Electromagnetic metamaterial agent

Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed self-adaptive devices realizing a user-specified functionality. Although deep-learning techniques play an increasingly important role in metamaterial...

Full description

Saved in:
Bibliographic Details
Published inLight, science & applications Vol. 14; no. 1; pp. 12 - 13
Main Authors Hu, Shengguo, Li, Mingyi, Xu, Jiawen, Zhang, Hongrui, Zhang, Shanghang, Cui, Tie Jun, del Hougne, Philipp, Li, Lianlin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.01.2025
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2047-7538
2095-5545
2047-7538
DOI10.1038/s41377-024-01678-w

Cover

Loading…
Abstract Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed self-adaptive devices realizing a user-specified functionality. Although deep-learning techniques play an increasingly important role in metamaterial inverse design, measurement post-processing and end-to-end optimization, their role is ultimately still limited to approximating specific mathematical relations; the metamaterial is still limited to serving as proxy of a human operator, realizing a predefined functionality. Here, we propose and experimentally prototype a paradigm shift toward a metamaterial agent (coined metaAgent) endowed with reasoning and cognitive capabilities enabling the autonomous planning and successful execution of diverse long-horizon tasks, including electromagnetic (EM) field manipulations and interactions with robots and humans. Leveraging recently released foundation models, metaAgent reasons in high-level natural language, acting upon diverse prompts from an evolving complex environment. Specifically, metaAgent’s cerebrum performs high-level task planning in natural language via a multi-agent discussion mechanism, where agents are domain experts in sensing, planning, grounding, and coding. In response to live environmental feedback within a real-world setting emulating an ambient-assisted living context (including human requests in natural language), our metaAgent prototype self-organizes a hierarchy of EM manipulation tasks in conjunction with commanding a robot. metaAgent masters foundational EM manipulation skills related to wireless communications and sensing, and it memorizes and learns from past experience based on human feedback. metaAgent has the capability of reasoning and cognition to autonomously plan and execute complex electromagnetic manipulation tasks.
AbstractList Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed self-adaptive devices realizing a user-specified functionality. Although deep-learning techniques play an increasingly important role in metamaterial inverse design, measurement post-processing and end-to-end optimization, their role is ultimately still limited to approximating specific mathematical relations; the metamaterial is still limited to serving as proxy of a human operator, realizing a predefined functionality. Here, we propose and experimentally prototype a paradigm shift toward a metamaterial agent (coined metaAgent) endowed with reasoning and cognitive capabilities enabling the autonomous planning and successful execution of diverse long-horizon tasks, including electromagnetic (EM) field manipulations and interactions with robots and humans. Leveraging recently released foundation models, metaAgent reasons in high-level natural language, acting upon diverse prompts from an evolving complex environment. Specifically, metaAgent's cerebrum performs high-level task planning in natural language via a multi-agent discussion mechanism, where agents are domain experts in sensing, planning, grounding, and coding. In response to live environmental feedback within a real-world setting emulating an ambient-assisted living context (including human requests in natural language), our metaAgent prototype self-organizes a hierarchy of EM manipulation tasks in conjunction with commanding a robot. metaAgent masters foundational EM manipulation skills related to wireless communications and sensing, and it memorizes and learns from past experience based on human feedback.
Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed self-adaptive devices realizing a user-specified functionality. Although deep-learning techniques play an increasingly important role in metamaterial inverse design, measurement post-processing and end-to-end optimization, their role is ultimately still limited to approximating specific mathematical relations; the metamaterial is still limited to serving as proxy of a human operator, realizing a predefined functionality. Here, we propose and experimentally prototype a paradigm shift toward a metamaterial agent (coined metaAgent) endowed with reasoning and cognitive capabilities enabling the autonomous planning and successful execution of diverse long-horizon tasks, including electromagnetic (EM) field manipulations and interactions with robots and humans. Leveraging recently released foundation models, metaAgent reasons in high-level natural language, acting upon diverse prompts from an evolving complex environment. Specifically, metaAgent’s cerebrum performs high-level task planning in natural language via a multi-agent discussion mechanism, where agents are domain experts in sensing, planning, grounding, and coding. In response to live environmental feedback within a real-world setting emulating an ambient-assisted living context (including human requests in natural language), our metaAgent prototype self-organizes a hierarchy of EM manipulation tasks in conjunction with commanding a robot. metaAgent masters foundational EM manipulation skills related to wireless communications and sensing, and it memorizes and learns from past experience based on human feedback. metaAgent has the capability of reasoning and cognition to autonomously plan and execute complex electromagnetic manipulation tasks.
Abstract Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed self-adaptive devices realizing a user-specified functionality. Although deep-learning techniques play an increasingly important role in metamaterial inverse design, measurement post-processing and end-to-end optimization, their role is ultimately still limited to approximating specific mathematical relations; the metamaterial is still limited to serving as proxy of a human operator, realizing a predefined functionality. Here, we propose and experimentally prototype a paradigm shift toward a metamaterial agent (coined metaAgent) endowed with reasoning and cognitive capabilities enabling the autonomous planning and successful execution of diverse long-horizon tasks, including electromagnetic (EM) field manipulations and interactions with robots and humans. Leveraging recently released foundation models, metaAgent reasons in high-level natural language, acting upon diverse prompts from an evolving complex environment. Specifically, metaAgent’s cerebrum performs high-level task planning in natural language via a multi-agent discussion mechanism, where agents are domain experts in sensing, planning, grounding, and coding. In response to live environmental feedback within a real-world setting emulating an ambient-assisted living context (including human requests in natural language), our metaAgent prototype self-organizes a hierarchy of EM manipulation tasks in conjunction with commanding a robot. metaAgent masters foundational EM manipulation skills related to wireless communications and sensing, and it memorizes and learns from past experience based on human feedback.
Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed self-adaptive devices realizing a user-specified functionality. Although deep-learning techniques play an increasingly important role in metamaterial inverse design, measurement post-processing and end-to-end optimization, their role is ultimately still limited to approximating specific mathematical relations; the metamaterial is still limited to serving as proxy of a human operator, realizing a predefined functionality. Here, we propose and experimentally prototype a paradigm shift toward a metamaterial agent (coined metaAgent) endowed with reasoning and cognitive capabilities enabling the autonomous planning and successful execution of diverse long-horizon tasks, including electromagnetic (EM) field manipulations and interactions with robots and humans. Leveraging recently released foundation models, metaAgent reasons in high-level natural language, acting upon diverse prompts from an evolving complex environment. Specifically, metaAgent’s cerebrum performs high-level task planning in natural language via a multi-agent discussion mechanism, where agents are domain experts in sensing, planning, grounding, and coding. In response to live environmental feedback within a real-world setting emulating an ambient-assisted living context (including human requests in natural language), our metaAgent prototype self-organizes a hierarchy of EM manipulation tasks in conjunction with commanding a robot. metaAgent masters foundational EM manipulation skills related to wireless communications and sensing, and it memorizes and learns from past experience based on human feedback.metaAgent has the capability of reasoning and cognition to autonomously plan and execute complex electromagnetic manipulation tasks.
Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed self-adaptive devices realizing a user-specified functionality. Although deep-learning techniques play an increasingly important role in metamaterial inverse design, measurement post-processing and end-to-end optimization, their role is ultimately still limited to approximating specific mathematical relations; the metamaterial is still limited to serving as proxy of a human operator, realizing a predefined functionality. Here, we propose and experimentally prototype a paradigm shift toward a metamaterial agent (coined metaAgent) endowed with reasoning and cognitive capabilities enabling the autonomous planning and successful execution of diverse long-horizon tasks, including electromagnetic (EM) field manipulations and interactions with robots and humans. Leveraging recently released foundation models, metaAgent reasons in high-level natural language, acting upon diverse prompts from an evolving complex environment. Specifically, metaAgent's cerebrum performs high-level task planning in natural language via a multi-agent discussion mechanism, where agents are domain experts in sensing, planning, grounding, and coding. In response to live environmental feedback within a real-world setting emulating an ambient-assisted living context (including human requests in natural language), our metaAgent prototype self-organizes a hierarchy of EM manipulation tasks in conjunction with commanding a robot. metaAgent masters foundational EM manipulation skills related to wireless communications and sensing, and it memorizes and learns from past experience based on human feedback.Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed self-adaptive devices realizing a user-specified functionality. Although deep-learning techniques play an increasingly important role in metamaterial inverse design, measurement post-processing and end-to-end optimization, their role is ultimately still limited to approximating specific mathematical relations; the metamaterial is still limited to serving as proxy of a human operator, realizing a predefined functionality. Here, we propose and experimentally prototype a paradigm shift toward a metamaterial agent (coined metaAgent) endowed with reasoning and cognitive capabilities enabling the autonomous planning and successful execution of diverse long-horizon tasks, including electromagnetic (EM) field manipulations and interactions with robots and humans. Leveraging recently released foundation models, metaAgent reasons in high-level natural language, acting upon diverse prompts from an evolving complex environment. Specifically, metaAgent's cerebrum performs high-level task planning in natural language via a multi-agent discussion mechanism, where agents are domain experts in sensing, planning, grounding, and coding. In response to live environmental feedback within a real-world setting emulating an ambient-assisted living context (including human requests in natural language), our metaAgent prototype self-organizes a hierarchy of EM manipulation tasks in conjunction with commanding a robot. metaAgent masters foundational EM manipulation skills related to wireless communications and sensing, and it memorizes and learns from past experience based on human feedback.
ArticleNumber 12
Author Zhang, Hongrui
Hu, Shengguo
Xu, Jiawen
Zhang, Shanghang
Li, Lianlin
Cui, Tie Jun
Li, Mingyi
del Hougne, Philipp
Author_xml – sequence: 1
  givenname: Shengguo
  surname: Hu
  fullname: Hu, Shengguo
  organization: State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University
– sequence: 2
  givenname: Mingyi
  surname: Li
  fullname: Li, Mingyi
  organization: State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University
– sequence: 3
  givenname: Jiawen
  surname: Xu
  fullname: Xu, Jiawen
  organization: State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University
– sequence: 4
  givenname: Hongrui
  surname: Zhang
  fullname: Zhang, Hongrui
  organization: State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University
– sequence: 5
  givenname: Shanghang
  surname: Zhang
  fullname: Zhang, Shanghang
  organization: National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University
– sequence: 6
  givenname: Tie Jun
  orcidid: 0000-0002-5862-1497
  surname: Cui
  fullname: Cui, Tie Jun
  organization: State Key Laboratory of Millimeter Waves, Southeast University, Pazhou Laboratory (Huangpu)
– sequence: 7
  givenname: Philipp
  orcidid: 0000-0002-4821-3924
  surname: del Hougne
  fullname: del Hougne, Philipp
  organization: Univ Rennes, CNRS, IETR - UMR 6164
– sequence: 8
  givenname: Lianlin
  orcidid: 0000-0001-9394-3638
  surname: Li
  fullname: Li, Lianlin
  email: lianlin.li@pku.edu.cn
  organization: State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Pazhou Laboratory (Huangpu)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39741131$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04869633$$DView record in HAL
BookMark eNp9kk1v1DAQhi1UREvpH-CAKrjAIeDxt0-oqgqttBKX3i3HsVOvkrjY2Vb8e7ybUto91Bdb4-d9Zzyet-hgSpNH6D3gr4Cp-lYYUCkbTFiDQUjV3L9CRwQz2UhO1cGT8yE6KWWN69IMsJJv0CHVkgFQOEIfLwbv5pxG209-ju509LMd7exztMOp7f00v0Ovgx2KP3nYj9H1j4vr88tm9evn1fnZqnFc8rlRQJhrNdEqEMoYBGY7ZR3mlCrtO2CVkqQVgYcWqCKiC1qxFkMnWxwYPUZXi22X7Nrc5jja_MckG80ukHJvbK4VDt4EzQEEMCdFy4gkGjrXekUct4QJ6qvX98XrdtOOvnP1FdkOz0yf30zxxvTpzlRbpRgV1eHL4nCzp7s8W5ltDDMltKD0Dir7-SFbTr83vsxmjMX5YbCTT5tiKHDMCaGwRT_toeu0yVNt645itLZEV-rD0_If8__7tgqQBXA5lZJ9eEQAm-14mGU8TB0PsxsPc19Fak_k4mznmLYtiMPLUrpIS80z9T7_L_sF1V_Evct2
CitedBy_id crossref_primary_10_1007_s11694_025_03183_z
Cites_doi 10.48550/arXiv.2303.08774
10.1038/nmat4082
10.48550/arXiv.2108.07258
10.1093/nsr/nwac266
10.1109/MVT.2023.3332580
10.1038/s41587-022-01618-2
10.1038/s41467-017-00164-9
10.1038/s41377-019-0205-3
10.1515/nanoph-2023-0646
10.1515/nanoph-2020-0052
10.34133/2022/9825738
10.1126/science.1058847
10.1038/lsa.2014.99
10.1038/s41467-024-48115-5
10.1002/advs.201901913
10.1038/s41598-021-99722-x
10.1126/sciadv.aar4206
10.1038/s43246-024-00449-9
10.1515/nanoph-2022-0770
10.1126/science.1210713
10.1038/s41467-018-06802-0
10.1016/j.patter.2020.100006
10.1002/adfm.202101748
10.48550/arXiv.2308.08155
10.1126/science.1166949
10.1109/MWC.001.2200192
10.48550/arXiv.2403.08295
10.1126/science.1186351
10.1103/PhysRevLett.92.117403
10.1126/science.1108759
10.1103/PhysRevLett.76.4773
10.1103/PhysRevLett.85.3966
10.1103/PhysRevLett.84.4184
10.1126/science.1133628
10.48550/arXiv.2310.06825
10.1109/ACCESS.2024.3387941
10.1109/ICRA48891.2023.10160591
10.1364/PRJ.415960
10.1021/acsphotonics.4c00259
10.48550/arXiv.2302.13971
10.1515/nanoph-2023-0635
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Springer Nature B.V. 2025
Attribution
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Springer Nature B.V. 2025
– notice: Attribution
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.1038/s41377-024-01678-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


CrossRef

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2047-7538
EndPage 13
ExternalDocumentID oai_doaj_org_article_f9511614c76b427291dcbe82c5a2463e
PMC11688436
oai_HAL_hal_04869633v1
39741131
10_1038_s41377_024_01678_w
Genre Journal Article
GroupedDBID 0R~
3V.
5VS
7X7
88A
88I
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DWQXO
EBLON
EBS
FYUFA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M0L
M2P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
1XC
EJD
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c575t-8124cb9298f23441f4ad8ac053389ed1457572b6f5fb13826df984b01d7b0f43
IEDL.DBID C6C
ISSN 2047-7538
2095-5545
IngestDate Wed Aug 27 01:17:13 EDT 2025
Thu Aug 21 18:35:18 EDT 2025
Fri May 09 12:15:24 EDT 2025
Thu Jul 10 23:31:17 EDT 2025
Wed Aug 13 04:11:36 EDT 2025
Sun Jan 05 01:57:44 EST 2025
Tue Jul 01 03:45:21 EDT 2025
Thu Apr 24 23:04:20 EDT 2025
Fri Feb 21 02:36:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Computer science
Optoelectronics
Biology
Robot
Metamaterial
Artificial intelligence
Physics
Paleontology
Human–computer interaction
Context (archaeology)
Language English
License 2025. The Author(s).
Attribution: http://creativecommons.org/licenses/by
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-8124cb9298f23441f4ad8ac053389ed1457572b6f5fb13826df984b01d7b0f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5862-1497
0000-0002-4821-3924
0000-0001-9394-3638
0009-0003-8523-3750
0000-0002-0089-1099
0000-0001-7896-019X
0009-0002-4975-9715
0009-0000-9406-0730
OpenAccessLink https://www.nature.com/articles/s41377-024-01678-w
PMID 39741131
PQID 3150439849
PQPubID 2041947
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_f9511614c76b427291dcbe82c5a2463e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11688436
hal_primary_oai_HAL_hal_04869633v1
proquest_miscellaneous_3150522311
proquest_journals_3150439849
pubmed_primary_39741131
crossref_primary_10_1038_s41377_024_01678_w
crossref_citationtrail_10_1038_s41377_024_01678_w
springer_journals_10_1038_s41377_024_01678_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Light, science & applications
PublicationTitleAbbrev Light Sci Appl
PublicationTitleAlternate Light Sci Appl
PublicationYear 2025
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References C Saigre-Tardif (1678_CR17) 2023; 30
C Della Giovampaola (1678_CR11) 2014; 13
PR Wiecha (1678_CR21) 2021; 9
D Schurig (1678_CR6) 2006; 314
J Peurifoy (1678_CR20) 2018; 4
RA Shelby (1678_CR3) 2001; 292
A Grbic (1678_CR4) 2004; 92
O Khatib (1678_CR22) 2021; 31
DR Smith (1678_CR2) 2000; 84
1678_CR34
1678_CR33
1678_CR36
1678_CR35
1678_CR37
SG Hu (1678_CR45) 2024; 13
1678_CR39
SH Vemprala (1678_CR38) 2024; 12
HR Zhang (1678_CR43) 2024; 15
JB Pendry (1678_CR1) 1996; 76
Q Ma (1678_CR14) 2019; 8
1678_CR30
T Ergin (1678_CR8) 2010; 328
HT Zhao (1678_CR18) 2023; 10
1678_CR32
1678_CR31
LL Li (1678_CR48) 2017; 8
TJ Cui (1678_CR12) 2014; 3
N Fang (1678_CR10) 2005; 308
J Choi (1678_CR42) 2024; 5
G Arya (1678_CR26) 2024; 11
NF Yu (1678_CR5) 2011; 334
CQ Qian (1678_CR25) 2022; 2022
P Del Hougne (1678_CR23) 2020; 7
L Zhang (1678_CR13) 2018; 9
GC Alexandropoulos (1678_CR19) 2024; 19
1678_CR44
R Liu (1678_CR7) 2009; 323
1678_CR47
1678_CR46
1678_CR29
C Wang (1678_CR28) 2024; 13
I Alamzadeh (1678_CR16) 2021; 11
JB Pendry (1678_CR9) 2000; 85
Q Ma (1678_CR15) 2020; 9
YX Jing (1678_CR27) 2023; 12
1678_CR40
A Madani (1678_CR41) 2023; 41
HY Li (1678_CR24) 2020; 1
References_xml – ident: 1678_CR32
  doi: 10.48550/arXiv.2303.08774
– volume: 13
  start-page: 1115
  year: 2014
  ident: 1678_CR11
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4082
– ident: 1678_CR29
  doi: 10.48550/arXiv.2108.07258
– volume: 10
  year: 2023
  ident: 1678_CR18
  publication-title: Natl Sci. Rev.
  doi: 10.1093/nsr/nwac266
– volume: 19
  start-page: 75
  year: 2024
  ident: 1678_CR19
  publication-title: IEEE Vehicular Technol. Mag.
  doi: 10.1109/MVT.2023.3332580
– volume: 41
  start-page: 1099
  year: 2023
  ident: 1678_CR41
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01618-2
– volume: 8
  year: 2017
  ident: 1678_CR48
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00164-9
– volume: 8
  start-page: 98
  year: 2019
  ident: 1678_CR14
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-019-0205-3
– volume: 13
  start-page: 2213
  year: 2024
  ident: 1678_CR45
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2023-0646
– volume: 9
  start-page: 3271
  year: 2020
  ident: 1678_CR15
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2020-0052
– volume: 2022
  start-page: 9825738
  year: 2022
  ident: 1678_CR25
  publication-title: Intell. Comput.
  doi: 10.34133/2022/9825738
– volume: 292
  start-page: 77
  year: 2001
  ident: 1678_CR3
  publication-title: Science
  doi: 10.1126/science.1058847
– volume: 3
  year: 2014
  ident: 1678_CR12
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2014.99
– volume: 15
  year: 2024
  ident: 1678_CR43
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-48115-5
– volume: 7
  year: 2020
  ident: 1678_CR23
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201901913
– volume: 11
  year: 2021
  ident: 1678_CR16
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-99722-x
– volume: 4
  year: 2018
  ident: 1678_CR20
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aar4206
– volume: 5
  start-page: 13
  year: 2024
  ident: 1678_CR42
  publication-title: Commun. Mater.
  doi: 10.1038/s43246-024-00449-9
– ident: 1678_CR30
– volume: 12
  start-page: 2583
  year: 2023
  ident: 1678_CR27
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2022-0770
– volume: 334
  start-page: 333
  year: 2011
  ident: 1678_CR5
  publication-title: Science
  doi: 10.1126/science.1210713
– volume: 9
  year: 2018
  ident: 1678_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06802-0
– ident: 1678_CR44
– volume: 1
  year: 2020
  ident: 1678_CR24
  publication-title: Patterns
  doi: 10.1016/j.patter.2020.100006
– ident: 1678_CR46
– volume: 31
  year: 2021
  ident: 1678_CR22
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202101748
– ident: 1678_CR47
  doi: 10.48550/arXiv.2308.08155
– ident: 1678_CR37
– volume: 323
  start-page: 366
  year: 2009
  ident: 1678_CR7
  publication-title: Science
  doi: 10.1126/science.1166949
– volume: 30
  start-page: 24
  year: 2023
  ident: 1678_CR17
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.001.2200192
– ident: 1678_CR34
  doi: 10.48550/arXiv.2403.08295
– volume: 328
  start-page: 337
  year: 2010
  ident: 1678_CR8
  publication-title: Science
  doi: 10.1126/science.1186351
– volume: 92
  start-page: 117403
  year: 2004
  ident: 1678_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.117403
– ident: 1678_CR31
– volume: 308
  start-page: 534
  year: 2005
  ident: 1678_CR10
  publication-title: Science
  doi: 10.1126/science.1108759
– ident: 1678_CR33
– volume: 76
  start-page: 4773
  year: 1996
  ident: 1678_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.76.4773
– volume: 85
  start-page: 3966
  year: 2000
  ident: 1678_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.3966
– ident: 1678_CR39
– volume: 84
  start-page: 4184
  year: 2000
  ident: 1678_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.4184
– volume: 314
  start-page: 977
  year: 2006
  ident: 1678_CR6
  publication-title: Science
  doi: 10.1126/science.1133628
– ident: 1678_CR36
  doi: 10.48550/arXiv.2310.06825
– volume: 12
  start-page: 55682
  year: 2024
  ident: 1678_CR38
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3387941
– ident: 1678_CR40
  doi: 10.1109/ICRA48891.2023.10160591
– volume: 9
  start-page: B182
  year: 2021
  ident: 1678_CR21
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.415960
– volume: 11
  start-page: 2077
  year: 2024
  ident: 1678_CR26
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.4c00259
– ident: 1678_CR35
  doi: 10.48550/arXiv.2302.13971
– volume: 13
  start-page: 2151
  year: 2024
  ident: 1678_CR28
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2023-0635
SSID ssj0000941087
ssib052855617
ssib038074990
ssib054953849
Score 2.410219
Snippet Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed...
Abstract Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12
SubjectTerms 639/624/1107/510
639/766/1130/2799
Cerebrum
Deep learning
Engineering Sciences
Feedback
Language
Lasers
Mathematical models
Microwaves
Natural language
Optical and Electronic Materials
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Planning
Prototypes
RF and Optical Engineering
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQpUpcEN8ESrVU3MBqbM9mx8e2arVCwKlIvVn-SCiIphW7bf9-Z-zs0lABFy452E7ivLEzL_H4jRBvDYJFFYMEC1MJ3kZpGw10CArJo6c65yH79LmZf4EPJ9OTW6m-OCasyAMX4HY7OoFYCcRZE0ATFVQphhZ1nHoNjWn57Us-79bH1PcSL6dqnA27ZGqDuwtgbT1JLkly5D3K65EnyoL95F9OORzyLte8GzL527ppdkdHD8WDgUdO9kr_H4l7bf9YbOZ4zrh4InYOS3qbM_-1522Kk7N26Ymc5vE28byf6qk4Pjo8PpjLIR2CjMSplpJdcQxEZ7DThlhMBz6hj7yZFm2bFFCrmQ5NN-0CKws2qbMIoVZpFuoOzDOx0Z_37QsxiTbVNnmbUBnQ2gYP2GDsWuXrBGAroVbIuDhIhXPGih8uL1kbdAVNR2i6jKa7rsS79TkXRSjjr633GfB1Sxa5zgVkejeY3v3L9JXYIXONrjHf--i4jIUE6dVirlQltlbWdMP0XDijWLiN0KFHfbOuponFqyW-b88vSxsip0bRJZ4X469vRSQOlDJUg6NhMerLuKb_dprFu-mJEME0lXi_GkG_-vVnwF7-D8Beifua0xfnP0hbYmP587J9TZxqGbbz9LkBlZUXEA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZaqkq9VPQdCtUW9dZaxPZsYp8QVKBV1fZEpb1ZfiSAVLKUXeDvd8bxBqWoXHKIHccejz2f7fE3jH1SGowWwXMwMOXgTOCmkoAPLzRa9FimOGQ_flazX_BtPp3nDbdldqtcz4lpoo6LQHvke0oQ15bBovcv_3CKGkWnqzmExmP2hKjLaPFVz-thjwWXLqLUdb4rUyq9twRi2ONomDj532t-O7JHibYfrcwZOUXeR5z3HSf_OT1NRul4kz3PaHJy0Hf_C_ao6V6yp8mrMyxfsd2jPsjNhTvt6LLi5KJZOYSoSesmjm5VvWYnx0cnX2c8B0XgAZHVipNBDh5BjW6lQizTgovaBbpSq00TBWCuWvqqnbae-AWr2KLQfCli7csW1Bu20S265h2bBBNLE52JWiiQ0ngHutKhbYQrI4ApmFhLxoZMGE5xK37bdHCttO2laVGaNknT3hbs8_DNZU-X8WDuQxL4kJOortOLxdWpzSPHtqgxCEsh1JUHiWsBEYNvtAxTJ6FSTcF2sbtGZcwOvlt6R3SCOMGoG1Gw7XVv2jxIl_ZOpQr2cUjG4UVnJq5rFtd9HoSoSmARb_vOH36FUA6EUJiiR2oxqss4pTs_SxTe2CKtQVUF-7LWoLt6_V9gWw834z17Jik8cdoh2mYbq6vrZgcx08p_SAPjL7CbD0Q
  priority: 102
  providerName: ProQuest
Title Electromagnetic metamaterial agent
URI https://link.springer.com/article/10.1038/s41377-024-01678-w
https://www.ncbi.nlm.nih.gov/pubmed/39741131
https://www.proquest.com/docview/3150439849
https://www.proquest.com/docview/3150522311
https://hal.science/hal-04869633
https://pubmed.ncbi.nlm.nih.gov/PMC11688436
https://doaj.org/article/f9511614c76b427291dcbe82c5a2463e
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71ISQuFW9SymqpuEFEbM8m9nG72mq1ggpBkfZm-ZG0SDSLulv69xk7DxQKSFwSKZ4k9tjOfLFnvgF4LSQqyZxNUeEkRaNcqnKOdLBMkkX3WcxD9uEsX3zB5Wqy2gHexcJEp_1IaRk_05132LsNBmq8lCxKGhznZXq7C_uBuj248c3yWb-uQr8rLJNFGx-TCfmHWwc2KFL1k2W5DI6Qd1HmXWfJ33ZMoyE6fQAHLYIcT5s6P4Sdsn4E96Inp9s8huN5k9jmylzUIUBxfFVuDcHSONLGJkRSPYHz0_n5bJG2iRBSR2hqmwYj7CwBGVlxQfilQuOlcSGMVqrSMySpgtu8mlQ2cArmvlISbcZ8YbMKxVPYq9d1-RzGTvlMeaO8ZAI5V9agzKWrSmYyj6gSYJ1mtGtJwkOuim86blYLqRttatKmjtrUtwm86e_53lBk_FP6JCi8lwz01vHC-vpCt92tKxolBEXRFblFTvifeWdLyd3EcMxFmcAxddfgGYvpex2uBQpB-qiIHyyBo643dTsxN1qwQNlG2qGmvuqLaUqFfRJTl-ubRoZgqWD0iGdN5_evIviGjAkqkYNhMajLsKT-ehlpu6lFUqLIE3jbjaBf9fq7wg7_T_wF3OchRXFcJTqCve31TfmScNPWjmC3WBUj2J9Ol5-XdD6Zn338NIrTZxTXIn4CZqESkA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFH4qqRBcEDsDBUIFJ7A6XjKxDwi1kCqlaYRQkHqzvMy0SHRSmpSIH8V_5NmzVENFb73MwfZ4eX72-2y_BeA1l0JJ6iwRSgyIMMoRlTGBH0slSnSfxjhkB9Ns_E18PhwcrsGfxhYmqFU2e2LcqP3chTvyLU6Dry2FVX84_UlC1KjwutqE0KjYYj__vcIj2-L93iec3zeM7Y5mH8ekjipAHEKTJQkSzVlEBbJgHMFAIYyXxgWbVKlyTwWWGjKbFYPCBgd9mS-wVZtSP7RpIThWewPWBUek0IP1ndH0y9f2UgfPSjSVw9o4J-VyayGCSz-CkpAEhX9JVh0BGOMEoFg7DlqYlyHuZU3Nf55roxTcvQt3avja36747R6s5eV9uBnVSN3iAWyOqqg6J-aoDNaR_ZN8aRATRzbvm2DG9RBm10GvR9Ar52X-BPpO-VR5o7ykXDCmrBEyk67IqUm9ECoB2lBGu9pDeQiU8UPHl3IudUVNjdTUkZp6lcDb9p_Tyj_HlaV3AsHbksG3dkyYnx3peqnqAlkUcbBww8wKhocP6p3NJXMDw0TG8wQ2cbo6dYy3JzqkBf-FuKPxXzSBjWY2db0rLPQFDyfwqs3G9RweaUyZz8-rMoiJOcUqHleT3zaF2FFQyjFHdtii05duTvn9OPoMxxFJiUybwLuGgy769X-CPb16GC_h1nh2MNGTven-M7jNQmzkeD21Ab3l2Xn-HAHb0r6ol0kf9DUvzL8BdUt9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLOkFAgVnMDa-LGJfUCo0K62tFQcirQ3y4-kRaLZtrtlxU_j3zF2HtVS0VsvOcSOY49nPJ_teQC84VIoSZ0lQokhEUY5onIm8GGpRI3us5iH7OtBPv4uvkyGkxX40_nCBLPKbk2MC7WfunBGPuA0xNpS2PSgas0ivm2PPp6ekZBBKty0duk0GhbZK38vcPs2-7C7jXP9lrHRzuHnMWkzDBCHMGVOgnZzFhGCrBhHYFAJ46VxwT9VqtJTgbUKZvNqWNkQrC_3FfbAZtQXNqsEx2Zvwe2Co9ZEUSomRX-8g7smmsmiddPJuBzMRAjuR1AnkmD6L8liSRXGjAGo4I6DPeZVsHvVZvOfi9uoD0cP4H4LZNOthvMewkpZP4I70aDUzR7D5k6TX-fEHNXBTzI9KecG0XFk-NQEh64ncHgT1HoKq_W0Lp9B6pTPlDfKS8oFY8oaIXPpqpKazAuhEqAdZbRrY5WHlBk_dbwz51I31NRITR2pqRcJvOu_OW0idVxb-1MgeF8zRNmOL6bnR7oVWl0hsyIiFq7IrWC4DaHe2VIyNzRM5LxMYBOna6mN8da-Du9CJENc2_gvmsBGN5u6XR9m-pKbE3jdF6Nkh-saU5fTi6YOomNOsYm1ZvL7XyGKFJRyLJFLbLHUl-WS-sdxjB6OI5JS8DyB9x0HXfbr_wRbv34Yr-AuiqPe3z3Yew73WEiSHM-pNmB1fn5RvkDkNrcvo4ykoG9YJv8CDIZOTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electromagnetic+metamaterial+agent&rft.jtitle=Light%2C+science+%26+applications&rft.au=Hu%2C+Shengguo&rft.au=Li%2C+Mingyi&rft.au=Xu%2C+Jiawen&rft.au=Zhang%2C+Hongrui&rft.date=2025-01-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=2095-5545&rft.eissn=2047-7538&rft.volume=14&rft_id=info:doi/10.1038%2Fs41377-024-01678-w&rft_id=info%3Apmid%2F39741131&rft.externalDocID=PMC11688436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon