 96
  year: 2020
  ident: bib21
  article-title: Genetic and Functional Analyses Point to FAN1 as the Source of Multiple Huntington Disease Modifier Effects
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2020.05.012
– volume: 7
  start-page: 927
  year: 1997
  ident: bib22
  article-title: The CAG/Polyglutamine Tract Diseases: Gene Products and Molecular Pathogenesis
  publication-title: Brain Pathology
  doi: 10.1111/j.1750-3639.1997.tb00894.x
– volume: 52
  start-page: 146
  year: 2020
  ident: bib37
  article-title: A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo
  publication-title: Nature Genetics
  doi: 10.1038/s41588-019-0575-8
– volume: 142
  start-page: 1876
  year: 2019
  ident: bib12
  article-title: MSH3 modifies somatic instability and disease severity in Huntington’s and myotonic dystrophy type 1
  publication-title: Brain
  doi: 10.1093/brain/awz115
– volume: 65
  start-page: 178
  year: 2010
  ident: bib32
  article-title: Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington's disease mice
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.01.008
– volume: 94
  start-page: 3872
  year: 1997
  ident: bib42
  article-title: Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease
  publication-title: PNAS
  doi: 10.1073/pnas.94.8.3872
– year: 2019
  ident: bib39
  article-title: R: A Language and Environment for Statistical Computing
– volume: 79
  start-page: 983
  year: 2016
  ident: bib6
  article-title: DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases
  publication-title: Annals of Neurology
  doi: 10.1002/ana.24656
– volume: 45
  start-page: 25
  year: 1999
  ident: bib48
  article-title: Biochemical abnormalities and excitotoxicity in Huntington's disease brain
  publication-title: Annals of Neurology
  doi: 10.1002/1531-8249(199901)45:1<25::AID-ART6>3.0.CO;2-E
– volume: 76
  start-page: 98
  year: 2015
  ident: bib24
  article-title: Age-, tissue- and length-dependent bidirectional somatic CAG•CTG repeat instability in an allelic series of R6/2 Huntington disease mice
  publication-title: Neurobiology of Disease
  doi: 10.1016/j.nbd.2015.01.004
– volume: 101
  start-page: 3498
  year: 2004
  ident: bib53
  article-title: Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset
  publication-title: PNAS
  doi: 10.1073/pnas.0308679101
– volume: 105
  start-page: 3467
  year: 2008
  ident: bib13
  article-title: DNA instability in postmitotic neurons
  publication-title: PNAS
  doi: 10.1073/pnas.0800048105
– volume: 4
  year: 2010
  ident: bib25
  article-title: A novel approach to investigate tissue-specific trinucleotide repeat instability
  publication-title: BMC Systems Biology
  doi: 10.1186/1752-0509-4-29
– volume: 104
  start-page: 1116
  year: 2019
  ident: bib55
  article-title: Length of Uninterrupted CAG, Independent of Polyglutamine Size, Results in Increased Somatic Instability, Hastening Onset of Huntington Disease
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2019.04.007
– volume: 9
  start-page: 2539
  year: 2000
  ident: bib19
  article-title: Dramatic mutation instability in HD mouse striatum: does polyglutamine load contribute to cell-specific vulnerability in Huntington's disease?
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/9.17.2539
– volume: 29
  start-page: 2551
  year: 2020
  ident: bib36
  article-title: Patterns of CAG repeat instability in the central nervous system and periphery in Huntington’s disease and in spinocerebellar ataxia type 1
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/ddaa139
– volume: 6
  start-page: 1501
  year: 2000
  ident: bib40
  article-title: Mismatch Repair Blocks Expansions of Interrupted Trinucleotide Repeats in Yeast
  publication-title: Molecular Cell
  doi: 10.1016/S1097-2765(00)00146-5
– volume: 263
  start-page: 517
  year: 1976
  ident: bib31
  article-title: Duplication of biochemical changes of Huntington's chorea by intrastriatal injections of glutamic and kainic acids
  publication-title: Nature
  doi: 10.1038/263517a0
– volume: 121
  start-page: 493
  year: 2011
  ident: bib34
  article-title: Energy deficit in Huntington disease: why it matters
  publication-title: Journal of Clinical Investigation
  doi: 10.1172/JCI45691
– volume: 48
  start-page: 568
  year: 2019
  ident: bib7
  article-title: A genetic association study of glutamine-encoding DNA sequence structures, somatic CAG expansion, and DNA repair gene variants, with Huntington disease clinical outcomes
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2019.09.020
– volume: 21
  start-page: 497
  year: 2008
  ident: bib41
  article-title: Pathophysiology of Huntington’s disease: from huntingtin functions to potential treatments
  publication-title: Current Opinion in Neurology
  doi: 10.1097/WCO.0b013e328304b692
– volume: 287
  start-page: 1361
  year: 2012
  ident: bib33
  article-title: Early Alterations of Brain Cellular Energy Homeostasis in Huntington Disease Models*
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M111.309849
– volume: 263
  start-page: 244
  year: 1976
  ident: bib8
  article-title: Lesion of striatal neurons with kainic acid provides a model for Huntington's chorea
  publication-title: Nature
  doi: 10.1038/263244a0
– volume: 35
  start-page: 7466
  year: 2007
  ident: bib15
  article-title: Changes in DNA repair during aging
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkm756
– volume: 6
  year: 2010
  ident: bib35
  article-title: Continuous and Periodic Expansion of CAG Repeats in Huntington's Disease R6/1 Mice
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1001242
– volume: 16
  start-page: 1133
  year: 2007
  ident: bib44
  article-title: Triplet repeat mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/ddm054
– volume: 90
  start-page: 1
  year: 2007
  ident: bib9
  article-title: Somatic instability of the expanded GAA triplet-repeat sequence in Friedreich ataxia progresses throughout life
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2007.04.001
– volume: 65
  start-page: 267
  year: 2004
  ident: bib23
  article-title: A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length
  publication-title: Clinical Genetics
  doi: 10.1111/j.1399-0004.2004.00241.x
– volume-title: Ggplot2: Elegant Graphics for Data Analysis Use R!
  year: 2009
  ident: bib54
  doi: 10.1007/978-0-387-98141-3
– volume: 12
  start-page: 3359
  year: 2003
  ident: bib18
  article-title: Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/ddg352
– volume: 6
  start-page: 409
  year: 1994
  ident: bib50
  article-title: Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm
  publication-title: Nature Genetics
  doi: 10.1038/ng0494-409
– volume: 39
  start-page: 265
  year: 2008
  ident: bib11
  article-title: Excitotoxic Neuronal Death and the Pathogenesis of Huntington's Disease
  publication-title: Archives of Medical Research
  doi: 10.1016/j.arcmed.2007.11.011
– volume: 4
  start-page: 398
  year: 1993
  ident: bib1
  article-title: The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease
  publication-title: Nature Genetics
  doi: 10.1038/ng0893-398
– volume: 9
  year: 2013
  ident: bib52
  article-title: MSH3 Polymorphisms and Protein Levels Affect CAG Repeat Instability in Huntington's Disease Mice
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1003280
– volume: 13
  start-page: 408
  year: 2006
  ident: bib45
  article-title: The search for cerebral biomarkers of Huntington's disease: a review of genetic models of age at onset prediction
  publication-title: European Journal of Neurology
  doi: 10.1111/j.1468-1331.2006.01264.x
– volume: 10
  start-page: 75
  year: 2021
  ident: bib16
  article-title: DNA Mismatch Repair and its Role in Huntington’s Disease
  publication-title: Journal of Huntington's Disease
  doi: 10.3233/JHD-200438
– volume: 33
  start-page: 37
  year: 2009
  ident: bib10
  article-title: Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes
  publication-title: Neurobiology of Disease
  doi: 10.1016/j.nbd.2008.09.014
– volume: 9
  year: 2013
  ident: bib38
  article-title: Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1003930
– volume: 6
  start-page: 877
  year: 1997
  ident: bib30
  article-title: Somatic Instability of the Myotonic Dystrophy (CTG)n Repeat during Human Fetal Development
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/6.6.877
– volume: 94
  start-page: e1908
  year: 2020
  ident: bib51
  article-title: Abnormal development of cerebellar-striatal circuitry in Huntington disease
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000009364
– volume: 6
  year: 2014
  ident: bib29
  article-title: Targeting ATM ameliorates mutant huntingtin toxicity in cell and animal models of Huntington's disease
  publication-title: Science Translational Medicine
  doi: 10.1126/scitranslmed.3010523
– volume: 18
  start-page: 3039
  year: 2009
  ident: bib47
  article-title: Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/ddp242
– volume: 178
  start-page: 887
  year: 2019
  ident: bib26
  article-title: CAG Repeat Not Polyglutamine Length Determines Timing of Huntington’s Disease Onset
  publication-title: Cell
  doi: 10.1016/j.cell.2019.06.036
– volume: 29
  start-page: 3044
  year: 2020
  ident: bib28
  article-title: Promotion of somatic CAG repeat expansion by Fan1 knock-out in Huntington’s disease knock-in mice is blocked by Mlh1 knock-out
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/ddaa196
– volume: 67
  start-page: 1
  year: 2015
  ident: bib4
  article-title: Fitting linear Mixed-Effects models using lme4
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v067.i01
– volume: 44
  start-page: 267
  year: 2018
  ident: bib27
  article-title: Review: Somatic mutations in neurodegeneration
  publication-title: Neuropathology and Applied Neurobiology
  doi: 10.1111/nan.12465
SSID ssj0000748819
Score 2.4780254
Snippet Recent work on Huntington disease (HD) suggests that somatic instability of CAG repeat tracts, which can expand into the hundreds in neurons, explains clinical...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Age
Blood cells
Brain
CAG expansion
Computational neuroscience
Disease
Fetuses
Genetics and Genomics
HD mutation carrier
human data
Human health and pathology
Huntington disease
Huntington's disease
Huntingtons disease
Instability
Life Sciences
Longitudinal studies
longitudinal study
Mutation
Neurons and Cognition
Neuroscience
Polyglutamine
somatic instability
Trinucleotide repeat diseases
Trinucleotide repeats
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEF-kUPAiWr9Sq6zSkxDr7ma_jlUsD6niwcK7LftJH5REfK9F_3tnNunjRQUvXncnyTI7k_nNZvIbQo6FitZyPHHPSbSd56wNMoaWKaM94GvjK1n1p89qcdF9XMrlTqsvrAkb6YFHxZ3oEIvWMZakkI2L-6hMJzoTdGbMpsoECjFvJ5mq72ANhsns-EOehpB5ks9XJb9R2FxjFoIqUz8Elkusg_wTZP5eK7kTfM7uk3sTaqSn42ofkDu5PyD7Yx_Jnw_J8gseqfdYXkEBhNL1UIlYaf4Bvo7HYXTVIzpc5zXFkk0KqI_GAes36FDoFawZJOhibBsBaJBO320ekYuzD1_fL9qpZUIbAXdt2sBSxF9RkywcPJPn0LEofSpYzcR0zD54mwDn2JAs63jWkXlfwM0lS6wY8Zjs9UOfnxIKorqwEHNXTJeM9yxZ7gFtFCWt0rEhr2-16OLEJ45tLa4c5BWocldV7qrKG3K8Ff420mj8XewdbsdWBLmv6wBYhJsswv3LIhryCjZzdo_F6bnDsbcCMi4rzQ1ryNHtXrvJa9cO1ALK45rJhrzcToO_4UcU3-fhGmW4wrTL2IY8GU1j-yghrBGQsTVEz4xmtpb5TL-6rJzeBi5TUhz-DwU8I3c5Vt4gx6w4Inub79f5OUCnTXhRveQX4fQZOw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k3aggzqCSkU24kfJ9QiqhUqiAOV9hb5SVeqktJsUfvvO5N4AwHENZkklj2T-WY8_oaQPSG9MRwz7jGIsrKcla72rmRSKwv4WtuBrPrzF7k4qT4t62VOuPW5rHLzTxx-1KHzmCPfB5gOYIMrVr8__1Fi1yjcXc0tNG6TO0hdhsGXWqopxwLuUYPHG4_lKXCc-_F4leJbiS02Zo5o4OsH93KK1ZB_Q80_KyZ_c0FHD8j9jB3pwbjYD8mt2D4id8duktePyfIrJtZbLLKgAEVp3w10rDRegcVjUoyuWsSIfewpFm5SwH7Ud1jFQbtEz2DMIEEXY_MIwIQ07948ISdHH799WJS5cULpAX2tS8eCxwOpoU4c7JNHVzFf25CwpokpH62zJgDaMS4YVvGoPLM2gbHXLLCkxVOy1XZtfE4oiKrEnI9V0lXQ1rJguAXMkWRtpPIFebOZxcZnVnFsbnHWQHSBU94MU94MU16QvUn4fCTT-LfYIS7HJIIM2MOF7uJ7kw2qUc4npbxPQSJLG7de6kpU2qkIqhDgJa9hMWfvWBwcN3jtnYC4y9T6JyvI7matm2y7ffNL0wryaroNVodbKbaN3SXKcInBlzYFeTaqxvQpIYwWELcVRM2UZjaW-Z12dTowe2t4TNZi-__D2iH3OFbWIIes2CVb64vL-AKg0dq9HPT_BsucEJk
  priority: 102
  providerName: ProQuest
Title Propensity for somatic expansion increases over the course of life in Huntington disease
URI https://www.ncbi.nlm.nih.gov/pubmed/33983118
https://www.proquest.com/docview/2595192715
https://www.proquest.com/docview/2526305689
https://hal.sorbonne-universite.fr/hal-03230958
https://pubmed.ncbi.nlm.nih.gov/PMC8118653
https://doaj.org/article/7bcf77ccfd624082ac684348b7e119d4
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3da9swED_6wUZfxr7nrQva6NPA2WTZ-nga7WgJoy1lLJA3I-ujDQR7S9LR_ve7s53QdN2rdZbF6U73k3S-H8CBkM6YjE7cgxdpbjOeVoWrUi61soivtW2LVZ-dy9E4_z4pJluwIuPsFbh4cGtHfFLj-Wx48_v2Kzo84tehwmj4OZxOYxhK4s3Yhl0MSYo4HM56nN8uyQrtlJvu_7z77-zBYyGMFpyIP-4Ep7aGP4acK8qQ_Bd-3s-ivBOWTp7Ckx5PssPOAJ7BVqifw6OOYfL2BUwu6LC9psQLhvCULZq2RCsLN7gK0EEZm9aEGxdhwSiZkyEeZK6hzA7WRDbD4aMEG3WEEogTWX-j8xLGJ8c_v43SnkwhdYjIlmnFvaOfVH0RM_TZLFQ5d4X1kfKcuHLBVtZ4RECm8obnWVCOWxtxASi451GLV7BTN3V4AwxFVeSVC3nUudfWcm8yizgkysJI5RL4tNJi6fpK40R4MStxx0HaL1vtl632EzhYC__qCmw8LHZE07EWoarY7YNmfln2TlaqykWlnIteUuW2zDqpc5HrSgXOjcdOPuJkbvQxOjwt6dkXgXsxU-g_PIH91VyXK3MsUS2ovEzxIoEP62b0RLpesXVorkkmk7Qh0yaB151prD-1MrAE1IbRbIxls6WeXrXVvjW-Jgvx9r99voO9jBJtqKSs2Ied5fw6vEektKwGsK0magC7R8fnFz8G7XnDoPWMv_H-Fl4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAAYPKBSm0dh62DwiVR7Wl24pDK-0tOH7QlaqkNFugf4rfyEweCwHErddk4ljjGc834_EMwHqSW60FRdy9S-LUCB6XmS1jnitpEF8r0xar3tvPJ4fph1k2W4Efw10YSqsc9sR2o3a1pRj5BsJ0BBtC8uz1yZeYukbR6erQQqMTi11__g1dtubVzjtc3-dCbL8_eDuJ-64CsUVosohL7izd1nRZECi8wpcpt5lxgRJ-uLTelEY7hAK6dJqnwkvLjQmoCRl3PKgEx70El9HwblIKoZzJZUwHzbFCC9tdA5RoqDf8dB78y5xaeowMX9sfAM3ZEWVf_g1t_8zQ_M3kbd-A6z1WZVudcN2EFV_dgitd98rz2zD7SIH8ipI6GEJf1tRt-Vfmv-MOQ0E4Nq8Ikza-YZQoyhBrMltT1girAzvGOSMFm3TNKhCDsv606A4cXghL78JqVVf-PjAklYGX1qdBpU4Zw50WBjFOyDOdSxvBi4GLhe2rmFMzjeMCvRliedGyvGhZHsH6kvikK97xb7I3tBxLEqq43T6oTz8XvQIXsrRBSmuDy6kqnDA2V2mSqlJ6zrXDQZ7hYo7GmGxNC3q2maCfpzP1lUewNqx10e8VTfFLsiN4unyNWk5HN6by9RnRiJycPaUjuNeJxvJXSaJVgn5iBHIkNKO5jN9U86O2krjCz_IsefD_aT2Bq5ODvWkx3dnffQjXBGX1UP3aZA1WF6dn_hHCskX5uNUFBp8uWvl-AotzTfI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGEIgXxDeFAQGNF6RyJGmb5AGhwTjd2DHtgUn31qX5YCdN7djdgP1r_HXYbe_gAPG219ZNI8eOf3YcG2BTFs4YQRH34GWaWcHTKndVygutLOJrbdti1R_3itFB9mGST9bgx-IuDKVVLvbEdqP2jaMY-QBhOoINoXg-iH1axP728M3Jl5Q6SNFJ66KdRiciu-H8G7pvs9c727jWz4UYvv_0bpT2HQZShzBlnlbcO7q56fMoUJBFqDLucusjJf9w5YKtrPEIC0zlDc9EUI5bG1Ercu551BLHvQSXlUSzibqkJmoZ30HTrNHadlcCFRrtQRhPY3hZUHuPFSPY9gpA03ZEmZh_w9w_szV_M3_DG3C9x61sqxO0m7AW6ltwpetkeX4bJvsU1K8pwYMhDGazpi0Fy8J33G0oIMemNeHTWZgxShpliDuZayiDhDWRHeOckYKNusYViEdZf3J0Bw4uhKV3Yb1u6nAfGJKqyCsXsqgzr63l3giLeCcWuSmUS-DFgoul6yuaU2ON4xI9G2J52bK8bFmewOaS-KQr5PFvsre0HEsSqr7dPmhOP5e9MpeqclEp56IvqEKcsK7Qmcx0pQLnxuMgz3AxV8YYbY1LevZKos9ncv2VJ7CxWOuy3zdm5S8pT-Dp8jVqPB3j2Do0Z0QjCnL8tEngXicay19JabREnzEBtSI0K3NZfVNPj9qq4ho_K3L54P_TegJXUe3K8c7e7kO4JijBh0rZyg1Yn5-ehUeI0ObV41YVGBxetO79BNhQUig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Propensity+for+somatic+expansion+increases+over+the+course+of+life+in+Huntington+disease&rft.jtitle=eLife&rft.au=Kacher%2C+Radhia&rft.au=Lejeune%2C+Fran%C3%A7ois-Xavier&rft.au=No%C3%ABl%2C+Sandrine&rft.au=Cazeneuve%2C+C%C3%A9cile&rft.date=2021-05-13&rft.eissn=2050-084X&rft.volume=10&rft_id=info:doi/10.7554%2FeLife.64674&rft_id=info%3Apmid%2F33983118&rft.externalDocID=33983118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon