Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly

The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface divers...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 356; no. 6336; pp. 411 - 414
Main Authors Mountoufaris, George, Chen, Weisheng V., Hirabayashi, Yusuke, O’Keeffe, Sean, Chevee, Maxime, Nwakeze, Chiamaka L., Polleux, Franck, Maniatis, Tom
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 28.04.2017
The American Association for the Advancement of Science
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.aai8801

Cover

Loading…
Abstract The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single–tricluster gene repertoire (α and β and γ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms.
AbstractList Pattern formation in the brain: Neurons in the developing brain cooperate to build circuits. Mountoufaris et al. found that similar to 50 variable protocadherin genes support a combinatorial identity code that allows millions of olfactory neuron axons to sort into similar to 2000 glomeruli. Sharing olfactory receptors drives axons to one glomerulus, and protocadherin diversity allows the multiple axons to touch each other as they converge. On the other hand, Chen et al. found that a single C-type protocadherin underlies the tiled distribution of serotonergic neurons throughout the central nervous system. These neurons, which share protocadherin identity, enervate broad swaths evenly without touching neighboring neurons.Science, this issue p. 411, p. 406 The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdh alpha , Pcdh beta , and Pcdh gamma ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single-tricluster gene repertoire ( alpha and beta and gamma ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms.
Neurons in the developing brain cooperate to build circuits. Mountoufaris et al. found that ∼50 variable protocadherin genes support a combinatorial identity code that allows millions of olfactory neuron axons to sort into ∼2000 glomeruli. Sharing olfactory receptors drives axons to one glomerulus, and protocadherin diversity allows the multiple axons to touch each other as they converge. On the other hand, Chen et al. found that a single C-type protocadherin underlies the tiled distribution of serotonergic neurons throughout the central nervous system. These neurons, which share protocadherin identity, enervate broad swaths evenly without touching neighboring neurons. Science , this issue p. 411 , p. 406 Genetic approaches in mice reveal the functional importance of the multicluster organization of mammalian protocadherin genes. The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters ( Pcdh α, Pcdh β, and Pcdh γ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single–tricluster gene repertoire (α and β and γ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms.
The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters ( Pcdh α, Pcdh β, and Pcdh γ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single–tricluster gene repertoire (α and β and γ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms.
The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters ( α, β, and γ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single-tricluster gene repertoire (α and β and γ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms.
Neurons in the developing brain cooperate to build circuits. Mountoufaris et al. found that ∼50 variable protocadherin genes support a combinatorial identity code that allows millions of olfactory neuron axons to sort into ∼2000 glomeruli. Sharing olfactory receptors drives axons to one glomerulus, and protocadherin diversity allows the multiple axons to touch each other as they converge. On the other hand, Chen et al. found that a single C-type protocadherin underlies the tiled distribution of serotonergic neurons throughout the central nervous system. These neurons, which share protocadherin identity, enervate broad swaths evenly without touching neighboring neurons. Science, this issue p. 411, p. 406 The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single-tricluster gene repertoire (α and β and γ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms.
The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single–tricluster gene repertoire (α and β and γ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms.
The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single-tricluster gene repertoire (α and β and γ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms.The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single-tricluster gene repertoire (α and β and γ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms.
Author Chen, Weisheng V.
Mountoufaris, George
Chevee, Maxime
Nwakeze, Chiamaka L.
Maniatis, Tom
O’Keeffe, Sean
Polleux, Franck
Hirabayashi, Yusuke
AuthorAffiliation 1 Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
2 Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
3 Department of Neuroscience, Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA
AuthorAffiliation_xml – name: 3 Department of Neuroscience, Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA
– name: 1 Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
– name: 2 Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
Author_xml – sequence: 1
  givenname: George
  surname: Mountoufaris
  fullname: Mountoufaris, George
– sequence: 2
  givenname: Weisheng V.
  surname: Chen
  fullname: Chen, Weisheng V.
– sequence: 3
  givenname: Yusuke
  surname: Hirabayashi
  fullname: Hirabayashi, Yusuke
– sequence: 4
  givenname: Sean
  surname: O’Keeffe
  fullname: O’Keeffe, Sean
– sequence: 5
  givenname: Maxime
  surname: Chevee
  fullname: Chevee, Maxime
– sequence: 6
  givenname: Chiamaka L.
  surname: Nwakeze
  fullname: Nwakeze, Chiamaka L.
– sequence: 7
  givenname: Franck
  surname: Polleux
  fullname: Polleux, Franck
– sequence: 8
  givenname: Tom
  surname: Maniatis
  fullname: Maniatis, Tom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28450637$$D View this record in MEDLINE/PubMed
BookMark eNqNks1v1DAQxS1URLeFMyeQJS69pB1_xckFqar4kopAAs7WxHGoV0nc2k6l_e_xdpcCPQAnH-b3xvNm3hE5mMPsCHnO4JQxXp8l691s3Smibxpgj8iKQauqloM4ICsAUVcNaHVIjlJaA5RaK56QQ95IBbXQK_Ll4zJmb8clZRfpZ9tf0d7fuph83lCfaHQ3i4-up0OIdApLcjSMA9oc4obObok4UuujXXymmJKbunHzlDwecEzu2f49Jt_evvl68b66_PTuw8X5ZWWVVrlq3ABMdag60Q8osdZCSkDFUXQaUReDveh531logUOLA2qODBA5E51k4pi83vW9XrrJ9dbNuYxjrqOfMG5MQG_-rMz-ynwPt0Yp3rKGlwYn-wYx3CwuZTP5ZN044uyKVcNakFzWoNT_oExD8VX_G21aoWQt5XaAVw_QdVjiXJa2pbjWTX3398vffd4b_HnFApztABtDStEN9wgDs82J2efE7HNSFOqBwvqM2Yftovz4F92LnW6dSgJ-TVKLtmlL3H4A6ZjPbw
CitedBy_id crossref_primary_10_1038_s41588_019_0526_4
crossref_primary_10_1007_s13238_019_00656_y
crossref_primary_10_1038_s41467_023_43849_0
crossref_primary_10_1016_j_conb_2019_10_001
crossref_primary_10_1016_j_conb_2020_07_005
crossref_primary_10_3389_fnmol_2019_00243
crossref_primary_10_1016_j_neuroscience_2020_06_037
crossref_primary_10_1371_journal_pgen_1007164
crossref_primary_10_1371_journal_pbio_3002197
crossref_primary_10_3389_fnmol_2019_00115
crossref_primary_10_1111_febs_16535
crossref_primary_10_1002_wdev_379
crossref_primary_10_1038_s41467_024_49684_1
crossref_primary_10_1002_dvg_70010
crossref_primary_10_1016_j_celrep_2020_02_003
crossref_primary_10_7554_eLife_72416
crossref_primary_10_1007_s00441_020_03348_w
crossref_primary_10_1073_pnas_2313596120
crossref_primary_10_1016_j_isci_2023_108220
crossref_primary_10_1016_j_cell_2020_04_008
crossref_primary_10_1016_j_cell_2019_03_008
crossref_primary_10_1016_j_isci_2024_111452
crossref_primary_10_1016_j_semcdb_2022_11_004
crossref_primary_10_1126_sciadv_ads2852
crossref_primary_10_1016_j_cell_2022_08_025
crossref_primary_10_7554_eLife_89532
crossref_primary_10_1038_s41590_024_01933_7
crossref_primary_10_1210_jc_2018_01471
crossref_primary_10_1126_sciadv_aba1180
crossref_primary_10_1016_j_semcdb_2017_05_026
crossref_primary_10_3389_fgene_2024_1308234
crossref_primary_10_3389_fnmol_2020_00117
crossref_primary_10_3389_fncir_2024_1409680
crossref_primary_10_1007_s12264_020_00578_4
crossref_primary_10_1242_dev_158246
crossref_primary_10_1073_pnas_1921983117
crossref_primary_10_3389_fnins_2022_1112300
crossref_primary_10_1126_science_aaw5030
crossref_primary_10_1016_j_conb_2020_01_002
crossref_primary_10_1523_JNEUROSCI_1636_20_2020
crossref_primary_10_1016_j_cub_2024_08_002
crossref_primary_10_1016_j_gde_2020_05_041
crossref_primary_10_1038_s41598_021_01481_2
crossref_primary_10_1126_sciadv_abn9458
crossref_primary_10_1002_cne_24783
crossref_primary_10_1038_s41598_023_44803_2
crossref_primary_10_1016_j_semcdb_2017_07_023
crossref_primary_10_1007_s00018_018_2951_4
crossref_primary_10_1016_j_celrep_2021_109940
crossref_primary_10_1016_j_isci_2023_107238
crossref_primary_10_1126_science_adq5225
crossref_primary_10_3389_fimmu_2022_999233
crossref_primary_10_1126_science_aan2856
crossref_primary_10_3390_jcm13195772
crossref_primary_10_1016_j_tibs_2023_09_001
crossref_primary_10_1186_s13041_020_0547_z
crossref_primary_10_1038_s41594_019_0205_2
crossref_primary_10_7554_eLife_41050
crossref_primary_10_1016_j_conb_2020_10_019
crossref_primary_10_1093_texcom_tgaa089
crossref_primary_10_1038_s41467_024_55741_6
crossref_primary_10_1002_dvg_23594
crossref_primary_10_1073_pnas_2301003120
crossref_primary_10_1126_sciadv_adk3384
crossref_primary_10_1523_JNEUROSCI_1143_20_2020
crossref_primary_10_3389_fcell_2023_1261048
crossref_primary_10_2139_ssrn_4156155
crossref_primary_10_1523_JNEUROSCI_3035_17_2018
crossref_primary_10_1126_science_adf8440
crossref_primary_10_12688_f1000research_16038_1
crossref_primary_10_1002_wrna_1762
crossref_primary_10_1098_rsob_220053
crossref_primary_10_1523_ENEURO_0250_23_2023
crossref_primary_10_1016_j_brainres_2018_02_041
crossref_primary_10_1016_j_semcdb_2017_07_043
crossref_primary_10_1126_scisignal_aan5373
crossref_primary_10_1016_j_celrep_2018_07_024
crossref_primary_10_1016_j_celrep_2019_11_099
crossref_primary_10_1371_journal_pgen_1008554
crossref_primary_10_1016_j_celrep_2023_112170
crossref_primary_10_3389_fnins_2022_889155
crossref_primary_10_1146_annurev_cellbio_100616_060701
crossref_primary_10_1016_j_semcdb_2017_07_040
crossref_primary_10_1016_j_jbc_2025_108337
crossref_primary_10_3389_fnins_2020_587819
crossref_primary_10_1186_s12974_025_03408_4
crossref_primary_10_1186_s12915_021_01116_y
crossref_primary_10_7554_eLife_55374
crossref_primary_10_1002_dneu_22950
crossref_primary_10_1016_j_cub_2022_05_030
crossref_primary_10_1186_s12864_017_4420_0
crossref_primary_10_1016_j_neuron_2021_03_004
crossref_primary_10_1038_s41586_019_1089_3
crossref_primary_10_7554_eLife_35242
crossref_primary_10_1186_s12974_021_02153_8
crossref_primary_10_3389_fcell_2021_720798
crossref_primary_10_1038_s41467_022_34099_7
crossref_primary_10_1038_s42003_024_05840_3
crossref_primary_10_1534_genetics_119_302600
crossref_primary_10_1073_pnas_1713449114
crossref_primary_10_1038_s41380_020_0753_1
crossref_primary_10_1016_j_isci_2022_105766
crossref_primary_10_7554_eLife_89532_3
crossref_primary_10_1242_dev_173310
crossref_primary_10_1002_dvg_23610
crossref_primary_10_1038_s41586_022_05495_2
crossref_primary_10_1126_science_adm9802
crossref_primary_10_1523_JNEUROSCI_1940_22_2023
Cites_doi 10.1038/ng1500
10.1016/j.cell.2014.07.012
10.1038/srep18178
10.1016/j.cell.2015.09.026
10.1016/S0896-6273(02)01090-5
10.1016/S0092-8674(00)81387-2
10.1038/nn0504-483
10.1242/dev.027912
10.1016/S0896-6273(02)01183-2
10.1016/j.cell.2004.05.015
10.1101/gad.1004802
10.3389/fnmol.2012.00097
10.1016/S0896-6273(04)00224-7
10.1016/j.cub.2007.04.040
10.1073/pnas.1417955112
10.1038/srep01514
10.1073/pnas.1004526107
10.1016/0092-8674(91)90418-X
10.1126/science.aal3231
10.1016/j.neuron.2012.06.039
10.1186/1749-8104-6-30
10.1016/j.mcn.2008.01.016
10.15252/msb.20156639
10.1016/j.cell.2004.05.011
10.1016/j.cell.2011.03.040
10.1038/nature11305
10.1016/S0092-8674(94)90562-2
10.1038/nature06099
10.1016/j.neuron.2012.01.028
10.1016/j.neuron.2008.10.046
10.1016/S1097-2765(02)00578-6
10.1093/chemse/24.6.637
10.1242/dev.090621
ContentType Journal Article
Copyright Copyright © 2017 by the American Association for the Advancement of Science
Copyright © 2017, American Association for the Advancement of Science.
Copyright © 2017, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2017 by the American Association for the Advancement of Science
– notice: Copyright © 2017, American Association for the Advancement of Science.
– notice: Copyright © 2017, American Association for the Advancement of Science
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.aai8801
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Solid State and Superconductivity Abstracts
CrossRef

MEDLINE
Materials Research Database

Neurosciences Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 414
ExternalDocumentID PMC5529182
28450637
10_1126_science_aai8801
26398900
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM008224
– fundername: NINDS NIH HHS
  grantid: R01 NS088476
– fundername: NINDS NIH HHS
  grantid: R21 NS088992
– fundername: NIMH NIH HHS
  grantid: R01 MH108579
– fundername: NINDS NIH HHS
  grantid: R01 NS089456
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AADHG
AAIKC
AAMNW
AANCE
AAWTO
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c575t-8ef015ba5b3dfa4a673440a52a3b7aa7112d3d2dbc090209afa72a10aa213b413
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 18:30:24 EDT 2025
Tue Aug 05 10:54:49 EDT 2025
Thu Jul 10 22:52:29 EDT 2025
Fri Jul 11 11:51:54 EDT 2025
Fri Jul 25 10:07:35 EDT 2025
Mon Jul 21 06:09:12 EDT 2025
Tue Jul 01 00:37:26 EDT 2025
Thu Apr 24 23:04:02 EDT 2025
Thu Jul 03 22:07:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6336
Language English
License Copyright © 2017, American Association for the Advancement of Science.
Permissions Obtain information about reproducing this article: http://www.sciencemag.org/about/permissions.dtl
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c575t-8ef015ba5b3dfa4a673440a52a3b7aa7112d3d2dbc090209afa72a10aa213b413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Present address: Kallyope, Inc., New York, NY 10016, USA.
These authors contributed equally to this work.
ORCID 0000-0003-4313-0481
0000-0001-5243-8491
0000-0002-2385-3757
0000-0002-5546-8933
0000-0002-0240-9745
0000-0002-2722-8633
0000-0002-0971-1525
OpenAccessLink http://doi.org/10.1126/science.aai8801
PMID 28450637
PQID 1892778655
PQPubID 1256
PageCount 4
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5529182
proquest_miscellaneous_1904246055
proquest_miscellaneous_1901705756
proquest_miscellaneous_1893546442
proquest_journals_1892778655
pubmed_primary_28450637
crossref_primary_10_1126_science_aai8801
crossref_citationtrail_10_1126_science_aai8801
jstor_primary_26398900
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170428
2017-04-28
PublicationDateYYYYMMDD 2017-04-28
PublicationDate_xml – month: 4
  year: 2017
  text: 20170428
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2017
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
28450597 - Science. 2017 Apr 28;356(6336):376-377
References_xml – ident: e_1_3_2_19_2
  doi: 10.1038/ng1500
– ident: e_1_3_2_6_2
  doi: 10.1016/j.cell.2014.07.012
– ident: e_1_3_2_17_2
  doi: 10.1038/srep18178
– ident: e_1_3_2_4_2
  doi: 10.1016/j.cell.2015.09.026
– ident: e_1_3_2_12_2
  doi: 10.1016/S0896-6273(02)01090-5
– ident: e_1_3_2_16_2
  doi: 10.1016/S0092-8674(00)81387-2
– ident: e_1_3_2_28_2
  doi: 10.1038/nn0504-483
– ident: e_1_3_2_11_2
  doi: 10.1242/dev.027912
– ident: e_1_3_2_22_2
  doi: 10.1016/S0896-6273(02)01183-2
– ident: e_1_3_2_26_2
  doi: 10.1016/j.cell.2004.05.015
– ident: e_1_3_2_3_2
  doi: 10.1101/gad.1004802
– ident: e_1_3_2_20_2
  doi: 10.3389/fnmol.2012.00097
– ident: e_1_3_2_25_2
  doi: 10.1016/S0896-6273(04)00224-7
– ident: e_1_3_2_32_2
  doi: 10.1016/j.cub.2007.04.040
– ident: e_1_3_2_34_2
  doi: 10.1073/pnas.1417955112
– ident: e_1_3_2_10_2
  doi: 10.1038/srep01514
– ident: e_1_3_2_5_2
  doi: 10.1073/pnas.1004526107
– ident: e_1_3_2_14_2
  doi: 10.1016/0092-8674(91)90418-X
– ident: e_1_3_2_24_2
  doi: 10.1126/science.aal3231
– ident: e_1_3_2_8_2
  doi: 10.1016/j.neuron.2012.06.039
– ident: e_1_3_2_31_2
  doi: 10.1186/1749-8104-6-30
– ident: e_1_3_2_13_2
  doi: 10.1016/j.mcn.2008.01.016
– ident: e_1_3_2_18_2
  doi: 10.15252/msb.20156639
– ident: e_1_3_2_27_2
  doi: 10.1016/j.cell.2004.05.011
– ident: e_1_3_2_33_2
  doi: 10.1016/j.cell.2011.03.040
– ident: e_1_3_2_7_2
  doi: 10.1038/nature11305
– ident: e_1_3_2_15_2
  doi: 10.1016/S0092-8674(94)90562-2
– ident: e_1_3_2_23_2
  doi: 10.1038/nature06099
– ident: e_1_3_2_9_2
  doi: 10.1016/j.neuron.2012.01.028
– ident: e_1_3_2_30_2
  doi: 10.1016/j.neuron.2008.10.046
– ident: e_1_3_2_2_2
  doi: 10.1016/S1097-2765(02)00578-6
– ident: e_1_3_2_29_2
  doi: 10.1093/chemse/24.6.637
– ident: e_1_3_2_21_2
  doi: 10.1242/dev.090621
– reference: 28450597 - Science. 2017 Apr 28;356(6336):376-377
SSID ssj0009593
Score 2.542583
Snippet The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Here, we show...
Neurons in the developing brain cooperate to build circuits. Mountoufaris et al. found that ∼50 variable protocadherin genes support a combinatorial identity...
The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters ( α, β, and γ). Here, we show that all...
Neurons in the developing brain cooperate to build circuits. Mountoufaris et al. found that ∼50 variable protocadherin genes support a combinatorial identity...
Pattern formation in the brain: Neurons in the developing brain cooperate to build circuits. Mountoufaris et al. found that similar to 50 variable...
The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters ( Pcdh α, Pcdh β, and Pcdh γ). Here, we...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 411
SubjectTerms Anatomy
Animals
Assembly
Avoidance
Axons
Axons - physiology
Brain
Cadherins - genetics
Cell surface
Central nervous system
Circuits
Clonal deletion
Clusters
Combinatorial analysis
Deletion
Gene clusters
Gene Deletion
Gene Expression
Genes
Genetic Variation
Glomerulus
Isoforms
Mice
Mice, Inbred C57BL
Multigene Family
Nerve Net - growth & development
Nervous system
Neurogenesis - genetics
Neurons
Odorant receptors
Olfactory bulb
Olfactory glomeruli
Olfactory pathways
Olfactory receptor neurons
Olfactory Receptor Neurons - physiology
Proteins
Protocadherin
Receptors
Rodents
Sensory neurons
Serotonin
Vesicular Glutamate Transport Protein 2 - genetics
Title Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly
URI https://www.jstor.org/stable/26398900
https://www.ncbi.nlm.nih.gov/pubmed/28450637
https://www.proquest.com/docview/1892778655
https://www.proquest.com/docview/1893546442
https://www.proquest.com/docview/1901705756
https://www.proquest.com/docview/1904246055
https://pubmed.ncbi.nlm.nih.gov/PMC5529182
Volume 356
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyReEBsMCgMZiYehKlXiS5M8dsA0gQZIbLC3yHYcVlFatDYP5f_xvzgndtJ0aqfBS9QmzkU-n8_F_nwOIa_ypDBgWIsgh4EUCMlhzOk0CWzBpE7AphQCdyOffhyenIv3F_Ki0_nTYi2VCz0wvzfuK_kfqcI5kCvukv0HyTYPhRPwG-QLR5AwHG8l42r3rJmUmOyg_9nkl_28oVmMcT0Aab7gUSKVEEN8259NXIGdZR8TWWJukPGVKcdYbmZuf-rJ2iJvPe7BCW0WdlribBiKI8cjqGkF_rbWHMMpFqSYlQUWPFxNxK-YBU71fbPIz59-738drCbEkXKwxIJPla0o5-WP5r5PNVEj_WCRllJN5FqPdj-RAcYxFPXGcK-cfW5kZ5qcPg6xlCQLeVthc5eK3CNzyHlbAwuvu63_JzbbiVZlSztQagxqLFqZxJoGcM1SNvzFKnJiw8w_IPMPuEN2GEQrrEt2Rkdvj463Zn_2OaZau7fqb1hzjxxDdlPsc53C2_KJzh6Q-z6YoSOHzF3SsdM9cteVN13ukV2PhDk99NnNXz8kX9qgpQha2oCWjue0Bi0FdNEKtLQBLXWgpR60tAbtI3J-_O7szUngK3sEBsKDRZDYAtxQraTmeaGEGsZciFBJpriOlYqhZ3Kes1wbpA2HqSpUzFQUKsUirsHv2ifd6WxqnxCaSBUaw7QOhRUsMpqD9rFDA11tRMLzHhnUHZoZn_Yeq69Msi1C7JHD5oZfLuPL9qb7lYSadgz8_SQNwx45qEWWeX0xz6IkZZitUcoeedlcBm2OS3RqaqFHsQ2XAmIUdkObtMqBFcvhjW0EQ8oDvOuxQ8rqIxMhITCJeyRew1DTADPOr1-Zji-rzPNSsjRK2NPbd9Ezcm811g9Id3FV2ufgxi_0Cz9I_gJXZ_r3
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multicluster+Pcdh+diversity+is+required+for+mouse+olfactory+neural+circuit+assembly&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Mountoufaris%2C+George&rft.au=Chen%2C+Weisheng+V.&rft.au=Hirabayashi%2C+Yusuke&rft.au=O%E2%80%99Keeffe%2C+Sean&rft.date=2017-04-28&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=356&rft.issue=6336&rft.spage=411&rft.epage=414&rft_id=info:doi/10.1126%2Fscience.aai8801&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aai8801
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon