Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory
•Unsupervised MR harmonization without traveling subjects.•Unified latent space for MR contrast synthesis.•A novel framework for disentangling contrast and anatomy in MR images.•Downstream segmentation consistency shows significant improvements after harmonization. In magnetic resonance (MR) imaging...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 243; p. 118569 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2021
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Unsupervised MR harmonization without traveling subjects.•Unified latent space for MR contrast synthesis.•A novel framework for disentangling contrast and anatomy in MR images.•Downstream segmentation consistency shows significant improvements after harmonization.
In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to site, which impedes consistent measurements in automatic analyses. In this paper, we propose an unsupervised MR image harmonization approach, CALAMITI (Contrast Anatomy Learning and Analysis for MR Intensity Translation and Integration), which aims to alleviate contrast variations in multi-site MR imaging. Designed using information bottleneck theory, CALAMITI learns a globally disentangled latent space containing both anatomical and contrast information, which permits harmonization. In contrast to supervised harmonization methods, our approach does not need a sample population to be imaged across sites. Unlike traditional unsupervised harmonization approaches which often suffer from geometry shifts, CALAMITI better preserves anatomy by design. The proposed method is also able to adapt to a new testing site with a straightforward fine-tuning process. Experiments on MR images acquired from ten sites show that CALAMITI achieves superior performance compared with other harmonization approaches. |
---|---|
AbstractList | •Unsupervised MR harmonization without traveling subjects.•Unified latent space for MR contrast synthesis.•A novel framework for disentangling contrast and anatomy in MR images.•Downstream segmentation consistency shows significant improvements after harmonization.
In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to site, which impedes consistent measurements in automatic analyses. In this paper, we propose an unsupervised MR image harmonization approach, CALAMITI (Contrast Anatomy Learning and Analysis for MR Intensity Translation and Integration), which aims to alleviate contrast variations in multi-site MR imaging. Designed using information bottleneck theory, CALAMITI learns a globally disentangled latent space containing both anatomical and contrast information, which permits harmonization. In contrast to supervised harmonization methods, our approach does not need a sample population to be imaged across sites. Unlike traditional unsupervised harmonization approaches which often suffer from geometry shifts, CALAMITI better preserves anatomy by design. The proposed method is also able to adapt to a new testing site with a straightforward fine-tuning process. Experiments on MR images acquired from ten sites show that CALAMITI achieves superior performance compared with other harmonization approaches. In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to site, which impedes consistent measurements in automatic analyses. In this paper, we propose an unsupervised MR image harmonization approach, CALAMITI (Contrast Anatomy Learning and Analysis for MR Intensity Translation and Integration), which aims to alleviate contrast variations in multi-site MR imaging. Designed using information bottleneck theory, CALAMITI learns a globally disentangled latent space containing both anatomical and contrast information, which permits harmonization. In contrast to supervised harmonization methods, our approach does not need a sample population to be imaged across sites. Unlike traditional unsupervised harmonization approaches which often suffer from geometry shifts, CALAMITI better preserves anatomy by design. The proposed method is also able to adapt to a new testing site with a straightforward fine-tuning process. Experiments on MR images acquired from ten sites show that CALAMITI achieves superior performance compared with other harmonization approaches.In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to site, which impedes consistent measurements in automatic analyses. In this paper, we propose an unsupervised MR image harmonization approach, CALAMITI (Contrast Anatomy Learning and Analysis for MR Intensity Translation and Integration), which aims to alleviate contrast variations in multi-site MR imaging. Designed using information bottleneck theory, CALAMITI learns a globally disentangled latent space containing both anatomical and contrast information, which permits harmonization. In contrast to supervised harmonization methods, our approach does not need a sample population to be imaged across sites. Unlike traditional unsupervised harmonization approaches which often suffer from geometry shifts, CALAMITI better preserves anatomy by design. The proposed method is also able to adapt to a new testing site with a straightforward fine-tuning process. Experiments on MR images acquired from ten sites show that CALAMITI achieves superior performance compared with other harmonization approaches. In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to site, which impedes consistent measurements in automatic analyses. In this paper, we propose an unsupervised MR image harmonization approach, CALAMITI (Contrast Anatomy Learning and Analysis for MR Intensity Translation and Integration), which aims to alleviate contrast variations in multi-site MR imaging. Designed using information bottleneck theory, CALAMITI learns a globally disentangled latent space containing both anatomical and contrast information, which permits harmonization. In contrast to supervised harmonization methods, our approach does not need a sample population to be imaged across sites. Unlike traditional unsupervised harmonization approaches which often suffer from geometry shifts, CALAMITI better preserves anatomy by design. The proposed method is also able to adapt to a new testing site with a straightforward fine-tuning process. Experiments on MR images acquired from ten sites show that CALAMITI achieves superior performance compared with other harmonization approaches. In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to site, which impedes consistent measurements in automatic analyses. In this paper, we propose an unsupervised MR image harmonization approach, CALAMITI (Contrast Anatomy Learning and Analysis for MR Intensity Translation and Integration), which aims to alleviate contrast variations in multi-site MR imaging. Designed using information bottleneck theory, CALAMITI learns a globally disentangled latent space containing both anatomical and contrast information, which permits harmonization. In contrast to supervised harmonization methods, our approach does not need a sample population to be imaged across sites. Unlike traditional unsupervised harmonization approaches which often suffer from geometry shifts, CALAMITI better preserves anatomy by design. The proposed method is also able to adapt to a new testing site with a straightforward fine-tuning process. Experiments on MR images acquired from ten sites show that CALAMITI achieves superior performance compared with other harmonization approaches. |
ArticleNumber | 118569 |
Author | Mowry, Ellen M. Resnick, Susan M. Dewey, Blake E. He, Yufan Newsome, Scott D. Liu, Yihao Carass, Aaron Prince, Jerry L. Zuo, Lianrui |
Author_xml | – sequence: 1 givenname: Lianrui surname: Zuo fullname: Zuo, Lianrui email: lr_zuo@jhu.edu organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA – sequence: 2 givenname: Blake E. surname: Dewey fullname: Dewey, Blake E. organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA – sequence: 3 givenname: Yihao surname: Liu fullname: Liu, Yihao organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA – sequence: 4 givenname: Yufan surname: He fullname: He, Yufan organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA – sequence: 5 givenname: Scott D. surname: Newsome fullname: Newsome, Scott D. organization: Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA – sequence: 6 givenname: Ellen M. surname: Mowry fullname: Mowry, Ellen M. organization: Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA – sequence: 7 givenname: Susan M. surname: Resnick fullname: Resnick, Susan M. organization: Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institute of Health, Baltimore, MD 20892, USA – sequence: 8 givenname: Jerry L. surname: Prince fullname: Prince, Jerry L. organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA – sequence: 9 givenname: Aaron surname: Carass fullname: Carass, Aaron organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34506916$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAUhSNURH_gFVAkNmwy9U3ixN4goAJaqQgJ0bXl2NdTpxl7sJNKw9PjNEORZjUr_-g7n-x7zrMT5x1mWQ5kBQSay37lcArebuQaVyUpYQXAaMNfZGdAOC04bcuTeU-rggHw0-w8xp4QwqFmr7LTqqak4dCcZf2di9MWw6ONqPPvP_N7GTbe2T9ytN7l3S4fUAZn3TrXCXGjdOshkQG3AZ_OMxfzKc6IdcaHzT7qx3FAh-ohH-_Rh93r7KWRQ8Q3-_Uiu_v65dfVdXH749vN1afbQtGWjkWjgSHU2JDOmJLVhhJVaqpqNBWCoaWUlel4SbsWKwolp7xSlW5NK42h6XCR3Sxe7WUvtiFNKeyEl1Y8XfiwFjKMVg0oVEqVmmlUBOoGmdQNbwjHruacIKXJ9X5xbYP_PWEcxcZGhcMgHfopipK2wKElvE3ouwO091Nw6aczxRi0jEOi3u6pqdugfn7ev0YSwBZABR9jQPOMABFz-aIX_8sXc_liKT9FPxxElV36GYO0wzGCz4sAUz2PFoOIyqJTqG1ANab52WMkHw8karDOKjk84O44xV80eenL |
CitedBy_id | crossref_primary_10_1016_j_media_2022_102516 crossref_primary_10_3389_fnimg_2022_1012639 crossref_primary_10_1002_hbm_26422 crossref_primary_10_1038_s44172_023_00140_w crossref_primary_10_1080_14737175_2024_2398484 crossref_primary_10_1016_j_media_2024_103164 crossref_primary_10_1016_j_media_2024_103388 crossref_primary_10_1016_j_jksuci_2024_102157 crossref_primary_10_3389_fneur_2022_923988 crossref_primary_10_1016_j_heliyon_2023_e22647 crossref_primary_10_1016_j_media_2023_102926 crossref_primary_10_1016_j_neuroimage_2022_119570 crossref_primary_10_1016_j_neuroimage_2022_119297 crossref_primary_10_1016_j_compmedimag_2023_102285 crossref_primary_10_1016_j_neuroimage_2023_120125 crossref_primary_10_1016_j_ynirp_2024_100195 crossref_primary_10_3389_fncom_2023_1140782 crossref_primary_10_1117_1_JMI_11_5_054502 crossref_primary_10_1016_j_neuroimage_2023_119898 crossref_primary_10_1016_j_artmed_2023_102747 crossref_primary_10_1016_j_neuroimage_2023_119912 crossref_primary_10_1016_j_neuroimage_2023_119911 crossref_primary_10_1016_j_media_2024_103354 crossref_primary_10_1016_j_media_2024_103251 crossref_primary_10_1088_1361_6560_ac72ef crossref_primary_10_1002_hbm_26708 crossref_primary_10_1007_s00424_024_03016_w crossref_primary_10_1016_j_nicl_2023_103472 crossref_primary_10_1109_TMI_2022_3193029 crossref_primary_10_1117_1_JMI_11_1_014005 crossref_primary_10_1162_imag_a_00214 crossref_primary_10_1016_j_neuroimage_2024_120635 crossref_primary_10_3390_bioengineering10040397 crossref_primary_10_1016_j_neunet_2024_107039 crossref_primary_10_1016_j_neuroimage_2024_120812 |
Cites_doi | 10.1002/mp.13880 10.1109/TIP.2003.819861 10.1109/TMI.2013.2282126 10.1093/cercor/10.5.464 10.1109/TMI.2010.2046908 10.1145/3422622 10.1016/j.neuroimage.2017.08.047 10.1016/j.media.2015.05.002 10.1016/j.neuroimage.2010.04.258 10.1016/j.neunet.2020.07.023 10.1109/TMI.2020.3037187 10.1038/mp.2013.78 10.1016/j.neuroimage.2020.116819 10.1016/j.neuroimage.2019.03.041 10.1016/j.neuroimage.2020.117127 10.1002/mrm.28243 10.1016/j.media.2019.101535 10.1016/j.media.2021.102136 10.1016/j.neuroimage.2019.116450 10.1007/s002340050463 10.1016/j.mri.2019.05.041 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier Inc. Copyright Elsevier Limited Nov 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Nov 2021 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 DOA |
DOI | 10.1016/j.neuroimage.2021.118569 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
ExternalDocumentID | oai_doaj_org_article_c7f72d8dec0146e8ad69609eb4990e55 34506916 10_1016_j_neuroimage_2021_118569 S1053811921008429 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: ZIA AG000191 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c575t-6d18e14e60bff284f50c2d5c4ef3e1f52aa3fb925b7e35129593c3d7f7aff5593 |
IEDL.DBID | DOA |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:29:11 EDT 2025 Fri Jul 11 03:46:44 EDT 2025 Wed Aug 13 06:59:19 EDT 2025 Mon Jul 21 06:03:10 EDT 2025 Thu Apr 24 22:52:50 EDT 2025 Tue Jul 01 03:02:20 EDT 2025 Fri Feb 23 02:42:40 EST 2024 Tue Aug 26 20:02:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Image-to-image translation Image synthesis Disentangle Magnetic resonance imaging Harmonization |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-6d18e14e60bff284f50c2d5c4ef3e1f52aa3fb925b7e35129593c3d7f7aff5593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/c7f72d8dec0146e8ad69609eb4990e55 |
PMID | 34506916 |
PQID | 2578817891 |
PQPubID | 2031077 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c7f72d8dec0146e8ad69609eb4990e55 proquest_miscellaneous_2571917097 proquest_journals_2578817891 pubmed_primary_34506916 crossref_primary_10_1016_j_neuroimage_2021_118569 crossref_citationtrail_10_1016_j_neuroimage_2021_118569 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118569 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118569 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 20211101 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Huang, Liu, Belongie, Kautz (bib0018) 2018 Sohn, Lee, Yan (bib0041) 2015; 28 Xia, Yang, Xue (bib0047) 2020; 131 Tishby, Pereira, Bialek (bib0043) 1999 Zuo, Dewey, Carass, Liu, He, Calabresi, Prince (bib0052) 2021 Wang, Bovik, Sheikh, Simoncelli (bib0046) 2004; 13 Kingma, D. P., Welling, M., 2013. Auto-encoding variational Bayes. arXiv preprint arXiv Liu, Breuel, Kautz (bib0027) 2017 Atlason, Love, Sigurdsson, Gudnason, Ellingsen (bib0002) 2019; Vol. 10949 Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib0044) 2010; 29 Dewey, Zhao, Reinhold, Carass, Fitzgerald, Sotirchos, Saidha, Oh, Pham, Calabresi (bib0009) 2019; 64 Zhao, Dewey, Pham, Calabresi, Reich, Prince (bib0048) 2020; 40 American College of Radiology, 2018. Phantom test guidance for use of the large MRI phantom for the ACR MRI accreditation program. Released: 4/17/18. Liu, Xing, El Fakhri, Woo (bib0028) 2021 Remedios, amd C. Bermudez, Patel, Butman, Landman, Pham (bib0035) 2020; 47 He, Carass, Zuo, Dewey, Prince (bib0017) 2021 Kamnitsas, Baumgartner, Ledig, Newcombe, Simpson, Kane, Menon, Nori, Criminisi, Rueckert (bib0022) 2017 Dewey, Zuo, Carass, He, Liu, Mowry, Newsome, Oh, Calabresi, Prince (bib0010) 2020 Liu, Liu, Yeh, Wang (bib0026) 2018 Han, Carass, He, Prince (bib0014) 2020; 218 Johnson, Alahi, Fei-Fei (bib0021) 2016 Zuo, Dewey, Carass, He, Shao, Reinhold, Prince (bib0051) 2020 . Jog, Carass, Roy, Pham, Prince (bib0020) 2015; 24 Resnick, Goldszal, Davatzikos, Golski, Kraut, Metter, Bryan, Zonderman (bib0036) 2000; 10 Garcia-Dias, Scarpazza, Baecker, Vieira, Pinaya, Corvin, Redolfi, Nelson, Crespo-Facorro, McDonald (bib0012) 2020; 220 Varsavsky, Orbes-Arteaga, Sudre, Graham, Nachev, Cardoso (bib0045) 2020 Salonen, Autti, Raininko, Ylikoski, Erkinjuntti (bib0040) 1997; 39 Roy, Carass, Prince (bib0038) 2013; 32 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0013) 2020; 63 He, Carass, Zuo, Dewey, Prince (bib0016) 2020 Huo, Xu, Xiong, Aboud, Parvathaneni, Bao, Bermudez, Resnick, Cutting, Landman (bib0019) 2019; 194 Pomponio, Erus, Habes, Doshi, Srinivasan, Mamourian, Bashyam, Nasrallah, Satterthwaite, Fan (bib0033) 2020; 208 Reinhold, Dewey, Carass, Prince (bib0034) 2019; Vol. 10949 LaMontagne, Benzinger, Morris, Keefe, Hornbeck, Xiong, Grant, Hassenstab, Moulder, Vlassenko (bib0024) 2019 Moyer, Ver Steeg, Tax, Thompson (bib0031) 2020; 84 Saito, Watanabe, Ushiku, Harada (bib0039) 2018 Fortin, Parker, Tunç, Watanabe, Elliott, Ruparel, Roalf, Satterthwaite, Gur, Gur, Schultz, Verma, Shinohara (bib0011) 2017; 161 Choi, Choi, Kim, Ha, Kim, Choo (bib0005) 2018 Cohen, Luck, Honari (bib0006) 2018 Chartsias, Joyce, Papanastasiou, Semple, Williams, Newby, Dharmakumar, Tsaftaris (bib0004) 2019; 58 Thambisetty, Wan, Carass, An, Prince, Resnick (bib0042) 2010; 52 Ouyang, Adeli, Pohl, Zhao, Zaharchuk (bib0032) 2021 Ronneberger, Fischer, Brox (bib0037) 2015 Dai, Zhu, Guo, Wipf (bib0007) 2018 He, Carass, Liu, Saidha, Calabresi, Prince (bib0015) 2020; Vol. 11313 Liu, Zuo, Carass, He, Filippatou, Solomonand, Saidha, Calabresi, Prince (bib0029) 2020; Vol. 11313 Dewey, Zhao, Carass, Oh, Calabresi, van Zijl, Prince (bib0008) 2018 Lindvall (bib0025) 2002 Zhu, Park, Isola, Efros (bib0050) 2017 Brown, et al. (bib0003) 2014 Zhu, Moyer, Nir, Thompson, Jahanshad (bib0049) 2019 Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto, Deen, Delmonte, Dinstein, Ertl-Wagner, Fair, Gallagher, Kennedy, Keown, Keysers, Lainhart, Lord, Luna, Menon, Minshew, Monk, Mueller, Müller, Nebel, Nigg, O’Hearn, Pelphrey, Peltier, Rudie, Sunaert, Thioux, Tyszka, Uddin, Verhoeven, Wenderoth, Wiggins, Mostofsky, Milham (bib0030) 2014; 19 Dai (10.1016/j.neuroimage.2021.118569_bib0007) 2018 Pomponio (10.1016/j.neuroimage.2021.118569_bib0033) 2020; 208 Brown (10.1016/j.neuroimage.2021.118569_bib0003) 2014 Zuo (10.1016/j.neuroimage.2021.118569_bib0051) 2020 Atlason (10.1016/j.neuroimage.2021.118569_bib0002) 2019; Vol. 10949 Liu (10.1016/j.neuroimage.2021.118569_bib0026) 2018 Choi (10.1016/j.neuroimage.2021.118569_bib0005) 2018 He (10.1016/j.neuroimage.2021.118569_bib0016) 2020 Xia (10.1016/j.neuroimage.2021.118569_bib0047) 2020; 131 Zhu (10.1016/j.neuroimage.2021.118569_bib0050) 2017 Salonen (10.1016/j.neuroimage.2021.118569_bib0040) 1997; 39 Remedios (10.1016/j.neuroimage.2021.118569_bib0035) 2020; 47 Zhu (10.1016/j.neuroimage.2021.118569_bib0049) 2019 Han (10.1016/j.neuroimage.2021.118569_bib0014) 2020; 218 10.1016/j.neuroimage.2021.118569_bib0023 Varsavsky (10.1016/j.neuroimage.2021.118569_bib0045) 2020 Roy (10.1016/j.neuroimage.2021.118569_bib0038) 2013; 32 Dewey (10.1016/j.neuroimage.2021.118569_bib0008) 2018 Kamnitsas (10.1016/j.neuroimage.2021.118569_bib0022) 2017 Liu (10.1016/j.neuroimage.2021.118569_bib0028) 2021 Ronneberger (10.1016/j.neuroimage.2021.118569_bib0037) 2015 Moyer (10.1016/j.neuroimage.2021.118569_bib0031) 2020; 84 He (10.1016/j.neuroimage.2021.118569_bib0017) 2021 Zhao (10.1016/j.neuroimage.2021.118569_bib0048) 2020; 40 Goodfellow (10.1016/j.neuroimage.2021.118569_bib0013) 2020; 63 Huang (10.1016/j.neuroimage.2021.118569_bib0018) 2018 Jog (10.1016/j.neuroimage.2021.118569_bib0020) 2015; 24 Reinhold (10.1016/j.neuroimage.2021.118569_bib0034) 2019; Vol. 10949 Johnson (10.1016/j.neuroimage.2021.118569_bib0021) 2016 Dewey (10.1016/j.neuroimage.2021.118569_bib0009) 2019; 64 Fortin (10.1016/j.neuroimage.2021.118569_bib0011) 2017; 161 Ouyang (10.1016/j.neuroimage.2021.118569_bib0032) 2021 Huo (10.1016/j.neuroimage.2021.118569_bib0019) 2019; 194 Sohn (10.1016/j.neuroimage.2021.118569_bib0041) 2015; 28 LaMontagne (10.1016/j.neuroimage.2021.118569_bib0024) 2019 10.1016/j.neuroimage.2021.118569_bib0001 Garcia-Dias (10.1016/j.neuroimage.2021.118569_bib0012) 2020; 220 Zuo (10.1016/j.neuroimage.2021.118569_bib0052) 2021 Resnick (10.1016/j.neuroimage.2021.118569_bib0036) 2000; 10 Thambisetty (10.1016/j.neuroimage.2021.118569_bib0042) 2010; 52 Dewey (10.1016/j.neuroimage.2021.118569_bib0010) 2020 Liu (10.1016/j.neuroimage.2021.118569_bib0027) 2017 Liu (10.1016/j.neuroimage.2021.118569_bib0029) 2020; Vol. 11313 Cohen (10.1016/j.neuroimage.2021.118569_bib0006) 2018 Martino (10.1016/j.neuroimage.2021.118569_bib0030) 2014; 19 Saito (10.1016/j.neuroimage.2021.118569_bib0039) 2018 Tustison (10.1016/j.neuroimage.2021.118569_bib0044) 2010; 29 Chartsias (10.1016/j.neuroimage.2021.118569_bib0004) 2019; 58 Tishby (10.1016/j.neuroimage.2021.118569_bib0043) 1999 Lindvall (10.1016/j.neuroimage.2021.118569_bib0025) 2002 Wang (10.1016/j.neuroimage.2021.118569_bib0046) 2004; 13 He (10.1016/j.neuroimage.2021.118569_bib0015) 2020; Vol. 11313 |
References_xml | – reference: Kingma, D. P., Welling, M., 2013. Auto-encoding variational Bayes. arXiv preprint arXiv: – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: bib0046 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – volume: 218 start-page: 116819 year: 2020 ident: bib0014 article-title: Automatic cerebellum anatomical parcellation using U-Net with locally constrained optimization publication-title: Neuroimage – volume: 24 start-page: 63 year: 2015 end-page: 76 ident: bib0020 article-title: Mr image synthesis by contrast learning on neighborhood ensembles publication-title: Med. Image Anal. – start-page: 172 year: 2018 end-page: 189 ident: bib0018 article-title: Multimodal unsupervised image-to-image translation publication-title: Proceedings of the European Conference on Computer Vision – volume: 63 start-page: 139 year: 2020 end-page: 144 ident: bib0013 article-title: Generative adversarial networks publication-title: Commun. ACM – volume: 29 start-page: 1310 year: 2010 end-page: 1320 ident: bib0044 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans. Med. Imaging – volume: Vol. 10949 start-page: 109491H year: 2019 ident: bib0002 article-title: Unsupervised brain lesion segmentation from MRI using a convolutional autoencoder publication-title: Medical Imaging 2019: Image Processing – start-page: 3723 year: 2018 end-page: 3732 ident: bib0039 article-title: Maximum classifier discrepancy for unsupervised domain adaptation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 58 start-page: 101535 year: 2019 ident: bib0004 article-title: Disentangled representation learning in cardiac image analysis publication-title: Med. Image Anal. – start-page: 10 year: 2021 end-page: 14 ident: bib0028 article-title: A unified conditional disentanglement framework for multimodal brain mr image translation publication-title: Proceedings of the IEEE 18th International Symposium on Biomedical Imaging (ISBI) – volume: 52 start-page: 1215 year: 2010 end-page: 1223 ident: bib0042 article-title: Longitudinal changes in cortical thickness associated with normal aging publication-title: Neuroimage – volume: Vol. 11313 start-page: 113130Y year: 2020 ident: bib0029 article-title: Variational intensity cross channel encoder for unsupervised vessel segmentation on OCT angiography publication-title: Medical Imaging 2020: Image Processing – start-page: 720 year: 2020 end-page: 729 ident: bib0010 article-title: A disentangled latent space for cross-site MRI harmonization publication-title: Proceedings of the 23 – start-page: 368 year: 1999 end-page: 377 ident: bib0043 article-title: The information bottleneck method publication-title: Proceedings of the 37th Annual Allerton Conference on Communication, Control, and Computing – volume: 220 year: 2020 ident: bib0012 article-title: Neuroharmony: a new tool for harmonizing volumetric MRI data from unseen scanners publication-title: Neuroimage – volume: 10 start-page: 464 year: 2000 end-page: 472 ident: bib0036 article-title: One-year age changes in MRI brain volumes in older adults publication-title: Cereb. Cortex – start-page: 529 year: 2018 end-page: 536 ident: bib0006 article-title: Distribution matching losses can hallucinate features in medical image translation publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-assisted Intervention – start-page: 21 year: 2020 end-page: 31 ident: bib0051 article-title: Synthesizing realistic brain MR images with noise control publication-title: Proceedings of the Workshop on Simulation and Synthesis in Medical Imaging (SASHIMI) held in conjunction with the 23 – start-page: 437 year: 2020 end-page: 446 ident: bib0016 article-title: Self domain adapted network publication-title: Proceedings of the 23 – start-page: 8789 year: 2018 end-page: 8797 ident: bib0005 article-title: Stargan: unified generative adversarial networks for multi-domain image-to-image translation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 64 start-page: 160 year: 2019 end-page: 170 ident: bib0009 article-title: DeepHarmony: a deep learning approach to contrast harmonization across scanner changes publication-title: Mag. Reson. Imaging – year: 2019 ident: bib0024 article-title: Oasis-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and alzheimer disease publication-title: MedRxiv – start-page: InPress year: 2021 ident: bib0032 article-title: Representation disentanglement for multi-modal MR analysis publication-title: Proceedings of the 27 – volume: 39 start-page: 537 year: 1997 end-page: 545 ident: bib0040 article-title: MRI of the brain in neurologically healthy middle-aged and elderly individuals publication-title: Neuroradiology – start-page: 102136 year: 2021 ident: bib0017 article-title: Autoencoder based self-supervised test-time adaptation for medical image analysis publication-title: Med. Image Anal. – volume: 208 start-page: 116450 year: 2020 ident: bib0033 article-title: Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan publication-title: Neuroimage – start-page: 694 year: 2016 end-page: 711 ident: bib0021 article-title: Perceptual losses for real-time style transfer and super-resolution publication-title: Proceedings of the European Conference on Computer Vision – reference: American College of Radiology, 2018. Phantom test guidance for use of the large MRI phantom for the ACR MRI accreditation program. Released: 4/17/18. – start-page: 700 year: 2017 end-page: 708 ident: bib0027 article-title: Unsupervised image-to-image translation networks publication-title: Proceedings of the Advances in Neural Information Processing Systems – volume: 19 start-page: 659 year: 2014 end-page: 667 ident: bib0030 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatry – start-page: 2223 year: 2017 end-page: 2232 ident: bib0050 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 22 year: 2018 end-page: 30 ident: bib0008 article-title: Deep harmonization of inconsistent MR data for consistent volume segmentation publication-title: Proceedings of the Workshop on Simulation and Synthesis in Medical Imaging (SASHIMI) Held in Conjunction with the 21 – start-page: 597 year: 2017 end-page: 609 ident: bib0022 article-title: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks publication-title: Proceedings of the International Conference on Information Processing in Medical Imaging – volume: 84 start-page: 2174 year: 2020 end-page: 2189 ident: bib0031 article-title: Scanner invariant representations for diffusion MRI harmonization publication-title: Magn. Reson. Med. – volume: Vol. 10949 start-page: 109493H year: 2019 ident: bib0034 article-title: Evaluating the impact of intensity normalization on MR image synthesis publication-title: Medical Imaging 2019: Image Processing – volume: Vol. 11313 start-page: 1131309 year: 2020 ident: bib0015 article-title: Adversarial domain adaptation for multi-device retinal OCT segmentation publication-title: Medical Imaging 2020: Image Processing – year: 2002 ident: bib0025 article-title: Lectures on the Coupling Method – start-page: 2590 year: 2018 end-page: 2599 ident: bib0026 article-title: A unified feature disentangler for multi-domain image translation and manipulation publication-title: Proceedings of the Advances in Neural Information Processing Systems – start-page: 157 year: 2019 end-page: 172 ident: bib0049 article-title: Challenges and opportunities in dMRI data harmonization publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 40 start-page: 805 year: 2020 end-page: 817 ident: bib0048 article-title: SMORE: a self-supervised anti-aliasing and super-resolution algorithm for MRI using deep learning publication-title: IEEE Trans Med Imaging – start-page: 428 year: 2020 end-page: 436 ident: bib0045 article-title: Test-time unsupervised domain adaptation publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 346 year: 2021 end-page: 359 ident: bib0052 article-title: Information-based disentangled representation learning for unsupervised MR harmonization publication-title: Proceedings of the International Conference on Information Processing in Medical Imaging – reference: . – start-page: 234 year: 2015 end-page: 241 ident: bib0037 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – year: 2014 ident: bib0003 article-title: Magnetic Resonance Imaging: Physical Principles and Sequence Design (Second Edition) – volume: 47 start-page: 89 year: 2020 end-page: 98 ident: bib0035 article-title: Distributed deep learning across multisite datasets for generalized CT hemorrhage segmentation publication-title: Med. Phys. – volume: 131 start-page: 50 year: 2020 end-page: 63 ident: bib0047 article-title: Unsupervised multi-domain multimodal image-to-image translation with explicit domain-constrained disentanglement publication-title: Neural Netw. – start-page: 1135 year: 2018 end-page: 1144 ident: bib0007 article-title: Compressing neural networks using the variational information bottleneck publication-title: Proceedings of the International Conference on Machine Learning – volume: 161 start-page: 149 year: 2017 end-page: 170 ident: bib0011 article-title: Harmonization of multi-site diffusion tensor imaging data publication-title: Neuroimage – volume: 32 start-page: 2348 year: 2013 end-page: 2363 ident: bib0038 article-title: Magnetic resonance image example based contrast synthesis publication-title: IEEE Trans. Med. Imag. – volume: 28 start-page: 3483 year: 2015 end-page: 3491 ident: bib0041 article-title: Learning structured output representation using deep conditional generative models publication-title: Adv. Neural Inf. Process. Syst. – volume: 194 start-page: 105 year: 2019 end-page: 119 ident: bib0019 article-title: 3D whole brain segmentation using spatially localized atlas network tiles publication-title: Neuroimage – start-page: 22 year: 2018 ident: 10.1016/j.neuroimage.2021.118569_bib0008 article-title: Deep harmonization of inconsistent MR data for consistent volume segmentation – volume: 47 start-page: 89 issue: 1 year: 2020 ident: 10.1016/j.neuroimage.2021.118569_bib0035 article-title: Distributed deep learning across multisite datasets for generalized CT hemorrhage segmentation publication-title: Med. Phys. doi: 10.1002/mp.13880 – year: 2014 ident: 10.1016/j.neuroimage.2021.118569_bib0003 – volume: 28 start-page: 3483 year: 2015 ident: 10.1016/j.neuroimage.2021.118569_bib0041 article-title: Learning structured output representation using deep conditional generative models publication-title: Adv. Neural Inf. Process. Syst. – volume: Vol. 11313 start-page: 113130Y year: 2020 ident: 10.1016/j.neuroimage.2021.118569_bib0029 article-title: Variational intensity cross channel encoder for unsupervised vessel segmentation on OCT angiography – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.neuroimage.2021.118569_bib0046 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – start-page: 368 year: 1999 ident: 10.1016/j.neuroimage.2021.118569_bib0043 article-title: The information bottleneck method – volume: 32 start-page: 2348 issue: 12 year: 2013 ident: 10.1016/j.neuroimage.2021.118569_bib0038 article-title: Magnetic resonance image example based contrast synthesis publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2013.2282126 – volume: 10 start-page: 464 issue: 5 year: 2000 ident: 10.1016/j.neuroimage.2021.118569_bib0036 article-title: One-year age changes in MRI brain volumes in older adults publication-title: Cereb. Cortex doi: 10.1093/cercor/10.5.464 – start-page: 172 year: 2018 ident: 10.1016/j.neuroimage.2021.118569_bib0018 article-title: Multimodal unsupervised image-to-image translation – start-page: 700 year: 2017 ident: 10.1016/j.neuroimage.2021.118569_bib0027 article-title: Unsupervised image-to-image translation networks – start-page: 597 year: 2017 ident: 10.1016/j.neuroimage.2021.118569_bib0022 article-title: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks – ident: 10.1016/j.neuroimage.2021.118569_bib0023 – volume: 29 start-page: 1310 issue: 6 year: 2010 ident: 10.1016/j.neuroimage.2021.118569_bib0044 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2046908 – year: 2019 ident: 10.1016/j.neuroimage.2021.118569_bib0024 article-title: Oasis-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and alzheimer disease publication-title: MedRxiv – volume: 63 start-page: 139 issue: 11 year: 2020 ident: 10.1016/j.neuroimage.2021.118569_bib0013 article-title: Generative adversarial networks publication-title: Commun. ACM doi: 10.1145/3422622 – volume: 161 start-page: 149 year: 2017 ident: 10.1016/j.neuroimage.2021.118569_bib0011 article-title: Harmonization of multi-site diffusion tensor imaging data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.08.047 – start-page: 2223 year: 2017 ident: 10.1016/j.neuroimage.2021.118569_bib0050 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks – start-page: 437 year: 2020 ident: 10.1016/j.neuroimage.2021.118569_bib0016 article-title: Self domain adapted network – volume: 24 start-page: 63 issue: 1 year: 2015 ident: 10.1016/j.neuroimage.2021.118569_bib0020 article-title: Mr image synthesis by contrast learning on neighborhood ensembles publication-title: Med. Image Anal. doi: 10.1016/j.media.2015.05.002 – start-page: 428 year: 2020 ident: 10.1016/j.neuroimage.2021.118569_bib0045 article-title: Test-time unsupervised domain adaptation – volume: 52 start-page: 1215 issue: 4 year: 2010 ident: 10.1016/j.neuroimage.2021.118569_bib0042 article-title: Longitudinal changes in cortical thickness associated with normal aging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.04.258 – volume: 131 start-page: 50 year: 2020 ident: 10.1016/j.neuroimage.2021.118569_bib0047 article-title: Unsupervised multi-domain multimodal image-to-image translation with explicit domain-constrained disentanglement publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.07.023 – start-page: 346 year: 2021 ident: 10.1016/j.neuroimage.2021.118569_bib0052 article-title: Information-based disentangled representation learning for unsupervised MR harmonization – volume: 40 start-page: 805 issue: 3 year: 2020 ident: 10.1016/j.neuroimage.2021.118569_bib0048 article-title: SMORE: a self-supervised anti-aliasing and super-resolution algorithm for MRI using deep learning publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3037187 – start-page: 694 year: 2016 ident: 10.1016/j.neuroimage.2021.118569_bib0021 article-title: Perceptual losses for real-time style transfer and super-resolution – volume: Vol. 10949 start-page: 109491H year: 2019 ident: 10.1016/j.neuroimage.2021.118569_bib0002 article-title: Unsupervised brain lesion segmentation from MRI using a convolutional autoencoder – start-page: 10 year: 2021 ident: 10.1016/j.neuroimage.2021.118569_bib0028 article-title: A unified conditional disentanglement framework for multimodal brain mr image translation – start-page: 3723 year: 2018 ident: 10.1016/j.neuroimage.2021.118569_bib0039 article-title: Maximum classifier discrepancy for unsupervised domain adaptation – volume: 19 start-page: 659 year: 2014 ident: 10.1016/j.neuroimage.2021.118569_bib0030 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatry doi: 10.1038/mp.2013.78 – volume: 218 start-page: 116819 year: 2020 ident: 10.1016/j.neuroimage.2021.118569_bib0014 article-title: Automatic cerebellum anatomical parcellation using U-Net with locally constrained optimization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116819 – volume: 194 start-page: 105 year: 2019 ident: 10.1016/j.neuroimage.2021.118569_bib0019 article-title: 3D whole brain segmentation using spatially localized atlas network tiles publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.03.041 – start-page: 720 year: 2020 ident: 10.1016/j.neuroimage.2021.118569_bib0010 article-title: A disentangled latent space for cross-site MRI harmonization – start-page: 2590 year: 2018 ident: 10.1016/j.neuroimage.2021.118569_bib0026 article-title: A unified feature disentangler for multi-domain image translation and manipulation – volume: Vol. 11313 start-page: 1131309 year: 2020 ident: 10.1016/j.neuroimage.2021.118569_bib0015 article-title: Adversarial domain adaptation for multi-device retinal OCT segmentation – start-page: InPress year: 2021 ident: 10.1016/j.neuroimage.2021.118569_bib0032 article-title: Representation disentanglement for multi-modal MR analysis – volume: 220 year: 2020 ident: 10.1016/j.neuroimage.2021.118569_bib0012 article-title: Neuroharmony: a new tool for harmonizing volumetric MRI data from unseen scanners publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117127 – start-page: 1135 year: 2018 ident: 10.1016/j.neuroimage.2021.118569_bib0007 article-title: Compressing neural networks using the variational information bottleneck – volume: 84 start-page: 2174 issue: 4 year: 2020 ident: 10.1016/j.neuroimage.2021.118569_bib0031 article-title: Scanner invariant representations for diffusion MRI harmonization publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28243 – volume: 58 start-page: 101535 year: 2019 ident: 10.1016/j.neuroimage.2021.118569_bib0004 article-title: Disentangled representation learning in cardiac image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101535 – start-page: 529 year: 2018 ident: 10.1016/j.neuroimage.2021.118569_bib0006 article-title: Distribution matching losses can hallucinate features in medical image translation – volume: Vol. 10949 start-page: 109493H year: 2019 ident: 10.1016/j.neuroimage.2021.118569_bib0034 article-title: Evaluating the impact of intensity normalization on MR image synthesis – start-page: 234 year: 2015 ident: 10.1016/j.neuroimage.2021.118569_bib0037 article-title: U-net: Convolutional networks for biomedical image segmentation – start-page: 102136 year: 2021 ident: 10.1016/j.neuroimage.2021.118569_bib0017 article-title: Autoencoder based self-supervised test-time adaptation for medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102136 – year: 2002 ident: 10.1016/j.neuroimage.2021.118569_bib0025 – start-page: 21 year: 2020 ident: 10.1016/j.neuroimage.2021.118569_bib0051 article-title: Synthesizing realistic brain MR images with noise control – start-page: 8789 year: 2018 ident: 10.1016/j.neuroimage.2021.118569_bib0005 article-title: Stargan: unified generative adversarial networks for multi-domain image-to-image translation – volume: 208 start-page: 116450 year: 2020 ident: 10.1016/j.neuroimage.2021.118569_bib0033 article-title: Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116450 – ident: 10.1016/j.neuroimage.2021.118569_bib0001 – volume: 39 start-page: 537 issue: 8 year: 1997 ident: 10.1016/j.neuroimage.2021.118569_bib0040 article-title: MRI of the brain in neurologically healthy middle-aged and elderly individuals publication-title: Neuroradiology doi: 10.1007/s002340050463 – volume: 64 start-page: 160 year: 2019 ident: 10.1016/j.neuroimage.2021.118569_bib0009 article-title: DeepHarmony: a deep learning approach to contrast harmonization across scanner changes publication-title: Mag. Reson. Imaging doi: 10.1016/j.mri.2019.05.041 – start-page: 157 year: 2019 ident: 10.1016/j.neuroimage.2021.118569_bib0049 article-title: Challenges and opportunities in dMRI data harmonization |
SSID | ssj0009148 |
Score | 2.5746577 |
Snippet | •Unsupervised MR harmonization without traveling subjects.•Unified latent space for MR contrast synthesis.•A novel framework for disentangling contrast and... In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to... In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 118569 |
SubjectTerms | Algorithms Anatomy Disentangle Harmonization Humans Image Processing, Computer-Assisted - methods Image synthesis Image-to-image translation Information Theory Learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Scanners Standardization |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELVWe0BcEN8UFmQkrqFxbCeOOMGK1QqpHIBKe7Nsx666LEm1bQ974bczYztZ9oBUiWNTj-V6Jm9m6plnQt5BkOub0puiY5CbCMxZlXCqUHXtlKpda-Mfbouv9flSfLmQF0fkdOyFwbLKjP0J0yNa5yfzvJvzzXo9_w6RAbgb5PNCUvgKm_iEaNDK3_--LfNomUjtcJIXODpX86Qar8gZuf4Fby5kihUD_FASS5__clGRyf-Op_pXJBo90tlD8iCHkvRjWu0jcuT7x-TeIh-WPyGXy3673yAWbH1HF98oslQPY-MltTc0XxmxonhM00OYuLqCkZHncuxJ6rcUS-NXNDOsJtEBmY97737S2Ah585Qszz7_OD0v8tUKhYP4bFfUHVOeCV-XNgTwUEGWruqkEz5wz4KsjOHBtpW0jecYE8iWO941oTEhQBLCn5Hjfuj9C0KFLFkwFnnoIDXh1ghbwmzWlJ0LMPGMNONuapd5x_H6iys9Fphd6ls9aNSDTnqYETZJbhL3xgEyn1Bh03hkz44PhuuVzuajHfyOqlOdd0id45XpaiTe8xbSv9JLWHI7qluPDaoAqTDR-oAFfJhk7xjygdIno3XpDCZbjaiqWKNaNiNvp68BBvBsx_R-2McxmHmXbTMjz5NVTnvAQUU1pAEv_2tpr8h9_JT6ME_I8e56719DQLazb-Ib9wfABjZH priority: 102 providerName: Elsevier – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgL4s22BRmJa0ScxLGjHipaUVVIywGx0t4sP1ctbbI0u4f-e2YcJwsH0F4Tj-Vk7PE39sw3hHwEkOtF7nXmGPgmFfqssrIyk3VtpaxtY-KB2_xbfbmovi75Mh249SmscrSJ0VC7zuIZ-SecWpIJ2bDT9a8Mq0bh7WoqofGQPELqMgzpEkuxI91l1ZAKx8tMQoMUyTPEd0W-yKtbWLXgJRYMbIfkGPb8x_YUWfz_2qX-hULjbnTxjDxNMJJ-HvT-nDzw7QvyeJ4uyl-S60Xbb9doB3rv6Pw7RYbqbky6pOaepnIRK4pXNC1AxNUNtIwcl2M-UttTDItf0cSuOoh2yHrcevuTxiTI-1dkcfHlx_lllsoqZBaw2SarHZOeVb7OTQiwOwWe28JxW_lQehZ4oXUZTFNwI3yJeIA3pS2dCEKHAA5I-ZoctF3r3xJa8ZwFbZCDDtyS0ujK5NCb0bmzATqeETH-TWUT5ziWvrhRY3DZtdrpQaEe1KCHGWGT5Hrg3dhD5gwVNrVH5uz4oLtbqbQQlYXvKJx03iJtjpfa1Ui65w24frnnMORmVLcak1PBnEJHV3sM4GSSTQBmACZ7Sh-Ps0slQ9Kr3bSfkQ_TazABeK-jW99tYxv0uvNGzMibYVZO_6AEFdXgAhz-v_Mj8gRHMiRZHpODzd3WvwO0tTHv45L6DU-zKyU priority: 102 providerName: ProQuest |
Title | Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921008429 https://dx.doi.org/10.1016/j.neuroimage.2021.118569 https://www.ncbi.nlm.nih.gov/pubmed/34506916 https://www.proquest.com/docview/2578817891 https://www.proquest.com/docview/2571917097 https://doaj.org/article/c7f72d8dec0146e8ad69609eb4990e55 |
Volume | 243 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgkRAXxJvAUhmJayBO4sQRp120qwJqhVZU6s2yHbvaZUlXtD3shd_OjB9hOSB64JJKqceyZmzPN_HMZ0LeAMi1bWFV3jOITWqMWUVtRC6axgjRmE77D26zeTNd1J-WfHnjqi_MCQv0wEFx70zr2rIXvTVIc2KF6hskSbMaoHphuWcvBZ-XgqlEtwsoP-bthGwuzw55_h3WKMSEJYOdQnBMcr7hjDxn_x8-6W-Y0_ue0wfkfgSN9CgM9iG5ZYdH5O4sHos_JheLYbO7wlW_sT2dnVHko16nEkuqr2m8HGJF8UBmAEC4uoSWntEyVR8NG4pJ8CsauVSD6Bo5jgdrvlFf8nj9hCxOT75-mObxEoXcABLb5k3PhGW1bQrtHPgixwtT9tzU1lWWOV4qVTndlVy3tkLvz7vKVD1oXTkH4Ub1lBwM68E-J7TmBXNKI-McBCGVVrUuoDetit446DgjbdKmNJFhHC-6uJQplexC_raDRDvIYIeMsFHyKrBs7CFzjAYb2yNPtn8Bs0fG2SP_NXsy0iVzy1SKCpsndHS-xwDej7IRrgQYsqf0YZpdMm4bG4n7p2Ct6FhGXo9_w4LHUxw12PXOt8EYu-jajDwLs3LUQQUmagDwv_gfunlJ7uF4Q-HlITnY_tjZV4DAtnpCbr_9yeDZLtsJuXP08fN0Dr_HJ_MvZxO_EH8BvhE2_w |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwEviM9RGGAkeIyI8-kIIcRgU8fWCk2rtDcTf1UbIylLK9R_ir-Ru9hJ4QHUl70mvpPjO5_v4rvfEfIKnFyTh6YMNIPYJMGYlSeKBzzLFOeZKmT7w208yUbT5PNZerZFfnW1MJhW2dnE1lDrWuE_8jeoWpzlvGDv5z8C7BqFt6tdCw2nFkdm9RNCtubd4SeQ7-soOtg__TgKfFeBQIFrsggyzbhhiclCaS0YZ5uGKtKpSoyNDbNpVJaxlUWUytzEeBymRaxindu8tBb87xj43iDbSQyhzIBs7-1PvpysYX5Z4orv0jjgjBU-d8hllLUIleffwU5AXBoxsFY8xUTrPw7Etm_AX-fiv_ze9vw7uEvueMeVfnCado9smeo-uTn2V_MPyMW0apZztDyN0XR8QhETu-7KPKlcUd-gYkbxUqgCp3R2CSNbVM2uAqpqKCbiz6jHc3WkNeIsV0Z9o23Z5eohmV7Lkj8ig6quzGNCkzRktpSIegeBUCzLRIbATZahVhYYD0neraZQHuUcm21cii6d7UKs5SBQDsLJYUhYTzl3SB8b0OyhwPrxiNXdPqivZsJvfaHgOyLNtVEI1GN4qTOE-TMSgs3QpDDlohO36MphwYADo_MNJvC2p_Uuk3OFNqTe7bRLeNPViPVGG5KX_WswOniTVFamXrZjMM4Pi3xIdpxW9msQg4gyCDqe_J_5C3JrdDo-FseHk6On5DbOypV47pLB4mppnoGvt5DP_Qaj5Ot17-nfZQpqEA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkCZeEN_rGGAkeIwWJ3HiCCEEjGpjdEKISn0z8Ve1sSVlbYX6r_HXcec4KTyA-rLXxGc5vg_fxXe_I-QFOLm2iG0VGQaxSYYxq8i0iESeayFyXSr_w210mh-Ns48TPtkiv7paGEyr7GyiN9Sm0fiP_ABFS7BClOzAhbSIz4fDN7MfEXaQwpvWrp1GKyIndvUTwrf56-ND4PXLJBl--Pr-KAodBiINbsoiyg0TlmU2j5VzYKgdj3ViuM6sSy1zPKmq1Kky4aqwKR6NvEx1agpXVM6BL57CvDfIzQLeoY4Vk2IN-MuytgyPp5FgrAxZRG1umceqPLsEiwERasLAbgmOKdd_HI2-g8BfJ-S_PGB_Eg7vkNvBhaVvW5m7S7ZsfY_sjMIl_X1yPq7nyxnaoLk1dPSFIjp20xV8UrWioVXFlOL1UA3u6fQCRnp8za4Wqp5TTMmf0oDs2pI2iLhcW_2d-gLM1QMyvpYNf0i266a2u4RmPGauUoh_ByFRqqpMxTCbqmKjHUw8IEW3m1IHvHNsu3Ehu8S2c7nmg0Q-yJYPA8J6ylmL-bEBzTtkWD8eUbv9g-ZqKoMRkBq-IzHCWI2QPVZUJkfAP6sg7IwthyWXHbtlVxgLphwmOttgAa962uA8tU7RhtT7nXTJYMTmcq1yA_K8fw3mB--Uqto2Sz8GI_64LAbkUSuV_R6kwKIcwo-9_0_-jOyAJstPx6cnj8ktXFRb67lPthdXS_sEnL6Feuq1i5Jv163OvwEBYGzg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+MR+harmonization+by+learning+disentangled+representations+using+information+bottleneck+theory&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Lianrui+Zuo&rft.au=Blake+E.+Dewey&rft.au=Yihao+Liu&rft.au=Yufan+He&rft.date=2021-11-01&rft.pub=Elsevier&rft.eissn=1095-9572&rft.volume=243&rft.spage=118569&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118569&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c7f72d8dec0146e8ad69609eb4990e55 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |