Principles underlying the complex dynamics of temperature entrainment by a circadian clock

Autonomously oscillating circadian clocks resonate with daily environmental (zeitgeber) rhythms to organize physiology around the solar day. Although entrainment properties and mechanisms have been studied widely and in great detail for light-dark cycles, entrainment to daily temperature rhythms rem...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 24; no. 11; p. 103370
Main Authors Burt, Philipp, Grabe, Saskia, Madeti, Cornelia, Upadhyay, Abhishek, Merrow, Martha, Roenneberg, Till, Herzel, Hanspeter, Schmal, Christoph
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 19.11.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2021.103370

Cover

Abstract Autonomously oscillating circadian clocks resonate with daily environmental (zeitgeber) rhythms to organize physiology around the solar day. Although entrainment properties and mechanisms have been studied widely and in great detail for light-dark cycles, entrainment to daily temperature rhythms remains poorly understood despite that they are potent zeitgebers. Here we investigate the entrainment of the chronobiological model organism Neurospora crassa, subject to thermocycles of different periods and fractions of warm versus cold phases, mimicking seasonal variations. Depending on the properties of these thermocycles, regularly entrained rhythms, period-doubling (frequency demultiplication) but also irregular aperiodic behavior occurs. We demonstrate that the complex nonlinear phenomena of experimentally observed entrainment dynamics can be understood by molecular mathematical modeling. [Display omitted] •Temperature cycles can entrain the fungal model organism Neurospora crassa•We study the circadian surface for 99 combinations of τ, T and thermoperiod•1:1 entrainment, period doubling and other non-linear phenomena are observed•A mathematical model of temperature entrainment explains the observed complexity Chronobiology; Systems biology; In silico biology; Plant biology
AbstractList Autonomously oscillating circadian clocks resonate with daily environmental (zeitgeber) rhythms to organize physiology around the solar day. Although entrainment properties and mechanisms have been studied widely and in great detail for light-dark cycles, entrainment to daily temperature rhythms remains poorly understood despite that they are potent zeitgebers. Here we investigate the entrainment of the chronobiological model organism , subject to thermocycles of different periods and fractions of warm versus cold phases, mimicking seasonal variations. Depending on the properties of these thermocycles, regularly entrained rhythms, period-doubling (frequency demultiplication) but also irregular aperiodic behavior occurs. We demonstrate that the complex nonlinear phenomena of experimentally observed entrainment dynamics can be understood by molecular mathematical modeling.
Autonomously oscillating circadian clocks resonate with daily environmental (zeitgeber) rhythms to organize physiology around the solar day. Although entrainment properties and mechanisms have been studied widely and in great detail for light-dark cycles, entrainment to daily temperature rhythms remains poorly understood despite that they are potent zeitgebers. Here we investigate the entrainment of the chronobiological model organism Neurospora crassa, subject to thermocycles of different periods and fractions of warm versus cold phases, mimicking seasonal variations. Depending on the properties of these thermocycles, regularly entrained rhythms, period-doubling (frequency demultiplication) but also irregular aperiodic behavior occurs. We demonstrate that the complex nonlinear phenomena of experimentally observed entrainment dynamics can be understood by molecular mathematical modeling.
Autonomously oscillating circadian clocks resonate with daily environmental (zeitgeber) rhythms to organize physiology around the solar day. Although entrainment properties and mechanisms have been studied widely and in great detail for light-dark cycles, entrainment to daily temperature rhythms remains poorly understood despite that they are potent zeitgebers. Here we investigate the entrainment of the chronobiological model organism Neurospora crassa, subject to thermocycles of different periods and fractions of warm versus cold phases, mimicking seasonal variations. Depending on the properties of these thermocycles, regularly entrained rhythms, period-doubling (frequency demultiplication) but also irregular aperiodic behavior occurs. We demonstrate that the complex nonlinear phenomena of experimentally observed entrainment dynamics can be understood by molecular mathematical modeling. [Display omitted] •Temperature cycles can entrain the fungal model organism Neurospora crassa•We study the circadian surface for 99 combinations of τ, T and thermoperiod•1:1 entrainment, period doubling and other non-linear phenomena are observed•A mathematical model of temperature entrainment explains the observed complexity Chronobiology; Systems biology; In silico biology; Plant biology
Autonomously oscillating circadian clocks resonate with daily environmental (zeitgeber) rhythms to organize physiology around the solar day. Although entrainment properties and mechanisms have been studied widely and in great detail for light-dark cycles, entrainment to daily temperature rhythms remains poorly understood despite that they are potent zeitgebers. Here we investigate the entrainment of the chronobiological model organism Neurospora crassa, subject to thermocycles of different periods and fractions of warm versus cold phases, mimicking seasonal variations. Depending on the properties of these thermocycles, regularly entrained rhythms, period-doubling (frequency demultiplication) but also irregular aperiodic behavior occurs. We demonstrate that the complex nonlinear phenomena of experimentally observed entrainment dynamics can be understood by molecular mathematical modeling.Autonomously oscillating circadian clocks resonate with daily environmental (zeitgeber) rhythms to organize physiology around the solar day. Although entrainment properties and mechanisms have been studied widely and in great detail for light-dark cycles, entrainment to daily temperature rhythms remains poorly understood despite that they are potent zeitgebers. Here we investigate the entrainment of the chronobiological model organism Neurospora crassa, subject to thermocycles of different periods and fractions of warm versus cold phases, mimicking seasonal variations. Depending on the properties of these thermocycles, regularly entrained rhythms, period-doubling (frequency demultiplication) but also irregular aperiodic behavior occurs. We demonstrate that the complex nonlinear phenomena of experimentally observed entrainment dynamics can be understood by molecular mathematical modeling.
Autonomously oscillating circadian clocks resonate with daily environmental (zeitgeber) rhythms to organize physiology around the solar day. Although entrainment properties and mechanisms have been studied widely and in great detail for light-dark cycles, entrainment to daily temperature rhythms remains poorly understood despite that they are potent zeitgebers. Here we investigate the entrainment of the chronobiological model organism Neurospora crassa , subject to thermocycles of different periods and fractions of warm versus cold phases, mimicking seasonal variations. Depending on the properties of these thermocycles, regularly entrained rhythms, period-doubling (frequency demultiplication) but also irregular aperiodic behavior occurs. We demonstrate that the complex nonlinear phenomena of experimentally observed entrainment dynamics can be understood by molecular mathematical modeling. • Temperature cycles can entrain the fungal model organism Neurospora crassa • We study the circadian surface for 99 combinations of τ, T and thermoperiod • 1:1 entrainment, period doubling and other non-linear phenomena are observed • A mathematical model of temperature entrainment explains the observed complexity Chronobiology; Systems biology; In silico biology; Plant biology
ArticleNumber 103370
Author Burt, Philipp
Roenneberg, Till
Upadhyay, Abhishek
Schmal, Christoph
Grabe, Saskia
Madeti, Cornelia
Merrow, Martha
Herzel, Hanspeter
Author_xml – sequence: 1
  givenname: Philipp
  surname: Burt
  fullname: Burt, Philipp
  organization: Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
– sequence: 2
  givenname: Saskia
  surname: Grabe
  fullname: Grabe, Saskia
  organization: Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
– sequence: 3
  givenname: Cornelia
  surname: Madeti
  fullname: Madeti, Cornelia
  organization: Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Goethestrasse 31, 80336 Munich, Germany
– sequence: 4
  givenname: Abhishek
  surname: Upadhyay
  fullname: Upadhyay, Abhishek
  organization: Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
– sequence: 5
  givenname: Martha
  surname: Merrow
  fullname: Merrow, Martha
  organization: Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Goethestrasse 31, 80336 Munich, Germany
– sequence: 6
  givenname: Till
  surname: Roenneberg
  fullname: Roenneberg, Till
  organization: Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Goethestrasse 31, 80336 Munich, Germany
– sequence: 7
  givenname: Hanspeter
  surname: Herzel
  fullname: Herzel, Hanspeter
  organization: Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
– sequence: 8
  givenname: Christoph
  surname: Schmal
  fullname: Schmal, Christoph
  email: christoph.schmal@hu-berlin.de
  organization: Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34816105$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CAfOSyi78TSwgJVbRUqgQHuHCxnPFk6yWxFydbdf893k2LWg6VLI01nvcZ2_O-ro5iilhVbxldMsr0h_UyjBCWnHJWEkLU9EV1wlVjFpRKfvRof1ydjeOaUsrLkka_qo6FbJhmVJ1Uv77nECFsehzJNnrM_S7EFZlukEAaSvqO-F10Q4CRpI5MOGwwu2mbkWCcsgtxKJG0O-IIhAzOBxcJ9Al-v6ledq4f8ew-nlY_L778OP-6uP52eXX--XoBqlbTQgsB4GjHKdTonFKN7IxWunMOeE156xspHYrOC0cZSCmU9DXtjKGeMSXFaXU1c31ya7vJYXB5Z5ML9pBIeWVdngL0aKHR4H3dIbRUSoOmleAbXsjCeyN1YX2aWZttO6CHwxv7J9CnJzHc2FW6tY0yQmlTAO_vATn92eI42aHMCfveRUzb0XJNmakN0_t7v3vc61-Th-GUgmYugJzGMWNnIUxuCunw8b1l1O6tYNd2bwW7t4KdrVCk_D_pA_1Z0cdZhGVatwGzLRUYAX3ICFP5zvCc_C8MTM6H
CitedBy_id crossref_primary_10_1073_pnas_2404738121
crossref_primary_10_1063_5_0079198
crossref_primary_10_1007_s00359_023_01669_z
crossref_primary_10_3389_fnetp_2022_1076702
crossref_primary_10_1103_PhysRevE_108_034404
crossref_primary_10_1177_17479541221136023
crossref_primary_10_3389_fsysb_2024_1256398
crossref_primary_10_1371_journal_pcbi_1010331
crossref_primary_10_3390_fermentation9070674
crossref_primary_10_1038_s42003_024_06542_6
crossref_primary_10_1371_journal_pone_0318362
crossref_primary_10_1098_rspb_2022_0577
crossref_primary_10_1128_mbio_01407_22
Cites_doi 10.1016/j.jmb.2020.01.014
10.1529/biophysj.104.058388
10.1529/biophysj.107.115154
10.1098/rsif.2013.0221
10.1126/science.281.5378.825
10.2307/1539691
10.1126/science.1073681
10.1016/j.jtbi.2004.04.014
10.1177/0748730403018003002
10.1091/mbc.e05-08-0756
10.1126/science.1257277
10.1101/gad.1551707
10.1073/pnas.1620378114
10.3109/07420528.2010.504316
10.1126/science.1115581
10.1007/BF02498633
10.3390/ijms20122985
10.1081/CBI-120014569
10.1073/pnas.0505137102
10.1126/science.278.5346.2117
10.1016/j.cels.2021.03.003
10.1126/science.2563175
10.1007/BF01417856
10.1002/jcp.1030550112
10.1016/S0092-8674(05)80005-4
10.1016/S0092-8674(00)80566-8
10.1104/pp.68.6.1244
10.1023/A:1026410121183
10.1016/S0960-9822(02)01145-4
10.1016/j.csbj.2015.07.001
10.1098/rsif.2015.0282
10.1007/BF00298045
10.1104/pp.50.1.171
10.1177/0748730410379081
10.1242/dev.125.3.485
10.1177/074873049300800106
10.2307/1373575
10.1101/SQB.1960.025.01.005
10.1007/BF01766554
10.1038/s41598-020-79277-z
10.1101/gad.345905
10.1126/science.7313693
10.1016/j.cell.2005.05.032
10.1126/science.8128244
10.1177/074873049100600401
10.1529/biophysj.104.053975
10.1126/science.1195262
10.1177/074873099129000948
10.1177/0748730414537801
10.1093/genetics/163.1.103
10.1073/pnas.0501884102
10.1038/msb.2010.92
10.1007/BF00396490
10.1006/jtbi.2000.2239
10.1038/21190
10.1103/PhysRevA.29.1348
10.1126/science.289.5476.107
10.1371/journal.pcbi.1002437
10.1016/j.bpj.2015.01.043
10.1016/j.jtbi.2017.10.002
10.1063/1.4917289
10.1038/sj.emboj.7601397
10.1016/j.fgb.2015.10.002
10.1016/j.jtbi.2017.03.005
10.1098/rsfs.2010.0002
10.1016/S0092-8674(00)80228-7
10.1007/BF01930339
10.1073/pnas.68.9.2112
10.3389/fphys.2020.00272
10.1016/j.febslet.2007.11.043
ContentType Journal Article
Copyright 2021 The Authors
2021 The Authors.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: 2021 The Authors.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2021.103370
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_c86cdd7fecb0449e9b4cd82d3a3dd946
PMC8593569
34816105
10_1016_j_isci_2021_103370
S2589004221013419
Genre Journal Article
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
NPM
7X8
5PM
ID FETCH-LOGICAL-c575t-633cca0f20c7eaa5584f9656faac2702bd844ae3fd3a01c44354d70f990d11543
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:24:45 EDT 2025
Thu Aug 21 14:32:23 EDT 2025
Thu Jul 10 17:31:22 EDT 2025
Thu Jan 02 22:42:02 EST 2025
Thu Apr 24 23:11:09 EDT 2025
Tue Jul 01 01:03:45 EDT 2025
Tue Jul 25 20:59:24 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Plant biology
Chronobiology
Systems biology
In silico biology
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-633cca0f20c7eaa5584f9656faac2702bd844ae3fd3a01c44354d70f990d11543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally
Lead contact
OpenAccessLink https://doaj.org/article/c86cdd7fecb0449e9b4cd82d3a3dd946
PMID 34816105
PQID 2601979164
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_c86cdd7fecb0449e9b4cd82d3a3dd946
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8593569
proquest_miscellaneous_2601979164
pubmed_primary_34816105
crossref_citationtrail_10_1016_j_isci_2021_103370
crossref_primary_10_1016_j_isci_2021_103370
elsevier_sciencedirect_doi_10_1016_j_isci_2021_103370
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-19
PublicationDateYYYYMMDD 2021-11-19
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Maguire, Schmidt, Sehgal (bib55) 2014; 29
Lee, Dunlap, Loros (bib49) 2003; 163
Somers, Webb, Pearson, Kay (bib75) 1998; 125
Murayama, Kori, Oshima, Kondo, Iwasaki, Ito (bib58) 2017; 114
Pikovsky, Rosenblum, Kurths (bib59) 2001
Bradley, Kantz (bib11) 2015; 25
Hoffmann (bib38) 1969; 62
De Caluwe, de Melo, Tosenberger, Hermans, Verbruggen, Leloup, Gonze (bib18) 2017; 420
Liu, Merrow, Loros, Dunlap (bib53) 1998
Liu (bib51) 2003; 18
Konopka, Benzer (bib45) 1971; 68
Buhr, Yoo, Takahashi (bib14) 2010; 330
Dodd, Salathia, Hall, Kévei, Tóth, Nagy, Hibberd, Millar, Webb (bib23) 2005; 309
Aschoff (bib5) 1958; 15
Dunlap (bib25) 1999; 96
Bain, Millar, Turner (bib6) 2004; 229
Ermentrout (bib26) 2002
Diernfellner, Schafmeier, Merrow, Brunner (bib21) 2005; 19
Larrondo, Olivares-Yañez, Baker, Loros, Dunlap (bib47) 2015; 347
Loros, Denome, Dunlap (bib54) 1989
Crosthwaite, Loros, Dunlap (bib17) 1995; 81
Upadhyay, Marzoll, Diernfellner, Brunner, Herzel (bib78) 2020; 10
Erzberger, Hampp, Granada, Albrecht, Herzel (bib27) 2013
Gonze, Bernard, Waltermann, Kramer, Herzel (bib34) 2005; 89
Schafmeier, Haase, Kaldi, Scholz, Fuchs, Brunner (bib70) 2005; 122
Schmal, Myung, Herzel, Bordyugov (bib72) 2015; 6
Hong, Jolma, Loros, Dunlap, Ruoff (bib40) 2008; 94
Zimmerman (bib82) 1969; 136
Granada, Cambras, Diez-Noguera, Herzel (bib35) 2011; 1
Brown, Zumbrunn, Fleury-Olela, Preitner, Schibler (bib12) 2002; 12
Pittendrigh, Daan (bib60) 1976; 106
Balanov, Janson, Postnov, Sosnovtseva (bib7) 2009
Liu, Garceau, Loros, Dunlap (bib52) 1997; 89
Schmal, Leloup, Gonze (bib71) 2014
Ruoff, Loros, Dunlap (bib66) 2005; 102
Diernfellner, Colot, Dintsis, Loros, Dunlap, Brunner (bib22) 2007; 581
Hurley, Loros, Dunlap (bib42) 2016; 90
Upadhyay, Brunner, Herzel (bib77) 2019; 20
Ananthasubramaniam, Schmal, Herzel (bib2) 2020; 27
Colot, Loros, Dunlap (bib16) 2005; 16
Gonze, Goldbeter (bib33) 2000; 101
Rensing, Ruoff (bib61) 2002; 19
Schuster (bib74) 1994
Schmal, Herzel, Myung (bib73) 2020; 11
Froehlich, Liu, Loros, Dunlap (bib29) 2002; 297
Bünning, Tazawa (bib15) 1957; 50
Fuhr, Abreu, Pett, Relogio (bib30) 2015; 13
Wheeler, Hamblen-Coyle, Dushay, Hall (bib81) 1993; 8
Bordyugov, Abraham, Granada, Rose, Imkeller, Kramer, Herzel (bib10) 2015; 12
Ruoff, Vinsjevik, Monnerjahn, Rensing (bib65) 2001; 209
Bruce (bib13) 1960; 25
Bergé, Pomeau, Vidal (bib9) 1984
Glass, Guevara, Belair, Shrier (bib32) 1984; 29
Aronson, Johnson, Loros, Dunlap (bib4) 1994; 263
Sawyer, Hennessy, Peixoto, Rosato, Parkinson, Costa, Kyriacou (bib69) 1997; 278
Guevara, Glass, Shrier (bib36) 1981; 214
Leloup, Gonze, Goldbeter (bib50) 1999; 14
Merrow, Brunner, Roenneberg (bib57) 1999; 399
Mayer (bib56) 1966; 70
Abraham, Granada, Westermark, Heine, Kramer, Herzel (bib1) 2010; 6
v. Holst (bib39) 1938; 240
Diegmann, Stück, Madeti, Roenneberg (bib19) 2010; 27
Lee, Loros, Dunlap (bib48) 2000; 289
Belden, Larrondo, Froehlich, Shi, Chen, Loros, Dunlap (bib8) 2007; 21
Gardner, Feldman (bib31) 1981; 68
Diekman, Bose (bib20) 2018; 437
Wever (bib80) 1979
Francois (bib28) 2005; 88
Wever (bib79) 1965
Lakin-Thomas, Brody, Coté (bib46) 1991; 6
Sargent, Kaltenborn (bib68) 1972; 50
Arnold (bib3) 1987
Roberts (bib62) 1960; 55
Roenneberg, Dragovic, Merrow (bib63) 2005; 102
Rosato, Peixoto, Gallippi, Kyriacou, Costa (bib64) 1996; 42
Tseng, Hunt, Heintzen, Crosthwaite, Schwartz (bib76) 2012; 8
Dovzhenok, Baek, Lim, Hong (bib24) 2015; 108
Huang, Wang, Liu (bib41) 2006; 25
Heltberg, Krishna, Kadanoff, Jensen (bib37) 2021; 12
Rémi, Merrow, Roenneberg (bib67) 2010; 25
Johnson (bib44) 1926; 7
Hut, Paolucci, Dor, Kyriacou, Daan (bib43) 2013; 280
Diernfellner (10.1016/j.isci.2021.103370_bib21) 2005; 19
v. Holst (10.1016/j.isci.2021.103370_bib39) 1938; 240
Merrow (10.1016/j.isci.2021.103370_bib57) 1999; 399
Francois (10.1016/j.isci.2021.103370_bib28) 2005; 88
Rémi (10.1016/j.isci.2021.103370_bib67) 2010; 25
Gardner (10.1016/j.isci.2021.103370_bib31) 1981; 68
Diekman (10.1016/j.isci.2021.103370_bib20) 2018; 437
Lakin-Thomas (10.1016/j.isci.2021.103370_bib46) 1991; 6
Somers (10.1016/j.isci.2021.103370_bib75) 1998; 125
Upadhyay (10.1016/j.isci.2021.103370_bib78) 2020; 10
Hong (10.1016/j.isci.2021.103370_bib40) 2008; 94
Schafmeier (10.1016/j.isci.2021.103370_bib70) 2005; 122
Schmal (10.1016/j.isci.2021.103370_bib73) 2020; 11
Hut (10.1016/j.isci.2021.103370_bib43) 2013; 280
Rosato (10.1016/j.isci.2021.103370_bib64) 1996; 42
Konopka (10.1016/j.isci.2021.103370_bib45) 1971; 68
Diegmann (10.1016/j.isci.2021.103370_bib19) 2010; 27
Schuster (10.1016/j.isci.2021.103370_bib74) 1994
Guevara (10.1016/j.isci.2021.103370_bib36) 1981; 214
Bordyugov (10.1016/j.isci.2021.103370_bib10) 2015; 12
Liu (10.1016/j.isci.2021.103370_bib51) 2003; 18
Ananthasubramaniam (10.1016/j.isci.2021.103370_bib2) 2020; 27
Aronson (10.1016/j.isci.2021.103370_bib4) 1994; 263
Leloup (10.1016/j.isci.2021.103370_bib50) 1999; 14
Colot (10.1016/j.isci.2021.103370_bib16) 2005; 16
Gonze (10.1016/j.isci.2021.103370_bib34) 2005; 89
Wever (10.1016/j.isci.2021.103370_bib79) 1965
Lee (10.1016/j.isci.2021.103370_bib49) 2003; 163
Bergé (10.1016/j.isci.2021.103370_bib9) 1984
Fuhr (10.1016/j.isci.2021.103370_bib30) 2015; 13
Belden (10.1016/j.isci.2021.103370_bib8) 2007; 21
Sargent (10.1016/j.isci.2021.103370_bib68) 1972; 50
De Caluwe (10.1016/j.isci.2021.103370_bib18) 2017; 420
Bain (10.1016/j.isci.2021.103370_bib6) 2004; 229
Bruce (10.1016/j.isci.2021.103370_bib13) 1960; 25
Schmal (10.1016/j.isci.2021.103370_bib72) 2015; 6
Heltberg (10.1016/j.isci.2021.103370_bib37) 2021; 12
Erzberger (10.1016/j.isci.2021.103370_bib27) 2013
Huang (10.1016/j.isci.2021.103370_bib41) 2006; 25
Pittendrigh (10.1016/j.isci.2021.103370_bib60) 1976; 106
Bünning (10.1016/j.isci.2021.103370_bib15) 1957; 50
Murayama (10.1016/j.isci.2021.103370_bib58) 2017; 114
Gonze (10.1016/j.isci.2021.103370_bib33) 2000; 101
Diernfellner (10.1016/j.isci.2021.103370_bib22) 2007; 581
Lee (10.1016/j.isci.2021.103370_bib48) 2000; 289
Froehlich (10.1016/j.isci.2021.103370_bib29) 2002; 297
Schmal (10.1016/j.isci.2021.103370_bib71) 2014
Rensing (10.1016/j.isci.2021.103370_bib61) 2002; 19
Bradley (10.1016/j.isci.2021.103370_bib11) 2015; 25
Aschoff (10.1016/j.isci.2021.103370_bib5) 1958; 15
Roenneberg (10.1016/j.isci.2021.103370_bib63) 2005; 102
Larrondo (10.1016/j.isci.2021.103370_bib47) 2015; 347
Maguire (10.1016/j.isci.2021.103370_bib55) 2014; 29
Tseng (10.1016/j.isci.2021.103370_bib76) 2012; 8
Mayer (10.1016/j.isci.2021.103370_bib56) 1966; 70
Ruoff (10.1016/j.isci.2021.103370_bib65) 2001; 209
Abraham (10.1016/j.isci.2021.103370_bib1) 2010; 6
Wever (10.1016/j.isci.2021.103370_bib80) 1979
Pikovsky (10.1016/j.isci.2021.103370_bib59) 2001
Ruoff (10.1016/j.isci.2021.103370_bib66) 2005; 102
Dovzhenok (10.1016/j.isci.2021.103370_bib24) 2015; 108
Wheeler (10.1016/j.isci.2021.103370_bib81) 1993; 8
Zimmerman (10.1016/j.isci.2021.103370_bib82) 1969; 136
Arnold (10.1016/j.isci.2021.103370_bib3) 1987
Brown (10.1016/j.isci.2021.103370_bib12) 2002; 12
Johnson (10.1016/j.isci.2021.103370_bib44) 1926; 7
Buhr (10.1016/j.isci.2021.103370_bib14) 2010; 330
Loros (10.1016/j.isci.2021.103370_bib54) 1989
Roberts (10.1016/j.isci.2021.103370_bib62) 1960; 55
Balanov (10.1016/j.isci.2021.103370_bib7) 2009
Crosthwaite (10.1016/j.isci.2021.103370_bib17) 1995; 81
Granada (10.1016/j.isci.2021.103370_bib35) 2011; 1
Liu (10.1016/j.isci.2021.103370_bib53) 1998
Glass (10.1016/j.isci.2021.103370_bib32) 1984; 29
Liu (10.1016/j.isci.2021.103370_bib52) 1997; 89
Ermentrout (10.1016/j.isci.2021.103370_bib26) 2002
Hurley (10.1016/j.isci.2021.103370_bib42) 2016; 90
Upadhyay (10.1016/j.isci.2021.103370_bib77) 2019; 20
Hoffmann (10.1016/j.isci.2021.103370_bib38) 1969; 62
Sawyer (10.1016/j.isci.2021.103370_bib69) 1997; 278
Dunlap (10.1016/j.isci.2021.103370_bib25) 1999; 96
Dodd (10.1016/j.isci.2021.103370_bib23) 2005; 309
References_xml – volume: 70
  start-page: 237
  year: 1966
  end-page: 256
  ident: bib56
  article-title: Besonderheiten der circadianen Rhythmik bei Pflanzen verschiedener geographischer Breiten
  publication-title: Planta
– volume: 280
  start-page: 20130433
  year: 2013
  ident: bib43
  article-title: Latitudinal clines: an evolutionary view on biological rhythms
  publication-title: Proc. Biol. Sci.
– start-page: 385
  year: 1989
  end-page: 388
  ident: bib54
  article-title: Molecular cloning of genes under control of the circadian clock in neurospora
  publication-title: Science
– volume: 209
  start-page: 29
  year: 2001
  end-page: 42
  ident: bib65
  article-title: The goodwin model: simulating the effect of light pulses on the circadian sporulation rhythm of
  publication-title: J. Theor. Biol.
– volume: 27
  start-page: 3722
  year: 2020
  end-page: 3737
  ident: bib2
  article-title: Amplitude effects allow short jet lags and large seasonal phase shifts in minimal clock models
  publication-title: J. Mol. Biol.
– volume: 68
  start-page: 1244
  year: 1981
  end-page: 1248
  ident: bib31
  article-title: Temperature compensation of circadian period length in clock mutants of
  publication-title: Plant Physiol.
– volume: 10
  start-page: 22224
  year: 2020
  ident: bib78
  article-title: Multiple random phosphorylations in clock proteins provide long delays and switches
  publication-title: Sci. Rep.
– volume: 347
  start-page: 1257277
  year: 2015
  ident: bib47
  article-title: Decoupling circadian clock protein turnover from circadian period determination
  publication-title: Science
– volume: 278
  start-page: 2117
  year: 1997
  end-page: 2120
  ident: bib69
  article-title: Natural variation in a
  publication-title: Science
– volume: 12
  start-page: 20150282
  year: 2015
  ident: bib10
  article-title: Tuning the phase of circadian entrainment
  publication-title: J. R. Soc. Interf.
– start-page: 20130221
  year: 2013
  ident: bib27
  article-title: Genetic redundancy strengthens the circadian clock leading to a narrow entrainment range
  publication-title: J. R. Soc. Interf.
– start-page: 825
  year: 1998
  end-page: 829
  ident: bib53
  article-title: How temperature changes reset a circadian oscillator
  publication-title: Science
– volume: 309
  start-page: 630
  year: 2005
  end-page: 633
  ident: bib23
  article-title: Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage
  publication-title: Science
– volume: 122
  start-page: 235
  year: 2005
  end-page: 246
  ident: bib70
  article-title: Transcriptional feedback of
  publication-title: Cell
– year: 1994
  ident: bib74
  article-title: Deterministisches Chaos
– year: 1984
  ident: bib9
  article-title: Order within Chaos: Towards a Deterministic Approach to Turbulence
– volume: 330
  start-page: 379
  year: 2010
  end-page: 385
  ident: bib14
  article-title: Temperature as a universal resetting cue for mammalian circadian oscillators
  publication-title: Science
– volume: 12
  start-page: 1574
  year: 2002
  end-page: 1583
  ident: bib12
  article-title: Rhythms of mammalian body temperature can sustain peripheral circadian clocks
  publication-title: Curr. Biol.
– volume: 240
  start-page: 44
  year: 1938
  end-page: 59
  ident: bib39
  article-title: Über relative Koordination bei Säugern und beim Menschen
  publication-title: Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere
– volume: 15
  start-page: 1
  year: 1958
  end-page: 30
  ident: bib5
  article-title: Tierische Periodik unter dem Einfluß von Zeitgebern
  publication-title: Z. Tierpsychol.
– volume: 25
  start-page: 5349
  year: 2006
  end-page: 5357
  ident: bib41
  article-title: Molecular mechanism of suppression of circadian rhythms by a critical stimulus
  publication-title: EMBO J.
– volume: 581
  start-page: 5759
  year: 2007
  end-page: 5764
  ident: bib22
  article-title: Long and short isoforms of neurospora clock protein frq support temperature-compensated circadian rhythms
  publication-title: FEBS Lett.
– volume: 399
  start-page: 584
  year: 1999
  end-page: 586
  ident: bib57
  article-title: Assignment of circadian function for the
  publication-title: Nature
– year: 2001
  ident: bib59
  article-title: Synchronization: A Universal Concept in Nonlinear Sciences
– volume: 214
  start-page: 1350
  year: 1981
  end-page: 1353
  ident: bib36
  article-title: Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells
  publication-title: Science
– volume: 89
  start-page: 477
  year: 1997
  end-page: 486
  ident: bib52
  article-title: Thermally regulated translational control of FRQ mediates aspects of temperature responses in the
  publication-title: Cell
– year: 1979
  ident: bib80
  article-title: The Circadian System of Man
– volume: 29
  start-page: 167
  year: 2014
  end-page: 180
  ident: bib55
  article-title: Natural populations of drosophila melanogaster reveal features of an uncharacterized circadian property: the lower temperature limit of rhythmicity
  publication-title: J. Biol. Rhythms
– volume: 297
  start-page: 815
  year: 2002
  end-page: 819
  ident: bib29
  article-title: White collar-1, a circadian blue light photoreceptor, binding to the
  publication-title: Science
– year: 1987
  ident: bib3
  article-title: Geometrische Methoden in der Theorie der gewöhnlichen Differentialgleichungen
– volume: 62
  start-page: 93
  year: 1969
  end-page: 110
  ident: bib38
  article-title: Zum Einfluß der Zeitgeberstärke auf die Phasenlage der synchronisierten circadianen Periodik
  publication-title: Z. für Vgl. Physiol.
– start-page: 337
  year: 2014
  end-page: 358
  ident: bib71
  article-title: Modeling and simulating the
  publication-title: Plant Circadian Networks
– volume: 6
  start-page: 94
  year: 2015
  ident: bib72
  article-title: A theoretical study on seasonality
  publication-title: Front. Neurol.
– volume: 102
  start-page: 7742
  year: 2005
  end-page: 7747
  ident: bib63
  article-title: Demasking biological oscillators: properties and principles of entrainment exemplified by the
  publication-title: PNAS
– volume: 96
  start-page: 271
  year: 1999
  end-page: 290
  ident: bib25
  article-title: Molecular bases for circadian clocks
  publication-title: Cell
– volume: 289
  start-page: 107
  year: 2000
  end-page: 110
  ident: bib48
  article-title: Interconnected feedback loops in the
  publication-title: Science
– volume: 27
  start-page: 1335
  year: 2010
  end-page: 1347
  ident: bib19
  article-title: Entrainment elicits period aftereffects in
  publication-title: Chronobiol. Int.
– volume: 6
  start-page: 438
  year: 2010
  ident: bib1
  article-title: Coupling governs entrainment range of circadian clocks
  publication-title: Mol. Syst. Biol.
– volume: 19
  start-page: 1968
  year: 2005
  end-page: 1973
  ident: bib21
  article-title: Molecular mechanism of temperature sensing by the circadian clock of
  publication-title: Gene Dev.
– volume: 13
  start-page: 417
  year: 2015
  end-page: 426
  ident: bib30
  article-title: Circadian systems biology: when time matters
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 68
  start-page: 2112
  year: 1971
  end-page: 2116
  ident: bib45
  article-title: Clock mutants of
  publication-title: PNAS
– volume: 81
  start-page: 1003
  year: 1995
  end-page: 1012
  ident: bib17
  article-title: Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript
  publication-title: Cell
– volume: 89
  start-page: 120
  year: 2005
  end-page: 129
  ident: bib34
  article-title: Spontaneous synchronization of coupled circadian oscillators
  publication-title: Biophys. J.
– volume: 263
  start-page: 1578
  year: 1994
  end-page: 1584
  ident: bib4
  article-title: Negative feedback defining a circadian clock: autoregulation of the clock gene
  publication-title: Science
– volume: 8
  start-page: 1
  year: 2012
  end-page: 13
  ident: bib76
  article-title: Comprehensive modelling of the
  publication-title: PLOS Comput. Biol.
– volume: 25
  start-page: 318
  year: 2010
  end-page: 328
  ident: bib67
  article-title: A circadian surface of entrainment: varying t, τ, and photoperiod in
  publication-title: J. Biol. Rhythms
– volume: 25
  start-page: 097610
  year: 2015
  ident: bib11
  article-title: Nonlinear time-series analysis revisited
  publication-title: Chaos: Interdiscip. J. Nonlinear Sci.
– volume: 125
  start-page: 485
  year: 1998
  end-page: 494
  ident: bib75
  article-title: The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in
  publication-title: Development
– volume: 6
  start-page: 281
  year: 1991
  end-page: 297
  ident: bib46
  article-title: Amplitude model for the effects of mutations and temperature on period and phase resetting of the neurospora circadian oscillator
  publication-title: J. Biol. Rhythms
– volume: 136
  start-page: 494
  year: 1969
  end-page: 500
  ident: bib82
  article-title: On the absence of circadian rhythmicity in drosophila pseudoobscura pupae
  publication-title: Biol. Bull.
– volume: 12
  start-page: 291
  year: 2021
  end-page: 303
  ident: bib37
  article-title: A tale of two rhythms: locked clocks and chaos in biology
  publication-title: Cell Syst.
– volume: 42
  start-page: 392
  year: 1996
  end-page: 408
  ident: bib64
  article-title: Mutational mechanisms, phylogeny, and evolution of a repetitive region within a clock gene of
  publication-title: J. Mol. Evol.
– volume: 11
  start-page: 272
  year: 2020
  ident: bib73
  article-title: Clocks in the wild: entrainment to natural light
  publication-title: Front. Physiol.
– volume: 229
  start-page: 413
  year: 2004
  end-page: 420
  ident: bib6
  article-title: The wild-type circadian period of Neurospora is encoded in the residual network of the null frq mutants
  publication-title: J. Theor. Biol.
– volume: 88
  start-page: 2369
  year: 2005
  end-page: 2383
  ident: bib28
  article-title: A model for the
  publication-title: Biophys. J.
– volume: 163
  start-page: 103
  year: 2003
  end-page: 114
  ident: bib49
  article-title: Roles for WHITE COLLAR-1 in circadian and general photoperception in
  publication-title: Genetics
– volume: 55
  start-page: 99
  year: 1960
  end-page: 110
  ident: bib62
  article-title: Circadian activity rhythms in cockroaches. i. the free-running rhythm in steady-state
  publication-title: J. Cell Comp. Physiol.
– year: 2002
  ident: bib26
  article-title: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students
– volume: 101
  start-page: 649
  year: 2000
  end-page: 663
  ident: bib33
  article-title: Entrainment versus chaos in a model for a circadian oscillator driven by light-dark cycles
  publication-title: J. Stat. Phys.
– volume: 50
  start-page: 107
  year: 1957
  end-page: 121
  ident: bib15
  article-title: Über den Temperatureinfluss auf die endogene Tagesrhythmik bei Phaseolus
  publication-title: Planta
– volume: 16
  start-page: 5563
  year: 2005
  end-page: 5571
  ident: bib16
  article-title: Temperature-modulated alternative splicing and promoter use in the circadian clock gene frequency
  publication-title: Mol. Biol. Cell
– volume: 21
  start-page: 1494
  year: 2007
  end-page: 1505
  ident: bib8
  article-title: Dissecting the mechanisms of the clock in neurospora
  publication-title: Gene Dev.
– volume: 18
  start-page: 195
  year: 2003
  end-page: 205
  ident: bib51
  article-title: Molecular mechanisms of entrainment in the
  publication-title: J. Biol. Rhythms
– volume: 90
  start-page: 39
  year: 2016
  end-page: 43
  ident: bib42
  article-title: The circadian system as an organizer of metabolism
  publication-title: Fungal Genet. Biol.
– volume: 25
  start-page: 29
  year: 1960
  end-page: 48
  ident: bib13
  article-title: Environmental entrainment of circadian rhythms
  publication-title: Cold Spring Harbor Symp. Quant. Biol.
– volume: 20
  start-page: 2985
  year: 2019
  ident: bib77
  article-title: An inactivation switch enables rhythms in a
  publication-title: Int. J. Mol. Sci.
– volume: 29
  start-page: 1348
  year: 1984
  end-page: 1357
  ident: bib32
  article-title: Global bifurcations of a periodically forced biological oscillator
  publication-title: Phys. Rev.
– volume: 114
  start-page: 5641
  year: 2017
  end-page: 5646
  ident: bib58
  article-title: Low temperature nullifies the circadian clock in cyanobacteria through Hopf bifurcation
  publication-title: Proc. Natl. Acad. Sci. U S A
– start-page: 47
  year: 1965
  end-page: 63
  ident: bib79
  article-title: A mathematical model for circadian rhythms
  publication-title: Circadian Clocks
– volume: 1
  start-page: 153
  year: 2011
  end-page: 166
  ident: bib35
  article-title: Circadian desynchronization
  publication-title: Interf. Focus
– volume: 19
  start-page: 807
  year: 2002
  end-page: 864
  ident: bib61
  article-title: Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases
  publication-title: Chronobiology Int.
– volume: 8
  start-page: 67
  year: 1993
  end-page: 94
  ident: bib81
  article-title: Behavior in light-dark cycles of
  publication-title: J. Biol. Rhythms
– volume: 102
  start-page: 17681
  year: 2005
  end-page: 17686
  ident: bib66
  article-title: The relationship between FRQ-protein stability and temperature compensation in the
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 106
  start-page: 223
  year: 1976
  end-page: 252
  ident: bib60
  article-title: A functional analysis of circadian pacemakers in nocturnal rodents
  publication-title: J. Comp. Physiol.
– volume: 437
  start-page: 261
  year: 2018
  end-page: 285
  ident: bib20
  article-title: Reentrainment of the circadian pacemaker during jet lag: east-west asymmetry and the effects of north-south travel
  publication-title: J. Theor. Biol.
– volume: 14
  start-page: 433
  year: 1999
  end-page: 448
  ident: bib50
  article-title: Limit cycle models for circadian rhythms based on transcriptional regulation in
  publication-title: J. Biol. Rhythms
– year: 2009
  ident: bib7
  article-title: Synchronization: From Simple to Complex
– volume: 94
  start-page: 1221
  year: 2008
  end-page: 1232
  ident: bib40
  article-title: Simulating dark expressions and interactions of frq and wc-1 in the
  publication-title: Biophys. J.
– volume: 108
  start-page: 1830
  year: 2015
  end-page: 1839
  ident: bib24
  article-title: Mathematical modeling and validation of glucose compensation of the
  publication-title: Biophys. J.
– volume: 420
  start-page: 220
  year: 2017
  end-page: 231
  ident: bib18
  article-title: Modeling the photoperiodic entrainment of the plant circadian clock
  publication-title: J. Theor. Biol.
– volume: 7
  start-page: 245
  year: 1926
  end-page: 277
  ident: bib44
  article-title: Activity and distribution of certain wild Mice in relation to Biotic Communities
  publication-title: J. Mammal.
– volume: 50
  start-page: 171
  year: 1972
  end-page: 175
  ident: bib68
  article-title: Effects of medium composition and carbon dioxide on circadian oscillation in
  publication-title: Plant Physiol.
– volume: 27
  start-page: 3722
  year: 2020
  ident: 10.1016/j.isci.2021.103370_bib2
  article-title: Amplitude effects allow short jet lags and large seasonal phase shifts in minimal clock models
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2020.01.014
– volume: 89
  start-page: 120
  year: 2005
  ident: 10.1016/j.isci.2021.103370_bib34
  article-title: Spontaneous synchronization of coupled circadian oscillators
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.058388
– volume: 94
  start-page: 1221
  year: 2008
  ident: 10.1016/j.isci.2021.103370_bib40
  article-title: Simulating dark expressions and interactions of frq and wc-1 in the Neurospora circadian clock
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.115154
– start-page: 20130221
  year: 2013
  ident: 10.1016/j.isci.2021.103370_bib27
  article-title: Genetic redundancy strengthens the circadian clock leading to a narrow entrainment range
  publication-title: J. R. Soc. Interf.
  doi: 10.1098/rsif.2013.0221
– start-page: 825
  year: 1998
  ident: 10.1016/j.isci.2021.103370_bib53
  article-title: How temperature changes reset a circadian oscillator
  publication-title: Science
  doi: 10.1126/science.281.5378.825
– volume: 136
  start-page: 494
  year: 1969
  ident: 10.1016/j.isci.2021.103370_bib82
  article-title: On the absence of circadian rhythmicity in drosophila pseudoobscura pupae
  publication-title: Biol. Bull.
  doi: 10.2307/1539691
– year: 1994
  ident: 10.1016/j.isci.2021.103370_bib74
– volume: 297
  start-page: 815
  year: 2002
  ident: 10.1016/j.isci.2021.103370_bib29
  article-title: White collar-1, a circadian blue light photoreceptor, binding to the frequency promoter
  publication-title: Science
  doi: 10.1126/science.1073681
– volume: 229
  start-page: 413
  year: 2004
  ident: 10.1016/j.isci.2021.103370_bib6
  article-title: The wild-type circadian period of Neurospora is encoded in the residual network of the null frq mutants
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2004.04.014
– start-page: 337
  year: 2014
  ident: 10.1016/j.isci.2021.103370_bib71
  article-title: Modeling and simulating the Arabidopsis thaliana circadian clock using XPP-AUTO
– volume: 18
  start-page: 195
  year: 2003
  ident: 10.1016/j.isci.2021.103370_bib51
  article-title: Molecular mechanisms of entrainment in the Neurospora circadian clock
  publication-title: J. Biol. Rhythms
  doi: 10.1177/0748730403018003002
– volume: 16
  start-page: 5563
  year: 2005
  ident: 10.1016/j.isci.2021.103370_bib16
  article-title: Temperature-modulated alternative splicing and promoter use in the circadian clock gene frequency
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e05-08-0756
– volume: 347
  start-page: 1257277
  year: 2015
  ident: 10.1016/j.isci.2021.103370_bib47
  article-title: Decoupling circadian clock protein turnover from circadian period determination
  publication-title: Science
  doi: 10.1126/science.1257277
– volume: 21
  start-page: 1494
  year: 2007
  ident: 10.1016/j.isci.2021.103370_bib8
  article-title: Dissecting the mechanisms of the clock in neurospora
  publication-title: Gene Dev.
  doi: 10.1101/gad.1551707
– volume: 114
  start-page: 5641
  year: 2017
  ident: 10.1016/j.isci.2021.103370_bib58
  article-title: Low temperature nullifies the circadian clock in cyanobacteria through Hopf bifurcation
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1620378114
– volume: 27
  start-page: 1335
  year: 2010
  ident: 10.1016/j.isci.2021.103370_bib19
  article-title: Entrainment elicits period aftereffects in Neurospora crassa
  publication-title: Chronobiol. Int.
  doi: 10.3109/07420528.2010.504316
– volume: 309
  start-page: 630
  year: 2005
  ident: 10.1016/j.isci.2021.103370_bib23
  article-title: Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage
  publication-title: Science
  doi: 10.1126/science.1115581
– volume: 42
  start-page: 392
  year: 1996
  ident: 10.1016/j.isci.2021.103370_bib64
  article-title: Mutational mechanisms, phylogeny, and evolution of a repetitive region within a clock gene of Drosophila melanogaster
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF02498633
– volume: 20
  start-page: 2985
  year: 2019
  ident: 10.1016/j.isci.2021.103370_bib77
  article-title: An inactivation switch enables rhythms in a Neurospora clock model
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20122985
– volume: 19
  start-page: 807
  year: 2002
  ident: 10.1016/j.isci.2021.103370_bib61
  article-title: Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases
  publication-title: Chronobiology Int.
  doi: 10.1081/CBI-120014569
– volume: 102
  start-page: 17681
  year: 2005
  ident: 10.1016/j.isci.2021.103370_bib66
  article-title: The relationship between FRQ-protein stability and temperature compensation in the Neurospora circadian clock
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0505137102
– volume: 278
  start-page: 2117
  year: 1997
  ident: 10.1016/j.isci.2021.103370_bib69
  article-title: Natural variation in a Drosophila clock gene and temperature compensation
  publication-title: Science
  doi: 10.1126/science.278.5346.2117
– volume: 12
  start-page: 291
  year: 2021
  ident: 10.1016/j.isci.2021.103370_bib37
  article-title: A tale of two rhythms: locked clocks and chaos in biology
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2021.03.003
– start-page: 385
  year: 1989
  ident: 10.1016/j.isci.2021.103370_bib54
  article-title: Molecular cloning of genes under control of the circadian clock in neurospora
  publication-title: Science
  doi: 10.1126/science.2563175
– volume: 106
  start-page: 223
  year: 1976
  ident: 10.1016/j.isci.2021.103370_bib60
  article-title: A functional analysis of circadian pacemakers in nocturnal rodents
  publication-title: J. Comp. Physiol.
  doi: 10.1007/BF01417856
– volume: 55
  start-page: 99
  year: 1960
  ident: 10.1016/j.isci.2021.103370_bib62
  article-title: Circadian activity rhythms in cockroaches. i. the free-running rhythm in steady-state
  publication-title: J. Cell Comp. Physiol.
  doi: 10.1002/jcp.1030550112
– volume: 81
  start-page: 1003
  year: 1995
  ident: 10.1016/j.isci.2021.103370_bib17
  article-title: Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript
  publication-title: Cell
  doi: 10.1016/S0092-8674(05)80005-4
– volume: 96
  start-page: 271
  year: 1999
  ident: 10.1016/j.isci.2021.103370_bib25
  article-title: Molecular bases for circadian clocks
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80566-8
– volume: 68
  start-page: 1244
  year: 1981
  ident: 10.1016/j.isci.2021.103370_bib31
  article-title: Temperature compensation of circadian period length in clock mutants of Neurospora crassa
  publication-title: Plant Physiol.
  doi: 10.1104/pp.68.6.1244
– year: 1987
  ident: 10.1016/j.isci.2021.103370_bib3
– year: 1984
  ident: 10.1016/j.isci.2021.103370_bib9
– volume: 101
  start-page: 649
  year: 2000
  ident: 10.1016/j.isci.2021.103370_bib33
  article-title: Entrainment versus chaos in a model for a circadian oscillator driven by light-dark cycles
  publication-title: J. Stat. Phys.
  doi: 10.1023/A:1026410121183
– volume: 12
  start-page: 1574
  year: 2002
  ident: 10.1016/j.isci.2021.103370_bib12
  article-title: Rhythms of mammalian body temperature can sustain peripheral circadian clocks
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)01145-4
– volume: 13
  start-page: 417
  year: 2015
  ident: 10.1016/j.isci.2021.103370_bib30
  article-title: Circadian systems biology: when time matters
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2015.07.001
– volume: 6
  start-page: 94
  year: 2015
  ident: 10.1016/j.isci.2021.103370_bib72
  article-title: A theoretical study on seasonality
  publication-title: Front. Neurol.
– volume: 12
  start-page: 20150282
  year: 2015
  ident: 10.1016/j.isci.2021.103370_bib10
  article-title: Tuning the phase of circadian entrainment
  publication-title: J. R. Soc. Interf.
  doi: 10.1098/rsif.2015.0282
– volume: 62
  start-page: 93
  year: 1969
  ident: 10.1016/j.isci.2021.103370_bib38
  article-title: Zum Einfluß der Zeitgeberstärke auf die Phasenlage der synchronisierten circadianen Periodik
  publication-title: Z. für Vgl. Physiol.
  doi: 10.1007/BF00298045
– volume: 50
  start-page: 171
  year: 1972
  ident: 10.1016/j.isci.2021.103370_bib68
  article-title: Effects of medium composition and carbon dioxide on circadian oscillation in Neurospora
  publication-title: Plant Physiol.
  doi: 10.1104/pp.50.1.171
– volume: 25
  start-page: 318
  year: 2010
  ident: 10.1016/j.isci.2021.103370_bib67
  article-title: A circadian surface of entrainment: varying t, τ, and photoperiod in Neurospora crassa
  publication-title: J. Biol. Rhythms
  doi: 10.1177/0748730410379081
– volume: 125
  start-page: 485
  year: 1998
  ident: 10.1016/j.isci.2021.103370_bib75
  article-title: The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana
  publication-title: Development
  doi: 10.1242/dev.125.3.485
– volume: 8
  start-page: 67
  year: 1993
  ident: 10.1016/j.isci.2021.103370_bib81
  article-title: Behavior in light-dark cycles of Drosophila mutants that are arrhythmic, blind, or both
  publication-title: J. Biol. Rhythms
  doi: 10.1177/074873049300800106
– volume: 7
  start-page: 245
  year: 1926
  ident: 10.1016/j.isci.2021.103370_bib44
  article-title: Activity and distribution of certain wild Mice in relation to Biotic Communities
  publication-title: J. Mammal.
  doi: 10.2307/1373575
– volume: 25
  start-page: 29
  year: 1960
  ident: 10.1016/j.isci.2021.103370_bib13
  article-title: Environmental entrainment of circadian rhythms
  publication-title: Cold Spring Harbor Symp. Quant. Biol.
  doi: 10.1101/SQB.1960.025.01.005
– volume: 240
  start-page: 44
  year: 1938
  ident: 10.1016/j.isci.2021.103370_bib39
  article-title: Über relative Koordination bei Säugern und beim Menschen
  publication-title: Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere
  doi: 10.1007/BF01766554
– volume: 10
  start-page: 22224
  year: 2020
  ident: 10.1016/j.isci.2021.103370_bib78
  article-title: Multiple random phosphorylations in clock proteins provide long delays and switches
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-79277-z
– volume: 19
  start-page: 1968
  year: 2005
  ident: 10.1016/j.isci.2021.103370_bib21
  article-title: Molecular mechanism of temperature sensing by the circadian clock of Neurospora crassa
  publication-title: Gene Dev.
  doi: 10.1101/gad.345905
– year: 2002
  ident: 10.1016/j.isci.2021.103370_bib26
– volume: 214
  start-page: 1350
  year: 1981
  ident: 10.1016/j.isci.2021.103370_bib36
  article-title: Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells
  publication-title: Science
  doi: 10.1126/science.7313693
– volume: 122
  start-page: 235
  year: 2005
  ident: 10.1016/j.isci.2021.103370_bib70
  article-title: Transcriptional feedback of Neurospora circadian clock gene by phosphorylation-dependent inactivation of its transcription factor
  publication-title: Cell
  doi: 10.1016/j.cell.2005.05.032
– volume: 263
  start-page: 1578
  year: 1994
  ident: 10.1016/j.isci.2021.103370_bib4
  article-title: Negative feedback defining a circadian clock: autoregulation of the clock gene frequency
  publication-title: Science
  doi: 10.1126/science.8128244
– volume: 6
  start-page: 281
  year: 1991
  ident: 10.1016/j.isci.2021.103370_bib46
  article-title: Amplitude model for the effects of mutations and temperature on period and phase resetting of the neurospora circadian oscillator
  publication-title: J. Biol. Rhythms
  doi: 10.1177/074873049100600401
– start-page: 47
  year: 1965
  ident: 10.1016/j.isci.2021.103370_bib79
  article-title: A mathematical model for circadian rhythms
– volume: 88
  start-page: 2369
  year: 2005
  ident: 10.1016/j.isci.2021.103370_bib28
  article-title: A model for the Neurospora circadian clock
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.053975
– volume: 330
  start-page: 379
  year: 2010
  ident: 10.1016/j.isci.2021.103370_bib14
  article-title: Temperature as a universal resetting cue for mammalian circadian oscillators
  publication-title: Science
  doi: 10.1126/science.1195262
– volume: 14
  start-page: 433
  year: 1999
  ident: 10.1016/j.isci.2021.103370_bib50
  article-title: Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora
  publication-title: J. Biol. Rhythms
  doi: 10.1177/074873099129000948
– volume: 29
  start-page: 167
  year: 2014
  ident: 10.1016/j.isci.2021.103370_bib55
  article-title: Natural populations of drosophila melanogaster reveal features of an uncharacterized circadian property: the lower temperature limit of rhythmicity
  publication-title: J. Biol. Rhythms
  doi: 10.1177/0748730414537801
– volume: 163
  start-page: 103
  year: 2003
  ident: 10.1016/j.isci.2021.103370_bib49
  article-title: Roles for WHITE COLLAR-1 in circadian and general photoperception in Neurospora crassa
  publication-title: Genetics
  doi: 10.1093/genetics/163.1.103
– volume: 102
  start-page: 7742
  year: 2005
  ident: 10.1016/j.isci.2021.103370_bib63
  article-title: Demasking biological oscillators: properties and principles of entrainment exemplified by the Neurospora circadian clock
  publication-title: PNAS
  doi: 10.1073/pnas.0501884102
– year: 2001
  ident: 10.1016/j.isci.2021.103370_bib59
– volume: 6
  start-page: 438
  year: 2010
  ident: 10.1016/j.isci.2021.103370_bib1
  article-title: Coupling governs entrainment range of circadian clocks
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2010.92
– volume: 70
  start-page: 237
  year: 1966
  ident: 10.1016/j.isci.2021.103370_bib56
  article-title: Besonderheiten der circadianen Rhythmik bei Pflanzen verschiedener geographischer Breiten
  publication-title: Planta
  doi: 10.1007/BF00396490
– volume: 15
  start-page: 1
  year: 1958
  ident: 10.1016/j.isci.2021.103370_bib5
  article-title: Tierische Periodik unter dem Einfluß von Zeitgebern
  publication-title: Z. Tierpsychol.
– volume: 209
  start-page: 29
  year: 2001
  ident: 10.1016/j.isci.2021.103370_bib65
  article-title: The goodwin model: simulating the effect of light pulses on the circadian sporulation rhythm of Neurospora crassa
  publication-title: J. Theor. Biol.
  doi: 10.1006/jtbi.2000.2239
– year: 1979
  ident: 10.1016/j.isci.2021.103370_bib80
– year: 2009
  ident: 10.1016/j.isci.2021.103370_bib7
– volume: 280
  start-page: 20130433
  year: 2013
  ident: 10.1016/j.isci.2021.103370_bib43
  article-title: Latitudinal clines: an evolutionary view on biological rhythms
  publication-title: Proc. Biol. Sci.
– volume: 399
  start-page: 584
  year: 1999
  ident: 10.1016/j.isci.2021.103370_bib57
  article-title: Assignment of circadian function for the Neurospora clock gene frequency
  publication-title: Nature
  doi: 10.1038/21190
– volume: 29
  start-page: 1348
  year: 1984
  ident: 10.1016/j.isci.2021.103370_bib32
  article-title: Global bifurcations of a periodically forced biological oscillator
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevA.29.1348
– volume: 289
  start-page: 107
  year: 2000
  ident: 10.1016/j.isci.2021.103370_bib48
  article-title: Interconnected feedback loops in the Neurospora circadian system
  publication-title: Science
  doi: 10.1126/science.289.5476.107
– volume: 8
  start-page: 1
  year: 2012
  ident: 10.1016/j.isci.2021.103370_bib76
  article-title: Comprehensive modelling of the Neurospora circadian clock and its temperature compensation
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002437
– volume: 108
  start-page: 1830
  year: 2015
  ident: 10.1016/j.isci.2021.103370_bib24
  article-title: Mathematical modeling and validation of glucose compensation of the Neurospora circadian clock
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2015.01.043
– volume: 437
  start-page: 261
  year: 2018
  ident: 10.1016/j.isci.2021.103370_bib20
  article-title: Reentrainment of the circadian pacemaker during jet lag: east-west asymmetry and the effects of north-south travel
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2017.10.002
– volume: 25
  start-page: 097610
  year: 2015
  ident: 10.1016/j.isci.2021.103370_bib11
  article-title: Nonlinear time-series analysis revisited
  publication-title: Chaos: Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.4917289
– volume: 25
  start-page: 5349
  year: 2006
  ident: 10.1016/j.isci.2021.103370_bib41
  article-title: Molecular mechanism of suppression of circadian rhythms by a critical stimulus
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601397
– volume: 90
  start-page: 39
  year: 2016
  ident: 10.1016/j.isci.2021.103370_bib42
  article-title: The circadian system as an organizer of metabolism
  publication-title: Fungal Genet. Biol.
  doi: 10.1016/j.fgb.2015.10.002
– volume: 420
  start-page: 220
  year: 2017
  ident: 10.1016/j.isci.2021.103370_bib18
  article-title: Modeling the photoperiodic entrainment of the plant circadian clock
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2017.03.005
– volume: 1
  start-page: 153
  year: 2011
  ident: 10.1016/j.isci.2021.103370_bib35
  article-title: Circadian desynchronization
  publication-title: Interf. Focus
  doi: 10.1098/rsfs.2010.0002
– volume: 89
  start-page: 477
  year: 1997
  ident: 10.1016/j.isci.2021.103370_bib52
  article-title: Thermally regulated translational control of FRQ mediates aspects of temperature responses in the Neurospora circadian clock
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80228-7
– volume: 50
  start-page: 107
  year: 1957
  ident: 10.1016/j.isci.2021.103370_bib15
  article-title: Über den Temperatureinfluss auf die endogene Tagesrhythmik bei Phaseolus
  publication-title: Planta
  doi: 10.1007/BF01930339
– volume: 68
  start-page: 2112
  year: 1971
  ident: 10.1016/j.isci.2021.103370_bib45
  article-title: Clock mutants of Drosophila melanogaster
  publication-title: PNAS
  doi: 10.1073/pnas.68.9.2112
– volume: 11
  start-page: 272
  year: 2020
  ident: 10.1016/j.isci.2021.103370_bib73
  article-title: Clocks in the wild: entrainment to natural light
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.00272
– volume: 581
  start-page: 5759
  year: 2007
  ident: 10.1016/j.isci.2021.103370_bib22
  article-title: Long and short isoforms of neurospora clock protein frq support temperature-compensated circadian rhythms
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2007.11.043
SSID ssj0002002496
Score 2.2548375
Snippet Autonomously oscillating circadian clocks resonate with daily environmental (zeitgeber) rhythms to organize physiology around the solar day. Although...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103370
SubjectTerms Chronobiology
In silico biology
Plant biology
Systems biology
Title Principles underlying the complex dynamics of temperature entrainment by a circadian clock
URI https://dx.doi.org/10.1016/j.isci.2021.103370
https://www.ncbi.nlm.nih.gov/pubmed/34816105
https://www.proquest.com/docview/2601979164
https://pubmed.ncbi.nlm.nih.gov/PMC8593569
https://doaj.org/article/c86cdd7fecb0449e9b4cd82d3a3dd946
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsovuqLCN6kmG3SbXNUUURQPCiIl5AnrkpXdlfQf-9M0i67CnoReuorzWTCfGnm-4aQQ2FE4Fzy3EN4z4V3LtcB5lXNYBlX1LYKAcnJ1zf9y3tx9VA-zJT6wpywJA-cDHds6751rgreGiaE9NII6-rCcc2dkyKKbTPJZhZTz3F7DaXwYmW5EnOCwDVbxkxK7kLGKywOix6SzjlWKp6JSlG8fy44_QSf33MoZ4LSxQpZbtEkPUm9WCULvlkjj7fdD_QxRYrY6BWpTBSQHo0J5P6DulSHfkyHgaI4VausTGMrKUGAmk-qqR2MbFQvoBai3ss6ub84vzu7zNsSCrkFHDbJ-5zDELFQMFt5rUuAG0EChAtaW2SiGVcLoT0PYE_WswLAk3AVCxCjHAr18A2y2Awbv0WoNTxI7UXNvRfBMOM5QEEHhy2MDSwjvc6Eyrb64vjNr6pLJHtWaHaFZlfJ7Bk5mj7zltQ1fr37FEdmeicqY8cT4C-q9Rf1l79kpOzGVbUgI4EHeNXg18YPOidQMANxW0U3fvg-VijKJiuA2SIjm8kppp-INGcAqGVGqjl3mevD_JVm8BRVvlGIruzL7f_o9A5Zwq4gh7Ind8niZPTu9wBMTcx-nDdfilwgAA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principles+underlying+the+complex+dynamics+of+temperature+entrainment+by+a+circadian+clock&rft.jtitle=iScience&rft.au=Philipp+Burt&rft.au=Saskia+Grabe&rft.au=Cornelia+Madeti&rft.au=Abhishek+Upadhyay&rft.date=2021-11-19&rft.pub=Elsevier&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=24&rft.issue=11&rft.spage=103370&rft_id=info:doi/10.1016%2Fj.isci.2021.103370&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c86cdd7fecb0449e9b4cd82d3a3dd946
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon