Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling
Histone H3 lysine27-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles polycomb repressive complex 2 (PRC2) loss-of-function phe...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 345; no. 6200; pp. 1065 - 1070 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
29.08.2014
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Histone H3 lysine27-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing derepression of PRC2 target genes and developmental perturbations. Similarly, an H3K9Mmutant depletes H3K9methylation levels and suppresses position-effect variegation in various Drosophila tissues.The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M-containing nucleosomes, and its misregulation in Drosophila results in changes of H3K9 methylation levels and heterochromatic silencing defects. We have established histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin signaling pathways. |
---|---|
AbstractList | Chromatin mutations disrupt developmentHistone proteins form the core packaging material for our genomic DNA, and covalent modifications to amino acid residues in their structure play an important role in the epigenetic control of gene expression. Herz et al. show that specific mutations in the residues that are normally modified to regulate expression cause severe disruption of normal development in the fruit fly. Similar mutations are known to be involved in a subtype of aggressive pediatric brain cancers. Insights into the epigenetic regulatory pathways disrupted by these mutations in Drosophila may suggest possible treatments for human cancers.Science, this issue p. 1065 Histone H3 lysine27-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing derepression of PRC2 target genes and developmental perturbations. Similarly, an H3K9Mmutant depletes H3K9methylation levels and suppresses position-effect variegation in various Drosophila tissues.The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M-containing nucleosomes, and its misregulation in Drosophila results in changes of H3K9 methylation levels and heterochromatic silencing defects. We have established histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin signaling pathways. Histone H3 lysine27-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. Here, we establish a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles Polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing de-repression of PRC2 target genes and developmental perturbations. Similarly, a H3K9M mutant depletes H3K9 methylation levels and suppresses position-effect variegation in various Drosophila tissues. The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M nucleosomes and its overexpression in Drosophila results in loss of H3K9 methylation levels and heterochromatic silencing defects. Here we establish histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin-signaling pathways. Histone proteins form the core packaging material for our genomic DNA, and covalent modifications to amino acid residues in their structure play an important role in the epigenetic control of gene expression. Herz et al. show that specific mutations in the residues that are normally modified to regulate expression cause severe disruption of normal development in the fruit fly. Similar mutations are known to be involved in a subtype of aggressive pediatric brain cancers. Insights into the epigenetic regulatory pathways disrupted by these mutations in Drosophila may suggest possible treatments for human cancers.; Science, this issue p. 1065 [PUBLICATION ABSTRACT] Histone H3 lysine27-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing derepression of PRC2 target genes and developmental perturbations. Similarly, an H3K9M mutant depletes H3K9 methylation levels and suppresses position-effect variegation in various Drosophila tissues. The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M-containing nucleosomes, and its misregulation in Drosophila results in changes of H3K9 methylation levels and heterochromatic silencing defects. We have established histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin signaling pathways. [PUBLICATION ABSTRACT] Chromatin mutations disrupt development Histone proteins form the core packaging material for our genomic DNA, and covalent modifications to amino acid residues in their structure play an important role in the epigenetic control of gene expression. Herz et al. show that specific mutations in the residues that are normally modified to regulate expression cause severe disruption of normal development in the fruit fly. Similar mutations are known to be involved in a subtype of aggressive pediatric brain cancers. Insights into the epigenetic regulatory pathways disrupted by these mutations in Drosophila may suggest possible treatments for human cancers. Science , this issue p. 1065 Mutations in the DNA packaging material disrupt fruit fly development and reveal epigenetic regulatory pathways. Histone H3 lysine 27 -to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing derepression of PRC2 target genes and developmental perturbations. Similarly, an H3K9M mutant depletes H3K9 methylation levels and suppresses position-effect variegation in various Drosophila tissues. The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M-containing nucleosomes, and its misregulation in Drosophila results in changes of H3K9 methylation levels and heterochromatic silencing defects. We have established histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin signaling pathways. Histone H3 lysine(27)-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing derepression of PRC2 target genes and developmental perturbations. Similarly, an H3K9M mutant depletes H3K9 methylation levels and suppresses position-effect variegation in various Drosophila tissues. The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M-containing nucleosomes, and its misregulation in Drosophila results in changes of H3K9 methylation levels and heterochromatic silencing defects. We have established histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin signaling pathways. |
Author | Jackson, Jessica Gao, Xin Herz, Hans-Martin Florens, Laurence Shilatifard, Ali Rickels, Ryan Washburn, Michael P. Morgan, Marc Swanson, Selene K. Eissenberg, Joel C. |
AuthorAffiliation | 1 Stowers Institute for Medical Research, 1000 East 50 th Street, Kansas City, MO 64110 3 Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA 2 Saint Louis University School of Medicine, Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis, MO |
AuthorAffiliation_xml | – name: 2 Saint Louis University School of Medicine, Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis, MO – name: 3 Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA – name: 1 Stowers Institute for Medical Research, 1000 East 50 th Street, Kansas City, MO 64110 |
Author_xml | – sequence: 1 givenname: Hans-Martin surname: Herz fullname: Herz, Hans-Martin – sequence: 2 givenname: Marc surname: Morgan fullname: Morgan, Marc – sequence: 3 givenname: Xin surname: Gao fullname: Gao, Xin – sequence: 4 givenname: Jessica surname: Jackson fullname: Jackson, Jessica – sequence: 5 givenname: Ryan surname: Rickels fullname: Rickels, Ryan – sequence: 6 givenname: Selene K. surname: Swanson fullname: Swanson, Selene K. – sequence: 7 givenname: Laurence surname: Florens fullname: Florens, Laurence – sequence: 8 givenname: Michael P. surname: Washburn fullname: Washburn, Michael P. – sequence: 9 givenname: Joel C. surname: Eissenberg fullname: Eissenberg, Joel C. – sequence: 10 givenname: Ali surname: Shilatifard fullname: Shilatifard, Ali |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25170156$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9rHCEUx6UkNJu0555aBnrJZZL3dBzHS6GEphsIBEp7Fsdxd11mdKtOYP_7Gnab_rgERNH3eV_Uzzk58cFbQt4hXCHS9joZZ72xV0g5R2hekQWC5LWkwE7IAoC1dQeCn5HzlLYApSbZa3JGOQpA3i7It6VLuWRWS1aN--S8rXOoJ5s3Lviyq6Y5a59Tpcuodjrqwa2nKocq5XnYV2YTw6Sz81Vya69H59dvyOlKj8m-Pa4X5Mftl-83y_r-4evdzef72nDBcy2kQM2BMrANp1T0KwsdA9BgzKqcDbSVPW1tIzQiGC36wSAvM5gOjejZBfl0yN3N_WQHY32OelS76CYd9ypop_6teLdR6_CoGg4dSlYCLo8BMfycbcpqcsnYcdTehjkplNBQ1oKAl9EOCy2RPqEf_0O3YY7lawrFebFBW9oV6vpAmRhSinb1fG8E9aRWHdWqo9rS8eHv5z7zv10W4P0B2Baj8U-9kSgY4-wXFUmr9Q |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_7554_eLife_24570 crossref_primary_10_1126_sciadv_aax2887 crossref_primary_10_1126_science_aam5339 crossref_primary_10_1101_gr_246009_118 crossref_primary_10_1126_science_aad9780 crossref_primary_10_1016_j_celrep_2021_109137 crossref_primary_10_1080_14728222_2023_2277232 crossref_primary_10_1016_j_devcel_2014_12_025 crossref_primary_10_1101_cshperspect_a026666 crossref_primary_10_1126_sciadv_abi4529 crossref_primary_10_1172_JCI174794 crossref_primary_10_1186_s12861_018_0179_z crossref_primary_10_1038_s41598_023_37001_7 crossref_primary_10_1002_advs_202100779 crossref_primary_10_1101_gad_310367_117 crossref_primary_10_1101_gad_255182_114 crossref_primary_10_1242_dev_160754 crossref_primary_10_4103_glioma_glioma_1_22 crossref_primary_10_1016_j_jgg_2018_04_004 crossref_primary_10_1016_j_tcb_2021_05_006 crossref_primary_10_1016_j_it_2015_12_004 crossref_primary_10_1111_nph_18666 crossref_primary_10_1038_s41551_021_00823_9 crossref_primary_10_1007_s11060_020_03655_w crossref_primary_10_1038_s41591_018_0034_6 crossref_primary_10_1021_acs_biochem_2c00385 crossref_primary_10_1016_j_jmb_2016_11_019 crossref_primary_10_1073_pnas_1418996111 crossref_primary_10_1158_2159_8290_CD_19_1299 crossref_primary_10_1042_BST20210567 crossref_primary_10_3390_ijms21197193 crossref_primary_10_1016_j_tibs_2022_06_010 crossref_primary_10_15252_embj_2021108307 crossref_primary_10_1038_s41588_020_0586_5 crossref_primary_10_1101_gad_309013_117 crossref_primary_10_1146_annurev_cancerbio_062722_021823 crossref_primary_10_1016_j_molcel_2021_10_008 crossref_primary_10_1080_19336934_2015_1074787 crossref_primary_10_3389_fcell_2020_00331 crossref_primary_10_7554_eLife_17903 crossref_primary_10_1042_BST20200728 crossref_primary_10_1093_neuonc_noaa249 crossref_primary_10_1038_s41580_019_0143_1 crossref_primary_10_1371_journal_pone_0133444 crossref_primary_10_1073_pnas_1911775116 crossref_primary_10_1111_bpa_12336 crossref_primary_10_1146_annurev_cancerbio_070120_102521 crossref_primary_10_3390_cells10113142 crossref_primary_10_1093_hmg_ddw120 crossref_primary_10_1080_15592294_2016_1278095 crossref_primary_10_1038_s41592_020_01052_9 crossref_primary_10_1101_gad_286278_116 crossref_primary_10_1093_neuonc_noad164 crossref_primary_10_1126_sciadv_1500737 crossref_primary_10_1080_15592294_2017_1377870 crossref_primary_10_1016_j_molcel_2020_09_028 crossref_primary_10_1371_journal_pgen_1007932 crossref_primary_10_3389_fcell_2022_814216 crossref_primary_10_1101_gad_305201_117 crossref_primary_10_1371_journal_pone_0249647 crossref_primary_10_1016_j_molcel_2015_09_002 crossref_primary_10_1038_s41588_020_0696_0 crossref_primary_10_1016_j_gde_2016_03_012 crossref_primary_10_1007_s00234_019_02154_8 crossref_primary_10_3389_fgene_2017_00175 crossref_primary_10_1038_s41467_019_10705_z crossref_primary_10_1021_cr5003529 crossref_primary_10_1007_s11060_020_03553_1 crossref_primary_10_1097_PAP_0000000000000167 crossref_primary_10_1038_s41422_021_00606_6 crossref_primary_10_1186_s13072_022_00447_6 crossref_primary_10_1093_neuonc_noz218 crossref_primary_10_1111_febs_14723 crossref_primary_10_1126_scitranslmed_add8280 crossref_primary_10_1007_s13311_017_0514_2 crossref_primary_10_1146_annurev_cellbio_100616_060447 crossref_primary_10_1038_s41588_020_00736_4 crossref_primary_10_1101_sqb_2017_82_034272 crossref_primary_10_1038_s41586_021_03460_z crossref_primary_10_3346_jkms_2019_34_e225 crossref_primary_10_3390_cancers11050660 crossref_primary_10_1038_srep43906 crossref_primary_10_1126_scisignal_aaf7593 crossref_primary_10_3389_fcell_2022_1026406 crossref_primary_10_1016_j_cell_2015_10_002 crossref_primary_10_3390_cancers14092296 crossref_primary_10_1126_sciadv_ade3872 crossref_primary_10_3390_ijms24065665 crossref_primary_10_3390_cells9122716 crossref_primary_10_1371_journal_pgen_1007877 crossref_primary_10_1007_s42764_024_00131_x crossref_primary_10_1146_annurev_pathol_012615_044208 crossref_primary_10_1038_s41556_023_01191_z crossref_primary_10_1093_neuonc_now274 crossref_primary_10_1074_mcp_M115_053819 crossref_primary_10_1093_neuonc_noab009 crossref_primary_10_1093_neuonc_noz021 crossref_primary_10_1094_MPMI_12_16_0250_R crossref_primary_10_1042_BST20201227 crossref_primary_10_3389_fphar_2017_00495 crossref_primary_10_1016_j_molcel_2017_10_025 crossref_primary_10_1126_sciadv_adg6593 crossref_primary_10_1242_dev_202169 crossref_primary_10_7554_eLife_16691 crossref_primary_10_1093_schizbullopen_sgab044 crossref_primary_10_1007_s00412_015_0510_4 crossref_primary_10_1080_19336934_2020_1863124 crossref_primary_10_1111_nan_12591 crossref_primary_10_1007_s40495_018_0141_6 crossref_primary_10_1177_1179069518779809 crossref_primary_10_1038_s41556_019_0403_5 crossref_primary_10_1186_s13578_017_0184_0 crossref_primary_10_1016_j_ccell_2017_03_011 crossref_primary_10_3390_ijms22020512 crossref_primary_10_3390_cells13131122 crossref_primary_10_1146_annurev_cancerbio_030617_050143 crossref_primary_10_1101_cshperspect_a026443 crossref_primary_10_1016_j_ejcped_2023_100021 crossref_primary_10_1093_nar_gku1094 crossref_primary_10_1093_nar_gky661 crossref_primary_10_1016_j_ccell_2018_11_015 crossref_primary_10_7554_eLife_36696 crossref_primary_10_1038_nm_3769 crossref_primary_10_7554_eLife_61090 crossref_primary_10_1186_s13046_020_01773_x crossref_primary_10_1038_s41467_019_10404_9 crossref_primary_10_1002_pmic_201800479 crossref_primary_10_2176_nmc_ra_2017_0018 crossref_primary_10_1101_gad_325050_119 crossref_primary_10_1126_sciadv_1501354 crossref_primary_10_1038_nm_4296 crossref_primary_10_3390_bioengineering5040088 crossref_primary_10_1126_sciadv_aau5935 crossref_primary_10_1186_s13059_019_1870_5 crossref_primary_10_3389_fimmu_2019_00688 crossref_primary_10_1371_journal_pgen_1009225 crossref_primary_10_1073_pnas_2100699118 crossref_primary_10_1038_s41556_018_0258_1 crossref_primary_10_1016_j_molcel_2017_01_030 crossref_primary_10_1155_2015_341598 crossref_primary_10_1016_j_trecan_2019_01_003 crossref_primary_10_1126_science_aac7272 |
Cites_doi | 10.1093/emboj/21.5.1121 10.1007/978-1-59745-493-3_1 10.1101/cshperspect.a017780 10.1186/gb-2013-14-4-r36 10.1038/35055010 10.1038/35065132 10.1038/nsmb.1470 10.1534/genetics.166.3.1313 10.1038/nature10833 10.1146/annurev-biochem-051710-134100 10.1126/science.1060118 10.1016/j.tig.2011.06.006 10.1101/gad.217778.113 10.1128/MCB.00133-12 10.1002/j.1460-2075.1996.tb00474.x 10.1016/j.tibs.2013.09.004 10.1126/science.1086887 10.1016/j.molcel.2010.07.017 10.1093/genetics/131.2.345 10.1038/emboj.2011.308 10.1093/bioinformatics/btp616 10.1038/nature09784 10.1038/35065138 10.1038/ng.1102 10.1038/nrm1355 10.1126/science.1232245 10.1126/science.1231382 10.1073/pnas.87.24.9923 10.1242/dev.125.12.2223 10.1371/journal.pgen.1003560 10.1038/ng.2814 10.1016/S1097-2765(00)80204-X 10.1021/ac9023999 10.1016/S0092-8674(01)00542-6 10.1371/journal.pone.0060549 10.1128/MCB.06503-11 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Association for the Advancement of Science Copyright © 2014, American Association for the Advancement of Science. Copyright © 2014, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2014 American Association for the Advancement of Science – notice: Copyright © 2014, American Association for the Advancement of Science. – notice: Copyright © 2014, American Association for the Advancement of Science |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 5PM |
DOI | 10.1126/science.1255104 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts |
DatabaseTitleList | Entomology Abstracts Materials Research Database CrossRef Solid State and Superconductivity Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1070 |
ExternalDocumentID | 3416690721 10_1126_science_1255104 25170156 24917335 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: CA R01CA089455 – fundername: NCI NIH HHS grantid: R01 CA089455 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC .HR 08G 0B8 0R~ 0WA 123 18M 2FS 2KS 2WC 34G 36B 39C 3R3 4.4 4R4 53G 5RE 63O 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ ABBHK ABCQX ABDBF ABDEX ABEFU ABIVO ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ADDRP ADMHC ADULT ADZLD AEGBM AENEX AETEA AEUPB AEXZC AFCHL AFFDN AFFNX AFHKK AFOSN AFQFN AFRAH AGCDD AGFXO AGNAY AGSOS AHMBA AHPSJ AIDAL AIDUJ AJGZS ALMA_UNASSIGNED_HOLDINGS ANJGP AQVQM ASPBG AVWKF B-7 BKF BLC C45 C51 CS3 DB2 DCCCD DNJUQ DOOOF DU5 DWIUU EBS EJD EMOBN ESX F5P FA8 FEDTE GX1 HZ~ I.T IAO IEA IGG IGS IH2 IHR INH INR IOF IOV IPO IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OK1 OMK OVD P-O P2P PQQKQ PZZ QJJ QS- RHF RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VQA VVN WH7 WI4 X7M XFK XJF XZL Y6R YCJ YK4 YKV YNT YOJ YR2 YRY YSQ YV5 YWH YYP YYQ YZZ ZA5 ZCA ZE2 ~02 ~G0 ~KM ~ZZ ADACV ADUKH AFRQD ALIPV CGR CUY CVF ECM EIF IPSME NPM UIG AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c575t-7971a50230e45227bfe08300a0ccf0e4d269b26e47a110ca7bdc157bd0c81c7b3 |
ISSN | 0036-8075 |
IngestDate | Tue Sep 17 21:21:00 EDT 2024 Sat Oct 26 01:15:32 EDT 2024 Fri Oct 25 03:05:34 EDT 2024 Mon Nov 04 11:12:18 EST 2024 Thu Sep 26 15:42:35 EDT 2024 Sat Sep 28 08:13:42 EDT 2024 Fri Feb 02 08:05:03 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6200 |
Language | English |
License | Copyright © 2014, American Association for the Advancement of Science. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c575t-7971a50230e45227bfe08300a0ccf0e4d269b26e47a110ca7bdc157bd0c81c7b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Contributed equally to this manuscript |
OpenAccessLink | https://europepmc.org/articles/pmc4508193?pdf=render |
PMID | 25170156 |
PQID | 1558072628 |
PQPubID | 1256 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4508193 proquest_miscellaneous_1904236070 proquest_miscellaneous_1811909120 proquest_journals_1558072628 crossref_primary_10_1126_science_1255104 pubmed_primary_25170156 jstor_primary_24917335 |
PublicationCentury | 2000 |
PublicationDate | 20140829 2014-Aug-29 2014-08-29 |
PublicationDateYYYYMMDD | 2014-08-29 |
PublicationDate_xml | – month: 8 year: 2014 text: 20140829 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2014 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | 15071554 - Nat Rev Mol Cell Biol. 2004 Apr;5(4):296-304 20166708 - Anal Chem. 2010 Mar 15;82(6):2272-81 22354997 - Mol Cell Biol. 2012 May;32(9):1683-93 21863019 - EMBO J. 2011 Oct 5;30(19):3977-93 9584122 - Development. 1998 Jun;125(12):2223-34 24162739 - Nat Genet. 2013 Dec;45(12):1479-82 23539183 - Science. 2013 May 17;340(6134):857-61 11175742 - Nat Cell Biol. 2001 Feb;3(2):114-20 21502408 - Cold Spring Harb Symp Quant Biol. 2010;75:11-22 23593242 - PLoS One. 2013;8(4):e60549 10549285 - Mol Cell. 1999 Oct;4(4):529-40 11242053 - Nature. 2001 Mar 1;410(6824):116-20 11867540 - EMBO J. 2002 Mar 1;21(5):1121-31 11701123 - Cell. 2001 Nov 2;107(3):323-37 11242054 - Nature. 2001 Mar 1;410(6824):120-4 19241024 - Methods Mol Biol. 2009;492:1-20 22286061 - Nature. 2012 Feb 9;482(7384):226-31 20705239 - Mol Cell. 2010 Aug 13;39(3):360-72 23603901 - Genes Dev. 2013 May 1;27(9):985-90 19172751 - Nat Struct Mol Biol. 2008 Sep;15(9):972-9 22286216 - Nat Genet. 2012 Mar;44(3):251-3 8635465 - EMBO J. 1996 Mar 15;15(6):1323-32 21764166 - Trends Genet. 2011 Oct;27(10):389-96 22615488 - Mol Cell Biol. 2012 Jul;32(14):2917-33 3099166 - Mol Cell Biol. 1986 Nov;6(11):3862-72 11283354 - Science. 2001 Apr 6;292(5514):110-3 1644277 - Genetics. 1992 Jun;131(2):345-52 23906716 - Cold Spring Harb Perspect Biol. 2013 Aug;5(8):a017780 22663077 - Annu Rev Biochem. 2012;81:65-95 2124708 - Proc Natl Acad Sci U S A. 1990 Dec;87(24):9923-7 15082550 - Genetics. 2004 Mar;166(3):1313-21 e_1_3_2_28_2 e_1_3_2_29_2 Lu B. Y. (e_1_3_2_26_2) 1996; 15 James T. C. (e_1_3_2_13_2) 1986; 6 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 Lu B. Y. (e_1_3_2_27_2) 1998; 125 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 Eissenberg J. C. (e_1_3_2_24_2) 1992; 131 |
References_xml | – ident: e_1_3_2_25_2 doi: 10.1093/emboj/21.5.1121 – ident: e_1_3_2_34_2 doi: 10.1007/978-1-59745-493-3_1 – ident: e_1_3_2_17_2 doi: 10.1101/cshperspect.a017780 – ident: e_1_3_2_36_2 doi: 10.1186/gb-2013-14-4-r36 – ident: e_1_3_2_19_2 doi: 10.1038/35055010 – ident: e_1_3_2_16_2 doi: 10.1038/35065132 – ident: e_1_3_2_22_2 doi: 10.1038/nsmb.1470 – ident: e_1_3_2_28_2 doi: 10.1534/genetics.166.3.1313 – ident: e_1_3_2_6_2 doi: 10.1038/nature10833 – ident: e_1_3_2_2_2 doi: 10.1146/annurev-biochem-051710-134100 – ident: e_1_3_2_15_2 doi: 10.1126/science.1060118 – ident: e_1_3_2_3_2 doi: 10.1016/j.tig.2011.06.006 – ident: e_1_3_2_8_2 doi: 10.1101/gad.217778.113 – ident: e_1_3_2_30_2 doi: 10.1128/MCB.00133-12 – volume: 15 start-page: 1323 year: 1996 ident: e_1_3_2_26_2 article-title: Developmental timing and tissue specificity of heterochromatin-mediated silencing publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb00474.x contributor: fullname: Lu B. Y. – ident: e_1_3_2_4_2 doi: 10.1016/j.tibs.2013.09.004 – ident: e_1_3_2_11_2 doi: 10.1126/science.1086887 – ident: e_1_3_2_20_2 doi: 10.1016/j.molcel.2010.07.017 – volume: 131 start-page: 345 year: 1992 ident: e_1_3_2_24_2 article-title: The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation publication-title: Genetics doi: 10.1093/genetics/131.2.345 contributor: fullname: Eissenberg J. C. – ident: e_1_3_2_33_2 doi: 10.1038/emboj.2011.308 – ident: e_1_3_2_37_2 doi: 10.1093/bioinformatics/btp616 – ident: e_1_3_2_10_2 doi: 10.1038/nature09784 – ident: e_1_3_2_14_2 doi: 10.1038/35065138 – ident: e_1_3_2_7_2 doi: 10.1038/ng.1102 – ident: e_1_3_2_12_2 doi: 10.1038/nrm1355 – ident: e_1_3_2_9_2 doi: 10.1126/science.1232245 – ident: e_1_3_2_5_2 doi: 10.1126/science.1231382 – volume: 6 start-page: 3862 year: 1986 ident: e_1_3_2_13_2 article-title: Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene publication-title: Mol. Cell. Biol. contributor: fullname: James T. C. – ident: e_1_3_2_23_2 doi: 10.1073/pnas.87.24.9923 – volume: 125 start-page: 2223 year: 1998 ident: e_1_3_2_27_2 article-title: Developmental regulation of heterochromatin-mediated gene silencing in Drosophila publication-title: Development doi: 10.1242/dev.125.12.2223 contributor: fullname: Lu B. Y. – ident: e_1_3_2_38_2 doi: 10.1371/journal.pgen.1003560 – ident: e_1_3_2_31_2 doi: 10.1038/ng.2814 – ident: e_1_3_2_21_2 doi: 10.1016/S1097-2765(00)80204-X – ident: e_1_3_2_35_2 doi: 10.1021/ac9023999 – ident: e_1_3_2_18_2 doi: 10.1016/S0092-8674(01)00542-6 – ident: e_1_3_2_29_2 doi: 10.1371/journal.pone.0060549 – ident: e_1_3_2_32_2 doi: 10.1128/MCB.06503-11 |
SSID | ssj0009593 |
Score | 2.557021 |
Snippet | Histone H3 lysine27-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model... Histone H3 lysine(27)-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model... Chromatin mutations disrupt development Histone proteins form the core packaging material for our genomic DNA, and covalent modifications to amino acid... Histone proteins form the core packaging material for our genomic DNA, and covalent modifications to amino acid residues in their structure play an important... Chromatin mutations disrupt developmentHistone proteins form the core packaging material for our genomic DNA, and covalent modifications to amino acid residues... Histone H3 lysine27-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. Here, we establish a Drosophila animal... |
SourceID | pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1065 |
SubjectTerms | Aggression Amino Acid Substitution Amino acids Animals Brain Chromatin Chromatin - metabolism Covalence Disease Models, Animal Drosophila Drosophila melanogaster Drosophila Proteins - genetics Epigenetics Fruits Gene expression Gene Silencing Glioma - genetics Glioma - metabolism Government regulations Heterochromatin - metabolism Histone-Lysine N-Methyltransferase - genetics Histones Histones - genetics Histones - metabolism Jumonji Domain-Containing Histone Demethylases - metabolism Lysine - genetics Methionine - genetics Methylation Mutation Mutations Proteins Residues Signal Transduction |
Title | Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling |
URI | https://www.jstor.org/stable/24917335 https://www.ncbi.nlm.nih.gov/pubmed/25170156 https://www.proquest.com/docview/1558072628 https://search.proquest.com/docview/1811909120 https://search.proquest.com/docview/1904236070 https://pubmed.ncbi.nlm.nih.gov/PMC4508193 |
Volume | 345 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF7OiuCL2Go1WmUFHyohJZvNbpLHImoo6IO0cG9hd7OxBZuTa-6h_ff8x5z9kb1cuYoWwnIkeyHZmZ39ZjL7DULvqRRtIVSetEq0Sa7BYRWS04RSobgkVGhp4h1fv_H6LD-Zs_ls9nuStbQa5JG62bqv5D5ShXMgV7NL9j8kG24KJ-A3yBdakDC0_yRjy_EBKLGmsWEW6XUyLBJTE9oGWXV8uRpsmouAIzYk3-3Fj0uDNi2pbKzOlwsDWPvYZHGIn-Mq5rHqOO0Bg4bvOhNphgTFY5dGMGYV-L9NQgy1XtowdQ3LYuJ4C4KcbVUpv2lIhWQgYQO483W_CRXAiUnc9QlGPlxBchN_zdZG8R7POzXfnj3ZLV7OYqem2GSW0qlJp46i0usud2Soo40GJ5hN1nvwf9Pta8mk-qU-AiDIfKXkWwTd4MCSglL2AD3MwNoZM_tlTu5kfvb8UpOdW-O9N6CRy47d5vfcTt-d4KHTp-iJd2TwsdPKXTTT_R565EqbXu-hXT-sV_jQM5t_eIa-e4XFNcXbFBZ7hcUCDjwqLB4W2CosDgqLg8I-R2efP51-rBNf1CNR4BkMSVEVRDDj-WpD5l_IToMXkKYiVaqDc23GK5lxnRcCkKkShWwVYdCmqiSqkHQf7fTwpC8RLksiuq4rhQaMqbuqZHmX87QDj0RTVtIIHY7j2fxy3C2N9Xkz3vihb_zQR2jfjnfoNwo1QgejABo_868awOAgyYxnZYTehctgl83HNtHrxQr6lASwdkWy9C99KpOVxkEBI_TCyXT9AMxUSmA8QsWGtEMHwwu_eaW_OLf88DkzOJ--uuudXqPH65l5gHaG5Uq_AWg9yLdWdf8AXSbTZg |
link.rule.ids | 230,315,783,787,888,27936,27937 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Histone+H3+lysine-to-methionine+mutants+as+a+paradigm+to+study+chromatin+signaling&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Herz%2C+Hans-Martin&rft.au=Morgan%2C+Marc&rft.au=Gao%2C+Xin&rft.au=Jackson%2C+Jessica&rft.date=2014-08-29&rft.pub=American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=345&rft.issue=6200&rft.spage=1065&rft.epage=1070&rft_id=info:doi/10.1126%2Fscience.1255104&rft.externalDocID=24917335 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |