HSP40 proteins use class-specific regulation to drive HSP70 functional diversity

The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect almost all aspects of the protein life cycle from synthesis to degradation 1 – 3 . Achieving this broad spectrum of functions requires precise reg...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 587; no. 7834; pp. 489 - 494
Main Authors Faust, Ofrah, Abayev-Avraham, Meital, Wentink, Anne S., Maurer, Michael, Nillegoda, Nadinath B., London, Nir, Bukau, Bernd, Rosenzweig, Rina
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.11.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect almost all aspects of the protein life cycle from synthesis to degradation 1 – 3 . Achieving this broad spectrum of functions requires precise regulation of HSP70 activity. Proteins of the HSP40 family, also known as J-domain proteins (JDPs), have a key role in this process by preselecting substrates for transfer to their HSP70 partners and by stimulating the ATP hydrolysis of HSP70, leading to stable substrate binding 3 , 4 . In humans, JDPs constitute a large and diverse family with more than 40 different members 2 , which vary in their substrate selectivity and in the nature and number of their client-binding domains 5 . Here we show that JDPs can also differ fundamentally in their interactions with HSP70 chaperones. Using nuclear magnetic resonance spectroscopy 6 , 7 we find that the major class B JDPs are regulated by an autoinhibitory mechanism that is not present in other classes. Although in all JDPs the interaction of the characteristic J-domain is responsible for the activation of HSP70, in DNAJB1 the HSP70-binding sites in this domain are intrinsically blocked by an adjacent glycine-phenylalanine rich region—an inhibition that can be released upon the interaction of a second site on DNAJB1 with the HSP70 C-terminal tail. This regulation, which controls substrate targeting to HSP70, is essential for the disaggregation of amyloid fibres by HSP70–DNAJB1, illustrating why no other class of JDPs can substitute for class B in this function. Moreover, this regulatory layer, which governs the functional specificities of JDP co-chaperones and their interactions with HSP70s, could be key to the wide range of cellular functions of HSP70. The binding and activation of HSP70 by class B J-domain proteins is subject to an autoinhibitory regulatory mechanism that controls substrate targeting to HSP70 and is required for the disaggregation of amyloid fibres.
AbstractList The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect almost all aspects of the protein life cycle from synthesis to degradation.sup.1-3. Achieving this broad spectrum of functions requires precise regulation of HSP70 activity. Proteins of the HSP40 family, also known as J-domain proteins (JDPs), have a key role in this process by preselecting substrates for transfer to their HSP70 partners and by stimulating the ATP hydrolysis of HSP70, leading to stable substrate binding.sup.3,4. In humans, JDPs constitute a large and diverse family with more than 40 different members.sup.2, which vary in their substrate selectivity and in the nature and number of their client-binding domains.sup.5. Here we show that JDPs can also differ fundamentally in their interactions with HSP70 chaperones. Using nuclear magnetic resonance spectroscopy.sup.6,7 we find that the major class B JDPs are regulated by an autoinhibitory mechanism that is not present in other classes. Although in all JDPs the interaction of the characteristic J-domain is responsible for the activation of HSP70, in DNAJB1 the HSP70-binding sites in this domain are intrinsically blocked by an adjacent glycine-phenylalanine rich region--an inhibition that can be released upon the interaction of a second site on DNAJB1 with the HSP70 C-terminal tail. This regulation, which controls substrate targeting to HSP70, is essential for the disaggregation of amyloid fibres by HSP70-DNAJB1, illustrating why no other class of JDPs can substitute for class B in this function. Moreover, this regulatory layer, which governs the functional specificities of JDP co-chaperones and their interactions with HSP70s, could be key to the wide range of cellular functions of HSP70.
The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect almost all aspects of the protein life cycle from synthesis to degradation.sup.1-3. Achieving this broad spectrum of functions requires precise regulation of HSP70 activity. Proteins of the HSP40 family, also known as J-domain proteins (JDPs), have a key role in this process by preselecting substrates for transfer to their HSP70 partners and by stimulating the ATP hydrolysis of HSP70, leading to stable substrate binding.sup.3,4. In humans, JDPs constitute a large and diverse family with more than 40 different members.sup.2, which vary in their substrate selectivity and in the nature and number of their client-binding domains.sup.5. Here we show that JDPs can also differ fundamentally in their interactions with HSP70 chaperones. Using nuclear magnetic resonance spectroscopy.sup.6,7 we find that the major class B JDPs are regulated by an autoinhibitory mechanism that is not present in other classes. Although in all JDPs the interaction of the characteristic J-domain is responsible for the activation of HSP70, in DNAJB1 the HSP70-binding sites in this domain are intrinsically blocked by an adjacent glycine-phenylalanine rich region--an inhibition that can be released upon the interaction of a second site on DNAJB1 with the HSP70 C-terminal tail. This regulation, which controls substrate targeting to HSP70, is essential for the disaggregation of amyloid fibres by HSP70-DNAJB1, illustrating why no other class of JDPs can substitute for class B in this function. Moreover, this regulatory layer, which governs the functional specificities of JDP co-chaperones and their interactions with HSP70s, could be key to the wide range of cellular functions of HSP70. The binding and activation of HSP70 by class B J-domain proteins is subject to an autoinhibitory regulatory mechanism that controls substrate targeting to HSP70 and is required for the disaggregation of amyloid fibres.
The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect almost all aspects of the protein life cycle from synthesis to degradation1-3. Achieving this broad spectrum of functions requires precise regulation of HSP70 activity. Proteins of the HSP40 family, also known as J-domain proteins (JDPs), have a key role in this process by preselecting substrates for transfer to their HSP70 partners and by stimulating the ATP hydrolysis of HSP70, leading to stable substrate binding3,4. In humans, JDPs constitute a large and diverse family with more than 40 different members2, which vary in their substrate selectivity and in the nature and number of their client-binding domains5. Here we show that JDPs can also differ fundamentally in their interactions with HSP70 chaperones. Using nuclear magnetic resonance spectroscopy6,7 we find that the major class B JDPs are regulated by an autoinhibitory mechanism that is not present in other classes. Although in all JDPs the interaction of the characteristic J-domain is responsible for the activation of HSP70, in DNAJB1 the HSP70-binding sites in this domain are intrinsically blocked by an adjacent glycine-phenylalanine rich region-an inhibition that can be released upon the interaction of a second site on DNAJB1 with the HSP70 C-terminal tail. This regulation, which controls substrate targeting to HSP70, is essential for the disaggregation of amyloid fibres by HSP70-DNAJB1, illustrating why no other class of JDPs can substitute for class B in this function. Moreover, this regulatory layer, which governs the functional specificities of JDP co-chaperones and their interactions with HSP70s, could be key to the wide range of cellular functions of HSP70.The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect almost all aspects of the protein life cycle from synthesis to degradation1-3. Achieving this broad spectrum of functions requires precise regulation of HSP70 activity. Proteins of the HSP40 family, also known as J-domain proteins (JDPs), have a key role in this process by preselecting substrates for transfer to their HSP70 partners and by stimulating the ATP hydrolysis of HSP70, leading to stable substrate binding3,4. In humans, JDPs constitute a large and diverse family with more than 40 different members2, which vary in their substrate selectivity and in the nature and number of their client-binding domains5. Here we show that JDPs can also differ fundamentally in their interactions with HSP70 chaperones. Using nuclear magnetic resonance spectroscopy6,7 we find that the major class B JDPs are regulated by an autoinhibitory mechanism that is not present in other classes. Although in all JDPs the interaction of the characteristic J-domain is responsible for the activation of HSP70, in DNAJB1 the HSP70-binding sites in this domain are intrinsically blocked by an adjacent glycine-phenylalanine rich region-an inhibition that can be released upon the interaction of a second site on DNAJB1 with the HSP70 C-terminal tail. This regulation, which controls substrate targeting to HSP70, is essential for the disaggregation of amyloid fibres by HSP70-DNAJB1, illustrating why no other class of JDPs can substitute for class B in this function. Moreover, this regulatory layer, which governs the functional specificities of JDP co-chaperones and their interactions with HSP70s, could be key to the wide range of cellular functions of HSP70.
The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect almost all aspects of the protein life cycle from synthesis to degradation 1 – 3 . Achieving this broad spectrum of functions requires precise regulation of HSP70 activity. Proteins of the HSP40 family, also known as J-domain proteins (JDPs), have a key role in this process by preselecting substrates for transfer to their HSP70 partners and by stimulating the ATP hydrolysis of HSP70, leading to stable substrate binding 3 , 4 . In humans, JDPs constitute a large and diverse family with more than 40 different members 2 , which vary in their substrate selectivity and in the nature and number of their client-binding domains 5 . Here we show that JDPs can also differ fundamentally in their interactions with HSP70 chaperones. Using nuclear magnetic resonance spectroscopy 6 , 7 we find that the major class B JDPs are regulated by an autoinhibitory mechanism that is not present in other classes. Although in all JDPs the interaction of the characteristic J-domain is responsible for the activation of HSP70, in DNAJB1 the HSP70-binding sites in this domain are intrinsically blocked by an adjacent glycine-phenylalanine rich region—an inhibition that can be released upon the interaction of a second site on DNAJB1 with the HSP70 C-terminal tail. This regulation, which controls substrate targeting to HSP70, is essential for the disaggregation of amyloid fibres by HSP70–DNAJB1, illustrating why no other class of JDPs can substitute for class B in this function. Moreover, this regulatory layer, which governs the functional specificities of JDP co-chaperones and their interactions with HSP70s, could be key to the wide range of cellular functions of HSP70. The binding and activation of HSP70 by class B J-domain proteins is subject to an autoinhibitory regulatory mechanism that controls substrate targeting to HSP70 and is required for the disaggregation of amyloid fibres.
The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect almost all aspects of the protein life cycle from synthesis to degradation1-3. Achieving this broad spectrum of functions requires precise regulation of HSP70 activity. Proteins of the HSP40 family, also known as J-domain proteins (JDPs), have a key role in this process by preselecting substrates for transfer to their HSP70 partners and by stimulating the ATP hydrolysis of HSP70, leading to stable substrate binding3,4. In humans, JDPs constitute a large and diverse family with more than 40 different members2, which vary in their substrate selectivity and in the nature and number of their client-binding domains5. Here we show that JDPs can also differ fundamentally in their interactions with HSP70 chaperones. Using nuclear magnetic resonance spectroscopy6,7 we find that the major class B JDPs are regulated by an autoinhibitory mechanism that is not present in other classes. Although in all JDPs the interaction of the characteristic J-domain is responsible for the activation of HSP70, in DNAJB1 the HSP70-binding sites in this domain are intrinsically blocked by an adjacent glycine-phenylalanine rich region-an inhibition that can be released upon the interaction of a second site on DNAJB1 with the HSP70 C-terminal tail. This regulation, which controls substrate targeting to HSP70, is essential for the disaggregation of amyloid fibres by HSP70-DNAJB1, illustrating why no other class ofJDPs can substitute for class B in this function. Moreover, this regulatory layer, which governs the functional specificities ofJDP co-chaperones and their interactions with HSP70s, could be key to the wide range of cellular functions of HSP70.
The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect almost all aspects of the protein life cycle from synthesis to degradation . Achieving this broad spectrum of functions requires precise regulation of HSP70 activity. Proteins of the HSP40 family, also known as J-domain proteins (JDPs), have a key role in this process by preselecting substrates for transfer to their HSP70 partners and by stimulating the ATP hydrolysis of HSP70, leading to stable substrate binding . In humans, JDPs constitute a large and diverse family with more than 40 different members , which vary in their substrate selectivity and in the nature and number of their client-binding domains . Here we show that JDPs can also differ fundamentally in their interactions with HSP70 chaperones. Using nuclear magnetic resonance spectroscopy we find that the major class B JDPs are regulated by an autoinhibitory mechanism that is not present in other classes. Although in all JDPs the interaction of the characteristic J-domain is responsible for the activation of HSP70, in DNAJB1 the HSP70-binding sites in this domain are intrinsically blocked by an adjacent glycine-phenylalanine rich region-an inhibition that can be released upon the interaction of a second site on DNAJB1 with the HSP70 C-terminal tail. This regulation, which controls substrate targeting to HSP70, is essential for the disaggregation of amyloid fibres by HSP70-DNAJB1, illustrating why no other class of JDPs can substitute for class B in this function. Moreover, this regulatory layer, which governs the functional specificities of JDP co-chaperones and their interactions with HSP70s, could be key to the wide range of cellular functions of HSP70.
Audience Academic
Author Wentink, Anne S.
Rosenzweig, Rina
London, Nir
Abayev-Avraham, Meital
Nillegoda, Nadinath B.
Faust, Ofrah
Maurer, Michael
Bukau, Bernd
Author_xml – sequence: 1
  givenname: Ofrah
  surname: Faust
  fullname: Faust, Ofrah
  organization: Department of Structural Biology, Weizmann Institute of Science
– sequence: 2
  givenname: Meital
  surname: Abayev-Avraham
  fullname: Abayev-Avraham, Meital
  organization: Department of Structural Biology, Weizmann Institute of Science
– sequence: 3
  givenname: Anne S.
  orcidid: 0000-0002-4420-2427
  surname: Wentink
  fullname: Wentink, Anne S.
  organization: Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance
– sequence: 4
  givenname: Michael
  surname: Maurer
  fullname: Maurer, Michael
  organization: Department of Structural Biology, Weizmann Institute of Science, Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance
– sequence: 5
  givenname: Nadinath B.
  surname: Nillegoda
  fullname: Nillegoda, Nadinath B.
  organization: Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Australian Regenerative Medicine Institute (ARMI), Monash University
– sequence: 6
  givenname: Nir
  surname: London
  fullname: London, Nir
  organization: Department of Organic Chemistry, Weizmann Institute of Science
– sequence: 7
  givenname: Bernd
  orcidid: 0000-0003-0521-7199
  surname: Bukau
  fullname: Bukau, Bernd
  email: bukau@zmbh.uni-heidelberg.de
  organization: Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance
– sequence: 8
  givenname: Rina
  orcidid: 0000-0002-4019-5135
  surname: Rosenzweig
  fullname: Rosenzweig, Rina
  email: rina.rosenzweig@weizmann.ac.il
  organization: Department of Structural Biology, Weizmann Institute of Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33177718$$D View this record in MEDLINE/PubMed
BookMark eNp9kl9rFDEUxYNU7Lb6AXyRQV_0YerN5O88lqK2ULBYfQ7ZzM2QMjuzTTJiv71Zt6VuWSUPCYffOdxwzxE5GKcRCXlN4YQC0x8Tp0LLGhqomxZkzZ-RBeWqPKRWB2QB0OgaNJOH5CilGwAQVPEX5JAxqpSiekGuzq-vOFTrOGUMY6rmhJUbbEp1WqMLPrgqYj8PNodprPJUdTH8xKq4FFR-Ht1Gt0PVFTWmkO9ekufeDglf3d_H5MfnT9_PzuvLr18uzk4vayeUyLWlzAvOtaCtxJa7tpOiaz33nfNgtS26azqrmVaKtdi21OslFVYtnffoBDsm77e5ZfTbGVM2q5AcDoMdcZqTabgE0FxyKOi7J-jNNMcydaFkIxk0nNFHqrcDmjD6KUfrNqHmVArQTUtbXah6D9XjiNEOZTs-FHmHf7uHd-twa_6GTvZA5XS4Cm5v6ocdQ2Ey_sq9nVMyF9ffdtk397-flyvszDqGlY135qEDBVBbwMUppYjeuJD_7LtMEQZDwWzaZrZtM6VtZtM2w4uTPnE-hP_P02w9qbBjj_FxGf82_QYXo-Db
CitedBy_id crossref_primary_10_1007_s10722_023_01828_w
crossref_primary_10_1016_j_neuint_2022_105453
crossref_primary_10_1073_pnas_2108163118
crossref_primary_10_1002_1873_3468_14857
crossref_primary_10_1007_s00018_022_04191_8
crossref_primary_10_1016_j_ejmech_2023_115859
crossref_primary_10_3389_fimmu_2025_1547193
crossref_primary_10_1073_pnas_2218217120
crossref_primary_10_1038_s41467_022_32318_9
crossref_primary_10_1002_pro_5105
crossref_primary_10_1146_annurev_biophys_090921_120150
crossref_primary_10_1002_jcp_31512
crossref_primary_10_1371_journal_pgen_1010442
crossref_primary_10_1016_j_jbc_2024_107907
crossref_primary_10_1016_j_molcel_2024_02_018
crossref_primary_10_1016_j_cstres_2023_12_002
crossref_primary_10_1038_s41556_022_00988_8
crossref_primary_10_1016_j_cbpa_2023_102314
crossref_primary_10_1017_qrd_2021_5
crossref_primary_10_1007_s10616_023_00570_6
crossref_primary_10_7554_eLife_94795
crossref_primary_10_7554_eLife_94795_3
crossref_primary_10_1038_s41586_023_06142_0
crossref_primary_10_1007_s12192_023_01392_3
crossref_primary_10_1016_j_molcel_2021_04_012
crossref_primary_10_1038_s41467_023_40952_0
crossref_primary_10_1111_jipb_13403
crossref_primary_10_1093_hr_uhaf019
crossref_primary_10_1007_s10858_022_00395_z
crossref_primary_10_1016_j_drup_2022_100888
crossref_primary_10_1016_j_tibs_2021_12_009
crossref_primary_10_1016_j_yexcr_2021_112491
crossref_primary_10_1038_s41467_022_31127_4
crossref_primary_10_1007_s00216_024_05362_1
crossref_primary_10_3390_ijms21239186
crossref_primary_10_1007_s12192_022_01281_1
crossref_primary_10_15252_embr_202152507
crossref_primary_10_3390_microorganisms11081878
crossref_primary_10_1016_j_molcel_2021_12_031
crossref_primary_10_1038_s41467_023_41150_8
crossref_primary_10_1021_acsinfecdis_1c00651
crossref_primary_10_1016_j_chembiol_2025_01_006
crossref_primary_10_1091_mbc_E21_09_0436
crossref_primary_10_1007_s12035_022_02920_5
crossref_primary_10_1016_j_nbd_2021_105527
crossref_primary_10_3390_ijms222413527
crossref_primary_10_1016_j_tcb_2022_05_004
crossref_primary_10_1038_s41467_023_42735_z
crossref_primary_10_1016_j_intimp_2023_110492
crossref_primary_10_1038_s41467_024_55026_y
crossref_primary_10_1073_pnas_2310910120
crossref_primary_10_3390_cells11050829
crossref_primary_10_1016_j_biortech_2022_126706
crossref_primary_10_1016_j_biotechadv_2022_108079
crossref_primary_10_1038_s41467_023_36058_2
crossref_primary_10_7554_eLife_69601
crossref_primary_10_3389_fgene_2024_1296622
crossref_primary_10_3390_ijms25020876
crossref_primary_10_1016_j_jbc_2024_107435
crossref_primary_10_1128_msystems_01154_23
crossref_primary_10_1371_journal_ppat_1010665
crossref_primary_10_35118_apjmbb_2024_032_2_15
crossref_primary_10_1016_j_cell_2020_12_034
crossref_primary_10_3390_cells10102745
crossref_primary_10_48130_vegres_0025_0003
crossref_primary_10_3389_fendo_2022_965379
crossref_primary_10_1016_j_molcel_2022_01_005
crossref_primary_10_1038_s41580_023_00647_2
crossref_primary_10_1007_s10709_024_00208_1
crossref_primary_10_1016_j_ijbiomac_2023_128070
crossref_primary_10_1038_s41467_024_46587_z
crossref_primary_10_1016_j_postharvbio_2021_111726
crossref_primary_10_1038_s41467_024_45646_9
crossref_primary_10_1016_j_celrep_2025_115339
crossref_primary_10_1038_s41557_021_00796_x
crossref_primary_10_1016_j_cstres_2024_03_008
crossref_primary_10_1093_genetics_iyab129
crossref_primary_10_1186_s12951_024_02570_w
crossref_primary_10_1038_s41594_024_01337_z
crossref_primary_10_1016_j_ecoenv_2024_117653
crossref_primary_10_1016_j_jmb_2024_168484
crossref_primary_10_15252_embj_2021110410
crossref_primary_10_1021_acs_jmedchem_2c01631
crossref_primary_10_3390_biom11030469
crossref_primary_10_1038_s41467_022_30238_2
crossref_primary_10_3389_fmolb_2021_694012
crossref_primary_10_1016_j_sbi_2021_04_002
crossref_primary_10_3390_biom11101509
crossref_primary_10_3389_fgene_2021_689922
crossref_primary_10_3390_jof8020122
crossref_primary_10_1016_j_sbi_2023_102735
crossref_primary_10_15252_embj_2020106183
crossref_primary_10_1016_j_tibs_2024_11_004
crossref_primary_10_1021_jacs_2c10854
crossref_primary_10_3389_fmolb_2024_1392608
crossref_primary_10_1007_s12035_021_02342_9
crossref_primary_10_20517_and_2023_25
crossref_primary_10_3390_ijms23147618
crossref_primary_10_3390_ijms25147963
crossref_primary_10_1016_j_jmb_2024_168615
crossref_primary_10_5483_BMBRep_2022_55_10_051
crossref_primary_10_1038_s41598_021_96518_x
crossref_primary_10_1038_s42003_022_04289_6
crossref_primary_10_3389_fmolb_2022_915307
crossref_primary_10_3390_biomedicines11051471
crossref_primary_10_3390_biology11030353
crossref_primary_10_1038_s41467_025_57733_6
crossref_primary_10_1021_acs_biochem_3c00531
crossref_primary_10_1016_j_jmb_2023_168283
crossref_primary_10_1093_stcltm_szae069
crossref_primary_10_1016_j_bbamcr_2021_118984
crossref_primary_10_1016_j_aquaculture_2021_737401
crossref_primary_10_1016_j_str_2024_02_015
crossref_primary_10_1038_s41467_023_36023_z
crossref_primary_10_1016_j_fsi_2023_108704
crossref_primary_10_1093_eurheartj_ehac431
crossref_primary_10_3390_ijms24087455
crossref_primary_10_1016_j_bcp_2024_116633
crossref_primary_10_3389_fimmu_2021_770305
crossref_primary_10_3390_ijms232314970
crossref_primary_10_1021_acs_jmedchem_0c02091
crossref_primary_10_1038_s41586_020_2904_6
crossref_primary_10_1016_j_jbc_2023_105317
crossref_primary_10_1038_s41392_025_02166_2
crossref_primary_10_1016_j_jbc_2022_101697
Cites_doi 10.1006/jmbi.1994.0073
10.1073/pnas.1011867108
10.1101/2019.12.16.876888
10.1038/s41586-020-2904-6
10.1007/BF00178264
10.1002/prot.21165
10.1371/journal.pgen.1007084
10.1006/jmbi.1996.0394
10.1021/bi00082a001
10.1073/pnas.0407792102
10.1074/jbc.274.43.30534
10.1016/j.cell.2007.09.039
10.1007/BF00197809
10.1073/pnas.0800256105
10.1021/bi000060h
10.1007/s10858-010-9433-9
10.1021/ja981205z
10.1007/s10858-013-9741-y
10.1073/pnas.1914999116
10.15252/embj.201797212
10.1021/bi00185a040
10.1016/j.molcel.2017.12.003
10.1007/s00018-004-4464-6
10.1038/nprot.2006.101
10.1007/s10858-008-9288-5
10.1021/ja0178665
10.1038/nature14884
10.1007/BF00242474
10.1038/s41580-019-0133-3
10.1098/rstb.2016.0534
10.1021/bi301543g
10.1074/jbc.271.19.11236
10.1074/jbc.271.32.19617
10.1073/pnas.1508504112
10.1021/cr900033p
10.1021/ja030153x
10.1007/s10858-012-9626-5
10.1016/j.jmb.2015.02.007
10.1101/cshperspect.a033969
10.1007/BF00228148
10.1038/nrm2941
10.1371/journal.pbio.1001346
10.1042/BJ20060618
10.1186/s40478-015-0224-0
10.1126/science.aax1280
10.1002/anie.200905660
10.1038/emboj.2012.264
10.1016/j.str.2019.08.012
10.1007/s10858-013-9772-4
10.1021/ja00076a099
10.1091/mbc.e04-05-0434
10.1128/MCB.19.11.7751
10.1074/jbc.271.16.9347
10.1016/j.febslet.2015.07.040
10.1021/bi100876n
10.1016/j.molcel.2015.07.012
10.1002/prot.20449
10.1016/j.tibs.2017.02.007
10.1006/jmre.1998.1361
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
COPYRIGHT 2020 Nature Publishing Group
Copyright Nature Publishing Group Nov 19, 2020
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: COPYRIGHT 2020 Nature Publishing Group
– notice: Copyright Nature Publishing Group Nov 19, 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/s41586-020-2906-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Agricultural Science Database



MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 494
ExternalDocumentID A650829198
33177718
10_1038_s41586_020_2906_4
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Israel
GeographicLocations_xml – name: Israel
GrantInformation_xml – fundername: European Research Council
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADXHL
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
AAYOK
ABAWZ
ABDBF
ABDPE
ABEFU
ABMOR
ABNNU
ABTAH
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
CGR
CUY
CVF
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
FAC
I-F
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NEJ
NFIDA
NPM
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
SV3
TH9
TUD
TUS
UAO
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZKG
ZY4
~8M
~G0
AEIIB
PMFND
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c575t-a13f54485196e94c9d65d9f4fdcf0a8a519c2da8387739e991f8b15a7bcffec53
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Fri Jul 11 04:45:55 EDT 2025
Fri Jul 25 09:08:07 EDT 2025
Tue Jun 17 21:00:38 EDT 2025
Thu Jun 12 23:30:16 EDT 2025
Tue Jun 10 15:32:18 EDT 2025
Tue Jun 10 20:27:45 EDT 2025
Fri Jun 27 04:03:45 EDT 2025
Thu Apr 03 06:56:15 EDT 2025
Tue Jul 01 02:32:16 EDT 2025
Thu Apr 24 22:56:17 EDT 2025
Fri Feb 21 02:37:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7834
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-a13f54485196e94c9d65d9f4fdcf0a8a519c2da8387739e991f8b15a7bcffec53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4019-5135
0000-0003-0521-7199
0000-0002-4420-2427
PMID 33177718
PQID 2626302431
PQPubID 40569
PageCount 6
ParticipantIDs proquest_miscellaneous_2460084640
proquest_journals_2626302431
gale_infotracmisc_A650829198
gale_infotracgeneralonefile_A650829198
gale_infotraccpiq_650829198
gale_infotracacademiconefile_A650829198
gale_incontextgauss_ISR_A650829198
pubmed_primary_33177718
crossref_citationtrail_10_1038_s41586_020_2906_4
crossref_primary_10_1038_s41586_020_2906_4
springer_journals_10_1038_s41586_020_2906_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-19
PublicationDateYYYYMMDD 2020-11-19
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Scior (CR15) 2018; 37
Jiang, Rossi, Kalodimos (CR5) 2019; 365
Bhattacharya, Tejero, Montelione (CR57) 2007; 66
Karamanos, Tugarinov, Clore (CR31) 2019; 116
Zwahlen (CR47) 1998; 120
Craig, Marszalek (CR25) 2017; 42
CR37
Battiste, Wagner (CR27) 2000; 39
Ruggieri (CR32) 2015; 3
Kampinga, Craig (CR2) 2010; 11
Yu (CR23) 2015; 427
CR30
Zarouchlioti, Parfitt, Li, Gittings, Cheetham (CR11) 2018; 373
Gelis (CR34) 2007; 131
Vranken (CR38) 2005; 59
Tsai, Douglas (CR60) 1996; 271
Tiwari, Kumar, Jayaraj, Maiti, Mapa (CR4) 2013; 52
Wentink, Nussbaum-Krammer, Bukau (CR9) 2019; 11
Gans (CR35) 2010; 49
Shen (CR52) 2008; 105
Constantine (CR41) 1993; 3
Yu, Ziegelhoffer, Craig (CR26) 2015; 589
Mayer, Bukau (CR1) 2005; 62
Shen, Bax (CR56) 2010; 48
Tugarinov, Kanelis, Kay (CR7) 2006; 1
Minami, Höhfeld, Ohtsuka, Hartl (CR17) 1996; 271
Suzuki (CR29) 2010; 49
Lyons, Tashiro, Cedergren, Nilsson, Montelione (CR43) 1993; 32
Kityk, Kopp, Mayer (CR8) 2018; 69
Karagöz (CR39) 2011; 108
Laskowski, Rullmannn, MacArthur, Kaptein, Thornton (CR58) 1996; 8
Duennwald, Echeverria, Shorter (CR14) 2012; 10
Yan, Craig (CR19) 1999; 19
Qian, Patel, Hartl, McColl (CR22) 1996; 260
Nillegoda (CR59) 2015; 524
Sekhar, Rosenzweig, Bouvignies, Kay (CR40) 2015; 112
Mesleh, Veglia, DeSilva, Marassi, Opella (CR21) 2002; 124
Tugarinov, Choy, Orekhov, Kay (CR46) 2005; 102
CR16
Tugarinov, Hwang, Ollerenshaw, Kay (CR6) 2003; 125
Yamazaki, Formankay, Kay (CR45) 1993; 115
Gao (CR12) 2015; 59
Ottiger, Delaglio, Bax (CR51) 1998; 131
Clore, Iwahara (CR28) 2009; 109
CR50
Farrow (CR42) 1994; 33
Karzai, McMacken (CR18) 1996; 271
Suh, Lu, Gross (CR61) 1999; 274
Li, Wu, Qian, Sha (CR24) 2006; 398
Lakomek, Ying, Bax (CR48) 2012; 53
Mandel, Akke, Palmer (CR49) 1995; 246
Rampelt (CR13) 2012; 31
Shen, Vernon, Baker, Bax (CR53) 2009; 43
Kuenze, Bonneau, Leman, Meiler (CR54) 2019; 27
Vernon, Shen, Baker, Lange (CR55) 2013; 57
Delaglio (CR36) 1995; 6
Rosenzweig, Nillegoda, Mayer, Bukau (CR3) 2019; 20
Shen, Bax (CR20) 2013; 56
Schilke (CR10) 2017; 13
Logan, Olejniczak, Xu, Fesik (CR44) 1993; 3
Shen, Hendershot (CR33) 2005; 16
AW Karzai (2906_CR18) 1996; 271
A Wentink (2906_CR9) 2019; 11
M Ottiger (2906_CR51) 1998; 131
R Rosenzweig (2906_CR3) 2019; 20
MF Mesleh (2906_CR21) 2002; 124
GE Karagöz (2906_CR39) 2011; 108
G Kuenze (2906_CR54) 2019; 27
BA Schilke (2906_CR10) 2017; 13
V Tugarinov (2906_CR7) 2006; 1
KL Constantine (2906_CR41) 1993; 3
WF Vranken (2906_CR38) 2005; 59
A Sekhar (2906_CR40) 2015; 112
2906_CR50
I Gelis (2906_CR34) 2007; 131
C Zarouchlioti (2906_CR11) 2018; 373
P Gans (2906_CR35) 2010; 49
H Suzuki (2906_CR29) 2010; 49
J Li (2906_CR24) 2006; 398
Y Shen (2906_CR33) 2005; 16
V Tugarinov (2906_CR6) 2003; 125
AM Mandel (2906_CR49) 1995; 246
Y Shen (2906_CR56) 2010; 48
2906_CR37
RA Laskowski (2906_CR58) 1996; 8
A Bhattacharya (2906_CR57) 2007; 66
HY Yu (2906_CR23) 2015; 427
R Vernon (2906_CR55) 2013; 57
W Yan (2906_CR19) 1999; 19
NA Lakomek (2906_CR48) 2012; 53
S Tiwari (2906_CR4) 2013; 52
NA Farrow (2906_CR42) 1994; 33
MP Mayer (2906_CR1) 2005; 62
Y Jiang (2906_CR5) 2019; 365
WC Suh (2906_CR61) 1999; 274
J Tsai (2906_CR60) 1996; 271
ML Duennwald (2906_CR14) 2012; 10
2906_CR30
V Tugarinov (2906_CR46) 2005; 102
EA Craig (2906_CR25) 2017; 42
JL Battiste (2906_CR27) 2000; 39
Y Minami (2906_CR17) 1996; 271
GM Clore (2906_CR28) 2009; 109
R Kityk (2906_CR8) 2018; 69
YQ Qian (2906_CR22) 1996; 260
TM Logan (2906_CR44) 1993; 3
Y Shen (2906_CR52) 2008; 105
T Yamazaki (2906_CR45) 1993; 115
F Delaglio (2906_CR36) 1995; 6
A Scior (2906_CR15) 2018; 37
2906_CR16
H Rampelt (2906_CR13) 2012; 31
Y Shen (2906_CR53) 2009; 43
HH Kampinga (2906_CR2) 2010; 11
NB Nillegoda (2906_CR59) 2015; 524
C Zwahlen (2906_CR47) 1998; 120
HY Yu (2906_CR26) 2015; 589
Y Shen (2906_CR20) 2013; 56
TK Karamanos (2906_CR31) 2019; 116
X Gao (2906_CR12) 2015; 59
A Ruggieri (2906_CR32) 2015; 3
BA Lyons (2906_CR43) 1993; 32
References_xml – volume: 131
  start-page: 373
  year: 1998
  end-page: 378
  ident: CR51
  article-title: Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra
  publication-title: J. Magn. Reson.
– volume: 260
  start-page: 224
  year: 1996
  end-page: 235
  ident: CR22
  article-title: Nuclear magnetic resonance solution structure of the human Hsp40 (HDJ-1) J-domain
  publication-title: J. Mol. Biol.
– volume: 53
  start-page: 209
  year: 2012
  end-page: 221
  ident: CR48
  article-title: Measurement of N relaxation rates in perdeuterated proteins by TROSY-based methods
  publication-title: J. Biomol. NMR
– ident: CR16
– volume: 52
  start-page: 1011
  year: 2013
  end-page: 1018
  ident: CR4
  article-title: Unique structural modulation of a non-native substrate by cochaperone DnaJ
  publication-title: Biochemistry
– volume: 115
  start-page: 11054
  year: 1993
  end-page: 11055
  ident: CR45
  article-title: Two-dimensional NMR experiments for correlating Cβ and Hδ/ε chemical shifts of aromatic residues in C-labeled proteins via scalar couplings
  publication-title: J. Am. Chem. Soc.
– volume: 271
  start-page: 19617
  year: 1996
  end-page: 19624
  ident: CR17
  article-title: Regulation of the heat-shock protein 70 reaction cycle by the mammalian DnaJ homolog, Hsp40
  publication-title: J. Biol. Chem.
– volume: 105
  start-page: 4685
  year: 2008
  end-page: 4690
  ident: CR52
  article-title: Consistent blind protein structure generation from NMR chemical shift data
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 57
  start-page: 117
  year: 2013
  end-page: 127
  ident: CR55
  article-title: Improved chemical shift based fragment selection for CS-Rosetta using Rosetta3 fragment picker
  publication-title: J. Biomol. NMR
– volume: 1
  start-page: 749
  year: 2006
  end-page: 754
  ident: CR7
  article-title: Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy
  publication-title: Nat. Protoc.
– volume: 120
  start-page: 7617
  year: 1998
  end-page: 7625
  ident: CR47
  article-title: An NMR experiment for measuring methyl–methyl NOEs in C-labeled proteins with high resolution
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 63
  year: 2009
  end-page: 78
  ident: CR53
  article-title: De novo protein structure generation from incomplete chemical shift assignments
  publication-title: J. Biomol. NMR
– volume: 16
  start-page: 40
  year: 2005
  end-page: 50
  ident: CR33
  article-title: ERdj3, a stress-inducible endoplasmic reticulum DnaJ homologue, serves as a cofactor for BiP’s interactions with unfolded substrates
  publication-title: Mol. Biol. Cell
– volume: 271
  start-page: 9347
  year: 1996
  end-page: 9354
  ident: CR60
  article-title: A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding
  publication-title: J. Biol. Chem.
– volume: 31
  start-page: 4221
  year: 2012
  end-page: 4235
  ident: CR13
  article-title: Metazoan HSP70 machines use HSP110 to power protein disaggregation
  publication-title: EMBO J.
– volume: 373
  start-page: 20160534
  year: 2018
  ident: CR11
  article-title: DNAJ proteins in neurodegeneration: essential and protective factors
  publication-title: Phil. Trans. R. Soc. Lond. B
– volume: 42
  start-page: 355
  year: 2017
  end-page: 368
  ident: CR25
  article-title: How do J-proteins get Hsp70 to do so many different things?
  publication-title: Trends Biochem. Sci.
– ident: CR50
– volume: 125
  start-page: 10420
  year: 2003
  end-page: 10428
  ident: CR6
  article-title: Cross-correlated relaxation enhanced H– C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes
  publication-title: J. Am. Chem. Soc.
– volume: 69
  start-page: 227
  year: 2018
  end-page: 237.e4
  ident: CR8
  article-title: Molecular mechanism of J-domain-triggered ATP hydrolysis by Hsp70 chaperones
  publication-title: Mol. Cell
– volume: 108
  start-page: 580
  year: 2011
  end-page: 585
  ident: CR39
  article-title: N-terminal domain of human Hsp90 triggers binding to the cochaperone p23
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 3
  start-page: 225
  year: 1993
  end-page: 231
  ident: CR44
  article-title: A general method for assigning NMR spectra of denatured proteins using 3D HC(CO)NH-TOCSY triple resonance experiments
  publication-title: J. Biomol. NMR
– volume: 32
  start-page: 7839
  year: 1993
  end-page: 7845
  ident: CR43
  article-title: An improved strategy for determining resonance assignments for isotopically enriched proteins and its application to an engineered domain of staphylococcal protein A
  publication-title: Biochemistry
– volume: 20
  start-page: 665
  year: 2019
  end-page: 680
  ident: CR3
  article-title: The Hsp70 chaperone network
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 37
  start-page: 282
  year: 2018
  end-page: 299
  ident: CR15
  article-title: Complete suppression of Htt fibrilization and disaggregation of Htt fibrils by a trimeric chaperone complex
  publication-title: EMBO J.
– volume: 398
  start-page: 353
  year: 2006
  end-page: 360
  ident: CR24
  article-title: Crystal structure of yeast Sis1 peptide-binding fragment and Hsp70 Ssa1 C-terminal complex
  publication-title: Biochem. J.
– volume: 246
  start-page: 144
  year: 1995
  end-page: 163
  ident: CR49
  article-title: Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme
  publication-title: J. Mol. Biol.
– volume: 131
  start-page: 756
  year: 2007
  end-page: 769
  ident: CR34
  article-title: Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR
  publication-title: Cell
– volume: 274
  start-page: 30534
  year: 1999
  end-page: 30539
  ident: CR61
  article-title: Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ
  publication-title: J. Biol. Chem.
– volume: 27
  start-page: 1721
  year: 2019
  end-page: 1734.e5
  ident: CR54
  article-title: Integrative protein modeling in RosettaNMR from sparse paramagnetic restraints
  publication-title: Structure
– volume: 3
  start-page: 44
  year: 2015
  ident: CR32
  article-title: Complete loss of the DNAJB6 G/F domain and novel missense mutations cause distal-onset DNAJB6 myopathy
  publication-title: Acta Neuropathol. Commun.
– volume: 116
  start-page: 21529
  year: 2019
  end-page: 21538
  ident: CR31
  article-title: Unraveling the structure and dynamics of the human DNAJB6b chaperone by NMR reveals insights into Hsp40-mediated proteostasis
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 3
  start-page: 41
  year: 1993
  end-page: 54
  ident: CR41
  article-title: Aliphatic H and C resonance assignments for the 26-10 antibody V domain derived from heteronuclear multidimensional NMR spectroscopy
  publication-title: J. Biomol. NMR
– volume: 59
  start-page: 687
  year: 2005
  end-page: 696
  ident: CR38
  article-title: The CCPN data model for NMR spectroscopy: development of a software pipeline
  publication-title: Proteins
– volume: 271
  start-page: 11236
  year: 1996
  end-page: 11246
  ident: CR18
  article-title: A bipartite signaling mechanism involved in DnaJ-mediated activation of the DnaK protein
  publication-title: J. Biol. Chem.
– volume: 66
  start-page: 778
  year: 2007
  end-page: 795
  ident: CR57
  article-title: Evaluating protein structures determined by structural genomics consortia
  publication-title: Proteins
– ident: CR37
– volume: 11
  start-page: 579
  year: 2010
  end-page: 592
  ident: CR2
  article-title: The HSP70 chaperone machinery: J proteins as drivers of functional specificity
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 56
  start-page: 227
  year: 2013
  end-page: 241
  ident: CR20
  article-title: Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks
  publication-title: J. Biomol. NMR
– volume: 49
  start-page: 8577
  year: 2010
  end-page: 8584
  ident: CR29
  article-title: Peptide-binding sites as revealed by the crystal structures of the human Hsp40 Hdj1 C-terminal domain in complex with the octapeptide from human Hsp70
  publication-title: Biochemistry
– ident: CR30
– volume: 112
  start-page: 10395
  year: 2015
  end-page: 10400
  ident: CR40
  article-title: Mapping the conformation of a client protein through the Hsp70 functional cycle
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 365
  start-page: 1313
  year: 2019
  end-page: 1319
  ident: CR5
  article-title: Structural basis for client recognition and activity of Hsp40 chaperones
  publication-title: Science
– volume: 39
  start-page: 5355
  year: 2000
  end-page: 5365
  ident: CR27
  article-title: Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear Overhauser effect data
  publication-title: Biochemistry
– volume: 8
  start-page: 477
  year: 1996
  end-page: 486
  ident: CR58
  article-title: AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR
  publication-title: J. Biomol. NMR
– volume: 62
  start-page: 670
  year: 2005
  end-page: 684
  ident: CR1
  article-title: Hsp70 chaperones: cellular functions and molecular mechanism
  publication-title: Cell. Mol. Life Sci.
– volume: 524
  start-page: 247
  year: 2015
  end-page: 251
  ident: CR59
  article-title: Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation
  publication-title: Nature
– volume: 589
  start-page: 2825
  year: 2015
  end-page: 2830
  ident: CR26
  article-title: Functionality of class A and class B J-protein co-chaperones with Hsp70
  publication-title: FEBS Lett.
– volume: 49
  start-page: 1958
  year: 2010
  end-page: 1962
  ident: CR35
  article-title: Stereospecific isotopic labeling of methyl groups for NMR spectroscopic studies of high-molecular-weight proteins
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  start-page: 7751
  year: 1999
  end-page: 7758
  ident: CR19
  article-title: The glycine-phenylalanine-rich region determines the specificity of the yeast Hsp40 Sis1
  publication-title: Mol. Cell. Biol.
– volume: 10
  start-page: e1001346
  year: 2012
  ident: CR14
  article-title: Small heat shock proteins potentiate amyloid dissolution by protein disaggregases from yeast and humans
  publication-title: PLoS Biol.
– volume: 33
  start-page: 5984
  year: 1994
  end-page: 6003
  ident: CR42
  article-title: Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by N NMR relaxation
  publication-title: Biochemistry
– volume: 124
  start-page: 4206
  year: 2002
  end-page: 4207
  ident: CR21
  article-title: Dipolar waves as NMR maps of protein structure
  publication-title: J. Am. Chem. Soc.
– volume: 427
  start-page: 1632
  year: 2015
  end-page: 1643
  ident: CR23
  article-title: Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone Sis1
  publication-title: J. Mol. Biol.
– volume: 11
  start-page: a033969
  year: 2019
  ident: CR9
  article-title: Modulation of amyloid states by molecular chaperones
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 6
  start-page: 277
  year: 1995
  end-page: 293
  ident: CR36
  article-title: NMRPipe: a multidimensional spectral processing system based on UNIX pipes
  publication-title: J. Biomol. NMR
– volume: 13
  start-page: e1007084
  year: 2017
  ident: CR10
  article-title: Broadening the functionality of a J-protein/HSP70 molecular chaperone system
  publication-title: PLoS Genet.
– volume: 48
  start-page: 13
  year: 2010
  end-page: 22
  ident: CR56
  article-title: SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network
  publication-title: J. Biomol. NMR
– volume: 102
  start-page: 622
  year: 2005
  end-page: 627
  ident: CR46
  article-title: Solution NMR-derived global fold of a monomeric 82-kDa enzyme
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 59
  start-page: 781
  year: 2015
  end-page: 793
  ident: CR12
  article-title: Human HSP70 disaggregase reverses Parkinson’s-linked α-synuclein amyloid fibrils
  publication-title: Mol. Cell
– volume: 109
  start-page: 4108
  year: 2009
  end-page: 4139
  ident: CR28
  article-title: Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes
  publication-title: Chem. Rev.
– volume: 246
  start-page: 144
  year: 1995
  ident: 2906_CR49
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1994.0073
– volume: 108
  start-page: 580
  year: 2011
  ident: 2906_CR39
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1011867108
– ident: 2906_CR16
  doi: 10.1101/2019.12.16.876888
– ident: 2906_CR30
  doi: 10.1038/s41586-020-2904-6
– volume: 3
  start-page: 225
  year: 1993
  ident: 2906_CR44
  publication-title: J. Biomol. NMR
  doi: 10.1007/BF00178264
– volume: 66
  start-page: 778
  year: 2007
  ident: 2906_CR57
  publication-title: Proteins
  doi: 10.1002/prot.21165
– volume: 13
  start-page: e1007084
  year: 2017
  ident: 2906_CR10
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1007084
– volume: 260
  start-page: 224
  year: 1996
  ident: 2906_CR22
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1996.0394
– volume: 32
  start-page: 7839
  year: 1993
  ident: 2906_CR43
  publication-title: Biochemistry
  doi: 10.1021/bi00082a001
– volume: 102
  start-page: 622
  year: 2005
  ident: 2906_CR46
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0407792102
– volume: 274
  start-page: 30534
  year: 1999
  ident: 2906_CR61
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.43.30534
– volume: 131
  start-page: 756
  year: 2007
  ident: 2906_CR34
  publication-title: Cell
  doi: 10.1016/j.cell.2007.09.039
– volume: 6
  start-page: 277
  year: 1995
  ident: 2906_CR36
  publication-title: J. Biomol. NMR
  doi: 10.1007/BF00197809
– volume: 105
  start-page: 4685
  year: 2008
  ident: 2906_CR52
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0800256105
– volume: 39
  start-page: 5355
  year: 2000
  ident: 2906_CR27
  publication-title: Biochemistry
  doi: 10.1021/bi000060h
– volume: 48
  start-page: 13
  year: 2010
  ident: 2906_CR56
  publication-title: J. Biomol. NMR
  doi: 10.1007/s10858-010-9433-9
– volume: 120
  start-page: 7617
  year: 1998
  ident: 2906_CR47
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja981205z
– volume: 56
  start-page: 227
  year: 2013
  ident: 2906_CR20
  publication-title: J. Biomol. NMR
  doi: 10.1007/s10858-013-9741-y
– volume: 116
  start-page: 21529
  year: 2019
  ident: 2906_CR31
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1914999116
– volume: 37
  start-page: 282
  year: 2018
  ident: 2906_CR15
  publication-title: EMBO J.
  doi: 10.15252/embj.201797212
– volume: 33
  start-page: 5984
  year: 1994
  ident: 2906_CR42
  publication-title: Biochemistry
  doi: 10.1021/bi00185a040
– volume: 69
  start-page: 227
  year: 2018
  ident: 2906_CR8
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.12.003
– volume: 62
  start-page: 670
  year: 2005
  ident: 2906_CR1
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-004-4464-6
– volume: 1
  start-page: 749
  year: 2006
  ident: 2906_CR7
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.101
– ident: 2906_CR37
– ident: 2906_CR50
– volume: 43
  start-page: 63
  year: 2009
  ident: 2906_CR53
  publication-title: J. Biomol. NMR
  doi: 10.1007/s10858-008-9288-5
– volume: 124
  start-page: 4206
  year: 2002
  ident: 2906_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0178665
– volume: 524
  start-page: 247
  year: 2015
  ident: 2906_CR59
  publication-title: Nature
  doi: 10.1038/nature14884
– volume: 3
  start-page: 41
  year: 1993
  ident: 2906_CR41
  publication-title: J. Biomol. NMR
  doi: 10.1007/BF00242474
– volume: 20
  start-page: 665
  year: 2019
  ident: 2906_CR3
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0133-3
– volume: 373
  start-page: 20160534
  year: 2018
  ident: 2906_CR11
  publication-title: Phil. Trans. R. Soc. Lond. B
  doi: 10.1098/rstb.2016.0534
– volume: 52
  start-page: 1011
  year: 2013
  ident: 2906_CR4
  publication-title: Biochemistry
  doi: 10.1021/bi301543g
– volume: 271
  start-page: 11236
  year: 1996
  ident: 2906_CR18
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.19.11236
– volume: 271
  start-page: 19617
  year: 1996
  ident: 2906_CR17
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.32.19617
– volume: 112
  start-page: 10395
  year: 2015
  ident: 2906_CR40
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1508504112
– volume: 109
  start-page: 4108
  year: 2009
  ident: 2906_CR28
  publication-title: Chem. Rev.
  doi: 10.1021/cr900033p
– volume: 125
  start-page: 10420
  year: 2003
  ident: 2906_CR6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja030153x
– volume: 53
  start-page: 209
  year: 2012
  ident: 2906_CR48
  publication-title: J. Biomol. NMR
  doi: 10.1007/s10858-012-9626-5
– volume: 427
  start-page: 1632
  year: 2015
  ident: 2906_CR23
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2015.02.007
– volume: 11
  start-page: a033969
  year: 2019
  ident: 2906_CR9
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a033969
– volume: 8
  start-page: 477
  year: 1996
  ident: 2906_CR58
  publication-title: J. Biomol. NMR
  doi: 10.1007/BF00228148
– volume: 11
  start-page: 579
  year: 2010
  ident: 2906_CR2
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2941
– volume: 10
  start-page: e1001346
  year: 2012
  ident: 2906_CR14
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001346
– volume: 398
  start-page: 353
  year: 2006
  ident: 2906_CR24
  publication-title: Biochem. J.
  doi: 10.1042/BJ20060618
– volume: 3
  start-page: 44
  year: 2015
  ident: 2906_CR32
  publication-title: Acta Neuropathol. Commun.
  doi: 10.1186/s40478-015-0224-0
– volume: 365
  start-page: 1313
  year: 2019
  ident: 2906_CR5
  publication-title: Science
  doi: 10.1126/science.aax1280
– volume: 49
  start-page: 1958
  year: 2010
  ident: 2906_CR35
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200905660
– volume: 31
  start-page: 4221
  year: 2012
  ident: 2906_CR13
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.264
– volume: 27
  start-page: 1721
  year: 2019
  ident: 2906_CR54
  publication-title: Structure
  doi: 10.1016/j.str.2019.08.012
– volume: 57
  start-page: 117
  year: 2013
  ident: 2906_CR55
  publication-title: J. Biomol. NMR
  doi: 10.1007/s10858-013-9772-4
– volume: 115
  start-page: 11054
  year: 1993
  ident: 2906_CR45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00076a099
– volume: 16
  start-page: 40
  year: 2005
  ident: 2906_CR33
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e04-05-0434
– volume: 19
  start-page: 7751
  year: 1999
  ident: 2906_CR19
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.19.11.7751
– volume: 271
  start-page: 9347
  year: 1996
  ident: 2906_CR60
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.16.9347
– volume: 589
  start-page: 2825
  year: 2015
  ident: 2906_CR26
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2015.07.040
– volume: 49
  start-page: 8577
  year: 2010
  ident: 2906_CR29
  publication-title: Biochemistry
  doi: 10.1021/bi100876n
– volume: 59
  start-page: 781
  year: 2015
  ident: 2906_CR12
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.07.012
– volume: 59
  start-page: 687
  year: 2005
  ident: 2906_CR38
  publication-title: Proteins
  doi: 10.1002/prot.20449
– volume: 42
  start-page: 355
  year: 2017
  ident: 2906_CR25
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2017.02.007
– volume: 131
  start-page: 373
  year: 1998
  ident: 2906_CR51
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.1998.1361
SSID ssj0005174
Score 2.6511862
Snippet The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 489
SubjectTerms alpha-Synuclein - chemistry
alpha-Synuclein - metabolism
Amyloid - chemistry
Amyloid - metabolism
Binding Sites
Chaperones
Disaggregation
Fibers
Glycine
Glycine - metabolism
Health aspects
Heat shock proteins
HSP40 Heat-Shock Proteins - chemistry
HSP40 Heat-Shock Proteins - metabolism
Hsp40 protein
HSP70 Heat-Shock Proteins - chemistry
HSP70 Heat-Shock Proteins - genetics
HSP70 Heat-Shock Proteins - metabolism
Hsp70 protein
Humanities and Social Sciences
Humans
Life cycles
Magnetic resonance
Molecular Chaperones - chemistry
Molecular Chaperones - metabolism
multidisciplinary
Mutation
NMR
Nuclear magnetic resonance
Phenylalanine
Phenylalanine - metabolism
Protein Aggregates
Protein Aggregation, Pathological
Protein Binding - genetics
Protein biosynthesis
Protein Domains
Proteins
Science
Science (multidisciplinary)
Selectivity
Sequence Deletion
Spectrum analysis
Substrate Specificity
Substrates
Title HSP40 proteins use class-specific regulation to drive HSP70 functional diversity
URI https://link.springer.com/article/10.1038/s41586-020-2906-4
https://www.ncbi.nlm.nih.gov/pubmed/33177718
https://www.proquest.com/docview/2626302431
https://www.proquest.com/docview/2460084640
Volume 587
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9wwEBZtQqEvJUkvN2lQS-kVRHzIh55KGrLdFhqWpIF9E7KOECj2Zr37_zNjy7vx0ubFD9bI3p2RZsbSp28I-RBnzmQ2FMzlmWM8Lh0TIjesNEKBxeGrqMSzw7_Ps_EV_zVNp37BrfGwyt4nto7a1BrXyI9jpE1B-rzo2-yWYdUo3F31JTQek22kLkNIVz7N1xCPDRbmflczKY4bCFwFwm9DhoTnjA_i0qZ3vheeNvZL2zA02iHPfP5ITzqD75JHttojT1ocp272yK6fqw397Amlvzwnk_HlhIe0pWS4qRq6bCzVmDUzPGeJWCE670rSg5HooqZmDj6QQq88pBj4uvVCanoMxwtyNTr7czpmvpIC05COLZiKEpfChxika5kVXAuTpUY47ox2oSoU3NexUUVS5HkiLOSMriijVOWlRlRJmrwkW1Vd2deEas5NpJVNylJzy1OhslAkHLKCMiydCgMS9nqU2tOMY7WLv7Ld7k4K2aleguolql7ygHxddZl1HBsPCb9H40jkrqgQHHOtlk0jf15eyBPMNmMRiSIgn7yQq-HlWvmzBvAXkO5qILk_kNSzm1t5r_XjoPW6s9y_HnMwEIQ5qofN_VCS3kc0cj2iA_Ju1Yw9EfdW2XoJMjzDigcZB72-6obgSkUJpH45pBYBOerH5Prh_9Xfm4d_yj55GuOkQKCjOCBbi_nSvoW0a1EetnMLrsVphNfRj0Oy_f3sfHJxBwHcJ2g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELaqIgQviJYrtIBB3MhqDufwA0IVUO3SQxVtpX0zjo9VJZRsN7tC_Cl-IzM5dpsV9K2v8TjHeDzzOf48Q8jLMHEmsb5gLk0c42HumBCpYbkRCkYcVkU5nh0-PEoGZ_zbKB6tkT_dWRikVXY-sXbUptT4j3wnxLQpmD4v-DS5YFg1CndXuxIajVns29-_YMlWfRx-gfF9FYZ7X08_D1hbVYBpgCYzpoLIxbAoAeiSWMG1MElshOPOaOerTMF1HRqVRVmaRsICfnJZHsQqzTUyLLBKBLj8G_AiPs6odJQuKSUrWZ-7XdQo26kgUGZI9_UZJlhnvBcHV6PBpXC4sj9bh729u-ROi1fpbmNgG2TNFpvkZs0b1dUm2Wh9Q0Xftgms390jx4OTY-7TOgXEeVHReWWpRpTO8FwncpPo1I7bumF0VlIzBZ9LoVfqUwy0zf9JajrOyH1ydi06fkDWi7KwjwjVnJtAKxvlueaWx0Ilvog4oJDcz53yPeJ3epS6TWuO1TV-ynp7Pcpko3oJqpeoesk98n7RZdLk9LhK-AUOjsRcGQWSccZqXlVyePJd7iK6DUUgMo-8aYVcCQ_Xqj3bAJ-A6bV6kls9ST05v5CXWl_3WsfNyP3rNts9QfAJut_cmZJsfVIllzPII88XzdgTeXaFLecgwxOssJBw0OvDxgQXKooAaqYAZTzyobPJ5c3_q7_HV7_KM3JrcHp4IA-GR_tb5HaIEwRJlmKbrM-mc_sEIN8sf1rPM0p-XPfE_gvZ-WHa
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxELaqIhAviJZraQGDuJGVPbyHHxCqKFFCoYoolfJmvD6iSmiTZhMh_hq_jpk9km4EfetrPN4k47m8_vwNIc_DxJnE-oK5NHGMh7ljQqSG5UYoWHHYFeV4d_jrcTI45Z_H8XiL_GnvwiCsso2JVaA2U43vyHsh0qYgfV7Qcw0sYnTY_zA7Z9hBCk9a23YatYkc2d-_YPtWvh8ewlq_CMP-p-8fB6zpMMA0lCkLpoLIxbBBgTImsYJrYZLYCMed0c5XmYLPdWhUFmVpGgkLtZTL8iBWaa4RbYEdIyD8X0ujOEAfS8fpGl6ywQDdnqhGWa-EpJkh9NdnSLbOeCcnbmaGC6lx46y2SoH92-RWU7vSg9rYdsiWLXbJ9QpDqstdstPEiZK-bsis39who8HJiPu0ooM4K0q6LC3VWLEzvOOJOCU6t5OmhxhdTKmZQ_ylMCv1KSbd-l0lNS1-5C45vRId3yPbxbSwDwjVnJtAKxvlueaWx0Ilvog4VCS5nzvle8Rv9Sh1Q3GOnTZ-yuqoPcpkrXoJqpeoesk98nY1ZVbze1wm_AwXRyJvRoEWOFHLspTDk2_yACvdUAQi88irRshN4cu1au45wF9Aqq2O5F5HUs_OzuWF0Zed0Um9cv96zH5HEOKD7g63piSb-FTKtTd55OlqGGci5q6w0yXI8AS7LSQc9Hq_NsGViiIoO1MoazzyrrXJ9cP_q7-Hl_-UJ-QGuLT8Mjw-2iM3Q_QPxFuKfbK9mC_tI6j-Fvnjys0o-XHVfv0XwEFmEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HSP40+proteins+use+class-specific+regulation+to+drive+HSP70+functional+diversity&rft.jtitle=Nature+%28London%29&rft.au=Faust%2C+Ofrah&rft.au=Abayev-Avraham%2C+Meital&rft.au=Wentink%2C+Anne+S.&rft.au=Maurer%2C+Michael&rft.date=2020-11-19&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=587&rft.issue=7834&rft.spage=489&rft.epage=494&rft_id=info:doi/10.1038%2Fs41586-020-2906-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41586_020_2906_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon