HSP40 proteins use class-specific regulation to drive HSP70 functional diversity
The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect almost all aspects of the protein life cycle from synthesis to degradation 1 – 3 . Achieving this broad spectrum of functions requires precise reg...
Saved in:
Published in | Nature (London) Vol. 587; no. 7834; pp. 489 - 494 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.11.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect almost all aspects of the protein life cycle from synthesis to degradation
1
–
3
. Achieving this broad spectrum of functions requires precise regulation of HSP70 activity. Proteins of the HSP40 family, also known as J-domain proteins (JDPs), have a key role in this process by preselecting substrates for transfer to their HSP70 partners and by stimulating the ATP hydrolysis of HSP70, leading to stable substrate binding
3
,
4
. In humans, JDPs constitute a large and diverse family with more than 40 different members
2
, which vary in their substrate selectivity and in the nature and number of their client-binding domains
5
. Here we show that JDPs can also differ fundamentally in their interactions with HSP70 chaperones. Using nuclear magnetic resonance spectroscopy
6
,
7
we find that the major class B JDPs are regulated by an autoinhibitory mechanism that is not present in other classes. Although in all JDPs the interaction of the characteristic J-domain is responsible for the activation of HSP70, in DNAJB1 the HSP70-binding sites in this domain are intrinsically blocked by an adjacent glycine-phenylalanine rich region—an inhibition that can be released upon the interaction of a second site on DNAJB1 with the HSP70 C-terminal tail. This regulation, which controls substrate targeting to HSP70, is essential for the disaggregation of amyloid fibres by HSP70–DNAJB1, illustrating why no other class of JDPs can substitute for class B in this function. Moreover, this regulatory layer, which governs the functional specificities of JDP co-chaperones and their interactions with HSP70s, could be key to the wide range of cellular functions of HSP70.
The binding and activation of HSP70 by class B J-domain proteins is subject to an autoinhibitory regulatory mechanism that controls substrate targeting to HSP70 and is required for the disaggregation of amyloid fibres. |
---|---|
AbstractList | The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect almost all aspects of the protein life cycle from synthesis to degradation.sup.1-3. Achieving this broad spectrum of functions requires precise regulation of HSP70 activity. Proteins of the HSP40 family, also known as J-domain proteins (JDPs), have a key role in this process by preselecting substrates for transfer to their HSP70 partners and by stimulating the ATP hydrolysis of HSP70, leading to stable substrate binding.sup.3,4. In humans, JDPs constitute a large and diverse family with more than 40 different members.sup.2, which vary in their substrate selectivity and in the nature and number of their client-binding domains.sup.5. Here we show that JDPs can also differ fundamentally in their interactions with HSP70 chaperones. Using nuclear magnetic resonance spectroscopy.sup.6,7 we find that the major class B JDPs are regulated by an autoinhibitory mechanism that is not present in other classes. Although in all JDPs the interaction of the characteristic J-domain is responsible for the activation of HSP70, in DNAJB1 the HSP70-binding sites in this domain are intrinsically blocked by an adjacent glycine-phenylalanine rich region--an inhibition that can be released upon the interaction of a second site on DNAJB1 with the HSP70 C-terminal tail. This regulation, which controls substrate targeting to HSP70, is essential for the disaggregation of amyloid fibres by HSP70-DNAJB1, illustrating why no other class of JDPs can substitute for class B in this function. Moreover, this regulatory layer, which governs the functional specificities of JDP co-chaperones and their interactions with HSP70s, could be key to the wide range of cellular functions of HSP70. The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect almost all aspects of the protein life cycle from synthesis to degradation.sup.1-3. Achieving this broad spectrum of functions requires precise regulation of HSP70 activity. Proteins of the HSP40 family, also known as J-domain proteins (JDPs), have a key role in this process by preselecting substrates for transfer to their HSP70 partners and by stimulating the ATP hydrolysis of HSP70, leading to stable substrate binding.sup.3,4. In humans, JDPs constitute a large and diverse family with more than 40 different members.sup.2, which vary in their substrate selectivity and in the nature and number of their client-binding domains.sup.5. Here we show that JDPs can also differ fundamentally in their interactions with HSP70 chaperones. Using nuclear magnetic resonance spectroscopy.sup.6,7 we find that the major class B JDPs are regulated by an autoinhibitory mechanism that is not present in other classes. Although in all JDPs the interaction of the characteristic J-domain is responsible for the activation of HSP70, in DNAJB1 the HSP70-binding sites in this domain are intrinsically blocked by an adjacent glycine-phenylalanine rich region--an inhibition that can be released upon the interaction of a second site on DNAJB1 with the HSP70 C-terminal tail. This regulation, which controls substrate targeting to HSP70, is essential for the disaggregation of amyloid fibres by HSP70-DNAJB1, illustrating why no other class of JDPs can substitute for class B in this function. Moreover, this regulatory layer, which governs the functional specificities of JDP co-chaperones and their interactions with HSP70s, could be key to the wide range of cellular functions of HSP70. The binding and activation of HSP70 by class B J-domain proteins is subject to an autoinhibitory regulatory mechanism that controls substrate targeting to HSP70 and is required for the disaggregation of amyloid fibres. The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect almost all aspects of the protein life cycle from synthesis to degradation1-3. Achieving this broad spectrum of functions requires precise regulation of HSP70 activity. Proteins of the HSP40 family, also known as J-domain proteins (JDPs), have a key role in this process by preselecting substrates for transfer to their HSP70 partners and by stimulating the ATP hydrolysis of HSP70, leading to stable substrate binding3,4. In humans, JDPs constitute a large and diverse family with more than 40 different members2, which vary in their substrate selectivity and in the nature and number of their client-binding domains5. Here we show that JDPs can also differ fundamentally in their interactions with HSP70 chaperones. Using nuclear magnetic resonance spectroscopy6,7 we find that the major class B JDPs are regulated by an autoinhibitory mechanism that is not present in other classes. Although in all JDPs the interaction of the characteristic J-domain is responsible for the activation of HSP70, in DNAJB1 the HSP70-binding sites in this domain are intrinsically blocked by an adjacent glycine-phenylalanine rich region-an inhibition that can be released upon the interaction of a second site on DNAJB1 with the HSP70 C-terminal tail. This regulation, which controls substrate targeting to HSP70, is essential for the disaggregation of amyloid fibres by HSP70-DNAJB1, illustrating why no other class of JDPs can substitute for class B in this function. Moreover, this regulatory layer, which governs the functional specificities of JDP co-chaperones and their interactions with HSP70s, could be key to the wide range of cellular functions of HSP70.The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect almost all aspects of the protein life cycle from synthesis to degradation1-3. Achieving this broad spectrum of functions requires precise regulation of HSP70 activity. Proteins of the HSP40 family, also known as J-domain proteins (JDPs), have a key role in this process by preselecting substrates for transfer to their HSP70 partners and by stimulating the ATP hydrolysis of HSP70, leading to stable substrate binding3,4. In humans, JDPs constitute a large and diverse family with more than 40 different members2, which vary in their substrate selectivity and in the nature and number of their client-binding domains5. Here we show that JDPs can also differ fundamentally in their interactions with HSP70 chaperones. Using nuclear magnetic resonance spectroscopy6,7 we find that the major class B JDPs are regulated by an autoinhibitory mechanism that is not present in other classes. Although in all JDPs the interaction of the characteristic J-domain is responsible for the activation of HSP70, in DNAJB1 the HSP70-binding sites in this domain are intrinsically blocked by an adjacent glycine-phenylalanine rich region-an inhibition that can be released upon the interaction of a second site on DNAJB1 with the HSP70 C-terminal tail. This regulation, which controls substrate targeting to HSP70, is essential for the disaggregation of amyloid fibres by HSP70-DNAJB1, illustrating why no other class of JDPs can substitute for class B in this function. Moreover, this regulatory layer, which governs the functional specificities of JDP co-chaperones and their interactions with HSP70s, could be key to the wide range of cellular functions of HSP70. The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect almost all aspects of the protein life cycle from synthesis to degradation 1 – 3 . Achieving this broad spectrum of functions requires precise regulation of HSP70 activity. Proteins of the HSP40 family, also known as J-domain proteins (JDPs), have a key role in this process by preselecting substrates for transfer to their HSP70 partners and by stimulating the ATP hydrolysis of HSP70, leading to stable substrate binding 3 , 4 . In humans, JDPs constitute a large and diverse family with more than 40 different members 2 , which vary in their substrate selectivity and in the nature and number of their client-binding domains 5 . Here we show that JDPs can also differ fundamentally in their interactions with HSP70 chaperones. Using nuclear magnetic resonance spectroscopy 6 , 7 we find that the major class B JDPs are regulated by an autoinhibitory mechanism that is not present in other classes. Although in all JDPs the interaction of the characteristic J-domain is responsible for the activation of HSP70, in DNAJB1 the HSP70-binding sites in this domain are intrinsically blocked by an adjacent glycine-phenylalanine rich region—an inhibition that can be released upon the interaction of a second site on DNAJB1 with the HSP70 C-terminal tail. This regulation, which controls substrate targeting to HSP70, is essential for the disaggregation of amyloid fibres by HSP70–DNAJB1, illustrating why no other class of JDPs can substitute for class B in this function. Moreover, this regulatory layer, which governs the functional specificities of JDP co-chaperones and their interactions with HSP70s, could be key to the wide range of cellular functions of HSP70. The binding and activation of HSP70 by class B J-domain proteins is subject to an autoinhibitory regulatory mechanism that controls substrate targeting to HSP70 and is required for the disaggregation of amyloid fibres. The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect almost all aspects of the protein life cycle from synthesis to degradation1-3. Achieving this broad spectrum of functions requires precise regulation of HSP70 activity. Proteins of the HSP40 family, also known as J-domain proteins (JDPs), have a key role in this process by preselecting substrates for transfer to their HSP70 partners and by stimulating the ATP hydrolysis of HSP70, leading to stable substrate binding3,4. In humans, JDPs constitute a large and diverse family with more than 40 different members2, which vary in their substrate selectivity and in the nature and number of their client-binding domains5. Here we show that JDPs can also differ fundamentally in their interactions with HSP70 chaperones. Using nuclear magnetic resonance spectroscopy6,7 we find that the major class B JDPs are regulated by an autoinhibitory mechanism that is not present in other classes. Although in all JDPs the interaction of the characteristic J-domain is responsible for the activation of HSP70, in DNAJB1 the HSP70-binding sites in this domain are intrinsically blocked by an adjacent glycine-phenylalanine rich region-an inhibition that can be released upon the interaction of a second site on DNAJB1 with the HSP70 C-terminal tail. This regulation, which controls substrate targeting to HSP70, is essential for the disaggregation of amyloid fibres by HSP70-DNAJB1, illustrating why no other class ofJDPs can substitute for class B in this function. Moreover, this regulatory layer, which governs the functional specificities ofJDP co-chaperones and their interactions with HSP70s, could be key to the wide range of cellular functions of HSP70. The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect almost all aspects of the protein life cycle from synthesis to degradation . Achieving this broad spectrum of functions requires precise regulation of HSP70 activity. Proteins of the HSP40 family, also known as J-domain proteins (JDPs), have a key role in this process by preselecting substrates for transfer to their HSP70 partners and by stimulating the ATP hydrolysis of HSP70, leading to stable substrate binding . In humans, JDPs constitute a large and diverse family with more than 40 different members , which vary in their substrate selectivity and in the nature and number of their client-binding domains . Here we show that JDPs can also differ fundamentally in their interactions with HSP70 chaperones. Using nuclear magnetic resonance spectroscopy we find that the major class B JDPs are regulated by an autoinhibitory mechanism that is not present in other classes. Although in all JDPs the interaction of the characteristic J-domain is responsible for the activation of HSP70, in DNAJB1 the HSP70-binding sites in this domain are intrinsically blocked by an adjacent glycine-phenylalanine rich region-an inhibition that can be released upon the interaction of a second site on DNAJB1 with the HSP70 C-terminal tail. This regulation, which controls substrate targeting to HSP70, is essential for the disaggregation of amyloid fibres by HSP70-DNAJB1, illustrating why no other class of JDPs can substitute for class B in this function. Moreover, this regulatory layer, which governs the functional specificities of JDP co-chaperones and their interactions with HSP70s, could be key to the wide range of cellular functions of HSP70. |
Audience | Academic |
Author | Wentink, Anne S. Rosenzweig, Rina London, Nir Abayev-Avraham, Meital Nillegoda, Nadinath B. Faust, Ofrah Maurer, Michael Bukau, Bernd |
Author_xml | – sequence: 1 givenname: Ofrah surname: Faust fullname: Faust, Ofrah organization: Department of Structural Biology, Weizmann Institute of Science – sequence: 2 givenname: Meital surname: Abayev-Avraham fullname: Abayev-Avraham, Meital organization: Department of Structural Biology, Weizmann Institute of Science – sequence: 3 givenname: Anne S. orcidid: 0000-0002-4420-2427 surname: Wentink fullname: Wentink, Anne S. organization: Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance – sequence: 4 givenname: Michael surname: Maurer fullname: Maurer, Michael organization: Department of Structural Biology, Weizmann Institute of Science, Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance – sequence: 5 givenname: Nadinath B. surname: Nillegoda fullname: Nillegoda, Nadinath B. organization: Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Australian Regenerative Medicine Institute (ARMI), Monash University – sequence: 6 givenname: Nir surname: London fullname: London, Nir organization: Department of Organic Chemistry, Weizmann Institute of Science – sequence: 7 givenname: Bernd orcidid: 0000-0003-0521-7199 surname: Bukau fullname: Bukau, Bernd email: bukau@zmbh.uni-heidelberg.de organization: Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance – sequence: 8 givenname: Rina orcidid: 0000-0002-4019-5135 surname: Rosenzweig fullname: Rosenzweig, Rina email: rina.rosenzweig@weizmann.ac.il organization: Department of Structural Biology, Weizmann Institute of Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33177718$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl9rFDEUxYNU7Lb6AXyRQV_0YerN5O88lqK2ULBYfQ7ZzM2QMjuzTTJiv71Zt6VuWSUPCYffOdxwzxE5GKcRCXlN4YQC0x8Tp0LLGhqomxZkzZ-RBeWqPKRWB2QB0OgaNJOH5CilGwAQVPEX5JAxqpSiekGuzq-vOFTrOGUMY6rmhJUbbEp1WqMLPrgqYj8PNodprPJUdTH8xKq4FFR-Ht1Gt0PVFTWmkO9ekufeDglf3d_H5MfnT9_PzuvLr18uzk4vayeUyLWlzAvOtaCtxJa7tpOiaz33nfNgtS26azqrmVaKtdi21OslFVYtnffoBDsm77e5ZfTbGVM2q5AcDoMdcZqTabgE0FxyKOi7J-jNNMcydaFkIxk0nNFHqrcDmjD6KUfrNqHmVArQTUtbXah6D9XjiNEOZTs-FHmHf7uHd-twa_6GTvZA5XS4Cm5v6ocdQ2Ey_sq9nVMyF9ffdtk397-flyvszDqGlY135qEDBVBbwMUppYjeuJD_7LtMEQZDwWzaZrZtM6VtZtM2w4uTPnE-hP_P02w9qbBjj_FxGf82_QYXo-Db |
CitedBy_id | crossref_primary_10_1007_s10722_023_01828_w crossref_primary_10_1016_j_neuint_2022_105453 crossref_primary_10_1073_pnas_2108163118 crossref_primary_10_1002_1873_3468_14857 crossref_primary_10_1007_s00018_022_04191_8 crossref_primary_10_1016_j_ejmech_2023_115859 crossref_primary_10_3389_fimmu_2025_1547193 crossref_primary_10_1073_pnas_2218217120 crossref_primary_10_1038_s41467_022_32318_9 crossref_primary_10_1002_pro_5105 crossref_primary_10_1146_annurev_biophys_090921_120150 crossref_primary_10_1002_jcp_31512 crossref_primary_10_1371_journal_pgen_1010442 crossref_primary_10_1016_j_jbc_2024_107907 crossref_primary_10_1016_j_molcel_2024_02_018 crossref_primary_10_1016_j_cstres_2023_12_002 crossref_primary_10_1038_s41556_022_00988_8 crossref_primary_10_1016_j_cbpa_2023_102314 crossref_primary_10_1017_qrd_2021_5 crossref_primary_10_1007_s10616_023_00570_6 crossref_primary_10_7554_eLife_94795 crossref_primary_10_7554_eLife_94795_3 crossref_primary_10_1038_s41586_023_06142_0 crossref_primary_10_1007_s12192_023_01392_3 crossref_primary_10_1016_j_molcel_2021_04_012 crossref_primary_10_1038_s41467_023_40952_0 crossref_primary_10_1111_jipb_13403 crossref_primary_10_1093_hr_uhaf019 crossref_primary_10_1007_s10858_022_00395_z crossref_primary_10_1016_j_drup_2022_100888 crossref_primary_10_1016_j_tibs_2021_12_009 crossref_primary_10_1016_j_yexcr_2021_112491 crossref_primary_10_1038_s41467_022_31127_4 crossref_primary_10_1007_s00216_024_05362_1 crossref_primary_10_3390_ijms21239186 crossref_primary_10_1007_s12192_022_01281_1 crossref_primary_10_15252_embr_202152507 crossref_primary_10_3390_microorganisms11081878 crossref_primary_10_1016_j_molcel_2021_12_031 crossref_primary_10_1038_s41467_023_41150_8 crossref_primary_10_1021_acsinfecdis_1c00651 crossref_primary_10_1016_j_chembiol_2025_01_006 crossref_primary_10_1091_mbc_E21_09_0436 crossref_primary_10_1007_s12035_022_02920_5 crossref_primary_10_1016_j_nbd_2021_105527 crossref_primary_10_3390_ijms222413527 crossref_primary_10_1016_j_tcb_2022_05_004 crossref_primary_10_1038_s41467_023_42735_z crossref_primary_10_1016_j_intimp_2023_110492 crossref_primary_10_1038_s41467_024_55026_y crossref_primary_10_1073_pnas_2310910120 crossref_primary_10_3390_cells11050829 crossref_primary_10_1016_j_biortech_2022_126706 crossref_primary_10_1016_j_biotechadv_2022_108079 crossref_primary_10_1038_s41467_023_36058_2 crossref_primary_10_7554_eLife_69601 crossref_primary_10_3389_fgene_2024_1296622 crossref_primary_10_3390_ijms25020876 crossref_primary_10_1016_j_jbc_2024_107435 crossref_primary_10_1128_msystems_01154_23 crossref_primary_10_1371_journal_ppat_1010665 crossref_primary_10_35118_apjmbb_2024_032_2_15 crossref_primary_10_1016_j_cell_2020_12_034 crossref_primary_10_3390_cells10102745 crossref_primary_10_48130_vegres_0025_0003 crossref_primary_10_3389_fendo_2022_965379 crossref_primary_10_1016_j_molcel_2022_01_005 crossref_primary_10_1038_s41580_023_00647_2 crossref_primary_10_1007_s10709_024_00208_1 crossref_primary_10_1016_j_ijbiomac_2023_128070 crossref_primary_10_1038_s41467_024_46587_z crossref_primary_10_1016_j_postharvbio_2021_111726 crossref_primary_10_1038_s41467_024_45646_9 crossref_primary_10_1016_j_celrep_2025_115339 crossref_primary_10_1038_s41557_021_00796_x crossref_primary_10_1016_j_cstres_2024_03_008 crossref_primary_10_1093_genetics_iyab129 crossref_primary_10_1186_s12951_024_02570_w crossref_primary_10_1038_s41594_024_01337_z crossref_primary_10_1016_j_ecoenv_2024_117653 crossref_primary_10_1016_j_jmb_2024_168484 crossref_primary_10_15252_embj_2021110410 crossref_primary_10_1021_acs_jmedchem_2c01631 crossref_primary_10_3390_biom11030469 crossref_primary_10_1038_s41467_022_30238_2 crossref_primary_10_3389_fmolb_2021_694012 crossref_primary_10_1016_j_sbi_2021_04_002 crossref_primary_10_3390_biom11101509 crossref_primary_10_3389_fgene_2021_689922 crossref_primary_10_3390_jof8020122 crossref_primary_10_1016_j_sbi_2023_102735 crossref_primary_10_15252_embj_2020106183 crossref_primary_10_1016_j_tibs_2024_11_004 crossref_primary_10_1021_jacs_2c10854 crossref_primary_10_3389_fmolb_2024_1392608 crossref_primary_10_1007_s12035_021_02342_9 crossref_primary_10_20517_and_2023_25 crossref_primary_10_3390_ijms23147618 crossref_primary_10_3390_ijms25147963 crossref_primary_10_1016_j_jmb_2024_168615 crossref_primary_10_5483_BMBRep_2022_55_10_051 crossref_primary_10_1038_s41598_021_96518_x crossref_primary_10_1038_s42003_022_04289_6 crossref_primary_10_3389_fmolb_2022_915307 crossref_primary_10_3390_biomedicines11051471 crossref_primary_10_3390_biology11030353 crossref_primary_10_1038_s41467_025_57733_6 crossref_primary_10_1021_acs_biochem_3c00531 crossref_primary_10_1016_j_jmb_2023_168283 crossref_primary_10_1093_stcltm_szae069 crossref_primary_10_1016_j_bbamcr_2021_118984 crossref_primary_10_1016_j_aquaculture_2021_737401 crossref_primary_10_1016_j_str_2024_02_015 crossref_primary_10_1038_s41467_023_36023_z crossref_primary_10_1016_j_fsi_2023_108704 crossref_primary_10_1093_eurheartj_ehac431 crossref_primary_10_3390_ijms24087455 crossref_primary_10_1016_j_bcp_2024_116633 crossref_primary_10_3389_fimmu_2021_770305 crossref_primary_10_3390_ijms232314970 crossref_primary_10_1021_acs_jmedchem_0c02091 crossref_primary_10_1038_s41586_020_2904_6 crossref_primary_10_1016_j_jbc_2023_105317 crossref_primary_10_1038_s41392_025_02166_2 crossref_primary_10_1016_j_jbc_2022_101697 |
Cites_doi | 10.1006/jmbi.1994.0073 10.1073/pnas.1011867108 10.1101/2019.12.16.876888 10.1038/s41586-020-2904-6 10.1007/BF00178264 10.1002/prot.21165 10.1371/journal.pgen.1007084 10.1006/jmbi.1996.0394 10.1021/bi00082a001 10.1073/pnas.0407792102 10.1074/jbc.274.43.30534 10.1016/j.cell.2007.09.039 10.1007/BF00197809 10.1073/pnas.0800256105 10.1021/bi000060h 10.1007/s10858-010-9433-9 10.1021/ja981205z 10.1007/s10858-013-9741-y 10.1073/pnas.1914999116 10.15252/embj.201797212 10.1021/bi00185a040 10.1016/j.molcel.2017.12.003 10.1007/s00018-004-4464-6 10.1038/nprot.2006.101 10.1007/s10858-008-9288-5 10.1021/ja0178665 10.1038/nature14884 10.1007/BF00242474 10.1038/s41580-019-0133-3 10.1098/rstb.2016.0534 10.1021/bi301543g 10.1074/jbc.271.19.11236 10.1074/jbc.271.32.19617 10.1073/pnas.1508504112 10.1021/cr900033p 10.1021/ja030153x 10.1007/s10858-012-9626-5 10.1016/j.jmb.2015.02.007 10.1101/cshperspect.a033969 10.1007/BF00228148 10.1038/nrm2941 10.1371/journal.pbio.1001346 10.1042/BJ20060618 10.1186/s40478-015-0224-0 10.1126/science.aax1280 10.1002/anie.200905660 10.1038/emboj.2012.264 10.1016/j.str.2019.08.012 10.1007/s10858-013-9772-4 10.1021/ja00076a099 10.1091/mbc.e04-05-0434 10.1128/MCB.19.11.7751 10.1074/jbc.271.16.9347 10.1016/j.febslet.2015.07.040 10.1021/bi100876n 10.1016/j.molcel.2015.07.012 10.1002/prot.20449 10.1016/j.tibs.2017.02.007 10.1006/jmre.1998.1361 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 COPYRIGHT 2020 Nature Publishing Group Copyright Nature Publishing Group Nov 19, 2020 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: COPYRIGHT 2020 Nature Publishing Group – notice: Copyright Nature Publishing Group Nov 19, 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
DOI | 10.1038/s41586-020-2906-4 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 494 |
ExternalDocumentID | A650829198 33177718 10_1038_s41586_020_2906_4 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Israel |
GeographicLocations_xml | – name: Israel |
GrantInformation_xml | – fundername: European Research Council |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADXHL AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ AAYOK ABAWZ ABDBF ABDPE ABEFU ABMOR ABNNU ABTAH ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 FAC I-F J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NFIDA NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT SV3 TH9 TUD TUS UAO UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZKG ZY4 ~8M ~G0 AEIIB PMFND 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c575t-a13f54485196e94c9d65d9f4fdcf0a8a519c2da8387739e991f8b15a7bcffec53 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Fri Jul 11 04:45:55 EDT 2025 Fri Jul 25 09:08:07 EDT 2025 Tue Jun 17 21:00:38 EDT 2025 Thu Jun 12 23:30:16 EDT 2025 Tue Jun 10 15:32:18 EDT 2025 Tue Jun 10 20:27:45 EDT 2025 Fri Jun 27 04:03:45 EDT 2025 Thu Apr 03 06:56:15 EDT 2025 Tue Jul 01 02:32:16 EDT 2025 Thu Apr 24 22:56:17 EDT 2025 Fri Feb 21 02:37:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7834 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-a13f54485196e94c9d65d9f4fdcf0a8a519c2da8387739e991f8b15a7bcffec53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4019-5135 0000-0003-0521-7199 0000-0002-4420-2427 |
PMID | 33177718 |
PQID | 2626302431 |
PQPubID | 40569 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2460084640 proquest_journals_2626302431 gale_infotracmisc_A650829198 gale_infotracgeneralonefile_A650829198 gale_infotraccpiq_650829198 gale_infotracacademiconefile_A650829198 gale_incontextgauss_ISR_A650829198 pubmed_primary_33177718 crossref_citationtrail_10_1038_s41586_020_2906_4 crossref_primary_10_1038_s41586_020_2906_4 springer_journals_10_1038_s41586_020_2906_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-19 |
PublicationDateYYYYMMDD | 2020-11-19 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Scior (CR15) 2018; 37 Jiang, Rossi, Kalodimos (CR5) 2019; 365 Bhattacharya, Tejero, Montelione (CR57) 2007; 66 Karamanos, Tugarinov, Clore (CR31) 2019; 116 Zwahlen (CR47) 1998; 120 Craig, Marszalek (CR25) 2017; 42 CR37 Battiste, Wagner (CR27) 2000; 39 Ruggieri (CR32) 2015; 3 Kampinga, Craig (CR2) 2010; 11 Yu (CR23) 2015; 427 CR30 Zarouchlioti, Parfitt, Li, Gittings, Cheetham (CR11) 2018; 373 Gelis (CR34) 2007; 131 Vranken (CR38) 2005; 59 Tsai, Douglas (CR60) 1996; 271 Tiwari, Kumar, Jayaraj, Maiti, Mapa (CR4) 2013; 52 Wentink, Nussbaum-Krammer, Bukau (CR9) 2019; 11 Gans (CR35) 2010; 49 Shen (CR52) 2008; 105 Constantine (CR41) 1993; 3 Yu, Ziegelhoffer, Craig (CR26) 2015; 589 Mayer, Bukau (CR1) 2005; 62 Shen, Bax (CR56) 2010; 48 Tugarinov, Kanelis, Kay (CR7) 2006; 1 Minami, Höhfeld, Ohtsuka, Hartl (CR17) 1996; 271 Suzuki (CR29) 2010; 49 Lyons, Tashiro, Cedergren, Nilsson, Montelione (CR43) 1993; 32 Kityk, Kopp, Mayer (CR8) 2018; 69 Karagöz (CR39) 2011; 108 Laskowski, Rullmannn, MacArthur, Kaptein, Thornton (CR58) 1996; 8 Duennwald, Echeverria, Shorter (CR14) 2012; 10 Yan, Craig (CR19) 1999; 19 Qian, Patel, Hartl, McColl (CR22) 1996; 260 Nillegoda (CR59) 2015; 524 Sekhar, Rosenzweig, Bouvignies, Kay (CR40) 2015; 112 Mesleh, Veglia, DeSilva, Marassi, Opella (CR21) 2002; 124 Tugarinov, Choy, Orekhov, Kay (CR46) 2005; 102 CR16 Tugarinov, Hwang, Ollerenshaw, Kay (CR6) 2003; 125 Yamazaki, Formankay, Kay (CR45) 1993; 115 Gao (CR12) 2015; 59 Ottiger, Delaglio, Bax (CR51) 1998; 131 Clore, Iwahara (CR28) 2009; 109 CR50 Farrow (CR42) 1994; 33 Karzai, McMacken (CR18) 1996; 271 Suh, Lu, Gross (CR61) 1999; 274 Li, Wu, Qian, Sha (CR24) 2006; 398 Lakomek, Ying, Bax (CR48) 2012; 53 Mandel, Akke, Palmer (CR49) 1995; 246 Rampelt (CR13) 2012; 31 Shen, Vernon, Baker, Bax (CR53) 2009; 43 Kuenze, Bonneau, Leman, Meiler (CR54) 2019; 27 Vernon, Shen, Baker, Lange (CR55) 2013; 57 Delaglio (CR36) 1995; 6 Rosenzweig, Nillegoda, Mayer, Bukau (CR3) 2019; 20 Shen, Bax (CR20) 2013; 56 Schilke (CR10) 2017; 13 Logan, Olejniczak, Xu, Fesik (CR44) 1993; 3 Shen, Hendershot (CR33) 2005; 16 AW Karzai (2906_CR18) 1996; 271 A Wentink (2906_CR9) 2019; 11 M Ottiger (2906_CR51) 1998; 131 R Rosenzweig (2906_CR3) 2019; 20 MF Mesleh (2906_CR21) 2002; 124 GE Karagöz (2906_CR39) 2011; 108 G Kuenze (2906_CR54) 2019; 27 BA Schilke (2906_CR10) 2017; 13 V Tugarinov (2906_CR7) 2006; 1 KL Constantine (2906_CR41) 1993; 3 WF Vranken (2906_CR38) 2005; 59 A Sekhar (2906_CR40) 2015; 112 2906_CR50 I Gelis (2906_CR34) 2007; 131 C Zarouchlioti (2906_CR11) 2018; 373 P Gans (2906_CR35) 2010; 49 H Suzuki (2906_CR29) 2010; 49 J Li (2906_CR24) 2006; 398 Y Shen (2906_CR33) 2005; 16 V Tugarinov (2906_CR6) 2003; 125 AM Mandel (2906_CR49) 1995; 246 Y Shen (2906_CR56) 2010; 48 2906_CR37 RA Laskowski (2906_CR58) 1996; 8 A Bhattacharya (2906_CR57) 2007; 66 HY Yu (2906_CR23) 2015; 427 R Vernon (2906_CR55) 2013; 57 W Yan (2906_CR19) 1999; 19 NA Lakomek (2906_CR48) 2012; 53 S Tiwari (2906_CR4) 2013; 52 NA Farrow (2906_CR42) 1994; 33 MP Mayer (2906_CR1) 2005; 62 Y Jiang (2906_CR5) 2019; 365 WC Suh (2906_CR61) 1999; 274 J Tsai (2906_CR60) 1996; 271 ML Duennwald (2906_CR14) 2012; 10 2906_CR30 V Tugarinov (2906_CR46) 2005; 102 EA Craig (2906_CR25) 2017; 42 JL Battiste (2906_CR27) 2000; 39 Y Minami (2906_CR17) 1996; 271 GM Clore (2906_CR28) 2009; 109 R Kityk (2906_CR8) 2018; 69 YQ Qian (2906_CR22) 1996; 260 TM Logan (2906_CR44) 1993; 3 Y Shen (2906_CR52) 2008; 105 T Yamazaki (2906_CR45) 1993; 115 F Delaglio (2906_CR36) 1995; 6 A Scior (2906_CR15) 2018; 37 2906_CR16 H Rampelt (2906_CR13) 2012; 31 Y Shen (2906_CR53) 2009; 43 HH Kampinga (2906_CR2) 2010; 11 NB Nillegoda (2906_CR59) 2015; 524 C Zwahlen (2906_CR47) 1998; 120 HY Yu (2906_CR26) 2015; 589 Y Shen (2906_CR20) 2013; 56 TK Karamanos (2906_CR31) 2019; 116 X Gao (2906_CR12) 2015; 59 A Ruggieri (2906_CR32) 2015; 3 BA Lyons (2906_CR43) 1993; 32 |
References_xml | – volume: 131 start-page: 373 year: 1998 end-page: 378 ident: CR51 article-title: Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra publication-title: J. Magn. Reson. – volume: 260 start-page: 224 year: 1996 end-page: 235 ident: CR22 article-title: Nuclear magnetic resonance solution structure of the human Hsp40 (HDJ-1) J-domain publication-title: J. Mol. Biol. – volume: 53 start-page: 209 year: 2012 end-page: 221 ident: CR48 article-title: Measurement of N relaxation rates in perdeuterated proteins by TROSY-based methods publication-title: J. Biomol. NMR – ident: CR16 – volume: 52 start-page: 1011 year: 2013 end-page: 1018 ident: CR4 article-title: Unique structural modulation of a non-native substrate by cochaperone DnaJ publication-title: Biochemistry – volume: 115 start-page: 11054 year: 1993 end-page: 11055 ident: CR45 article-title: Two-dimensional NMR experiments for correlating Cβ and Hδ/ε chemical shifts of aromatic residues in C-labeled proteins via scalar couplings publication-title: J. Am. Chem. Soc. – volume: 271 start-page: 19617 year: 1996 end-page: 19624 ident: CR17 article-title: Regulation of the heat-shock protein 70 reaction cycle by the mammalian DnaJ homolog, Hsp40 publication-title: J. Biol. Chem. – volume: 105 start-page: 4685 year: 2008 end-page: 4690 ident: CR52 article-title: Consistent blind protein structure generation from NMR chemical shift data publication-title: Proc. Natl Acad. Sci. USA – volume: 57 start-page: 117 year: 2013 end-page: 127 ident: CR55 article-title: Improved chemical shift based fragment selection for CS-Rosetta using Rosetta3 fragment picker publication-title: J. Biomol. NMR – volume: 1 start-page: 749 year: 2006 end-page: 754 ident: CR7 article-title: Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy publication-title: Nat. Protoc. – volume: 120 start-page: 7617 year: 1998 end-page: 7625 ident: CR47 article-title: An NMR experiment for measuring methyl–methyl NOEs in C-labeled proteins with high resolution publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 63 year: 2009 end-page: 78 ident: CR53 article-title: De novo protein structure generation from incomplete chemical shift assignments publication-title: J. Biomol. NMR – volume: 16 start-page: 40 year: 2005 end-page: 50 ident: CR33 article-title: ERdj3, a stress-inducible endoplasmic reticulum DnaJ homologue, serves as a cofactor for BiP’s interactions with unfolded substrates publication-title: Mol. Biol. Cell – volume: 271 start-page: 9347 year: 1996 end-page: 9354 ident: CR60 article-title: A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding publication-title: J. Biol. Chem. – volume: 31 start-page: 4221 year: 2012 end-page: 4235 ident: CR13 article-title: Metazoan HSP70 machines use HSP110 to power protein disaggregation publication-title: EMBO J. – volume: 373 start-page: 20160534 year: 2018 ident: CR11 article-title: DNAJ proteins in neurodegeneration: essential and protective factors publication-title: Phil. Trans. R. Soc. Lond. B – volume: 42 start-page: 355 year: 2017 end-page: 368 ident: CR25 article-title: How do J-proteins get Hsp70 to do so many different things? publication-title: Trends Biochem. Sci. – ident: CR50 – volume: 125 start-page: 10420 year: 2003 end-page: 10428 ident: CR6 article-title: Cross-correlated relaxation enhanced H– C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes publication-title: J. Am. Chem. Soc. – volume: 69 start-page: 227 year: 2018 end-page: 237.e4 ident: CR8 article-title: Molecular mechanism of J-domain-triggered ATP hydrolysis by Hsp70 chaperones publication-title: Mol. Cell – volume: 108 start-page: 580 year: 2011 end-page: 585 ident: CR39 article-title: N-terminal domain of human Hsp90 triggers binding to the cochaperone p23 publication-title: Proc. Natl Acad. Sci. USA – volume: 3 start-page: 225 year: 1993 end-page: 231 ident: CR44 article-title: A general method for assigning NMR spectra of denatured proteins using 3D HC(CO)NH-TOCSY triple resonance experiments publication-title: J. Biomol. NMR – volume: 32 start-page: 7839 year: 1993 end-page: 7845 ident: CR43 article-title: An improved strategy for determining resonance assignments for isotopically enriched proteins and its application to an engineered domain of staphylococcal protein A publication-title: Biochemistry – volume: 20 start-page: 665 year: 2019 end-page: 680 ident: CR3 article-title: The Hsp70 chaperone network publication-title: Nat. Rev. Mol. Cell Biol. – volume: 37 start-page: 282 year: 2018 end-page: 299 ident: CR15 article-title: Complete suppression of Htt fibrilization and disaggregation of Htt fibrils by a trimeric chaperone complex publication-title: EMBO J. – volume: 398 start-page: 353 year: 2006 end-page: 360 ident: CR24 article-title: Crystal structure of yeast Sis1 peptide-binding fragment and Hsp70 Ssa1 C-terminal complex publication-title: Biochem. J. – volume: 246 start-page: 144 year: 1995 end-page: 163 ident: CR49 article-title: Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme publication-title: J. Mol. Biol. – volume: 131 start-page: 756 year: 2007 end-page: 769 ident: CR34 article-title: Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR publication-title: Cell – volume: 274 start-page: 30534 year: 1999 end-page: 30539 ident: CR61 article-title: Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ publication-title: J. Biol. Chem. – volume: 27 start-page: 1721 year: 2019 end-page: 1734.e5 ident: CR54 article-title: Integrative protein modeling in RosettaNMR from sparse paramagnetic restraints publication-title: Structure – volume: 3 start-page: 44 year: 2015 ident: CR32 article-title: Complete loss of the DNAJB6 G/F domain and novel missense mutations cause distal-onset DNAJB6 myopathy publication-title: Acta Neuropathol. Commun. – volume: 116 start-page: 21529 year: 2019 end-page: 21538 ident: CR31 article-title: Unraveling the structure and dynamics of the human DNAJB6b chaperone by NMR reveals insights into Hsp40-mediated proteostasis publication-title: Proc. Natl Acad. Sci. USA – volume: 3 start-page: 41 year: 1993 end-page: 54 ident: CR41 article-title: Aliphatic H and C resonance assignments for the 26-10 antibody V domain derived from heteronuclear multidimensional NMR spectroscopy publication-title: J. Biomol. NMR – volume: 59 start-page: 687 year: 2005 end-page: 696 ident: CR38 article-title: The CCPN data model for NMR spectroscopy: development of a software pipeline publication-title: Proteins – volume: 271 start-page: 11236 year: 1996 end-page: 11246 ident: CR18 article-title: A bipartite signaling mechanism involved in DnaJ-mediated activation of the DnaK protein publication-title: J. Biol. Chem. – volume: 66 start-page: 778 year: 2007 end-page: 795 ident: CR57 article-title: Evaluating protein structures determined by structural genomics consortia publication-title: Proteins – ident: CR37 – volume: 11 start-page: 579 year: 2010 end-page: 592 ident: CR2 article-title: The HSP70 chaperone machinery: J proteins as drivers of functional specificity publication-title: Nat. Rev. Mol. Cell Biol. – volume: 56 start-page: 227 year: 2013 end-page: 241 ident: CR20 article-title: Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks publication-title: J. Biomol. NMR – volume: 49 start-page: 8577 year: 2010 end-page: 8584 ident: CR29 article-title: Peptide-binding sites as revealed by the crystal structures of the human Hsp40 Hdj1 C-terminal domain in complex with the octapeptide from human Hsp70 publication-title: Biochemistry – ident: CR30 – volume: 112 start-page: 10395 year: 2015 end-page: 10400 ident: CR40 article-title: Mapping the conformation of a client protein through the Hsp70 functional cycle publication-title: Proc. Natl Acad. Sci. USA – volume: 365 start-page: 1313 year: 2019 end-page: 1319 ident: CR5 article-title: Structural basis for client recognition and activity of Hsp40 chaperones publication-title: Science – volume: 39 start-page: 5355 year: 2000 end-page: 5365 ident: CR27 article-title: Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear Overhauser effect data publication-title: Biochemistry – volume: 8 start-page: 477 year: 1996 end-page: 486 ident: CR58 article-title: AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR publication-title: J. Biomol. NMR – volume: 62 start-page: 670 year: 2005 end-page: 684 ident: CR1 article-title: Hsp70 chaperones: cellular functions and molecular mechanism publication-title: Cell. Mol. Life Sci. – volume: 524 start-page: 247 year: 2015 end-page: 251 ident: CR59 article-title: Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation publication-title: Nature – volume: 589 start-page: 2825 year: 2015 end-page: 2830 ident: CR26 article-title: Functionality of class A and class B J-protein co-chaperones with Hsp70 publication-title: FEBS Lett. – volume: 49 start-page: 1958 year: 2010 end-page: 1962 ident: CR35 article-title: Stereospecific isotopic labeling of methyl groups for NMR spectroscopic studies of high-molecular-weight proteins publication-title: Angew. Chem. Int. Ed. – volume: 19 start-page: 7751 year: 1999 end-page: 7758 ident: CR19 article-title: The glycine-phenylalanine-rich region determines the specificity of the yeast Hsp40 Sis1 publication-title: Mol. Cell. Biol. – volume: 10 start-page: e1001346 year: 2012 ident: CR14 article-title: Small heat shock proteins potentiate amyloid dissolution by protein disaggregases from yeast and humans publication-title: PLoS Biol. – volume: 33 start-page: 5984 year: 1994 end-page: 6003 ident: CR42 article-title: Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by N NMR relaxation publication-title: Biochemistry – volume: 124 start-page: 4206 year: 2002 end-page: 4207 ident: CR21 article-title: Dipolar waves as NMR maps of protein structure publication-title: J. Am. Chem. Soc. – volume: 427 start-page: 1632 year: 2015 end-page: 1643 ident: CR23 article-title: Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone Sis1 publication-title: J. Mol. Biol. – volume: 11 start-page: a033969 year: 2019 ident: CR9 article-title: Modulation of amyloid states by molecular chaperones publication-title: Cold Spring Harb. Perspect. Biol. – volume: 6 start-page: 277 year: 1995 end-page: 293 ident: CR36 article-title: NMRPipe: a multidimensional spectral processing system based on UNIX pipes publication-title: J. Biomol. NMR – volume: 13 start-page: e1007084 year: 2017 ident: CR10 article-title: Broadening the functionality of a J-protein/HSP70 molecular chaperone system publication-title: PLoS Genet. – volume: 48 start-page: 13 year: 2010 end-page: 22 ident: CR56 article-title: SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network publication-title: J. Biomol. NMR – volume: 102 start-page: 622 year: 2005 end-page: 627 ident: CR46 article-title: Solution NMR-derived global fold of a monomeric 82-kDa enzyme publication-title: Proc. Natl Acad. Sci. USA – volume: 59 start-page: 781 year: 2015 end-page: 793 ident: CR12 article-title: Human HSP70 disaggregase reverses Parkinson’s-linked α-synuclein amyloid fibrils publication-title: Mol. Cell – volume: 109 start-page: 4108 year: 2009 end-page: 4139 ident: CR28 article-title: Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes publication-title: Chem. Rev. – volume: 246 start-page: 144 year: 1995 ident: 2906_CR49 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1994.0073 – volume: 108 start-page: 580 year: 2011 ident: 2906_CR39 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1011867108 – ident: 2906_CR16 doi: 10.1101/2019.12.16.876888 – ident: 2906_CR30 doi: 10.1038/s41586-020-2904-6 – volume: 3 start-page: 225 year: 1993 ident: 2906_CR44 publication-title: J. Biomol. NMR doi: 10.1007/BF00178264 – volume: 66 start-page: 778 year: 2007 ident: 2906_CR57 publication-title: Proteins doi: 10.1002/prot.21165 – volume: 13 start-page: e1007084 year: 2017 ident: 2906_CR10 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1007084 – volume: 260 start-page: 224 year: 1996 ident: 2906_CR22 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1996.0394 – volume: 32 start-page: 7839 year: 1993 ident: 2906_CR43 publication-title: Biochemistry doi: 10.1021/bi00082a001 – volume: 102 start-page: 622 year: 2005 ident: 2906_CR46 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0407792102 – volume: 274 start-page: 30534 year: 1999 ident: 2906_CR61 publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.43.30534 – volume: 131 start-page: 756 year: 2007 ident: 2906_CR34 publication-title: Cell doi: 10.1016/j.cell.2007.09.039 – volume: 6 start-page: 277 year: 1995 ident: 2906_CR36 publication-title: J. Biomol. NMR doi: 10.1007/BF00197809 – volume: 105 start-page: 4685 year: 2008 ident: 2906_CR52 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0800256105 – volume: 39 start-page: 5355 year: 2000 ident: 2906_CR27 publication-title: Biochemistry doi: 10.1021/bi000060h – volume: 48 start-page: 13 year: 2010 ident: 2906_CR56 publication-title: J. Biomol. NMR doi: 10.1007/s10858-010-9433-9 – volume: 120 start-page: 7617 year: 1998 ident: 2906_CR47 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja981205z – volume: 56 start-page: 227 year: 2013 ident: 2906_CR20 publication-title: J. Biomol. NMR doi: 10.1007/s10858-013-9741-y – volume: 116 start-page: 21529 year: 2019 ident: 2906_CR31 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1914999116 – volume: 37 start-page: 282 year: 2018 ident: 2906_CR15 publication-title: EMBO J. doi: 10.15252/embj.201797212 – volume: 33 start-page: 5984 year: 1994 ident: 2906_CR42 publication-title: Biochemistry doi: 10.1021/bi00185a040 – volume: 69 start-page: 227 year: 2018 ident: 2906_CR8 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.12.003 – volume: 62 start-page: 670 year: 2005 ident: 2906_CR1 publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-004-4464-6 – volume: 1 start-page: 749 year: 2006 ident: 2906_CR7 publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.101 – ident: 2906_CR37 – ident: 2906_CR50 – volume: 43 start-page: 63 year: 2009 ident: 2906_CR53 publication-title: J. Biomol. NMR doi: 10.1007/s10858-008-9288-5 – volume: 124 start-page: 4206 year: 2002 ident: 2906_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0178665 – volume: 524 start-page: 247 year: 2015 ident: 2906_CR59 publication-title: Nature doi: 10.1038/nature14884 – volume: 3 start-page: 41 year: 1993 ident: 2906_CR41 publication-title: J. Biomol. NMR doi: 10.1007/BF00242474 – volume: 20 start-page: 665 year: 2019 ident: 2906_CR3 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0133-3 – volume: 373 start-page: 20160534 year: 2018 ident: 2906_CR11 publication-title: Phil. Trans. R. Soc. Lond. B doi: 10.1098/rstb.2016.0534 – volume: 52 start-page: 1011 year: 2013 ident: 2906_CR4 publication-title: Biochemistry doi: 10.1021/bi301543g – volume: 271 start-page: 11236 year: 1996 ident: 2906_CR18 publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.19.11236 – volume: 271 start-page: 19617 year: 1996 ident: 2906_CR17 publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.32.19617 – volume: 112 start-page: 10395 year: 2015 ident: 2906_CR40 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1508504112 – volume: 109 start-page: 4108 year: 2009 ident: 2906_CR28 publication-title: Chem. Rev. doi: 10.1021/cr900033p – volume: 125 start-page: 10420 year: 2003 ident: 2906_CR6 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja030153x – volume: 53 start-page: 209 year: 2012 ident: 2906_CR48 publication-title: J. Biomol. NMR doi: 10.1007/s10858-012-9626-5 – volume: 427 start-page: 1632 year: 2015 ident: 2906_CR23 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2015.02.007 – volume: 11 start-page: a033969 year: 2019 ident: 2906_CR9 publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a033969 – volume: 8 start-page: 477 year: 1996 ident: 2906_CR58 publication-title: J. Biomol. NMR doi: 10.1007/BF00228148 – volume: 11 start-page: 579 year: 2010 ident: 2906_CR2 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2941 – volume: 10 start-page: e1001346 year: 2012 ident: 2906_CR14 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001346 – volume: 398 start-page: 353 year: 2006 ident: 2906_CR24 publication-title: Biochem. J. doi: 10.1042/BJ20060618 – volume: 3 start-page: 44 year: 2015 ident: 2906_CR32 publication-title: Acta Neuropathol. Commun. doi: 10.1186/s40478-015-0224-0 – volume: 365 start-page: 1313 year: 2019 ident: 2906_CR5 publication-title: Science doi: 10.1126/science.aax1280 – volume: 49 start-page: 1958 year: 2010 ident: 2906_CR35 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200905660 – volume: 31 start-page: 4221 year: 2012 ident: 2906_CR13 publication-title: EMBO J. doi: 10.1038/emboj.2012.264 – volume: 27 start-page: 1721 year: 2019 ident: 2906_CR54 publication-title: Structure doi: 10.1016/j.str.2019.08.012 – volume: 57 start-page: 117 year: 2013 ident: 2906_CR55 publication-title: J. Biomol. NMR doi: 10.1007/s10858-013-9772-4 – volume: 115 start-page: 11054 year: 1993 ident: 2906_CR45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00076a099 – volume: 16 start-page: 40 year: 2005 ident: 2906_CR33 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e04-05-0434 – volume: 19 start-page: 7751 year: 1999 ident: 2906_CR19 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.19.11.7751 – volume: 271 start-page: 9347 year: 1996 ident: 2906_CR60 publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.16.9347 – volume: 589 start-page: 2825 year: 2015 ident: 2906_CR26 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2015.07.040 – volume: 49 start-page: 8577 year: 2010 ident: 2906_CR29 publication-title: Biochemistry doi: 10.1021/bi100876n – volume: 59 start-page: 781 year: 2015 ident: 2906_CR12 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.07.012 – volume: 59 start-page: 687 year: 2005 ident: 2906_CR38 publication-title: Proteins doi: 10.1002/prot.20449 – volume: 42 start-page: 355 year: 2017 ident: 2906_CR25 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2017.02.007 – volume: 131 start-page: 373 year: 1998 ident: 2906_CR51 publication-title: J. Magn. Reson. doi: 10.1006/jmre.1998.1361 |
SSID | ssj0005174 |
Score | 2.6511862 |
Snippet | The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 489 |
SubjectTerms | alpha-Synuclein - chemistry alpha-Synuclein - metabolism Amyloid - chemistry Amyloid - metabolism Binding Sites Chaperones Disaggregation Fibers Glycine Glycine - metabolism Health aspects Heat shock proteins HSP40 Heat-Shock Proteins - chemistry HSP40 Heat-Shock Proteins - metabolism Hsp40 protein HSP70 Heat-Shock Proteins - chemistry HSP70 Heat-Shock Proteins - genetics HSP70 Heat-Shock Proteins - metabolism Hsp70 protein Humanities and Social Sciences Humans Life cycles Magnetic resonance Molecular Chaperones - chemistry Molecular Chaperones - metabolism multidisciplinary Mutation NMR Nuclear magnetic resonance Phenylalanine Phenylalanine - metabolism Protein Aggregates Protein Aggregation, Pathological Protein Binding - genetics Protein biosynthesis Protein Domains Proteins Science Science (multidisciplinary) Selectivity Sequence Deletion Spectrum analysis Substrate Specificity Substrates |
Title | HSP40 proteins use class-specific regulation to drive HSP70 functional diversity |
URI | https://link.springer.com/article/10.1038/s41586-020-2906-4 https://www.ncbi.nlm.nih.gov/pubmed/33177718 https://www.proquest.com/docview/2626302431 https://www.proquest.com/docview/2460084640 |
Volume | 587 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9wwEBZtQqEvJUkvN2lQS-kVRHzIh55KGrLdFhqWpIF9E7KOECj2Zr37_zNjy7vx0ubFD9bI3p2RZsbSp28I-RBnzmQ2FMzlmWM8Lh0TIjesNEKBxeGrqMSzw7_Ps_EV_zVNp37BrfGwyt4nto7a1BrXyI9jpE1B-rzo2-yWYdUo3F31JTQek22kLkNIVz7N1xCPDRbmflczKY4bCFwFwm9DhoTnjA_i0qZ3vheeNvZL2zA02iHPfP5ITzqD75JHttojT1ocp272yK6fqw397Amlvzwnk_HlhIe0pWS4qRq6bCzVmDUzPGeJWCE670rSg5HooqZmDj6QQq88pBj4uvVCanoMxwtyNTr7czpmvpIC05COLZiKEpfChxika5kVXAuTpUY47ox2oSoU3NexUUVS5HkiLOSMriijVOWlRlRJmrwkW1Vd2deEas5NpJVNylJzy1OhslAkHLKCMiydCgMS9nqU2tOMY7WLv7Ld7k4K2aleguolql7ygHxddZl1HBsPCb9H40jkrqgQHHOtlk0jf15eyBPMNmMRiSIgn7yQq-HlWvmzBvAXkO5qILk_kNSzm1t5r_XjoPW6s9y_HnMwEIQ5qofN_VCS3kc0cj2iA_Ju1Yw9EfdW2XoJMjzDigcZB72-6obgSkUJpH45pBYBOerH5Prh_9Xfm4d_yj55GuOkQKCjOCBbi_nSvoW0a1EetnMLrsVphNfRj0Oy_f3sfHJxBwHcJ2g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELaqIgQviJYrtIBB3MhqDufwA0IVUO3SQxVtpX0zjo9VJZRsN7tC_Cl-IzM5dpsV9K2v8TjHeDzzOf48Q8jLMHEmsb5gLk0c42HumBCpYbkRCkYcVkU5nh0-PEoGZ_zbKB6tkT_dWRikVXY-sXbUptT4j3wnxLQpmD4v-DS5YFg1CndXuxIajVns29-_YMlWfRx-gfF9FYZ7X08_D1hbVYBpgCYzpoLIxbAoAeiSWMG1MElshOPOaOerTMF1HRqVRVmaRsICfnJZHsQqzTUyLLBKBLj8G_AiPs6odJQuKSUrWZ-7XdQo26kgUGZI9_UZJlhnvBcHV6PBpXC4sj9bh729u-ROi1fpbmNgG2TNFpvkZs0b1dUm2Wh9Q0Xftgms390jx4OTY-7TOgXEeVHReWWpRpTO8FwncpPo1I7bumF0VlIzBZ9LoVfqUwy0zf9JajrOyH1ydi06fkDWi7KwjwjVnJtAKxvlueaWx0Ilvog4oJDcz53yPeJ3epS6TWuO1TV-ynp7Pcpko3oJqpeoesk98n7RZdLk9LhK-AUOjsRcGQWSccZqXlVyePJd7iK6DUUgMo-8aYVcCQ_Xqj3bAJ-A6bV6kls9ST05v5CXWl_3WsfNyP3rNts9QfAJut_cmZJsfVIllzPII88XzdgTeXaFLecgwxOssJBw0OvDxgQXKooAaqYAZTzyobPJ5c3_q7_HV7_KM3JrcHp4IA-GR_tb5HaIEwRJlmKbrM-mc_sEIN8sf1rPM0p-XPfE_gvZ-WHa |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxELaqIhAviJZraQGDuJGVPbyHHxCqKFFCoYoolfJmvD6iSmiTZhMh_hq_jpk9km4EfetrPN4k47m8_vwNIc_DxJnE-oK5NHGMh7ljQqSG5UYoWHHYFeV4d_jrcTI45Z_H8XiL_GnvwiCsso2JVaA2U43vyHsh0qYgfV7Qcw0sYnTY_zA7Z9hBCk9a23YatYkc2d-_YPtWvh8ewlq_CMP-p-8fB6zpMMA0lCkLpoLIxbBBgTImsYJrYZLYCMed0c5XmYLPdWhUFmVpGgkLtZTL8iBWaa4RbYEdIyD8X0ujOEAfS8fpGl6ywQDdnqhGWa-EpJkh9NdnSLbOeCcnbmaGC6lx46y2SoH92-RWU7vSg9rYdsiWLXbJ9QpDqstdstPEiZK-bsis39who8HJiPu0ooM4K0q6LC3VWLEzvOOJOCU6t5OmhxhdTKmZQ_ylMCv1KSbd-l0lNS1-5C45vRId3yPbxbSwDwjVnJtAKxvlueaWx0Ilvog4VCS5nzvle8Rv9Sh1Q3GOnTZ-yuqoPcpkrXoJqpeoesk98nY1ZVbze1wm_AwXRyJvRoEWOFHLspTDk2_yACvdUAQi88irRshN4cu1au45wF9Aqq2O5F5HUs_OzuWF0Zed0Um9cv96zH5HEOKD7g63piSb-FTKtTd55OlqGGci5q6w0yXI8AS7LSQc9Hq_NsGViiIoO1MoazzyrrXJ9cP_q7-Hl_-UJ-QGuLT8Mjw-2iM3Q_QPxFuKfbK9mC_tI6j-Fvnjys0o-XHVfv0XwEFmEA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HSP40+proteins+use+class-specific+regulation+to+drive+HSP70+functional+diversity&rft.jtitle=Nature+%28London%29&rft.au=Faust%2C+Ofrah&rft.au=Abayev-Avraham%2C+Meital&rft.au=Wentink%2C+Anne+S.&rft.au=Maurer%2C+Michael&rft.date=2020-11-19&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=587&rft.issue=7834&rft.spage=489&rft.epage=494&rft_id=info:doi/10.1038%2Fs41586-020-2906-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41586_020_2906_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |