Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling

Histone H3 lysine27-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles polycomb repressive complex 2 (PRC2) loss-of-function phe...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 345; no. 6200; pp. 1065 - 1070
Main Authors Herz, Hans-Martin, Morgan, Marc, Gao, Xin, Jackson, Jessica, Rickels, Ryan, Swanson, Selene K., Florens, Laurence, Washburn, Michael P., Eissenberg, Joel C., Shilatifard, Ali
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 29.08.2014
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Histone H3 lysine27-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing derepression of PRC2 target genes and developmental perturbations. Similarly, an H3K9Mmutant depletes H3K9methylation levels and suppresses position-effect variegation in various Drosophila tissues.The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M-containing nucleosomes, and its misregulation in Drosophila results in changes of H3K9 methylation levels and heterochromatic silencing defects. We have established histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin signaling pathways.
AbstractList Chromatin mutations disrupt developmentHistone proteins form the core packaging material for our genomic DNA, and covalent modifications to amino acid residues in their structure play an important role in the epigenetic control of gene expression. Herz et al. show that specific mutations in the residues that are normally modified to regulate expression cause severe disruption of normal development in the fruit fly. Similar mutations are known to be involved in a subtype of aggressive pediatric brain cancers. Insights into the epigenetic regulatory pathways disrupted by these mutations in Drosophila may suggest possible treatments for human cancers.Science, this issue p. 1065
Histone H3 lysine27-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing derepression of PRC2 target genes and developmental perturbations. Similarly, an H3K9Mmutant depletes H3K9methylation levels and suppresses position-effect variegation in various Drosophila tissues.The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M-containing nucleosomes, and its misregulation in Drosophila results in changes of H3K9 methylation levels and heterochromatic silencing defects. We have established histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin signaling pathways.
Histone H3 lysine27-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. Here, we establish a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles Polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing de-repression of PRC2 target genes and developmental perturbations. Similarly, a H3K9M mutant depletes H3K9 methylation levels and suppresses position-effect variegation in various Drosophila tissues. The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M nucleosomes and its overexpression in Drosophila results in loss of H3K9 methylation levels and heterochromatic silencing defects. Here we establish histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin-signaling pathways.
Histone proteins form the core packaging material for our genomic DNA, and covalent modifications to amino acid residues in their structure play an important role in the epigenetic control of gene expression. Herz et al. show that specific mutations in the residues that are normally modified to regulate expression cause severe disruption of normal development in the fruit fly. Similar mutations are known to be involved in a subtype of aggressive pediatric brain cancers. Insights into the epigenetic regulatory pathways disrupted by these mutations in Drosophila may suggest possible treatments for human cancers.; Science, this issue p. 1065 [PUBLICATION ABSTRACT] Histone H3 lysine27-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing derepression of PRC2 target genes and developmental perturbations. Similarly, an H3K9M mutant depletes H3K9 methylation levels and suppresses position-effect variegation in various Drosophila tissues. The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M-containing nucleosomes, and its misregulation in Drosophila results in changes of H3K9 methylation levels and heterochromatic silencing defects. We have established histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin signaling pathways. [PUBLICATION ABSTRACT]
Chromatin mutations disrupt development Histone proteins form the core packaging material for our genomic DNA, and covalent modifications to amino acid residues in their structure play an important role in the epigenetic control of gene expression. Herz et al. show that specific mutations in the residues that are normally modified to regulate expression cause severe disruption of normal development in the fruit fly. Similar mutations are known to be involved in a subtype of aggressive pediatric brain cancers. Insights into the epigenetic regulatory pathways disrupted by these mutations in Drosophila may suggest possible treatments for human cancers. Science , this issue p. 1065 Mutations in the DNA packaging material disrupt fruit fly development and reveal epigenetic regulatory pathways. Histone H3 lysine 27 -to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing derepression of PRC2 target genes and developmental perturbations. Similarly, an H3K9M mutant depletes H3K9 methylation levels and suppresses position-effect variegation in various Drosophila tissues. The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M-containing nucleosomes, and its misregulation in Drosophila results in changes of H3K9 methylation levels and heterochromatic silencing defects. We have established histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin signaling pathways.
Histone H3 lysine(27)-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing derepression of PRC2 target genes and developmental perturbations. Similarly, an H3K9M mutant depletes H3K9 methylation levels and suppresses position-effect variegation in various Drosophila tissues. The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M-containing nucleosomes, and its misregulation in Drosophila results in changes of H3K9 methylation levels and heterochromatic silencing defects. We have established histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin signaling pathways.
Author Jackson, Jessica
Gao, Xin
Herz, Hans-Martin
Florens, Laurence
Shilatifard, Ali
Rickels, Ryan
Washburn, Michael P.
Morgan, Marc
Swanson, Selene K.
Eissenberg, Joel C.
AuthorAffiliation 1 Stowers Institute for Medical Research, 1000 East 50 th Street, Kansas City, MO 64110
3 Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
2 Saint Louis University School of Medicine, Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis, MO
AuthorAffiliation_xml – name: 2 Saint Louis University School of Medicine, Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis, MO
– name: 3 Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
– name: 1 Stowers Institute for Medical Research, 1000 East 50 th Street, Kansas City, MO 64110
Author_xml – sequence: 1
  givenname: Hans-Martin
  surname: Herz
  fullname: Herz, Hans-Martin
– sequence: 2
  givenname: Marc
  surname: Morgan
  fullname: Morgan, Marc
– sequence: 3
  givenname: Xin
  surname: Gao
  fullname: Gao, Xin
– sequence: 4
  givenname: Jessica
  surname: Jackson
  fullname: Jackson, Jessica
– sequence: 5
  givenname: Ryan
  surname: Rickels
  fullname: Rickels, Ryan
– sequence: 6
  givenname: Selene K.
  surname: Swanson
  fullname: Swanson, Selene K.
– sequence: 7
  givenname: Laurence
  surname: Florens
  fullname: Florens, Laurence
– sequence: 8
  givenname: Michael P.
  surname: Washburn
  fullname: Washburn, Michael P.
– sequence: 9
  givenname: Joel C.
  surname: Eissenberg
  fullname: Eissenberg, Joel C.
– sequence: 10
  givenname: Ali
  surname: Shilatifard
  fullname: Shilatifard, Ali
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25170156$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9rHCEUx6UkNJu0555aBnrJZZL3dBzHS6GEphsIBEp7Fsdxd11mdKtOYP_7Gnab_rgERNH3eV_Uzzk58cFbQt4hXCHS9joZZ72xV0g5R2hekQWC5LWkwE7IAoC1dQeCn5HzlLYApSbZa3JGOQpA3i7It6VLuWRWS1aN--S8rXOoJ5s3Lviyq6Y5a59Tpcuodjrqwa2nKocq5XnYV2YTw6Sz81Vya69H59dvyOlKj8m-Pa4X5Mftl-83y_r-4evdzef72nDBcy2kQM2BMrANp1T0KwsdA9BgzKqcDbSVPW1tIzQiGC36wSAvM5gOjejZBfl0yN3N_WQHY32OelS76CYd9ypop_6teLdR6_CoGg4dSlYCLo8BMfycbcpqcsnYcdTehjkplNBQ1oKAl9EOCy2RPqEf_0O3YY7lawrFebFBW9oV6vpAmRhSinb1fG8E9aRWHdWqo9rS8eHv5z7zv10W4P0B2Baj8U-9kSgY4-wXFUmr9Q
CODEN SCIEAS
CitedBy_id crossref_primary_10_7554_eLife_24570
crossref_primary_10_1126_sciadv_aax2887
crossref_primary_10_1126_science_aam5339
crossref_primary_10_1101_gr_246009_118
crossref_primary_10_1126_science_aad9780
crossref_primary_10_1016_j_celrep_2021_109137
crossref_primary_10_1080_14728222_2023_2277232
crossref_primary_10_1016_j_devcel_2014_12_025
crossref_primary_10_1101_cshperspect_a026666
crossref_primary_10_1126_sciadv_abi4529
crossref_primary_10_1172_JCI174794
crossref_primary_10_1186_s12861_018_0179_z
crossref_primary_10_1038_s41598_023_37001_7
crossref_primary_10_1002_advs_202100779
crossref_primary_10_1101_gad_310367_117
crossref_primary_10_1101_gad_255182_114
crossref_primary_10_1242_dev_160754
crossref_primary_10_4103_glioma_glioma_1_22
crossref_primary_10_1016_j_jgg_2018_04_004
crossref_primary_10_1016_j_tcb_2021_05_006
crossref_primary_10_1016_j_it_2015_12_004
crossref_primary_10_1111_nph_18666
crossref_primary_10_1038_s41551_021_00823_9
crossref_primary_10_1007_s11060_020_03655_w
crossref_primary_10_1038_s41591_018_0034_6
crossref_primary_10_1021_acs_biochem_2c00385
crossref_primary_10_1016_j_jmb_2016_11_019
crossref_primary_10_1073_pnas_1418996111
crossref_primary_10_1158_2159_8290_CD_19_1299
crossref_primary_10_1042_BST20210567
crossref_primary_10_3390_ijms21197193
crossref_primary_10_1016_j_tibs_2022_06_010
crossref_primary_10_15252_embj_2021108307
crossref_primary_10_1038_s41588_020_0586_5
crossref_primary_10_1101_gad_309013_117
crossref_primary_10_1146_annurev_cancerbio_062722_021823
crossref_primary_10_1016_j_molcel_2021_10_008
crossref_primary_10_1080_19336934_2015_1074787
crossref_primary_10_3389_fcell_2020_00331
crossref_primary_10_7554_eLife_17903
crossref_primary_10_1042_BST20200728
crossref_primary_10_1093_neuonc_noaa249
crossref_primary_10_1038_s41580_019_0143_1
crossref_primary_10_1371_journal_pone_0133444
crossref_primary_10_1073_pnas_1911775116
crossref_primary_10_1111_bpa_12336
crossref_primary_10_1146_annurev_cancerbio_070120_102521
crossref_primary_10_3390_cells10113142
crossref_primary_10_1093_hmg_ddw120
crossref_primary_10_1080_15592294_2016_1278095
crossref_primary_10_1038_s41592_020_01052_9
crossref_primary_10_1101_gad_286278_116
crossref_primary_10_1093_neuonc_noad164
crossref_primary_10_1126_sciadv_1500737
crossref_primary_10_1080_15592294_2017_1377870
crossref_primary_10_1016_j_molcel_2020_09_028
crossref_primary_10_1371_journal_pgen_1007932
crossref_primary_10_3389_fcell_2022_814216
crossref_primary_10_1101_gad_305201_117
crossref_primary_10_1371_journal_pone_0249647
crossref_primary_10_1016_j_molcel_2015_09_002
crossref_primary_10_1038_s41588_020_0696_0
crossref_primary_10_1016_j_gde_2016_03_012
crossref_primary_10_1007_s00234_019_02154_8
crossref_primary_10_3389_fgene_2017_00175
crossref_primary_10_1038_s41467_019_10705_z
crossref_primary_10_1021_cr5003529
crossref_primary_10_1007_s11060_020_03553_1
crossref_primary_10_1097_PAP_0000000000000167
crossref_primary_10_1038_s41422_021_00606_6
crossref_primary_10_1186_s13072_022_00447_6
crossref_primary_10_1093_neuonc_noz218
crossref_primary_10_1111_febs_14723
crossref_primary_10_1126_scitranslmed_add8280
crossref_primary_10_1007_s13311_017_0514_2
crossref_primary_10_1146_annurev_cellbio_100616_060447
crossref_primary_10_1038_s41588_020_00736_4
crossref_primary_10_1101_sqb_2017_82_034272
crossref_primary_10_1038_s41586_021_03460_z
crossref_primary_10_3346_jkms_2019_34_e225
crossref_primary_10_3390_cancers11050660
crossref_primary_10_1038_srep43906
crossref_primary_10_1126_scisignal_aaf7593
crossref_primary_10_3389_fcell_2022_1026406
crossref_primary_10_1016_j_cell_2015_10_002
crossref_primary_10_3390_cancers14092296
crossref_primary_10_1126_sciadv_ade3872
crossref_primary_10_3390_ijms24065665
crossref_primary_10_3390_cells9122716
crossref_primary_10_1371_journal_pgen_1007877
crossref_primary_10_1007_s42764_024_00131_x
crossref_primary_10_1146_annurev_pathol_012615_044208
crossref_primary_10_1038_s41556_023_01191_z
crossref_primary_10_1093_neuonc_now274
crossref_primary_10_1074_mcp_M115_053819
crossref_primary_10_1093_neuonc_noab009
crossref_primary_10_1093_neuonc_noz021
crossref_primary_10_1094_MPMI_12_16_0250_R
crossref_primary_10_1042_BST20201227
crossref_primary_10_3389_fphar_2017_00495
crossref_primary_10_1016_j_molcel_2017_10_025
crossref_primary_10_1126_sciadv_adg6593
crossref_primary_10_1242_dev_202169
crossref_primary_10_7554_eLife_16691
crossref_primary_10_1093_schizbullopen_sgab044
crossref_primary_10_1007_s00412_015_0510_4
crossref_primary_10_1080_19336934_2020_1863124
crossref_primary_10_1111_nan_12591
crossref_primary_10_1007_s40495_018_0141_6
crossref_primary_10_1177_1179069518779809
crossref_primary_10_1038_s41556_019_0403_5
crossref_primary_10_1186_s13578_017_0184_0
crossref_primary_10_1016_j_ccell_2017_03_011
crossref_primary_10_3390_ijms22020512
crossref_primary_10_3390_cells13131122
crossref_primary_10_1146_annurev_cancerbio_030617_050143
crossref_primary_10_1101_cshperspect_a026443
crossref_primary_10_1016_j_ejcped_2023_100021
crossref_primary_10_1093_nar_gku1094
crossref_primary_10_1093_nar_gky661
crossref_primary_10_1016_j_ccell_2018_11_015
crossref_primary_10_7554_eLife_36696
crossref_primary_10_1038_nm_3769
crossref_primary_10_7554_eLife_61090
crossref_primary_10_1186_s13046_020_01773_x
crossref_primary_10_1038_s41467_019_10404_9
crossref_primary_10_1002_pmic_201800479
crossref_primary_10_2176_nmc_ra_2017_0018
crossref_primary_10_1101_gad_325050_119
crossref_primary_10_1126_sciadv_1501354
crossref_primary_10_1038_nm_4296
crossref_primary_10_3390_bioengineering5040088
crossref_primary_10_1126_sciadv_aau5935
crossref_primary_10_1186_s13059_019_1870_5
crossref_primary_10_3389_fimmu_2019_00688
crossref_primary_10_1371_journal_pgen_1009225
crossref_primary_10_1073_pnas_2100699118
crossref_primary_10_1038_s41556_018_0258_1
crossref_primary_10_1016_j_molcel_2017_01_030
crossref_primary_10_1155_2015_341598
crossref_primary_10_1016_j_trecan_2019_01_003
crossref_primary_10_1126_science_aac7272
Cites_doi 10.1093/emboj/21.5.1121
10.1007/978-1-59745-493-3_1
10.1101/cshperspect.a017780
10.1186/gb-2013-14-4-r36
10.1038/35055010
10.1038/35065132
10.1038/nsmb.1470
10.1534/genetics.166.3.1313
10.1038/nature10833
10.1146/annurev-biochem-051710-134100
10.1126/science.1060118
10.1016/j.tig.2011.06.006
10.1101/gad.217778.113
10.1128/MCB.00133-12
10.1002/j.1460-2075.1996.tb00474.x
10.1016/j.tibs.2013.09.004
10.1126/science.1086887
10.1016/j.molcel.2010.07.017
10.1093/genetics/131.2.345
10.1038/emboj.2011.308
10.1093/bioinformatics/btp616
10.1038/nature09784
10.1038/35065138
10.1038/ng.1102
10.1038/nrm1355
10.1126/science.1232245
10.1126/science.1231382
10.1073/pnas.87.24.9923
10.1242/dev.125.12.2223
10.1371/journal.pgen.1003560
10.1038/ng.2814
10.1016/S1097-2765(00)80204-X
10.1021/ac9023999
10.1016/S0092-8674(01)00542-6
10.1371/journal.pone.0060549
10.1128/MCB.06503-11
ContentType Journal Article
Copyright Copyright © 2014 American Association for the Advancement of Science
Copyright © 2014, American Association for the Advancement of Science.
Copyright © 2014, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2014 American Association for the Advancement of Science
– notice: Copyright © 2014, American Association for the Advancement of Science.
– notice: Copyright © 2014, American Association for the Advancement of Science
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
5PM
DOI 10.1126/science.1255104
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
DatabaseTitleList Entomology Abstracts


Materials Research Database
CrossRef
Solid State and Superconductivity Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1070
ExternalDocumentID 3416690721
10_1126_science_1255104
25170156
24917335
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: CA R01CA089455
– fundername: NCI NIH HHS
  grantid: R01 CA089455
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0B8
0R~
0WA
123
18M
2FS
2KS
2WC
34G
36B
39C
3R3
4.4
4R4
53G
5RE
63O
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABCQX
ABDBF
ABDEX
ABEFU
ABIVO
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ADDRP
ADMHC
ADULT
ADZLD
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFCHL
AFFDN
AFFNX
AFHKK
AFOSN
AFQFN
AFRAH
AGCDD
AGFXO
AGNAY
AGSOS
AHMBA
AHPSJ
AIDAL
AIDUJ
AJGZS
ALMA_UNASSIGNED_HOLDINGS
ANJGP
AQVQM
ASPBG
AVWKF
B-7
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DNJUQ
DOOOF
DU5
DWIUU
EBS
EJD
EMOBN
ESX
F5P
FA8
FEDTE
GX1
HZ~
I.T
IAO
IEA
IGG
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OK1
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
QS-
RHF
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VQA
VVN
WH7
WI4
X7M
XFK
XJF
XZL
Y6R
YCJ
YK4
YKV
YNT
YOJ
YR2
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZA5
ZCA
ZE2
~02
~G0
~KM
~ZZ
ADACV
ADUKH
AFRQD
ALIPV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
UIG
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c575t-7971a50230e45227bfe08300a0ccf0e4d269b26e47a110ca7bdc157bd0c81c7b3
ISSN 0036-8075
IngestDate Tue Sep 17 21:21:00 EDT 2024
Sat Oct 26 01:15:32 EDT 2024
Fri Oct 25 03:05:34 EDT 2024
Mon Nov 04 11:12:18 EST 2024
Thu Sep 26 15:42:35 EDT 2024
Sat Sep 28 08:13:42 EDT 2024
Fri Feb 02 08:05:03 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6200
Language English
License Copyright © 2014, American Association for the Advancement of Science.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c575t-7971a50230e45227bfe08300a0ccf0e4d269b26e47a110ca7bdc157bd0c81c7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Contributed equally to this manuscript
OpenAccessLink https://europepmc.org/articles/pmc4508193?pdf=render
PMID 25170156
PQID 1558072628
PQPubID 1256
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4508193
proquest_miscellaneous_1904236070
proquest_miscellaneous_1811909120
proquest_journals_1558072628
crossref_primary_10_1126_science_1255104
pubmed_primary_25170156
jstor_primary_24917335
PublicationCentury 2000
PublicationDate 20140829
2014-Aug-29
2014-08-29
PublicationDateYYYYMMDD 2014-08-29
PublicationDate_xml – month: 8
  year: 2014
  text: 20140829
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2014
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References 15071554 - Nat Rev Mol Cell Biol. 2004 Apr;5(4):296-304
20166708 - Anal Chem. 2010 Mar 15;82(6):2272-81
22354997 - Mol Cell Biol. 2012 May;32(9):1683-93
21863019 - EMBO J. 2011 Oct 5;30(19):3977-93
9584122 - Development. 1998 Jun;125(12):2223-34
24162739 - Nat Genet. 2013 Dec;45(12):1479-82
23539183 - Science. 2013 May 17;340(6134):857-61
11175742 - Nat Cell Biol. 2001 Feb;3(2):114-20
21502408 - Cold Spring Harb Symp Quant Biol. 2010;75:11-22
23593242 - PLoS One. 2013;8(4):e60549
10549285 - Mol Cell. 1999 Oct;4(4):529-40
11242053 - Nature. 2001 Mar 1;410(6824):116-20
11867540 - EMBO J. 2002 Mar 1;21(5):1121-31
11701123 - Cell. 2001 Nov 2;107(3):323-37
11242054 - Nature. 2001 Mar 1;410(6824):120-4
19241024 - Methods Mol Biol. 2009;492:1-20
22286061 - Nature. 2012 Feb 9;482(7384):226-31
20705239 - Mol Cell. 2010 Aug 13;39(3):360-72
23603901 - Genes Dev. 2013 May 1;27(9):985-90
19172751 - Nat Struct Mol Biol. 2008 Sep;15(9):972-9
22286216 - Nat Genet. 2012 Mar;44(3):251-3
8635465 - EMBO J. 1996 Mar 15;15(6):1323-32
21764166 - Trends Genet. 2011 Oct;27(10):389-96
22615488 - Mol Cell Biol. 2012 Jul;32(14):2917-33
3099166 - Mol Cell Biol. 1986 Nov;6(11):3862-72
11283354 - Science. 2001 Apr 6;292(5514):110-3
1644277 - Genetics. 1992 Jun;131(2):345-52
23906716 - Cold Spring Harb Perspect Biol. 2013 Aug;5(8):a017780
22663077 - Annu Rev Biochem. 2012;81:65-95
2124708 - Proc Natl Acad Sci U S A. 1990 Dec;87(24):9923-7
15082550 - Genetics. 2004 Mar;166(3):1313-21
e_1_3_2_28_2
e_1_3_2_29_2
Lu B. Y. (e_1_3_2_26_2) 1996; 15
James T. C. (e_1_3_2_13_2) 1986; 6
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
Lu B. Y. (e_1_3_2_27_2) 1998; 125
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
Eissenberg J. C. (e_1_3_2_24_2) 1992; 131
References_xml – ident: e_1_3_2_25_2
  doi: 10.1093/emboj/21.5.1121
– ident: e_1_3_2_34_2
  doi: 10.1007/978-1-59745-493-3_1
– ident: e_1_3_2_17_2
  doi: 10.1101/cshperspect.a017780
– ident: e_1_3_2_36_2
  doi: 10.1186/gb-2013-14-4-r36
– ident: e_1_3_2_19_2
  doi: 10.1038/35055010
– ident: e_1_3_2_16_2
  doi: 10.1038/35065132
– ident: e_1_3_2_22_2
  doi: 10.1038/nsmb.1470
– ident: e_1_3_2_28_2
  doi: 10.1534/genetics.166.3.1313
– ident: e_1_3_2_6_2
  doi: 10.1038/nature10833
– ident: e_1_3_2_2_2
  doi: 10.1146/annurev-biochem-051710-134100
– ident: e_1_3_2_15_2
  doi: 10.1126/science.1060118
– ident: e_1_3_2_3_2
  doi: 10.1016/j.tig.2011.06.006
– ident: e_1_3_2_8_2
  doi: 10.1101/gad.217778.113
– ident: e_1_3_2_30_2
  doi: 10.1128/MCB.00133-12
– volume: 15
  start-page: 1323
  year: 1996
  ident: e_1_3_2_26_2
  article-title: Developmental timing and tissue specificity of heterochromatin-mediated silencing
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb00474.x
  contributor:
    fullname: Lu B. Y.
– ident: e_1_3_2_4_2
  doi: 10.1016/j.tibs.2013.09.004
– ident: e_1_3_2_11_2
  doi: 10.1126/science.1086887
– ident: e_1_3_2_20_2
  doi: 10.1016/j.molcel.2010.07.017
– volume: 131
  start-page: 345
  year: 1992
  ident: e_1_3_2_24_2
  article-title: The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation
  publication-title: Genetics
  doi: 10.1093/genetics/131.2.345
  contributor:
    fullname: Eissenberg J. C.
– ident: e_1_3_2_33_2
  doi: 10.1038/emboj.2011.308
– ident: e_1_3_2_37_2
  doi: 10.1093/bioinformatics/btp616
– ident: e_1_3_2_10_2
  doi: 10.1038/nature09784
– ident: e_1_3_2_14_2
  doi: 10.1038/35065138
– ident: e_1_3_2_7_2
  doi: 10.1038/ng.1102
– ident: e_1_3_2_12_2
  doi: 10.1038/nrm1355
– ident: e_1_3_2_9_2
  doi: 10.1126/science.1232245
– ident: e_1_3_2_5_2
  doi: 10.1126/science.1231382
– volume: 6
  start-page: 3862
  year: 1986
  ident: e_1_3_2_13_2
  article-title: Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene
  publication-title: Mol. Cell. Biol.
  contributor:
    fullname: James T. C.
– ident: e_1_3_2_23_2
  doi: 10.1073/pnas.87.24.9923
– volume: 125
  start-page: 2223
  year: 1998
  ident: e_1_3_2_27_2
  article-title: Developmental regulation of heterochromatin-mediated gene silencing in Drosophila
  publication-title: Development
  doi: 10.1242/dev.125.12.2223
  contributor:
    fullname: Lu B. Y.
– ident: e_1_3_2_38_2
  doi: 10.1371/journal.pgen.1003560
– ident: e_1_3_2_31_2
  doi: 10.1038/ng.2814
– ident: e_1_3_2_21_2
  doi: 10.1016/S1097-2765(00)80204-X
– ident: e_1_3_2_35_2
  doi: 10.1021/ac9023999
– ident: e_1_3_2_18_2
  doi: 10.1016/S0092-8674(01)00542-6
– ident: e_1_3_2_29_2
  doi: 10.1371/journal.pone.0060549
– ident: e_1_3_2_32_2
  doi: 10.1128/MCB.06503-11
SSID ssj0009593
Score 2.557021
Snippet Histone H3 lysine27-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model...
Histone H3 lysine(27)-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model...
Chromatin mutations disrupt development Histone proteins form the core packaging material for our genomic DNA, and covalent modifications to amino acid...
Histone proteins form the core packaging material for our genomic DNA, and covalent modifications to amino acid residues in their structure play an important...
Chromatin mutations disrupt developmentHistone proteins form the core packaging material for our genomic DNA, and covalent modifications to amino acid residues...
Histone H3 lysine27-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. Here, we establish a Drosophila animal...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1065
SubjectTerms Aggression
Amino Acid Substitution
Amino acids
Animals
Brain
Chromatin
Chromatin - metabolism
Covalence
Disease Models, Animal
Drosophila
Drosophila melanogaster
Drosophila Proteins - genetics
Epigenetics
Fruits
Gene expression
Gene Silencing
Glioma - genetics
Glioma - metabolism
Government regulations
Heterochromatin - metabolism
Histone-Lysine N-Methyltransferase - genetics
Histones
Histones - genetics
Histones - metabolism
Jumonji Domain-Containing Histone Demethylases - metabolism
Lysine - genetics
Methionine - genetics
Methylation
Mutation
Mutations
Proteins
Residues
Signal Transduction
Title Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling
URI https://www.jstor.org/stable/24917335
https://www.ncbi.nlm.nih.gov/pubmed/25170156
https://www.proquest.com/docview/1558072628
https://search.proquest.com/docview/1811909120
https://search.proquest.com/docview/1904236070
https://pubmed.ncbi.nlm.nih.gov/PMC4508193
Volume 345
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF7OiuCL2Go1WmUFHyohJZvNbpLHImoo6IO0cG9hd7OxBZuTa-6h_ff8x5z9kb1cuYoWwnIkeyHZmZ39ZjL7DULvqRRtIVSetEq0Sa7BYRWS04RSobgkVGhp4h1fv_H6LD-Zs_ls9nuStbQa5JG62bqv5D5ShXMgV7NL9j8kG24KJ-A3yBdakDC0_yRjy_EBKLGmsWEW6XUyLBJTE9oGWXV8uRpsmouAIzYk3-3Fj0uDNi2pbKzOlwsDWPvYZHGIn-Mq5rHqOO0Bg4bvOhNphgTFY5dGMGYV-L9NQgy1XtowdQ3LYuJ4C4KcbVUpv2lIhWQgYQO483W_CRXAiUnc9QlGPlxBchN_zdZG8R7POzXfnj3ZLV7OYqem2GSW0qlJp46i0usud2Soo40GJ5hN1nvwf9Pta8mk-qU-AiDIfKXkWwTd4MCSglL2AD3MwNoZM_tlTu5kfvb8UpOdW-O9N6CRy47d5vfcTt-d4KHTp-iJd2TwsdPKXTTT_R565EqbXu-hXT-sV_jQM5t_eIa-e4XFNcXbFBZ7hcUCDjwqLB4W2CosDgqLg8I-R2efP51-rBNf1CNR4BkMSVEVRDDj-WpD5l_IToMXkKYiVaqDc23GK5lxnRcCkKkShWwVYdCmqiSqkHQf7fTwpC8RLksiuq4rhQaMqbuqZHmX87QDj0RTVtIIHY7j2fxy3C2N9Xkz3vihb_zQR2jfjnfoNwo1QgejABo_868awOAgyYxnZYTehctgl83HNtHrxQr6lASwdkWy9C99KpOVxkEBI_TCyXT9AMxUSmA8QsWGtEMHwwu_eaW_OLf88DkzOJ--uuudXqPH65l5gHaG5Uq_AWg9yLdWdf8AXSbTZg
link.rule.ids 230,315,783,787,888,27936,27937
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Histone+H3+lysine-to-methionine+mutants+as+a+paradigm+to+study+chromatin+signaling&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Herz%2C+Hans-Martin&rft.au=Morgan%2C+Marc&rft.au=Gao%2C+Xin&rft.au=Jackson%2C+Jessica&rft.date=2014-08-29&rft.pub=American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=345&rft.issue=6200&rft.spage=1065&rft.epage=1070&rft_id=info:doi/10.1126%2Fscience.1255104&rft.externalDocID=24917335
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon