Principles underlying the complex dynamics of temperature entrainment by a circadian clock
Autonomously oscillating circadian clocks resonate with daily environmental (zeitgeber) rhythms to organize physiology around the solar day. Although entrainment properties and mechanisms have been studied widely and in great detail for light-dark cycles, entrainment to daily temperature rhythms rem...
Saved in:
Published in | iScience Vol. 24; no. 11; p. 103370 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
19.11.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2589-0042 2589-0042 |
DOI | 10.1016/j.isci.2021.103370 |
Cover
Abstract | Autonomously oscillating circadian clocks resonate with daily environmental (zeitgeber) rhythms to organize physiology around the solar day. Although entrainment properties and mechanisms have been studied widely and in great detail for light-dark cycles, entrainment to daily temperature rhythms remains poorly understood despite that they are potent zeitgebers. Here we investigate the entrainment of the chronobiological model organism Neurospora crassa, subject to thermocycles of different periods and fractions of warm versus cold phases, mimicking seasonal variations. Depending on the properties of these thermocycles, regularly entrained rhythms, period-doubling (frequency demultiplication) but also irregular aperiodic behavior occurs. We demonstrate that the complex nonlinear phenomena of experimentally observed entrainment dynamics can be understood by molecular mathematical modeling.
[Display omitted]
•Temperature cycles can entrain the fungal model organism Neurospora crassa•We study the circadian surface for 99 combinations of τ, T and thermoperiod•1:1 entrainment, period doubling and other non-linear phenomena are observed•A mathematical model of temperature entrainment explains the observed complexity
Chronobiology; Systems biology; In silico biology; Plant biology |
---|---|
AbstractList | Autonomously oscillating circadian clocks resonate with daily environmental (zeitgeber) rhythms to organize physiology around the solar day. Although entrainment properties and mechanisms have been studied widely and in great detail for light-dark cycles, entrainment to daily temperature rhythms remains poorly understood despite that they are potent zeitgebers. Here we investigate the entrainment of the chronobiological model organism
, subject to thermocycles of different periods and fractions of warm versus cold phases, mimicking seasonal variations. Depending on the properties of these thermocycles, regularly entrained rhythms, period-doubling (frequency demultiplication) but also irregular aperiodic behavior occurs. We demonstrate that the complex nonlinear phenomena of experimentally observed entrainment dynamics can be understood by molecular mathematical modeling. Autonomously oscillating circadian clocks resonate with daily environmental (zeitgeber) rhythms to organize physiology around the solar day. Although entrainment properties and mechanisms have been studied widely and in great detail for light-dark cycles, entrainment to daily temperature rhythms remains poorly understood despite that they are potent zeitgebers. Here we investigate the entrainment of the chronobiological model organism Neurospora crassa, subject to thermocycles of different periods and fractions of warm versus cold phases, mimicking seasonal variations. Depending on the properties of these thermocycles, regularly entrained rhythms, period-doubling (frequency demultiplication) but also irregular aperiodic behavior occurs. We demonstrate that the complex nonlinear phenomena of experimentally observed entrainment dynamics can be understood by molecular mathematical modeling. Autonomously oscillating circadian clocks resonate with daily environmental (zeitgeber) rhythms to organize physiology around the solar day. Although entrainment properties and mechanisms have been studied widely and in great detail for light-dark cycles, entrainment to daily temperature rhythms remains poorly understood despite that they are potent zeitgebers. Here we investigate the entrainment of the chronobiological model organism Neurospora crassa, subject to thermocycles of different periods and fractions of warm versus cold phases, mimicking seasonal variations. Depending on the properties of these thermocycles, regularly entrained rhythms, period-doubling (frequency demultiplication) but also irregular aperiodic behavior occurs. We demonstrate that the complex nonlinear phenomena of experimentally observed entrainment dynamics can be understood by molecular mathematical modeling. [Display omitted] •Temperature cycles can entrain the fungal model organism Neurospora crassa•We study the circadian surface for 99 combinations of τ, T and thermoperiod•1:1 entrainment, period doubling and other non-linear phenomena are observed•A mathematical model of temperature entrainment explains the observed complexity Chronobiology; Systems biology; In silico biology; Plant biology Autonomously oscillating circadian clocks resonate with daily environmental (zeitgeber) rhythms to organize physiology around the solar day. Although entrainment properties and mechanisms have been studied widely and in great detail for light-dark cycles, entrainment to daily temperature rhythms remains poorly understood despite that they are potent zeitgebers. Here we investigate the entrainment of the chronobiological model organism Neurospora crassa, subject to thermocycles of different periods and fractions of warm versus cold phases, mimicking seasonal variations. Depending on the properties of these thermocycles, regularly entrained rhythms, period-doubling (frequency demultiplication) but also irregular aperiodic behavior occurs. We demonstrate that the complex nonlinear phenomena of experimentally observed entrainment dynamics can be understood by molecular mathematical modeling.Autonomously oscillating circadian clocks resonate with daily environmental (zeitgeber) rhythms to organize physiology around the solar day. Although entrainment properties and mechanisms have been studied widely and in great detail for light-dark cycles, entrainment to daily temperature rhythms remains poorly understood despite that they are potent zeitgebers. Here we investigate the entrainment of the chronobiological model organism Neurospora crassa, subject to thermocycles of different periods and fractions of warm versus cold phases, mimicking seasonal variations. Depending on the properties of these thermocycles, regularly entrained rhythms, period-doubling (frequency demultiplication) but also irregular aperiodic behavior occurs. We demonstrate that the complex nonlinear phenomena of experimentally observed entrainment dynamics can be understood by molecular mathematical modeling. Autonomously oscillating circadian clocks resonate with daily environmental (zeitgeber) rhythms to organize physiology around the solar day. Although entrainment properties and mechanisms have been studied widely and in great detail for light-dark cycles, entrainment to daily temperature rhythms remains poorly understood despite that they are potent zeitgebers. Here we investigate the entrainment of the chronobiological model organism Neurospora crassa , subject to thermocycles of different periods and fractions of warm versus cold phases, mimicking seasonal variations. Depending on the properties of these thermocycles, regularly entrained rhythms, period-doubling (frequency demultiplication) but also irregular aperiodic behavior occurs. We demonstrate that the complex nonlinear phenomena of experimentally observed entrainment dynamics can be understood by molecular mathematical modeling. • Temperature cycles can entrain the fungal model organism Neurospora crassa • We study the circadian surface for 99 combinations of τ, T and thermoperiod • 1:1 entrainment, period doubling and other non-linear phenomena are observed • A mathematical model of temperature entrainment explains the observed complexity Chronobiology; Systems biology; In silico biology; Plant biology |
ArticleNumber | 103370 |
Author | Burt, Philipp Roenneberg, Till Upadhyay, Abhishek Schmal, Christoph Grabe, Saskia Madeti, Cornelia Merrow, Martha Herzel, Hanspeter |
Author_xml | – sequence: 1 givenname: Philipp surname: Burt fullname: Burt, Philipp organization: Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany – sequence: 2 givenname: Saskia surname: Grabe fullname: Grabe, Saskia organization: Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany – sequence: 3 givenname: Cornelia surname: Madeti fullname: Madeti, Cornelia organization: Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Goethestrasse 31, 80336 Munich, Germany – sequence: 4 givenname: Abhishek surname: Upadhyay fullname: Upadhyay, Abhishek organization: Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany – sequence: 5 givenname: Martha surname: Merrow fullname: Merrow, Martha organization: Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Goethestrasse 31, 80336 Munich, Germany – sequence: 6 givenname: Till surname: Roenneberg fullname: Roenneberg, Till organization: Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Goethestrasse 31, 80336 Munich, Germany – sequence: 7 givenname: Hanspeter surname: Herzel fullname: Herzel, Hanspeter organization: Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany – sequence: 8 givenname: Christoph surname: Schmal fullname: Schmal, Christoph email: christoph.schmal@hu-berlin.de organization: Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34816105$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNUREvpH-CAfOSyi78TSwgJVbRUqgQHuHCxnPFk6yWxFydbdf893k2LWg6VLI01nvcZ2_O-ro5iilhVbxldMsr0h_UyjBCWnHJWEkLU9EV1wlVjFpRKfvRof1ydjeOaUsrLkka_qo6FbJhmVJ1Uv77nECFsehzJNnrM_S7EFZlukEAaSvqO-F10Q4CRpI5MOGwwu2mbkWCcsgtxKJG0O-IIhAzOBxcJ9Al-v6ledq4f8ew-nlY_L778OP-6uP52eXX--XoBqlbTQgsB4GjHKdTonFKN7IxWunMOeE156xspHYrOC0cZSCmU9DXtjKGeMSXFaXU1c31ya7vJYXB5Z5ML9pBIeWVdngL0aKHR4H3dIbRUSoOmleAbXsjCeyN1YX2aWZttO6CHwxv7J9CnJzHc2FW6tY0yQmlTAO_vATn92eI42aHMCfveRUzb0XJNmakN0_t7v3vc61-Th-GUgmYugJzGMWNnIUxuCunw8b1l1O6tYNd2bwW7t4KdrVCk_D_pA_1Z0cdZhGVatwGzLRUYAX3ICFP5zvCc_C8MTM6H |
CitedBy_id | crossref_primary_10_1073_pnas_2404738121 crossref_primary_10_1063_5_0079198 crossref_primary_10_1007_s00359_023_01669_z crossref_primary_10_3389_fnetp_2022_1076702 crossref_primary_10_1103_PhysRevE_108_034404 crossref_primary_10_1177_17479541221136023 crossref_primary_10_3389_fsysb_2024_1256398 crossref_primary_10_1371_journal_pcbi_1010331 crossref_primary_10_3390_fermentation9070674 crossref_primary_10_1038_s42003_024_06542_6 crossref_primary_10_1371_journal_pone_0318362 crossref_primary_10_1098_rspb_2022_0577 crossref_primary_10_1128_mbio_01407_22 |
Cites_doi | 10.1016/j.jmb.2020.01.014 10.1529/biophysj.104.058388 10.1529/biophysj.107.115154 10.1098/rsif.2013.0221 10.1126/science.281.5378.825 10.2307/1539691 10.1126/science.1073681 10.1016/j.jtbi.2004.04.014 10.1177/0748730403018003002 10.1091/mbc.e05-08-0756 10.1126/science.1257277 10.1101/gad.1551707 10.1073/pnas.1620378114 10.3109/07420528.2010.504316 10.1126/science.1115581 10.1007/BF02498633 10.3390/ijms20122985 10.1081/CBI-120014569 10.1073/pnas.0505137102 10.1126/science.278.5346.2117 10.1016/j.cels.2021.03.003 10.1126/science.2563175 10.1007/BF01417856 10.1002/jcp.1030550112 10.1016/S0092-8674(05)80005-4 10.1016/S0092-8674(00)80566-8 10.1104/pp.68.6.1244 10.1023/A:1026410121183 10.1016/S0960-9822(02)01145-4 10.1016/j.csbj.2015.07.001 10.1098/rsif.2015.0282 10.1007/BF00298045 10.1104/pp.50.1.171 10.1177/0748730410379081 10.1242/dev.125.3.485 10.1177/074873049300800106 10.2307/1373575 10.1101/SQB.1960.025.01.005 10.1007/BF01766554 10.1038/s41598-020-79277-z 10.1101/gad.345905 10.1126/science.7313693 10.1016/j.cell.2005.05.032 10.1126/science.8128244 10.1177/074873049100600401 10.1529/biophysj.104.053975 10.1126/science.1195262 10.1177/074873099129000948 10.1177/0748730414537801 10.1093/genetics/163.1.103 10.1073/pnas.0501884102 10.1038/msb.2010.92 10.1007/BF00396490 10.1006/jtbi.2000.2239 10.1038/21190 10.1103/PhysRevA.29.1348 10.1126/science.289.5476.107 10.1371/journal.pcbi.1002437 10.1016/j.bpj.2015.01.043 10.1016/j.jtbi.2017.10.002 10.1063/1.4917289 10.1038/sj.emboj.7601397 10.1016/j.fgb.2015.10.002 10.1016/j.jtbi.2017.03.005 10.1098/rsfs.2010.0002 10.1016/S0092-8674(00)80228-7 10.1007/BF01930339 10.1073/pnas.68.9.2112 10.3389/fphys.2020.00272 10.1016/j.febslet.2007.11.043 |
ContentType | Journal Article |
Copyright | 2021 The Authors 2021 The Authors. 2021 The Authors 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: 2021 The Authors. – notice: 2021 The Authors 2021 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2021.103370 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
ExternalDocumentID | oai_doaj_org_article_c86cdd7fecb0449e9b4cd82d3a3dd946 PMC8593569 34816105 10_1016_j_isci_2021_103370 S2589004221013419 |
Genre | Journal Article |
GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD NPM 7X8 5PM |
ID | FETCH-LOGICAL-c575t-633cca0f20c7eaa5584f9656faac2702bd844ae3fd3a01c44354d70f990d11543 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:24:45 EDT 2025 Thu Aug 21 14:32:23 EDT 2025 Thu Jul 10 17:31:22 EDT 2025 Thu Jan 02 22:42:02 EST 2025 Thu Apr 24 23:11:09 EDT 2025 Tue Jul 01 01:03:45 EDT 2025 Tue Jul 25 20:59:24 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Plant biology Chronobiology Systems biology In silico biology |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2021 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-633cca0f20c7eaa5584f9656faac2702bd844ae3fd3a01c44354d70f990d11543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally Lead contact |
OpenAccessLink | https://doaj.org/article/c86cdd7fecb0449e9b4cd82d3a3dd946 |
PMID | 34816105 |
PQID | 2601979164 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c86cdd7fecb0449e9b4cd82d3a3dd946 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8593569 proquest_miscellaneous_2601979164 pubmed_primary_34816105 crossref_citationtrail_10_1016_j_isci_2021_103370 crossref_primary_10_1016_j_isci_2021_103370 elsevier_sciencedirect_doi_10_1016_j_isci_2021_103370 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-19 |
PublicationDateYYYYMMDD | 2021-11-19 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Maguire, Schmidt, Sehgal (bib55) 2014; 29 Lee, Dunlap, Loros (bib49) 2003; 163 Somers, Webb, Pearson, Kay (bib75) 1998; 125 Murayama, Kori, Oshima, Kondo, Iwasaki, Ito (bib58) 2017; 114 Pikovsky, Rosenblum, Kurths (bib59) 2001 Bradley, Kantz (bib11) 2015; 25 Hoffmann (bib38) 1969; 62 De Caluwe, de Melo, Tosenberger, Hermans, Verbruggen, Leloup, Gonze (bib18) 2017; 420 Liu, Merrow, Loros, Dunlap (bib53) 1998 Liu (bib51) 2003; 18 Konopka, Benzer (bib45) 1971; 68 Buhr, Yoo, Takahashi (bib14) 2010; 330 Dodd, Salathia, Hall, Kévei, Tóth, Nagy, Hibberd, Millar, Webb (bib23) 2005; 309 Aschoff (bib5) 1958; 15 Dunlap (bib25) 1999; 96 Bain, Millar, Turner (bib6) 2004; 229 Ermentrout (bib26) 2002 Diernfellner, Schafmeier, Merrow, Brunner (bib21) 2005; 19 Larrondo, Olivares-Yañez, Baker, Loros, Dunlap (bib47) 2015; 347 Loros, Denome, Dunlap (bib54) 1989 Crosthwaite, Loros, Dunlap (bib17) 1995; 81 Upadhyay, Marzoll, Diernfellner, Brunner, Herzel (bib78) 2020; 10 Erzberger, Hampp, Granada, Albrecht, Herzel (bib27) 2013 Gonze, Bernard, Waltermann, Kramer, Herzel (bib34) 2005; 89 Schafmeier, Haase, Kaldi, Scholz, Fuchs, Brunner (bib70) 2005; 122 Schmal, Myung, Herzel, Bordyugov (bib72) 2015; 6 Hong, Jolma, Loros, Dunlap, Ruoff (bib40) 2008; 94 Zimmerman (bib82) 1969; 136 Granada, Cambras, Diez-Noguera, Herzel (bib35) 2011; 1 Brown, Zumbrunn, Fleury-Olela, Preitner, Schibler (bib12) 2002; 12 Pittendrigh, Daan (bib60) 1976; 106 Balanov, Janson, Postnov, Sosnovtseva (bib7) 2009 Liu, Garceau, Loros, Dunlap (bib52) 1997; 89 Schmal, Leloup, Gonze (bib71) 2014 Ruoff, Loros, Dunlap (bib66) 2005; 102 Diernfellner, Colot, Dintsis, Loros, Dunlap, Brunner (bib22) 2007; 581 Hurley, Loros, Dunlap (bib42) 2016; 90 Upadhyay, Brunner, Herzel (bib77) 2019; 20 Ananthasubramaniam, Schmal, Herzel (bib2) 2020; 27 Colot, Loros, Dunlap (bib16) 2005; 16 Gonze, Goldbeter (bib33) 2000; 101 Rensing, Ruoff (bib61) 2002; 19 Schuster (bib74) 1994 Schmal, Herzel, Myung (bib73) 2020; 11 Froehlich, Liu, Loros, Dunlap (bib29) 2002; 297 Bünning, Tazawa (bib15) 1957; 50 Fuhr, Abreu, Pett, Relogio (bib30) 2015; 13 Wheeler, Hamblen-Coyle, Dushay, Hall (bib81) 1993; 8 Bordyugov, Abraham, Granada, Rose, Imkeller, Kramer, Herzel (bib10) 2015; 12 Ruoff, Vinsjevik, Monnerjahn, Rensing (bib65) 2001; 209 Bruce (bib13) 1960; 25 Bergé, Pomeau, Vidal (bib9) 1984 Glass, Guevara, Belair, Shrier (bib32) 1984; 29 Aronson, Johnson, Loros, Dunlap (bib4) 1994; 263 Sawyer, Hennessy, Peixoto, Rosato, Parkinson, Costa, Kyriacou (bib69) 1997; 278 Guevara, Glass, Shrier (bib36) 1981; 214 Leloup, Gonze, Goldbeter (bib50) 1999; 14 Merrow, Brunner, Roenneberg (bib57) 1999; 399 Mayer (bib56) 1966; 70 Abraham, Granada, Westermark, Heine, Kramer, Herzel (bib1) 2010; 6 v. Holst (bib39) 1938; 240 Diegmann, Stück, Madeti, Roenneberg (bib19) 2010; 27 Lee, Loros, Dunlap (bib48) 2000; 289 Belden, Larrondo, Froehlich, Shi, Chen, Loros, Dunlap (bib8) 2007; 21 Gardner, Feldman (bib31) 1981; 68 Diekman, Bose (bib20) 2018; 437 Wever (bib80) 1979 Francois (bib28) 2005; 88 Wever (bib79) 1965 Lakin-Thomas, Brody, Coté (bib46) 1991; 6 Sargent, Kaltenborn (bib68) 1972; 50 Arnold (bib3) 1987 Roberts (bib62) 1960; 55 Roenneberg, Dragovic, Merrow (bib63) 2005; 102 Rosato, Peixoto, Gallippi, Kyriacou, Costa (bib64) 1996; 42 Tseng, Hunt, Heintzen, Crosthwaite, Schwartz (bib76) 2012; 8 Dovzhenok, Baek, Lim, Hong (bib24) 2015; 108 Huang, Wang, Liu (bib41) 2006; 25 Heltberg, Krishna, Kadanoff, Jensen (bib37) 2021; 12 Rémi, Merrow, Roenneberg (bib67) 2010; 25 Johnson (bib44) 1926; 7 Hut, Paolucci, Dor, Kyriacou, Daan (bib43) 2013; 280 Diernfellner (10.1016/j.isci.2021.103370_bib21) 2005; 19 v. Holst (10.1016/j.isci.2021.103370_bib39) 1938; 240 Merrow (10.1016/j.isci.2021.103370_bib57) 1999; 399 Francois (10.1016/j.isci.2021.103370_bib28) 2005; 88 Rémi (10.1016/j.isci.2021.103370_bib67) 2010; 25 Gardner (10.1016/j.isci.2021.103370_bib31) 1981; 68 Diekman (10.1016/j.isci.2021.103370_bib20) 2018; 437 Lakin-Thomas (10.1016/j.isci.2021.103370_bib46) 1991; 6 Somers (10.1016/j.isci.2021.103370_bib75) 1998; 125 Upadhyay (10.1016/j.isci.2021.103370_bib78) 2020; 10 Hong (10.1016/j.isci.2021.103370_bib40) 2008; 94 Schafmeier (10.1016/j.isci.2021.103370_bib70) 2005; 122 Schmal (10.1016/j.isci.2021.103370_bib73) 2020; 11 Hut (10.1016/j.isci.2021.103370_bib43) 2013; 280 Rosato (10.1016/j.isci.2021.103370_bib64) 1996; 42 Konopka (10.1016/j.isci.2021.103370_bib45) 1971; 68 Diegmann (10.1016/j.isci.2021.103370_bib19) 2010; 27 Schuster (10.1016/j.isci.2021.103370_bib74) 1994 Guevara (10.1016/j.isci.2021.103370_bib36) 1981; 214 Bordyugov (10.1016/j.isci.2021.103370_bib10) 2015; 12 Liu (10.1016/j.isci.2021.103370_bib51) 2003; 18 Ananthasubramaniam (10.1016/j.isci.2021.103370_bib2) 2020; 27 Aronson (10.1016/j.isci.2021.103370_bib4) 1994; 263 Leloup (10.1016/j.isci.2021.103370_bib50) 1999; 14 Colot (10.1016/j.isci.2021.103370_bib16) 2005; 16 Gonze (10.1016/j.isci.2021.103370_bib34) 2005; 89 Wever (10.1016/j.isci.2021.103370_bib79) 1965 Lee (10.1016/j.isci.2021.103370_bib49) 2003; 163 Bergé (10.1016/j.isci.2021.103370_bib9) 1984 Fuhr (10.1016/j.isci.2021.103370_bib30) 2015; 13 Belden (10.1016/j.isci.2021.103370_bib8) 2007; 21 Sargent (10.1016/j.isci.2021.103370_bib68) 1972; 50 De Caluwe (10.1016/j.isci.2021.103370_bib18) 2017; 420 Bain (10.1016/j.isci.2021.103370_bib6) 2004; 229 Bruce (10.1016/j.isci.2021.103370_bib13) 1960; 25 Schmal (10.1016/j.isci.2021.103370_bib72) 2015; 6 Heltberg (10.1016/j.isci.2021.103370_bib37) 2021; 12 Erzberger (10.1016/j.isci.2021.103370_bib27) 2013 Huang (10.1016/j.isci.2021.103370_bib41) 2006; 25 Pittendrigh (10.1016/j.isci.2021.103370_bib60) 1976; 106 Bünning (10.1016/j.isci.2021.103370_bib15) 1957; 50 Murayama (10.1016/j.isci.2021.103370_bib58) 2017; 114 Gonze (10.1016/j.isci.2021.103370_bib33) 2000; 101 Diernfellner (10.1016/j.isci.2021.103370_bib22) 2007; 581 Lee (10.1016/j.isci.2021.103370_bib48) 2000; 289 Froehlich (10.1016/j.isci.2021.103370_bib29) 2002; 297 Schmal (10.1016/j.isci.2021.103370_bib71) 2014 Rensing (10.1016/j.isci.2021.103370_bib61) 2002; 19 Bradley (10.1016/j.isci.2021.103370_bib11) 2015; 25 Aschoff (10.1016/j.isci.2021.103370_bib5) 1958; 15 Roenneberg (10.1016/j.isci.2021.103370_bib63) 2005; 102 Larrondo (10.1016/j.isci.2021.103370_bib47) 2015; 347 Maguire (10.1016/j.isci.2021.103370_bib55) 2014; 29 Tseng (10.1016/j.isci.2021.103370_bib76) 2012; 8 Mayer (10.1016/j.isci.2021.103370_bib56) 1966; 70 Ruoff (10.1016/j.isci.2021.103370_bib65) 2001; 209 Abraham (10.1016/j.isci.2021.103370_bib1) 2010; 6 Wever (10.1016/j.isci.2021.103370_bib80) 1979 Pikovsky (10.1016/j.isci.2021.103370_bib59) 2001 Ruoff (10.1016/j.isci.2021.103370_bib66) 2005; 102 Dovzhenok (10.1016/j.isci.2021.103370_bib24) 2015; 108 Wheeler (10.1016/j.isci.2021.103370_bib81) 1993; 8 Zimmerman (10.1016/j.isci.2021.103370_bib82) 1969; 136 Arnold (10.1016/j.isci.2021.103370_bib3) 1987 Brown (10.1016/j.isci.2021.103370_bib12) 2002; 12 Johnson (10.1016/j.isci.2021.103370_bib44) 1926; 7 Buhr (10.1016/j.isci.2021.103370_bib14) 2010; 330 Loros (10.1016/j.isci.2021.103370_bib54) 1989 Roberts (10.1016/j.isci.2021.103370_bib62) 1960; 55 Balanov (10.1016/j.isci.2021.103370_bib7) 2009 Crosthwaite (10.1016/j.isci.2021.103370_bib17) 1995; 81 Granada (10.1016/j.isci.2021.103370_bib35) 2011; 1 Liu (10.1016/j.isci.2021.103370_bib53) 1998 Glass (10.1016/j.isci.2021.103370_bib32) 1984; 29 Liu (10.1016/j.isci.2021.103370_bib52) 1997; 89 Ermentrout (10.1016/j.isci.2021.103370_bib26) 2002 Hurley (10.1016/j.isci.2021.103370_bib42) 2016; 90 Upadhyay (10.1016/j.isci.2021.103370_bib77) 2019; 20 Hoffmann (10.1016/j.isci.2021.103370_bib38) 1969; 62 Sawyer (10.1016/j.isci.2021.103370_bib69) 1997; 278 Dunlap (10.1016/j.isci.2021.103370_bib25) 1999; 96 Dodd (10.1016/j.isci.2021.103370_bib23) 2005; 309 |
References_xml | – volume: 70 start-page: 237 year: 1966 end-page: 256 ident: bib56 article-title: Besonderheiten der circadianen Rhythmik bei Pflanzen verschiedener geographischer Breiten publication-title: Planta – volume: 280 start-page: 20130433 year: 2013 ident: bib43 article-title: Latitudinal clines: an evolutionary view on biological rhythms publication-title: Proc. Biol. Sci. – start-page: 385 year: 1989 end-page: 388 ident: bib54 article-title: Molecular cloning of genes under control of the circadian clock in neurospora publication-title: Science – volume: 209 start-page: 29 year: 2001 end-page: 42 ident: bib65 article-title: The goodwin model: simulating the effect of light pulses on the circadian sporulation rhythm of publication-title: J. Theor. Biol. – volume: 27 start-page: 3722 year: 2020 end-page: 3737 ident: bib2 article-title: Amplitude effects allow short jet lags and large seasonal phase shifts in minimal clock models publication-title: J. Mol. Biol. – volume: 68 start-page: 1244 year: 1981 end-page: 1248 ident: bib31 article-title: Temperature compensation of circadian period length in clock mutants of publication-title: Plant Physiol. – volume: 10 start-page: 22224 year: 2020 ident: bib78 article-title: Multiple random phosphorylations in clock proteins provide long delays and switches publication-title: Sci. Rep. – volume: 347 start-page: 1257277 year: 2015 ident: bib47 article-title: Decoupling circadian clock protein turnover from circadian period determination publication-title: Science – volume: 278 start-page: 2117 year: 1997 end-page: 2120 ident: bib69 article-title: Natural variation in a publication-title: Science – volume: 12 start-page: 20150282 year: 2015 ident: bib10 article-title: Tuning the phase of circadian entrainment publication-title: J. R. Soc. Interf. – start-page: 20130221 year: 2013 ident: bib27 article-title: Genetic redundancy strengthens the circadian clock leading to a narrow entrainment range publication-title: J. R. Soc. Interf. – start-page: 825 year: 1998 end-page: 829 ident: bib53 article-title: How temperature changes reset a circadian oscillator publication-title: Science – volume: 309 start-page: 630 year: 2005 end-page: 633 ident: bib23 article-title: Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage publication-title: Science – volume: 122 start-page: 235 year: 2005 end-page: 246 ident: bib70 article-title: Transcriptional feedback of publication-title: Cell – year: 1994 ident: bib74 article-title: Deterministisches Chaos – year: 1984 ident: bib9 article-title: Order within Chaos: Towards a Deterministic Approach to Turbulence – volume: 330 start-page: 379 year: 2010 end-page: 385 ident: bib14 article-title: Temperature as a universal resetting cue for mammalian circadian oscillators publication-title: Science – volume: 12 start-page: 1574 year: 2002 end-page: 1583 ident: bib12 article-title: Rhythms of mammalian body temperature can sustain peripheral circadian clocks publication-title: Curr. Biol. – volume: 240 start-page: 44 year: 1938 end-page: 59 ident: bib39 article-title: Über relative Koordination bei Säugern und beim Menschen publication-title: Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere – volume: 15 start-page: 1 year: 1958 end-page: 30 ident: bib5 article-title: Tierische Periodik unter dem Einfluß von Zeitgebern publication-title: Z. Tierpsychol. – volume: 25 start-page: 5349 year: 2006 end-page: 5357 ident: bib41 article-title: Molecular mechanism of suppression of circadian rhythms by a critical stimulus publication-title: EMBO J. – volume: 581 start-page: 5759 year: 2007 end-page: 5764 ident: bib22 article-title: Long and short isoforms of neurospora clock protein frq support temperature-compensated circadian rhythms publication-title: FEBS Lett. – volume: 399 start-page: 584 year: 1999 end-page: 586 ident: bib57 article-title: Assignment of circadian function for the publication-title: Nature – year: 2001 ident: bib59 article-title: Synchronization: A Universal Concept in Nonlinear Sciences – volume: 214 start-page: 1350 year: 1981 end-page: 1353 ident: bib36 article-title: Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells publication-title: Science – volume: 89 start-page: 477 year: 1997 end-page: 486 ident: bib52 article-title: Thermally regulated translational control of FRQ mediates aspects of temperature responses in the publication-title: Cell – year: 1979 ident: bib80 article-title: The Circadian System of Man – volume: 29 start-page: 167 year: 2014 end-page: 180 ident: bib55 article-title: Natural populations of drosophila melanogaster reveal features of an uncharacterized circadian property: the lower temperature limit of rhythmicity publication-title: J. Biol. Rhythms – volume: 297 start-page: 815 year: 2002 end-page: 819 ident: bib29 article-title: White collar-1, a circadian blue light photoreceptor, binding to the publication-title: Science – year: 1987 ident: bib3 article-title: Geometrische Methoden in der Theorie der gewöhnlichen Differentialgleichungen – volume: 62 start-page: 93 year: 1969 end-page: 110 ident: bib38 article-title: Zum Einfluß der Zeitgeberstärke auf die Phasenlage der synchronisierten circadianen Periodik publication-title: Z. für Vgl. Physiol. – start-page: 337 year: 2014 end-page: 358 ident: bib71 article-title: Modeling and simulating the publication-title: Plant Circadian Networks – volume: 6 start-page: 94 year: 2015 ident: bib72 article-title: A theoretical study on seasonality publication-title: Front. Neurol. – volume: 102 start-page: 7742 year: 2005 end-page: 7747 ident: bib63 article-title: Demasking biological oscillators: properties and principles of entrainment exemplified by the publication-title: PNAS – volume: 96 start-page: 271 year: 1999 end-page: 290 ident: bib25 article-title: Molecular bases for circadian clocks publication-title: Cell – volume: 289 start-page: 107 year: 2000 end-page: 110 ident: bib48 article-title: Interconnected feedback loops in the publication-title: Science – volume: 27 start-page: 1335 year: 2010 end-page: 1347 ident: bib19 article-title: Entrainment elicits period aftereffects in publication-title: Chronobiol. Int. – volume: 6 start-page: 438 year: 2010 ident: bib1 article-title: Coupling governs entrainment range of circadian clocks publication-title: Mol. Syst. Biol. – volume: 19 start-page: 1968 year: 2005 end-page: 1973 ident: bib21 article-title: Molecular mechanism of temperature sensing by the circadian clock of publication-title: Gene Dev. – volume: 13 start-page: 417 year: 2015 end-page: 426 ident: bib30 article-title: Circadian systems biology: when time matters publication-title: Comput. Struct. Biotechnol. J. – volume: 68 start-page: 2112 year: 1971 end-page: 2116 ident: bib45 article-title: Clock mutants of publication-title: PNAS – volume: 81 start-page: 1003 year: 1995 end-page: 1012 ident: bib17 article-title: Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript publication-title: Cell – volume: 89 start-page: 120 year: 2005 end-page: 129 ident: bib34 article-title: Spontaneous synchronization of coupled circadian oscillators publication-title: Biophys. J. – volume: 263 start-page: 1578 year: 1994 end-page: 1584 ident: bib4 article-title: Negative feedback defining a circadian clock: autoregulation of the clock gene publication-title: Science – volume: 8 start-page: 1 year: 2012 end-page: 13 ident: bib76 article-title: Comprehensive modelling of the publication-title: PLOS Comput. Biol. – volume: 25 start-page: 318 year: 2010 end-page: 328 ident: bib67 article-title: A circadian surface of entrainment: varying t, τ, and photoperiod in publication-title: J. Biol. Rhythms – volume: 25 start-page: 097610 year: 2015 ident: bib11 article-title: Nonlinear time-series analysis revisited publication-title: Chaos: Interdiscip. J. Nonlinear Sci. – volume: 125 start-page: 485 year: 1998 end-page: 494 ident: bib75 article-title: The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in publication-title: Development – volume: 6 start-page: 281 year: 1991 end-page: 297 ident: bib46 article-title: Amplitude model for the effects of mutations and temperature on period and phase resetting of the neurospora circadian oscillator publication-title: J. Biol. Rhythms – volume: 136 start-page: 494 year: 1969 end-page: 500 ident: bib82 article-title: On the absence of circadian rhythmicity in drosophila pseudoobscura pupae publication-title: Biol. Bull. – volume: 12 start-page: 291 year: 2021 end-page: 303 ident: bib37 article-title: A tale of two rhythms: locked clocks and chaos in biology publication-title: Cell Syst. – volume: 42 start-page: 392 year: 1996 end-page: 408 ident: bib64 article-title: Mutational mechanisms, phylogeny, and evolution of a repetitive region within a clock gene of publication-title: J. Mol. Evol. – volume: 11 start-page: 272 year: 2020 ident: bib73 article-title: Clocks in the wild: entrainment to natural light publication-title: Front. Physiol. – volume: 229 start-page: 413 year: 2004 end-page: 420 ident: bib6 article-title: The wild-type circadian period of Neurospora is encoded in the residual network of the null frq mutants publication-title: J. Theor. Biol. – volume: 88 start-page: 2369 year: 2005 end-page: 2383 ident: bib28 article-title: A model for the publication-title: Biophys. J. – volume: 163 start-page: 103 year: 2003 end-page: 114 ident: bib49 article-title: Roles for WHITE COLLAR-1 in circadian and general photoperception in publication-title: Genetics – volume: 55 start-page: 99 year: 1960 end-page: 110 ident: bib62 article-title: Circadian activity rhythms in cockroaches. i. the free-running rhythm in steady-state publication-title: J. Cell Comp. Physiol. – year: 2002 ident: bib26 article-title: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students – volume: 101 start-page: 649 year: 2000 end-page: 663 ident: bib33 article-title: Entrainment versus chaos in a model for a circadian oscillator driven by light-dark cycles publication-title: J. Stat. Phys. – volume: 50 start-page: 107 year: 1957 end-page: 121 ident: bib15 article-title: Über den Temperatureinfluss auf die endogene Tagesrhythmik bei Phaseolus publication-title: Planta – volume: 16 start-page: 5563 year: 2005 end-page: 5571 ident: bib16 article-title: Temperature-modulated alternative splicing and promoter use in the circadian clock gene frequency publication-title: Mol. Biol. Cell – volume: 21 start-page: 1494 year: 2007 end-page: 1505 ident: bib8 article-title: Dissecting the mechanisms of the clock in neurospora publication-title: Gene Dev. – volume: 18 start-page: 195 year: 2003 end-page: 205 ident: bib51 article-title: Molecular mechanisms of entrainment in the publication-title: J. Biol. Rhythms – volume: 90 start-page: 39 year: 2016 end-page: 43 ident: bib42 article-title: The circadian system as an organizer of metabolism publication-title: Fungal Genet. Biol. – volume: 25 start-page: 29 year: 1960 end-page: 48 ident: bib13 article-title: Environmental entrainment of circadian rhythms publication-title: Cold Spring Harbor Symp. Quant. Biol. – volume: 20 start-page: 2985 year: 2019 ident: bib77 article-title: An inactivation switch enables rhythms in a publication-title: Int. J. Mol. Sci. – volume: 29 start-page: 1348 year: 1984 end-page: 1357 ident: bib32 article-title: Global bifurcations of a periodically forced biological oscillator publication-title: Phys. Rev. – volume: 114 start-page: 5641 year: 2017 end-page: 5646 ident: bib58 article-title: Low temperature nullifies the circadian clock in cyanobacteria through Hopf bifurcation publication-title: Proc. Natl. Acad. Sci. U S A – start-page: 47 year: 1965 end-page: 63 ident: bib79 article-title: A mathematical model for circadian rhythms publication-title: Circadian Clocks – volume: 1 start-page: 153 year: 2011 end-page: 166 ident: bib35 article-title: Circadian desynchronization publication-title: Interf. Focus – volume: 19 start-page: 807 year: 2002 end-page: 864 ident: bib61 article-title: Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases publication-title: Chronobiology Int. – volume: 8 start-page: 67 year: 1993 end-page: 94 ident: bib81 article-title: Behavior in light-dark cycles of publication-title: J. Biol. Rhythms – volume: 102 start-page: 17681 year: 2005 end-page: 17686 ident: bib66 article-title: The relationship between FRQ-protein stability and temperature compensation in the publication-title: Proc. Natl. Acad. Sci. U S A – volume: 106 start-page: 223 year: 1976 end-page: 252 ident: bib60 article-title: A functional analysis of circadian pacemakers in nocturnal rodents publication-title: J. Comp. Physiol. – volume: 437 start-page: 261 year: 2018 end-page: 285 ident: bib20 article-title: Reentrainment of the circadian pacemaker during jet lag: east-west asymmetry and the effects of north-south travel publication-title: J. Theor. Biol. – volume: 14 start-page: 433 year: 1999 end-page: 448 ident: bib50 article-title: Limit cycle models for circadian rhythms based on transcriptional regulation in publication-title: J. Biol. Rhythms – year: 2009 ident: bib7 article-title: Synchronization: From Simple to Complex – volume: 94 start-page: 1221 year: 2008 end-page: 1232 ident: bib40 article-title: Simulating dark expressions and interactions of frq and wc-1 in the publication-title: Biophys. J. – volume: 108 start-page: 1830 year: 2015 end-page: 1839 ident: bib24 article-title: Mathematical modeling and validation of glucose compensation of the publication-title: Biophys. J. – volume: 420 start-page: 220 year: 2017 end-page: 231 ident: bib18 article-title: Modeling the photoperiodic entrainment of the plant circadian clock publication-title: J. Theor. Biol. – volume: 7 start-page: 245 year: 1926 end-page: 277 ident: bib44 article-title: Activity and distribution of certain wild Mice in relation to Biotic Communities publication-title: J. Mammal. – volume: 50 start-page: 171 year: 1972 end-page: 175 ident: bib68 article-title: Effects of medium composition and carbon dioxide on circadian oscillation in publication-title: Plant Physiol. – volume: 27 start-page: 3722 year: 2020 ident: 10.1016/j.isci.2021.103370_bib2 article-title: Amplitude effects allow short jet lags and large seasonal phase shifts in minimal clock models publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2020.01.014 – volume: 89 start-page: 120 year: 2005 ident: 10.1016/j.isci.2021.103370_bib34 article-title: Spontaneous synchronization of coupled circadian oscillators publication-title: Biophys. J. doi: 10.1529/biophysj.104.058388 – volume: 94 start-page: 1221 year: 2008 ident: 10.1016/j.isci.2021.103370_bib40 article-title: Simulating dark expressions and interactions of frq and wc-1 in the Neurospora circadian clock publication-title: Biophys. J. doi: 10.1529/biophysj.107.115154 – start-page: 20130221 year: 2013 ident: 10.1016/j.isci.2021.103370_bib27 article-title: Genetic redundancy strengthens the circadian clock leading to a narrow entrainment range publication-title: J. R. Soc. Interf. doi: 10.1098/rsif.2013.0221 – start-page: 825 year: 1998 ident: 10.1016/j.isci.2021.103370_bib53 article-title: How temperature changes reset a circadian oscillator publication-title: Science doi: 10.1126/science.281.5378.825 – volume: 136 start-page: 494 year: 1969 ident: 10.1016/j.isci.2021.103370_bib82 article-title: On the absence of circadian rhythmicity in drosophila pseudoobscura pupae publication-title: Biol. Bull. doi: 10.2307/1539691 – year: 1994 ident: 10.1016/j.isci.2021.103370_bib74 – volume: 297 start-page: 815 year: 2002 ident: 10.1016/j.isci.2021.103370_bib29 article-title: White collar-1, a circadian blue light photoreceptor, binding to the frequency promoter publication-title: Science doi: 10.1126/science.1073681 – volume: 229 start-page: 413 year: 2004 ident: 10.1016/j.isci.2021.103370_bib6 article-title: The wild-type circadian period of Neurospora is encoded in the residual network of the null frq mutants publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2004.04.014 – start-page: 337 year: 2014 ident: 10.1016/j.isci.2021.103370_bib71 article-title: Modeling and simulating the Arabidopsis thaliana circadian clock using XPP-AUTO – volume: 18 start-page: 195 year: 2003 ident: 10.1016/j.isci.2021.103370_bib51 article-title: Molecular mechanisms of entrainment in the Neurospora circadian clock publication-title: J. Biol. Rhythms doi: 10.1177/0748730403018003002 – volume: 16 start-page: 5563 year: 2005 ident: 10.1016/j.isci.2021.103370_bib16 article-title: Temperature-modulated alternative splicing and promoter use in the circadian clock gene frequency publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e05-08-0756 – volume: 347 start-page: 1257277 year: 2015 ident: 10.1016/j.isci.2021.103370_bib47 article-title: Decoupling circadian clock protein turnover from circadian period determination publication-title: Science doi: 10.1126/science.1257277 – volume: 21 start-page: 1494 year: 2007 ident: 10.1016/j.isci.2021.103370_bib8 article-title: Dissecting the mechanisms of the clock in neurospora publication-title: Gene Dev. doi: 10.1101/gad.1551707 – volume: 114 start-page: 5641 year: 2017 ident: 10.1016/j.isci.2021.103370_bib58 article-title: Low temperature nullifies the circadian clock in cyanobacteria through Hopf bifurcation publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1620378114 – volume: 27 start-page: 1335 year: 2010 ident: 10.1016/j.isci.2021.103370_bib19 article-title: Entrainment elicits period aftereffects in Neurospora crassa publication-title: Chronobiol. Int. doi: 10.3109/07420528.2010.504316 – volume: 309 start-page: 630 year: 2005 ident: 10.1016/j.isci.2021.103370_bib23 article-title: Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage publication-title: Science doi: 10.1126/science.1115581 – volume: 42 start-page: 392 year: 1996 ident: 10.1016/j.isci.2021.103370_bib64 article-title: Mutational mechanisms, phylogeny, and evolution of a repetitive region within a clock gene of Drosophila melanogaster publication-title: J. Mol. Evol. doi: 10.1007/BF02498633 – volume: 20 start-page: 2985 year: 2019 ident: 10.1016/j.isci.2021.103370_bib77 article-title: An inactivation switch enables rhythms in a Neurospora clock model publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20122985 – volume: 19 start-page: 807 year: 2002 ident: 10.1016/j.isci.2021.103370_bib61 article-title: Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases publication-title: Chronobiology Int. doi: 10.1081/CBI-120014569 – volume: 102 start-page: 17681 year: 2005 ident: 10.1016/j.isci.2021.103370_bib66 article-title: The relationship between FRQ-protein stability and temperature compensation in the Neurospora circadian clock publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0505137102 – volume: 278 start-page: 2117 year: 1997 ident: 10.1016/j.isci.2021.103370_bib69 article-title: Natural variation in a Drosophila clock gene and temperature compensation publication-title: Science doi: 10.1126/science.278.5346.2117 – volume: 12 start-page: 291 year: 2021 ident: 10.1016/j.isci.2021.103370_bib37 article-title: A tale of two rhythms: locked clocks and chaos in biology publication-title: Cell Syst. doi: 10.1016/j.cels.2021.03.003 – start-page: 385 year: 1989 ident: 10.1016/j.isci.2021.103370_bib54 article-title: Molecular cloning of genes under control of the circadian clock in neurospora publication-title: Science doi: 10.1126/science.2563175 – volume: 106 start-page: 223 year: 1976 ident: 10.1016/j.isci.2021.103370_bib60 article-title: A functional analysis of circadian pacemakers in nocturnal rodents publication-title: J. Comp. Physiol. doi: 10.1007/BF01417856 – volume: 55 start-page: 99 year: 1960 ident: 10.1016/j.isci.2021.103370_bib62 article-title: Circadian activity rhythms in cockroaches. i. the free-running rhythm in steady-state publication-title: J. Cell Comp. Physiol. doi: 10.1002/jcp.1030550112 – volume: 81 start-page: 1003 year: 1995 ident: 10.1016/j.isci.2021.103370_bib17 article-title: Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript publication-title: Cell doi: 10.1016/S0092-8674(05)80005-4 – volume: 96 start-page: 271 year: 1999 ident: 10.1016/j.isci.2021.103370_bib25 article-title: Molecular bases for circadian clocks publication-title: Cell doi: 10.1016/S0092-8674(00)80566-8 – volume: 68 start-page: 1244 year: 1981 ident: 10.1016/j.isci.2021.103370_bib31 article-title: Temperature compensation of circadian period length in clock mutants of Neurospora crassa publication-title: Plant Physiol. doi: 10.1104/pp.68.6.1244 – year: 1987 ident: 10.1016/j.isci.2021.103370_bib3 – year: 1984 ident: 10.1016/j.isci.2021.103370_bib9 – volume: 101 start-page: 649 year: 2000 ident: 10.1016/j.isci.2021.103370_bib33 article-title: Entrainment versus chaos in a model for a circadian oscillator driven by light-dark cycles publication-title: J. Stat. Phys. doi: 10.1023/A:1026410121183 – volume: 12 start-page: 1574 year: 2002 ident: 10.1016/j.isci.2021.103370_bib12 article-title: Rhythms of mammalian body temperature can sustain peripheral circadian clocks publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)01145-4 – volume: 13 start-page: 417 year: 2015 ident: 10.1016/j.isci.2021.103370_bib30 article-title: Circadian systems biology: when time matters publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2015.07.001 – volume: 6 start-page: 94 year: 2015 ident: 10.1016/j.isci.2021.103370_bib72 article-title: A theoretical study on seasonality publication-title: Front. Neurol. – volume: 12 start-page: 20150282 year: 2015 ident: 10.1016/j.isci.2021.103370_bib10 article-title: Tuning the phase of circadian entrainment publication-title: J. R. Soc. Interf. doi: 10.1098/rsif.2015.0282 – volume: 62 start-page: 93 year: 1969 ident: 10.1016/j.isci.2021.103370_bib38 article-title: Zum Einfluß der Zeitgeberstärke auf die Phasenlage der synchronisierten circadianen Periodik publication-title: Z. für Vgl. Physiol. doi: 10.1007/BF00298045 – volume: 50 start-page: 171 year: 1972 ident: 10.1016/j.isci.2021.103370_bib68 article-title: Effects of medium composition and carbon dioxide on circadian oscillation in Neurospora publication-title: Plant Physiol. doi: 10.1104/pp.50.1.171 – volume: 25 start-page: 318 year: 2010 ident: 10.1016/j.isci.2021.103370_bib67 article-title: A circadian surface of entrainment: varying t, τ, and photoperiod in Neurospora crassa publication-title: J. Biol. Rhythms doi: 10.1177/0748730410379081 – volume: 125 start-page: 485 year: 1998 ident: 10.1016/j.isci.2021.103370_bib75 article-title: The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana publication-title: Development doi: 10.1242/dev.125.3.485 – volume: 8 start-page: 67 year: 1993 ident: 10.1016/j.isci.2021.103370_bib81 article-title: Behavior in light-dark cycles of Drosophila mutants that are arrhythmic, blind, or both publication-title: J. Biol. Rhythms doi: 10.1177/074873049300800106 – volume: 7 start-page: 245 year: 1926 ident: 10.1016/j.isci.2021.103370_bib44 article-title: Activity and distribution of certain wild Mice in relation to Biotic Communities publication-title: J. Mammal. doi: 10.2307/1373575 – volume: 25 start-page: 29 year: 1960 ident: 10.1016/j.isci.2021.103370_bib13 article-title: Environmental entrainment of circadian rhythms publication-title: Cold Spring Harbor Symp. Quant. Biol. doi: 10.1101/SQB.1960.025.01.005 – volume: 240 start-page: 44 year: 1938 ident: 10.1016/j.isci.2021.103370_bib39 article-title: Über relative Koordination bei Säugern und beim Menschen publication-title: Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere doi: 10.1007/BF01766554 – volume: 10 start-page: 22224 year: 2020 ident: 10.1016/j.isci.2021.103370_bib78 article-title: Multiple random phosphorylations in clock proteins provide long delays and switches publication-title: Sci. Rep. doi: 10.1038/s41598-020-79277-z – volume: 19 start-page: 1968 year: 2005 ident: 10.1016/j.isci.2021.103370_bib21 article-title: Molecular mechanism of temperature sensing by the circadian clock of Neurospora crassa publication-title: Gene Dev. doi: 10.1101/gad.345905 – year: 2002 ident: 10.1016/j.isci.2021.103370_bib26 – volume: 214 start-page: 1350 year: 1981 ident: 10.1016/j.isci.2021.103370_bib36 article-title: Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells publication-title: Science doi: 10.1126/science.7313693 – volume: 122 start-page: 235 year: 2005 ident: 10.1016/j.isci.2021.103370_bib70 article-title: Transcriptional feedback of Neurospora circadian clock gene by phosphorylation-dependent inactivation of its transcription factor publication-title: Cell doi: 10.1016/j.cell.2005.05.032 – volume: 263 start-page: 1578 year: 1994 ident: 10.1016/j.isci.2021.103370_bib4 article-title: Negative feedback defining a circadian clock: autoregulation of the clock gene frequency publication-title: Science doi: 10.1126/science.8128244 – volume: 6 start-page: 281 year: 1991 ident: 10.1016/j.isci.2021.103370_bib46 article-title: Amplitude model for the effects of mutations and temperature on period and phase resetting of the neurospora circadian oscillator publication-title: J. Biol. Rhythms doi: 10.1177/074873049100600401 – start-page: 47 year: 1965 ident: 10.1016/j.isci.2021.103370_bib79 article-title: A mathematical model for circadian rhythms – volume: 88 start-page: 2369 year: 2005 ident: 10.1016/j.isci.2021.103370_bib28 article-title: A model for the Neurospora circadian clock publication-title: Biophys. J. doi: 10.1529/biophysj.104.053975 – volume: 330 start-page: 379 year: 2010 ident: 10.1016/j.isci.2021.103370_bib14 article-title: Temperature as a universal resetting cue for mammalian circadian oscillators publication-title: Science doi: 10.1126/science.1195262 – volume: 14 start-page: 433 year: 1999 ident: 10.1016/j.isci.2021.103370_bib50 article-title: Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora publication-title: J. Biol. Rhythms doi: 10.1177/074873099129000948 – volume: 29 start-page: 167 year: 2014 ident: 10.1016/j.isci.2021.103370_bib55 article-title: Natural populations of drosophila melanogaster reveal features of an uncharacterized circadian property: the lower temperature limit of rhythmicity publication-title: J. Biol. Rhythms doi: 10.1177/0748730414537801 – volume: 163 start-page: 103 year: 2003 ident: 10.1016/j.isci.2021.103370_bib49 article-title: Roles for WHITE COLLAR-1 in circadian and general photoperception in Neurospora crassa publication-title: Genetics doi: 10.1093/genetics/163.1.103 – volume: 102 start-page: 7742 year: 2005 ident: 10.1016/j.isci.2021.103370_bib63 article-title: Demasking biological oscillators: properties and principles of entrainment exemplified by the Neurospora circadian clock publication-title: PNAS doi: 10.1073/pnas.0501884102 – year: 2001 ident: 10.1016/j.isci.2021.103370_bib59 – volume: 6 start-page: 438 year: 2010 ident: 10.1016/j.isci.2021.103370_bib1 article-title: Coupling governs entrainment range of circadian clocks publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2010.92 – volume: 70 start-page: 237 year: 1966 ident: 10.1016/j.isci.2021.103370_bib56 article-title: Besonderheiten der circadianen Rhythmik bei Pflanzen verschiedener geographischer Breiten publication-title: Planta doi: 10.1007/BF00396490 – volume: 15 start-page: 1 year: 1958 ident: 10.1016/j.isci.2021.103370_bib5 article-title: Tierische Periodik unter dem Einfluß von Zeitgebern publication-title: Z. Tierpsychol. – volume: 209 start-page: 29 year: 2001 ident: 10.1016/j.isci.2021.103370_bib65 article-title: The goodwin model: simulating the effect of light pulses on the circadian sporulation rhythm of Neurospora crassa publication-title: J. Theor. Biol. doi: 10.1006/jtbi.2000.2239 – year: 1979 ident: 10.1016/j.isci.2021.103370_bib80 – year: 2009 ident: 10.1016/j.isci.2021.103370_bib7 – volume: 280 start-page: 20130433 year: 2013 ident: 10.1016/j.isci.2021.103370_bib43 article-title: Latitudinal clines: an evolutionary view on biological rhythms publication-title: Proc. Biol. Sci. – volume: 399 start-page: 584 year: 1999 ident: 10.1016/j.isci.2021.103370_bib57 article-title: Assignment of circadian function for the Neurospora clock gene frequency publication-title: Nature doi: 10.1038/21190 – volume: 29 start-page: 1348 year: 1984 ident: 10.1016/j.isci.2021.103370_bib32 article-title: Global bifurcations of a periodically forced biological oscillator publication-title: Phys. Rev. doi: 10.1103/PhysRevA.29.1348 – volume: 289 start-page: 107 year: 2000 ident: 10.1016/j.isci.2021.103370_bib48 article-title: Interconnected feedback loops in the Neurospora circadian system publication-title: Science doi: 10.1126/science.289.5476.107 – volume: 8 start-page: 1 year: 2012 ident: 10.1016/j.isci.2021.103370_bib76 article-title: Comprehensive modelling of the Neurospora circadian clock and its temperature compensation publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1002437 – volume: 108 start-page: 1830 year: 2015 ident: 10.1016/j.isci.2021.103370_bib24 article-title: Mathematical modeling and validation of glucose compensation of the Neurospora circadian clock publication-title: Biophys. J. doi: 10.1016/j.bpj.2015.01.043 – volume: 437 start-page: 261 year: 2018 ident: 10.1016/j.isci.2021.103370_bib20 article-title: Reentrainment of the circadian pacemaker during jet lag: east-west asymmetry and the effects of north-south travel publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2017.10.002 – volume: 25 start-page: 097610 year: 2015 ident: 10.1016/j.isci.2021.103370_bib11 article-title: Nonlinear time-series analysis revisited publication-title: Chaos: Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.4917289 – volume: 25 start-page: 5349 year: 2006 ident: 10.1016/j.isci.2021.103370_bib41 article-title: Molecular mechanism of suppression of circadian rhythms by a critical stimulus publication-title: EMBO J. doi: 10.1038/sj.emboj.7601397 – volume: 90 start-page: 39 year: 2016 ident: 10.1016/j.isci.2021.103370_bib42 article-title: The circadian system as an organizer of metabolism publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2015.10.002 – volume: 420 start-page: 220 year: 2017 ident: 10.1016/j.isci.2021.103370_bib18 article-title: Modeling the photoperiodic entrainment of the plant circadian clock publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2017.03.005 – volume: 1 start-page: 153 year: 2011 ident: 10.1016/j.isci.2021.103370_bib35 article-title: Circadian desynchronization publication-title: Interf. Focus doi: 10.1098/rsfs.2010.0002 – volume: 89 start-page: 477 year: 1997 ident: 10.1016/j.isci.2021.103370_bib52 article-title: Thermally regulated translational control of FRQ mediates aspects of temperature responses in the Neurospora circadian clock publication-title: Cell doi: 10.1016/S0092-8674(00)80228-7 – volume: 50 start-page: 107 year: 1957 ident: 10.1016/j.isci.2021.103370_bib15 article-title: Über den Temperatureinfluss auf die endogene Tagesrhythmik bei Phaseolus publication-title: Planta doi: 10.1007/BF01930339 – volume: 68 start-page: 2112 year: 1971 ident: 10.1016/j.isci.2021.103370_bib45 article-title: Clock mutants of Drosophila melanogaster publication-title: PNAS doi: 10.1073/pnas.68.9.2112 – volume: 11 start-page: 272 year: 2020 ident: 10.1016/j.isci.2021.103370_bib73 article-title: Clocks in the wild: entrainment to natural light publication-title: Front. Physiol. doi: 10.3389/fphys.2020.00272 – volume: 581 start-page: 5759 year: 2007 ident: 10.1016/j.isci.2021.103370_bib22 article-title: Long and short isoforms of neurospora clock protein frq support temperature-compensated circadian rhythms publication-title: FEBS Lett. doi: 10.1016/j.febslet.2007.11.043 |
SSID | ssj0002002496 |
Score | 2.2548375 |
Snippet | Autonomously oscillating circadian clocks resonate with daily environmental (zeitgeber) rhythms to organize physiology around the solar day. Although... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 103370 |
SubjectTerms | Chronobiology In silico biology Plant biology Systems biology |
Title | Principles underlying the complex dynamics of temperature entrainment by a circadian clock |
URI | https://dx.doi.org/10.1016/j.isci.2021.103370 https://www.ncbi.nlm.nih.gov/pubmed/34816105 https://www.proquest.com/docview/2601979164 https://pubmed.ncbi.nlm.nih.gov/PMC8593569 https://doaj.org/article/c86cdd7fecb0449e9b4cd82d3a3dd946 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsovuqLCN6kmG3SbXNUUURQPCiIl5AnrkpXdlfQf-9M0i67CnoReuorzWTCfGnm-4aQQ2FE4Fzy3EN4z4V3LtcB5lXNYBlX1LYKAcnJ1zf9y3tx9VA-zJT6wpywJA-cDHds6751rgreGiaE9NII6-rCcc2dkyKKbTPJZhZTz3F7DaXwYmW5EnOCwDVbxkxK7kLGKywOix6SzjlWKp6JSlG8fy44_QSf33MoZ4LSxQpZbtEkPUm9WCULvlkjj7fdD_QxRYrY6BWpTBSQHo0J5P6DulSHfkyHgaI4VausTGMrKUGAmk-qqR2MbFQvoBai3ss6ub84vzu7zNsSCrkFHDbJ-5zDELFQMFt5rUuAG0EChAtaW2SiGVcLoT0PYE_WswLAk3AVCxCjHAr18A2y2Awbv0WoNTxI7UXNvRfBMOM5QEEHhy2MDSwjvc6Eyrb64vjNr6pLJHtWaHaFZlfJ7Bk5mj7zltQ1fr37FEdmeicqY8cT4C-q9Rf1l79kpOzGVbUgI4EHeNXg18YPOidQMANxW0U3fvg-VijKJiuA2SIjm8kppp-INGcAqGVGqjl3mevD_JVm8BRVvlGIruzL7f_o9A5Zwq4gh7Ind8niZPTu9wBMTcx-nDdfilwgAA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principles+underlying+the+complex+dynamics+of+temperature+entrainment+by+a+circadian+clock&rft.jtitle=iScience&rft.au=Philipp+Burt&rft.au=Saskia+Grabe&rft.au=Cornelia+Madeti&rft.au=Abhishek+Upadhyay&rft.date=2021-11-19&rft.pub=Elsevier&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=24&rft.issue=11&rft.spage=103370&rft_id=info:doi/10.1016%2Fj.isci.2021.103370&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c86cdd7fecb0449e9b4cd82d3a3dd946 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |