Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory

•Unsupervised MR harmonization without traveling subjects.•Unified latent space for MR contrast synthesis.•A novel framework for disentangling contrast and anatomy in MR images.•Downstream segmentation consistency shows significant improvements after harmonization. In magnetic resonance (MR) imaging...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 243; p. 118569
Main Authors Zuo, Lianrui, Dewey, Blake E., Liu, Yihao, He, Yufan, Newsome, Scott D., Mowry, Ellen M., Resnick, Susan M., Prince, Jerry L., Carass, Aaron
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2021
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Unsupervised MR harmonization without traveling subjects.•Unified latent space for MR contrast synthesis.•A novel framework for disentangling contrast and anatomy in MR images.•Downstream segmentation consistency shows significant improvements after harmonization. In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to site, which impedes consistent measurements in automatic analyses. In this paper, we propose an unsupervised MR image harmonization approach, CALAMITI (Contrast Anatomy Learning and Analysis for MR Intensity Translation and Integration), which aims to alleviate contrast variations in multi-site MR imaging. Designed using information bottleneck theory, CALAMITI learns a globally disentangled latent space containing both anatomical and contrast information, which permits harmonization. In contrast to supervised harmonization methods, our approach does not need a sample population to be imaged across sites. Unlike traditional unsupervised harmonization approaches which often suffer from geometry shifts, CALAMITI better preserves anatomy by design. The proposed method is also able to adapt to a new testing site with a straightforward fine-tuning process. Experiments on MR images acquired from ten sites show that CALAMITI achieves superior performance compared with other harmonization approaches.
AbstractList •Unsupervised MR harmonization without traveling subjects.•Unified latent space for MR contrast synthesis.•A novel framework for disentangling contrast and anatomy in MR images.•Downstream segmentation consistency shows significant improvements after harmonization. In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to site, which impedes consistent measurements in automatic analyses. In this paper, we propose an unsupervised MR image harmonization approach, CALAMITI (Contrast Anatomy Learning and Analysis for MR Intensity Translation and Integration), which aims to alleviate contrast variations in multi-site MR imaging. Designed using information bottleneck theory, CALAMITI learns a globally disentangled latent space containing both anatomical and contrast information, which permits harmonization. In contrast to supervised harmonization methods, our approach does not need a sample population to be imaged across sites. Unlike traditional unsupervised harmonization approaches which often suffer from geometry shifts, CALAMITI better preserves anatomy by design. The proposed method is also able to adapt to a new testing site with a straightforward fine-tuning process. Experiments on MR images acquired from ten sites show that CALAMITI achieves superior performance compared with other harmonization approaches.
In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to site, which impedes consistent measurements in automatic analyses. In this paper, we propose an unsupervised MR image harmonization approach, CALAMITI (Contrast Anatomy Learning and Analysis for MR Intensity Translation and Integration), which aims to alleviate contrast variations in multi-site MR imaging. Designed using information bottleneck theory, CALAMITI learns a globally disentangled latent space containing both anatomical and contrast information, which permits harmonization. In contrast to supervised harmonization methods, our approach does not need a sample population to be imaged across sites. Unlike traditional unsupervised harmonization approaches which often suffer from geometry shifts, CALAMITI better preserves anatomy by design. The proposed method is also able to adapt to a new testing site with a straightforward fine-tuning process. Experiments on MR images acquired from ten sites show that CALAMITI achieves superior performance compared with other harmonization approaches.In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to site, which impedes consistent measurements in automatic analyses. In this paper, we propose an unsupervised MR image harmonization approach, CALAMITI (Contrast Anatomy Learning and Analysis for MR Intensity Translation and Integration), which aims to alleviate contrast variations in multi-site MR imaging. Designed using information bottleneck theory, CALAMITI learns a globally disentangled latent space containing both anatomical and contrast information, which permits harmonization. In contrast to supervised harmonization methods, our approach does not need a sample population to be imaged across sites. Unlike traditional unsupervised harmonization approaches which often suffer from geometry shifts, CALAMITI better preserves anatomy by design. The proposed method is also able to adapt to a new testing site with a straightforward fine-tuning process. Experiments on MR images acquired from ten sites show that CALAMITI achieves superior performance compared with other harmonization approaches.
In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to site, which impedes consistent measurements in automatic analyses. In this paper, we propose an unsupervised MR image harmonization approach, CALAMITI (Contrast Anatomy Learning and Analysis for MR Intensity Translation and Integration), which aims to alleviate contrast variations in multi-site MR imaging. Designed using information bottleneck theory, CALAMITI learns a globally disentangled latent space containing both anatomical and contrast information, which permits harmonization. In contrast to supervised harmonization methods, our approach does not need a sample population to be imaged across sites. Unlike traditional unsupervised harmonization approaches which often suffer from geometry shifts, CALAMITI better preserves anatomy by design. The proposed method is also able to adapt to a new testing site with a straightforward fine-tuning process. Experiments on MR images acquired from ten sites show that CALAMITI achieves superior performance compared with other harmonization approaches.
In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to site, which impedes consistent measurements in automatic analyses. In this paper, we propose an unsupervised MR image harmonization approach, CALAMITI (Contrast Anatomy Learning and Analysis for MR Intensity Translation and Integration), which aims to alleviate contrast variations in multi-site MR imaging. Designed using information bottleneck theory, CALAMITI learns a globally disentangled latent space containing both anatomical and contrast information, which permits harmonization. In contrast to supervised harmonization methods, our approach does not need a sample population to be imaged across sites. Unlike traditional unsupervised harmonization approaches which often suffer from geometry shifts, CALAMITI better preserves anatomy by design. The proposed method is also able to adapt to a new testing site with a straightforward fine-tuning process. Experiments on MR images acquired from ten sites show that CALAMITI achieves superior performance compared with other harmonization approaches.
ArticleNumber 118569
Author Mowry, Ellen M.
Resnick, Susan M.
Dewey, Blake E.
He, Yufan
Newsome, Scott D.
Liu, Yihao
Carass, Aaron
Prince, Jerry L.
Zuo, Lianrui
Author_xml – sequence: 1
  givenname: Lianrui
  surname: Zuo
  fullname: Zuo, Lianrui
  email: lr_zuo@jhu.edu
  organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA
– sequence: 2
  givenname: Blake E.
  surname: Dewey
  fullname: Dewey, Blake E.
  organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA
– sequence: 3
  givenname: Yihao
  surname: Liu
  fullname: Liu, Yihao
  organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA
– sequence: 4
  givenname: Yufan
  surname: He
  fullname: He, Yufan
  organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA
– sequence: 5
  givenname: Scott D.
  surname: Newsome
  fullname: Newsome, Scott D.
  organization: Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
– sequence: 6
  givenname: Ellen M.
  surname: Mowry
  fullname: Mowry, Ellen M.
  organization: Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
– sequence: 7
  givenname: Susan M.
  surname: Resnick
  fullname: Resnick, Susan M.
  organization: Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institute of Health, Baltimore, MD 20892, USA
– sequence: 8
  givenname: Jerry L.
  surname: Prince
  fullname: Prince, Jerry L.
  organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA
– sequence: 9
  givenname: Aaron
  surname: Carass
  fullname: Carass, Aaron
  organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34506916$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhSNURH_gFVAkNmwy9U3ixN4goAJaqQgJ0bXl2NdTpxl7sJNKw9PjNEORZjUr_-g7n-x7zrMT5x1mWQ5kBQSay37lcArebuQaVyUpYQXAaMNfZGdAOC04bcuTeU-rggHw0-w8xp4QwqFmr7LTqqak4dCcZf2di9MWw6ONqPPvP_N7GTbe2T9ytN7l3S4fUAZn3TrXCXGjdOshkQG3AZ_OMxfzKc6IdcaHzT7qx3FAh-ohH-_Rh93r7KWRQ8Q3-_Uiu_v65dfVdXH749vN1afbQtGWjkWjgSHU2JDOmJLVhhJVaqpqNBWCoaWUlel4SbsWKwolp7xSlW5NK42h6XCR3Sxe7WUvtiFNKeyEl1Y8XfiwFjKMVg0oVEqVmmlUBOoGmdQNbwjHruacIKXJ9X5xbYP_PWEcxcZGhcMgHfopipK2wKElvE3ouwO091Nw6aczxRi0jEOi3u6pqdugfn7ev0YSwBZABR9jQPOMABFz-aIX_8sXc_liKT9FPxxElV36GYO0wzGCz4sAUz2PFoOIyqJTqG1ANab52WMkHw8karDOKjk84O44xV80eenL
CitedBy_id crossref_primary_10_1016_j_media_2022_102516
crossref_primary_10_3389_fnimg_2022_1012639
crossref_primary_10_1002_hbm_26422
crossref_primary_10_1038_s44172_023_00140_w
crossref_primary_10_1080_14737175_2024_2398484
crossref_primary_10_1016_j_media_2024_103164
crossref_primary_10_1016_j_media_2024_103388
crossref_primary_10_1016_j_jksuci_2024_102157
crossref_primary_10_3389_fneur_2022_923988
crossref_primary_10_1016_j_heliyon_2023_e22647
crossref_primary_10_1016_j_media_2023_102926
crossref_primary_10_1016_j_neuroimage_2022_119570
crossref_primary_10_1016_j_neuroimage_2022_119297
crossref_primary_10_1016_j_compmedimag_2023_102285
crossref_primary_10_1016_j_neuroimage_2023_120125
crossref_primary_10_1016_j_ynirp_2024_100195
crossref_primary_10_3389_fncom_2023_1140782
crossref_primary_10_1117_1_JMI_11_5_054502
crossref_primary_10_1016_j_neuroimage_2023_119898
crossref_primary_10_1016_j_artmed_2023_102747
crossref_primary_10_1016_j_neuroimage_2023_119912
crossref_primary_10_1016_j_neuroimage_2023_119911
crossref_primary_10_1016_j_media_2024_103354
crossref_primary_10_1016_j_media_2024_103251
crossref_primary_10_1088_1361_6560_ac72ef
crossref_primary_10_1002_hbm_26708
crossref_primary_10_1007_s00424_024_03016_w
crossref_primary_10_1016_j_nicl_2023_103472
crossref_primary_10_1109_TMI_2022_3193029
crossref_primary_10_1117_1_JMI_11_1_014005
crossref_primary_10_1162_imag_a_00214
crossref_primary_10_1016_j_neuroimage_2024_120635
crossref_primary_10_3390_bioengineering10040397
crossref_primary_10_1016_j_neunet_2024_107039
crossref_primary_10_1016_j_neuroimage_2024_120812
Cites_doi 10.1002/mp.13880
10.1109/TIP.2003.819861
10.1109/TMI.2013.2282126
10.1093/cercor/10.5.464
10.1109/TMI.2010.2046908
10.1145/3422622
10.1016/j.neuroimage.2017.08.047
10.1016/j.media.2015.05.002
10.1016/j.neuroimage.2010.04.258
10.1016/j.neunet.2020.07.023
10.1109/TMI.2020.3037187
10.1038/mp.2013.78
10.1016/j.neuroimage.2020.116819
10.1016/j.neuroimage.2019.03.041
10.1016/j.neuroimage.2020.117127
10.1002/mrm.28243
10.1016/j.media.2019.101535
10.1016/j.media.2021.102136
10.1016/j.neuroimage.2019.116450
10.1007/s002340050463
10.1016/j.mri.2019.05.041
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Inc.
Copyright Elsevier Limited Nov 2021
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Nov 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOA
DOI 10.1016/j.neuroimage.2021.118569
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
ProQuest One Psychology


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_c7f72d8dec0146e8ad69609eb4990e55
34506916
10_1016_j_neuroimage_2021_118569
S1053811921008429
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: ZIA AG000191
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c575t-6d18e14e60bff284f50c2d5c4ef3e1f52aa3fb925b7e35129593c3d7f7aff5593
IEDL.DBID DOA
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:29:11 EDT 2025
Fri Jul 11 03:46:44 EDT 2025
Wed Aug 13 06:59:19 EDT 2025
Mon Jul 21 06:03:10 EDT 2025
Thu Apr 24 22:52:50 EDT 2025
Tue Jul 01 03:02:20 EDT 2025
Fri Feb 23 02:42:40 EST 2024
Tue Aug 26 20:02:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Image-to-image translation
Image synthesis
Disentangle
Magnetic resonance imaging
Harmonization
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-6d18e14e60bff284f50c2d5c4ef3e1f52aa3fb925b7e35129593c3d7f7aff5593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/c7f72d8dec0146e8ad69609eb4990e55
PMID 34506916
PQID 2578817891
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_c7f72d8dec0146e8ad69609eb4990e55
proquest_miscellaneous_2571917097
proquest_journals_2578817891
pubmed_primary_34506916
crossref_primary_10_1016_j_neuroimage_2021_118569
crossref_citationtrail_10_1016_j_neuroimage_2021_118569
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118569
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118569
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Huang, Liu, Belongie, Kautz (bib0018) 2018
Sohn, Lee, Yan (bib0041) 2015; 28
Xia, Yang, Xue (bib0047) 2020; 131
Tishby, Pereira, Bialek (bib0043) 1999
Zuo, Dewey, Carass, Liu, He, Calabresi, Prince (bib0052) 2021
Wang, Bovik, Sheikh, Simoncelli (bib0046) 2004; 13
Kingma, D. P., Welling, M., 2013. Auto-encoding variational Bayes. arXiv preprint arXiv
Liu, Breuel, Kautz (bib0027) 2017
Atlason, Love, Sigurdsson, Gudnason, Ellingsen (bib0002) 2019; Vol. 10949
Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib0044) 2010; 29
Dewey, Zhao, Reinhold, Carass, Fitzgerald, Sotirchos, Saidha, Oh, Pham, Calabresi (bib0009) 2019; 64
Zhao, Dewey, Pham, Calabresi, Reich, Prince (bib0048) 2020; 40
American College of Radiology, 2018. Phantom test guidance for use of the large MRI phantom for the ACR MRI accreditation program. Released: 4/17/18.
Liu, Xing, El Fakhri, Woo (bib0028) 2021
Remedios, amd C. Bermudez, Patel, Butman, Landman, Pham (bib0035) 2020; 47
He, Carass, Zuo, Dewey, Prince (bib0017) 2021
Kamnitsas, Baumgartner, Ledig, Newcombe, Simpson, Kane, Menon, Nori, Criminisi, Rueckert (bib0022) 2017
Dewey, Zuo, Carass, He, Liu, Mowry, Newsome, Oh, Calabresi, Prince (bib0010) 2020
Liu, Liu, Yeh, Wang (bib0026) 2018
Han, Carass, He, Prince (bib0014) 2020; 218
Johnson, Alahi, Fei-Fei (bib0021) 2016
Zuo, Dewey, Carass, He, Shao, Reinhold, Prince (bib0051) 2020
.
Jog, Carass, Roy, Pham, Prince (bib0020) 2015; 24
Resnick, Goldszal, Davatzikos, Golski, Kraut, Metter, Bryan, Zonderman (bib0036) 2000; 10
Garcia-Dias, Scarpazza, Baecker, Vieira, Pinaya, Corvin, Redolfi, Nelson, Crespo-Facorro, McDonald (bib0012) 2020; 220
Varsavsky, Orbes-Arteaga, Sudre, Graham, Nachev, Cardoso (bib0045) 2020
Salonen, Autti, Raininko, Ylikoski, Erkinjuntti (bib0040) 1997; 39
Roy, Carass, Prince (bib0038) 2013; 32
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0013) 2020; 63
He, Carass, Zuo, Dewey, Prince (bib0016) 2020
Huo, Xu, Xiong, Aboud, Parvathaneni, Bao, Bermudez, Resnick, Cutting, Landman (bib0019) 2019; 194
Pomponio, Erus, Habes, Doshi, Srinivasan, Mamourian, Bashyam, Nasrallah, Satterthwaite, Fan (bib0033) 2020; 208
Reinhold, Dewey, Carass, Prince (bib0034) 2019; Vol. 10949
LaMontagne, Benzinger, Morris, Keefe, Hornbeck, Xiong, Grant, Hassenstab, Moulder, Vlassenko (bib0024) 2019
Moyer, Ver Steeg, Tax, Thompson (bib0031) 2020; 84
Saito, Watanabe, Ushiku, Harada (bib0039) 2018
Fortin, Parker, Tunç, Watanabe, Elliott, Ruparel, Roalf, Satterthwaite, Gur, Gur, Schultz, Verma, Shinohara (bib0011) 2017; 161
Choi, Choi, Kim, Ha, Kim, Choo (bib0005) 2018
Cohen, Luck, Honari (bib0006) 2018
Chartsias, Joyce, Papanastasiou, Semple, Williams, Newby, Dharmakumar, Tsaftaris (bib0004) 2019; 58
Thambisetty, Wan, Carass, An, Prince, Resnick (bib0042) 2010; 52
Ouyang, Adeli, Pohl, Zhao, Zaharchuk (bib0032) 2021
Ronneberger, Fischer, Brox (bib0037) 2015
Dai, Zhu, Guo, Wipf (bib0007) 2018
He, Carass, Liu, Saidha, Calabresi, Prince (bib0015) 2020; Vol. 11313
Liu, Zuo, Carass, He, Filippatou, Solomonand, Saidha, Calabresi, Prince (bib0029) 2020; Vol. 11313
Dewey, Zhao, Carass, Oh, Calabresi, van Zijl, Prince (bib0008) 2018
Lindvall (bib0025) 2002
Zhu, Park, Isola, Efros (bib0050) 2017
Brown, et al. (bib0003) 2014
Zhu, Moyer, Nir, Thompson, Jahanshad (bib0049) 2019
Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto, Deen, Delmonte, Dinstein, Ertl-Wagner, Fair, Gallagher, Kennedy, Keown, Keysers, Lainhart, Lord, Luna, Menon, Minshew, Monk, Mueller, Müller, Nebel, Nigg, O’Hearn, Pelphrey, Peltier, Rudie, Sunaert, Thioux, Tyszka, Uddin, Verhoeven, Wenderoth, Wiggins, Mostofsky, Milham (bib0030) 2014; 19
Dai (10.1016/j.neuroimage.2021.118569_bib0007) 2018
Pomponio (10.1016/j.neuroimage.2021.118569_bib0033) 2020; 208
Brown (10.1016/j.neuroimage.2021.118569_bib0003) 2014
Zuo (10.1016/j.neuroimage.2021.118569_bib0051) 2020
Atlason (10.1016/j.neuroimage.2021.118569_bib0002) 2019; Vol. 10949
Liu (10.1016/j.neuroimage.2021.118569_bib0026) 2018
Choi (10.1016/j.neuroimage.2021.118569_bib0005) 2018
He (10.1016/j.neuroimage.2021.118569_bib0016) 2020
Xia (10.1016/j.neuroimage.2021.118569_bib0047) 2020; 131
Zhu (10.1016/j.neuroimage.2021.118569_bib0050) 2017
Salonen (10.1016/j.neuroimage.2021.118569_bib0040) 1997; 39
Remedios (10.1016/j.neuroimage.2021.118569_bib0035) 2020; 47
Zhu (10.1016/j.neuroimage.2021.118569_bib0049) 2019
Han (10.1016/j.neuroimage.2021.118569_bib0014) 2020; 218
10.1016/j.neuroimage.2021.118569_bib0023
Varsavsky (10.1016/j.neuroimage.2021.118569_bib0045) 2020
Roy (10.1016/j.neuroimage.2021.118569_bib0038) 2013; 32
Dewey (10.1016/j.neuroimage.2021.118569_bib0008) 2018
Kamnitsas (10.1016/j.neuroimage.2021.118569_bib0022) 2017
Liu (10.1016/j.neuroimage.2021.118569_bib0028) 2021
Ronneberger (10.1016/j.neuroimage.2021.118569_bib0037) 2015
Moyer (10.1016/j.neuroimage.2021.118569_bib0031) 2020; 84
He (10.1016/j.neuroimage.2021.118569_bib0017) 2021
Zhao (10.1016/j.neuroimage.2021.118569_bib0048) 2020; 40
Goodfellow (10.1016/j.neuroimage.2021.118569_bib0013) 2020; 63
Huang (10.1016/j.neuroimage.2021.118569_bib0018) 2018
Jog (10.1016/j.neuroimage.2021.118569_bib0020) 2015; 24
Reinhold (10.1016/j.neuroimage.2021.118569_bib0034) 2019; Vol. 10949
Johnson (10.1016/j.neuroimage.2021.118569_bib0021) 2016
Dewey (10.1016/j.neuroimage.2021.118569_bib0009) 2019; 64
Fortin (10.1016/j.neuroimage.2021.118569_bib0011) 2017; 161
Ouyang (10.1016/j.neuroimage.2021.118569_bib0032) 2021
Huo (10.1016/j.neuroimage.2021.118569_bib0019) 2019; 194
Sohn (10.1016/j.neuroimage.2021.118569_bib0041) 2015; 28
LaMontagne (10.1016/j.neuroimage.2021.118569_bib0024) 2019
10.1016/j.neuroimage.2021.118569_bib0001
Garcia-Dias (10.1016/j.neuroimage.2021.118569_bib0012) 2020; 220
Zuo (10.1016/j.neuroimage.2021.118569_bib0052) 2021
Resnick (10.1016/j.neuroimage.2021.118569_bib0036) 2000; 10
Thambisetty (10.1016/j.neuroimage.2021.118569_bib0042) 2010; 52
Dewey (10.1016/j.neuroimage.2021.118569_bib0010) 2020
Liu (10.1016/j.neuroimage.2021.118569_bib0027) 2017
Liu (10.1016/j.neuroimage.2021.118569_bib0029) 2020; Vol. 11313
Cohen (10.1016/j.neuroimage.2021.118569_bib0006) 2018
Martino (10.1016/j.neuroimage.2021.118569_bib0030) 2014; 19
Saito (10.1016/j.neuroimage.2021.118569_bib0039) 2018
Tustison (10.1016/j.neuroimage.2021.118569_bib0044) 2010; 29
Chartsias (10.1016/j.neuroimage.2021.118569_bib0004) 2019; 58
Tishby (10.1016/j.neuroimage.2021.118569_bib0043) 1999
Lindvall (10.1016/j.neuroimage.2021.118569_bib0025) 2002
Wang (10.1016/j.neuroimage.2021.118569_bib0046) 2004; 13
He (10.1016/j.neuroimage.2021.118569_bib0015) 2020; Vol. 11313
References_xml – reference: Kingma, D. P., Welling, M., 2013. Auto-encoding variational Bayes. arXiv preprint arXiv:
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib0046
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 218
  start-page: 116819
  year: 2020
  ident: bib0014
  article-title: Automatic cerebellum anatomical parcellation using U-Net with locally constrained optimization
  publication-title: Neuroimage
– volume: 24
  start-page: 63
  year: 2015
  end-page: 76
  ident: bib0020
  article-title: Mr image synthesis by contrast learning on neighborhood ensembles
  publication-title: Med. Image Anal.
– start-page: 172
  year: 2018
  end-page: 189
  ident: bib0018
  article-title: Multimodal unsupervised image-to-image translation
  publication-title: Proceedings of the European Conference on Computer Vision
– volume: 63
  start-page: 139
  year: 2020
  end-page: 144
  ident: bib0013
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: bib0044
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imaging
– volume: Vol. 10949
  start-page: 109491H
  year: 2019
  ident: bib0002
  article-title: Unsupervised brain lesion segmentation from MRI using a convolutional autoencoder
  publication-title: Medical Imaging 2019: Image Processing
– start-page: 3723
  year: 2018
  end-page: 3732
  ident: bib0039
  article-title: Maximum classifier discrepancy for unsupervised domain adaptation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 58
  start-page: 101535
  year: 2019
  ident: bib0004
  article-title: Disentangled representation learning in cardiac image analysis
  publication-title: Med. Image Anal.
– start-page: 10
  year: 2021
  end-page: 14
  ident: bib0028
  article-title: A unified conditional disentanglement framework for multimodal brain mr image translation
  publication-title: Proceedings of the IEEE 18th International Symposium on Biomedical Imaging (ISBI)
– volume: 52
  start-page: 1215
  year: 2010
  end-page: 1223
  ident: bib0042
  article-title: Longitudinal changes in cortical thickness associated with normal aging
  publication-title: Neuroimage
– volume: Vol. 11313
  start-page: 113130Y
  year: 2020
  ident: bib0029
  article-title: Variational intensity cross channel encoder for unsupervised vessel segmentation on OCT angiography
  publication-title: Medical Imaging 2020: Image Processing
– start-page: 720
  year: 2020
  end-page: 729
  ident: bib0010
  article-title: A disentangled latent space for cross-site MRI harmonization
  publication-title: Proceedings of the 23
– start-page: 368
  year: 1999
  end-page: 377
  ident: bib0043
  article-title: The information bottleneck method
  publication-title: Proceedings of the 37th Annual Allerton Conference on Communication, Control, and Computing
– volume: 220
  year: 2020
  ident: bib0012
  article-title: Neuroharmony: a new tool for harmonizing volumetric MRI data from unseen scanners
  publication-title: Neuroimage
– volume: 10
  start-page: 464
  year: 2000
  end-page: 472
  ident: bib0036
  article-title: One-year age changes in MRI brain volumes in older adults
  publication-title: Cereb. Cortex
– start-page: 529
  year: 2018
  end-page: 536
  ident: bib0006
  article-title: Distribution matching losses can hallucinate features in medical image translation
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-assisted Intervention
– start-page: 21
  year: 2020
  end-page: 31
  ident: bib0051
  article-title: Synthesizing realistic brain MR images with noise control
  publication-title: Proceedings of the Workshop on Simulation and Synthesis in Medical Imaging (SASHIMI) held in conjunction with the 23
– start-page: 437
  year: 2020
  end-page: 446
  ident: bib0016
  article-title: Self domain adapted network
  publication-title: Proceedings of the 23
– start-page: 8789
  year: 2018
  end-page: 8797
  ident: bib0005
  article-title: Stargan: unified generative adversarial networks for multi-domain image-to-image translation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 64
  start-page: 160
  year: 2019
  end-page: 170
  ident: bib0009
  article-title: DeepHarmony: a deep learning approach to contrast harmonization across scanner changes
  publication-title: Mag. Reson. Imaging
– year: 2019
  ident: bib0024
  article-title: Oasis-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and alzheimer disease
  publication-title: MedRxiv
– start-page: InPress
  year: 2021
  ident: bib0032
  article-title: Representation disentanglement for multi-modal MR analysis
  publication-title: Proceedings of the 27
– volume: 39
  start-page: 537
  year: 1997
  end-page: 545
  ident: bib0040
  article-title: MRI of the brain in neurologically healthy middle-aged and elderly individuals
  publication-title: Neuroradiology
– start-page: 102136
  year: 2021
  ident: bib0017
  article-title: Autoencoder based self-supervised test-time adaptation for medical image analysis
  publication-title: Med. Image Anal.
– volume: 208
  start-page: 116450
  year: 2020
  ident: bib0033
  article-title: Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan
  publication-title: Neuroimage
– start-page: 694
  year: 2016
  end-page: 711
  ident: bib0021
  article-title: Perceptual losses for real-time style transfer and super-resolution
  publication-title: Proceedings of the European Conference on Computer Vision
– reference: American College of Radiology, 2018. Phantom test guidance for use of the large MRI phantom for the ACR MRI accreditation program. Released: 4/17/18.
– start-page: 700
  year: 2017
  end-page: 708
  ident: bib0027
  article-title: Unsupervised image-to-image translation networks
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– volume: 19
  start-page: 659
  year: 2014
  end-page: 667
  ident: bib0030
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatry
– start-page: 2223
  year: 2017
  end-page: 2232
  ident: bib0050
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 22
  year: 2018
  end-page: 30
  ident: bib0008
  article-title: Deep harmonization of inconsistent MR data for consistent volume segmentation
  publication-title: Proceedings of the Workshop on Simulation and Synthesis in Medical Imaging (SASHIMI) Held in Conjunction with the 21
– start-page: 597
  year: 2017
  end-page: 609
  ident: bib0022
  article-title: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks
  publication-title: Proceedings of the International Conference on Information Processing in Medical Imaging
– volume: 84
  start-page: 2174
  year: 2020
  end-page: 2189
  ident: bib0031
  article-title: Scanner invariant representations for diffusion MRI harmonization
  publication-title: Magn. Reson. Med.
– volume: Vol. 10949
  start-page: 109493H
  year: 2019
  ident: bib0034
  article-title: Evaluating the impact of intensity normalization on MR image synthesis
  publication-title: Medical Imaging 2019: Image Processing
– volume: Vol. 11313
  start-page: 1131309
  year: 2020
  ident: bib0015
  article-title: Adversarial domain adaptation for multi-device retinal OCT segmentation
  publication-title: Medical Imaging 2020: Image Processing
– year: 2002
  ident: bib0025
  article-title: Lectures on the Coupling Method
– start-page: 2590
  year: 2018
  end-page: 2599
  ident: bib0026
  article-title: A unified feature disentangler for multi-domain image translation and manipulation
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– start-page: 157
  year: 2019
  end-page: 172
  ident: bib0049
  article-title: Challenges and opportunities in dMRI data harmonization
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 40
  start-page: 805
  year: 2020
  end-page: 817
  ident: bib0048
  article-title: SMORE: a self-supervised anti-aliasing and super-resolution algorithm for MRI using deep learning
  publication-title: IEEE Trans Med Imaging
– start-page: 428
  year: 2020
  end-page: 436
  ident: bib0045
  article-title: Test-time unsupervised domain adaptation
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 346
  year: 2021
  end-page: 359
  ident: bib0052
  article-title: Information-based disentangled representation learning for unsupervised MR harmonization
  publication-title: Proceedings of the International Conference on Information Processing in Medical Imaging
– reference: .
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0037
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2014
  ident: bib0003
  article-title: Magnetic Resonance Imaging: Physical Principles and Sequence Design (Second Edition)
– volume: 47
  start-page: 89
  year: 2020
  end-page: 98
  ident: bib0035
  article-title: Distributed deep learning across multisite datasets for generalized CT hemorrhage segmentation
  publication-title: Med. Phys.
– volume: 131
  start-page: 50
  year: 2020
  end-page: 63
  ident: bib0047
  article-title: Unsupervised multi-domain multimodal image-to-image translation with explicit domain-constrained disentanglement
  publication-title: Neural Netw.
– start-page: 1135
  year: 2018
  end-page: 1144
  ident: bib0007
  article-title: Compressing neural networks using the variational information bottleneck
  publication-title: Proceedings of the International Conference on Machine Learning
– volume: 161
  start-page: 149
  year: 2017
  end-page: 170
  ident: bib0011
  article-title: Harmonization of multi-site diffusion tensor imaging data
  publication-title: Neuroimage
– volume: 32
  start-page: 2348
  year: 2013
  end-page: 2363
  ident: bib0038
  article-title: Magnetic resonance image example based contrast synthesis
  publication-title: IEEE Trans. Med. Imag.
– volume: 28
  start-page: 3483
  year: 2015
  end-page: 3491
  ident: bib0041
  article-title: Learning structured output representation using deep conditional generative models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 194
  start-page: 105
  year: 2019
  end-page: 119
  ident: bib0019
  article-title: 3D whole brain segmentation using spatially localized atlas network tiles
  publication-title: Neuroimage
– start-page: 22
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118569_bib0008
  article-title: Deep harmonization of inconsistent MR data for consistent volume segmentation
– volume: 47
  start-page: 89
  issue: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118569_bib0035
  article-title: Distributed deep learning across multisite datasets for generalized CT hemorrhage segmentation
  publication-title: Med. Phys.
  doi: 10.1002/mp.13880
– year: 2014
  ident: 10.1016/j.neuroimage.2021.118569_bib0003
– volume: 28
  start-page: 3483
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118569_bib0041
  article-title: Learning structured output representation using deep conditional generative models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: Vol. 11313
  start-page: 113130Y
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118569_bib0029
  article-title: Variational intensity cross channel encoder for unsupervised vessel segmentation on OCT angiography
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.neuroimage.2021.118569_bib0046
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– start-page: 368
  year: 1999
  ident: 10.1016/j.neuroimage.2021.118569_bib0043
  article-title: The information bottleneck method
– volume: 32
  start-page: 2348
  issue: 12
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118569_bib0038
  article-title: Magnetic resonance image example based contrast synthesis
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2013.2282126
– volume: 10
  start-page: 464
  issue: 5
  year: 2000
  ident: 10.1016/j.neuroimage.2021.118569_bib0036
  article-title: One-year age changes in MRI brain volumes in older adults
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/10.5.464
– start-page: 172
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118569_bib0018
  article-title: Multimodal unsupervised image-to-image translation
– start-page: 700
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118569_bib0027
  article-title: Unsupervised image-to-image translation networks
– start-page: 597
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118569_bib0022
  article-title: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks
– ident: 10.1016/j.neuroimage.2021.118569_bib0023
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118569_bib0044
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2046908
– year: 2019
  ident: 10.1016/j.neuroimage.2021.118569_bib0024
  article-title: Oasis-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and alzheimer disease
  publication-title: MedRxiv
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118569_bib0013
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– volume: 161
  start-page: 149
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118569_bib0011
  article-title: Harmonization of multi-site diffusion tensor imaging data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.08.047
– start-page: 2223
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118569_bib0050
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
– start-page: 437
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118569_bib0016
  article-title: Self domain adapted network
– volume: 24
  start-page: 63
  issue: 1
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118569_bib0020
  article-title: Mr image synthesis by contrast learning on neighborhood ensembles
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.05.002
– start-page: 428
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118569_bib0045
  article-title: Test-time unsupervised domain adaptation
– volume: 52
  start-page: 1215
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118569_bib0042
  article-title: Longitudinal changes in cortical thickness associated with normal aging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.04.258
– volume: 131
  start-page: 50
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118569_bib0047
  article-title: Unsupervised multi-domain multimodal image-to-image translation with explicit domain-constrained disentanglement
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.07.023
– start-page: 346
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118569_bib0052
  article-title: Information-based disentangled representation learning for unsupervised MR harmonization
– volume: 40
  start-page: 805
  issue: 3
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118569_bib0048
  article-title: SMORE: a self-supervised anti-aliasing and super-resolution algorithm for MRI using deep learning
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3037187
– start-page: 694
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118569_bib0021
  article-title: Perceptual losses for real-time style transfer and super-resolution
– volume: Vol. 10949
  start-page: 109491H
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118569_bib0002
  article-title: Unsupervised brain lesion segmentation from MRI using a convolutional autoencoder
– start-page: 10
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118569_bib0028
  article-title: A unified conditional disentanglement framework for multimodal brain mr image translation
– start-page: 3723
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118569_bib0039
  article-title: Maximum classifier discrepancy for unsupervised domain adaptation
– volume: 19
  start-page: 659
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118569_bib0030
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2013.78
– volume: 218
  start-page: 116819
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118569_bib0014
  article-title: Automatic cerebellum anatomical parcellation using U-Net with locally constrained optimization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116819
– volume: 194
  start-page: 105
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118569_bib0019
  article-title: 3D whole brain segmentation using spatially localized atlas network tiles
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.03.041
– start-page: 720
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118569_bib0010
  article-title: A disentangled latent space for cross-site MRI harmonization
– start-page: 2590
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118569_bib0026
  article-title: A unified feature disentangler for multi-domain image translation and manipulation
– volume: Vol. 11313
  start-page: 1131309
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118569_bib0015
  article-title: Adversarial domain adaptation for multi-device retinal OCT segmentation
– start-page: InPress
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118569_bib0032
  article-title: Representation disentanglement for multi-modal MR analysis
– volume: 220
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118569_bib0012
  article-title: Neuroharmony: a new tool for harmonizing volumetric MRI data from unseen scanners
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117127
– start-page: 1135
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118569_bib0007
  article-title: Compressing neural networks using the variational information bottleneck
– volume: 84
  start-page: 2174
  issue: 4
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118569_bib0031
  article-title: Scanner invariant representations for diffusion MRI harmonization
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28243
– volume: 58
  start-page: 101535
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118569_bib0004
  article-title: Disentangled representation learning in cardiac image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101535
– start-page: 529
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118569_bib0006
  article-title: Distribution matching losses can hallucinate features in medical image translation
– volume: Vol. 10949
  start-page: 109493H
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118569_bib0034
  article-title: Evaluating the impact of intensity normalization on MR image synthesis
– start-page: 234
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118569_bib0037
  article-title: U-net: Convolutional networks for biomedical image segmentation
– start-page: 102136
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118569_bib0017
  article-title: Autoencoder based self-supervised test-time adaptation for medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102136
– year: 2002
  ident: 10.1016/j.neuroimage.2021.118569_bib0025
– start-page: 21
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118569_bib0051
  article-title: Synthesizing realistic brain MR images with noise control
– start-page: 8789
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118569_bib0005
  article-title: Stargan: unified generative adversarial networks for multi-domain image-to-image translation
– volume: 208
  start-page: 116450
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118569_bib0033
  article-title: Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116450
– ident: 10.1016/j.neuroimage.2021.118569_bib0001
– volume: 39
  start-page: 537
  issue: 8
  year: 1997
  ident: 10.1016/j.neuroimage.2021.118569_bib0040
  article-title: MRI of the brain in neurologically healthy middle-aged and elderly individuals
  publication-title: Neuroradiology
  doi: 10.1007/s002340050463
– volume: 64
  start-page: 160
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118569_bib0009
  article-title: DeepHarmony: a deep learning approach to contrast harmonization across scanner changes
  publication-title: Mag. Reson. Imaging
  doi: 10.1016/j.mri.2019.05.041
– start-page: 157
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118569_bib0049
  article-title: Challenges and opportunities in dMRI data harmonization
SSID ssj0009148
Score 2.5746577
Snippet •Unsupervised MR harmonization without traveling subjects.•Unified latent space for MR contrast synthesis.•A novel framework for disentangling contrast and...
In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to...
In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118569
SubjectTerms Algorithms
Anatomy
Disentangle
Harmonization
Humans
Image Processing, Computer-Assisted - methods
Image synthesis
Image-to-image translation
Information Theory
Learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Scanners
Standardization
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELVWe0BcEN8UFmQkrqFxbCeOOMGK1QqpHIBKe7Nsx666LEm1bQ974bczYztZ9oBUiWNTj-V6Jm9m6plnQt5BkOub0puiY5CbCMxZlXCqUHXtlKpda-Mfbouv9flSfLmQF0fkdOyFwbLKjP0J0yNa5yfzvJvzzXo9_w6RAbgb5PNCUvgKm_iEaNDK3_--LfNomUjtcJIXODpX86Qar8gZuf4Fby5kihUD_FASS5__clGRyf-Op_pXJBo90tlD8iCHkvRjWu0jcuT7x-TeIh-WPyGXy3673yAWbH1HF98oslQPY-MltTc0XxmxonhM00OYuLqCkZHncuxJ6rcUS-NXNDOsJtEBmY97737S2Ah585Qszz7_OD0v8tUKhYP4bFfUHVOeCV-XNgTwUEGWruqkEz5wz4KsjOHBtpW0jecYE8iWO941oTEhQBLCn5Hjfuj9C0KFLFkwFnnoIDXh1ghbwmzWlJ0LMPGMNONuapd5x_H6iys9Fphd6ls9aNSDTnqYETZJbhL3xgEyn1Bh03hkz44PhuuVzuajHfyOqlOdd0id45XpaiTe8xbSv9JLWHI7qluPDaoAqTDR-oAFfJhk7xjygdIno3XpDCZbjaiqWKNaNiNvp68BBvBsx_R-2McxmHmXbTMjz5NVTnvAQUU1pAEv_2tpr8h9_JT6ME_I8e56719DQLazb-Ib9wfABjZH
  priority: 102
  providerName: Elsevier
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgL4s22BRmJa0ScxLGjHipaUVVIywGx0t4sP1ctbbI0u4f-e2YcJwsH0F4Tj-Vk7PE39sw3hHwEkOtF7nXmGPgmFfqssrIyk3VtpaxtY-KB2_xbfbmovi75Mh249SmscrSJ0VC7zuIZ-SecWpIJ2bDT9a8Mq0bh7WoqofGQPELqMgzpEkuxI91l1ZAKx8tMQoMUyTPEd0W-yKtbWLXgJRYMbIfkGPb8x_YUWfz_2qX-hULjbnTxjDxNMJJ-HvT-nDzw7QvyeJ4uyl-S60Xbb9doB3rv6Pw7RYbqbky6pOaepnIRK4pXNC1AxNUNtIwcl2M-UttTDItf0cSuOoh2yHrcevuTxiTI-1dkcfHlx_lllsoqZBaw2SarHZOeVb7OTQiwOwWe28JxW_lQehZ4oXUZTFNwI3yJeIA3pS2dCEKHAA5I-ZoctF3r3xJa8ZwFbZCDDtyS0ujK5NCb0bmzATqeETH-TWUT5ziWvrhRY3DZtdrpQaEe1KCHGWGT5Hrg3dhD5gwVNrVH5uz4oLtbqbQQlYXvKJx03iJtjpfa1Ui65w24frnnMORmVLcak1PBnEJHV3sM4GSSTQBmACZ7Sh-Ps0slQ9Kr3bSfkQ_TazABeK-jW99tYxv0uvNGzMibYVZO_6AEFdXgAhz-v_Mj8gRHMiRZHpODzd3WvwO0tTHv45L6DU-zKyU
  priority: 102
  providerName: ProQuest
Title Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921008429
https://dx.doi.org/10.1016/j.neuroimage.2021.118569
https://www.ncbi.nlm.nih.gov/pubmed/34506916
https://www.proquest.com/docview/2578817891
https://www.proquest.com/docview/2571917097
https://doaj.org/article/c7f72d8dec0146e8ad69609eb4990e55
Volume 243
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgkRAXxJvAUhmJayBO4sQRp120qwJqhVZU6s2yHbvaZUlXtD3shd_OjB9hOSB64JJKqceyZmzPN_HMZ0LeAMi1bWFV3jOITWqMWUVtRC6axgjRmE77D26zeTNd1J-WfHnjqi_MCQv0wEFx70zr2rIXvTVIc2KF6hskSbMaoHphuWcvBZ-XgqlEtwsoP-bthGwuzw55_h3WKMSEJYOdQnBMcr7hjDxn_x8-6W-Y0_ue0wfkfgSN9CgM9iG5ZYdH5O4sHos_JheLYbO7wlW_sT2dnVHko16nEkuqr2m8HGJF8UBmAEC4uoSWntEyVR8NG4pJ8CsauVSD6Bo5jgdrvlFf8nj9hCxOT75-mObxEoXcABLb5k3PhGW1bQrtHPgixwtT9tzU1lWWOV4qVTndlVy3tkLvz7vKVD1oXTkH4Ub1lBwM68E-J7TmBXNKI-McBCGVVrUuoDetit446DgjbdKmNJFhHC-6uJQplexC_raDRDvIYIeMsFHyKrBs7CFzjAYb2yNPtn8Bs0fG2SP_NXsy0iVzy1SKCpsndHS-xwDej7IRrgQYsqf0YZpdMm4bG4n7p2Ct6FhGXo9_w4LHUxw12PXOt8EYu-jajDwLs3LUQQUmagDwv_gfunlJ7uF4Q-HlITnY_tjZV4DAtnpCbr_9yeDZLtsJuXP08fN0Dr_HJ_MvZxO_EH8BvhE2_w
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwEviM9RGGAkeIyI8-kIIcRgU8fWCk2rtDcTf1UbIylLK9R_ir-Ru9hJ4QHUl70mvpPjO5_v4rvfEfIKnFyTh6YMNIPYJMGYlSeKBzzLFOeZKmT7w208yUbT5PNZerZFfnW1MJhW2dnE1lDrWuE_8jeoWpzlvGDv5z8C7BqFt6tdCw2nFkdm9RNCtubd4SeQ7-soOtg__TgKfFeBQIFrsggyzbhhiclCaS0YZ5uGKtKpSoyNDbNpVJaxlUWUytzEeBymRaxindu8tBb87xj43iDbSQyhzIBs7-1PvpysYX5Z4orv0jjgjBU-d8hllLUIleffwU5AXBoxsFY8xUTrPw7Etm_AX-fiv_ze9vw7uEvueMeVfnCado9smeo-uTn2V_MPyMW0apZztDyN0XR8QhETu-7KPKlcUd-gYkbxUqgCp3R2CSNbVM2uAqpqKCbiz6jHc3WkNeIsV0Z9o23Z5eohmV7Lkj8ig6quzGNCkzRktpSIegeBUCzLRIbATZahVhYYD0neraZQHuUcm21cii6d7UKs5SBQDsLJYUhYTzl3SB8b0OyhwPrxiNXdPqivZsJvfaHgOyLNtVEI1GN4qTOE-TMSgs3QpDDlohO36MphwYADo_MNJvC2p_Uuk3OFNqTe7bRLeNPViPVGG5KX_WswOniTVFamXrZjMM4Pi3xIdpxW9msQg4gyCDqe_J_5C3JrdDo-FseHk6On5DbOypV47pLB4mppnoGvt5DP_Qaj5Ot17-nfZQpqEA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkCZeEN_rGGAkeIwWJ3HiCCEEjGpjdEKISn0z8Ve1sSVlbYX6r_HXcec4KTyA-rLXxGc5vg_fxXe_I-QFOLm2iG0VGQaxSYYxq8i0iESeayFyXSr_w210mh-Ns48TPtkiv7paGEyr7GyiN9Sm0fiP_ABFS7BClOzAhbSIz4fDN7MfEXaQwpvWrp1GKyIndvUTwrf56-ND4PXLJBl--Pr-KAodBiINbsoiyg0TlmU2j5VzYKgdj3ViuM6sSy1zPKmq1Kky4aqwKR6NvEx1agpXVM6BL57CvDfIzQLeoY4Vk2IN-MuytgyPp5FgrAxZRG1umceqPLsEiwERasLAbgmOKdd_HI2-g8BfJ-S_PGB_Eg7vkNvBhaVvW5m7S7ZsfY_sjMIl_X1yPq7nyxnaoLk1dPSFIjp20xV8UrWioVXFlOL1UA3u6fQCRnp8za4Wqp5TTMmf0oDs2pI2iLhcW_2d-gLM1QMyvpYNf0i266a2u4RmPGauUoh_ByFRqqpMxTCbqmKjHUw8IEW3m1IHvHNsu3Ehu8S2c7nmg0Q-yJYPA8J6ylmL-bEBzTtkWD8eUbv9g-ZqKoMRkBq-IzHCWI2QPVZUJkfAP6sg7IwthyWXHbtlVxgLphwmOttgAa962uA8tU7RhtT7nXTJYMTmcq1yA_K8fw3mB--Uqto2Sz8GI_64LAbkUSuV_R6kwKIcwo-9_0_-jOyAJstPx6cnj8ktXFRb67lPthdXS_sEnL6Feuq1i5Jv163OvwEBYGzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+MR+harmonization+by+learning+disentangled+representations+using+information+bottleneck+theory&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Lianrui+Zuo&rft.au=Blake+E.+Dewey&rft.au=Yihao+Liu&rft.au=Yufan+He&rft.date=2021-11-01&rft.pub=Elsevier&rft.eissn=1095-9572&rft.volume=243&rft.spage=118569&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118569&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c7f72d8dec0146e8ad69609eb4990e55
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon