Explainability of CNN-based Alzheimer’s disease detection from online handwriting

With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer’s disease is a prevalent and challenging neurodegenerative disorder. Despite significant advancements in machine learning techniques for Alzheimer’s disease detection, the widesprea...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 22108 - 13
Main Authors Sweidan, Jana, El-Yacoubi, Mounim A., Rigaud, Anne-Sophie
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.09.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer’s disease is a prevalent and challenging neurodegenerative disorder. Despite significant advancements in machine learning techniques for Alzheimer’s disease detection, the widespread adoption of deep learning models raises concerns about their explainability. The lack of explainability in deep learning models for online handwriting analysis is a critical gap in the literature in the context of Alzheimer’s disease detection. This paper addresses this challenge by interpreting predictions from a Convolutional Neural Network applied to multivariate time series data, generated by online handwriting data associated with continuous loop series handwritten on a graphical tablet. Our explainability methods reveal distinct motor behavior characteristics for healthy individuals and those diagnosed with Alzheimer’s. Healthy subjects exhibited consistent, smooth movements, while Alzheimer’s patients demonstrated erratic patterns marked by abrupt stops and direction changes. This emphasizes the critical role of explainability in translating complex models into clinically relevant insights. Our research contributes to the enhancement of early diagnosis, providing significant and reliable insights to stakeholders involved in patient care and intervention strategies. Our work bridges the gap between machine learning predictions and clinical insights, fostering a more effective and understandable application of advanced models for Alzheimer’s disease assessment.
AbstractList With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer’s disease is a prevalent and challenging neurodegenerative disorder. Despite significant advancements in machine learning techniques for Alzheimer’s disease detection, the widespread adoption of deep learning models raises concerns about their explainability. The lack of explainability in deep learning models for online handwriting analysis is a critical gap in the literature in the context of Alzheimer’s disease detection. This paper addresses this challenge by interpreting predictions from a Convolutional Neural Network applied to multivariate time series data, generated by online handwriting data associated with continuous loop series handwritten on a graphical tablet. Our explainability methods reveal distinct motor behavior characteristics for healthy individuals and those diagnosed with Alzheimer’s. Healthy subjects exhibited consistent, smooth movements, while Alzheimer’s patients demonstrated erratic patterns marked by abrupt stops and direction changes. This emphasizes the critical role of explainability in translating complex models into clinically relevant insights. Our research contributes to the enhancement of early diagnosis, providing significant and reliable insights to stakeholders involved in patient care and intervention strategies. Our work bridges the gap between machine learning predictions and clinical insights, fostering a more effective and understandable application of advanced models for Alzheimer’s disease assessment.
With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer's disease is a prevalent and challenging neurodegenerative disorder. Despite significant advancements in machine learning techniques for Alzheimer's disease detection, the widespread adoption of deep learning models raises concerns about their explainability. The lack of explainability in deep learning models for online handwriting analysis is a critical gap in the literature in the context of Alzheimer's disease detection. This paper addresses this challenge by interpreting predictions from a Convolutional Neural Network applied to multivariate time series data, generated by online handwriting data associated with continuous loop series handwritten on a graphical tablet. Our explainability methods reveal distinct motor behavior characteristics for healthy individuals and those diagnosed with Alzheimer's. Healthy subjects exhibited consistent, smooth movements, while Alzheimer's patients demonstrated erratic patterns marked by abrupt stops and direction changes. This emphasizes the critical role of explainability in translating complex models into clinically relevant insights. Our research contributes to the enhancement of early diagnosis, providing significant and reliable insights to stakeholders involved in patient care and intervention strategies. Our work bridges the gap between machine learning predictions and clinical insights, fostering a more effective and understandable application of advanced models for Alzheimer's disease assessment.With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer's disease is a prevalent and challenging neurodegenerative disorder. Despite significant advancements in machine learning techniques for Alzheimer's disease detection, the widespread adoption of deep learning models raises concerns about their explainability. The lack of explainability in deep learning models for online handwriting analysis is a critical gap in the literature in the context of Alzheimer's disease detection. This paper addresses this challenge by interpreting predictions from a Convolutional Neural Network applied to multivariate time series data, generated by online handwriting data associated with continuous loop series handwritten on a graphical tablet. Our explainability methods reveal distinct motor behavior characteristics for healthy individuals and those diagnosed with Alzheimer's. Healthy subjects exhibited consistent, smooth movements, while Alzheimer's patients demonstrated erratic patterns marked by abrupt stops and direction changes. This emphasizes the critical role of explainability in translating complex models into clinically relevant insights. Our research contributes to the enhancement of early diagnosis, providing significant and reliable insights to stakeholders involved in patient care and intervention strategies. Our work bridges the gap between machine learning predictions and clinical insights, fostering a more effective and understandable application of advanced models for Alzheimer's disease assessment.
Abstract With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer’s disease is a prevalent and challenging neurodegenerative disorder. Despite significant advancements in machine learning techniques for Alzheimer’s disease detection, the widespread adoption of deep learning models raises concerns about their explainability. The lack of explainability in deep learning models for online handwriting analysis is a critical gap in the literature in the context of Alzheimer’s disease detection. This paper addresses this challenge by interpreting predictions from a Convolutional Neural Network applied to multivariate time series data, generated by online handwriting data associated with continuous loop series handwritten on a graphical tablet. Our explainability methods reveal distinct motor behavior characteristics for healthy individuals and those diagnosed with Alzheimer’s. Healthy subjects exhibited consistent, smooth movements, while Alzheimer’s patients demonstrated erratic patterns marked by abrupt stops and direction changes. This emphasizes the critical role of explainability in translating complex models into clinically relevant insights. Our research contributes to the enhancement of early diagnosis, providing significant and reliable insights to stakeholders involved in patient care and intervention strategies. Our work bridges the gap between machine learning predictions and clinical insights, fostering a more effective and understandable application of advanced models for Alzheimer’s disease assessment.
ArticleNumber 22108
Author Sweidan, Jana
Rigaud, Anne-Sophie
El-Yacoubi, Mounim A.
Author_xml – sequence: 1
  givenname: Jana
  surname: Sweidan
  fullname: Sweidan, Jana
  organization: Samovar/Télécom SudParis, Institut Polytechnique de Paris
– sequence: 2
  givenname: Mounim A.
  surname: El-Yacoubi
  fullname: El-Yacoubi, Mounim A.
  email: mounim.el_yacoubi@telecom-sudparis.eu
  organization: Samovar/Télécom SudParis, Institut Polytechnique de Paris
– sequence: 3
  givenname: Anne-Sophie
  surname: Rigaud
  fullname: Rigaud, Anne-Sophie
  organization: AP-HP, Groupe Hospitalier Cochin Paris Centre, Hôpital Broca, Pôle Gérontologie, Université Paris Descartes
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39333681$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04827554$$DView record in HAL
BookMark eNp9UstuFDEQHKEgEkJ-gAMaiQscBvwc2ye0WgUSaRUOwNny-LHr1ay92LMJ4cRv8Ht8CZ5MAske4outdlV1d3U_rw5CDLaqXkLwDgLM32cCqeANQKRhqKWgQU-qIwQIbRBG6ODe-7A6yXkNyqFIECieVYdYYIxbDo-qL6c_tr3yQXW-98N1HV09v7hoOpWtqWf9z5X1G5v-_Pqda-OzLeHa2MHqwcdQuxQ3dQy9D7ZeqWCukh98WL6onjrVZ3tyex9X3z6efp2fNYvPn87ns0WjKaNDw1rUAQQ1BQiUBpjrjCICdwS2FDmsBMcAaSYUd4ZaozkjSEPEGXAEKy3wcXU-6Zqo1nKb_EalaxmVlzeBmJZSpcHr3srRKyaoME53pINO4NbRFhijENeM06L1YdLa7rpNSWbDkFT_QPThT_AruYyXEkIyOomLwttJYbXHO5st5BgDhCNGKbmEBfvmNluK33c2D3Ljs7Z9r4KNuywxhIDh4gMo0Nd70HXcpVB8vUFRxgRHBfXqfvn_8t8NugD4BNAp5pysk9oPapxi6cb3EgI5rpWc1kqWtZI3ayVHbbRHvVN_lIQnUi7gsLTpf9mPsP4CZGXduA
CitedBy_id crossref_primary_10_1002_qua_70006
crossref_primary_10_1007_s42486_024_00170_z
Cites_doi 10.1109/ACCESS.2022.3232396
10.1109/ICPR.1998.711997
10.1109/RBME.2018.2840679
10.1016/j.patrec.2018.05.013
10.1176/appi.books.9780890425596
10.48550/arXiv.2208.05280
10.1093/geronb/61.4.P228
10.1016/j.jpsychires.2008.01.006
10.1007/s40846-016-0143-y
10.1109/ACCESS.2024.3401104
10.1007/s10618-019-00619-1
10.1586/ern.11.57
10.1109/LSP.2018.2794500
10.1016/j.ins.2023.119334
10.1016/j.engappai.2023.106254
10.1016/0167-9457(91)90010-U
10.3233/JAD-230438
10.1109/access.2022.3180045
10.1016/j.jalz.2011.03.008
10.1109/sibgra.2000.883901
10.1017/s135561779951103x
10.1109/icapai49758.2021.9462056
10.1016/j.mex.2023.102009
10.1016/j.neuropsychologia.2011.03.024
10.2139/ssrn.3063289
10.1016/j.patcog.2018.07.029
10.1201/9781003069379-9
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution - NonCommercial - NoDerivatives
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution - NonCommercial - NoDerivatives
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.1038/s41598-024-72650-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_15987959dfcb4b1f936f560dda28c785
PMC11436813
oai_HAL_hal_04827554v1
39333681
10_1038_s41598_024_72650_2
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c575t-762b021c50206507fbda493b41652f3a98302c79a8fd5edc8742c12870f43ac93
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:21:23 EDT 2025
Thu Aug 21 18:31:23 EDT 2025
Fri May 09 12:25:02 EDT 2025
Fri Jul 11 07:05:16 EDT 2025
Wed Aug 13 07:02:35 EDT 2025
Mon Jul 21 05:56:44 EDT 2025
Thu Apr 24 23:09:40 EDT 2025
Tue Jul 01 03:23:02 EDT 2025
Fri Feb 21 02:37:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 1D-CNN
Online handwriting
Alzheimer’s disease
Explainability
Alzheimer's disease
Alzheimer's disease Online handwriting 1D-CNN Explainability
Language English
License 2024. The Author(s).
Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-762b021c50206507fbda493b41652f3a98302c79a8fd5edc8742c12870f43ac93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7383-0588
OpenAccessLink https://doaj.org/article/15987959dfcb4b1f936f560dda28c785
PMID 39333681
PQID 3110577982
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_15987959dfcb4b1f936f560dda28c785
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11436813
hal_primary_oai_HAL_hal_04827554v1
proquest_miscellaneous_3110731650
proquest_journals_3110577982
pubmed_primary_39333681
crossref_citationtrail_10_1038_s41598_024_72650_2
crossref_primary_10_1038_s41598_024_72650_2
springer_journals_10_1038_s41598_024_72650_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-27
PublicationDateYYYYMMDD 2024-09-27
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References MitraURehmanSUMl-powered handwriting analysis for early detection of Alzheimer’s diseaseIEEE Access202412690316905010.1109/ACCESS.2024.3401104
JinWLiXFatehiMHamarnehGGenerating post-hoc explanation from deep neural networks for multi-modal medical image analysis tasksMethodsX20231010.1016/j.mex.2023.102009367936769922805
Shrikumar, A., Greenside, P., Shcherbina, A. & Kundaje, A. Not just a black box: Learning important features through propagating activation differences (2017).
MwamsojoNLehmannFEl-YacoubiMAMerghemKFrignacYBenkelfatB-ERigaudA-SReservoir computing for early stage Alzheimer’s disease detectionIEEE Access202210598215983110.1109/access.2022.3180045
WernerPRosenblumSBar-OnGHeinikJKorczynAHandwriting process variables discriminating mild Alzheimer’s disease and mild cognitive impairmentJ. Gerontol. Psychol. Sci.200661422823610.1093/geronb/61.4.P228
SlavinMJPhillipsJGBradshawJLHallKAPresnellIConsistency of handwriting movements in dementia of the Alzheimer’s type: A comparison with Huntington’s and Parkinson’s diseasesJ. Int. Neuropsychol. Soc.19995120251:STN:280:DyaK1M7ktlGltw%3D%3D10.1017/s135561779951103x9989020
FawazHIForestierGWeberJIdoumgharLMullerP-ADeep learning for time series classification: A reviewData Min. Knowl. Discov.2019334917963396203910.1007/s10618-019-00619-1
El-Yacoubi, A., Sabourin, R., Gilloux, M. & Suen, C. Y. Off-line handwritten word recognition using hidden markovmodels. In Knowledge-based intelligent techniques in character recognition (eds. Jain L.C. & Lazzerini B.) 191–229 (CRC Press, 1999).
KahindoCEl YacoubiMGarcia-SalicettiSRigaudA-SCristancho-LacroixVCharacterizing early-stage Alzheimer through spatiotemporal dynamics of handwritingIEEE Signal Process. Lett.201810.1109/LSP.2018.2794500
El-YacoubiMAGarcia-SalicettiSKahindoCRigaudA-SCristancho-LacroixVFrom aging to early-stage Alzheimer’s: Uncovering handwriting multimodal behaviors by semi-supervised learning and sequential representation learningPattern Recognit.2019861121332019PatRe..86..112E10.1016/j.patcog.2018.07.029
ImpedovoDPirloGDynamic handwriting analysis for the assessment of neurodegenerative diseases: A pattern recognition perspectiveIEEE Rev. Biomed. Eng.20191220922010.1109/RBME.2018.284067929993722
TeulingsH-LStelmachGEControl of stroke size, peak acceleration, and stroke duration in parkinsonian handwritingHum. Mov. Sci.1991102–331533410.1016/0167-9457(91)90010-U
Hakan, Ö. A novel approach to detection of Alzheimer’s disease from handwriting: Triple ensemble learning model. Gazi Univ. J. Sci. Part C Des. Technol. 1–1 (2024).
FernandesCPMontalvoGCaligiuriMPertsinakisMGuimarãesJHandwriting changes in Alzheimer’s disease: A systematic reviewJ. Alzheimers Dis.202396111110.3233/JAD-23043837718808
American Psychiatric Association. DSM-5 Task Force: Diagnostic and Statistical Manual of Mental Disorders: DSM-5™ 5th edn. https://doi.org/10.1176/appi.books.9780890425596 (2013).
Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems (eds. Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R.) vol. 30, 4765–4774. http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf (2017).
World Health Organization. Dementia Fact Sheet. https://www.who.int/news-room/fact-sheets/detail/dementia (2023).
DaoQEl-YacoubiMARigaudA-SDetection of Alzheimer disease on online handwriting using 1d convolutional neural networkIEEE Access2023112148215510.1109/ACCESS.2022.3232396
Ates, E., Aksar, B., Leung, V. J. & Coskun, A. K. Counterfactual explanations for multivariate time series. In 2021 International Conference on Applied Artificial Intelligence (ICAPAI). https://doi.org/10.1109/icapai49758.2021.9462056. https://doi.org/10.11091109%2Ficapai49758.2021.9462056 (2021).
HayashiANomuraHMochizukiROhnumaAKimparaTOotomoKHosokaiYIshiokaTSuzukiKMoriENeural substrates for writing impairments in Japanese patients with mild Alzheimer’s disease: A SPECT studyNeuropsychologia20114971962196810.1016/j.neuropsychologia.2011.03.02421439989
ErdogmusPKabakusATThe promise of convolutional neural networks for the early diagnosis of the Alzheimer’s diseaseEng. Appl. Artif. Intell.202312310.1016/j.engappai.2023.106254
Höllig, J., Kulbach, C. & Thoma, S. TSInterpret: A unified framework for time series interpretability. https://doi.org/10.48550/arXiv.2208.05280 (2022).
YuNYChangSHKinematic analyses of graphomotor functions in individuals with Alzheimer’s disease and amnestic mild cognitive impairmentJ. Med. Biol. Eng.201636333434310.1007/s40846-016-0143-y
WachterSMittelstadtBRussellCCounterfactual explanations without opening the black box: Automated decisions and the GDPRHarv. J. Law Technol.201810.2139/ssrn.3063289
BaehrensDSchroeterTHarmelingSKawanabeMHansenKMllerK-RHow to explain individual classification decisionsJ. Mach. Learn. Res.201011180318312660653
AlbertMSDeKoskySTDicksonDDuboisBFeldmanHHFoxNCGamstAHoltzmanDMJagustWJPetersenRCSnyderPJCarrilloMCThiesBPhelpsCHThe diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s diseaseAlzheimer’s Dement.20117327027910.1016/j.jalz.2011.03.008
YanJHRountreeSMassmanPDoodyRSLiHAlzheimer’s disease and mild cognitive impairment deteriorate fine movement controlJ. Psychiatr. Res.200842141203121210.1016/j.jpsychires.2008.01.00618280503
Ismail, A. A., Gunady, M., Bravo, H. C. & Feizi, S. Benchmarking deep learning interpretability in time series predictions. In Proceedings of the 34th International Conference on Neural Information Processing Systems. NIPS’20 (Curran Associates Inc., 2020).
MengHWagnerCTrigueroIExplaining time series classifiers through meaningful perturbation and optimisationInf. Sci.202364510.1016/j.ins.2023.119334
Almendra Freitas, C.O., El Yacoubi, A., Bortolozzi, F. & Sabourin, R. Brazilian bank check handwritten legal amount recognition. In Proceedings 13th Brazilian Symposium on Computer Graphics and Image Processing (Cat. No.PR00878). SIBGRA-00. https://doi.org/10.1109/sibgra.2000.883901 (IEEE Comput. Soc).
De StefanoCFontanellaFImpedovoDPirloGScotto di FrecaAHandwriting analysis to support neurodegenerative diseases diagnosis: A reviewPattern Recognition Letters201912137452019PaReL.121...37D10.1016/j.patrec.2018.05.013Graphonomics for e-citizens: e-health, e-society, e-education
El-Yacoubi, A., Sabourin, R., Gilloux, M. & Suen, C.Y. Improved model architecture and training phase in an off-line hmm-based word recognition system. In Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170) vol. 2, 1521–15252. https://doi.org/10.1109/ICPR.1998.711997 (1998).
Rojat, T. et al. Explainable artificial intelligence (XAI) on timeseries data: A survey (2021).
BuchmanASBennettDALoss of motor function in preclinical Alzheimer’s diseaseExpert Rev. Neurother.201111566567610.1586/ern.11.57215394873121966
Tonekaboni, S., Joshi, S., McCradden, M. D. & Goldenberg, A. What clinicians want: Contextualizing explainable machine learning for clinical end use. arXiv:1905.05134 (2019).
MS Albert (72650_CR3) 2011; 7
MJ Slavin (72650_CR16) 1999; 5
72650_CR10
JH Yan (72650_CR5) 2008; 42
72650_CR12
72650_CR11
72650_CR33
72650_CR13
H Meng (72650_CR30) 2023; 645
A Hayashi (72650_CR4) 2011; 49
C Kahindo (72650_CR23) 2018
Q Dao (72650_CR7) 2023; 11
C De Stefano (72650_CR34) 2019; 121
W Jin (72650_CR31) 2023; 10
U Mitra (72650_CR9) 2024; 12
P Erdogmus (72650_CR8) 2023; 123
MA El-Yacoubi (72650_CR17) 2019; 86
NY Yu (72650_CR6) 2016; 36
D Baehrens (72650_CR32) 2010; 11
P Werner (72650_CR14) 2006; 61
72650_CR21
72650_CR20
D Impedovo (72650_CR19) 2019; 12
S Wachter (72650_CR29) 2018
N Mwamsojo (72650_CR18) 2022; 10
72650_CR22
AS Buchman (72650_CR2) 2011; 11
72650_CR25
H-L Teulings (72650_CR15) 1991; 10
72650_CR27
72650_CR26
CP Fernandes (72650_CR35) 2023; 96
72650_CR28
HI Fawaz (72650_CR24) 2019; 33
72650_CR1
References_xml – reference: ErdogmusPKabakusATThe promise of convolutional neural networks for the early diagnosis of the Alzheimer’s diseaseEng. Appl. Artif. Intell.202312310.1016/j.engappai.2023.106254
– reference: De StefanoCFontanellaFImpedovoDPirloGScotto di FrecaAHandwriting analysis to support neurodegenerative diseases diagnosis: A reviewPattern Recognition Letters201912137452019PaReL.121...37D10.1016/j.patrec.2018.05.013Graphonomics for e-citizens: e-health, e-society, e-education
– reference: FawazHIForestierGWeberJIdoumgharLMullerP-ADeep learning for time series classification: A reviewData Min. Knowl. Discov.2019334917963396203910.1007/s10618-019-00619-1
– reference: HayashiANomuraHMochizukiROhnumaAKimparaTOotomoKHosokaiYIshiokaTSuzukiKMoriENeural substrates for writing impairments in Japanese patients with mild Alzheimer’s disease: A SPECT studyNeuropsychologia20114971962196810.1016/j.neuropsychologia.2011.03.02421439989
– reference: SlavinMJPhillipsJGBradshawJLHallKAPresnellIConsistency of handwriting movements in dementia of the Alzheimer’s type: A comparison with Huntington’s and Parkinson’s diseasesJ. Int. Neuropsychol. Soc.19995120251:STN:280:DyaK1M7ktlGltw%3D%3D10.1017/s135561779951103x9989020
– reference: Hakan, Ö. A novel approach to detection of Alzheimer’s disease from handwriting: Triple ensemble learning model. Gazi Univ. J. Sci. Part C Des. Technol. 1–1 (2024).
– reference: WachterSMittelstadtBRussellCCounterfactual explanations without opening the black box: Automated decisions and the GDPRHarv. J. Law Technol.201810.2139/ssrn.3063289
– reference: Höllig, J., Kulbach, C. & Thoma, S. TSInterpret: A unified framework for time series interpretability. https://doi.org/10.48550/arXiv.2208.05280 (2022).
– reference: DaoQEl-YacoubiMARigaudA-SDetection of Alzheimer disease on online handwriting using 1d convolutional neural networkIEEE Access2023112148215510.1109/ACCESS.2022.3232396
– reference: BaehrensDSchroeterTHarmelingSKawanabeMHansenKMllerK-RHow to explain individual classification decisionsJ. Mach. Learn. Res.201011180318312660653
– reference: FernandesCPMontalvoGCaligiuriMPertsinakisMGuimarãesJHandwriting changes in Alzheimer’s disease: A systematic reviewJ. Alzheimers Dis.202396111110.3233/JAD-23043837718808
– reference: El-YacoubiMAGarcia-SalicettiSKahindoCRigaudA-SCristancho-LacroixVFrom aging to early-stage Alzheimer’s: Uncovering handwriting multimodal behaviors by semi-supervised learning and sequential representation learningPattern Recognit.2019861121332019PatRe..86..112E10.1016/j.patcog.2018.07.029
– reference: AlbertMSDeKoskySTDicksonDDuboisBFeldmanHHFoxNCGamstAHoltzmanDMJagustWJPetersenRCSnyderPJCarrilloMCThiesBPhelpsCHThe diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s diseaseAlzheimer’s Dement.20117327027910.1016/j.jalz.2011.03.008
– reference: JinWLiXFatehiMHamarnehGGenerating post-hoc explanation from deep neural networks for multi-modal medical image analysis tasksMethodsX20231010.1016/j.mex.2023.102009367936769922805
– reference: ImpedovoDPirloGDynamic handwriting analysis for the assessment of neurodegenerative diseases: A pattern recognition perspectiveIEEE Rev. Biomed. Eng.20191220922010.1109/RBME.2018.284067929993722
– reference: KahindoCEl YacoubiMGarcia-SalicettiSRigaudA-SCristancho-LacroixVCharacterizing early-stage Alzheimer through spatiotemporal dynamics of handwritingIEEE Signal Process. Lett.201810.1109/LSP.2018.2794500
– reference: Rojat, T. et al. Explainable artificial intelligence (XAI) on timeseries data: A survey (2021).
– reference: MwamsojoNLehmannFEl-YacoubiMAMerghemKFrignacYBenkelfatB-ERigaudA-SReservoir computing for early stage Alzheimer’s disease detectionIEEE Access202210598215983110.1109/access.2022.3180045
– reference: World Health Organization. Dementia Fact Sheet. https://www.who.int/news-room/fact-sheets/detail/dementia (2023).
– reference: American Psychiatric Association. DSM-5 Task Force: Diagnostic and Statistical Manual of Mental Disorders: DSM-5™ 5th edn. https://doi.org/10.1176/appi.books.9780890425596 (2013).
– reference: BuchmanASBennettDALoss of motor function in preclinical Alzheimer’s diseaseExpert Rev. Neurother.201111566567610.1586/ern.11.57215394873121966
– reference: YuNYChangSHKinematic analyses of graphomotor functions in individuals with Alzheimer’s disease and amnestic mild cognitive impairmentJ. Med. Biol. Eng.201636333434310.1007/s40846-016-0143-y
– reference: WernerPRosenblumSBar-OnGHeinikJKorczynAHandwriting process variables discriminating mild Alzheimer’s disease and mild cognitive impairmentJ. Gerontol. Psychol. Sci.200661422823610.1093/geronb/61.4.P228
– reference: El-Yacoubi, A., Sabourin, R., Gilloux, M. & Suen, C. Y. Off-line handwritten word recognition using hidden markovmodels. In Knowledge-based intelligent techniques in character recognition (eds. Jain L.C. & Lazzerini B.) 191–229 (CRC Press, 1999).
– reference: MitraURehmanSUMl-powered handwriting analysis for early detection of Alzheimer’s diseaseIEEE Access202412690316905010.1109/ACCESS.2024.3401104
– reference: Almendra Freitas, C.O., El Yacoubi, A., Bortolozzi, F. & Sabourin, R. Brazilian bank check handwritten legal amount recognition. In Proceedings 13th Brazilian Symposium on Computer Graphics and Image Processing (Cat. No.PR00878). SIBGRA-00. https://doi.org/10.1109/sibgra.2000.883901 (IEEE Comput. Soc).
– reference: TeulingsH-LStelmachGEControl of stroke size, peak acceleration, and stroke duration in parkinsonian handwritingHum. Mov. Sci.1991102–331533410.1016/0167-9457(91)90010-U
– reference: El-Yacoubi, A., Sabourin, R., Gilloux, M. & Suen, C.Y. Improved model architecture and training phase in an off-line hmm-based word recognition system. In Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170) vol. 2, 1521–15252. https://doi.org/10.1109/ICPR.1998.711997 (1998).
– reference: Tonekaboni, S., Joshi, S., McCradden, M. D. & Goldenberg, A. What clinicians want: Contextualizing explainable machine learning for clinical end use. arXiv:1905.05134 (2019).
– reference: MengHWagnerCTrigueroIExplaining time series classifiers through meaningful perturbation and optimisationInf. Sci.202364510.1016/j.ins.2023.119334
– reference: YanJHRountreeSMassmanPDoodyRSLiHAlzheimer’s disease and mild cognitive impairment deteriorate fine movement controlJ. Psychiatr. Res.200842141203121210.1016/j.jpsychires.2008.01.00618280503
– reference: . Ates, E., Aksar, B., Leung, V. J. & Coskun, A. K. Counterfactual explanations for multivariate time series. In 2021 International Conference on Applied Artificial Intelligence (ICAPAI). https://doi.org/10.1109/icapai49758.2021.9462056. https://doi.org/10.11091109%2Ficapai49758.2021.9462056 (2021).
– reference: Shrikumar, A., Greenside, P., Shcherbina, A. & Kundaje, A. Not just a black box: Learning important features through propagating activation differences (2017).
– reference: Ismail, A. A., Gunady, M., Bravo, H. C. & Feizi, S. Benchmarking deep learning interpretability in time series predictions. In Proceedings of the 34th International Conference on Neural Information Processing Systems. NIPS’20 (Curran Associates Inc., 2020).
– reference: Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems (eds. Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R.) vol. 30, 4765–4774. http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf (2017).
– volume: 11
  start-page: 2148
  year: 2023
  ident: 72650_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3232396
– ident: 72650_CR22
  doi: 10.1109/ICPR.1998.711997
– volume: 12
  start-page: 209
  year: 2019
  ident: 72650_CR19
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2018.2840679
– volume: 121
  start-page: 37
  year: 2019
  ident: 72650_CR34
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2018.05.013
– ident: 72650_CR1
– ident: 72650_CR28
  doi: 10.1176/appi.books.9780890425596
– ident: 72650_CR25
– ident: 72650_CR27
  doi: 10.48550/arXiv.2208.05280
– volume: 61
  start-page: 228
  issue: 4
  year: 2006
  ident: 72650_CR14
  publication-title: J. Gerontol. Psychol. Sci.
  doi: 10.1093/geronb/61.4.P228
– volume: 42
  start-page: 1203
  issue: 14
  year: 2008
  ident: 72650_CR5
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2008.01.006
– ident: 72650_CR11
– volume: 36
  start-page: 334
  issue: 3
  year: 2016
  ident: 72650_CR6
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-016-0143-y
– volume: 12
  start-page: 69031
  year: 2024
  ident: 72650_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3401104
– volume: 33
  start-page: 917
  issue: 4
  year: 2019
  ident: 72650_CR24
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-019-00619-1
– volume: 11
  start-page: 665
  issue: 5
  year: 2011
  ident: 72650_CR2
  publication-title: Expert Rev. Neurother.
  doi: 10.1586/ern.11.57
– year: 2018
  ident: 72650_CR23
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2018.2794500
– volume: 645
  year: 2023
  ident: 72650_CR30
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.119334
– volume: 123
  year: 2023
  ident: 72650_CR8
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106254
– ident: 72650_CR26
– volume: 10
  start-page: 315
  issue: 2–3
  year: 1991
  ident: 72650_CR15
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/0167-9457(91)90010-U
– volume: 96
  start-page: 1
  issue: 1
  year: 2023
  ident: 72650_CR35
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-230438
– volume: 10
  start-page: 59821
  year: 2022
  ident: 72650_CR18
  publication-title: IEEE Access
  doi: 10.1109/access.2022.3180045
– volume: 7
  start-page: 270
  issue: 3
  year: 2011
  ident: 72650_CR3
  publication-title: Alzheimer’s Dement.
  doi: 10.1016/j.jalz.2011.03.008
– ident: 72650_CR20
  doi: 10.1109/sibgra.2000.883901
– volume: 11
  start-page: 1803
  year: 2010
  ident: 72650_CR32
  publication-title: J. Mach. Learn. Res.
– ident: 72650_CR12
– ident: 72650_CR10
– volume: 5
  start-page: 20
  issue: 1
  year: 1999
  ident: 72650_CR16
  publication-title: J. Int. Neuropsychol. Soc.
  doi: 10.1017/s135561779951103x
– ident: 72650_CR13
  doi: 10.1109/icapai49758.2021.9462056
– volume: 10
  year: 2023
  ident: 72650_CR31
  publication-title: MethodsX
  doi: 10.1016/j.mex.2023.102009
– ident: 72650_CR33
– volume: 49
  start-page: 1962
  issue: 7
  year: 2011
  ident: 72650_CR4
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2011.03.024
– year: 2018
  ident: 72650_CR29
  publication-title: Harv. J. Law Technol.
  doi: 10.2139/ssrn.3063289
– volume: 86
  start-page: 112
  year: 2019
  ident: 72650_CR17
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.07.029
– ident: 72650_CR21
  doi: 10.1201/9781003069379-9
SSID ssj0000529419
Score 2.4889972
Snippet With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer’s disease is a prevalent and challenging...
With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer's disease is a prevalent and challenging...
Abstract With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer’s disease is a prevalent and...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22108
SubjectTerms 1D-CNN
639/705
692/308
692/53
692/699
Aged
Aged, 80 and over
Alzheimer Disease - diagnosis
Alzheimer Disease - physiopathology
Alzheimer's disease
Artificial Intelligence
Computer Science
Deep Learning
Dementia disorders
Disease detection
Explainability
Female
Handwriting
Humanities and Social Sciences
Humans
Learning algorithms
Life Sciences
Machine Learning
Male
Middle Aged
multidisciplinary
Neural networks
Neural Networks, Computer
Neurodegenerative diseases
Neurons and Cognition
Online handwriting
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELaqSki9IP5aAgUZ1Bu1urGdxD4uFdUKwV5Kpd4sxz9spZJF3S2onHgNXo8nYcbOLk0r4MI1cRx7PM43kxl_Q8iehXVVVkqG9FhMet8yy4VnTllR1q5tVEBH8f20npzIt6fV6bVSX5gTlumBs-AOAG5TPWwfXSvbMmpRR0Bp7y1XrlGJvRQw75ozlVm9uZal7k_JjIQ6WEjsiQEksYaDWcL4AIkSYT_gywzTIW_bmrdTJm_ETRMcHd0jd3s7ko7z-O-TjdA9IHdyZcmrh-QYc-vSwSjMfb2i80gPp1OGmOXp-PzbLJx9Chc_v_9Y0D5EQ31YprSsjuKRE5opNCj-WP-KxEfdx0fk5OjNh8MJ6-snMAdG2JLBd64FCHcVmIQw4ya23kotWrDBKh6F1cj95RptVfQVTE2Bm-xKjHxGKazTYptsdvMuPCaUayx4F2rwpoKELpWqvBaxjCMXKlnXBSlXsjSuJxfHGhfnJgW5hTJZ_gbkb5L8DS_Iq_UznzO1xl9bv8YlWrdEWux0AZTF9Mpi_qUsBXkJCzzoYzJ-Z_DaCPlQwbb6UhZkd7X-pt_QCyNKLIjcaAUDebG-DVsR4yu2C_PL3AYLgVWjguxkdVm_SmghRK2gczVQpMFYhne6s1mi-waPFZ8UBdlf6dzvcf1ZYE_-h8Ceki2OWwbDcM0u2VxeXIZnYIUt2-dpw_0CO40qRQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagCIkL4p9AQQZxA6sb20nsE1oqqhWCvUClvVmO7XQrlaTsbkHlxGvwejwJM443VajoNf6JPePxjD3jbwh5ZYGvykrJEB6LSe9rZrnwzCkr8tLVlQp4UPw0L2eH8sOiWKQLt3UKq9zuiXGj9p3DO_I9kWNG2kor_vb0G8OsUehdTSk0rpMbCF2GIV3VohruWNCLJXOd3spMhNpbg77CN2VcsoqDccL4SB9F2H7QMksMirxscV4OnPzHexqV0sEdcjtZk3Tas_8uuRbae-Rmn1_y_D75jBF28XkURsCe066h-_M5Q83l6fTk5zIcfw2rP79-r2ly1FAfNjE4q6X48IT2QBoUr9d_IPxRe_SAHB68_7I_YymLAnNgim0Y7HY1KHJXgGEIM66a2lupRQ2WWMEbYTUigLlKW9X4Aqam4LDscvR_NlJYp8VDstN2bXhMKNeY9i6UcKYKErpUqvBaNHkzcaGQZZmRfEtL4xLEOGa6ODHR1S2U6elvgP4m0t_wjLwe2pz2ABtX1n6HLBpqIjh2_NCtjkySNYONMIW6b1wt67zRomzAsPPecuUqVWTkJTB41Mds-tHgtwmiooKF9T3PyO6W_yaJ9dpcLMKMvBiKQSDRy2Lb0J31dTAdWDHJyKN-uQy_EloIUSroXI0W0mgs45L2eBlBv-Hcii1FRt5s19zFuP5PsCdXT-MpucVRGNDNVu2Snc3qLDwDK2tTP4-i9Bdl6CHa
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqVkhcEG8CBRnEDSw2tpPYx2VFtUKwF6jUm-X40a1Usmh3Cyqn_o3-PX5JZ5wHCgUkrvEj9njsGXtmviHkpYV1VVZKhvBYTHpfM8uFZ05ZkZeurlTAi-LHRTk_lO-PiqMdwvtYmOS0nyAt0zHde4e92YCgwWAwLlnFQatgcOzuIXQ7cvWsnA3vKmi5krnu4mMmQv2h6UgGJah-kCxLdIS8rmVed5b8zWKaBNHBbXKr0yDptB3zHbITmrvkRptT8vwe-YRedSkkCr1ez-kq0tliwVBaeTo9_bEMJ1_C-ufF5YZ2xhnqwzY5ZDUUg01oC55B8Un9O0IeNcf3yeHBu8-zOesyJzAH6teWwQlXg_B2BSiDMOMq1t5KLWrQvgoehdWI-uUqbVX0BUwNCMldjjbPKIV1Wjwgu82qCY8I5RpT3YUS7lFBQpdKFV6LmMeJC4Usy4zkPS2N62DFMbvFqUnmbaFMS38D9DeJ_oZn5NXQ5msLqvHP2m9xiYaaCIidPqzWx6ZjEIONMG26j66WdR61KCMoc95brlylioy8gAUe9TGffjD4bYJIqKBVfcszst-vv-m28saIHFMhV1rBQJ4PxbAJ0bJim7A6a-tgCrBikpGHLbsMvxJaCFEq6FyNGGk0lnFJc7JMQN9wV8WWIiOve577Na6_E-zx_1V_Qm5y3Bxoaqv2ye52fRaegqa1rZ-lrXUFY5Efpg
  priority: 102
  providerName: Springer Nature
Title Explainability of CNN-based Alzheimer’s disease detection from online handwriting
URI https://link.springer.com/article/10.1038/s41598-024-72650-2
https://www.ncbi.nlm.nih.gov/pubmed/39333681
https://www.proquest.com/docview/3110577982
https://www.proquest.com/docview/3110731650
https://hal.science/hal-04827554
https://pubmed.ncbi.nlm.nih.gov/PMC11436813
https://doaj.org/article/15987959dfcb4b1f936f560dda28c785
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJiReEN9kjMogJB7A0MRO7DwglFWbqopVfFXqm5XYzjqppKPtgPLXc-ckRWED8RTJsR3n7Mv9Lmf_jpBnOcyryoVgSI_FhLUFyyNumVE5DxNTSOXQUTwZJ8OJGE3j6Q5p0x01Alxd6dphPqnJcv7qx9fNW1D4N_WRcfV6BUYID4pFgskIEAeDT_IeWCaJinrSwP2a6ztKhc_1gSTsDMBE1Jyjubqbjq3ylP5ggWa4YfIyGr28qfKPyKo3WMe3yM0GadKsXhq3yY6r7pDrde7JzV3yAXff-aNTuDt2QxclHYzHDK2apdn858ydfXHL5yvahHCodWu_bauieCSF1hQbFH-8f0dipOr0HpkcH30eDFmTX4EZAGlrBt_BAky8iQEywvvKsrC5SHkBGC2OSp6nyA1mZJqr0sbwYgrcaBNiZLQUPDcpv092q0XlHhIapZgQzyXgbTkBXSoV25SXYdk3LhZJEpCwlaQ2Dfk45sCYax8E50rX0tcgfe2lr6OAvNi2Oa-pN_5Z-xAnaFsTabN9wWJ5qhst1NgIk6vb0hSiCMuUJyVAPmvzSBmp4oA8hent9DHM3mks6yNfKmCvb2FADtrZ1-161TzEhMkyVTCQJ9vboKoYf8krt7io62CisLgfkAf1Ytk-iqec80RB56qzjDpj6d6pzmaeDhw8WmzJA_KyXXG_x_V3ge3_xzgfkRsR6gNG4eQB2V0vL9xjAGHrokeuyanskb0sG30awfXwaPz-I5QOkkHP_9joed37BbrvLNo
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFS1QnBBvDEUWBCcYNV4d22vDwilpVVK0whBK_W22LvrplJxSpJShRO_wU_wUXwJM36kChW99ep92J737MzOALzMEK86U4pTeSyunMt5JqTjVmcyjG2eaE-O4u4g7u2rDwfRwRL8bu_CUFplKxMrQe1Gls7I12RIHWmTVIt3J984dY2i6GrbQqMmix0_O0OXbfJ2-z3i95UQW5t7Gz3edBXgFk2TKUfuz1Gx2QgNJTRPkiJ3mUpljpZJJAqZpVQRyyZppgsXeWc1Oo82pHhgoWRmqfgSivwVJdGVWYaV9c3Bx0_zUx2Km6kwbW7ndKRem6CGpFtsQvFE4Pu4WNCAVaMA1GtDSsO8aONeTNX8J15bqcGtW3CzsV9Ztya427Dkyztwre5oObsLnymnr7qQRTm3MzYq2MZgwElXOtY9_jH0R1_9-M_PXxPWhIaY89MqHaxkdNWF1aU7GB3on1HBpfLwHuxfCYTvw3I5Kv1DYCKlRns-Ri_OK9xS68ilsgiLjvWRiuMAwhaWxjZFzam3xrGpgutSmxr-BuFvKvgbEcDr-ZqTuqTHpbPXCUXzmVSOu3owGh-ahrsNLaKm7a6wucrDIpVxgaakc5nQNtFRAC8QwQt79Lp9Q886VIcVbbrvYQCrLf5NI0gm5pzsA3g-H0YRQHGdrPSj03oONSCLOgE8qMll_iqZSiljjZvrBUJa-JbFkfJoWJUZR0-ZVsoA3rQ0d_5d_wfYo8t_4xlc7-3t9k1_e7DzGG4IYgwK8iWrsDwdn_onaONN86cNYzH4ctW8_BeBwl5X
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFUVgbgg3hgKLAhOsEq8u7bXB4RCS5TSEiFBpdy29j6aSsUuSUoVTvwGv8Ln8CXM-FWFit569T5sz3t2ZmcIeZEBXlUmJcPyWExam7OMC8uMykQYmzxRDh3Fj-N4tCc_TKLJGvnd3oXBtMpWJlaC2pYGz8h7IsSOtEmqeM83aRGftoZvj78x7CCFkda2nUZNIjtueQru2_zN9hbg-iXnw_dfNkes6TDADJgpCwaSIAclZyIwmsBUSXxuM5mKHKyUiHuRpVgdyyRppryNnDUKHEkTYmzQS5EZLMQE4v9KIqIQeSyZJN35DkbQZJg293T6QvXmoCvxPhuXLOHwNsZXdGHVMgA03BQTMs9bu-eTNv-J3FYKcXiT3GgsWTqoSe8WWXPFbXK17m25vEM-Y3ZfdTULs2-XtPR0czxmqDUtHRz9mLrDr2725-evOW2CRNS6RZUYVlC89ELrIh4Uj_ZPsfRScXCX7F0KfO-R9aIs3ANCeYot91wM_pyTsKVSkU2FD33fuEjGcUDCFpbaNOXNscvGka7C7ELpGv4a4K8r-GsekFfdmuO6uMeFs98hirqZWJi7elDODnTD5xoXYft2600u89CnIvZgVFqbcWUSFQXkOSB4ZY_RYFfjsz5WZAXr7nsYkI0W_7oRKXN9xgABedYNgzDACE9WuPKknoOtyKJ-QO7X5NK9SqRCiFjB5mqFkFa-ZXWkOJxWBcfBZ8aVIiCvW5o7-67_A-zhxb_xlFwDDta72-OdR-Q6R77AaF-yQdYXsxP3GIy9Rf6k4ipK9i-bjf8CJu5hJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainability+of+CNN-based+Alzheimer%27s+disease+detection+from+online+handwriting&rft.jtitle=Scientific+reports&rft.au=Sweidan%2C+Jana&rft.au=El-Yacoubi%2C+Mounim+A&rft.au=Rigaud%2C+Anne-Sophie&rft.date=2024-09-27&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=22108&rft_id=info:doi/10.1038%2Fs41598-024-72650-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon