Selecting models for capturing tree-size effects on growth-resource relationships
Subject trees included in growth analyses often vary in their initial size, possibly obscuring the effects of growth factors. We compare methods for incorporating size effects into growth models. For four different tree species, red maple (Acer rubrum L.), sugar maple (Acer saccharum Marsh.), Americ...
Saved in:
Published in | Canadian journal of forest research Vol. 36; no. 7; pp. 1695 - 1704 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Ottawa, Canada
NRC Research Press
01.07.2006
National Research Council of Canada Canadian Science Publishing NRC Research Press |
Subjects | |
Online Access | Get full text |
ISSN | 0045-5067 1208-6037 |
DOI | 10.1139/x06-054 |
Cover
Abstract | Subject trees included in growth analyses often vary in their initial size, possibly obscuring the effects of growth factors. We compare methods for incorporating size effects into growth models. For four different tree species, red maple (Acer rubrum L.), sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.), and red oak (Quercus rubra L.), we compared models of radial growth rate of saplings as a function of light, water, and nitrogen availability that (i) ignored size effects on absolute growth-resource relationships, (ii) related absolute growth rate (AGR) to size and resource availability, (iii) related relative growth rate (RGR) to resource availability, and (iv) related RGR to tree size and resource availability. Size effects explained 13%-14% of variation in growth rates, and failure to account for these effects resulted in a substantial size bias in growth prediction. Overall, AGR-based models that included size as a predictor variable provided the best predictions and clearest interpretation of growth-resource relationships across all growth model types and species examined. Modeling RGR without including size effects resulted in residual size bias. Including size as a predictor of RGR yielded nearly equivalent results to using size to predict AGR. We suggest that investigators evaluate both AGR- and RGR-based approaches and determine which is most appropriate for their study. |
---|---|
AbstractList | Subject trees included in growth analyses often vary in their initial size, possibly obscuring the effects of growth factors. We compare methods for incorporating size effects into growth models. For four different tree species, red maple (Acer rubrum L.), sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.), and red oak (Quercus rubra L.), we compared models of radial growth rate of saplings as a function of light, water, and nitrogen availability that (i) ignored size effects on absolute growth-resource relationships, (ii) related absolute growth rate (AGR) to size and resource availability, (iii) related relative growth rate (RGR) to resource availability, and (iv) related RGR to tree size and resource availability. Size effects explained 13%-14% of variation in growth rates, and failure to account for these effects resulted in a substantial size bias in growth prediction. Overall, AGR-based models that included size as a predictor variable provided the best predictions and clearest interpretation of growth-resource relationships across all growth model types and species examined. Modeling RGR without including size effects resulted in residual size bias. Including size as a predictor of RGR yielded nearly equivalent results to using size to predict AGR. We suggest that investigators evaluate both AGR- and RGR-based approaches and determine which is most appropriate for their study. Subject trees included in growth analyses often vary in their initial size, possibly obscuring the effects of growth factors. We compare methods for incorporating size effects into growth models. For four different tree species, red maple (Acer rubrum L.), sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.), and red oak (Quercus rubra L.), we compared models of radial growth rate of saplings as a function of light, water, and nitrogen availability that (i) ignored size effects on absolute growthresource relationships, (ii) related absolute growth rate (AGR) to size and resource availability, (iii) related relative growth rate (RGR) to resource availability, and (iv) related RGR to tree size and resource availability. Size effects explained 13%14% of variation in growth rates, and failure to account for these effects resulted in a substantial size bias in growth prediction. Overall, AGR-based models that included size as a predictor variable provided the best predictions and clearest interpretation of growthresource relationships across all growth model types and species examined. Modeling RGR without including size effects resulted in residual size bias. Including size as a predictor of RGR yielded nearly equivalent results to using size to predict AGR. We suggest that investigators evaluate both AGR- and RGR-based approaches and determine which is most appropriate for their study. Subject trees included in growth analyses often vary in their initial size, possibly obscuring the effects of growth factors. We compare methods for incorporating size effects into growth models. For four different tree species, red maple (Acer rubrum L.), sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.), and red oak (Quercus rubra L.), we compared models of radial growth rate of saplings as a function of light, water, and nitrogen availability that (i) ignored size effects on absolute growth-resource relationships, (ii) related absolute growth rate (AGR) to size and resource availability, (iii) related relative growth rate (RGR) to resource availability, and (iv) related RGR to tree size and resource availability. Size effects explained 13%-14% of variation in growth rates, and failure to account for these effects resulted in a substantial size bias in growth prediction. Overall, AGR-based models that included size as a predictor variable provided the best predictions and clearest interpretation of growth-resource relationships across all growth model types and species examined. Modeling RGR without including size effects resulted in residual size bias. Including size as a predictor of RGR yielded nearly equivalent results to using size to predict AGR. We suggest that investigators evaluate both AGR- and RGR-based approaches and determine which is most appropriate for their study. [PUBLICATION ABSTRACT] |
Abstract_FL | Les arbres utilizés pour les analyses de croissance ont souvent des tailles initiales différentes, ce qui pourrait masquer les effets de facteurs de croissance. Dans cette étude, nous comparons des méthodes d'incorporation des effets de taille dans des modèles de croissance. Pour des gaules de quatre différentes espèces d'arbre, l'érable rouge (Acer rubrum L.), l'érable à sucre (Acer saccharum Marsh.), le hêtre à grande feuille (Fagus grandifolia Ehrh.) et le chêne rouge (Quercus rubra L.), les auteurs ont comparé des modèles de taux de croissance radiale en fonction de la lumière et de la disponibilité en eau et en azote qui (i) ignoraient les effets de taille sur les relations entre la croissance absolue et les ressources, (ii) reliaient le taux de croissance absolue à la taille et à la disponibilité des ressources, (iii) reliaient le taux de croissance relative aux ressources et (iv) reliaient le taux de croissance relative à la taille et à la disponibilité des ressources. Les effets de taille ont expliqué entre 13 et 14 % de la variation du taux de croissance et l'absence de ces effets dans les modèles a produit des biais substantiels de taille dans les prédictions de la croissance. Généralement, parmi tous les types de modèle de croissance testés et pour toutes les espèces, les modèles basés sur le taux de croissance absolue qui incluaient la taille comme variable prédictive ont produit les meilleures prédictions et les interprétations les plus claires des relations entre la croissance et les ressources. La modélisation du taux de croissance relative sans inclure les effets de taille a produit des biais dans les résidus de taille. L'introduction de la taille comme variable prédictive du taux de croissance relative a produit des résultats très près de ceux obtenus dans le cas de la prédiction du taux de croissance absolue faite à l'aide d'un modèle incluant la taille. Ils croient que les chercheurs devraient évaluer les approches basées sur les taux de croissance absolue et relative pour déterminer lequel est le plus approprié pour leur étude.[Traduit par la Rédaction] |
Audience | Academic |
Author | Kobe, R.K MacFarlane, D.W |
Author_xml | – sequence: 1 fullname: MacFarlane, D.W – sequence: 2 fullname: Kobe, R.K |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18022895$$DView record in Pascal Francis |
BookMark | eNqV0m1rFDEQB_BFKnit4kdwEWxR2DrZJPvwshQfCkXRs69DLjvZS9lLtkmW1n56U-_wPDkFyYtA-GWYGf6H2YF1FrPsOYFTQmj79g6qAjh7lM1ICU1RAa0PshkA4wWHqn6SHYZwDQC0ojDLvsxxQBWN7fOV63AIuXY-V3KMk394jB6xCOYec9Q6wZA7m_fe3cZl4TG4ySvMPQ4yGmfD0ozhafZYyyHgs819lF29f_ft_GNx-fnDxfnZZaF4zWNRdR1lDHEBHZNMqVKWVNIGed3VrVKwYLJaADadwrrFBQHU0C5UU1OtWs6QHmXH67qjdzcThihWJigcBmnRTUGwukzzlzTBl3_A69S2Tb2JkgKnrCpJQsUa9XJAYax20UvVo0Uvh7RgbdLzGWFtRTgHsi2649VobsTv6HQPSqfDlVF7q77e-ZBMxLvYyykEcTH_-h_20659tVmBDEoO2kurTBCjNyvpvwvSQFk2LU_uZO2UdyF41FsC4iFdIqVLpHRt9_VLKhN_hiCNaIY9_s3aW69SblB6tfxH8eO_4w0SY6cTfLGGWjohe59mupqXaWAg0FRt29If_0_0bw |
CODEN | CJFRAR |
CitedBy_id | crossref_primary_10_1186_s42408_019_0039_7 crossref_primary_10_1016_j_foreco_2019_117823 crossref_primary_10_1007_s00468_024_02597_4 crossref_primary_10_1139_cjfr_2014_0353 crossref_primary_10_1016_j_foreco_2022_120247 crossref_primary_10_1111_jvs_12687 crossref_primary_10_1016_j_foreco_2011_12_027 crossref_primary_10_1139_cjfr_2021_0300 crossref_primary_10_1016_j_foreco_2022_120684 crossref_primary_10_1139_cjfr_2014_0237 crossref_primary_10_1016_j_foreco_2007_03_027 crossref_primary_10_1016_j_foreco_2018_03_045 crossref_primary_10_1111_j_1744_7429_2011_00833_x crossref_primary_10_1016_j_foreco_2007_04_038 crossref_primary_10_1016_j_foreco_2013_07_008 crossref_primary_10_1080_17550874_2012_716088 crossref_primary_10_1016_j_foreco_2019_06_043 crossref_primary_10_1371_journal_pone_0077607 crossref_primary_10_1002_jpln_201500181 crossref_primary_10_1016_j_foreco_2014_04_039 crossref_primary_10_1111_jvs_12471 crossref_primary_10_2139_ssrn_3972016 crossref_primary_10_1111_jvs_12096 crossref_primary_10_1890_11_1013_1 crossref_primary_10_1111_efp_12020 crossref_primary_10_1016_j_foreco_2023_120815 crossref_primary_10_1002_ldr_4335 crossref_primary_10_1890_12_0504_1 crossref_primary_10_1007_s11258_022_01255_4 crossref_primary_10_1111_j_1365_2745_2010_01666_x crossref_primary_10_1007_s11056_014_9428_6 crossref_primary_10_1139_cjfr_2022_0224 crossref_primary_10_1186_s12862_024_02229_y crossref_primary_10_1016_j_foreco_2013_07_057 crossref_primary_10_1111_oik_09666 |
Cites_doi | 10.2307/2963474 10.2307/3546729 10.1007/s00442-002-0986-5 10.1046/j.1469-8137.2000.00661.x 10.2307/1941664 10.1046/j.1365-2435.2002.00641.x 10.1007/BF01237882 10.1007/BF00324232 10.1034/j.1600-0706.2001.940219.x 10.1073/pnas.041590298 10.1139/x98-055 10.1046/j.1365-2486.1999.00263.x 10.1016/S0378-1127(99)00206-6 10.1046/j.0022-0477.2001.00655.x 10.1007/BF00317294 10.1086/283931 10.1016/0169-5347(90)90095-U 10.1046/j.1365-2435.1999.00332.x 10.1023/A:1006729311664 10.1007/BF00317209 10.1093/oxfordjournals.aob.a089727 10.1007/s00442-005-0252-8 10.1007/BF00317735 10.1890/0012-9658(1999)080[0846:TFUAAE]2.0.CO;2 10.1890/0012-9658(1999)080[0187:LGPATT]2.0.CO;2 10.1046/j.1469-8137.1999.00425.x 10.1046/j.1365-2435.1998.00208.x 10.1139/x99-091 10.1139/x00-089 10.1139/x94-280 |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS COPYRIGHT 2006 NRC Research Press Copyright National Research Council of Canada Jul 2006 |
Copyright_xml | – notice: 2007 INIST-CNRS – notice: COPYRIGHT 2006 NRC Research Press – notice: Copyright National Research Council of Canada Jul 2006 |
DBID | FBQ AAYXX CITATION IQODW ISN ISR 3V. 7RQ 7SN 7SS 7T7 7X2 7XB 88I 8AF 8FD 8FE 8FG 8FH 8FK 8FQ 8FV 8G5 ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO FR3 GNUQQ GUQSH HCIFZ L6V M0K M2O M2P M3G M7S MBDVC P64 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U RC3 U9A 7S9 L.6 |
DOI | 10.1139/x06-054 |
DatabaseName | AGRIS CrossRef Pascal-Francis Gale In Context: Canada Science in Context ProQuest Central (Corporate) Career & Technical Education Database Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Canadian Business & Current Affairs Database ProQuest Canadian Business & Current Affairs Database (CBCA) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials eLibrary Curriculum ProQuest Central Database Suite (ProQuest) Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Engineering Collection Agricultural Science Database Research Library (ProQuest) Science Database CBCA Reference & Current Events Engineering Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database Research Library Prep ProQuest Central Student ProQuest Central Essentials elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management CBCA Complete (Alumni Edition) ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) Engineering Collection Career and Technical Education (Alumni Edition) Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Technology Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Career and Technical Education ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection Genetics Abstracts ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection CBCA Complete ProQuest Research Library ProQuest Central Basic ProQuest Science Journals CBCA Reference & Current Events ProQuest SciTech Collection Materials Science & Engineering Collection ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry |
EISSN | 1208-6037 |
EndPage | 1704 |
ExternalDocumentID | 1085166611 A149615501 18022895 10_1139_x06_054 US201301086999 |
Genre | Article Feature |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GroupedDBID | 00T 0R~ 29B 2XV 3V. 4.4 4P2 5GY 5RP 6J9 7RQ 7X2 7XC 88I 8AF 8FE 8FG 8FH 8FQ 8G5 AAYJJ ABDBF ABJCF ABJNI ABPTK ABTAH ABUWG ACGFO ACGFS ACGOD ACIWK ACPRK AEGXH AENEX AFKRA AFRAH AI. AIAGR ALMA_UNASSIGNED_HOLDINGS APEBS ATCPS AZQEC BCR BCU BEC BENPR BES BGLVJ BHPHI BKSAR BLC BPHCQ CAG CCPQU COF CS3 D8U DWQXO EAD EAP EAS EBC EBD EBS ECC ECGQY EDH EJD EMK EPL ESX FBQ GNUQQ GUQSH HCIFZ HZ~ I-F IAO ICQ IEA IEP IFM IOF IPNFZ IRD ISN ISR ITC ITF ITG ITH L6V LK5 M0K M2O M2P M2Q M3C M3G M7R M7S MV1 N95 NMEPN NRXXU NYCZX N~3 O9- ONR OVD P2P PATMY PCBAR PEA PQQKQ PRG PROAC PTHSS PV9 PYCSY QF4 QM4 QN7 QO4 QRP RIG RRCRK RRP RZL SJFOW TEORI TUS U5U UQL VH1 VQG XOL Y6R YV5 ZCG ZY4 0R 1AW ABFLS ADKZR HZ LA8 MBDVC PADUT PQEST PQUKI PRINS AAHBH AAYXX ACUHS AEUYN CITATION PHGZM PHGZT IQODW PQGLB PMFND 7SN 7SS 7T7 7XB 8FD 8FK C1K FR3 P64 PKEHL Q9U RC3 U9A 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c575t-6dd344eeb0d4a4cc2a23a38e57d79cc0b4a6b0e8dce79eb10ef09bc873fc954e3 |
IEDL.DBID | 8FG |
ISSN | 0045-5067 |
IngestDate | Fri Sep 05 13:16:25 EDT 2025 Thu Aug 14 12:43:33 EDT 2025 Fri Jun 13 00:44:31 EDT 2025 Tue Jun 10 15:37:58 EDT 2025 Tue Jun 10 21:26:51 EDT 2025 Fri Jun 27 06:05:01 EDT 2025 Fri Jun 27 04:38:44 EDT 2025 Mon Jul 21 09:16:03 EDT 2025 Thu Apr 24 23:10:24 EDT 2025 Tue Jul 01 02:57:10 EDT 2025 Thu May 23 14:20:20 EDT 2019 Wed Nov 11 00:32:48 EST 2020 Wed Dec 27 19:13:29 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Forestry |
Language | English |
License | http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-6dd344eeb0d4a4cc2a23a38e57d79cc0b4a6b0e8dce79eb10ef09bc873fc954e3 |
Notes | http://dx.doi.org/10.1139/X06-054 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 230534621 |
PQPubID | 47747 |
PageCount | 10 |
ParticipantIDs | gale_infotracgeneralonefile_A149615501 proquest_journals_230534621 gale_incontextgauss_ISR_A149615501 gale_infotracacademiconefile_A149615501 pascalfrancis_primary_18022895 crossref_primary_10_1139_x06_054 nrcresearch_primary_10_1139_x06_054 gale_incontextgauss_ISN_A149615501 proquest_miscellaneous_47220823 crossref_citationtrail_10_1139_x06_054 fao_agris_US201301086999 gale_infotraccpiq_149615501 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-07-01 |
PublicationDateYYYYMMDD | 2006-07-01 |
PublicationDate_xml | – month: 07 year: 2006 text: 2006-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Ottawa, Canada |
PublicationPlace_xml | – name: Ottawa, Canada – name: Ottawa, ON – name: Ottawa |
PublicationTitle | Canadian journal of forest research |
PublicationTitleAlternate | Revue canadienne de recherche forestière |
PublicationYear | 2006 |
Publisher | NRC Research Press National Research Council of Canada Canadian Science Publishing NRC Research Press |
Publisher_xml | – name: NRC Research Press – name: National Research Council of Canada – name: Canadian Science Publishing NRC Research Press |
References | Kitajima K. (p_16/p_16_1) 2002; 16 Reich P.B. (p_26/p_26_1) 1998; 12 South D.B. (p_27/p_27_1) 1991; 21 Thomas S.C. (p_28/p_28_1) 1996; 10 Kobe R.K. (p_17/p_17_1) 1996; 66 Kobe R.K. (p_19/p_19_1) 2006; 147 Wright E.F. (p_36/p_36_1) 2000; 30 Poorter H. (p_25/p_25_1) 1990; 83 Larocque G.R. (p_20/p_20_1) 2002; 48 Anderson-Sprecher R. (p_1/p_1_1) 1994; 48 George L.O. (p_11/p_11_1) 1999; 80 Blackman V.H. (p_3/p_3_1) 1919; 33 Kobe R.K. (p_18/p_18_1) 1999; 80 Weiner J. (p_33/p_33_1) 1990; 5 Walters M.B. (p_31/p_31_1) 1993; 94 Bruhn D. (p_5/p_5_1) 2000; 146 Weiner J. (p_34/p_34_1) 2001; 94 Walters M.B. (p_32/p_32_1) 1993; 96 Kitajima K. (p_15/p_15_1) 1994; 98 Canham C.D. (p_6/p_6_1) 1988; 69 Wright E.F. (p_35/p_35_1) 1998; 28 Bigelow S.W. (p_2/p_2_1) 2002; 90 Pacala S.W. (p_23/p_23_1) 1994; 24 Coates K.D. (p_8/p_8_1) 1999; 29 Finzi A.C. (p_10/p_10_1) 2000; 131 Niklas K.J. (p_22/p_22_1) 2001; 98 Jasienski M. (p_14/p_14_1) 1999; 84 Eriksson O. (p_9/p_9_1) 2000; 13 Lin J. (p_21/p_21_1) 2002; 132 Poorter L. (p_24/p_24_1) 1999; 13 Centritto M. (p_7/p_7_1) 1999; 5 Walters M.B. (p_30/p_30_1) 1999; 143 Vitousek P. (p_29/p_29_1) 1982; 119 Givnish T.J. (p_12/p_12_1) 1988; 15 |
References_xml | – volume: 66 start-page: 181 year: 1996 ident: p_17/p_17_1 publication-title: Ecol. Monogr. doi: 10.2307/2963474 – volume: 15 start-page: 63 year: 1988 ident: p_12/p_12_1 publication-title: Aust. J. Plant Physiol. – volume: 84 start-page: 321 year: 1999 ident: p_14/p_14_1 publication-title: Oikos doi: 10.2307/3546729 – volume: 132 start-page: 428 year: 2002 ident: p_21/p_21_1 publication-title: USA. Oecologia doi: 10.1007/s00442-002-0986-5 – volume: 146 start-page: 415 year: 2000 ident: p_5/p_5_1 publication-title: New Phytol. doi: 10.1046/j.1469-8137.2000.00661.x – volume: 69 start-page: 1634 year: 1988 ident: p_6/p_6_1 publication-title: Ecology doi: 10.2307/1941664 – volume: 16 start-page: 433 year: 2002 ident: p_16/p_16_1 publication-title: Funct. Ecol. doi: 10.1046/j.1365-2435.2002.00641.x – volume: 10 start-page: 517 year: 1996 ident: p_28/p_28_1 publication-title: Evol. Ecol. doi: 10.1007/BF01237882 – volume: 98 start-page: 419 year: 1994 ident: p_15/p_15_1 publication-title: Oecologia doi: 10.1007/BF00324232 – volume: 94 start-page: 374 year: 2001 ident: p_34/p_34_1 publication-title: Oikos doi: 10.1034/j.1600-0706.2001.940219.x – volume: 48 start-page: 113 year: 1994 ident: p_1/p_1_1 publication-title: Am. Stat. – volume: 98 start-page: 2922 year: 2001 ident: p_22/p_22_1 publication-title: Proc. Natl. Assoc. Sci. U.S.A. doi: 10.1073/pnas.041590298 – volume: 28 start-page: 871 year: 1998 ident: p_35/p_35_1 publication-title: Can. J. For. Res. doi: 10.1139/x98-055 – volume: 5 start-page: 623 year: 1999 ident: p_7/p_7_1 publication-title: Global Change Biol. doi: 10.1046/j.1365-2486.1999.00263.x – volume: 131 start-page: 153 year: 2000 ident: p_10/p_10_1 publication-title: For. Ecol. Manage. doi: 10.1016/S0378-1127(99)00206-6 – volume: 48 start-page: 24 year: 2002 ident: p_20/p_20_1 publication-title: For. Sci. – volume: 90 start-page: 188 year: 2002 ident: p_2/p_2_1 publication-title: J. Ecol. doi: 10.1046/j.0022-0477.2001.00655.x – volume: 94 start-page: 7 year: 1993 ident: p_31/p_31_1 publication-title: Oecologia doi: 10.1007/BF00317294 – volume: 119 start-page: 553 year: 1982 ident: p_29/p_29_1 publication-title: Am. Nat. doi: 10.1086/283931 – volume: 5 start-page: 360 year: 1990 ident: p_33/p_33_1 publication-title: Trends Ecol. Evol. doi: 10.1016/0169-5347(90)90095-U – volume: 13 start-page: 396 year: 1999 ident: p_24/p_24_1 publication-title: Funct. Ecol. doi: 10.1046/j.1365-2435.1999.00332.x – volume: 13 start-page: 411 year: 2000 ident: p_9/p_9_1 publication-title: Evol. Ecol. doi: 10.1023/A:1006729311664 – volume: 21 start-page: 144 issue: 2 year: 1991 ident: p_27/p_27_1 publication-title: N.Z. J. For. Sci. – volume: 83 start-page: 553 year: 1990 ident: p_25/p_25_1 publication-title: Oecologia doi: 10.1007/BF00317209 – volume: 33 start-page: 353 year: 1919 ident: p_3/p_3_1 publication-title: Ann. Bot. doi: 10.1093/oxfordjournals.aob.a089727 – volume: 147 start-page: 119 year: 2006 ident: p_19/p_19_1 publication-title: Oecologia doi: 10.1007/s00442-005-0252-8 – volume: 96 start-page: 219 year: 1993 ident: p_32/p_32_1 publication-title: Oecologia doi: 10.1007/BF00317735 – volume: 80 start-page: 846 year: 1999 ident: p_11/p_11_1 publication-title: Ecology doi: 10.1890/0012-9658(1999)080[0846:TFUAAE]2.0.CO;2 – volume: 80 start-page: 187 year: 1999 ident: p_18/p_18_1 publication-title: Ecology doi: 10.1890/0012-9658(1999)080[0187:LGPATT]2.0.CO;2 – volume: 143 start-page: 143 year: 1999 ident: p_30/p_30_1 publication-title: New Phytol. doi: 10.1046/j.1469-8137.1999.00425.x – volume: 12 start-page: 327 year: 1998 ident: p_26/p_26_1 publication-title: Funct. Ecol. doi: 10.1046/j.1365-2435.1998.00208.x – volume: 29 start-page: 1374 year: 1999 ident: p_8/p_8_1 publication-title: Can. J. For. Res. doi: 10.1139/x99-091 – volume: 30 start-page: 1571 year: 2000 ident: p_36/p_36_1 publication-title: Can. J. For. Res. doi: 10.1139/x00-089 – volume: 24 start-page: 2172 year: 1994 ident: p_23/p_23_1 publication-title: Can. J. For. Res. doi: 10.1139/x94-280 |
SSID | ssj0003630 |
Score | 2.0094116 |
Snippet | Subject trees included in growth analyses often vary in their initial size, possibly obscuring the effects of growth factors. We compare methods for... |
SourceID | proquest gale pascalfrancis crossref nrcresearch fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1695 |
SubjectTerms | Acer rubrum Acer saccharum Biological and medical sciences Comparative studies equations Fagus grandifolia forest trees forest yields Forestry Fundamental and applied biological sciences. Psychology Growth Growth (Plants) Growth factors Growth models Growth rate growth-resource relationship light mathematical models Measurement Methods nitrogen Plant growth Plant species Quercus rubra Resource availability resource availablity soil water statistical analysis Studies tree and stand measurements tree growth tree size Trees |
Title | Selecting models for capturing tree-size effects on growth-resource relationships |
URI | http://www.nrcresearchpress.com/doi/abs/10.1139/x06-054 https://www.proquest.com/docview/230534621 https://www.proquest.com/docview/47220823 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfYJiF4QHxqpVAsQOMpWlLbif2EBloZSFSwUmlvluM4bSWUZE0rTfz13CVuWLSNZ1-TJuf87s738SPkfZIbBXbVBnEaZRCgGBsYxUQgM2USmYYqdXig_30an835twtx4Wtzal9WucPEBqiz0uIZ-TG4yoLxeBx9rC4DJI3C5Kpn0NgjBxEYGtzmcvKlA2IWM9-BIgIBqNz2zEbg8xxfYRwteM8Y7eWm7ID5YbG2ftzOEuslTQ2vLG-5Lm7AdmOLJo_JI-9E0pNW60_IPVc8JfeRZROp256Rn7OG3QasEm2YbmoKrim1pto0TYkUM9FBvfrjqC_noGVBFxCQb5bB2p_n0_WuTG65qurnZD45_fX5LPDcCYEFB2wTxFnGOHcuDTNuuLVjM2aGSSeSLFHWhik3cRo6mVmXKMDr0OWgFysTllsluGMvyH5RFu6QUJQKHRNSIrmVdCrKYy6aQS6Mu1gMyNHuJWrrB4sjv8Vv3QQYTOkrrJ0TfEBoJ1i1szRuihyCFrRZAMLp-WyMeVXkggI3dkDeomo0Dq0osCpmYbZ1rb_OpvoEwjzMr4bRnULnPaEPXigv4Y9a4zsR4HFxGFZPctiTtNXqUl9bPeqtLtpB4bdd5t217XT3s7-5Tcqv6irLB2TU24j_roQN01KBKoa7nak9FtW6-3LgBt0qgAhmhkzhym2tcWIoplxf_vf3Q_KgPYDCYuVXZH-z3rrX4JJt0lHz4Y3IwafT6Y_zv3VnNPY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFLagSLs8TLuKrhtYu7CniDS2c3mYJraByoBqo1TizTiO01aaktC0gu0_7T_unMTtiIC98exTN8k5Phefy0fIuyBVEdhV7fhxN4EARWlHRUw4YRKpIIzdKDZ4oX_U93tD_u1UnK6QP4teGCyrXOjESlEnucY78m1wlQXjvtf9VJw7CBqFydUFgkYtFQfm1wVEbOXH_a_A3veet7d78qXnWFABR4NnMnP8JGGcGxO7CVdca095TLHQiCAJIq3dmCs_dk2YaBNEoMhck8ID6zBgqY4ENwz2XSVrHBtaW2Tt827_-_FS9TOf2Z4X4QiwA3WXbhe8rO1LjNwFb5i_1VTlS1PwMJtqO-BnjBWaqgQmpTW6xjVDUVm_vcfkkXVb6U4tZ0_IismeknuI64lgcc_Ij0GFpwN2kFbYOiUFZ5hqVcyqNkiKuW-nnPw21BaQ0Dyjo2l-MRs7U5tBoNNFYd54UpTPyfBOPuwL0sryzKwTilSuYSIMEU4rNFE39bmoRscwbnzRJluLjyi1HWWOiBo_ZRXSsEheYrWe4G1Cl4RFPb3jOsk6cEGqEehUORx4mMlF9ClwnNvkDbJG4piMDOtwRmpelnJ_0Jc7EFhiRtft3kp03CD6YInSHB5UK9v7AK-L47calJ0GpS4m5_LK6lZjdVSPJr9pm7dXxOn2d9-8icquyiJJ22SjIYj_dsIW7TACVnQWkimt9ivl8qzCHyxXQW1hLkplJp-XEmeUYpL35X9_v0nu906ODuXhfv-gQx7U119YKv2KtGbTuXkNDuEs3rDHkJKzuz75fwG1bHQZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2IU3wgLhqpbBZXMZT1DS2c3lAaGKUlUEFlEp7M47jtJVQkjWtNvhn_DvOSZyyaBtve_apm-Qcn4vP5SPkZZCqCOyqdvy4n0CAorSjIiacMIlUEMZuFBu80P888o8m_OOJONkgf5peGCyrbHRipaiTXOMdeQ9cZcG47_V7qa2K-HI4eFucOggghYnWBk2jlpBj8-sMorfyzfAQWP3K8wbvv787cizAgKPBS1k6fpIwzo2J3YQrrrWnPKZYaESQBJHWbsyVH7smTLQJIlBqrknh4XUYsFRHghsG-26SWwELIoz7wsGHtRFgPrPdL8IRYBHqft0--Fu9c4zhBW8Zws1U5WujcCdbaDvqZ4a1mqoEdqU1zsYlk1HZwcE9ctc6sPSglrj7ZMNkD8g2InwibNxD8nVcIeuARaQVyk5JwS2mWhXLqiGSYhbcKee_DbWlJDTP6HSRny1nzsLmEuiiKdGbzYvyEZncyGd9TLayPDM7hCKVa5gIQwTWCk3UT30uqiEyjBtfdMh-8xGltkPNEVvjp6yCGxbJc6zbE7xD6JqwqOd4XCbZAS5INQXtKidjD3O6iEMFLnSHPEfWSByYkaHsTdWqLOVwPJIHEGJibtftX0v0rUX02hKlOTyoVrYLAl4XB3G1KLstSl3MT-WF1f3W6rQeUn7VNi8uiNP17753FZVdlUWSdshuSxD_7YTN2mEErOg2kimtHizl-tTCH6xXQYFhVkplJl-VEqeVYrr3yX9_v0e24bzLT8PRcZfcru_BsGb6KdlaLlbmGXiGy3i3OoOU_LjpQ_8X0PN26Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selecting+models+for+capturing+tree-size+effects+on+growth%C2%96resource+relationships&rft.jtitle=Canadian+journal+of+forest+research&rft.au=MacFarlane%2C+David+W&rft.au=Kobe%2C+Richard+K&rft.date=2006-07-01&rft.issn=0045-5067&rft.eissn=1208-6037&rft.volume=36&rft.issue=7&rft.spage=1695&rft.epage=1704&rft_id=info:doi/10.1139%2Fx06-054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1139_x06_054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-5067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-5067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-5067&client=summon |