rsHRF: A toolbox for resting-state HRF estimation and deconvolution
The hemodynamic response function (HRF) greatly influences the intra- and inter-subject variability of brain activation and connectivity, and might confound the estimation of temporal precedence in connectivity analyses, making its estimation necessary for a correct interpretation of neuroimaging st...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 244; p. 118591 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.12.2021
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The hemodynamic response function (HRF) greatly influences the intra- and inter-subject variability of brain activation and connectivity, and might confound the estimation of temporal precedence in connectivity analyses, making its estimation necessary for a correct interpretation of neuroimaging studies. Additionally, the HRF shape itself is a useful local measure. However, most algorithms for HRF estimation are specific for task-related fMRI data, and only a few can be directly applied to resting-state protocols. Here we introduce rsHRF, a Matlab and Python toolbox that implements HRF estimation and deconvolution from the resting-state BOLD signal. We first provide an overview of the main algorithm, practical implementations, and then demonstrate the feasibility and usefulness of rsHRF by validation experiments with a publicly available resting-state fMRI dataset. We also provide tools for statistical analyses and visualization. We believe that this toolbox may significantly contribute to a better analysis and understanding of the components and variability of BOLD signals. |
---|---|
AbstractList | The hemodynamic response function (HRF) greatly influences the intra- and inter-subject variability of brain activation and connectivity, and might confound the estimation of temporal precedence in connectivity analyses, making its estimation necessary for a correct interpretation of neuroimaging studies. Additionally, the HRF shape itself is a useful local measure. However, most algorithms for HRF estimation are specific for task-related fMRI data, and only a few can be directly applied to resting-state protocols. Here we introduce rsHRF, a Matlab and Python toolbox that implements HRF estimation and deconvolution from the resting-state BOLD signal. We first provide an overview of the main algorithm, practical implementations, and then demonstrate the feasibility and usefulness of rsHRF by validation experiments with a publicly available resting-state fMRI dataset. We also provide tools for statistical analyses and visualization. We believe that this toolbox may significantly contribute to a better analysis and understanding of the components and variability of BOLD signals. The hemodynamic response function (HRF) greatly influences the intra- and inter-subject variability of brain activation and connectivity, and might confound the estimation of temporal precedence in connectivity analyses, making its estimation necessary for a correct interpretation of neuroimaging studies. Additionally, the HRF shape itself is a useful local measure. However, most algorithms for HRF estimation are specific for task-related fMRI data, and only a few can be directly applied to resting-state protocols. Here we introduce rsHRF, a Matlab and Python toolbox that implements HRF estimation and deconvolution from the resting-state BOLD signal. We first provide an overview of the main algorithm, practical implementations, and then demonstrate the feasibility and usefulness of rsHRF by validation experiments with a publicly available resting-state fMRI dataset. We also provide tools for statistical analyses and visualization. We believe that this toolbox may significantly contribute to a better analysis and understanding of the components and variability of BOLD signals.The hemodynamic response function (HRF) greatly influences the intra- and inter-subject variability of brain activation and connectivity, and might confound the estimation of temporal precedence in connectivity analyses, making its estimation necessary for a correct interpretation of neuroimaging studies. Additionally, the HRF shape itself is a useful local measure. However, most algorithms for HRF estimation are specific for task-related fMRI data, and only a few can be directly applied to resting-state protocols. Here we introduce rsHRF, a Matlab and Python toolbox that implements HRF estimation and deconvolution from the resting-state BOLD signal. We first provide an overview of the main algorithm, practical implementations, and then demonstrate the feasibility and usefulness of rsHRF by validation experiments with a publicly available resting-state fMRI dataset. We also provide tools for statistical analyses and visualization. We believe that this toolbox may significantly contribute to a better analysis and understanding of the components and variability of BOLD signals. |
ArticleNumber | 118591 |
Author | Colenbier, Nigel Van Den Bossche, Sofie Johri, Amogh Clauw, Kenzo Marinazzo, Daniele Tandon, Madhur Wu, Guo-Rong |
Author_xml | – sequence: 1 givenname: Guo-Rong surname: Wu fullname: Wu, Guo-Rong email: guorongwu@swu.edu.cn organization: Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing 400715, China – sequence: 2 givenname: Nigel surname: Colenbier fullname: Colenbier, Nigel organization: Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent 9000, Belgium – sequence: 3 givenname: Sofie surname: Van Den Bossche fullname: Van Den Bossche, Sofie organization: Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent 9000, Belgium – sequence: 4 givenname: Kenzo surname: Clauw fullname: Clauw, Kenzo organization: Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent 9000, Belgium – sequence: 5 givenname: Amogh surname: Johri fullname: Johri, Amogh organization: International Institute of Information Technology, Bangalore 560100, India – sequence: 6 givenname: Madhur surname: Tandon fullname: Tandon, Madhur organization: Indraprastha Institute of Information Technology, Delhi 110020, India – sequence: 7 givenname: Daniele surname: Marinazzo fullname: Marinazzo, Daniele organization: Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent 9000, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34560269$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAQhi1URD_gL6BIXLhk64_YiTkgyorSSpWQEJwtx56svGTtYjtV--9xmrZIe9qTrdHjxzPznqIjHzwgVBG8IpiI8-3KwxSD2-kNrCimZEVIxyV5hU4IlryWvKVH852zuiNEHqPTlLYYY0ma7g06Zg0XmAp5gtYxXf28_FRdVDmEsQ_31RBiFSFl5zd1yjpDVYBqLux0dsFX2tvKggn-LozTXHmLXg96TPDu6TxDvy-__Vpf1Tc_vl-vL25qw1ueayEI05g3wnZAcd_iHoyQrKcAElrAmreMgW0lFZiVAciAORd6oA2VXFjCztD14rVBb9VtLA3FBxW0U4-FEDdKx-zMCKqsRFJmNdcNb3rRdh0HKTRjg6BWk7a4Pi6u2xj-TmU6tXPJwDhqD2FKivJWCE55xwr6YQ_dhin6MmmhOtEwjBtRqPdP1NTvwL6097zqAnxeABNDShEGZVx-3GiO2o2KYDVnq7bqf7ZqzlYt2RZBtyd4_uOAp1-Xp1DiuXMQVTIOvAHrIphc9ucOkXzZk5jReWf0-AceDlP8A2-01qU |
CitedBy_id | crossref_primary_10_1016_j_ijchp_2024_100508 crossref_primary_10_3389_fnins_2023_934138 crossref_primary_10_1002_hbm_26484 crossref_primary_10_1038_s41597_022_01806_4 crossref_primary_10_1038_s41598_022_07578_6 crossref_primary_10_3390_brainsci14060591 crossref_primary_10_1093_texcom_tgac035 crossref_primary_10_7554_eLife_86453 crossref_primary_10_1007_s11682_022_00702_0 crossref_primary_10_1016_j_jneumeth_2022_109720 crossref_primary_10_3389_fnhum_2023_976036 crossref_primary_10_1007_s12311_022_01454_9 crossref_primary_10_1073_pnas_2103104118 crossref_primary_10_1016_j_neuroscience_2023_01_001 crossref_primary_10_1093_cercor_bhad201 crossref_primary_10_1097_j_pain_0000000000003152 crossref_primary_10_7554_eLife_77430 crossref_primary_10_1016_j_bspc_2024_107151 crossref_primary_10_1016_j_neuroimage_2023_120224 crossref_primary_10_1162_netn_a_00217 crossref_primary_10_1016_j_isci_2023_108005 crossref_primary_10_1038_s41598_024_51694_4 crossref_primary_10_3389_fnhum_2022_946156 crossref_primary_10_3389_fnimg_2022_983324 crossref_primary_10_1177_0271678X241262583 crossref_primary_10_1192_j_eurpsy_2024_1769 crossref_primary_10_7554_eLife_84822 crossref_primary_10_1016_j_neuroimage_2022_119758 crossref_primary_10_1016_j_neuroimage_2023_119916 crossref_primary_10_1038_s41398_024_03171_9 crossref_primary_10_1111_head_14900 crossref_primary_10_1016_j_neuroscience_2024_03_003 crossref_primary_10_1016_j_bbi_2025_01_025 crossref_primary_10_1097_WNR_0000000000002100 crossref_primary_10_3389_fnins_2022_927556 crossref_primary_10_1016_j_bbr_2024_115144 crossref_primary_10_1038_s42003_025_07576_0 crossref_primary_10_1155_2022_2219993 crossref_primary_10_1002_hbm_70043 crossref_primary_10_1007_s12264_022_00918_6 crossref_primary_10_3389_fnagi_2024_1364402 crossref_primary_10_3389_fneur_2022_1038700 |
Cites_doi | 10.12688/f1000research.11964.1 10.1038/nprot.2016.178 10.1038/nrneurol.2009.198 10.1016/j.neuroimage.2016.03.029 10.1016/j.neuroimage.2018.02.061 10.1371/journal.pbio.0060315 10.1016/j.neuroimage.2019.116081 10.1016/j.pscychresns.2009.10.012 10.1152/jn.00338.2011 10.1002/hbm.22065 10.1038/sdata.2016.110 10.1002/hbm.20310 10.1016/j.neuroimage.2018.06.039 10.1016/j.media.2013.01.003 10.1016/j.neuroimage.2018.12.012 10.1016/j.neuroimage.2008.10.065 10.1371/journal.pbio.3000080 10.1016/j.neuroimage.2010.07.059 10.1073/pnas.1804340115 10.1016/j.neuroimage.2017.12.081 10.1002/mrm.1910390602 10.1016/j.neuroimage.2021.117914 10.3389/fphys.2012.00015 10.1109/TSP.2003.821103 10.1089/brain.2011.0019 10.1006/nimg.2000.0630 10.1016/j.nicl.2018.04.013 10.1007/s10548-014-0404-4 10.1002/(SICI)1097-0193(1997)5:5<329::AID-HBM1>3.0.CO;2-5 10.1155/2012/303601 10.1523/JNEUROSCI.5587-06.2007 10.1016/j.bbr.2011.04.018 10.3389/fnins.2015.00375 10.1002/mrm.27146 10.1016/j.neuroimage.2019.05.011 10.1016/j.neuroimage.2012.01.012 10.1016/j.neuroimage.2012.01.082 10.1016/j.neuroimage.2016.05.058 10.1006/nimg.2000.0568 10.1016/j.neuroimage.2019.07.011 10.1162/jocn_a_00077 10.1016/j.neuroimage.2020.117292 10.1109/42.897811 10.1038/s41467-019-09076-2 10.1016/j.biopsych.2008.10.015 10.1109/TMI.2003.817759 10.1089/brain.2013.0142 10.1097/01.chi.0000140452.51205.8d 10.1109/78.91161 10.1016/j.nicl.2017.07.016 10.1016/j.neuroimage.2012.02.015 10.7717/peerj.7838 10.1016/j.neuroimage.2013.05.100 10.1016/j.neuroimage.2013.01.067 10.1016/j.neuroimage.2013.05.041 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. 2021. The Author(s) |
Copyright_xml | – notice: 2021 The Author(s) – notice: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2021. The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 DOA |
DOI | 10.1016/j.neuroimage.2021.118591 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Open Access资源_DOAJ |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
ExternalDocumentID | oai_doaj_org_article_021923da5a454b67885e96a33f62da17 34560269 10_1016_j_neuroimage_2021_118591 S1053811921008648 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 0SF 6I. AACTN AAFTH AFKWA AJOXV ALIPV AMFUW C45 HMQ NCXOZ 29N 53G AAQFI AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- RIG SEW SNS WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c575t-6613a0546d8e20b70bec693b2ee9e7e0a5733ed7926035721f0556af242956d13 |
IEDL.DBID | DOA |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:12:14 EDT 2025 Fri Jul 11 00:29:40 EDT 2025 Wed Aug 13 04:07:09 EDT 2025 Thu Apr 03 07:00:51 EDT 2025 Tue Jul 01 03:02:20 EDT 2025 Thu Apr 24 23:06:09 EDT 2025 Sat Dec 28 15:51:04 EST 2024 Tue Aug 26 20:02:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | brain connectivity deconvolution BIDS resting-state fMRI HRF MATLAB Python |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-6613a0546d8e20b70bec693b2ee9e7e0a5733ed7926035721f0556af242956d13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/021923da5a454b67885e96a33f62da17 |
PMID | 34560269 |
PQID | 2586430046 |
PQPubID | 2031077 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_021923da5a454b67885e96a33f62da17 proquest_miscellaneous_2576652583 proquest_journals_2586430046 pubmed_primary_34560269 crossref_citationtrail_10_1016_j_neuroimage_2021_118591 crossref_primary_10_1016_j_neuroimage_2021_118591 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118591 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118591 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Miezin, Maccotta, Ollinger, Petersen, Buckner (bib0031) 2000; 11 Ng, Lo, Lim, Chee, Zhou (bib0036) 2016; 133 Zhang, Raichle (bib0060) 2010; 6 Dale, Buckner (bib0010) 1997; 5 Wu, Marinazzo (bib0056) 2015; 28 Caballero-Gaudes, Moia, Panwar, Bandettini, Gonzalez-Castillo (bib0006) 2019; 202 Friston, Mechelli, Turner, Price (bib0016) 2000; 12 Shen, Finn, Scheinost, Rosenberg, Chun, Papademetris, Constable (bib0044) 2017; 12 Turner, Hubbard, Sivakolundu, Himes, Hutchison, Hart, Spence, Frohman, Frohman, Okuda, Rypma (bib0049) 2019; 190 Davenport, Karatekin, White, Lim (bib0011) 2010; 181 Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zollei, Polimeni, Fischl, Liu, Buckner (bib0059) 2011; 106 Pavuluri, Yang, Kamineni, Passarotti, Srinivasan, Harral, Sweeney, Zhou (bib0038) 2009; 65 Ciuciu, Poline, Marrelec, Idier, Pallier, Benali (bib0009) 2003; 22 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib0051) 2013; 80 Marinazzo, Pellicoro, Stramaglia (bib0029) 2012; 2012 Elbau, Brucklmeier, Uhr, Arloth, Czamara, Spoormaker, Czisch, Stephan, Binder, Samann (bib0015) 2018; 115 Rangaprakash, Dretsch, Yan, Katz, Denney, Deshpande (bib0041) 2017; 16 Taylor, Kim, Ress (bib0047) 2018; 173 Badillo, Vincent, Ciuciu (bib0002) 2013; 82 Afyouni, Smith, Nichols (bib0001) 2019; 199 Hiller, Chin (bib0021) 1991; 39 David, Guillemain, Saillet, Reyt, Deransart, Segebarth, Depaulis (bib0012) 2008; 6 Henson, Friston (bib0020) 2007 Lindquist, Wager (bib0028) 2007; 28 Keles, Barbour, Omurtag (bib0023) 2016; 138 Raichle (bib0040) 2011; 1 Karahanoglu, Caballero-Gaudes, Lazeyras, Van de Ville (bib0022) 2013; 73 Tipping (bib0048) 2001; 1 Neelamani, Choi, Baraniuk (bib0035) 2004; 52 Poldrack, Congdon, Triplett, Gorgolewski, Karlsgodt, Mumford, Sabb, Freimer, London, Cannon, Bilder (bib0039) 2016; 3 Wu, Di Perri, Charland-Verville, Martial, Carriere, Vanhaudenhuyse, Laureys, Marinazzo (bib0053) 2019; 200 Wu, Liao, Stramaglia, Ding, Chen, Marinazzo (bib0055) 2013; 17 Lindquist, Meng Loh, Atlas, Wager (bib0027) 2009; 45 van der Knaap, van der Ham (bib0050) 2011; 223 de Lange, Anaturk, Suri, Kaufmann, Cole, Griffanti, Zsoldos, Jensen, Filippini, Singh-Manoux, Kivimaki, Westlye, Ebmeier (bib0013) 2020; 222 Handwerker, Gonzalez-Castillo, D'Esposito, Bandettini (bib0019) 2012; 62 Boynton, Engel, Heeger (bib0003) 2012; 62 Yan, Rangaprakash, Deshpande (bib0058) 2018; 19 Wu, Marinazzo (bib0057) 2016; 374 Moia, Termenon, Urunuela, Chen, Stickland, Bright, Caballero-Gaudes (bib0033) 2021; 233 Murphy, Harris, Wise (bib0034) 2011; 54 Tagliazucchi, Balenzuela, Fraiman, Chialvo (bib0045) 2012; 3 Moia, Stickland, Ayyagari, Termenon, Caballero-Gaudes, Bright (bib0032) 2020; 2020 Buxton (bib0004) 2012; 62 Wu, Liao, Stramaglia, Chen, Marinazzo (bib0054) 2013; 3 Pan, Lee, Billings, Nezafati, Majeed, Buckley, Keilholz (bib0037) 2018; 179 Seeley, Menon, Schatzberg, Keller, Glover, Kenna, Reiss, Greicius (bib0043) 2007; 27 Li, Newton, Anderson, Ding, Gore (bib0026) 2019; 10 Cardoso, Lima, Sirotin, Das (bib0007) 2019; 17 Tamm, Menon, Ringel, Reiss (bib0046) 2004; 43 Chen, Saad, Adleman, Leibenluft, Cox (bib0008) 2015; 9 West, Zuppichini, Turner, Sivakolundu, Zhao, Abdelkarim, Spence, Rypma (bib0052) 2019; 188 Laird, Fox, Eickhoff, Turner, Ray, McKay, Glahn, Beckmann, Smith, Fox (bib0025) 2011; 23 Mayer, Ruhl, Merideth, Ling, Hanlon, Bustillo, Canive (bib0030) 2013; 34 Goutte, Nielsen, Hansen (bib0018) 2000; 19 Gorgolewski, Durnez, Poldrack (bib0017) 2017; 6 Ehinger, Dimigen (bib0014) 2019; 7 Buxton, Wong, Frank (bib0005) 1998; 39 Lagopoulos, Ivanovski, Malhi (bib0024) 2007; 32 Rangaprakash, Wu, Marinazzo, Hu, Deshpande (bib0042) 2018; 80 de Lange (10.1016/j.neuroimage.2021.118591_bib0013) 2020; 222 Lindquist (10.1016/j.neuroimage.2021.118591_bib0027) 2009; 45 Yan (10.1016/j.neuroimage.2021.118591_bib0058) 2018; 19 Shen (10.1016/j.neuroimage.2021.118591_bib0044) 2017; 12 Ng (10.1016/j.neuroimage.2021.118591_bib0036) 2016; 133 Poldrack (10.1016/j.neuroimage.2021.118591_bib0039) 2016; 3 Raichle (10.1016/j.neuroimage.2021.118591_bib0040) 2011; 1 Buxton (10.1016/j.neuroimage.2021.118591_bib0004) 2012; 62 Wu (10.1016/j.neuroimage.2021.118591_bib0056) 2015; 28 Badillo (10.1016/j.neuroimage.2021.118591_bib0002) 2013; 82 Taylor (10.1016/j.neuroimage.2021.118591_bib0047) 2018; 173 Gorgolewski (10.1016/j.neuroimage.2021.118591_bib0017) 2017; 6 Chen (10.1016/j.neuroimage.2021.118591_bib0008) 2015; 9 Laird (10.1016/j.neuroimage.2021.118591_bib0025) 2011; 23 Miezin (10.1016/j.neuroimage.2021.118591_bib0031) 2000; 11 Karahanoglu (10.1016/j.neuroimage.2021.118591_bib0022) 2013; 73 Rangaprakash (10.1016/j.neuroimage.2021.118591_bib0041) 2017; 16 West (10.1016/j.neuroimage.2021.118591_bib0052) 2019; 188 Wu (10.1016/j.neuroimage.2021.118591_bib0053) 2019; 200 Rangaprakash (10.1016/j.neuroimage.2021.118591_bib0042) 2018; 80 Handwerker (10.1016/j.neuroimage.2021.118591_bib0019) 2012; 62 Moia (10.1016/j.neuroimage.2021.118591_bib0033) 2021; 233 David (10.1016/j.neuroimage.2021.118591_bib0012) 2008; 6 Wu (10.1016/j.neuroimage.2021.118591_bib0057) 2016; 374 Neelamani (10.1016/j.neuroimage.2021.118591_bib0035) 2004; 52 Lindquist (10.1016/j.neuroimage.2021.118591_bib0028) 2007; 28 Buxton (10.1016/j.neuroimage.2021.118591_bib0005) 1998; 39 Davenport (10.1016/j.neuroimage.2021.118591_bib0011) 2010; 181 Pan (10.1016/j.neuroimage.2021.118591_bib0037) 2018; 179 Tipping (10.1016/j.neuroimage.2021.118591_bib0048) 2001; 1 Pavuluri (10.1016/j.neuroimage.2021.118591_bib0038) 2009; 65 Elbau (10.1016/j.neuroimage.2021.118591_bib0015) 2018; 115 Henson (10.1016/j.neuroimage.2021.118591_bib0020) 2007 Lagopoulos (10.1016/j.neuroimage.2021.118591_bib0024) 2007; 32 Hiller (10.1016/j.neuroimage.2021.118591_bib0021) 1991; 39 Zhang (10.1016/j.neuroimage.2021.118591_bib0060) 2010; 6 Afyouni (10.1016/j.neuroimage.2021.118591_bib0001) 2019; 199 Mayer (10.1016/j.neuroimage.2021.118591_bib0030) 2013; 34 Ehinger (10.1016/j.neuroimage.2021.118591_bib0014) 2019; 7 Boynton (10.1016/j.neuroimage.2021.118591_bib0003) 2012; 62 Dale (10.1016/j.neuroimage.2021.118591_bib0010) 1997; 5 Yeo (10.1016/j.neuroimage.2021.118591_bib0059) 2011; 106 Wu (10.1016/j.neuroimage.2021.118591_bib0054) 2013; 3 Seeley (10.1016/j.neuroimage.2021.118591_bib0043) 2007; 27 Turner (10.1016/j.neuroimage.2021.118591_bib0049) 2019; 190 Tamm (10.1016/j.neuroimage.2021.118591_bib0046) 2004; 43 Moia (10.1016/j.neuroimage.2021.118591_bib0032) 2020; 2020 Cardoso (10.1016/j.neuroimage.2021.118591_bib0007) 2019; 17 van der Knaap (10.1016/j.neuroimage.2021.118591_bib0050) 2011; 223 Ciuciu (10.1016/j.neuroimage.2021.118591_bib0009) 2003; 22 Wu (10.1016/j.neuroimage.2021.118591_bib0055) 2013; 17 Marinazzo (10.1016/j.neuroimage.2021.118591_bib0029) 2012; 2012 Friston (10.1016/j.neuroimage.2021.118591_bib0016) 2000; 12 Tagliazucchi (10.1016/j.neuroimage.2021.118591_bib0045) 2012; 3 Keles (10.1016/j.neuroimage.2021.118591_bib0023) 2016; 138 Goutte (10.1016/j.neuroimage.2021.118591_bib0018) 2000; 19 Li (10.1016/j.neuroimage.2021.118591_bib0026) 2019; 10 Murphy (10.1016/j.neuroimage.2021.118591_bib0034) 2011; 54 Van Essen (10.1016/j.neuroimage.2021.118591_bib0051) 2013; 80 Caballero-Gaudes (10.1016/j.neuroimage.2021.118591_bib0006) 2019; 202 |
References_xml | – volume: 16 start-page: 409 year: 2017 end-page: 417 ident: bib0041 article-title: Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies publication-title: Neuroimage Clin. – volume: 3 start-page: 15 year: 2012 ident: bib0045 article-title: Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis publication-title: Front. Physiol. – volume: 43 start-page: 1430 year: 2004 end-page: 1440 ident: bib0046 article-title: Event-related FMRI evidence of frontotemporal involvement in aberrant response inhibition and task switching in attention-deficit/hyperactivity disorder publication-title: J. Am. Acad. Child Adolesc. Psychiatry – volume: 45 start-page: S187 year: 2009 end-page: S198 ident: bib0027 article-title: Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling publication-title: Neuroimage – volume: 32 start-page: 174 year: 2007 end-page: 184 ident: bib0024 article-title: An event-related functional MRI study of working memory in euthymic bipolar disorder publication-title: J. Psychiatry Neurosci. – volume: 6 start-page: 2683 year: 2008 end-page: 2697 ident: bib0012 article-title: Identifying neural drivers with functional MRI: an electrophysiological validation publication-title: PLoS Biol. – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib0051 article-title: The WU-Minn human connectome project: an overview publication-title: Neuroimage – volume: 106 start-page: 1125 year: 2011 end-page: 1165 ident: bib0059 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. – volume: 202 year: 2019 ident: bib0006 article-title: A deconvolution algorithm for multi-echo functional MRI: multi-echo sparse paradigm free mapping publication-title: Neuroimage – volume: 19 start-page: 320 year: 2018 end-page: 330 ident: bib0058 article-title: Aberrant hemodynamic responses in autism: implications for resting state fMRI functional connectivity studies publication-title: Neuroimage Clin. – volume: 2020 start-page: 1489 year: 2020 end-page: 1492 ident: bib0032 article-title: Voxelwise optimization of hemodynamic lags to improve regional CVR estimates in breath-hold fMRI publication-title: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 133 start-page: 321 year: 2016 end-page: 330 ident: bib0036 article-title: Reduced functional segregation between the default mode network and the executive control network in healthy older adults: a longitudinal study publication-title: Neuroimage – volume: 12 start-page: 506 year: 2017 end-page: 518 ident: bib0044 article-title: Using connectome-based predictive modeling to predict individual behavior from brain connectivity publication-title: Nat. Protoc. – volume: 200 start-page: 450 year: 2019 end-page: 459 ident: bib0053 article-title: Modulation of the spontaneous hemodynamic response function across levels of consciousness publication-title: Neuroimage – start-page: 178 year: 2007 end-page: 192 ident: bib0020 article-title: Convolution models for fMRI publication-title: Statistical Parametric Mapping: The Analysis of Functional Brain Images – volume: 6 start-page: 1262 year: 2017 ident: bib0017 article-title: Preprocessed consortium for neuropsychiatric phenomics dataset publication-title: F1000Res – volume: 138 start-page: 76 year: 2016 end-page: 87 ident: bib0023 article-title: Hemodynamic correlates of spontaneous neural activity measured by human whole-head resting state EEG+fNIRS publication-title: Neuroimage – volume: 5 start-page: 329 year: 1997 end-page: 340 ident: bib0010 article-title: Selective averaging of rapidly presented individual trials using fMRI publication-title: Hum. Brain Mapp. – volume: 3 start-page: 294 year: 2013 end-page: 301 ident: bib0054 article-title: Recovering directed networks in neuroimaging datasets using partially conditioned Granger causality publication-title: Brain Connect. – volume: 3 year: 2016 ident: bib0039 article-title: A phenome-wide examination of neural and cognitive function publication-title: Sci. Data – volume: 173 start-page: 322 year: 2018 end-page: 331 ident: bib0047 article-title: Characterization of the hemodynamic response function across the majority of human cerebral cortex publication-title: Neuroimage – volume: 222 year: 2020 ident: bib0013 article-title: Multimodal brain-age prediction and cardiovascular risk: the Whitehall II MRI sub-study publication-title: Neuroimage – volume: 12 start-page: 466 year: 2000 end-page: 477 ident: bib0016 article-title: Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics publication-title: Neuroimage – volume: 1 start-page: 3 year: 2011 end-page: 12 ident: bib0040 article-title: The restless brain publication-title: Brain Connect. – volume: 80 start-page: 1697 year: 2018 end-page: 1713 ident: bib0042 article-title: Hemodynamic response function (HRF) variability confounds resting-state fMRI functional connectivity publication-title: Magn. Reson. Med. – volume: 22 start-page: 1235 year: 2003 end-page: 1251 ident: bib0009 article-title: Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment publication-title: IEEE Trans. Med. Imaging – volume: 179 start-page: 207 year: 2018 end-page: 214 ident: bib0037 article-title: Detection of neural light-scattering activity in vivo: optical transmittance studies in the rat brain publication-title: Neuroimage – volume: 17 start-page: 365 year: 2013 end-page: 374 ident: bib0055 article-title: A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data publication-title: Med. Image Anal. – volume: 188 start-page: 198 year: 2019 end-page: 207 ident: bib0052 article-title: BOLD hemodynamic response function changes significantly with healthy aging publication-title: Neuroimage – volume: 28 start-page: 764 year: 2007 end-page: 784 ident: bib0028 article-title: Validity and power in hemodynamic response modeling: a comparison study and a new approach publication-title: Hum. Brain Mapp. – volume: 1 start-page: 211 year: 2001 end-page: 244 ident: bib0048 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – volume: 374 year: 2016 ident: bib0057 article-title: Sensitivity of the resting-state haemodynamic response function estimation to autonomic nervous system fluctuations publication-title: Philos. Trans. A Math. Phys. Eng. Sci. – volume: 62 start-page: 975 year: 2012 end-page: 984 ident: bib0003 article-title: Linear systems analysis of the fMRI signal publication-title: Neuroimage – volume: 27 start-page: 2349 year: 2007 end-page: 2356 ident: bib0043 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control publication-title: J. Neurosci. – volume: 17 year: 2019 ident: bib0007 article-title: Task-related hemodynamic responses are modulated by reward and task engagement publication-title: PLoS Biol. – volume: 6 start-page: 15 year: 2010 end-page: 28 ident: bib0060 article-title: Disease and the brain's dark energy publication-title: Nat. Rev. Neurol. – volume: 73 start-page: 121 year: 2013 end-page: 134 ident: bib0022 article-title: Total activation: fMRI deconvolution through spatio-temporal regularization publication-title: Neuroimage – volume: 115 start-page: E10206 year: 2018 end-page: E10215 ident: bib0015 article-title: The brain's hemodynamic response function rapidly changes under acute psychosocial stress in association with genetic and endocrine stress response markers publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 190 start-page: 46 year: 2019 end-page: 55 ident: bib0049 article-title: Preserved canonicality of the BOLD hemodynamic response reflects healthy cognition: insights into the healthy brain through the window of Multiple Sclerosis publication-title: Neuroimage – volume: 7 start-page: e7838 year: 2019 ident: bib0014 article-title: Unfold: an integrated toolbox for overlap correction, non-linear modeling, and regression-based EEG analysis publication-title: PeerJ – volume: 233 year: 2021 ident: bib0033 article-title: ICA-based denoising strategies in breath-hold induced cerebrovascular reactivity mapping with multi echo BOLD fMRI publication-title: Neuroimage – volume: 19 start-page: 1188 year: 2000 end-page: 1201 ident: bib0018 article-title: Modeling the haemodynamic response in fMRI using smooth FIR filters publication-title: IEEE Trans. Med. Imaging – volume: 223 start-page: 211 year: 2011 end-page: 221 ident: bib0050 article-title: How does the corpus callosum mediate interhemispheric transfer? A review publication-title: Behav. Brain Res. – volume: 82 start-page: 433 year: 2013 end-page: 448 ident: bib0002 article-title: Group-level impacts of within- and between-subject hemodynamic variability in fMRI publication-title: Neuroimage – volume: 10 start-page: 1140 year: 2019 ident: bib0026 article-title: Characterization of the hemodynamic response function in white matter tracts for event-related fMRI publication-title: Nat. Commun. – volume: 62 start-page: 953 year: 2012 end-page: 961 ident: bib0004 article-title: Dynamic models of BOLD contrast publication-title: Neuroimage – volume: 39 start-page: 855 year: 1998 end-page: 864 ident: bib0005 article-title: Dynamics of blood flow and oxygenation changes during brain activation: the balloon model publication-title: Magn. Reson. Med. – volume: 9 start-page: 375 year: 2015 ident: bib0008 article-title: Detecting the subtle shape differences in hemodynamic responses at the group level publication-title: Front. Neurosci. – volume: 199 start-page: 609 year: 2019 end-page: 625 ident: bib0001 article-title: Effective degrees of freedom of the Pearson's correlation coefficient under autocorrelation publication-title: Neuroimage – volume: 23 start-page: 4022 year: 2011 end-page: 4037 ident: bib0025 article-title: Behavioral interpretations of intrinsic connectivity networks publication-title: J. Cognit. Neurosci. – volume: 181 start-page: 193 year: 2010 end-page: 198 ident: bib0011 article-title: Differential fractional anisotropy abnormalities in adolescents with ADHD or schizophrenia publication-title: Psychiatry Res. – volume: 52 start-page: 418 year: 2004 end-page: 433 ident: bib0035 article-title: ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems publication-title: IEEE Trans. Signal Process. – volume: 65 start-page: 586 year: 2009 end-page: 593 ident: bib0038 article-title: Diffusion tensor imaging study of white matter fiber tracts in pediatric bipolar disorder and attention-deficit/hyperactivity disorder publication-title: Biol. Psychiatry – volume: 62 start-page: 1017 year: 2012 end-page: 1023 ident: bib0019 article-title: The continuing challenge of understanding and modeling hemodynamic variation in fMRI publication-title: Neuroimage – volume: 34 start-page: 2302 year: 2013 end-page: 2312 ident: bib0030 article-title: Functional imaging of the hemodynamic sensory gating response in schizophrenia publication-title: Hum. Brain Mapp. – volume: 39 start-page: 1892 year: 1991 end-page: 1899 ident: bib0021 article-title: Iterative Wiener filters for image restoration publication-title: IEEE Trans. Signal Process. – volume: 11 start-page: 735 year: 2000 end-page: 759 ident: bib0031 article-title: Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing publication-title: Neuroimage – volume: 28 start-page: 541 year: 2015 end-page: 547 ident: bib0056 article-title: Point-process deconvolution of fMRI BOLD signal reveals effective connectivity alterations in chronic pain patients publication-title: Brain Topogr. – volume: 2012 year: 2012 ident: bib0029 article-title: Causal information approach to partial conditioning in multivariate data sets publication-title: Comput. Math. Methods Med. – volume: 54 start-page: 369 year: 2011 end-page: 379 ident: bib0034 article-title: Robustly measuring vascular reactivity differences with breath-hold: normalising stimulus-evoked and resting state BOLD fMRI data publication-title: Neuroimage – volume: 6 start-page: 1262 year: 2017 ident: 10.1016/j.neuroimage.2021.118591_bib0017 article-title: Preprocessed consortium for neuropsychiatric phenomics dataset publication-title: F1000Res doi: 10.12688/f1000research.11964.1 – volume: 12 start-page: 506 issue: 3 year: 2017 ident: 10.1016/j.neuroimage.2021.118591_bib0044 article-title: Using connectome-based predictive modeling to predict individual behavior from brain connectivity publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.178 – volume: 6 start-page: 15 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2021.118591_bib0060 article-title: Disease and the brain's dark energy publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2009.198 – volume: 133 start-page: 321 year: 2016 ident: 10.1016/j.neuroimage.2021.118591_bib0036 article-title: Reduced functional segregation between the default mode network and the executive control network in healthy older adults: a longitudinal study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.03.029 – volume: 2020 start-page: 1489 year: 2020 ident: 10.1016/j.neuroimage.2021.118591_bib0032 article-title: Voxelwise optimization of hemodynamic lags to improve regional CVR estimates in breath-hold fMRI – volume: 173 start-page: 322 year: 2018 ident: 10.1016/j.neuroimage.2021.118591_bib0047 article-title: Characterization of the hemodynamic response function across the majority of human cerebral cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.02.061 – volume: 6 start-page: 2683 issue: 12 year: 2008 ident: 10.1016/j.neuroimage.2021.118591_bib0012 article-title: Identifying neural drivers with functional MRI: an electrophysiological validation publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060315 – start-page: 178 year: 2007 ident: 10.1016/j.neuroimage.2021.118591_bib0020 article-title: Convolution models for fMRI – volume: 202 year: 2019 ident: 10.1016/j.neuroimage.2021.118591_bib0006 article-title: A deconvolution algorithm for multi-echo functional MRI: multi-echo sparse paradigm free mapping publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116081 – volume: 181 start-page: 193 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2021.118591_bib0011 article-title: Differential fractional anisotropy abnormalities in adolescents with ADHD or schizophrenia publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2009.10.012 – volume: 106 start-page: 1125 issue: 3 year: 2011 ident: 10.1016/j.neuroimage.2021.118591_bib0059 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. doi: 10.1152/jn.00338.2011 – volume: 34 start-page: 2302 issue: 9 year: 2013 ident: 10.1016/j.neuroimage.2021.118591_bib0030 article-title: Functional imaging of the hemodynamic sensory gating response in schizophrenia publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22065 – volume: 3 year: 2016 ident: 10.1016/j.neuroimage.2021.118591_bib0039 article-title: A phenome-wide examination of neural and cognitive function publication-title: Sci. Data doi: 10.1038/sdata.2016.110 – volume: 28 start-page: 764 issue: 8 year: 2007 ident: 10.1016/j.neuroimage.2021.118591_bib0028 article-title: Validity and power in hemodynamic response modeling: a comparison study and a new approach publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20310 – volume: 179 start-page: 207 year: 2018 ident: 10.1016/j.neuroimage.2021.118591_bib0037 article-title: Detection of neural light-scattering activity in vivo: optical transmittance studies in the rat brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.06.039 – volume: 17 start-page: 365 issue: 3 year: 2013 ident: 10.1016/j.neuroimage.2021.118591_bib0055 article-title: A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data publication-title: Med. Image Anal. doi: 10.1016/j.media.2013.01.003 – volume: 188 start-page: 198 year: 2019 ident: 10.1016/j.neuroimage.2021.118591_bib0052 article-title: BOLD hemodynamic response function changes significantly with healthy aging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.12.012 – volume: 45 start-page: S187 issue: 1 Suppl year: 2009 ident: 10.1016/j.neuroimage.2021.118591_bib0027 article-title: Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.10.065 – volume: 17 issue: 4 year: 2019 ident: 10.1016/j.neuroimage.2021.118591_bib0007 article-title: Task-related hemodynamic responses are modulated by reward and task engagement publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000080 – volume: 54 start-page: 369 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2021.118591_bib0034 article-title: Robustly measuring vascular reactivity differences with breath-hold: normalising stimulus-evoked and resting state BOLD fMRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.07.059 – volume: 115 start-page: E10206 issue: 43 year: 2018 ident: 10.1016/j.neuroimage.2021.118591_bib0015 article-title: The brain's hemodynamic response function rapidly changes under acute psychosocial stress in association with genetic and endocrine stress response markers publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1804340115 – volume: 190 start-page: 46 year: 2019 ident: 10.1016/j.neuroimage.2021.118591_bib0049 article-title: Preserved canonicality of the BOLD hemodynamic response reflects healthy cognition: insights into the healthy brain through the window of Multiple Sclerosis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.12.081 – volume: 39 start-page: 855 issue: 6 year: 1998 ident: 10.1016/j.neuroimage.2021.118591_bib0005 article-title: Dynamics of blood flow and oxygenation changes during brain activation: the balloon model publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910390602 – volume: 233 year: 2021 ident: 10.1016/j.neuroimage.2021.118591_bib0033 article-title: ICA-based denoising strategies in breath-hold induced cerebrovascular reactivity mapping with multi echo BOLD fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.117914 – volume: 3 start-page: 15 year: 2012 ident: 10.1016/j.neuroimage.2021.118591_bib0045 article-title: Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis publication-title: Front. Physiol. doi: 10.3389/fphys.2012.00015 – volume: 52 start-page: 418 issue: 2 year: 2004 ident: 10.1016/j.neuroimage.2021.118591_bib0035 article-title: ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2003.821103 – volume: 1 start-page: 211 issue: Jun year: 2001 ident: 10.1016/j.neuroimage.2021.118591_bib0048 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2021.118591_bib0040 article-title: The restless brain publication-title: Brain Connect. doi: 10.1089/brain.2011.0019 – volume: 12 start-page: 466 issue: 4 year: 2000 ident: 10.1016/j.neuroimage.2021.118591_bib0016 article-title: Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics publication-title: Neuroimage doi: 10.1006/nimg.2000.0630 – volume: 19 start-page: 320 year: 2018 ident: 10.1016/j.neuroimage.2021.118591_bib0058 article-title: Aberrant hemodynamic responses in autism: implications for resting state fMRI functional connectivity studies publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2018.04.013 – volume: 28 start-page: 541 issue: 4 year: 2015 ident: 10.1016/j.neuroimage.2021.118591_bib0056 article-title: Point-process deconvolution of fMRI BOLD signal reveals effective connectivity alterations in chronic pain patients publication-title: Brain Topogr. doi: 10.1007/s10548-014-0404-4 – volume: 374 issue: 2067 year: 2016 ident: 10.1016/j.neuroimage.2021.118591_bib0057 article-title: Sensitivity of the resting-state haemodynamic response function estimation to autonomic nervous system fluctuations publication-title: Philos. Trans. A Math. Phys. Eng. Sci. – volume: 5 start-page: 329 issue: 5 year: 1997 ident: 10.1016/j.neuroimage.2021.118591_bib0010 article-title: Selective averaging of rapidly presented individual trials using fMRI publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1997)5:5<329::AID-HBM1>3.0.CO;2-5 – volume: 2012 year: 2012 ident: 10.1016/j.neuroimage.2021.118591_bib0029 article-title: Causal information approach to partial conditioning in multivariate data sets publication-title: Comput. Math. Methods Med. doi: 10.1155/2012/303601 – volume: 27 start-page: 2349 issue: 9 year: 2007 ident: 10.1016/j.neuroimage.2021.118591_bib0043 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5587-06.2007 – volume: 223 start-page: 211 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2021.118591_bib0050 article-title: How does the corpus callosum mediate interhemispheric transfer? A review publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2011.04.018 – volume: 9 start-page: 375 year: 2015 ident: 10.1016/j.neuroimage.2021.118591_bib0008 article-title: Detecting the subtle shape differences in hemodynamic responses at the group level publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00375 – volume: 80 start-page: 1697 issue: 4 year: 2018 ident: 10.1016/j.neuroimage.2021.118591_bib0042 article-title: Hemodynamic response function (HRF) variability confounds resting-state fMRI functional connectivity publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27146 – volume: 199 start-page: 609 year: 2019 ident: 10.1016/j.neuroimage.2021.118591_bib0001 article-title: Effective degrees of freedom of the Pearson's correlation coefficient under autocorrelation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.05.011 – volume: 62 start-page: 953 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2021.118591_bib0004 article-title: Dynamic models of BOLD contrast publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.012 – volume: 62 start-page: 975 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2021.118591_bib0003 article-title: Linear systems analysis of the fMRI signal publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.082 – volume: 138 start-page: 76 year: 2016 ident: 10.1016/j.neuroimage.2021.118591_bib0023 article-title: Hemodynamic correlates of spontaneous neural activity measured by human whole-head resting state EEG+fNIRS publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.05.058 – volume: 32 start-page: 174 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2021.118591_bib0024 article-title: An event-related functional MRI study of working memory in euthymic bipolar disorder publication-title: J. Psychiatry Neurosci. – volume: 11 start-page: 735 issue: 6 Pt 1 year: 2000 ident: 10.1016/j.neuroimage.2021.118591_bib0031 article-title: Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing publication-title: Neuroimage doi: 10.1006/nimg.2000.0568 – volume: 200 start-page: 450 year: 2019 ident: 10.1016/j.neuroimage.2021.118591_bib0053 article-title: Modulation of the spontaneous hemodynamic response function across levels of consciousness publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.07.011 – volume: 23 start-page: 4022 issue: 12 year: 2011 ident: 10.1016/j.neuroimage.2021.118591_bib0025 article-title: Behavioral interpretations of intrinsic connectivity networks publication-title: J. Cognit. Neurosci. doi: 10.1162/jocn_a_00077 – volume: 222 year: 2020 ident: 10.1016/j.neuroimage.2021.118591_bib0013 article-title: Multimodal brain-age prediction and cardiovascular risk: the Whitehall II MRI sub-study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117292 – volume: 19 start-page: 1188 issue: 12 year: 2000 ident: 10.1016/j.neuroimage.2021.118591_bib0018 article-title: Modeling the haemodynamic response in fMRI using smooth FIR filters publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.897811 – volume: 10 start-page: 1140 issue: 1 year: 2019 ident: 10.1016/j.neuroimage.2021.118591_bib0026 article-title: Characterization of the hemodynamic response function in white matter tracts for event-related fMRI publication-title: Nat. Commun. doi: 10.1038/s41467-019-09076-2 – volume: 65 start-page: 586 issue: 7 year: 2009 ident: 10.1016/j.neuroimage.2021.118591_bib0038 article-title: Diffusion tensor imaging study of white matter fiber tracts in pediatric bipolar disorder and attention-deficit/hyperactivity disorder publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2008.10.015 – volume: 22 start-page: 1235 issue: 10 year: 2003 ident: 10.1016/j.neuroimage.2021.118591_bib0009 article-title: Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.817759 – volume: 3 start-page: 294 issue: 3 year: 2013 ident: 10.1016/j.neuroimage.2021.118591_bib0054 article-title: Recovering directed networks in neuroimaging datasets using partially conditioned Granger causality publication-title: Brain Connect. doi: 10.1089/brain.2013.0142 – volume: 43 start-page: 1430 issue: 11 year: 2004 ident: 10.1016/j.neuroimage.2021.118591_bib0046 article-title: Event-related FMRI evidence of frontotemporal involvement in aberrant response inhibition and task switching in attention-deficit/hyperactivity disorder publication-title: J. Am. Acad. Child Adolesc. Psychiatry doi: 10.1097/01.chi.0000140452.51205.8d – volume: 39 start-page: 1892 year: 1991 ident: 10.1016/j.neuroimage.2021.118591_bib0021 article-title: Iterative Wiener filters for image restoration publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.91161 – volume: 16 start-page: 409 year: 2017 ident: 10.1016/j.neuroimage.2021.118591_bib0041 article-title: Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2017.07.016 – volume: 62 start-page: 1017 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2021.118591_bib0019 article-title: The continuing challenge of understanding and modeling hemodynamic variation in fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.015 – volume: 7 start-page: e7838 year: 2019 ident: 10.1016/j.neuroimage.2021.118591_bib0014 article-title: Unfold: an integrated toolbox for overlap correction, non-linear modeling, and regression-based EEG analysis publication-title: PeerJ doi: 10.7717/peerj.7838 – volume: 82 start-page: 433 year: 2013 ident: 10.1016/j.neuroimage.2021.118591_bib0002 article-title: Group-level impacts of within- and between-subject hemodynamic variability in fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.100 – volume: 73 start-page: 121 year: 2013 ident: 10.1016/j.neuroimage.2021.118591_bib0022 article-title: Total activation: fMRI deconvolution through spatio-temporal regularization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.01.067 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2021.118591_bib0051 article-title: The WU-Minn human connectome project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 |
SSID | ssj0009148 |
Score | 2.5540297 |
Snippet | The hemodynamic response function (HRF) greatly influences the intra- and inter-subject variability of brain activation and connectivity, and might confound... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 118591 |
SubjectTerms | Adult Algorithms BIDS Blood Brain - diagnostic imaging brain connectivity Brain mapping deconvolution Female Fourier transforms Functional magnetic resonance imaging Hemodynamics - physiology HRF Humans Magnetic Resonance Imaging - methods Male MATLAB Middle Aged Neural networks Neuroimaging Python Research Design resting-state fMRI Statistical analysis Young Adult |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELVWe0BcEN8EFmQkrqFNbMcNnJaKqkJaDsBKe7Ps2EFFS7LqdhEnfjtvYierHpAqcUvdcWSNxzNvlJlnxt5oaVsF2JEvXDuQauNJijZ3yrdKNHPpKmpOPvtcrc_lpwt1ccSWYy8MlVUm3x99-uCt08gsaXN2tdnMvgIZINwQnxfhckkNv1JqsvK3f27LPOpCxnY4JXKSTtU8scZr4Izc_MTJRaZYFvAfROe2F6IGJv-9SPUvJDpEpNV9di9BSX4aV_uAHYXuIbtzlj6WP2LL7fX6y-odP-W7vr90_W8OgMrpLg6Eq3zoJOIQ4DQQGxi57Tz3lCL_Shb5mJ2vPn5brvN0Z0LeAHjtcoRbYQHDKr8I5dzpOfaoqoUrQ6iDDnNL_IfB6xp5jFBI_1pi07EtIjUyJV-IJ-y467vwjPFGeuQ2QERNULK1paucFbbWiHvACU5lTI9qMk0iFKd7LS7NWDn2w9wq2JCCTVRwxopp5lUk1ThgzgfaiUmeaLGHgX773SS7MBAHYPVWWVidQxxeqFBXVoi2Kr0tdMbqcR_N2HkKX4kXbQ5YwPtp7p6FHjj7ZDQbk7zEtSkV7JYoz6qMvZ7-xvmmjza2C_0NyWhsAiRFxp5Gc5t0IIB-kUPXz_9raS_YXfoVa3RO2PFuexNeAmnt3KvhKP0FNUwjVw priority: 102 providerName: Elsevier – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEBVtCqWX0u86SYsKvZquLcuyk0NIQpelkB5KA3sTkiWXlMROdzelP79vLNlLDi17M_bIGM1I88aaecPYR1WYVgJ2pJVtB1JtXBWiTa10rRTNrLAlFSdffC0Xl8WXpVzGH27rmFY57onDRu36hv6Rf8plBedJ4dzJ7a-UukbR6WpsofGQPSLqMrJqtVRb0t2sCKVwUqQVBGImT8jvGvgir26wahEl5hn2DqJyu-eeBhb_e17qXyh08EbzZ-xphJH8NOj9OXvguxfs8UU8KH_Jzlfrxbf5ET_lm76_tv0fDnDKqQ8HXFU6VBFxCHC6EYoXuekcdxQe_47W-Ipdzj9_P1-ksV9C2gB0bVK4WmEAwUpX-Xxm1Qz6KWthc-9rr_zMEPehd6pGDCMkQr-WmHRMCy-NKMll4jXb6_rOv2W8KRziGqChxsuiNbktrRGmVvB5wAhWJkyN06SbSCZOPS2u9Zg19lNvJ1jTBOswwQnLppG3gVBjhzFnpIlJniixhxv96oeOK0xDHGDVGWlgcRY-uJK-Lo0QbZk7k6mE1aMe9Vh1in0SL7ra4QOOp7ERmQTEsePow9FsdNwh1nprzwn7MD3G2qYDG9P5_o5kFJQASZGwN8HcpjkQQL6In-v9_7_8gD2hLwkJOIdsb7O68-8Aozb2_bBW_gLKiBgU priority: 102 providerName: ProQuest |
Title | rsHRF: A toolbox for resting-state HRF estimation and deconvolution |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921008648 https://dx.doi.org/10.1016/j.neuroimage.2021.118591 https://www.ncbi.nlm.nih.gov/pubmed/34560269 https://www.proquest.com/docview/2586430046 https://www.proquest.com/docview/2576652583 https://doaj.org/article/021923da5a454b67885e96a33f62da17 |
Volume | 244 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH6CISEuaPwObJWRuAaaOI4bduqmVQW0Ck1M6s2yY0caGgnaOsSJv53PsRO2A6IHLm2V2pH1_Ozve8l7n4neyEI3ArQjnZmmF9XGr4I3qRG2EbyeFqb0xcknq3J5Vnxci_WNo758TliQBw6GewcMAgexWmjcyGBrnQlXlZrzpsytzvo6cmDeEEwNcrtg-TFvJ2Rz9eqQ59-wRhET5hl2Ci_cdguMes3-W5j0N87ZY89ilx5G0sjmYbCP6I5rH9P9k_ha_AkdXV4tTxfv2Zxtuu7CdD8ZqCjzp24AmNK-ZoihAfMXQqki061l1gfDP6LvPaWzxfGXo2UaT0dIa1CsTQpg5RqEq7Qzl0-NnGI2yoqb3LnKSTfVXunQWVkhYuECgV7jdXN0A0xGTGQz_ox22q51L4jVhUUUA-5TO1E0Ojel0VxXEggHRmBEQnIwk6qjdLg_weJCDTliX9UfAytvYBUMnFA29vwe5DO26HPoZ2Js7wWw-wtwCxXdQv3LLRKqhnlUQ40pdkXc6HyLARyMfSMPCfxiy957g9uouB9cqVzMQP38w4iEXo9_YyX71zO6dd21byMxCWjJE3oe3G20AQfPRbRcvfwftnlFD_x4Q1LOHu1sLq_dPqjVxkzo7ttfGT7lWk7o3vzDp-UK34fHq8-nk36F_Qb48yLH |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIQEvEz9HxgAjwWNEEsdxwoTQGFQdW_eANqlvxo4dNDSS0XYw_in-Ru7iJNUeQH3ZW5WerfR8vu-72ncH8FKmuhJIO8LcVG1RbfyU8io0wlaCl1FqMkpOnhxl45P001RM1-BPnwtD1yp7n9g6atuU9B_560TkCJ4Uzr07_xFS1yg6Xe1baHizOHC_f2HINn-7_wHX91WSjD4e743DrqtAWCI1WYQISFwjUcls7pLIyAh_RVZwkzhXOOkiTRUCnZUFMn0uMECqqN6MrhDLMJawMcd5b8BNBN6Igj05lcsiv3HqU-8ED_M4LrqbQ_4-WVuf8vQ7egmMSpMYfRWVjrsCh23XgCuo-C_W26Lf6C5sdLSV7Xo7uwdrrr4PtybdwfwD2JvNx59Hb9guWzTNmWkuGZJhRn0_EBrDNmuJoQCjBz5ZkunaMkvh-M_O-h_CybVo8hGs103tHgMrU4txFLKv0om00onJjOa6kIixyEmMCED2alJlV7ycemicqf6W2je1VLAiBSuv4ADiYeS5L-Cxwpj3tBKDPJXgbh80s6-q29EKxZEcWy00WrhBzM-FKzLNeZUlVscygKJfR9VnuaJfxolOV3iBnWFsx4Q8w1lx9HZvNqrzSHO13D8BvBi-Rl9CB0S6ds0FyUhcBJTkAWx6cxt0wJFpY7xebP1_8udwe3w8OVSH-0cHT-AOvZW__LMN64vZhXuKFG5hnrX7hsGX696ofwF48VLb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrVTxgribUsBI8Bh1E8c5QAj1Wm0pXVUVlfpm7NhBRSVpd7ccf41fx0zsZNUH0L70bZUdW9nxHN-s5wB4nSWqEgg7wlxXbVNt_JTwKtTCVIKXw0SnVJx8NEnHp8nHM3G2An-6WhhKq-xsYmuoTVPSf-RbscjReVI4t1X5tIjjvdGHy6uQJkjRTWs3TsOJyKH9_RPDt9n7gz086zdxPNr_vDsO_YSBsESYMg_ROXGFoCU1uY2HOhviL0oLrmNrC5vZoaJugdZkBaJ-LjBYqqj3jKrQr2FcYSKO-96B1YyiogGs7uxPjk8WLX-jxBXiCR7mUVT4PCKXXdZ2qzz_jjYDY9Q4QstFjeRuOMd2hsANH_kvDNz6wtF9uOdBLNt2UvcAVmz9ENaO_DX9I9idzsYno7dsm82b5kI3vxhCY0ZTQNBRhm0NE0MCRg9c6SRTtWGGgvMfXhcew-mt8PIJDOqmtuvAysRgVIVYrLQiqVSsU624KjL0uIhQtAgg69gkS9_KnCZqXMguZ-2bXDBYEoOlY3AAUb_y0rXzWGLNDp1ET08NudsHzfSr9PotkRyhslFCobxrRAC5sEWqOK_S2KgoC6DozlF2Na9opXGj8yVe4F2_1uMih3eWXL3ZiY309mkmF9oUwKv-a7QsdF2kattcE02Gh4CUPICnTtx6HnDE3Ri9Fxv_3_wlrKGSyk8Hk8NncJdeymUCbcJgPr22zxHPzfULrzgMvty2rv4FZDFYdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=rsHRF%3A+A+toolbox+for+resting-state+HRF+estimation+and+deconvolution&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Wu%2C+Guo-Rong&rft.au=Colenbier%2C+Nigel&rft.au=Van+Den+Bossche%2C+Sofie&rft.au=Clauw%2C+Kenzo&rft.date=2021-12-01&rft.eissn=1095-9572&rft.volume=244&rft.spage=118591&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118591&rft_id=info%3Apmid%2F34560269&rft.externalDocID=34560269 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |