Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly
The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface divers...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 356; no. 6336; pp. 411 - 414 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
28.04.2017
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.aai8801 |
Cover
Loading…
Abstract | The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single–tricluster gene repertoire (α and β and γ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms. |
---|---|
AbstractList | Pattern formation in the brain: Neurons in the developing brain cooperate to build circuits. Mountoufaris et al. found that similar to 50 variable protocadherin genes support a combinatorial identity code that allows millions of olfactory neuron axons to sort into similar to 2000 glomeruli. Sharing olfactory receptors drives axons to one glomerulus, and protocadherin diversity allows the multiple axons to touch each other as they converge. On the other hand, Chen et al. found that a single C-type protocadherin underlies the tiled distribution of serotonergic neurons throughout the central nervous system. These neurons, which share protocadherin identity, enervate broad swaths evenly without touching neighboring neurons.Science, this issue p. 411, p. 406 The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdh alpha , Pcdh beta , and Pcdh gamma ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single-tricluster gene repertoire ( alpha and beta and gamma ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms. Neurons in the developing brain cooperate to build circuits. Mountoufaris et al. found that ∼50 variable protocadherin genes support a combinatorial identity code that allows millions of olfactory neuron axons to sort into ∼2000 glomeruli. Sharing olfactory receptors drives axons to one glomerulus, and protocadherin diversity allows the multiple axons to touch each other as they converge. On the other hand, Chen et al. found that a single C-type protocadherin underlies the tiled distribution of serotonergic neurons throughout the central nervous system. These neurons, which share protocadherin identity, enervate broad swaths evenly without touching neighboring neurons. Science , this issue p. 411 , p. 406 Genetic approaches in mice reveal the functional importance of the multicluster organization of mammalian protocadherin genes. The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters ( Pcdh α, Pcdh β, and Pcdh γ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single–tricluster gene repertoire (α and β and γ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms. The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters ( Pcdh α, Pcdh β, and Pcdh γ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single–tricluster gene repertoire (α and β and γ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms. The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters ( α, β, and γ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single-tricluster gene repertoire (α and β and γ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms. Neurons in the developing brain cooperate to build circuits. Mountoufaris et al. found that ∼50 variable protocadherin genes support a combinatorial identity code that allows millions of olfactory neuron axons to sort into ∼2000 glomeruli. Sharing olfactory receptors drives axons to one glomerulus, and protocadherin diversity allows the multiple axons to touch each other as they converge. On the other hand, Chen et al. found that a single C-type protocadherin underlies the tiled distribution of serotonergic neurons throughout the central nervous system. These neurons, which share protocadherin identity, enervate broad swaths evenly without touching neighboring neurons. Science, this issue p. 411, p. 406 The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single-tricluster gene repertoire (α and β and γ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms. The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single–tricluster gene repertoire (α and β and γ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms. The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single-tricluster gene repertoire (α and β and γ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms.The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single-tricluster gene repertoire (α and β and γ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms. |
Author | Chen, Weisheng V. Mountoufaris, George Chevee, Maxime Nwakeze, Chiamaka L. Maniatis, Tom O’Keeffe, Sean Polleux, Franck Hirabayashi, Yusuke |
AuthorAffiliation | 1 Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA 2 Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA 3 Department of Neuroscience, Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA |
AuthorAffiliation_xml | – name: 3 Department of Neuroscience, Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA – name: 1 Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA – name: 2 Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA |
Author_xml | – sequence: 1 givenname: George surname: Mountoufaris fullname: Mountoufaris, George – sequence: 2 givenname: Weisheng V. surname: Chen fullname: Chen, Weisheng V. – sequence: 3 givenname: Yusuke surname: Hirabayashi fullname: Hirabayashi, Yusuke – sequence: 4 givenname: Sean surname: O’Keeffe fullname: O’Keeffe, Sean – sequence: 5 givenname: Maxime surname: Chevee fullname: Chevee, Maxime – sequence: 6 givenname: Chiamaka L. surname: Nwakeze fullname: Nwakeze, Chiamaka L. – sequence: 7 givenname: Franck surname: Polleux fullname: Polleux, Franck – sequence: 8 givenname: Tom surname: Maniatis fullname: Maniatis, Tom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28450637$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1v1DAQxS1URLeFMyeQJS69pB1_xckFqar4kopAAs7WxHGoV0nc2k6l_e_xdpcCPQAnH-b3xvNm3hE5mMPsCHnO4JQxXp8l691s3Smibxpgj8iKQauqloM4ICsAUVcNaHVIjlJaA5RaK56QQ95IBbXQK_Ll4zJmb8clZRfpZ9tf0d7fuph83lCfaHQ3i4-up0OIdApLcjSMA9oc4obObok4UuujXXymmJKbunHzlDwecEzu2f49Jt_evvl68b66_PTuw8X5ZWWVVrlq3ABMdag60Q8osdZCSkDFUXQaUReDveh531logUOLA2qODBA5E51k4pi83vW9XrrJ9dbNuYxjrqOfMG5MQG_-rMz-ynwPt0Yp3rKGlwYn-wYx3CwuZTP5ZN044uyKVcNakFzWoNT_oExD8VX_G21aoWQt5XaAVw_QdVjiXJa2pbjWTX3398vffd4b_HnFApztABtDStEN9wgDs82J2efE7HNSFOqBwvqM2Yftovz4F92LnW6dSgJ-TVKLtmlL3H4A6ZjPbw |
CitedBy_id | crossref_primary_10_1038_s41588_019_0526_4 crossref_primary_10_1007_s13238_019_00656_y crossref_primary_10_1038_s41467_023_43849_0 crossref_primary_10_1016_j_conb_2019_10_001 crossref_primary_10_1016_j_conb_2020_07_005 crossref_primary_10_3389_fnmol_2019_00243 crossref_primary_10_1016_j_neuroscience_2020_06_037 crossref_primary_10_1371_journal_pgen_1007164 crossref_primary_10_1371_journal_pbio_3002197 crossref_primary_10_3389_fnmol_2019_00115 crossref_primary_10_1111_febs_16535 crossref_primary_10_1002_wdev_379 crossref_primary_10_1038_s41467_024_49684_1 crossref_primary_10_1002_dvg_70010 crossref_primary_10_1016_j_celrep_2020_02_003 crossref_primary_10_7554_eLife_72416 crossref_primary_10_1007_s00441_020_03348_w crossref_primary_10_1073_pnas_2313596120 crossref_primary_10_1016_j_isci_2023_108220 crossref_primary_10_1016_j_cell_2020_04_008 crossref_primary_10_1016_j_cell_2019_03_008 crossref_primary_10_1016_j_isci_2024_111452 crossref_primary_10_1016_j_semcdb_2022_11_004 crossref_primary_10_1126_sciadv_ads2852 crossref_primary_10_1016_j_cell_2022_08_025 crossref_primary_10_7554_eLife_89532 crossref_primary_10_1038_s41590_024_01933_7 crossref_primary_10_1210_jc_2018_01471 crossref_primary_10_1126_sciadv_aba1180 crossref_primary_10_1016_j_semcdb_2017_05_026 crossref_primary_10_3389_fgene_2024_1308234 crossref_primary_10_3389_fnmol_2020_00117 crossref_primary_10_3389_fncir_2024_1409680 crossref_primary_10_1007_s12264_020_00578_4 crossref_primary_10_1242_dev_158246 crossref_primary_10_1073_pnas_1921983117 crossref_primary_10_3389_fnins_2022_1112300 crossref_primary_10_1126_science_aaw5030 crossref_primary_10_1016_j_conb_2020_01_002 crossref_primary_10_1523_JNEUROSCI_1636_20_2020 crossref_primary_10_1016_j_cub_2024_08_002 crossref_primary_10_1016_j_gde_2020_05_041 crossref_primary_10_1038_s41598_021_01481_2 crossref_primary_10_1126_sciadv_abn9458 crossref_primary_10_1002_cne_24783 crossref_primary_10_1038_s41598_023_44803_2 crossref_primary_10_1016_j_semcdb_2017_07_023 crossref_primary_10_1007_s00018_018_2951_4 crossref_primary_10_1016_j_celrep_2021_109940 crossref_primary_10_1016_j_isci_2023_107238 crossref_primary_10_1126_science_adq5225 crossref_primary_10_3389_fimmu_2022_999233 crossref_primary_10_1126_science_aan2856 crossref_primary_10_3390_jcm13195772 crossref_primary_10_1016_j_tibs_2023_09_001 crossref_primary_10_1186_s13041_020_0547_z crossref_primary_10_1038_s41594_019_0205_2 crossref_primary_10_7554_eLife_41050 crossref_primary_10_1016_j_conb_2020_10_019 crossref_primary_10_1093_texcom_tgaa089 crossref_primary_10_1038_s41467_024_55741_6 crossref_primary_10_1002_dvg_23594 crossref_primary_10_1073_pnas_2301003120 crossref_primary_10_1126_sciadv_adk3384 crossref_primary_10_1523_JNEUROSCI_1143_20_2020 crossref_primary_10_3389_fcell_2023_1261048 crossref_primary_10_2139_ssrn_4156155 crossref_primary_10_1523_JNEUROSCI_3035_17_2018 crossref_primary_10_1126_science_adf8440 crossref_primary_10_12688_f1000research_16038_1 crossref_primary_10_1002_wrna_1762 crossref_primary_10_1098_rsob_220053 crossref_primary_10_1523_ENEURO_0250_23_2023 crossref_primary_10_1016_j_brainres_2018_02_041 crossref_primary_10_1016_j_semcdb_2017_07_043 crossref_primary_10_1126_scisignal_aan5373 crossref_primary_10_1016_j_celrep_2018_07_024 crossref_primary_10_1016_j_celrep_2019_11_099 crossref_primary_10_1371_journal_pgen_1008554 crossref_primary_10_1016_j_celrep_2023_112170 crossref_primary_10_3389_fnins_2022_889155 crossref_primary_10_1146_annurev_cellbio_100616_060701 crossref_primary_10_1016_j_semcdb_2017_07_040 crossref_primary_10_1016_j_jbc_2025_108337 crossref_primary_10_3389_fnins_2020_587819 crossref_primary_10_1186_s12974_025_03408_4 crossref_primary_10_1186_s12915_021_01116_y crossref_primary_10_7554_eLife_55374 crossref_primary_10_1002_dneu_22950 crossref_primary_10_1016_j_cub_2022_05_030 crossref_primary_10_1186_s12864_017_4420_0 crossref_primary_10_1016_j_neuron_2021_03_004 crossref_primary_10_1038_s41586_019_1089_3 crossref_primary_10_7554_eLife_35242 crossref_primary_10_1186_s12974_021_02153_8 crossref_primary_10_3389_fcell_2021_720798 crossref_primary_10_1038_s41467_022_34099_7 crossref_primary_10_1038_s42003_024_05840_3 crossref_primary_10_1534_genetics_119_302600 crossref_primary_10_1073_pnas_1713449114 crossref_primary_10_1038_s41380_020_0753_1 crossref_primary_10_1016_j_isci_2022_105766 crossref_primary_10_7554_eLife_89532_3 crossref_primary_10_1242_dev_173310 crossref_primary_10_1002_dvg_23610 crossref_primary_10_1038_s41586_022_05495_2 crossref_primary_10_1126_science_adm9802 crossref_primary_10_1523_JNEUROSCI_1940_22_2023 |
Cites_doi | 10.1038/ng1500 10.1016/j.cell.2014.07.012 10.1038/srep18178 10.1016/j.cell.2015.09.026 10.1016/S0896-6273(02)01090-5 10.1016/S0092-8674(00)81387-2 10.1038/nn0504-483 10.1242/dev.027912 10.1016/S0896-6273(02)01183-2 10.1016/j.cell.2004.05.015 10.1101/gad.1004802 10.3389/fnmol.2012.00097 10.1016/S0896-6273(04)00224-7 10.1016/j.cub.2007.04.040 10.1073/pnas.1417955112 10.1038/srep01514 10.1073/pnas.1004526107 10.1016/0092-8674(91)90418-X 10.1126/science.aal3231 10.1016/j.neuron.2012.06.039 10.1186/1749-8104-6-30 10.1016/j.mcn.2008.01.016 10.15252/msb.20156639 10.1016/j.cell.2004.05.011 10.1016/j.cell.2011.03.040 10.1038/nature11305 10.1016/S0092-8674(94)90562-2 10.1038/nature06099 10.1016/j.neuron.2012.01.028 10.1016/j.neuron.2008.10.046 10.1016/S1097-2765(02)00578-6 10.1093/chemse/24.6.637 10.1242/dev.090621 |
ContentType | Journal Article |
Copyright | Copyright © 2017 by the American Association for the Advancement of Science Copyright © 2017, American Association for the Advancement of Science. Copyright © 2017, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2017 by the American Association for the Advancement of Science – notice: Copyright © 2017, American Association for the Advancement of Science. – notice: Copyright © 2017, American Association for the Advancement of Science |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
DOI | 10.1126/science.aai8801 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef MEDLINE Materials Research Database Neurosciences Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 414 |
ExternalDocumentID | PMC5529182 28450637 10_1126_science_aai8801 26398900 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM008224 – fundername: NINDS NIH HHS grantid: R01 NS088476 – fundername: NINDS NIH HHS grantid: R21 NS088992 – fundername: NIMH NIH HHS grantid: R01 MH108579 – fundername: NINDS NIH HHS grantid: R01 NS089456 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AADHG AAIKC AAMNW AANCE AAWTO ABBHK ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX ABCQX CITATION K-O CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c575t-8ef015ba5b3dfa4a673440a52a3b7aa7112d3d2dbc090209afa72a10aa213b413 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 18:30:24 EDT 2025 Tue Aug 05 10:54:49 EDT 2025 Thu Jul 10 22:52:29 EDT 2025 Fri Jul 11 11:51:54 EDT 2025 Fri Jul 25 10:07:35 EDT 2025 Mon Jul 21 06:09:12 EDT 2025 Tue Jul 01 00:37:26 EDT 2025 Thu Apr 24 23:04:02 EDT 2025 Thu Jul 03 22:07:37 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6336 |
Language | English |
License | Copyright © 2017, American Association for the Advancement of Science. Permissions Obtain information about reproducing this article: http://www.sciencemag.org/about/permissions.dtl |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c575t-8ef015ba5b3dfa4a673440a52a3b7aa7112d3d2dbc090209afa72a10aa213b413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Present address: Kallyope, Inc., New York, NY 10016, USA. These authors contributed equally to this work. |
ORCID | 0000-0003-4313-0481 0000-0001-5243-8491 0000-0002-2385-3757 0000-0002-5546-8933 0000-0002-0240-9745 0000-0002-2722-8633 0000-0002-0971-1525 |
OpenAccessLink | http://doi.org/10.1126/science.aai8801 |
PMID | 28450637 |
PQID | 1892778655 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5529182 proquest_miscellaneous_1904246055 proquest_miscellaneous_1901705756 proquest_miscellaneous_1893546442 proquest_journals_1892778655 pubmed_primary_28450637 crossref_primary_10_1126_science_aai8801 crossref_citationtrail_10_1126_science_aai8801 jstor_primary_26398900 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170428 2017-04-28 |
PublicationDateYYYYMMDD | 2017-04-28 |
PublicationDate_xml | – month: 4 year: 2017 text: 20170428 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2017 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 28450597 - Science. 2017 Apr 28;356(6336):376-377 |
References_xml | – ident: e_1_3_2_19_2 doi: 10.1038/ng1500 – ident: e_1_3_2_6_2 doi: 10.1016/j.cell.2014.07.012 – ident: e_1_3_2_17_2 doi: 10.1038/srep18178 – ident: e_1_3_2_4_2 doi: 10.1016/j.cell.2015.09.026 – ident: e_1_3_2_12_2 doi: 10.1016/S0896-6273(02)01090-5 – ident: e_1_3_2_16_2 doi: 10.1016/S0092-8674(00)81387-2 – ident: e_1_3_2_28_2 doi: 10.1038/nn0504-483 – ident: e_1_3_2_11_2 doi: 10.1242/dev.027912 – ident: e_1_3_2_22_2 doi: 10.1016/S0896-6273(02)01183-2 – ident: e_1_3_2_26_2 doi: 10.1016/j.cell.2004.05.015 – ident: e_1_3_2_3_2 doi: 10.1101/gad.1004802 – ident: e_1_3_2_20_2 doi: 10.3389/fnmol.2012.00097 – ident: e_1_3_2_25_2 doi: 10.1016/S0896-6273(04)00224-7 – ident: e_1_3_2_32_2 doi: 10.1016/j.cub.2007.04.040 – ident: e_1_3_2_34_2 doi: 10.1073/pnas.1417955112 – ident: e_1_3_2_10_2 doi: 10.1038/srep01514 – ident: e_1_3_2_5_2 doi: 10.1073/pnas.1004526107 – ident: e_1_3_2_14_2 doi: 10.1016/0092-8674(91)90418-X – ident: e_1_3_2_24_2 doi: 10.1126/science.aal3231 – ident: e_1_3_2_8_2 doi: 10.1016/j.neuron.2012.06.039 – ident: e_1_3_2_31_2 doi: 10.1186/1749-8104-6-30 – ident: e_1_3_2_13_2 doi: 10.1016/j.mcn.2008.01.016 – ident: e_1_3_2_18_2 doi: 10.15252/msb.20156639 – ident: e_1_3_2_27_2 doi: 10.1016/j.cell.2004.05.011 – ident: e_1_3_2_33_2 doi: 10.1016/j.cell.2011.03.040 – ident: e_1_3_2_7_2 doi: 10.1038/nature11305 – ident: e_1_3_2_15_2 doi: 10.1016/S0092-8674(94)90562-2 – ident: e_1_3_2_23_2 doi: 10.1038/nature06099 – ident: e_1_3_2_9_2 doi: 10.1016/j.neuron.2012.01.028 – ident: e_1_3_2_30_2 doi: 10.1016/j.neuron.2008.10.046 – ident: e_1_3_2_2_2 doi: 10.1016/S1097-2765(02)00578-6 – ident: e_1_3_2_29_2 doi: 10.1093/chemse/24.6.637 – ident: e_1_3_2_21_2 doi: 10.1242/dev.090621 – reference: 28450597 - Science. 2017 Apr 28;356(6336):376-377 |
SSID | ssj0009593 |
Score | 2.542583 |
Snippet | The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Here, we show... Neurons in the developing brain cooperate to build circuits. Mountoufaris et al. found that ∼50 variable protocadherin genes support a combinatorial identity... The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters ( α, β, and γ). Here, we show that all... Neurons in the developing brain cooperate to build circuits. Mountoufaris et al. found that ∼50 variable protocadherin genes support a combinatorial identity... Pattern formation in the brain: Neurons in the developing brain cooperate to build circuits. Mountoufaris et al. found that similar to 50 variable... The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters ( Pcdh α, Pcdh β, and Pcdh γ). Here, we... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 411 |
SubjectTerms | Anatomy Animals Assembly Avoidance Axons Axons - physiology Brain Cadherins - genetics Cell surface Central nervous system Circuits Clonal deletion Clusters Combinatorial analysis Deletion Gene clusters Gene Deletion Gene Expression Genes Genetic Variation Glomerulus Isoforms Mice Mice, Inbred C57BL Multigene Family Nerve Net - growth & development Nervous system Neurogenesis - genetics Neurons Odorant receptors Olfactory bulb Olfactory glomeruli Olfactory pathways Olfactory receptor neurons Olfactory Receptor Neurons - physiology Proteins Protocadherin Receptors Rodents Sensory neurons Serotonin Vesicular Glutamate Transport Protein 2 - genetics |
Title | Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly |
URI | https://www.jstor.org/stable/26398900 https://www.ncbi.nlm.nih.gov/pubmed/28450637 https://www.proquest.com/docview/1892778655 https://www.proquest.com/docview/1893546442 https://www.proquest.com/docview/1901705756 https://www.proquest.com/docview/1904246055 https://pubmed.ncbi.nlm.nih.gov/PMC5529182 |
Volume | 356 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyReEBsMCgMZiYehKlXiS5M8dsA0gQZIbLC3yHYcVlFatDYP5f_xvzgndtJ0aqfBS9QmzkU-n8_F_nwOIa_ypDBgWIsgh4EUCMlhzOk0CWzBpE7AphQCdyOffhyenIv3F_Ki0_nTYi2VCz0wvzfuK_kfqcI5kCvukv0HyTYPhRPwG-QLR5AwHG8l42r3rJmUmOyg_9nkl_28oVmMcT0Aab7gUSKVEEN8259NXIGdZR8TWWJukPGVKcdYbmZuf-rJ2iJvPe7BCW0WdlribBiKI8cjqGkF_rbWHMMpFqSYlQUWPFxNxK-YBU71fbPIz59-738drCbEkXKwxIJPla0o5-WP5r5PNVEj_WCRllJN5FqPdj-RAcYxFPXGcK-cfW5kZ5qcPg6xlCQLeVthc5eK3CNzyHlbAwuvu63_JzbbiVZlSztQagxqLFqZxJoGcM1SNvzFKnJiw8w_IPMPuEN2GEQrrEt2Rkdvj463Zn_2OaZau7fqb1hzjxxDdlPsc53C2_KJzh6Q-z6YoSOHzF3SsdM9cteVN13ukV2PhDk99NnNXz8kX9qgpQha2oCWjue0Bi0FdNEKtLQBLXWgpR60tAbtI3J-_O7szUngK3sEBsKDRZDYAtxQraTmeaGEGsZciFBJpriOlYqhZ3Kes1wbpA2HqSpUzFQUKsUirsHv2ifd6WxqnxCaSBUaw7QOhRUsMpqD9rFDA11tRMLzHhnUHZoZn_Yeq69Msi1C7JHD5oZfLuPL9qb7lYSadgz8_SQNwx45qEWWeX0xz6IkZZitUcoeedlcBm2OS3RqaqFHsQ2XAmIUdkObtMqBFcvhjW0EQ8oDvOuxQ8rqIxMhITCJeyRew1DTADPOr1-Zji-rzPNSsjRK2NPbd9Ezcm811g9Id3FV2ufgxi_0Cz9I_gJXZ_r3 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multicluster+Pcdh+diversity+is+required+for+mouse+olfactory+neural+circuit+assembly&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Mountoufaris%2C+George&rft.au=Chen%2C+Weisheng+V.&rft.au=Hirabayashi%2C+Yusuke&rft.au=O%E2%80%99Keeffe%2C+Sean&rft.date=2017-04-28&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=356&rft.issue=6336&rft.spage=411&rft.epage=414&rft_id=info:doi/10.1126%2Fscience.aai8801&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aai8801 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |