Electromagnetic metamaterial agent
Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed self-adaptive devices realizing a user-specified functionality. Although deep-learning techniques play an increasingly important role in metamaterial...
Saved in:
Published in | Light, science & applications Vol. 14; no. 1; pp. 12 - 13 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.01.2025
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2047-7538 2095-5545 2047-7538 |
DOI | 10.1038/s41377-024-01678-w |
Cover
Loading…
Abstract | Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed self-adaptive devices realizing a user-specified functionality. Although deep-learning techniques play an increasingly important role in metamaterial inverse design, measurement post-processing and end-to-end optimization, their role is ultimately still limited to approximating specific mathematical relations; the metamaterial is still limited to serving as proxy of a human operator, realizing a predefined functionality. Here, we propose and experimentally prototype a paradigm shift toward a metamaterial agent (coined metaAgent) endowed with reasoning and cognitive capabilities enabling the autonomous planning and successful execution of diverse long-horizon tasks, including electromagnetic (EM) field manipulations and interactions with robots and humans. Leveraging recently released foundation models, metaAgent reasons in high-level natural language, acting upon diverse prompts from an evolving complex environment. Specifically, metaAgent’s cerebrum performs high-level task planning in natural language via a multi-agent discussion mechanism, where agents are domain experts in sensing, planning, grounding, and coding. In response to live environmental feedback within a real-world setting emulating an ambient-assisted living context (including human requests in natural language), our metaAgent prototype self-organizes a hierarchy of EM manipulation tasks in conjunction with commanding a robot. metaAgent masters foundational EM manipulation skills related to wireless communications and sensing, and it memorizes and learns from past experience based on human feedback.
metaAgent has the capability of reasoning and cognition to autonomously plan and execute complex electromagnetic manipulation tasks. |
---|---|
AbstractList | Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed self-adaptive devices realizing a user-specified functionality. Although deep-learning techniques play an increasingly important role in metamaterial inverse design, measurement post-processing and end-to-end optimization, their role is ultimately still limited to approximating specific mathematical relations; the metamaterial is still limited to serving as proxy of a human operator, realizing a predefined functionality. Here, we propose and experimentally prototype a paradigm shift toward a metamaterial agent (coined metaAgent) endowed with reasoning and cognitive capabilities enabling the autonomous planning and successful execution of diverse long-horizon tasks, including electromagnetic (EM) field manipulations and interactions with robots and humans. Leveraging recently released foundation models, metaAgent reasons in high-level natural language, acting upon diverse prompts from an evolving complex environment. Specifically, metaAgent's cerebrum performs high-level task planning in natural language via a multi-agent discussion mechanism, where agents are domain experts in sensing, planning, grounding, and coding. In response to live environmental feedback within a real-world setting emulating an ambient-assisted living context (including human requests in natural language), our metaAgent prototype self-organizes a hierarchy of EM manipulation tasks in conjunction with commanding a robot. metaAgent masters foundational EM manipulation skills related to wireless communications and sensing, and it memorizes and learns from past experience based on human feedback. Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed self-adaptive devices realizing a user-specified functionality. Although deep-learning techniques play an increasingly important role in metamaterial inverse design, measurement post-processing and end-to-end optimization, their role is ultimately still limited to approximating specific mathematical relations; the metamaterial is still limited to serving as proxy of a human operator, realizing a predefined functionality. Here, we propose and experimentally prototype a paradigm shift toward a metamaterial agent (coined metaAgent) endowed with reasoning and cognitive capabilities enabling the autonomous planning and successful execution of diverse long-horizon tasks, including electromagnetic (EM) field manipulations and interactions with robots and humans. Leveraging recently released foundation models, metaAgent reasons in high-level natural language, acting upon diverse prompts from an evolving complex environment. Specifically, metaAgent’s cerebrum performs high-level task planning in natural language via a multi-agent discussion mechanism, where agents are domain experts in sensing, planning, grounding, and coding. In response to live environmental feedback within a real-world setting emulating an ambient-assisted living context (including human requests in natural language), our metaAgent prototype self-organizes a hierarchy of EM manipulation tasks in conjunction with commanding a robot. metaAgent masters foundational EM manipulation skills related to wireless communications and sensing, and it memorizes and learns from past experience based on human feedback. metaAgent has the capability of reasoning and cognition to autonomously plan and execute complex electromagnetic manipulation tasks. Abstract Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed self-adaptive devices realizing a user-specified functionality. Although deep-learning techniques play an increasingly important role in metamaterial inverse design, measurement post-processing and end-to-end optimization, their role is ultimately still limited to approximating specific mathematical relations; the metamaterial is still limited to serving as proxy of a human operator, realizing a predefined functionality. Here, we propose and experimentally prototype a paradigm shift toward a metamaterial agent (coined metaAgent) endowed with reasoning and cognitive capabilities enabling the autonomous planning and successful execution of diverse long-horizon tasks, including electromagnetic (EM) field manipulations and interactions with robots and humans. Leveraging recently released foundation models, metaAgent reasons in high-level natural language, acting upon diverse prompts from an evolving complex environment. Specifically, metaAgent’s cerebrum performs high-level task planning in natural language via a multi-agent discussion mechanism, where agents are domain experts in sensing, planning, grounding, and coding. In response to live environmental feedback within a real-world setting emulating an ambient-assisted living context (including human requests in natural language), our metaAgent prototype self-organizes a hierarchy of EM manipulation tasks in conjunction with commanding a robot. metaAgent masters foundational EM manipulation skills related to wireless communications and sensing, and it memorizes and learns from past experience based on human feedback. Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed self-adaptive devices realizing a user-specified functionality. Although deep-learning techniques play an increasingly important role in metamaterial inverse design, measurement post-processing and end-to-end optimization, their role is ultimately still limited to approximating specific mathematical relations; the metamaterial is still limited to serving as proxy of a human operator, realizing a predefined functionality. Here, we propose and experimentally prototype a paradigm shift toward a metamaterial agent (coined metaAgent) endowed with reasoning and cognitive capabilities enabling the autonomous planning and successful execution of diverse long-horizon tasks, including electromagnetic (EM) field manipulations and interactions with robots and humans. Leveraging recently released foundation models, metaAgent reasons in high-level natural language, acting upon diverse prompts from an evolving complex environment. Specifically, metaAgent’s cerebrum performs high-level task planning in natural language via a multi-agent discussion mechanism, where agents are domain experts in sensing, planning, grounding, and coding. In response to live environmental feedback within a real-world setting emulating an ambient-assisted living context (including human requests in natural language), our metaAgent prototype self-organizes a hierarchy of EM manipulation tasks in conjunction with commanding a robot. metaAgent masters foundational EM manipulation skills related to wireless communications and sensing, and it memorizes and learns from past experience based on human feedback.metaAgent has the capability of reasoning and cognition to autonomously plan and execute complex electromagnetic manipulation tasks. Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed self-adaptive devices realizing a user-specified functionality. Although deep-learning techniques play an increasingly important role in metamaterial inverse design, measurement post-processing and end-to-end optimization, their role is ultimately still limited to approximating specific mathematical relations; the metamaterial is still limited to serving as proxy of a human operator, realizing a predefined functionality. Here, we propose and experimentally prototype a paradigm shift toward a metamaterial agent (coined metaAgent) endowed with reasoning and cognitive capabilities enabling the autonomous planning and successful execution of diverse long-horizon tasks, including electromagnetic (EM) field manipulations and interactions with robots and humans. Leveraging recently released foundation models, metaAgent reasons in high-level natural language, acting upon diverse prompts from an evolving complex environment. Specifically, metaAgent's cerebrum performs high-level task planning in natural language via a multi-agent discussion mechanism, where agents are domain experts in sensing, planning, grounding, and coding. In response to live environmental feedback within a real-world setting emulating an ambient-assisted living context (including human requests in natural language), our metaAgent prototype self-organizes a hierarchy of EM manipulation tasks in conjunction with commanding a robot. metaAgent masters foundational EM manipulation skills related to wireless communications and sensing, and it memorizes and learns from past experience based on human feedback.Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed self-adaptive devices realizing a user-specified functionality. Although deep-learning techniques play an increasingly important role in metamaterial inverse design, measurement post-processing and end-to-end optimization, their role is ultimately still limited to approximating specific mathematical relations; the metamaterial is still limited to serving as proxy of a human operator, realizing a predefined functionality. Here, we propose and experimentally prototype a paradigm shift toward a metamaterial agent (coined metaAgent) endowed with reasoning and cognitive capabilities enabling the autonomous planning and successful execution of diverse long-horizon tasks, including electromagnetic (EM) field manipulations and interactions with robots and humans. Leveraging recently released foundation models, metaAgent reasons in high-level natural language, acting upon diverse prompts from an evolving complex environment. Specifically, metaAgent's cerebrum performs high-level task planning in natural language via a multi-agent discussion mechanism, where agents are domain experts in sensing, planning, grounding, and coding. In response to live environmental feedback within a real-world setting emulating an ambient-assisted living context (including human requests in natural language), our metaAgent prototype self-organizes a hierarchy of EM manipulation tasks in conjunction with commanding a robot. metaAgent masters foundational EM manipulation skills related to wireless communications and sensing, and it memorizes and learns from past experience based on human feedback. |
ArticleNumber | 12 |
Author | Zhang, Hongrui Hu, Shengguo Xu, Jiawen Zhang, Shanghang Li, Lianlin Cui, Tie Jun Li, Mingyi del Hougne, Philipp |
Author_xml | – sequence: 1 givenname: Shengguo surname: Hu fullname: Hu, Shengguo organization: State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University – sequence: 2 givenname: Mingyi surname: Li fullname: Li, Mingyi organization: State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University – sequence: 3 givenname: Jiawen surname: Xu fullname: Xu, Jiawen organization: State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University – sequence: 4 givenname: Hongrui surname: Zhang fullname: Zhang, Hongrui organization: State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University – sequence: 5 givenname: Shanghang surname: Zhang fullname: Zhang, Shanghang organization: National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University – sequence: 6 givenname: Tie Jun orcidid: 0000-0002-5862-1497 surname: Cui fullname: Cui, Tie Jun organization: State Key Laboratory of Millimeter Waves, Southeast University, Pazhou Laboratory (Huangpu) – sequence: 7 givenname: Philipp orcidid: 0000-0002-4821-3924 surname: del Hougne fullname: del Hougne, Philipp organization: Univ Rennes, CNRS, IETR - UMR 6164 – sequence: 8 givenname: Lianlin orcidid: 0000-0001-9394-3638 surname: Li fullname: Li, Lianlin email: lianlin.li@pku.edu.cn organization: State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Pazhou Laboratory (Huangpu) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39741131$$D View this record in MEDLINE/PubMed https://hal.science/hal-04869633$$DView record in HAL |
BookMark | eNp9kk1v1DAQhi1UREvpH-CAKrjAIeDxt0-oqgqttBKX3i3HsVOvkrjY2Vb8e7ybUto91Bdb4-d9Zzyet-hgSpNH6D3gr4Cp-lYYUCkbTFiDQUjV3L9CRwQz2UhO1cGT8yE6KWWN69IMsJJv0CHVkgFQOEIfLwbv5pxG209-ju509LMd7exztMOp7f00v0Ovgx2KP3nYj9H1j4vr88tm9evn1fnZqnFc8rlRQJhrNdEqEMoYBGY7ZR3mlCrtO2CVkqQVgYcWqCKiC1qxFkMnWxwYPUZXi22X7Nrc5jja_MckG80ukHJvbK4VDt4EzQEEMCdFy4gkGjrXekUct4QJ6qvX98XrdtOOvnP1FdkOz0yf30zxxvTpzlRbpRgV1eHL4nCzp7s8W5ltDDMltKD0Dir7-SFbTr83vsxmjMX5YbCTT5tiKHDMCaGwRT_toeu0yVNt645itLZEV-rD0_If8__7tgqQBXA5lZJ9eEQAm-14mGU8TB0PsxsPc19Fak_k4mznmLYtiMPLUrpIS80z9T7_L_sF1V_Evct2 |
CitedBy_id | crossref_primary_10_1007_s11694_025_03183_z |
Cites_doi | 10.48550/arXiv.2303.08774 10.1038/nmat4082 10.48550/arXiv.2108.07258 10.1093/nsr/nwac266 10.1109/MVT.2023.3332580 10.1038/s41587-022-01618-2 10.1038/s41467-017-00164-9 10.1038/s41377-019-0205-3 10.1515/nanoph-2023-0646 10.1515/nanoph-2020-0052 10.34133/2022/9825738 10.1126/science.1058847 10.1038/lsa.2014.99 10.1038/s41467-024-48115-5 10.1002/advs.201901913 10.1038/s41598-021-99722-x 10.1126/sciadv.aar4206 10.1038/s43246-024-00449-9 10.1515/nanoph-2022-0770 10.1126/science.1210713 10.1038/s41467-018-06802-0 10.1016/j.patter.2020.100006 10.1002/adfm.202101748 10.48550/arXiv.2308.08155 10.1126/science.1166949 10.1109/MWC.001.2200192 10.48550/arXiv.2403.08295 10.1126/science.1186351 10.1103/PhysRevLett.92.117403 10.1126/science.1108759 10.1103/PhysRevLett.76.4773 10.1103/PhysRevLett.85.3966 10.1103/PhysRevLett.84.4184 10.1126/science.1133628 10.48550/arXiv.2310.06825 10.1109/ACCESS.2024.3387941 10.1109/ICRA48891.2023.10160591 10.1364/PRJ.415960 10.1021/acsphotonics.4c00259 10.48550/arXiv.2302.13971 10.1515/nanoph-2023-0635 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Springer Nature B.V. 2025 Attribution The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Springer Nature B.V. 2025 – notice: Attribution – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM DOA |
DOI | 10.1038/s41377-024-01678-w |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central - New (Subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2047-7538 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_f9511614c76b427291dcbe82c5a2463e PMC11688436 oai_HAL_hal_04869633v1 39741131 10_1038_s41377_024_01678_w |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 5VS 7X7 88A 88I 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C6C CCPQU DWQXO EBLON EBS FYUFA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M0L M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 1XC EJD VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c575t-8124cb9298f23441f4ad8ac053389ed1457572b6f5fb13826df984b01d7b0f43 |
IEDL.DBID | C6C |
ISSN | 2047-7538 2095-5545 |
IngestDate | Wed Aug 27 01:17:13 EDT 2025 Thu Aug 21 18:35:18 EDT 2025 Fri May 09 12:15:24 EDT 2025 Thu Jul 10 23:31:17 EDT 2025 Wed Aug 13 04:11:36 EDT 2025 Sun Jan 05 01:57:44 EST 2025 Tue Jul 01 03:45:21 EDT 2025 Thu Apr 24 23:04:20 EDT 2025 Fri Feb 21 02:36:02 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Computer science Optoelectronics Biology Robot Metamaterial Artificial intelligence Physics Paleontology Human–computer interaction Context (archaeology) |
Language | English |
License | 2025. The Author(s). Attribution: http://creativecommons.org/licenses/by Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-8124cb9298f23441f4ad8ac053389ed1457572b6f5fb13826df984b01d7b0f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5862-1497 0000-0002-4821-3924 0000-0001-9394-3638 0009-0003-8523-3750 0000-0002-0089-1099 0000-0001-7896-019X 0009-0002-4975-9715 0009-0000-9406-0730 |
OpenAccessLink | https://www.nature.com/articles/s41377-024-01678-w |
PMID | 39741131 |
PQID | 3150439849 |
PQPubID | 2041947 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f9511614c76b427291dcbe82c5a2463e pubmedcentral_primary_oai_pubmedcentral_nih_gov_11688436 hal_primary_oai_HAL_hal_04869633v1 proquest_miscellaneous_3150522311 proquest_journals_3150439849 pubmed_primary_39741131 crossref_primary_10_1038_s41377_024_01678_w crossref_citationtrail_10_1038_s41377_024_01678_w springer_journals_10_1038_s41377_024_01678_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Light, science & applications |
PublicationTitleAbbrev | Light Sci Appl |
PublicationTitleAlternate | Light Sci Appl |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | C Saigre-Tardif (1678_CR17) 2023; 30 C Della Giovampaola (1678_CR11) 2014; 13 PR Wiecha (1678_CR21) 2021; 9 D Schurig (1678_CR6) 2006; 314 J Peurifoy (1678_CR20) 2018; 4 RA Shelby (1678_CR3) 2001; 292 A Grbic (1678_CR4) 2004; 92 O Khatib (1678_CR22) 2021; 31 DR Smith (1678_CR2) 2000; 84 1678_CR34 1678_CR33 1678_CR36 1678_CR35 1678_CR37 SG Hu (1678_CR45) 2024; 13 1678_CR39 SH Vemprala (1678_CR38) 2024; 12 HR Zhang (1678_CR43) 2024; 15 JB Pendry (1678_CR1) 1996; 76 Q Ma (1678_CR14) 2019; 8 1678_CR30 T Ergin (1678_CR8) 2010; 328 HT Zhao (1678_CR18) 2023; 10 1678_CR32 1678_CR31 LL Li (1678_CR48) 2017; 8 TJ Cui (1678_CR12) 2014; 3 N Fang (1678_CR10) 2005; 308 J Choi (1678_CR42) 2024; 5 G Arya (1678_CR26) 2024; 11 NF Yu (1678_CR5) 2011; 334 CQ Qian (1678_CR25) 2022; 2022 P Del Hougne (1678_CR23) 2020; 7 L Zhang (1678_CR13) 2018; 9 GC Alexandropoulos (1678_CR19) 2024; 19 1678_CR44 R Liu (1678_CR7) 2009; 323 1678_CR47 1678_CR46 1678_CR29 C Wang (1678_CR28) 2024; 13 I Alamzadeh (1678_CR16) 2021; 11 JB Pendry (1678_CR9) 2000; 85 Q Ma (1678_CR15) 2020; 9 YX Jing (1678_CR27) 2023; 12 1678_CR40 A Madani (1678_CR41) 2023; 41 HY Li (1678_CR24) 2020; 1 |
References_xml | – ident: 1678_CR32 doi: 10.48550/arXiv.2303.08774 – volume: 13 start-page: 1115 year: 2014 ident: 1678_CR11 publication-title: Nat. Mater. doi: 10.1038/nmat4082 – ident: 1678_CR29 doi: 10.48550/arXiv.2108.07258 – volume: 10 year: 2023 ident: 1678_CR18 publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwac266 – volume: 19 start-page: 75 year: 2024 ident: 1678_CR19 publication-title: IEEE Vehicular Technol. Mag. doi: 10.1109/MVT.2023.3332580 – volume: 41 start-page: 1099 year: 2023 ident: 1678_CR41 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01618-2 – volume: 8 year: 2017 ident: 1678_CR48 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00164-9 – volume: 8 start-page: 98 year: 2019 ident: 1678_CR14 publication-title: Light Sci. Appl. doi: 10.1038/s41377-019-0205-3 – volume: 13 start-page: 2213 year: 2024 ident: 1678_CR45 publication-title: Nanophotonics doi: 10.1515/nanoph-2023-0646 – volume: 9 start-page: 3271 year: 2020 ident: 1678_CR15 publication-title: Nanophotonics doi: 10.1515/nanoph-2020-0052 – volume: 2022 start-page: 9825738 year: 2022 ident: 1678_CR25 publication-title: Intell. Comput. doi: 10.34133/2022/9825738 – volume: 292 start-page: 77 year: 2001 ident: 1678_CR3 publication-title: Science doi: 10.1126/science.1058847 – volume: 3 year: 2014 ident: 1678_CR12 publication-title: Light Sci. Appl. doi: 10.1038/lsa.2014.99 – volume: 15 year: 2024 ident: 1678_CR43 publication-title: Nat. Commun. doi: 10.1038/s41467-024-48115-5 – volume: 7 year: 2020 ident: 1678_CR23 publication-title: Adv. Sci. doi: 10.1002/advs.201901913 – volume: 11 year: 2021 ident: 1678_CR16 publication-title: Sci. Rep. doi: 10.1038/s41598-021-99722-x – volume: 4 year: 2018 ident: 1678_CR20 publication-title: Sci. Adv. doi: 10.1126/sciadv.aar4206 – volume: 5 start-page: 13 year: 2024 ident: 1678_CR42 publication-title: Commun. Mater. doi: 10.1038/s43246-024-00449-9 – ident: 1678_CR30 – volume: 12 start-page: 2583 year: 2023 ident: 1678_CR27 publication-title: Nanophotonics doi: 10.1515/nanoph-2022-0770 – volume: 334 start-page: 333 year: 2011 ident: 1678_CR5 publication-title: Science doi: 10.1126/science.1210713 – volume: 9 year: 2018 ident: 1678_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06802-0 – ident: 1678_CR44 – volume: 1 year: 2020 ident: 1678_CR24 publication-title: Patterns doi: 10.1016/j.patter.2020.100006 – ident: 1678_CR46 – volume: 31 year: 2021 ident: 1678_CR22 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202101748 – ident: 1678_CR47 doi: 10.48550/arXiv.2308.08155 – ident: 1678_CR37 – volume: 323 start-page: 366 year: 2009 ident: 1678_CR7 publication-title: Science doi: 10.1126/science.1166949 – volume: 30 start-page: 24 year: 2023 ident: 1678_CR17 publication-title: IEEE Wirel. Commun. doi: 10.1109/MWC.001.2200192 – ident: 1678_CR34 doi: 10.48550/arXiv.2403.08295 – volume: 328 start-page: 337 year: 2010 ident: 1678_CR8 publication-title: Science doi: 10.1126/science.1186351 – volume: 92 start-page: 117403 year: 2004 ident: 1678_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.117403 – ident: 1678_CR31 – volume: 308 start-page: 534 year: 2005 ident: 1678_CR10 publication-title: Science doi: 10.1126/science.1108759 – ident: 1678_CR33 – volume: 76 start-page: 4773 year: 1996 ident: 1678_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.4773 – volume: 85 start-page: 3966 year: 2000 ident: 1678_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.3966 – ident: 1678_CR39 – volume: 84 start-page: 4184 year: 2000 ident: 1678_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.4184 – volume: 314 start-page: 977 year: 2006 ident: 1678_CR6 publication-title: Science doi: 10.1126/science.1133628 – ident: 1678_CR36 doi: 10.48550/arXiv.2310.06825 – volume: 12 start-page: 55682 year: 2024 ident: 1678_CR38 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3387941 – ident: 1678_CR40 doi: 10.1109/ICRA48891.2023.10160591 – volume: 9 start-page: B182 year: 2021 ident: 1678_CR21 publication-title: Photonics Res. doi: 10.1364/PRJ.415960 – volume: 11 start-page: 2077 year: 2024 ident: 1678_CR26 publication-title: ACS Photonics doi: 10.1021/acsphotonics.4c00259 – ident: 1678_CR35 doi: 10.48550/arXiv.2302.13971 – volume: 13 start-page: 2151 year: 2024 ident: 1678_CR28 publication-title: Nanophotonics doi: 10.1515/nanoph-2023-0635 |
SSID | ssj0000941087 ssib052855617 ssib038074990 ssib054953849 |
Score | 2.410219 |
Snippet | Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed... Abstract Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12 |
SubjectTerms | 639/624/1107/510 639/766/1130/2799 Cerebrum Deep learning Engineering Sciences Feedback Language Lasers Mathematical models Microwaves Natural language Optical and Electronic Materials Optical Devices Optics Photonics Physics Physics and Astronomy Planning Prototypes RF and Optical Engineering |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQpUpcEN8ESrVU3MBqbM9mx8e2arVCwKlIvVn-SCiIphW7bf9-Z-zs0lABFy452E7ivLEzL_H4jRBvDYJFFYMEC1MJ3kZpGw10CArJo6c65yH79LmZf4EPJ9OTW6m-OCasyAMX4HY7OoFYCcRZE0ATFVQphhZ1nHoNjWn57Us-79bH1PcSL6dqnA27ZGqDuwtgbT1JLkly5D3K65EnyoL95F9OORzyLte8GzL527ppdkdHD8WDgUdO9kr_H4l7bf9YbOZ4zrh4InYOS3qbM_-1522Kk7N26Ymc5vE28byf6qk4Pjo8PpjLIR2CjMSplpJdcQxEZ7DThlhMBz6hj7yZFm2bFFCrmQ5NN-0CKws2qbMIoVZpFuoOzDOx0Z_37QsxiTbVNnmbUBnQ2gYP2GDsWuXrBGAroVbIuDhIhXPGih8uL1kbdAVNR2i6jKa7rsS79TkXRSjjr633GfB1Sxa5zgVkejeY3v3L9JXYIXONrjHf--i4jIUE6dVirlQltlbWdMP0XDijWLiN0KFHfbOuponFqyW-b88vSxsip0bRJZ4X469vRSQOlDJUg6NhMerLuKb_dprFu-mJEME0lXi_GkG_-vVnwF7-D8Beifua0xfnP0hbYmP587J9TZxqGbbz9LkBlZUXEA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZaqkq9VPQdCtUW9dZaxPZsYp8QVKBV1fZEpb1ZfiSAVLKUXeDvd8bxBqWoXHKIHccejz2f7fE3jH1SGowWwXMwMOXgTOCmkoAPLzRa9FimOGQ_flazX_BtPp3nDbdldqtcz4lpoo6LQHvke0oQ15bBovcv_3CKGkWnqzmExmP2hKjLaPFVz-thjwWXLqLUdb4rUyq9twRi2ONomDj532t-O7JHibYfrcwZOUXeR5z3HSf_OT1NRul4kz3PaHJy0Hf_C_ao6V6yp8mrMyxfsd2jPsjNhTvt6LLi5KJZOYSoSesmjm5VvWYnx0cnX2c8B0XgAZHVipNBDh5BjW6lQizTgovaBbpSq00TBWCuWvqqnbae-AWr2KLQfCli7csW1Bu20S265h2bBBNLE52JWiiQ0ngHutKhbYQrI4ApmFhLxoZMGE5xK37bdHCttO2laVGaNknT3hbs8_DNZU-X8WDuQxL4kJOortOLxdWpzSPHtqgxCEsh1JUHiWsBEYNvtAxTJ6FSTcF2sbtGZcwOvlt6R3SCOMGoG1Gw7XVv2jxIl_ZOpQr2cUjG4UVnJq5rFtd9HoSoSmARb_vOH36FUA6EUJiiR2oxqss4pTs_SxTe2CKtQVUF-7LWoLt6_V9gWw834z17Jik8cdoh2mYbq6vrZgcx08p_SAPjL7CbD0Q priority: 102 providerName: ProQuest |
Title | Electromagnetic metamaterial agent |
URI | https://link.springer.com/article/10.1038/s41377-024-01678-w https://www.ncbi.nlm.nih.gov/pubmed/39741131 https://www.proquest.com/docview/3150439849 https://www.proquest.com/docview/3150522311 https://hal.science/hal-04869633 https://pubmed.ncbi.nlm.nih.gov/PMC11688436 https://doaj.org/article/f9511614c76b427291dcbe82c5a2463e |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71ISQuFW9SymqpuEFEbM8m9nG72mq1ggpBkfZm-ZG0SDSLulv69xk7DxQKSFwSKZ4k9tjOfLFnvgF4LSQqyZxNUeEkRaNcqnKOdLBMkkX3WcxD9uEsX3zB5Wqy2gHexcJEp_1IaRk_05132LsNBmq8lCxKGhznZXq7C_uBuj248c3yWb-uQr8rLJNFGx-TCfmHWwc2KFL1k2W5DI6Qd1HmXWfJ33ZMoyE6fQAHLYIcT5s6P4Sdsn4E96Inp9s8huN5k9jmylzUIUBxfFVuDcHSONLGJkRSPYHz0_n5bJG2iRBSR2hqmwYj7CwBGVlxQfilQuOlcSGMVqrSMySpgtu8mlQ2cArmvlISbcZ8YbMKxVPYq9d1-RzGTvlMeaO8ZAI5V9agzKWrSmYyj6gSYJ1mtGtJwkOuim86blYLqRttatKmjtrUtwm86e_53lBk_FP6JCi8lwz01vHC-vpCt92tKxolBEXRFblFTvifeWdLyd3EcMxFmcAxddfgGYvpex2uBQpB-qiIHyyBo643dTsxN1qwQNlG2qGmvuqLaUqFfRJTl-ubRoZgqWD0iGdN5_evIviGjAkqkYNhMajLsKT-ehlpu6lFUqLIE3jbjaBf9fq7wg7_T_wF3OchRXFcJTqCve31TfmScNPWjmC3WBUj2J9Ol5-XdD6Zn338NIrTZxTXIn4CZqESkA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFH4qqRBcEDsDBUIFJ7A6XjKxDwi1kCqlaYRQkHqzvMy0SHRSmpSIH8V_5NmzVENFb73MwfZ4eX72-2y_BeA1l0JJ6iwRSgyIMMoRlTGBH0slSnSfxjhkB9Ns_E18PhwcrsGfxhYmqFU2e2LcqP3chTvyLU6Dry2FVX84_UlC1KjwutqE0KjYYj__vcIj2-L93iec3zeM7Y5mH8ekjipAHEKTJQkSzVlEBbJgHMFAIYyXxgWbVKlyTwWWGjKbFYPCBgd9mS-wVZtSP7RpIThWewPWBUek0IP1ndH0y9f2UgfPSjSVw9o4J-VyayGCSz-CkpAEhX9JVh0BGOMEoFg7DlqYlyHuZU3Nf55roxTcvQt3avja36747R6s5eV9uBnVSN3iAWyOqqg6J-aoDNaR_ZN8aRATRzbvm2DG9RBm10GvR9Ar52X-BPpO-VR5o7ykXDCmrBEyk67IqUm9ECoB2lBGu9pDeQiU8UPHl3IudUVNjdTUkZp6lcDb9p_Tyj_HlaV3AsHbksG3dkyYnx3peqnqAlkUcbBww8wKhocP6p3NJXMDw0TG8wQ2cbo6dYy3JzqkBf-FuKPxXzSBjWY2db0rLPQFDyfwqs3G9RweaUyZz8-rMoiJOcUqHleT3zaF2FFQyjFHdtii05duTvn9OPoMxxFJiUybwLuGgy769X-CPb16GC_h1nh2MNGTven-M7jNQmzkeD21Ab3l2Xn-HAHb0r6ol0kf9DUvzL8BdUt9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLOkFAgVnMDa-LGJfUCo0K62tFQcirQ3y4-kRaLZtrtlxU_j3zF2HtVS0VsvOcSOY49nPJ_teQC84VIoSZ0lQokhEUY5onIm8GGpRI3us5iH7OtBPv4uvkyGkxX40_nCBLPKbk2MC7WfunBGPuA0xNpS2PSgas0ivm2PPp6ekZBBKty0duk0GhbZK38vcPs2-7C7jXP9lrHRzuHnMWkzDBCHMGVOgnZzFhGCrBhHYFAJ46VxwT9VqtJTgbUKZvNqWNkQrC_3FfbAZtQXNqsEx2Zvwe2Co9ZEUSomRX-8g7smmsmiddPJuBzMRAjuR1AnkmD6L8liSRXGjAGo4I6DPeZVsHvVZvOfi9uoD0cP4H4LZNOthvMewkpZP4I70aDUzR7D5k6TX-fEHNXBTzI9KecG0XFk-NQEh64ncHgT1HoKq_W0Lp9B6pTPlDfKS8oFY8oaIXPpqpKazAuhEqAdZbRrY5WHlBk_dbwz51I31NRITR2pqRcJvOu_OW0idVxb-1MgeF8zRNmOL6bnR7oVWl0hsyIiFq7IrWC4DaHe2VIyNzRM5LxMYBOna6mN8da-Du9CJENc2_gvmsBGN5u6XR9m-pKbE3jdF6Nkh-saU5fTi6YOomNOsYm1ZvL7XyGKFJRyLJFLbLHUl-WS-sdxjB6OI5JS8DyB9x0HXfbr_wRbv34Yr-AuiqPe3z3Yew73WEiSHM-pNmB1fn5RvkDkNrcvo4ykoG9YJv8CDIZOTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electromagnetic+metamaterial+agent&rft.jtitle=Light%2C+science+%26+applications&rft.au=Hu%2C+Shengguo&rft.au=Li%2C+Mingyi&rft.au=Xu%2C+Jiawen&rft.au=Zhang%2C+Hongrui&rft.date=2025-01-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=2095-5545&rft.eissn=2047-7538&rft.volume=14&rft_id=info:doi/10.1038%2Fs41377-024-01678-w&rft_id=info%3Apmid%2F39741131&rft.externalDocID=PMC11688436 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon |