Explainability of CNN-based Alzheimer’s disease detection from online handwriting
With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer’s disease is a prevalent and challenging neurodegenerative disorder. Despite significant advancements in machine learning techniques for Alzheimer’s disease detection, the widesprea...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 22108 - 13 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.09.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer’s disease is a prevalent and challenging neurodegenerative disorder. Despite significant advancements in machine learning techniques for Alzheimer’s disease detection, the widespread adoption of deep learning models raises concerns about their explainability. The lack of explainability in deep learning models for online handwriting analysis is a critical gap in the literature in the context of Alzheimer’s disease detection. This paper addresses this challenge by interpreting predictions from a Convolutional Neural Network applied to multivariate time series data, generated by online handwriting data associated with continuous loop series handwritten on a graphical tablet. Our explainability methods reveal distinct motor behavior characteristics for healthy individuals and those diagnosed with Alzheimer’s. Healthy subjects exhibited consistent, smooth movements, while Alzheimer’s patients demonstrated erratic patterns marked by abrupt stops and direction changes. This emphasizes the critical role of explainability in translating complex models into clinically relevant insights. Our research contributes to the enhancement of early diagnosis, providing significant and reliable insights to stakeholders involved in patient care and intervention strategies. Our work bridges the gap between machine learning predictions and clinical insights, fostering a more effective and understandable application of advanced models for Alzheimer’s disease assessment. |
---|---|
AbstractList | With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer’s disease is a prevalent and challenging neurodegenerative disorder. Despite significant advancements in machine learning techniques for Alzheimer’s disease detection, the widespread adoption of deep learning models raises concerns about their explainability. The lack of explainability in deep learning models for online handwriting analysis is a critical gap in the literature in the context of Alzheimer’s disease detection. This paper addresses this challenge by interpreting predictions from a Convolutional Neural Network applied to multivariate time series data, generated by online handwriting data associated with continuous loop series handwritten on a graphical tablet. Our explainability methods reveal distinct motor behavior characteristics for healthy individuals and those diagnosed with Alzheimer’s. Healthy subjects exhibited consistent, smooth movements, while Alzheimer’s patients demonstrated erratic patterns marked by abrupt stops and direction changes. This emphasizes the critical role of explainability in translating complex models into clinically relevant insights. Our research contributes to the enhancement of early diagnosis, providing significant and reliable insights to stakeholders involved in patient care and intervention strategies. Our work bridges the gap between machine learning predictions and clinical insights, fostering a more effective and understandable application of advanced models for Alzheimer’s disease assessment. With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer's disease is a prevalent and challenging neurodegenerative disorder. Despite significant advancements in machine learning techniques for Alzheimer's disease detection, the widespread adoption of deep learning models raises concerns about their explainability. The lack of explainability in deep learning models for online handwriting analysis is a critical gap in the literature in the context of Alzheimer's disease detection. This paper addresses this challenge by interpreting predictions from a Convolutional Neural Network applied to multivariate time series data, generated by online handwriting data associated with continuous loop series handwritten on a graphical tablet. Our explainability methods reveal distinct motor behavior characteristics for healthy individuals and those diagnosed with Alzheimer's. Healthy subjects exhibited consistent, smooth movements, while Alzheimer's patients demonstrated erratic patterns marked by abrupt stops and direction changes. This emphasizes the critical role of explainability in translating complex models into clinically relevant insights. Our research contributes to the enhancement of early diagnosis, providing significant and reliable insights to stakeholders involved in patient care and intervention strategies. Our work bridges the gap between machine learning predictions and clinical insights, fostering a more effective and understandable application of advanced models for Alzheimer's disease assessment.With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer's disease is a prevalent and challenging neurodegenerative disorder. Despite significant advancements in machine learning techniques for Alzheimer's disease detection, the widespread adoption of deep learning models raises concerns about their explainability. The lack of explainability in deep learning models for online handwriting analysis is a critical gap in the literature in the context of Alzheimer's disease detection. This paper addresses this challenge by interpreting predictions from a Convolutional Neural Network applied to multivariate time series data, generated by online handwriting data associated with continuous loop series handwritten on a graphical tablet. Our explainability methods reveal distinct motor behavior characteristics for healthy individuals and those diagnosed with Alzheimer's. Healthy subjects exhibited consistent, smooth movements, while Alzheimer's patients demonstrated erratic patterns marked by abrupt stops and direction changes. This emphasizes the critical role of explainability in translating complex models into clinically relevant insights. Our research contributes to the enhancement of early diagnosis, providing significant and reliable insights to stakeholders involved in patient care and intervention strategies. Our work bridges the gap between machine learning predictions and clinical insights, fostering a more effective and understandable application of advanced models for Alzheimer's disease assessment. Abstract With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer’s disease is a prevalent and challenging neurodegenerative disorder. Despite significant advancements in machine learning techniques for Alzheimer’s disease detection, the widespread adoption of deep learning models raises concerns about their explainability. The lack of explainability in deep learning models for online handwriting analysis is a critical gap in the literature in the context of Alzheimer’s disease detection. This paper addresses this challenge by interpreting predictions from a Convolutional Neural Network applied to multivariate time series data, generated by online handwriting data associated with continuous loop series handwritten on a graphical tablet. Our explainability methods reveal distinct motor behavior characteristics for healthy individuals and those diagnosed with Alzheimer’s. Healthy subjects exhibited consistent, smooth movements, while Alzheimer’s patients demonstrated erratic patterns marked by abrupt stops and direction changes. This emphasizes the critical role of explainability in translating complex models into clinically relevant insights. Our research contributes to the enhancement of early diagnosis, providing significant and reliable insights to stakeholders involved in patient care and intervention strategies. Our work bridges the gap between machine learning predictions and clinical insights, fostering a more effective and understandable application of advanced models for Alzheimer’s disease assessment. |
ArticleNumber | 22108 |
Author | Sweidan, Jana Rigaud, Anne-Sophie El-Yacoubi, Mounim A. |
Author_xml | – sequence: 1 givenname: Jana surname: Sweidan fullname: Sweidan, Jana organization: Samovar/Télécom SudParis, Institut Polytechnique de Paris – sequence: 2 givenname: Mounim A. surname: El-Yacoubi fullname: El-Yacoubi, Mounim A. email: mounim.el_yacoubi@telecom-sudparis.eu organization: Samovar/Télécom SudParis, Institut Polytechnique de Paris – sequence: 3 givenname: Anne-Sophie surname: Rigaud fullname: Rigaud, Anne-Sophie organization: AP-HP, Groupe Hospitalier Cochin Paris Centre, Hôpital Broca, Pôle Gérontologie, Université Paris Descartes |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39333681$$D View this record in MEDLINE/PubMed https://hal.science/hal-04827554$$DView record in HAL |
BookMark | eNp9UstuFDEQHKEgEkJ-gAMaiQscBvwc2ye0WgUSaRUOwNny-LHr1ay92LMJ4cRv8Ht8CZ5MAske4outdlV1d3U_rw5CDLaqXkLwDgLM32cCqeANQKRhqKWgQU-qIwQIbRBG6ODe-7A6yXkNyqFIECieVYdYYIxbDo-qL6c_tr3yQXW-98N1HV09v7hoOpWtqWf9z5X1G5v-_Pqda-OzLeHa2MHqwcdQuxQ3dQy9D7ZeqWCukh98WL6onjrVZ3tyex9X3z6efp2fNYvPn87ns0WjKaNDw1rUAQQ1BQiUBpjrjCICdwS2FDmsBMcAaSYUd4ZaozkjSEPEGXAEKy3wcXU-6Zqo1nKb_EalaxmVlzeBmJZSpcHr3srRKyaoME53pINO4NbRFhijENeM06L1YdLa7rpNSWbDkFT_QPThT_AruYyXEkIyOomLwttJYbXHO5st5BgDhCNGKbmEBfvmNluK33c2D3Ljs7Z9r4KNuywxhIDh4gMo0Nd70HXcpVB8vUFRxgRHBfXqfvn_8t8NugD4BNAp5pysk9oPapxi6cb3EgI5rpWc1kqWtZI3ayVHbbRHvVN_lIQnUi7gsLTpf9mPsP4CZGXduA |
CitedBy_id | crossref_primary_10_1002_qua_70006 crossref_primary_10_1007_s42486_024_00170_z |
Cites_doi | 10.1109/ACCESS.2022.3232396 10.1109/ICPR.1998.711997 10.1109/RBME.2018.2840679 10.1016/j.patrec.2018.05.013 10.1176/appi.books.9780890425596 10.48550/arXiv.2208.05280 10.1093/geronb/61.4.P228 10.1016/j.jpsychires.2008.01.006 10.1007/s40846-016-0143-y 10.1109/ACCESS.2024.3401104 10.1007/s10618-019-00619-1 10.1586/ern.11.57 10.1109/LSP.2018.2794500 10.1016/j.ins.2023.119334 10.1016/j.engappai.2023.106254 10.1016/0167-9457(91)90010-U 10.3233/JAD-230438 10.1109/access.2022.3180045 10.1016/j.jalz.2011.03.008 10.1109/sibgra.2000.883901 10.1017/s135561779951103x 10.1109/icapai49758.2021.9462056 10.1016/j.mex.2023.102009 10.1016/j.neuropsychologia.2011.03.024 10.2139/ssrn.3063289 10.1016/j.patcog.2018.07.029 10.1201/9781003069379-9 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution - NonCommercial - NoDerivatives The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution - NonCommercial - NoDerivatives – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM DOA |
DOI | 10.1038/s41598-024-72650-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database (ProQuest) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Computer Science |
EISSN | 2045-2322 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_15987959dfcb4b1f936f560dda28c785 PMC11436813 oai_HAL_hal_04827554v1 39333681 10_1038_s41598_024_72650_2 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 1XC VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c575t-762b021c50206507fbda493b41652f3a98302c79a8fd5edc8742c12870f43ac93 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:21:23 EDT 2025 Thu Aug 21 18:31:23 EDT 2025 Fri May 09 12:25:02 EDT 2025 Fri Jul 11 07:05:16 EDT 2025 Wed Aug 13 07:02:35 EDT 2025 Mon Jul 21 05:56:44 EDT 2025 Thu Apr 24 23:09:40 EDT 2025 Tue Jul 01 03:23:02 EDT 2025 Fri Feb 21 02:37:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 1D-CNN Online handwriting Alzheimer’s disease Explainability Alzheimer's disease Alzheimer's disease Online handwriting 1D-CNN Explainability |
Language | English |
License | 2024. The Author(s). Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-762b021c50206507fbda493b41652f3a98302c79a8fd5edc8742c12870f43ac93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7383-0588 |
OpenAccessLink | https://doaj.org/article/15987959dfcb4b1f936f560dda28c785 |
PMID | 39333681 |
PQID | 3110577982 |
PQPubID | 2041939 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_15987959dfcb4b1f936f560dda28c785 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11436813 hal_primary_oai_HAL_hal_04827554v1 proquest_miscellaneous_3110731650 proquest_journals_3110577982 pubmed_primary_39333681 crossref_citationtrail_10_1038_s41598_024_72650_2 crossref_primary_10_1038_s41598_024_72650_2 springer_journals_10_1038_s41598_024_72650_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-27 |
PublicationDateYYYYMMDD | 2024-09-27 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | MitraURehmanSUMl-powered handwriting analysis for early detection of Alzheimer’s diseaseIEEE Access202412690316905010.1109/ACCESS.2024.3401104 JinWLiXFatehiMHamarnehGGenerating post-hoc explanation from deep neural networks for multi-modal medical image analysis tasksMethodsX20231010.1016/j.mex.2023.102009367936769922805 Shrikumar, A., Greenside, P., Shcherbina, A. & Kundaje, A. Not just a black box: Learning important features through propagating activation differences (2017). MwamsojoNLehmannFEl-YacoubiMAMerghemKFrignacYBenkelfatB-ERigaudA-SReservoir computing for early stage Alzheimer’s disease detectionIEEE Access202210598215983110.1109/access.2022.3180045 WernerPRosenblumSBar-OnGHeinikJKorczynAHandwriting process variables discriminating mild Alzheimer’s disease and mild cognitive impairmentJ. Gerontol. Psychol. Sci.200661422823610.1093/geronb/61.4.P228 SlavinMJPhillipsJGBradshawJLHallKAPresnellIConsistency of handwriting movements in dementia of the Alzheimer’s type: A comparison with Huntington’s and Parkinson’s diseasesJ. Int. Neuropsychol. Soc.19995120251:STN:280:DyaK1M7ktlGltw%3D%3D10.1017/s135561779951103x9989020 FawazHIForestierGWeberJIdoumgharLMullerP-ADeep learning for time series classification: A reviewData Min. Knowl. Discov.2019334917963396203910.1007/s10618-019-00619-1 El-Yacoubi, A., Sabourin, R., Gilloux, M. & Suen, C. Y. Off-line handwritten word recognition using hidden markovmodels. In Knowledge-based intelligent techniques in character recognition (eds. Jain L.C. & Lazzerini B.) 191–229 (CRC Press, 1999). KahindoCEl YacoubiMGarcia-SalicettiSRigaudA-SCristancho-LacroixVCharacterizing early-stage Alzheimer through spatiotemporal dynamics of handwritingIEEE Signal Process. Lett.201810.1109/LSP.2018.2794500 El-YacoubiMAGarcia-SalicettiSKahindoCRigaudA-SCristancho-LacroixVFrom aging to early-stage Alzheimer’s: Uncovering handwriting multimodal behaviors by semi-supervised learning and sequential representation learningPattern Recognit.2019861121332019PatRe..86..112E10.1016/j.patcog.2018.07.029 ImpedovoDPirloGDynamic handwriting analysis for the assessment of neurodegenerative diseases: A pattern recognition perspectiveIEEE Rev. Biomed. Eng.20191220922010.1109/RBME.2018.284067929993722 TeulingsH-LStelmachGEControl of stroke size, peak acceleration, and stroke duration in parkinsonian handwritingHum. Mov. Sci.1991102–331533410.1016/0167-9457(91)90010-U Hakan, Ö. A novel approach to detection of Alzheimer’s disease from handwriting: Triple ensemble learning model. Gazi Univ. J. Sci. Part C Des. Technol. 1–1 (2024). FernandesCPMontalvoGCaligiuriMPertsinakisMGuimarãesJHandwriting changes in Alzheimer’s disease: A systematic reviewJ. Alzheimers Dis.202396111110.3233/JAD-23043837718808 American Psychiatric Association. DSM-5 Task Force: Diagnostic and Statistical Manual of Mental Disorders: DSM-5™ 5th edn. https://doi.org/10.1176/appi.books.9780890425596 (2013). Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems (eds. Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R.) vol. 30, 4765–4774. http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf (2017). World Health Organization. Dementia Fact Sheet. https://www.who.int/news-room/fact-sheets/detail/dementia (2023). DaoQEl-YacoubiMARigaudA-SDetection of Alzheimer disease on online handwriting using 1d convolutional neural networkIEEE Access2023112148215510.1109/ACCESS.2022.3232396 Ates, E., Aksar, B., Leung, V. J. & Coskun, A. K. Counterfactual explanations for multivariate time series. In 2021 International Conference on Applied Artificial Intelligence (ICAPAI). https://doi.org/10.1109/icapai49758.2021.9462056. https://doi.org/10.11091109%2Ficapai49758.2021.9462056 (2021). HayashiANomuraHMochizukiROhnumaAKimparaTOotomoKHosokaiYIshiokaTSuzukiKMoriENeural substrates for writing impairments in Japanese patients with mild Alzheimer’s disease: A SPECT studyNeuropsychologia20114971962196810.1016/j.neuropsychologia.2011.03.02421439989 ErdogmusPKabakusATThe promise of convolutional neural networks for the early diagnosis of the Alzheimer’s diseaseEng. Appl. Artif. Intell.202312310.1016/j.engappai.2023.106254 Höllig, J., Kulbach, C. & Thoma, S. TSInterpret: A unified framework for time series interpretability. https://doi.org/10.48550/arXiv.2208.05280 (2022). YuNYChangSHKinematic analyses of graphomotor functions in individuals with Alzheimer’s disease and amnestic mild cognitive impairmentJ. Med. Biol. Eng.201636333434310.1007/s40846-016-0143-y WachterSMittelstadtBRussellCCounterfactual explanations without opening the black box: Automated decisions and the GDPRHarv. J. Law Technol.201810.2139/ssrn.3063289 BaehrensDSchroeterTHarmelingSKawanabeMHansenKMllerK-RHow to explain individual classification decisionsJ. Mach. Learn. Res.201011180318312660653 AlbertMSDeKoskySTDicksonDDuboisBFeldmanHHFoxNCGamstAHoltzmanDMJagustWJPetersenRCSnyderPJCarrilloMCThiesBPhelpsCHThe diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s diseaseAlzheimer’s Dement.20117327027910.1016/j.jalz.2011.03.008 YanJHRountreeSMassmanPDoodyRSLiHAlzheimer’s disease and mild cognitive impairment deteriorate fine movement controlJ. Psychiatr. Res.200842141203121210.1016/j.jpsychires.2008.01.00618280503 Ismail, A. A., Gunady, M., Bravo, H. C. & Feizi, S. Benchmarking deep learning interpretability in time series predictions. In Proceedings of the 34th International Conference on Neural Information Processing Systems. NIPS’20 (Curran Associates Inc., 2020). MengHWagnerCTrigueroIExplaining time series classifiers through meaningful perturbation and optimisationInf. Sci.202364510.1016/j.ins.2023.119334 Almendra Freitas, C.O., El Yacoubi, A., Bortolozzi, F. & Sabourin, R. Brazilian bank check handwritten legal amount recognition. In Proceedings 13th Brazilian Symposium on Computer Graphics and Image Processing (Cat. No.PR00878). SIBGRA-00. https://doi.org/10.1109/sibgra.2000.883901 (IEEE Comput. Soc). De StefanoCFontanellaFImpedovoDPirloGScotto di FrecaAHandwriting analysis to support neurodegenerative diseases diagnosis: A reviewPattern Recognition Letters201912137452019PaReL.121...37D10.1016/j.patrec.2018.05.013Graphonomics for e-citizens: e-health, e-society, e-education El-Yacoubi, A., Sabourin, R., Gilloux, M. & Suen, C.Y. Improved model architecture and training phase in an off-line hmm-based word recognition system. In Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170) vol. 2, 1521–15252. https://doi.org/10.1109/ICPR.1998.711997 (1998). Rojat, T. et al. Explainable artificial intelligence (XAI) on timeseries data: A survey (2021). BuchmanASBennettDALoss of motor function in preclinical Alzheimer’s diseaseExpert Rev. Neurother.201111566567610.1586/ern.11.57215394873121966 Tonekaboni, S., Joshi, S., McCradden, M. D. & Goldenberg, A. What clinicians want: Contextualizing explainable machine learning for clinical end use. arXiv:1905.05134 (2019). MS Albert (72650_CR3) 2011; 7 MJ Slavin (72650_CR16) 1999; 5 72650_CR10 JH Yan (72650_CR5) 2008; 42 72650_CR12 72650_CR11 72650_CR33 72650_CR13 H Meng (72650_CR30) 2023; 645 A Hayashi (72650_CR4) 2011; 49 C Kahindo (72650_CR23) 2018 Q Dao (72650_CR7) 2023; 11 C De Stefano (72650_CR34) 2019; 121 W Jin (72650_CR31) 2023; 10 U Mitra (72650_CR9) 2024; 12 P Erdogmus (72650_CR8) 2023; 123 MA El-Yacoubi (72650_CR17) 2019; 86 NY Yu (72650_CR6) 2016; 36 D Baehrens (72650_CR32) 2010; 11 P Werner (72650_CR14) 2006; 61 72650_CR21 72650_CR20 D Impedovo (72650_CR19) 2019; 12 S Wachter (72650_CR29) 2018 N Mwamsojo (72650_CR18) 2022; 10 72650_CR22 AS Buchman (72650_CR2) 2011; 11 72650_CR25 H-L Teulings (72650_CR15) 1991; 10 72650_CR27 72650_CR26 CP Fernandes (72650_CR35) 2023; 96 72650_CR28 HI Fawaz (72650_CR24) 2019; 33 72650_CR1 |
References_xml | – reference: ErdogmusPKabakusATThe promise of convolutional neural networks for the early diagnosis of the Alzheimer’s diseaseEng. Appl. Artif. Intell.202312310.1016/j.engappai.2023.106254 – reference: De StefanoCFontanellaFImpedovoDPirloGScotto di FrecaAHandwriting analysis to support neurodegenerative diseases diagnosis: A reviewPattern Recognition Letters201912137452019PaReL.121...37D10.1016/j.patrec.2018.05.013Graphonomics for e-citizens: e-health, e-society, e-education – reference: FawazHIForestierGWeberJIdoumgharLMullerP-ADeep learning for time series classification: A reviewData Min. Knowl. Discov.2019334917963396203910.1007/s10618-019-00619-1 – reference: HayashiANomuraHMochizukiROhnumaAKimparaTOotomoKHosokaiYIshiokaTSuzukiKMoriENeural substrates for writing impairments in Japanese patients with mild Alzheimer’s disease: A SPECT studyNeuropsychologia20114971962196810.1016/j.neuropsychologia.2011.03.02421439989 – reference: SlavinMJPhillipsJGBradshawJLHallKAPresnellIConsistency of handwriting movements in dementia of the Alzheimer’s type: A comparison with Huntington’s and Parkinson’s diseasesJ. Int. Neuropsychol. Soc.19995120251:STN:280:DyaK1M7ktlGltw%3D%3D10.1017/s135561779951103x9989020 – reference: Hakan, Ö. A novel approach to detection of Alzheimer’s disease from handwriting: Triple ensemble learning model. Gazi Univ. J. Sci. Part C Des. Technol. 1–1 (2024). – reference: WachterSMittelstadtBRussellCCounterfactual explanations without opening the black box: Automated decisions and the GDPRHarv. J. Law Technol.201810.2139/ssrn.3063289 – reference: Höllig, J., Kulbach, C. & Thoma, S. TSInterpret: A unified framework for time series interpretability. https://doi.org/10.48550/arXiv.2208.05280 (2022). – reference: DaoQEl-YacoubiMARigaudA-SDetection of Alzheimer disease on online handwriting using 1d convolutional neural networkIEEE Access2023112148215510.1109/ACCESS.2022.3232396 – reference: BaehrensDSchroeterTHarmelingSKawanabeMHansenKMllerK-RHow to explain individual classification decisionsJ. Mach. Learn. Res.201011180318312660653 – reference: FernandesCPMontalvoGCaligiuriMPertsinakisMGuimarãesJHandwriting changes in Alzheimer’s disease: A systematic reviewJ. Alzheimers Dis.202396111110.3233/JAD-23043837718808 – reference: El-YacoubiMAGarcia-SalicettiSKahindoCRigaudA-SCristancho-LacroixVFrom aging to early-stage Alzheimer’s: Uncovering handwriting multimodal behaviors by semi-supervised learning and sequential representation learningPattern Recognit.2019861121332019PatRe..86..112E10.1016/j.patcog.2018.07.029 – reference: AlbertMSDeKoskySTDicksonDDuboisBFeldmanHHFoxNCGamstAHoltzmanDMJagustWJPetersenRCSnyderPJCarrilloMCThiesBPhelpsCHThe diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s diseaseAlzheimer’s Dement.20117327027910.1016/j.jalz.2011.03.008 – reference: JinWLiXFatehiMHamarnehGGenerating post-hoc explanation from deep neural networks for multi-modal medical image analysis tasksMethodsX20231010.1016/j.mex.2023.102009367936769922805 – reference: ImpedovoDPirloGDynamic handwriting analysis for the assessment of neurodegenerative diseases: A pattern recognition perspectiveIEEE Rev. Biomed. Eng.20191220922010.1109/RBME.2018.284067929993722 – reference: KahindoCEl YacoubiMGarcia-SalicettiSRigaudA-SCristancho-LacroixVCharacterizing early-stage Alzheimer through spatiotemporal dynamics of handwritingIEEE Signal Process. Lett.201810.1109/LSP.2018.2794500 – reference: Rojat, T. et al. Explainable artificial intelligence (XAI) on timeseries data: A survey (2021). – reference: MwamsojoNLehmannFEl-YacoubiMAMerghemKFrignacYBenkelfatB-ERigaudA-SReservoir computing for early stage Alzheimer’s disease detectionIEEE Access202210598215983110.1109/access.2022.3180045 – reference: World Health Organization. Dementia Fact Sheet. https://www.who.int/news-room/fact-sheets/detail/dementia (2023). – reference: American Psychiatric Association. DSM-5 Task Force: Diagnostic and Statistical Manual of Mental Disorders: DSM-5™ 5th edn. https://doi.org/10.1176/appi.books.9780890425596 (2013). – reference: BuchmanASBennettDALoss of motor function in preclinical Alzheimer’s diseaseExpert Rev. Neurother.201111566567610.1586/ern.11.57215394873121966 – reference: YuNYChangSHKinematic analyses of graphomotor functions in individuals with Alzheimer’s disease and amnestic mild cognitive impairmentJ. Med. Biol. Eng.201636333434310.1007/s40846-016-0143-y – reference: WernerPRosenblumSBar-OnGHeinikJKorczynAHandwriting process variables discriminating mild Alzheimer’s disease and mild cognitive impairmentJ. Gerontol. Psychol. Sci.200661422823610.1093/geronb/61.4.P228 – reference: El-Yacoubi, A., Sabourin, R., Gilloux, M. & Suen, C. Y. Off-line handwritten word recognition using hidden markovmodels. In Knowledge-based intelligent techniques in character recognition (eds. Jain L.C. & Lazzerini B.) 191–229 (CRC Press, 1999). – reference: MitraURehmanSUMl-powered handwriting analysis for early detection of Alzheimer’s diseaseIEEE Access202412690316905010.1109/ACCESS.2024.3401104 – reference: Almendra Freitas, C.O., El Yacoubi, A., Bortolozzi, F. & Sabourin, R. Brazilian bank check handwritten legal amount recognition. In Proceedings 13th Brazilian Symposium on Computer Graphics and Image Processing (Cat. No.PR00878). SIBGRA-00. https://doi.org/10.1109/sibgra.2000.883901 (IEEE Comput. Soc). – reference: TeulingsH-LStelmachGEControl of stroke size, peak acceleration, and stroke duration in parkinsonian handwritingHum. Mov. Sci.1991102–331533410.1016/0167-9457(91)90010-U – reference: El-Yacoubi, A., Sabourin, R., Gilloux, M. & Suen, C.Y. Improved model architecture and training phase in an off-line hmm-based word recognition system. In Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170) vol. 2, 1521–15252. https://doi.org/10.1109/ICPR.1998.711997 (1998). – reference: Tonekaboni, S., Joshi, S., McCradden, M. D. & Goldenberg, A. What clinicians want: Contextualizing explainable machine learning for clinical end use. arXiv:1905.05134 (2019). – reference: MengHWagnerCTrigueroIExplaining time series classifiers through meaningful perturbation and optimisationInf. Sci.202364510.1016/j.ins.2023.119334 – reference: YanJHRountreeSMassmanPDoodyRSLiHAlzheimer’s disease and mild cognitive impairment deteriorate fine movement controlJ. Psychiatr. Res.200842141203121210.1016/j.jpsychires.2008.01.00618280503 – reference: . Ates, E., Aksar, B., Leung, V. J. & Coskun, A. K. Counterfactual explanations for multivariate time series. In 2021 International Conference on Applied Artificial Intelligence (ICAPAI). https://doi.org/10.1109/icapai49758.2021.9462056. https://doi.org/10.11091109%2Ficapai49758.2021.9462056 (2021). – reference: Shrikumar, A., Greenside, P., Shcherbina, A. & Kundaje, A. Not just a black box: Learning important features through propagating activation differences (2017). – reference: Ismail, A. A., Gunady, M., Bravo, H. C. & Feizi, S. Benchmarking deep learning interpretability in time series predictions. In Proceedings of the 34th International Conference on Neural Information Processing Systems. NIPS’20 (Curran Associates Inc., 2020). – reference: Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems (eds. Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R.) vol. 30, 4765–4774. http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf (2017). – volume: 11 start-page: 2148 year: 2023 ident: 72650_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3232396 – ident: 72650_CR22 doi: 10.1109/ICPR.1998.711997 – volume: 12 start-page: 209 year: 2019 ident: 72650_CR19 publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2018.2840679 – volume: 121 start-page: 37 year: 2019 ident: 72650_CR34 publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2018.05.013 – ident: 72650_CR1 – ident: 72650_CR28 doi: 10.1176/appi.books.9780890425596 – ident: 72650_CR25 – ident: 72650_CR27 doi: 10.48550/arXiv.2208.05280 – volume: 61 start-page: 228 issue: 4 year: 2006 ident: 72650_CR14 publication-title: J. Gerontol. Psychol. Sci. doi: 10.1093/geronb/61.4.P228 – volume: 42 start-page: 1203 issue: 14 year: 2008 ident: 72650_CR5 publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2008.01.006 – ident: 72650_CR11 – volume: 36 start-page: 334 issue: 3 year: 2016 ident: 72650_CR6 publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-016-0143-y – volume: 12 start-page: 69031 year: 2024 ident: 72650_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3401104 – volume: 33 start-page: 917 issue: 4 year: 2019 ident: 72650_CR24 publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-019-00619-1 – volume: 11 start-page: 665 issue: 5 year: 2011 ident: 72650_CR2 publication-title: Expert Rev. Neurother. doi: 10.1586/ern.11.57 – year: 2018 ident: 72650_CR23 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2018.2794500 – volume: 645 year: 2023 ident: 72650_CR30 publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.119334 – volume: 123 year: 2023 ident: 72650_CR8 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106254 – ident: 72650_CR26 – volume: 10 start-page: 315 issue: 2–3 year: 1991 ident: 72650_CR15 publication-title: Hum. Mov. Sci. doi: 10.1016/0167-9457(91)90010-U – volume: 96 start-page: 1 issue: 1 year: 2023 ident: 72650_CR35 publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-230438 – volume: 10 start-page: 59821 year: 2022 ident: 72650_CR18 publication-title: IEEE Access doi: 10.1109/access.2022.3180045 – volume: 7 start-page: 270 issue: 3 year: 2011 ident: 72650_CR3 publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2011.03.008 – ident: 72650_CR20 doi: 10.1109/sibgra.2000.883901 – volume: 11 start-page: 1803 year: 2010 ident: 72650_CR32 publication-title: J. Mach. Learn. Res. – ident: 72650_CR12 – ident: 72650_CR10 – volume: 5 start-page: 20 issue: 1 year: 1999 ident: 72650_CR16 publication-title: J. Int. Neuropsychol. Soc. doi: 10.1017/s135561779951103x – ident: 72650_CR13 doi: 10.1109/icapai49758.2021.9462056 – volume: 10 year: 2023 ident: 72650_CR31 publication-title: MethodsX doi: 10.1016/j.mex.2023.102009 – ident: 72650_CR33 – volume: 49 start-page: 1962 issue: 7 year: 2011 ident: 72650_CR4 publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2011.03.024 – year: 2018 ident: 72650_CR29 publication-title: Harv. J. Law Technol. doi: 10.2139/ssrn.3063289 – volume: 86 start-page: 112 year: 2019 ident: 72650_CR17 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.07.029 – ident: 72650_CR21 doi: 10.1201/9781003069379-9 |
SSID | ssj0000529419 |
Score | 2.4889972 |
Snippet | With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer’s disease is a prevalent and challenging... With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer's disease is a prevalent and challenging... Abstract With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer’s disease is a prevalent and... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 22108 |
SubjectTerms | 1D-CNN 639/705 692/308 692/53 692/699 Aged Aged, 80 and over Alzheimer Disease - diagnosis Alzheimer Disease - physiopathology Alzheimer's disease Artificial Intelligence Computer Science Deep Learning Dementia disorders Disease detection Explainability Female Handwriting Humanities and Social Sciences Humans Learning algorithms Life Sciences Machine Learning Male Middle Aged multidisciplinary Neural networks Neural Networks, Computer Neurodegenerative diseases Neurons and Cognition Online handwriting Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELaqSki9IP5aAgUZ1Bu1urGdxD4uFdUKwV5Kpd4sxz9spZJF3S2onHgNXo8nYcbOLk0r4MI1cRx7PM43kxl_Q8iehXVVVkqG9FhMet8yy4VnTllR1q5tVEBH8f20npzIt6fV6bVSX5gTlumBs-AOAG5TPWwfXSvbMmpRR0Bp7y1XrlGJvRQw75ozlVm9uZal7k_JjIQ6WEjsiQEksYaDWcL4AIkSYT_gywzTIW_bmrdTJm_ETRMcHd0jd3s7ko7z-O-TjdA9IHdyZcmrh-QYc-vSwSjMfb2i80gPp1OGmOXp-PzbLJx9Chc_v_9Y0D5EQ31YprSsjuKRE5opNCj-WP-KxEfdx0fk5OjNh8MJ6-snMAdG2JLBd64FCHcVmIQw4ya23kotWrDBKh6F1cj95RptVfQVTE2Bm-xKjHxGKazTYptsdvMuPCaUayx4F2rwpoKELpWqvBaxjCMXKlnXBSlXsjSuJxfHGhfnJgW5hTJZ_gbkb5L8DS_Iq_UznzO1xl9bv8YlWrdEWux0AZTF9Mpi_qUsBXkJCzzoYzJ-Z_DaCPlQwbb6UhZkd7X-pt_QCyNKLIjcaAUDebG-DVsR4yu2C_PL3AYLgVWjguxkdVm_SmghRK2gczVQpMFYhne6s1mi-waPFZ8UBdlf6dzvcf1ZYE_-h8Ceki2OWwbDcM0u2VxeXIZnYIUt2-dpw_0CO40qRQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagCIkL4p9AQQZxA6sb20nsE1oqqhWCvUClvVmO7XQrlaTsbkHlxGvwejwJM443VajoNf6JPePxjD3jbwh5ZYGvykrJEB6LSe9rZrnwzCkr8tLVlQp4UPw0L2eH8sOiWKQLt3UKq9zuiXGj9p3DO_I9kWNG2kor_vb0G8OsUehdTSk0rpMbCF2GIV3VohruWNCLJXOd3spMhNpbg77CN2VcsoqDccL4SB9F2H7QMksMirxscV4OnPzHexqV0sEdcjtZk3Tas_8uuRbae-Rmn1_y_D75jBF28XkURsCe066h-_M5Q83l6fTk5zIcfw2rP79-r2ly1FAfNjE4q6X48IT2QBoUr9d_IPxRe_SAHB68_7I_YymLAnNgim0Y7HY1KHJXgGEIM66a2lupRQ2WWMEbYTUigLlKW9X4Aqam4LDscvR_NlJYp8VDstN2bXhMKNeY9i6UcKYKErpUqvBaNHkzcaGQZZmRfEtL4xLEOGa6ODHR1S2U6elvgP4m0t_wjLwe2pz2ABtX1n6HLBpqIjh2_NCtjkySNYONMIW6b1wt67zRomzAsPPecuUqVWTkJTB41Mds-tHgtwmiooKF9T3PyO6W_yaJ9dpcLMKMvBiKQSDRy2Lb0J31dTAdWDHJyKN-uQy_EloIUSroXI0W0mgs45L2eBlBv-Hcii1FRt5s19zFuP5PsCdXT-MpucVRGNDNVu2Snc3qLDwDK2tTP4-i9Bdl6CHa priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqVkhcEG8CBRnEDSw2tpPYx2VFtUKwF6jUm-X40a1Usmh3Cyqn_o3-PX5JZ5wHCgUkrvEj9njsGXtmviHkpYV1VVZKhvBYTHpfM8uFZ05ZkZeurlTAi-LHRTk_lO-PiqMdwvtYmOS0nyAt0zHde4e92YCgwWAwLlnFQatgcOzuIXQ7cvWsnA3vKmi5krnu4mMmQv2h6UgGJah-kCxLdIS8rmVed5b8zWKaBNHBbXKr0yDptB3zHbITmrvkRptT8vwe-YRedSkkCr1ez-kq0tliwVBaeTo9_bEMJ1_C-ufF5YZ2xhnqwzY5ZDUUg01oC55B8Un9O0IeNcf3yeHBu8-zOesyJzAH6teWwQlXg_B2BSiDMOMq1t5KLWrQvgoehdWI-uUqbVX0BUwNCMldjjbPKIV1Wjwgu82qCY8I5RpT3YUS7lFBQpdKFV6LmMeJC4Usy4zkPS2N62DFMbvFqUnmbaFMS38D9DeJ_oZn5NXQ5msLqvHP2m9xiYaaCIidPqzWx6ZjEIONMG26j66WdR61KCMoc95brlylioy8gAUe9TGffjD4bYJIqKBVfcszst-vv-m28saIHFMhV1rBQJ4PxbAJ0bJim7A6a-tgCrBikpGHLbsMvxJaCFEq6FyNGGk0lnFJc7JMQN9wV8WWIiOve577Na6_E-zx_1V_Qm5y3Bxoaqv2ye52fRaegqa1rZ-lrXUFY5Efpg priority: 102 providerName: Springer Nature |
Title | Explainability of CNN-based Alzheimer’s disease detection from online handwriting |
URI | https://link.springer.com/article/10.1038/s41598-024-72650-2 https://www.ncbi.nlm.nih.gov/pubmed/39333681 https://www.proquest.com/docview/3110577982 https://www.proquest.com/docview/3110731650 https://hal.science/hal-04827554 https://pubmed.ncbi.nlm.nih.gov/PMC11436813 https://doaj.org/article/15987959dfcb4b1f936f560dda28c785 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJiReEN9kjMogJB7A0MRO7DwglFWbqopVfFXqm5XYzjqppKPtgPLXc-ckRWED8RTJsR3n7Mv9Lmf_jpBnOcyryoVgSI_FhLUFyyNumVE5DxNTSOXQUTwZJ8OJGE3j6Q5p0x01Alxd6dphPqnJcv7qx9fNW1D4N_WRcfV6BUYID4pFgskIEAeDT_IeWCaJinrSwP2a6ztKhc_1gSTsDMBE1Jyjubqbjq3ylP5ggWa4YfIyGr28qfKPyKo3WMe3yM0GadKsXhq3yY6r7pDrde7JzV3yAXff-aNTuDt2QxclHYzHDK2apdn858ydfXHL5yvahHCodWu_bauieCSF1hQbFH-8f0dipOr0HpkcH30eDFmTX4EZAGlrBt_BAky8iQEywvvKsrC5SHkBGC2OSp6nyA1mZJqr0sbwYgrcaBNiZLQUPDcpv092q0XlHhIapZgQzyXgbTkBXSoV25SXYdk3LhZJEpCwlaQ2Dfk45sCYax8E50rX0tcgfe2lr6OAvNi2Oa-pN_5Z-xAnaFsTabN9wWJ5qhst1NgIk6vb0hSiCMuUJyVAPmvzSBmp4oA8hent9DHM3mks6yNfKmCvb2FADtrZ1-161TzEhMkyVTCQJ9vboKoYf8krt7io62CisLgfkAf1Ytk-iqec80RB56qzjDpj6d6pzmaeDhw8WmzJA_KyXXG_x_V3ge3_xzgfkRsR6gNG4eQB2V0vL9xjAGHrokeuyanskb0sG30awfXwaPz-I5QOkkHP_9joed37BbrvLNo |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFS1QnBBvDEUWBCcYNV4d22vDwilpVVK0whBK_W22LvrplJxSpJShRO_wU_wUXwJM36kChW99ep92J737MzOALzMEK86U4pTeSyunMt5JqTjVmcyjG2eaE-O4u4g7u2rDwfRwRL8bu_CUFplKxMrQe1Gls7I12RIHWmTVIt3J984dY2i6GrbQqMmix0_O0OXbfJ2-z3i95UQW5t7Gz3edBXgFk2TKUfuz1Gx2QgNJTRPkiJ3mUpljpZJJAqZpVQRyyZppgsXeWc1Oo82pHhgoWRmqfgSivwVJdGVWYaV9c3Bx0_zUx2Km6kwbW7ndKRem6CGpFtsQvFE4Pu4WNCAVaMA1GtDSsO8aONeTNX8J15bqcGtW3CzsV9Ztya427Dkyztwre5oObsLnymnr7qQRTm3MzYq2MZgwElXOtY9_jH0R1_9-M_PXxPWhIaY89MqHaxkdNWF1aU7GB3on1HBpfLwHuxfCYTvw3I5Kv1DYCKlRns-Ri_OK9xS68ilsgiLjvWRiuMAwhaWxjZFzam3xrGpgutSmxr-BuFvKvgbEcDr-ZqTuqTHpbPXCUXzmVSOu3owGh-ahrsNLaKm7a6wucrDIpVxgaakc5nQNtFRAC8QwQt79Lp9Q886VIcVbbrvYQCrLf5NI0gm5pzsA3g-H0YRQHGdrPSj03oONSCLOgE8qMll_iqZSiljjZvrBUJa-JbFkfJoWJUZR0-ZVsoA3rQ0d_5d_wfYo8t_4xlc7-3t9k1_e7DzGG4IYgwK8iWrsDwdn_onaONN86cNYzH4ctW8_BeBwl5X |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFUVgbgg3hgKLAhOsEq8u7bXB4RCS5TSEiFBpdy29j6aSsUuSUoVTvwGv8Ln8CXM-FWFit569T5sz3t2ZmcIeZEBXlUmJcPyWExam7OMC8uMykQYmzxRDh3Fj-N4tCc_TKLJGvnd3oXBtMpWJlaC2pYGz8h7IsSOtEmqeM83aRGftoZvj78x7CCFkda2nUZNIjtueQru2_zN9hbg-iXnw_dfNkes6TDADJgpCwaSIAclZyIwmsBUSXxuM5mKHKyUiHuRpVgdyyRppryNnDUKHEkTYmzQS5EZLMQE4v9KIqIQeSyZJN35DkbQZJg293T6QvXmoCvxPhuXLOHwNsZXdGHVMgA03BQTMs9bu-eTNv-J3FYKcXiT3GgsWTqoSe8WWXPFbXK17m25vEM-Y3ZfdTULs2-XtPR0czxmqDUtHRz9mLrDr2725-evOW2CRNS6RZUYVlC89ELrIh4Uj_ZPsfRScXCX7F0KfO-R9aIs3ANCeYot91wM_pyTsKVSkU2FD33fuEjGcUDCFpbaNOXNscvGka7C7ELpGv4a4K8r-GsekFfdmuO6uMeFs98hirqZWJi7elDODnTD5xoXYft2600u89CnIvZgVFqbcWUSFQXkOSB4ZY_RYFfjsz5WZAXr7nsYkI0W_7oRKXN9xgABedYNgzDACE9WuPKknoOtyKJ-QO7X5NK9SqRCiFjB5mqFkFa-ZXWkOJxWBcfBZ8aVIiCvW5o7-67_A-zhxb_xlFwDDta72-OdR-Q6R77AaF-yQdYXsxP3GIy9Rf6k4ipK9i-bjf8CJu5hJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainability+of+CNN-based+Alzheimer%27s+disease+detection+from+online+handwriting&rft.jtitle=Scientific+reports&rft.au=Sweidan%2C+Jana&rft.au=El-Yacoubi%2C+Mounim+A&rft.au=Rigaud%2C+Anne-Sophie&rft.date=2024-09-27&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=22108&rft_id=info:doi/10.1038%2Fs41598-024-72650-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |