Selecting models for capturing tree-size effects on growth-resource relationships

Subject trees included in growth analyses often vary in their initial size, possibly obscuring the effects of growth factors. We compare methods for incorporating size effects into growth models. For four different tree species, red maple (Acer rubrum L.), sugar maple (Acer saccharum Marsh.), Americ...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of forest research Vol. 36; no. 7; pp. 1695 - 1704
Main Authors MacFarlane, D.W, Kobe, R.K
Format Journal Article
LanguageEnglish
Published Ottawa, Canada NRC Research Press 01.07.2006
National Research Council of Canada
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text
ISSN0045-5067
1208-6037
DOI10.1139/x06-054

Cover

Abstract Subject trees included in growth analyses often vary in their initial size, possibly obscuring the effects of growth factors. We compare methods for incorporating size effects into growth models. For four different tree species, red maple (Acer rubrum L.), sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.), and red oak (Quercus rubra L.), we compared models of radial growth rate of saplings as a function of light, water, and nitrogen availability that (i) ignored size effects on absolute growth-resource relationships, (ii) related absolute growth rate (AGR) to size and resource availability, (iii) related relative growth rate (RGR) to resource availability, and (iv) related RGR to tree size and resource availability. Size effects explained 13%-14% of variation in growth rates, and failure to account for these effects resulted in a substantial size bias in growth prediction. Overall, AGR-based models that included size as a predictor variable provided the best predictions and clearest interpretation of growth-resource relationships across all growth model types and species examined. Modeling RGR without including size effects resulted in residual size bias. Including size as a predictor of RGR yielded nearly equivalent results to using size to predict AGR. We suggest that investigators evaluate both AGR- and RGR-based approaches and determine which is most appropriate for their study.
AbstractList Subject trees included in growth analyses often vary in their initial size, possibly obscuring the effects of growth factors. We compare methods for incorporating size effects into growth models. For four different tree species, red maple (Acer rubrum L.), sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.), and red oak (Quercus rubra L.), we compared models of radial growth rate of saplings as a function of light, water, and nitrogen availability that (i) ignored size effects on absolute growth-resource relationships, (ii) related absolute growth rate (AGR) to size and resource availability, (iii) related relative growth rate (RGR) to resource availability, and (iv) related RGR to tree size and resource availability. Size effects explained 13%-14% of variation in growth rates, and failure to account for these effects resulted in a substantial size bias in growth prediction. Overall, AGR-based models that included size as a predictor variable provided the best predictions and clearest interpretation of growth-resource relationships across all growth model types and species examined. Modeling RGR without including size effects resulted in residual size bias. Including size as a predictor of RGR yielded nearly equivalent results to using size to predict AGR. We suggest that investigators evaluate both AGR- and RGR-based approaches and determine which is most appropriate for their study.
Subject trees included in growth analyses often vary in their initial size, possibly obscuring the effects of growth factors. We compare methods for incorporating size effects into growth models. For four different tree species, red maple (Acer rubrum L.), sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.), and red oak (Quercus rubra L.), we compared models of radial growth rate of saplings as a function of light, water, and nitrogen availability that (i) ignored size effects on absolute growth–resource relationships, (ii) related absolute growth rate (AGR) to size and resource availability, (iii) related relative growth rate (RGR) to resource availability, and (iv) related RGR to tree size and resource availability. Size effects explained 13%–14% of variation in growth rates, and failure to account for these effects resulted in a substantial size bias in growth prediction. Overall, AGR-based models that included size as a predictor variable provided the best predictions and clearest interpretation of growth–resource relationships across all growth model types and species examined. Modeling RGR without including size effects resulted in residual size bias. Including size as a predictor of RGR yielded nearly equivalent results to using size to predict AGR. We suggest that investigators evaluate both AGR- and RGR-based approaches and determine which is most appropriate for their study.
Subject trees included in growth analyses often vary in their initial size, possibly obscuring the effects of growth factors. We compare methods for incorporating size effects into growth models. For four different tree species, red maple (Acer rubrum L.), sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.), and red oak (Quercus rubra L.), we compared models of radial growth rate of saplings as a function of light, water, and nitrogen availability that (i) ignored size effects on absolute growth-resource relationships, (ii) related absolute growth rate (AGR) to size and resource availability, (iii) related relative growth rate (RGR) to resource availability, and (iv) related RGR to tree size and resource availability. Size effects explained 13%-14% of variation in growth rates, and failure to account for these effects resulted in a substantial size bias in growth prediction. Overall, AGR-based models that included size as a predictor variable provided the best predictions and clearest interpretation of growth-resource relationships across all growth model types and species examined. Modeling RGR without including size effects resulted in residual size bias. Including size as a predictor of RGR yielded nearly equivalent results to using size to predict AGR. We suggest that investigators evaluate both AGR- and RGR-based approaches and determine which is most appropriate for their study. [PUBLICATION ABSTRACT]
Abstract_FL Les arbres utilizés pour les analyses de croissance ont souvent des tailles initiales différentes, ce qui pourrait masquer les effets de facteurs de croissance. Dans cette étude, nous comparons des méthodes d'incorporation des effets de taille dans des modèles de croissance. Pour des gaules de quatre différentes espèces d'arbre, l'érable rouge (Acer rubrum L.), l'érable à sucre (Acer saccharum Marsh.), le hêtre à grande feuille (Fagus grandifolia Ehrh.) et le chêne rouge (Quercus rubra L.), les auteurs ont comparé des modèles de taux de croissance radiale en fonction de la lumière et de la disponibilité en eau et en azote qui (i) ignoraient les effets de taille sur les relations entre la croissance absolue et les ressources, (ii) reliaient le taux de croissance absolue à la taille et à la disponibilité des ressources, (iii) reliaient le taux de croissance relative aux ressources et (iv) reliaient le taux de croissance relative à la taille et à la disponibilité des ressources. Les effets de taille ont expliqué entre 13 et 14 % de la variation du taux de croissance et l'absence de ces effets dans les modèles a produit des biais substantiels de taille dans les prédictions de la croissance. Généralement, parmi tous les types de modèle de croissance testés et pour toutes les espèces, les modèles basés sur le taux de croissance absolue qui incluaient la taille comme variable prédictive ont produit les meilleures prédictions et les interprétations les plus claires des relations entre la croissance et les ressources. La modélisation du taux de croissance relative sans inclure les effets de taille a produit des biais dans les résidus de taille. L'introduction de la taille comme variable prédictive du taux de croissance relative a produit des résultats très près de ceux obtenus dans le cas de la prédiction du taux de croissance absolue faite à l'aide d'un modèle incluant la taille. Ils croient que les chercheurs devraient évaluer les approches basées sur les taux de croissance absolue et relative pour déterminer lequel est le plus approprié pour leur étude.[Traduit par la Rédaction]
Audience Academic
Author Kobe, R.K
MacFarlane, D.W
Author_xml – sequence: 1
  fullname: MacFarlane, D.W
– sequence: 2
  fullname: Kobe, R.K
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18022895$$DView record in Pascal Francis
BookMark eNqV0m1rFDEQB_BFKnit4kdwEWxR2DrZJPvwshQfCkXRs69DLjvZS9lLtkmW1n56U-_wPDkFyYtA-GWYGf6H2YF1FrPsOYFTQmj79g6qAjh7lM1ICU1RAa0PshkA4wWHqn6SHYZwDQC0ojDLvsxxQBWN7fOV63AIuXY-V3KMk394jB6xCOYec9Q6wZA7m_fe3cZl4TG4ySvMPQ4yGmfD0ozhafZYyyHgs819lF29f_ft_GNx-fnDxfnZZaF4zWNRdR1lDHEBHZNMqVKWVNIGed3VrVKwYLJaADadwrrFBQHU0C5UU1OtWs6QHmXH67qjdzcThihWJigcBmnRTUGwukzzlzTBl3_A69S2Tb2JkgKnrCpJQsUa9XJAYax20UvVo0Uvh7RgbdLzGWFtRTgHsi2649VobsTv6HQPSqfDlVF7q77e-ZBMxLvYyykEcTH_-h_20659tVmBDEoO2kurTBCjNyvpvwvSQFk2LU_uZO2UdyF41FsC4iFdIqVLpHRt9_VLKhN_hiCNaIY9_s3aW69SblB6tfxH8eO_4w0SY6cTfLGGWjohe59mupqXaWAg0FRt29If_0_0bw
CODEN CJFRAR
CitedBy_id crossref_primary_10_1186_s42408_019_0039_7
crossref_primary_10_1016_j_foreco_2019_117823
crossref_primary_10_1007_s00468_024_02597_4
crossref_primary_10_1139_cjfr_2014_0353
crossref_primary_10_1016_j_foreco_2022_120247
crossref_primary_10_1111_jvs_12687
crossref_primary_10_1016_j_foreco_2011_12_027
crossref_primary_10_1139_cjfr_2021_0300
crossref_primary_10_1016_j_foreco_2022_120684
crossref_primary_10_1139_cjfr_2014_0237
crossref_primary_10_1016_j_foreco_2007_03_027
crossref_primary_10_1016_j_foreco_2018_03_045
crossref_primary_10_1111_j_1744_7429_2011_00833_x
crossref_primary_10_1016_j_foreco_2007_04_038
crossref_primary_10_1016_j_foreco_2013_07_008
crossref_primary_10_1080_17550874_2012_716088
crossref_primary_10_1016_j_foreco_2019_06_043
crossref_primary_10_1371_journal_pone_0077607
crossref_primary_10_1002_jpln_201500181
crossref_primary_10_1016_j_foreco_2014_04_039
crossref_primary_10_1111_jvs_12471
crossref_primary_10_2139_ssrn_3972016
crossref_primary_10_1111_jvs_12096
crossref_primary_10_1890_11_1013_1
crossref_primary_10_1111_efp_12020
crossref_primary_10_1016_j_foreco_2023_120815
crossref_primary_10_1002_ldr_4335
crossref_primary_10_1890_12_0504_1
crossref_primary_10_1007_s11258_022_01255_4
crossref_primary_10_1111_j_1365_2745_2010_01666_x
crossref_primary_10_1007_s11056_014_9428_6
crossref_primary_10_1139_cjfr_2022_0224
crossref_primary_10_1186_s12862_024_02229_y
crossref_primary_10_1016_j_foreco_2013_07_057
crossref_primary_10_1111_oik_09666
Cites_doi 10.2307/2963474
10.2307/3546729
10.1007/s00442-002-0986-5
10.1046/j.1469-8137.2000.00661.x
10.2307/1941664
10.1046/j.1365-2435.2002.00641.x
10.1007/BF01237882
10.1007/BF00324232
10.1034/j.1600-0706.2001.940219.x
10.1073/pnas.041590298
10.1139/x98-055
10.1046/j.1365-2486.1999.00263.x
10.1016/S0378-1127(99)00206-6
10.1046/j.0022-0477.2001.00655.x
10.1007/BF00317294
10.1086/283931
10.1016/0169-5347(90)90095-U
10.1046/j.1365-2435.1999.00332.x
10.1023/A:1006729311664
10.1007/BF00317209
10.1093/oxfordjournals.aob.a089727
10.1007/s00442-005-0252-8
10.1007/BF00317735
10.1890/0012-9658(1999)080[0846:TFUAAE]2.0.CO;2
10.1890/0012-9658(1999)080[0187:LGPATT]2.0.CO;2
10.1046/j.1469-8137.1999.00425.x
10.1046/j.1365-2435.1998.00208.x
10.1139/x99-091
10.1139/x00-089
10.1139/x94-280
ContentType Journal Article
Copyright 2007 INIST-CNRS
COPYRIGHT 2006 NRC Research Press
Copyright National Research Council of Canada Jul 2006
Copyright_xml – notice: 2007 INIST-CNRS
– notice: COPYRIGHT 2006 NRC Research Press
– notice: Copyright National Research Council of Canada Jul 2006
DBID FBQ
AAYXX
CITATION
IQODW
ISN
ISR
3V.
7RQ
7SN
7SS
7T7
7X2
7XB
88I
8AF
8FD
8FE
8FG
8FH
8FK
8FQ
8FV
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
L6V
M0K
M2O
M2P
M3G
M7S
MBDVC
P64
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
RC3
U9A
7S9
L.6
DOI 10.1139/x06-054
DatabaseName AGRIS
CrossRef
Pascal-Francis
Gale In Context: Canada
Science in Context
ProQuest Central (Corporate)
Career & Technical Education Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
STEM Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Canadian Business & Current Affairs Database
ProQuest Canadian Business & Current Affairs Database (CBCA)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
eLibrary Curriculum
ProQuest Central Database Suite (ProQuest)
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Engineering Collection
Agricultural Science Database
Research Library (ProQuest)
Science Database
CBCA Reference & Current Events
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
elibrary
ProQuest AP Science
SciTech Premium Collection
Environmental Sciences and Pollution Management
CBCA Complete (Alumni Edition)
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
Engineering Collection
Career and Technical Education (Alumni Edition)
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Technology Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Career and Technical Education
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Genetics Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
CBCA Complete
ProQuest Research Library
ProQuest Central Basic
ProQuest Science Journals
CBCA Reference & Current Events
ProQuest SciTech Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

Agricultural Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISSN 1208-6037
EndPage 1704
ExternalDocumentID 1085166611
A149615501
18022895
10_1139_x06_054
US201301086999
Genre Article
Feature
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GroupedDBID 00T
0R~
29B
2XV
3V.
4.4
4P2
5GY
5RP
6J9
7RQ
7X2
7XC
88I
8AF
8FE
8FG
8FH
8FQ
8G5
AAYJJ
ABDBF
ABJCF
ABJNI
ABPTK
ABTAH
ABUWG
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
AEGXH
AENEX
AFKRA
AFRAH
AI.
AIAGR
ALMA_UNASSIGNED_HOLDINGS
APEBS
ATCPS
AZQEC
BCR
BCU
BEC
BENPR
BES
BGLVJ
BHPHI
BKSAR
BLC
BPHCQ
CAG
CCPQU
COF
CS3
D8U
DWQXO
EAD
EAP
EAS
EBC
EBD
EBS
ECC
ECGQY
EDH
EJD
EMK
EPL
ESX
FBQ
GNUQQ
GUQSH
HCIFZ
HZ~
I-F
IAO
ICQ
IEA
IEP
IFM
IOF
IPNFZ
IRD
ISN
ISR
ITC
ITF
ITG
ITH
L6V
LK5
M0K
M2O
M2P
M2Q
M3C
M3G
M7R
M7S
MV1
N95
NMEPN
NRXXU
NYCZX
N~3
O9-
ONR
OVD
P2P
PATMY
PCBAR
PEA
PQQKQ
PRG
PROAC
PTHSS
PV9
PYCSY
QF4
QM4
QN7
QO4
QRP
RIG
RRCRK
RRP
RZL
SJFOW
TEORI
TUS
U5U
UQL
VH1
VQG
XOL
Y6R
YV5
ZCG
ZY4
0R
1AW
ABFLS
ADKZR
HZ
LA8
MBDVC
PADUT
PQEST
PQUKI
PRINS
AAHBH
AAYXX
ACUHS
AEUYN
CITATION
PHGZM
PHGZT
IQODW
PQGLB
PMFND
7SN
7SS
7T7
7XB
8FD
8FK
C1K
FR3
P64
PKEHL
Q9U
RC3
U9A
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c575t-6dd344eeb0d4a4cc2a23a38e57d79cc0b4a6b0e8dce79eb10ef09bc873fc954e3
IEDL.DBID 8FG
ISSN 0045-5067
IngestDate Fri Sep 05 13:16:25 EDT 2025
Thu Aug 14 12:43:33 EDT 2025
Fri Jun 13 00:44:31 EDT 2025
Tue Jun 10 15:37:58 EDT 2025
Tue Jun 10 21:26:51 EDT 2025
Fri Jun 27 06:05:01 EDT 2025
Fri Jun 27 04:38:44 EDT 2025
Mon Jul 21 09:16:03 EDT 2025
Thu Apr 24 23:10:24 EDT 2025
Tue Jul 01 02:57:10 EDT 2025
Thu May 23 14:20:20 EDT 2019
Wed Nov 11 00:32:48 EST 2020
Wed Dec 27 19:13:29 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Forestry
Language English
License http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-6dd344eeb0d4a4cc2a23a38e57d79cc0b4a6b0e8dce79eb10ef09bc873fc954e3
Notes http://dx.doi.org/10.1139/X06-054
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 230534621
PQPubID 47747
PageCount 10
ParticipantIDs gale_infotracgeneralonefile_A149615501
proquest_journals_230534621
gale_incontextgauss_ISR_A149615501
gale_infotracacademiconefile_A149615501
pascalfrancis_primary_18022895
crossref_primary_10_1139_x06_054
nrcresearch_primary_10_1139_x06_054
gale_incontextgauss_ISN_A149615501
proquest_miscellaneous_47220823
crossref_citationtrail_10_1139_x06_054
fao_agris_US201301086999
gale_infotraccpiq_149615501
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-07-01
PublicationDateYYYYMMDD 2006-07-01
PublicationDate_xml – month: 07
  year: 2006
  text: 2006-07-01
  day: 01
PublicationDecade 2000
PublicationPlace Ottawa, Canada
PublicationPlace_xml – name: Ottawa, Canada
– name: Ottawa, ON
– name: Ottawa
PublicationTitle Canadian journal of forest research
PublicationTitleAlternate Revue canadienne de recherche forestière
PublicationYear 2006
Publisher NRC Research Press
National Research Council of Canada
Canadian Science Publishing NRC Research Press
Publisher_xml – name: NRC Research Press
– name: National Research Council of Canada
– name: Canadian Science Publishing NRC Research Press
References Kitajima K. (p_16/p_16_1) 2002; 16
Reich P.B. (p_26/p_26_1) 1998; 12
South D.B. (p_27/p_27_1) 1991; 21
Thomas S.C. (p_28/p_28_1) 1996; 10
Kobe R.K. (p_17/p_17_1) 1996; 66
Kobe R.K. (p_19/p_19_1) 2006; 147
Wright E.F. (p_36/p_36_1) 2000; 30
Poorter H. (p_25/p_25_1) 1990; 83
Larocque G.R. (p_20/p_20_1) 2002; 48
Anderson-Sprecher R. (p_1/p_1_1) 1994; 48
George L.O. (p_11/p_11_1) 1999; 80
Blackman V.H. (p_3/p_3_1) 1919; 33
Kobe R.K. (p_18/p_18_1) 1999; 80
Weiner J. (p_33/p_33_1) 1990; 5
Walters M.B. (p_31/p_31_1) 1993; 94
Bruhn D. (p_5/p_5_1) 2000; 146
Weiner J. (p_34/p_34_1) 2001; 94
Walters M.B. (p_32/p_32_1) 1993; 96
Kitajima K. (p_15/p_15_1) 1994; 98
Canham C.D. (p_6/p_6_1) 1988; 69
Wright E.F. (p_35/p_35_1) 1998; 28
Bigelow S.W. (p_2/p_2_1) 2002; 90
Pacala S.W. (p_23/p_23_1) 1994; 24
Coates K.D. (p_8/p_8_1) 1999; 29
Finzi A.C. (p_10/p_10_1) 2000; 131
Niklas K.J. (p_22/p_22_1) 2001; 98
Jasienski M. (p_14/p_14_1) 1999; 84
Eriksson O. (p_9/p_9_1) 2000; 13
Lin J. (p_21/p_21_1) 2002; 132
Poorter L. (p_24/p_24_1) 1999; 13
Centritto M. (p_7/p_7_1) 1999; 5
Walters M.B. (p_30/p_30_1) 1999; 143
Vitousek P. (p_29/p_29_1) 1982; 119
Givnish T.J. (p_12/p_12_1) 1988; 15
References_xml – volume: 66
  start-page: 181
  year: 1996
  ident: p_17/p_17_1
  publication-title: Ecol. Monogr.
  doi: 10.2307/2963474
– volume: 15
  start-page: 63
  year: 1988
  ident: p_12/p_12_1
  publication-title: Aust. J. Plant Physiol.
– volume: 84
  start-page: 321
  year: 1999
  ident: p_14/p_14_1
  publication-title: Oikos
  doi: 10.2307/3546729
– volume: 132
  start-page: 428
  year: 2002
  ident: p_21/p_21_1
  publication-title: USA. Oecologia
  doi: 10.1007/s00442-002-0986-5
– volume: 146
  start-page: 415
  year: 2000
  ident: p_5/p_5_1
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2000.00661.x
– volume: 69
  start-page: 1634
  year: 1988
  ident: p_6/p_6_1
  publication-title: Ecology
  doi: 10.2307/1941664
– volume: 16
  start-page: 433
  year: 2002
  ident: p_16/p_16_1
  publication-title: Funct. Ecol.
  doi: 10.1046/j.1365-2435.2002.00641.x
– volume: 10
  start-page: 517
  year: 1996
  ident: p_28/p_28_1
  publication-title: Evol. Ecol.
  doi: 10.1007/BF01237882
– volume: 98
  start-page: 419
  year: 1994
  ident: p_15/p_15_1
  publication-title: Oecologia
  doi: 10.1007/BF00324232
– volume: 94
  start-page: 374
  year: 2001
  ident: p_34/p_34_1
  publication-title: Oikos
  doi: 10.1034/j.1600-0706.2001.940219.x
– volume: 48
  start-page: 113
  year: 1994
  ident: p_1/p_1_1
  publication-title: Am. Stat.
– volume: 98
  start-page: 2922
  year: 2001
  ident: p_22/p_22_1
  publication-title: Proc. Natl. Assoc. Sci. U.S.A.
  doi: 10.1073/pnas.041590298
– volume: 28
  start-page: 871
  year: 1998
  ident: p_35/p_35_1
  publication-title: Can. J. For. Res.
  doi: 10.1139/x98-055
– volume: 5
  start-page: 623
  year: 1999
  ident: p_7/p_7_1
  publication-title: Global Change Biol.
  doi: 10.1046/j.1365-2486.1999.00263.x
– volume: 131
  start-page: 153
  year: 2000
  ident: p_10/p_10_1
  publication-title: For. Ecol. Manage.
  doi: 10.1016/S0378-1127(99)00206-6
– volume: 48
  start-page: 24
  year: 2002
  ident: p_20/p_20_1
  publication-title: For. Sci.
– volume: 90
  start-page: 188
  year: 2002
  ident: p_2/p_2_1
  publication-title: J. Ecol.
  doi: 10.1046/j.0022-0477.2001.00655.x
– volume: 94
  start-page: 7
  year: 1993
  ident: p_31/p_31_1
  publication-title: Oecologia
  doi: 10.1007/BF00317294
– volume: 119
  start-page: 553
  year: 1982
  ident: p_29/p_29_1
  publication-title: Am. Nat.
  doi: 10.1086/283931
– volume: 5
  start-page: 360
  year: 1990
  ident: p_33/p_33_1
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/0169-5347(90)90095-U
– volume: 13
  start-page: 396
  year: 1999
  ident: p_24/p_24_1
  publication-title: Funct. Ecol.
  doi: 10.1046/j.1365-2435.1999.00332.x
– volume: 13
  start-page: 411
  year: 2000
  ident: p_9/p_9_1
  publication-title: Evol. Ecol.
  doi: 10.1023/A:1006729311664
– volume: 21
  start-page: 144
  issue: 2
  year: 1991
  ident: p_27/p_27_1
  publication-title: N.Z. J. For. Sci.
– volume: 83
  start-page: 553
  year: 1990
  ident: p_25/p_25_1
  publication-title: Oecologia
  doi: 10.1007/BF00317209
– volume: 33
  start-page: 353
  year: 1919
  ident: p_3/p_3_1
  publication-title: Ann. Bot.
  doi: 10.1093/oxfordjournals.aob.a089727
– volume: 147
  start-page: 119
  year: 2006
  ident: p_19/p_19_1
  publication-title: Oecologia
  doi: 10.1007/s00442-005-0252-8
– volume: 96
  start-page: 219
  year: 1993
  ident: p_32/p_32_1
  publication-title: Oecologia
  doi: 10.1007/BF00317735
– volume: 80
  start-page: 846
  year: 1999
  ident: p_11/p_11_1
  publication-title: Ecology
  doi: 10.1890/0012-9658(1999)080[0846:TFUAAE]2.0.CO;2
– volume: 80
  start-page: 187
  year: 1999
  ident: p_18/p_18_1
  publication-title: Ecology
  doi: 10.1890/0012-9658(1999)080[0187:LGPATT]2.0.CO;2
– volume: 143
  start-page: 143
  year: 1999
  ident: p_30/p_30_1
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.1999.00425.x
– volume: 12
  start-page: 327
  year: 1998
  ident: p_26/p_26_1
  publication-title: Funct. Ecol.
  doi: 10.1046/j.1365-2435.1998.00208.x
– volume: 29
  start-page: 1374
  year: 1999
  ident: p_8/p_8_1
  publication-title: Can. J. For. Res.
  doi: 10.1139/x99-091
– volume: 30
  start-page: 1571
  year: 2000
  ident: p_36/p_36_1
  publication-title: Can. J. For. Res.
  doi: 10.1139/x00-089
– volume: 24
  start-page: 2172
  year: 1994
  ident: p_23/p_23_1
  publication-title: Can. J. For. Res.
  doi: 10.1139/x94-280
SSID ssj0003630
Score 2.0094116
Snippet Subject trees included in growth analyses often vary in their initial size, possibly obscuring the effects of growth factors. We compare methods for...
SourceID proquest
gale
pascalfrancis
crossref
nrcresearch
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1695
SubjectTerms Acer rubrum
Acer saccharum
Biological and medical sciences
Comparative studies
equations
Fagus grandifolia
forest trees
forest yields
Forestry
Fundamental and applied biological sciences. Psychology
Growth
Growth (Plants)
Growth factors
Growth models
Growth rate
growth-resource relationship
light
mathematical models
Measurement
Methods
nitrogen
Plant growth
Plant species
Quercus rubra
Resource availability
resource availablity
soil water
statistical analysis
Studies
tree and stand measurements
tree growth
tree size
Trees
Title Selecting models for capturing tree-size effects on growth-resource relationships
URI http://www.nrcresearchpress.com/doi/abs/10.1139/x06-054
https://www.proquest.com/docview/230534621
https://www.proquest.com/docview/47220823
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfYJiF4QHxqpVAsQOMpWlLbif2EBloZSFSwUmlvluM4bSWUZE0rTfz13CVuWLSNZ1-TJuf87s738SPkfZIbBXbVBnEaZRCgGBsYxUQgM2USmYYqdXig_30an835twtx4Wtzal9WucPEBqiz0uIZ-TG4yoLxeBx9rC4DJI3C5Kpn0NgjBxEYGtzmcvKlA2IWM9-BIgIBqNz2zEbg8xxfYRwteM8Y7eWm7ID5YbG2ftzOEuslTQ2vLG-5Lm7AdmOLJo_JI-9E0pNW60_IPVc8JfeRZROp256Rn7OG3QasEm2YbmoKrim1pto0TYkUM9FBvfrjqC_noGVBFxCQb5bB2p_n0_WuTG65qurnZD45_fX5LPDcCYEFB2wTxFnGOHcuDTNuuLVjM2aGSSeSLFHWhik3cRo6mVmXKMDr0OWgFysTllsluGMvyH5RFu6QUJQKHRNSIrmVdCrKYy6aQS6Mu1gMyNHuJWrrB4sjv8Vv3QQYTOkrrJ0TfEBoJ1i1szRuihyCFrRZAMLp-WyMeVXkggI3dkDeomo0Dq0osCpmYbZ1rb_OpvoEwjzMr4bRnULnPaEPXigv4Y9a4zsR4HFxGFZPctiTtNXqUl9bPeqtLtpB4bdd5t217XT3s7-5Tcqv6irLB2TU24j_roQN01KBKoa7nak9FtW6-3LgBt0qgAhmhkzhym2tcWIoplxf_vf3Q_KgPYDCYuVXZH-z3rrX4JJt0lHz4Y3IwafT6Y_zv3VnNPY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFLagSLs8TLuKrhtYu7CniDS2c3mYJraByoBqo1TizTiO01aaktC0gu0_7T_unMTtiIC98exTN8k5Phefy0fIuyBVEdhV7fhxN4EARWlHRUw4YRKpIIzdKDZ4oX_U93tD_u1UnK6QP4teGCyrXOjESlEnucY78m1wlQXjvtf9VJw7CBqFydUFgkYtFQfm1wVEbOXH_a_A3veet7d78qXnWFABR4NnMnP8JGGcGxO7CVdca095TLHQiCAJIq3dmCs_dk2YaBNEoMhck8ID6zBgqY4ENwz2XSVrHBtaW2Tt827_-_FS9TOf2Z4X4QiwA3WXbhe8rO1LjNwFb5i_1VTlS1PwMJtqO-BnjBWaqgQmpTW6xjVDUVm_vcfkkXVb6U4tZ0_IismeknuI64lgcc_Ij0GFpwN2kFbYOiUFZ5hqVcyqNkiKuW-nnPw21BaQ0Dyjo2l-MRs7U5tBoNNFYd54UpTPyfBOPuwL0sryzKwTilSuYSIMEU4rNFE39bmoRscwbnzRJluLjyi1HWWOiBo_ZRXSsEheYrWe4G1Cl4RFPb3jOsk6cEGqEehUORx4mMlF9ClwnNvkDbJG4piMDOtwRmpelnJ_0Jc7EFhiRtft3kp03CD6YInSHB5UK9v7AK-L47calJ0GpS4m5_LK6lZjdVSPJr9pm7dXxOn2d9-8icquyiJJ22SjIYj_dsIW7TACVnQWkimt9ivl8qzCHyxXQW1hLkplJp-XEmeUYpL35X9_v0nu906ODuXhfv-gQx7U119YKv2KtGbTuXkNDuEs3rDHkJKzuz75fwG1bHQZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2IU3wgLhqpbBZXMZT1DS2c3lAaGKUlUEFlEp7M47jtJVQkjWtNvhn_DvOSZyyaBtve_apm-Qcn4vP5SPkZZCqCOyqdvy4n0CAorSjIiacMIlUEMZuFBu80P888o8m_OOJONkgf5peGCyrbHRipaiTXOMdeQ9cZcG47_V7qa2K-HI4eFucOggghYnWBk2jlpBj8-sMorfyzfAQWP3K8wbvv787cizAgKPBS1k6fpIwzo2J3YQrrrWnPKZYaESQBJHWbsyVH7smTLQJIlBqrknh4XUYsFRHghsG-26SWwELIoz7wsGHtRFgPrPdL8IRYBHqft0--Fu9c4zhBW8Zws1U5WujcCdbaDvqZ4a1mqoEdqU1zsYlk1HZwcE9ctc6sPSglrj7ZMNkD8g2InwibNxD8nVcIeuARaQVyk5JwS2mWhXLqiGSYhbcKee_DbWlJDTP6HSRny1nzsLmEuiiKdGbzYvyEZncyGd9TLayPDM7hCKVa5gIQwTWCk3UT30uqiEyjBtfdMh-8xGltkPNEVvjp6yCGxbJc6zbE7xD6JqwqOd4XCbZAS5INQXtKidjD3O6iEMFLnSHPEfWSByYkaHsTdWqLOVwPJIHEGJibtftX0v0rUX02hKlOTyoVrYLAl4XB3G1KLstSl3MT-WF1f3W6rQeUn7VNi8uiNP17753FZVdlUWSdshuSxD_7YTN2mEErOg2kimtHizl-tTCH6xXQYFhVkplJl-VEqeVYrr3yX9_v0e24bzLT8PRcZfcru_BsGb6KdlaLlbmGXiGy3i3OoOU_LjpQ_8X0PN26Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selecting+models+for+capturing+tree-size+effects+on+growth%C2%96resource+relationships&rft.jtitle=Canadian+journal+of+forest+research&rft.au=MacFarlane%2C+David+W&rft.au=Kobe%2C+Richard+K&rft.date=2006-07-01&rft.issn=0045-5067&rft.eissn=1208-6037&rft.volume=36&rft.issue=7&rft.spage=1695&rft.epage=1704&rft_id=info:doi/10.1139%2Fx06-054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1139_x06_054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-5067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-5067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-5067&client=summon