rsHRF: A toolbox for resting-state HRF estimation and deconvolution

The hemodynamic response function (HRF) greatly influences the intra- and inter-subject variability of brain activation and connectivity, and might confound the estimation of temporal precedence in connectivity analyses, making its estimation necessary for a correct interpretation of neuroimaging st...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 244; p. 118591
Main Authors Wu, Guo-Rong, Colenbier, Nigel, Van Den Bossche, Sofie, Clauw, Kenzo, Johri, Amogh, Tandon, Madhur, Marinazzo, Daniele
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2021
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The hemodynamic response function (HRF) greatly influences the intra- and inter-subject variability of brain activation and connectivity, and might confound the estimation of temporal precedence in connectivity analyses, making its estimation necessary for a correct interpretation of neuroimaging studies. Additionally, the HRF shape itself is a useful local measure. However, most algorithms for HRF estimation are specific for task-related fMRI data, and only a few can be directly applied to resting-state protocols. Here we introduce rsHRF, a Matlab and Python toolbox that implements HRF estimation and deconvolution from the resting-state BOLD signal. We first provide an overview of the main algorithm, practical implementations, and then demonstrate the feasibility and usefulness of rsHRF by validation experiments with a publicly available resting-state fMRI dataset. We also provide tools for statistical analyses and visualization. We believe that this toolbox may significantly contribute to a better analysis and understanding of the components and variability of BOLD signals.
AbstractList The hemodynamic response function (HRF) greatly influences the intra- and inter-subject variability of brain activation and connectivity, and might confound the estimation of temporal precedence in connectivity analyses, making its estimation necessary for a correct interpretation of neuroimaging studies. Additionally, the HRF shape itself is a useful local measure. However, most algorithms for HRF estimation are specific for task-related fMRI data, and only a few can be directly applied to resting-state protocols. Here we introduce rsHRF, a Matlab and Python toolbox that implements HRF estimation and deconvolution from the resting-state BOLD signal. We first provide an overview of the main algorithm, practical implementations, and then demonstrate the feasibility and usefulness of rsHRF by validation experiments with a publicly available resting-state fMRI dataset. We also provide tools for statistical analyses and visualization. We believe that this toolbox may significantly contribute to a better analysis and understanding of the components and variability of BOLD signals.
The hemodynamic response function (HRF) greatly influences the intra- and inter-subject variability of brain activation and connectivity, and might confound the estimation of temporal precedence in connectivity analyses, making its estimation necessary for a correct interpretation of neuroimaging studies. Additionally, the HRF shape itself is a useful local measure. However, most algorithms for HRF estimation are specific for task-related fMRI data, and only a few can be directly applied to resting-state protocols. Here we introduce rsHRF, a Matlab and Python toolbox that implements HRF estimation and deconvolution from the resting-state BOLD signal. We first provide an overview of the main algorithm, practical implementations, and then demonstrate the feasibility and usefulness of rsHRF by validation experiments with a publicly available resting-state fMRI dataset. We also provide tools for statistical analyses and visualization. We believe that this toolbox may significantly contribute to a better analysis and understanding of the components and variability of BOLD signals.The hemodynamic response function (HRF) greatly influences the intra- and inter-subject variability of brain activation and connectivity, and might confound the estimation of temporal precedence in connectivity analyses, making its estimation necessary for a correct interpretation of neuroimaging studies. Additionally, the HRF shape itself is a useful local measure. However, most algorithms for HRF estimation are specific for task-related fMRI data, and only a few can be directly applied to resting-state protocols. Here we introduce rsHRF, a Matlab and Python toolbox that implements HRF estimation and deconvolution from the resting-state BOLD signal. We first provide an overview of the main algorithm, practical implementations, and then demonstrate the feasibility and usefulness of rsHRF by validation experiments with a publicly available resting-state fMRI dataset. We also provide tools for statistical analyses and visualization. We believe that this toolbox may significantly contribute to a better analysis and understanding of the components and variability of BOLD signals.
ArticleNumber 118591
Author Colenbier, Nigel
Van Den Bossche, Sofie
Johri, Amogh
Clauw, Kenzo
Marinazzo, Daniele
Tandon, Madhur
Wu, Guo-Rong
Author_xml – sequence: 1
  givenname: Guo-Rong
  surname: Wu
  fullname: Wu, Guo-Rong
  email: guorongwu@swu.edu.cn
  organization: Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing 400715, China
– sequence: 2
  givenname: Nigel
  surname: Colenbier
  fullname: Colenbier, Nigel
  organization: Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent 9000, Belgium
– sequence: 3
  givenname: Sofie
  surname: Van Den Bossche
  fullname: Van Den Bossche, Sofie
  organization: Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent 9000, Belgium
– sequence: 4
  givenname: Kenzo
  surname: Clauw
  fullname: Clauw, Kenzo
  organization: Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent 9000, Belgium
– sequence: 5
  givenname: Amogh
  surname: Johri
  fullname: Johri, Amogh
  organization: International Institute of Information Technology, Bangalore 560100, India
– sequence: 6
  givenname: Madhur
  surname: Tandon
  fullname: Tandon, Madhur
  organization: Indraprastha Institute of Information Technology, Delhi 110020, India
– sequence: 7
  givenname: Daniele
  surname: Marinazzo
  fullname: Marinazzo, Daniele
  organization: Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent 9000, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34560269$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URD_gL6BIXLhk64_YiTkgyorSSpWQEJwtx56svGTtYjtV--9xmrZIe9qTrdHjxzPznqIjHzwgVBG8IpiI8-3KwxSD2-kNrCimZEVIxyV5hU4IlryWvKVH852zuiNEHqPTlLYYY0ma7g06Zg0XmAp5gtYxXf28_FRdVDmEsQ_31RBiFSFl5zd1yjpDVYBqLux0dsFX2tvKggn-LozTXHmLXg96TPDu6TxDvy-__Vpf1Tc_vl-vL25qw1ueayEI05g3wnZAcd_iHoyQrKcAElrAmreMgW0lFZiVAciAORd6oA2VXFjCztD14rVBb9VtLA3FBxW0U4-FEDdKx-zMCKqsRFJmNdcNb3rRdh0HKTRjg6BWk7a4Pi6u2xj-TmU6tXPJwDhqD2FKivJWCE55xwr6YQ_dhin6MmmhOtEwjBtRqPdP1NTvwL6097zqAnxeABNDShEGZVx-3GiO2o2KYDVnq7bqf7ZqzlYt2RZBtyd4_uOAp1-Xp1DiuXMQVTIOvAHrIphc9ucOkXzZk5jReWf0-AceDlP8A2-01qU
CitedBy_id crossref_primary_10_1016_j_ijchp_2024_100508
crossref_primary_10_3389_fnins_2023_934138
crossref_primary_10_1002_hbm_26484
crossref_primary_10_1038_s41597_022_01806_4
crossref_primary_10_1038_s41598_022_07578_6
crossref_primary_10_3390_brainsci14060591
crossref_primary_10_1093_texcom_tgac035
crossref_primary_10_7554_eLife_86453
crossref_primary_10_1007_s11682_022_00702_0
crossref_primary_10_1016_j_jneumeth_2022_109720
crossref_primary_10_3389_fnhum_2023_976036
crossref_primary_10_1007_s12311_022_01454_9
crossref_primary_10_1073_pnas_2103104118
crossref_primary_10_1016_j_neuroscience_2023_01_001
crossref_primary_10_1093_cercor_bhad201
crossref_primary_10_1097_j_pain_0000000000003152
crossref_primary_10_7554_eLife_77430
crossref_primary_10_1016_j_bspc_2024_107151
crossref_primary_10_1016_j_neuroimage_2023_120224
crossref_primary_10_1162_netn_a_00217
crossref_primary_10_1016_j_isci_2023_108005
crossref_primary_10_1038_s41598_024_51694_4
crossref_primary_10_3389_fnhum_2022_946156
crossref_primary_10_3389_fnimg_2022_983324
crossref_primary_10_1177_0271678X241262583
crossref_primary_10_1192_j_eurpsy_2024_1769
crossref_primary_10_7554_eLife_84822
crossref_primary_10_1016_j_neuroimage_2022_119758
crossref_primary_10_1016_j_neuroimage_2023_119916
crossref_primary_10_1038_s41398_024_03171_9
crossref_primary_10_1111_head_14900
crossref_primary_10_1016_j_neuroscience_2024_03_003
crossref_primary_10_1016_j_bbi_2025_01_025
crossref_primary_10_1097_WNR_0000000000002100
crossref_primary_10_3389_fnins_2022_927556
crossref_primary_10_1016_j_bbr_2024_115144
crossref_primary_10_1038_s42003_025_07576_0
crossref_primary_10_1155_2022_2219993
crossref_primary_10_1002_hbm_70043
crossref_primary_10_1007_s12264_022_00918_6
crossref_primary_10_3389_fnagi_2024_1364402
crossref_primary_10_3389_fneur_2022_1038700
Cites_doi 10.12688/f1000research.11964.1
10.1038/nprot.2016.178
10.1038/nrneurol.2009.198
10.1016/j.neuroimage.2016.03.029
10.1016/j.neuroimage.2018.02.061
10.1371/journal.pbio.0060315
10.1016/j.neuroimage.2019.116081
10.1016/j.pscychresns.2009.10.012
10.1152/jn.00338.2011
10.1002/hbm.22065
10.1038/sdata.2016.110
10.1002/hbm.20310
10.1016/j.neuroimage.2018.06.039
10.1016/j.media.2013.01.003
10.1016/j.neuroimage.2018.12.012
10.1016/j.neuroimage.2008.10.065
10.1371/journal.pbio.3000080
10.1016/j.neuroimage.2010.07.059
10.1073/pnas.1804340115
10.1016/j.neuroimage.2017.12.081
10.1002/mrm.1910390602
10.1016/j.neuroimage.2021.117914
10.3389/fphys.2012.00015
10.1109/TSP.2003.821103
10.1089/brain.2011.0019
10.1006/nimg.2000.0630
10.1016/j.nicl.2018.04.013
10.1007/s10548-014-0404-4
10.1002/(SICI)1097-0193(1997)5:5<329::AID-HBM1>3.0.CO;2-5
10.1155/2012/303601
10.1523/JNEUROSCI.5587-06.2007
10.1016/j.bbr.2011.04.018
10.3389/fnins.2015.00375
10.1002/mrm.27146
10.1016/j.neuroimage.2019.05.011
10.1016/j.neuroimage.2012.01.012
10.1016/j.neuroimage.2012.01.082
10.1016/j.neuroimage.2016.05.058
10.1006/nimg.2000.0568
10.1016/j.neuroimage.2019.07.011
10.1162/jocn_a_00077
10.1016/j.neuroimage.2020.117292
10.1109/42.897811
10.1038/s41467-019-09076-2
10.1016/j.biopsych.2008.10.015
10.1109/TMI.2003.817759
10.1089/brain.2013.0142
10.1097/01.chi.0000140452.51205.8d
10.1109/78.91161
10.1016/j.nicl.2017.07.016
10.1016/j.neuroimage.2012.02.015
10.7717/peerj.7838
10.1016/j.neuroimage.2013.05.100
10.1016/j.neuroimage.2013.01.067
10.1016/j.neuroimage.2013.05.041
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
2021. The Author(s)
Copyright_xml – notice: 2021 The Author(s)
– notice: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2021. The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOA
DOI 10.1016/j.neuroimage.2021.118591
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Open Access资源_DOAJ
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


MEDLINE
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_021923da5a454b67885e96a33f62da17
34560269
10_1016_j_neuroimage_2021_118591
S1053811921008648
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
0SF
6I.
AACTN
AAFTH
AFKWA
AJOXV
ALIPV
AMFUW
C45
HMQ
NCXOZ
29N
53G
AAQFI
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
RIG
SEW
SNS
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c575t-6613a0546d8e20b70bec693b2ee9e7e0a5733ed7926035721f0556af242956d13
IEDL.DBID DOA
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:12:14 EDT 2025
Fri Jul 11 00:29:40 EDT 2025
Wed Aug 13 04:07:09 EDT 2025
Thu Apr 03 07:00:51 EDT 2025
Tue Jul 01 03:02:20 EDT 2025
Thu Apr 24 23:06:09 EDT 2025
Sat Dec 28 15:51:04 EST 2024
Tue Aug 26 20:02:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords brain connectivity
deconvolution
BIDS
resting-state fMRI
HRF
MATLAB
Python
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-6613a0546d8e20b70bec693b2ee9e7e0a5733ed7926035721f0556af242956d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/021923da5a454b67885e96a33f62da17
PMID 34560269
PQID 2586430046
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_021923da5a454b67885e96a33f62da17
proquest_miscellaneous_2576652583
proquest_journals_2586430046
pubmed_primary_34560269
crossref_citationtrail_10_1016_j_neuroimage_2021_118591
crossref_primary_10_1016_j_neuroimage_2021_118591
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118591
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118591
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Miezin, Maccotta, Ollinger, Petersen, Buckner (bib0031) 2000; 11
Ng, Lo, Lim, Chee, Zhou (bib0036) 2016; 133
Zhang, Raichle (bib0060) 2010; 6
Dale, Buckner (bib0010) 1997; 5
Wu, Marinazzo (bib0056) 2015; 28
Caballero-Gaudes, Moia, Panwar, Bandettini, Gonzalez-Castillo (bib0006) 2019; 202
Friston, Mechelli, Turner, Price (bib0016) 2000; 12
Shen, Finn, Scheinost, Rosenberg, Chun, Papademetris, Constable (bib0044) 2017; 12
Turner, Hubbard, Sivakolundu, Himes, Hutchison, Hart, Spence, Frohman, Frohman, Okuda, Rypma (bib0049) 2019; 190
Davenport, Karatekin, White, Lim (bib0011) 2010; 181
Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zollei, Polimeni, Fischl, Liu, Buckner (bib0059) 2011; 106
Pavuluri, Yang, Kamineni, Passarotti, Srinivasan, Harral, Sweeney, Zhou (bib0038) 2009; 65
Ciuciu, Poline, Marrelec, Idier, Pallier, Benali (bib0009) 2003; 22
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib0051) 2013; 80
Marinazzo, Pellicoro, Stramaglia (bib0029) 2012; 2012
Elbau, Brucklmeier, Uhr, Arloth, Czamara, Spoormaker, Czisch, Stephan, Binder, Samann (bib0015) 2018; 115
Rangaprakash, Dretsch, Yan, Katz, Denney, Deshpande (bib0041) 2017; 16
Taylor, Kim, Ress (bib0047) 2018; 173
Badillo, Vincent, Ciuciu (bib0002) 2013; 82
Afyouni, Smith, Nichols (bib0001) 2019; 199
Hiller, Chin (bib0021) 1991; 39
David, Guillemain, Saillet, Reyt, Deransart, Segebarth, Depaulis (bib0012) 2008; 6
Henson, Friston (bib0020) 2007
Lindquist, Wager (bib0028) 2007; 28
Keles, Barbour, Omurtag (bib0023) 2016; 138
Raichle (bib0040) 2011; 1
Karahanoglu, Caballero-Gaudes, Lazeyras, Van de Ville (bib0022) 2013; 73
Tipping (bib0048) 2001; 1
Neelamani, Choi, Baraniuk (bib0035) 2004; 52
Poldrack, Congdon, Triplett, Gorgolewski, Karlsgodt, Mumford, Sabb, Freimer, London, Cannon, Bilder (bib0039) 2016; 3
Wu, Di Perri, Charland-Verville, Martial, Carriere, Vanhaudenhuyse, Laureys, Marinazzo (bib0053) 2019; 200
Wu, Liao, Stramaglia, Ding, Chen, Marinazzo (bib0055) 2013; 17
Lindquist, Meng Loh, Atlas, Wager (bib0027) 2009; 45
van der Knaap, van der Ham (bib0050) 2011; 223
de Lange, Anaturk, Suri, Kaufmann, Cole, Griffanti, Zsoldos, Jensen, Filippini, Singh-Manoux, Kivimaki, Westlye, Ebmeier (bib0013) 2020; 222
Handwerker, Gonzalez-Castillo, D'Esposito, Bandettini (bib0019) 2012; 62
Boynton, Engel, Heeger (bib0003) 2012; 62
Yan, Rangaprakash, Deshpande (bib0058) 2018; 19
Wu, Marinazzo (bib0057) 2016; 374
Moia, Termenon, Urunuela, Chen, Stickland, Bright, Caballero-Gaudes (bib0033) 2021; 233
Murphy, Harris, Wise (bib0034) 2011; 54
Tagliazucchi, Balenzuela, Fraiman, Chialvo (bib0045) 2012; 3
Moia, Stickland, Ayyagari, Termenon, Caballero-Gaudes, Bright (bib0032) 2020; 2020
Buxton (bib0004) 2012; 62
Wu, Liao, Stramaglia, Chen, Marinazzo (bib0054) 2013; 3
Pan, Lee, Billings, Nezafati, Majeed, Buckley, Keilholz (bib0037) 2018; 179
Seeley, Menon, Schatzberg, Keller, Glover, Kenna, Reiss, Greicius (bib0043) 2007; 27
Li, Newton, Anderson, Ding, Gore (bib0026) 2019; 10
Cardoso, Lima, Sirotin, Das (bib0007) 2019; 17
Tamm, Menon, Ringel, Reiss (bib0046) 2004; 43
Chen, Saad, Adleman, Leibenluft, Cox (bib0008) 2015; 9
West, Zuppichini, Turner, Sivakolundu, Zhao, Abdelkarim, Spence, Rypma (bib0052) 2019; 188
Laird, Fox, Eickhoff, Turner, Ray, McKay, Glahn, Beckmann, Smith, Fox (bib0025) 2011; 23
Mayer, Ruhl, Merideth, Ling, Hanlon, Bustillo, Canive (bib0030) 2013; 34
Goutte, Nielsen, Hansen (bib0018) 2000; 19
Gorgolewski, Durnez, Poldrack (bib0017) 2017; 6
Ehinger, Dimigen (bib0014) 2019; 7
Buxton, Wong, Frank (bib0005) 1998; 39
Lagopoulos, Ivanovski, Malhi (bib0024) 2007; 32
Rangaprakash, Wu, Marinazzo, Hu, Deshpande (bib0042) 2018; 80
de Lange (10.1016/j.neuroimage.2021.118591_bib0013) 2020; 222
Lindquist (10.1016/j.neuroimage.2021.118591_bib0027) 2009; 45
Yan (10.1016/j.neuroimage.2021.118591_bib0058) 2018; 19
Shen (10.1016/j.neuroimage.2021.118591_bib0044) 2017; 12
Ng (10.1016/j.neuroimage.2021.118591_bib0036) 2016; 133
Poldrack (10.1016/j.neuroimage.2021.118591_bib0039) 2016; 3
Raichle (10.1016/j.neuroimage.2021.118591_bib0040) 2011; 1
Buxton (10.1016/j.neuroimage.2021.118591_bib0004) 2012; 62
Wu (10.1016/j.neuroimage.2021.118591_bib0056) 2015; 28
Badillo (10.1016/j.neuroimage.2021.118591_bib0002) 2013; 82
Taylor (10.1016/j.neuroimage.2021.118591_bib0047) 2018; 173
Gorgolewski (10.1016/j.neuroimage.2021.118591_bib0017) 2017; 6
Chen (10.1016/j.neuroimage.2021.118591_bib0008) 2015; 9
Laird (10.1016/j.neuroimage.2021.118591_bib0025) 2011; 23
Miezin (10.1016/j.neuroimage.2021.118591_bib0031) 2000; 11
Karahanoglu (10.1016/j.neuroimage.2021.118591_bib0022) 2013; 73
Rangaprakash (10.1016/j.neuroimage.2021.118591_bib0041) 2017; 16
West (10.1016/j.neuroimage.2021.118591_bib0052) 2019; 188
Wu (10.1016/j.neuroimage.2021.118591_bib0053) 2019; 200
Rangaprakash (10.1016/j.neuroimage.2021.118591_bib0042) 2018; 80
Handwerker (10.1016/j.neuroimage.2021.118591_bib0019) 2012; 62
Moia (10.1016/j.neuroimage.2021.118591_bib0033) 2021; 233
David (10.1016/j.neuroimage.2021.118591_bib0012) 2008; 6
Wu (10.1016/j.neuroimage.2021.118591_bib0057) 2016; 374
Neelamani (10.1016/j.neuroimage.2021.118591_bib0035) 2004; 52
Lindquist (10.1016/j.neuroimage.2021.118591_bib0028) 2007; 28
Buxton (10.1016/j.neuroimage.2021.118591_bib0005) 1998; 39
Davenport (10.1016/j.neuroimage.2021.118591_bib0011) 2010; 181
Pan (10.1016/j.neuroimage.2021.118591_bib0037) 2018; 179
Tipping (10.1016/j.neuroimage.2021.118591_bib0048) 2001; 1
Pavuluri (10.1016/j.neuroimage.2021.118591_bib0038) 2009; 65
Elbau (10.1016/j.neuroimage.2021.118591_bib0015) 2018; 115
Henson (10.1016/j.neuroimage.2021.118591_bib0020) 2007
Lagopoulos (10.1016/j.neuroimage.2021.118591_bib0024) 2007; 32
Hiller (10.1016/j.neuroimage.2021.118591_bib0021) 1991; 39
Zhang (10.1016/j.neuroimage.2021.118591_bib0060) 2010; 6
Afyouni (10.1016/j.neuroimage.2021.118591_bib0001) 2019; 199
Mayer (10.1016/j.neuroimage.2021.118591_bib0030) 2013; 34
Ehinger (10.1016/j.neuroimage.2021.118591_bib0014) 2019; 7
Boynton (10.1016/j.neuroimage.2021.118591_bib0003) 2012; 62
Dale (10.1016/j.neuroimage.2021.118591_bib0010) 1997; 5
Yeo (10.1016/j.neuroimage.2021.118591_bib0059) 2011; 106
Wu (10.1016/j.neuroimage.2021.118591_bib0054) 2013; 3
Seeley (10.1016/j.neuroimage.2021.118591_bib0043) 2007; 27
Turner (10.1016/j.neuroimage.2021.118591_bib0049) 2019; 190
Tamm (10.1016/j.neuroimage.2021.118591_bib0046) 2004; 43
Moia (10.1016/j.neuroimage.2021.118591_bib0032) 2020; 2020
Cardoso (10.1016/j.neuroimage.2021.118591_bib0007) 2019; 17
van der Knaap (10.1016/j.neuroimage.2021.118591_bib0050) 2011; 223
Ciuciu (10.1016/j.neuroimage.2021.118591_bib0009) 2003; 22
Wu (10.1016/j.neuroimage.2021.118591_bib0055) 2013; 17
Marinazzo (10.1016/j.neuroimage.2021.118591_bib0029) 2012; 2012
Friston (10.1016/j.neuroimage.2021.118591_bib0016) 2000; 12
Tagliazucchi (10.1016/j.neuroimage.2021.118591_bib0045) 2012; 3
Keles (10.1016/j.neuroimage.2021.118591_bib0023) 2016; 138
Goutte (10.1016/j.neuroimage.2021.118591_bib0018) 2000; 19
Li (10.1016/j.neuroimage.2021.118591_bib0026) 2019; 10
Murphy (10.1016/j.neuroimage.2021.118591_bib0034) 2011; 54
Van Essen (10.1016/j.neuroimage.2021.118591_bib0051) 2013; 80
Caballero-Gaudes (10.1016/j.neuroimage.2021.118591_bib0006) 2019; 202
References_xml – volume: 16
  start-page: 409
  year: 2017
  end-page: 417
  ident: bib0041
  article-title: Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies
  publication-title: Neuroimage Clin.
– volume: 3
  start-page: 15
  year: 2012
  ident: bib0045
  article-title: Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis
  publication-title: Front. Physiol.
– volume: 43
  start-page: 1430
  year: 2004
  end-page: 1440
  ident: bib0046
  article-title: Event-related FMRI evidence of frontotemporal involvement in aberrant response inhibition and task switching in attention-deficit/hyperactivity disorder
  publication-title: J. Am. Acad. Child Adolesc. Psychiatry
– volume: 45
  start-page: S187
  year: 2009
  end-page: S198
  ident: bib0027
  article-title: Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling
  publication-title: Neuroimage
– volume: 32
  start-page: 174
  year: 2007
  end-page: 184
  ident: bib0024
  article-title: An event-related functional MRI study of working memory in euthymic bipolar disorder
  publication-title: J. Psychiatry Neurosci.
– volume: 6
  start-page: 2683
  year: 2008
  end-page: 2697
  ident: bib0012
  article-title: Identifying neural drivers with functional MRI: an electrophysiological validation
  publication-title: PLoS Biol.
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib0051
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
– volume: 106
  start-page: 1125
  year: 2011
  end-page: 1165
  ident: bib0059
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
– volume: 202
  year: 2019
  ident: bib0006
  article-title: A deconvolution algorithm for multi-echo functional MRI: multi-echo sparse paradigm free mapping
  publication-title: Neuroimage
– volume: 19
  start-page: 320
  year: 2018
  end-page: 330
  ident: bib0058
  article-title: Aberrant hemodynamic responses in autism: implications for resting state fMRI functional connectivity studies
  publication-title: Neuroimage Clin.
– volume: 2020
  start-page: 1489
  year: 2020
  end-page: 1492
  ident: bib0032
  article-title: Voxelwise optimization of hemodynamic lags to improve regional CVR estimates in breath-hold fMRI
  publication-title: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 133
  start-page: 321
  year: 2016
  end-page: 330
  ident: bib0036
  article-title: Reduced functional segregation between the default mode network and the executive control network in healthy older adults: a longitudinal study
  publication-title: Neuroimage
– volume: 12
  start-page: 506
  year: 2017
  end-page: 518
  ident: bib0044
  article-title: Using connectome-based predictive modeling to predict individual behavior from brain connectivity
  publication-title: Nat. Protoc.
– volume: 200
  start-page: 450
  year: 2019
  end-page: 459
  ident: bib0053
  article-title: Modulation of the spontaneous hemodynamic response function across levels of consciousness
  publication-title: Neuroimage
– start-page: 178
  year: 2007
  end-page: 192
  ident: bib0020
  article-title: Convolution models for fMRI
  publication-title: Statistical Parametric Mapping: The Analysis of Functional Brain Images
– volume: 6
  start-page: 1262
  year: 2017
  ident: bib0017
  article-title: Preprocessed consortium for neuropsychiatric phenomics dataset
  publication-title: F1000Res
– volume: 138
  start-page: 76
  year: 2016
  end-page: 87
  ident: bib0023
  article-title: Hemodynamic correlates of spontaneous neural activity measured by human whole-head resting state EEG+fNIRS
  publication-title: Neuroimage
– volume: 5
  start-page: 329
  year: 1997
  end-page: 340
  ident: bib0010
  article-title: Selective averaging of rapidly presented individual trials using fMRI
  publication-title: Hum. Brain Mapp.
– volume: 3
  start-page: 294
  year: 2013
  end-page: 301
  ident: bib0054
  article-title: Recovering directed networks in neuroimaging datasets using partially conditioned Granger causality
  publication-title: Brain Connect.
– volume: 3
  year: 2016
  ident: bib0039
  article-title: A phenome-wide examination of neural and cognitive function
  publication-title: Sci. Data
– volume: 173
  start-page: 322
  year: 2018
  end-page: 331
  ident: bib0047
  article-title: Characterization of the hemodynamic response function across the majority of human cerebral cortex
  publication-title: Neuroimage
– volume: 222
  year: 2020
  ident: bib0013
  article-title: Multimodal brain-age prediction and cardiovascular risk: the Whitehall II MRI sub-study
  publication-title: Neuroimage
– volume: 12
  start-page: 466
  year: 2000
  end-page: 477
  ident: bib0016
  article-title: Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics
  publication-title: Neuroimage
– volume: 1
  start-page: 3
  year: 2011
  end-page: 12
  ident: bib0040
  article-title: The restless brain
  publication-title: Brain Connect.
– volume: 80
  start-page: 1697
  year: 2018
  end-page: 1713
  ident: bib0042
  article-title: Hemodynamic response function (HRF) variability confounds resting-state fMRI functional connectivity
  publication-title: Magn. Reson. Med.
– volume: 22
  start-page: 1235
  year: 2003
  end-page: 1251
  ident: bib0009
  article-title: Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment
  publication-title: IEEE Trans. Med. Imaging
– volume: 179
  start-page: 207
  year: 2018
  end-page: 214
  ident: bib0037
  article-title: Detection of neural light-scattering activity in vivo: optical transmittance studies in the rat brain
  publication-title: Neuroimage
– volume: 17
  start-page: 365
  year: 2013
  end-page: 374
  ident: bib0055
  article-title: A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data
  publication-title: Med. Image Anal.
– volume: 188
  start-page: 198
  year: 2019
  end-page: 207
  ident: bib0052
  article-title: BOLD hemodynamic response function changes significantly with healthy aging
  publication-title: Neuroimage
– volume: 28
  start-page: 764
  year: 2007
  end-page: 784
  ident: bib0028
  article-title: Validity and power in hemodynamic response modeling: a comparison study and a new approach
  publication-title: Hum. Brain Mapp.
– volume: 1
  start-page: 211
  year: 2001
  end-page: 244
  ident: bib0048
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– volume: 374
  year: 2016
  ident: bib0057
  article-title: Sensitivity of the resting-state haemodynamic response function estimation to autonomic nervous system fluctuations
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
– volume: 62
  start-page: 975
  year: 2012
  end-page: 984
  ident: bib0003
  article-title: Linear systems analysis of the fMRI signal
  publication-title: Neuroimage
– volume: 27
  start-page: 2349
  year: 2007
  end-page: 2356
  ident: bib0043
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control
  publication-title: J. Neurosci.
– volume: 17
  year: 2019
  ident: bib0007
  article-title: Task-related hemodynamic responses are modulated by reward and task engagement
  publication-title: PLoS Biol.
– volume: 6
  start-page: 15
  year: 2010
  end-page: 28
  ident: bib0060
  article-title: Disease and the brain's dark energy
  publication-title: Nat. Rev. Neurol.
– volume: 73
  start-page: 121
  year: 2013
  end-page: 134
  ident: bib0022
  article-title: Total activation: fMRI deconvolution through spatio-temporal regularization
  publication-title: Neuroimage
– volume: 115
  start-page: E10206
  year: 2018
  end-page: E10215
  ident: bib0015
  article-title: The brain's hemodynamic response function rapidly changes under acute psychosocial stress in association with genetic and endocrine stress response markers
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 190
  start-page: 46
  year: 2019
  end-page: 55
  ident: bib0049
  article-title: Preserved canonicality of the BOLD hemodynamic response reflects healthy cognition: insights into the healthy brain through the window of Multiple Sclerosis
  publication-title: Neuroimage
– volume: 7
  start-page: e7838
  year: 2019
  ident: bib0014
  article-title: Unfold: an integrated toolbox for overlap correction, non-linear modeling, and regression-based EEG analysis
  publication-title: PeerJ
– volume: 233
  year: 2021
  ident: bib0033
  article-title: ICA-based denoising strategies in breath-hold induced cerebrovascular reactivity mapping with multi echo BOLD fMRI
  publication-title: Neuroimage
– volume: 19
  start-page: 1188
  year: 2000
  end-page: 1201
  ident: bib0018
  article-title: Modeling the haemodynamic response in fMRI using smooth FIR filters
  publication-title: IEEE Trans. Med. Imaging
– volume: 223
  start-page: 211
  year: 2011
  end-page: 221
  ident: bib0050
  article-title: How does the corpus callosum mediate interhemispheric transfer? A review
  publication-title: Behav. Brain Res.
– volume: 82
  start-page: 433
  year: 2013
  end-page: 448
  ident: bib0002
  article-title: Group-level impacts of within- and between-subject hemodynamic variability in fMRI
  publication-title: Neuroimage
– volume: 10
  start-page: 1140
  year: 2019
  ident: bib0026
  article-title: Characterization of the hemodynamic response function in white matter tracts for event-related fMRI
  publication-title: Nat. Commun.
– volume: 62
  start-page: 953
  year: 2012
  end-page: 961
  ident: bib0004
  article-title: Dynamic models of BOLD contrast
  publication-title: Neuroimage
– volume: 39
  start-page: 855
  year: 1998
  end-page: 864
  ident: bib0005
  article-title: Dynamics of blood flow and oxygenation changes during brain activation: the balloon model
  publication-title: Magn. Reson. Med.
– volume: 9
  start-page: 375
  year: 2015
  ident: bib0008
  article-title: Detecting the subtle shape differences in hemodynamic responses at the group level
  publication-title: Front. Neurosci.
– volume: 199
  start-page: 609
  year: 2019
  end-page: 625
  ident: bib0001
  article-title: Effective degrees of freedom of the Pearson's correlation coefficient under autocorrelation
  publication-title: Neuroimage
– volume: 23
  start-page: 4022
  year: 2011
  end-page: 4037
  ident: bib0025
  article-title: Behavioral interpretations of intrinsic connectivity networks
  publication-title: J. Cognit. Neurosci.
– volume: 181
  start-page: 193
  year: 2010
  end-page: 198
  ident: bib0011
  article-title: Differential fractional anisotropy abnormalities in adolescents with ADHD or schizophrenia
  publication-title: Psychiatry Res.
– volume: 52
  start-page: 418
  year: 2004
  end-page: 433
  ident: bib0035
  article-title: ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems
  publication-title: IEEE Trans. Signal Process.
– volume: 65
  start-page: 586
  year: 2009
  end-page: 593
  ident: bib0038
  article-title: Diffusion tensor imaging study of white matter fiber tracts in pediatric bipolar disorder and attention-deficit/hyperactivity disorder
  publication-title: Biol. Psychiatry
– volume: 62
  start-page: 1017
  year: 2012
  end-page: 1023
  ident: bib0019
  article-title: The continuing challenge of understanding and modeling hemodynamic variation in fMRI
  publication-title: Neuroimage
– volume: 34
  start-page: 2302
  year: 2013
  end-page: 2312
  ident: bib0030
  article-title: Functional imaging of the hemodynamic sensory gating response in schizophrenia
  publication-title: Hum. Brain Mapp.
– volume: 39
  start-page: 1892
  year: 1991
  end-page: 1899
  ident: bib0021
  article-title: Iterative Wiener filters for image restoration
  publication-title: IEEE Trans. Signal Process.
– volume: 11
  start-page: 735
  year: 2000
  end-page: 759
  ident: bib0031
  article-title: Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing
  publication-title: Neuroimage
– volume: 28
  start-page: 541
  year: 2015
  end-page: 547
  ident: bib0056
  article-title: Point-process deconvolution of fMRI BOLD signal reveals effective connectivity alterations in chronic pain patients
  publication-title: Brain Topogr.
– volume: 2012
  year: 2012
  ident: bib0029
  article-title: Causal information approach to partial conditioning in multivariate data sets
  publication-title: Comput. Math. Methods Med.
– volume: 54
  start-page: 369
  year: 2011
  end-page: 379
  ident: bib0034
  article-title: Robustly measuring vascular reactivity differences with breath-hold: normalising stimulus-evoked and resting state BOLD fMRI data
  publication-title: Neuroimage
– volume: 6
  start-page: 1262
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118591_bib0017
  article-title: Preprocessed consortium for neuropsychiatric phenomics dataset
  publication-title: F1000Res
  doi: 10.12688/f1000research.11964.1
– volume: 12
  start-page: 506
  issue: 3
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118591_bib0044
  article-title: Using connectome-based predictive modeling to predict individual behavior from brain connectivity
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.178
– volume: 6
  start-page: 15
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118591_bib0060
  article-title: Disease and the brain's dark energy
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2009.198
– volume: 133
  start-page: 321
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118591_bib0036
  article-title: Reduced functional segregation between the default mode network and the executive control network in healthy older adults: a longitudinal study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.03.029
– volume: 2020
  start-page: 1489
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118591_bib0032
  article-title: Voxelwise optimization of hemodynamic lags to improve regional CVR estimates in breath-hold fMRI
– volume: 173
  start-page: 322
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118591_bib0047
  article-title: Characterization of the hemodynamic response function across the majority of human cerebral cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.02.061
– volume: 6
  start-page: 2683
  issue: 12
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118591_bib0012
  article-title: Identifying neural drivers with functional MRI: an electrophysiological validation
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060315
– start-page: 178
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118591_bib0020
  article-title: Convolution models for fMRI
– volume: 202
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118591_bib0006
  article-title: A deconvolution algorithm for multi-echo functional MRI: multi-echo sparse paradigm free mapping
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116081
– volume: 181
  start-page: 193
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118591_bib0011
  article-title: Differential fractional anisotropy abnormalities in adolescents with ADHD or schizophrenia
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2009.10.012
– volume: 106
  start-page: 1125
  issue: 3
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118591_bib0059
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00338.2011
– volume: 34
  start-page: 2302
  issue: 9
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118591_bib0030
  article-title: Functional imaging of the hemodynamic sensory gating response in schizophrenia
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22065
– volume: 3
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118591_bib0039
  article-title: A phenome-wide examination of neural and cognitive function
  publication-title: Sci. Data
  doi: 10.1038/sdata.2016.110
– volume: 28
  start-page: 764
  issue: 8
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118591_bib0028
  article-title: Validity and power in hemodynamic response modeling: a comparison study and a new approach
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20310
– volume: 179
  start-page: 207
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118591_bib0037
  article-title: Detection of neural light-scattering activity in vivo: optical transmittance studies in the rat brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.06.039
– volume: 17
  start-page: 365
  issue: 3
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118591_bib0055
  article-title: A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2013.01.003
– volume: 188
  start-page: 198
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118591_bib0052
  article-title: BOLD hemodynamic response function changes significantly with healthy aging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.12.012
– volume: 45
  start-page: S187
  issue: 1 Suppl
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118591_bib0027
  article-title: Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.065
– volume: 17
  issue: 4
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118591_bib0007
  article-title: Task-related hemodynamic responses are modulated by reward and task engagement
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000080
– volume: 54
  start-page: 369
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118591_bib0034
  article-title: Robustly measuring vascular reactivity differences with breath-hold: normalising stimulus-evoked and resting state BOLD fMRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.07.059
– volume: 115
  start-page: E10206
  issue: 43
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118591_bib0015
  article-title: The brain's hemodynamic response function rapidly changes under acute psychosocial stress in association with genetic and endocrine stress response markers
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1804340115
– volume: 190
  start-page: 46
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118591_bib0049
  article-title: Preserved canonicality of the BOLD hemodynamic response reflects healthy cognition: insights into the healthy brain through the window of Multiple Sclerosis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.12.081
– volume: 39
  start-page: 855
  issue: 6
  year: 1998
  ident: 10.1016/j.neuroimage.2021.118591_bib0005
  article-title: Dynamics of blood flow and oxygenation changes during brain activation: the balloon model
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910390602
– volume: 233
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118591_bib0033
  article-title: ICA-based denoising strategies in breath-hold induced cerebrovascular reactivity mapping with multi echo BOLD fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.117914
– volume: 3
  start-page: 15
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118591_bib0045
  article-title: Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2012.00015
– volume: 52
  start-page: 418
  issue: 2
  year: 2004
  ident: 10.1016/j.neuroimage.2021.118591_bib0035
  article-title: ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2003.821103
– volume: 1
  start-page: 211
  issue: Jun
  year: 2001
  ident: 10.1016/j.neuroimage.2021.118591_bib0048
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118591_bib0040
  article-title: The restless brain
  publication-title: Brain Connect.
  doi: 10.1089/brain.2011.0019
– volume: 12
  start-page: 466
  issue: 4
  year: 2000
  ident: 10.1016/j.neuroimage.2021.118591_bib0016
  article-title: Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0630
– volume: 19
  start-page: 320
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118591_bib0058
  article-title: Aberrant hemodynamic responses in autism: implications for resting state fMRI functional connectivity studies
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2018.04.013
– volume: 28
  start-page: 541
  issue: 4
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118591_bib0056
  article-title: Point-process deconvolution of fMRI BOLD signal reveals effective connectivity alterations in chronic pain patients
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-014-0404-4
– volume: 374
  issue: 2067
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118591_bib0057
  article-title: Sensitivity of the resting-state haemodynamic response function estimation to autonomic nervous system fluctuations
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
– volume: 5
  start-page: 329
  issue: 5
  year: 1997
  ident: 10.1016/j.neuroimage.2021.118591_bib0010
  article-title: Selective averaging of rapidly presented individual trials using fMRI
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1997)5:5<329::AID-HBM1>3.0.CO;2-5
– volume: 2012
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118591_bib0029
  article-title: Causal information approach to partial conditioning in multivariate data sets
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2012/303601
– volume: 27
  start-page: 2349
  issue: 9
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118591_bib0043
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5587-06.2007
– volume: 223
  start-page: 211
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118591_bib0050
  article-title: How does the corpus callosum mediate interhemispheric transfer? A review
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2011.04.018
– volume: 9
  start-page: 375
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118591_bib0008
  article-title: Detecting the subtle shape differences in hemodynamic responses at the group level
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2015.00375
– volume: 80
  start-page: 1697
  issue: 4
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118591_bib0042
  article-title: Hemodynamic response function (HRF) variability confounds resting-state fMRI functional connectivity
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27146
– volume: 199
  start-page: 609
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118591_bib0001
  article-title: Effective degrees of freedom of the Pearson's correlation coefficient under autocorrelation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.05.011
– volume: 62
  start-page: 953
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118591_bib0004
  article-title: Dynamic models of BOLD contrast
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.012
– volume: 62
  start-page: 975
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118591_bib0003
  article-title: Linear systems analysis of the fMRI signal
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.082
– volume: 138
  start-page: 76
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118591_bib0023
  article-title: Hemodynamic correlates of spontaneous neural activity measured by human whole-head resting state EEG+fNIRS
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.05.058
– volume: 32
  start-page: 174
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118591_bib0024
  article-title: An event-related functional MRI study of working memory in euthymic bipolar disorder
  publication-title: J. Psychiatry Neurosci.
– volume: 11
  start-page: 735
  issue: 6 Pt 1
  year: 2000
  ident: 10.1016/j.neuroimage.2021.118591_bib0031
  article-title: Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0568
– volume: 200
  start-page: 450
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118591_bib0053
  article-title: Modulation of the spontaneous hemodynamic response function across levels of consciousness
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.07.011
– volume: 23
  start-page: 4022
  issue: 12
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118591_bib0025
  article-title: Behavioral interpretations of intrinsic connectivity networks
  publication-title: J. Cognit. Neurosci.
  doi: 10.1162/jocn_a_00077
– volume: 222
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118591_bib0013
  article-title: Multimodal brain-age prediction and cardiovascular risk: the Whitehall II MRI sub-study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117292
– volume: 19
  start-page: 1188
  issue: 12
  year: 2000
  ident: 10.1016/j.neuroimage.2021.118591_bib0018
  article-title: Modeling the haemodynamic response in fMRI using smooth FIR filters
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.897811
– volume: 10
  start-page: 1140
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118591_bib0026
  article-title: Characterization of the hemodynamic response function in white matter tracts for event-related fMRI
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09076-2
– volume: 65
  start-page: 586
  issue: 7
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118591_bib0038
  article-title: Diffusion tensor imaging study of white matter fiber tracts in pediatric bipolar disorder and attention-deficit/hyperactivity disorder
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2008.10.015
– volume: 22
  start-page: 1235
  issue: 10
  year: 2003
  ident: 10.1016/j.neuroimage.2021.118591_bib0009
  article-title: Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.817759
– volume: 3
  start-page: 294
  issue: 3
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118591_bib0054
  article-title: Recovering directed networks in neuroimaging datasets using partially conditioned Granger causality
  publication-title: Brain Connect.
  doi: 10.1089/brain.2013.0142
– volume: 43
  start-page: 1430
  issue: 11
  year: 2004
  ident: 10.1016/j.neuroimage.2021.118591_bib0046
  article-title: Event-related FMRI evidence of frontotemporal involvement in aberrant response inhibition and task switching in attention-deficit/hyperactivity disorder
  publication-title: J. Am. Acad. Child Adolesc. Psychiatry
  doi: 10.1097/01.chi.0000140452.51205.8d
– volume: 39
  start-page: 1892
  year: 1991
  ident: 10.1016/j.neuroimage.2021.118591_bib0021
  article-title: Iterative Wiener filters for image restoration
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.91161
– volume: 16
  start-page: 409
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118591_bib0041
  article-title: Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2017.07.016
– volume: 62
  start-page: 1017
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118591_bib0019
  article-title: The continuing challenge of understanding and modeling hemodynamic variation in fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.015
– volume: 7
  start-page: e7838
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118591_bib0014
  article-title: Unfold: an integrated toolbox for overlap correction, non-linear modeling, and regression-based EEG analysis
  publication-title: PeerJ
  doi: 10.7717/peerj.7838
– volume: 82
  start-page: 433
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118591_bib0002
  article-title: Group-level impacts of within- and between-subject hemodynamic variability in fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.100
– volume: 73
  start-page: 121
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118591_bib0022
  article-title: Total activation: fMRI deconvolution through spatio-temporal regularization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.01.067
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118591_bib0051
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
SSID ssj0009148
Score 2.5540297
Snippet The hemodynamic response function (HRF) greatly influences the intra- and inter-subject variability of brain activation and connectivity, and might confound...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118591
SubjectTerms Adult
Algorithms
BIDS
Blood
Brain - diagnostic imaging
brain connectivity
Brain mapping
deconvolution
Female
Fourier transforms
Functional magnetic resonance imaging
Hemodynamics - physiology
HRF
Humans
Magnetic Resonance Imaging - methods
Male
MATLAB
Middle Aged
Neural networks
Neuroimaging
Python
Research Design
resting-state fMRI
Statistical analysis
Young Adult
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELVWe0BcEN8EFmQkrqFNbMcNnJaKqkJaDsBKe7Ps2EFFS7LqdhEnfjtvYierHpAqcUvdcWSNxzNvlJlnxt5oaVsF2JEvXDuQauNJijZ3yrdKNHPpKmpOPvtcrc_lpwt1ccSWYy8MlVUm3x99-uCt08gsaXN2tdnMvgIZINwQnxfhckkNv1JqsvK3f27LPOpCxnY4JXKSTtU8scZr4Izc_MTJRaZYFvAfROe2F6IGJv-9SPUvJDpEpNV9di9BSX4aV_uAHYXuIbtzlj6WP2LL7fX6y-odP-W7vr90_W8OgMrpLg6Eq3zoJOIQ4DQQGxi57Tz3lCL_Shb5mJ2vPn5brvN0Z0LeAHjtcoRbYQHDKr8I5dzpOfaoqoUrQ6iDDnNL_IfB6xp5jFBI_1pi07EtIjUyJV-IJ-y467vwjPFGeuQ2QERNULK1paucFbbWiHvACU5lTI9qMk0iFKd7LS7NWDn2w9wq2JCCTVRwxopp5lUk1ThgzgfaiUmeaLGHgX773SS7MBAHYPVWWVidQxxeqFBXVoi2Kr0tdMbqcR_N2HkKX4kXbQ5YwPtp7p6FHjj7ZDQbk7zEtSkV7JYoz6qMvZ7-xvmmjza2C_0NyWhsAiRFxp5Gc5t0IIB-kUPXz_9raS_YXfoVa3RO2PFuexNeAmnt3KvhKP0FNUwjVw
  priority: 102
  providerName: Elsevier
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEBVtCqWX0u86SYsKvZquLcuyk0NIQpelkB5KA3sTkiWXlMROdzelP79vLNlLDi17M_bIGM1I88aaecPYR1WYVgJ2pJVtB1JtXBWiTa10rRTNrLAlFSdffC0Xl8WXpVzGH27rmFY57onDRu36hv6Rf8plBedJ4dzJ7a-UukbR6WpsofGQPSLqMrJqtVRb0t2sCKVwUqQVBGImT8jvGvgir26wahEl5hn2DqJyu-eeBhb_e17qXyh08EbzZ-xphJH8NOj9OXvguxfs8UU8KH_Jzlfrxbf5ET_lm76_tv0fDnDKqQ8HXFU6VBFxCHC6EYoXuekcdxQe_47W-Ipdzj9_P1-ksV9C2gB0bVK4WmEAwUpX-Xxm1Qz6KWthc-9rr_zMEPehd6pGDCMkQr-WmHRMCy-NKMll4jXb6_rOv2W8KRziGqChxsuiNbktrRGmVvB5wAhWJkyN06SbSCZOPS2u9Zg19lNvJ1jTBOswwQnLppG3gVBjhzFnpIlJniixhxv96oeOK0xDHGDVGWlgcRY-uJK-Lo0QbZk7k6mE1aMe9Vh1in0SL7ra4QOOp7ERmQTEsePow9FsdNwh1nprzwn7MD3G2qYDG9P5_o5kFJQASZGwN8HcpjkQQL6In-v9_7_8gD2hLwkJOIdsb7O68-8Aozb2_bBW_gLKiBgU
  priority: 102
  providerName: ProQuest
Title rsHRF: A toolbox for resting-state HRF estimation and deconvolution
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921008648
https://dx.doi.org/10.1016/j.neuroimage.2021.118591
https://www.ncbi.nlm.nih.gov/pubmed/34560269
https://www.proquest.com/docview/2586430046
https://www.proquest.com/docview/2576652583
https://doaj.org/article/021923da5a454b67885e96a33f62da17
Volume 244
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH6CISEuaPwObJWRuAaaOI4bduqmVQW0Ck1M6s2yY0caGgnaOsSJv53PsRO2A6IHLm2V2pH1_Ozve8l7n4neyEI3ArQjnZmmF9XGr4I3qRG2EbyeFqb0xcknq3J5Vnxci_WNo758TliQBw6GewcMAgexWmjcyGBrnQlXlZrzpsytzvo6cmDeEEwNcrtg-TFvJ2Rz9eqQ59-wRhET5hl2Ci_cdguMes3-W5j0N87ZY89ilx5G0sjmYbCP6I5rH9P9k_ha_AkdXV4tTxfv2Zxtuu7CdD8ZqCjzp24AmNK-ZoihAfMXQqki061l1gfDP6LvPaWzxfGXo2UaT0dIa1CsTQpg5RqEq7Qzl0-NnGI2yoqb3LnKSTfVXunQWVkhYuECgV7jdXN0A0xGTGQz_ox22q51L4jVhUUUA-5TO1E0Ojel0VxXEggHRmBEQnIwk6qjdLg_weJCDTliX9UfAytvYBUMnFA29vwe5DO26HPoZ2Js7wWw-wtwCxXdQv3LLRKqhnlUQ40pdkXc6HyLARyMfSMPCfxiy957g9uouB9cqVzMQP38w4iEXo9_YyX71zO6dd21byMxCWjJE3oe3G20AQfPRbRcvfwftnlFD_x4Q1LOHu1sLq_dPqjVxkzo7ttfGT7lWk7o3vzDp-UK34fHq8-nk36F_Qb48yLH
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIQEvEz9HxgAjwWNEEsdxwoTQGFQdW_eANqlvxo4dNDSS0XYw_in-Ru7iJNUeQH3ZW5WerfR8vu-72ncH8FKmuhJIO8LcVG1RbfyU8io0wlaCl1FqMkpOnhxl45P001RM1-BPnwtD1yp7n9g6atuU9B_560TkCJ4Uzr07_xFS1yg6Xe1baHizOHC_f2HINn-7_wHX91WSjD4e743DrqtAWCI1WYQISFwjUcls7pLIyAh_RVZwkzhXOOkiTRUCnZUFMn0uMECqqN6MrhDLMJawMcd5b8BNBN6Igj05lcsiv3HqU-8ED_M4LrqbQ_4-WVuf8vQ7egmMSpMYfRWVjrsCh23XgCuo-C_W26Lf6C5sdLSV7Xo7uwdrrr4PtybdwfwD2JvNx59Hb9guWzTNmWkuGZJhRn0_EBrDNmuJoQCjBz5ZkunaMkvh-M_O-h_CybVo8hGs103tHgMrU4txFLKv0om00onJjOa6kIixyEmMCED2alJlV7ycemicqf6W2je1VLAiBSuv4ADiYeS5L-Cxwpj3tBKDPJXgbh80s6-q29EKxZEcWy00WrhBzM-FKzLNeZUlVscygKJfR9VnuaJfxolOV3iBnWFsx4Q8w1lx9HZvNqrzSHO13D8BvBi-Rl9CB0S6ds0FyUhcBJTkAWx6cxt0wJFpY7xebP1_8udwe3w8OVSH-0cHT-AOvZW__LMN64vZhXuKFG5hnrX7hsGX696ofwF48VLb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrVTxgribUsBI8Bh1E8c5QAj1Wm0pXVUVlfpm7NhBRSVpd7ccf41fx0zsZNUH0L70bZUdW9nxHN-s5wB4nSWqEgg7wlxXbVNt_JTwKtTCVIKXw0SnVJx8NEnHp8nHM3G2An-6WhhKq-xsYmuoTVPSf-RbscjReVI4t1X5tIjjvdGHy6uQJkjRTWs3TsOJyKH9_RPDt9n7gz086zdxPNr_vDsO_YSBsESYMg_ROXGFoCU1uY2HOhviL0oLrmNrC5vZoaJugdZkBaJ-LjBYqqj3jKrQr2FcYSKO-96B1YyiogGs7uxPjk8WLX-jxBXiCR7mUVT4PCKXXdZ2qzz_jjYDY9Q4QstFjeRuOMd2hsANH_kvDNz6wtF9uOdBLNt2UvcAVmz9ENaO_DX9I9idzsYno7dsm82b5kI3vxhCY0ZTQNBRhm0NE0MCRg9c6SRTtWGGgvMfXhcew-mt8PIJDOqmtuvAysRgVIVYrLQiqVSsU624KjL0uIhQtAgg69gkS9_KnCZqXMguZ-2bXDBYEoOlY3AAUb_y0rXzWGLNDp1ET08NudsHzfSr9PotkRyhslFCobxrRAC5sEWqOK_S2KgoC6DozlF2Na9opXGj8yVe4F2_1uMih3eWXL3ZiY309mkmF9oUwKv-a7QsdF2kattcE02Gh4CUPICnTtx6HnDE3Ri9Fxv_3_wlrKGSyk8Hk8NncJdeymUCbcJgPr22zxHPzfULrzgMvty2rv4FZDFYdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=rsHRF%3A+A+toolbox+for+resting-state+HRF+estimation+and+deconvolution&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Wu%2C+Guo-Rong&rft.au=Colenbier%2C+Nigel&rft.au=Van+Den+Bossche%2C+Sofie&rft.au=Clauw%2C+Kenzo&rft.date=2021-12-01&rft.eissn=1095-9572&rft.volume=244&rft.spage=118591&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118591&rft_id=info%3Apmid%2F34560269&rft.externalDocID=34560269
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon