Technical Note: Modulation of fMRI brainstem responses by transcutaneous vagus nerve stimulation
•taVNS effects on brainstem activity are assessed during fMRI.•taVNS modulates activity in brainstem vagal afferent targets (including the NTS).•The signal dynamics over time indicates both acute, persistent and delayed effects of taVNS. Our increasing knowledge about gut-brain interaction is revolu...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 244; p. 118566 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.12.2021
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •taVNS effects on brainstem activity are assessed during fMRI.•taVNS modulates activity in brainstem vagal afferent targets (including the NTS).•The signal dynamics over time indicates both acute, persistent and delayed effects of taVNS.
Our increasing knowledge about gut-brain interaction is revolutionising the understanding of the links between digestion, mood, health, and even decision making in our everyday lives. In support of this interaction, the vagus nerve is a crucial pathway transmitting diverse gut-derived signals to the brain to monitor of metabolic status, digestive processes, or immune control to adapt behavioural and autonomic responses. Hence, neuromodulation methods targeting the vagus nerve are currently explored as a treatment option in a number of clinical disorders, including diabetes, chronic pain, and depression. The non-invasive variant of vagus nerve stimulation (VNS), transcutaneous auricular VNS (taVNS), has been implicated in both acute and long-lasting effects by modulating afferent vagus nerve target areas in the brain. The physiology of neither of those effects is, however, well understood, and evidence for neuronal response upon taVNS in vagal afferent projection regions in the brainstem and its downstream targets remain to be established.
Therefore, to examine time-dependent effects of taVNS on brainstem neuronal responses in healthy human subjects, we applied taVNS during task-free fMRI in a single-blinded crossover design. During fMRI data acquisition, we either stimulated the left earlobe (sham), or the target zone of the auricular branch of the vagus nerve in the outer ear (cymba conchae, verum) for several minutes, both followed by a short ‘stimulation OFF’ period. Time-dependent effects were assessed by averaging the BOLD response for consecutive 1-minute periods in an ROI-based analysis of the brainstem.
We found a significant response to acute taVNS stimulation, relative to the control condition, in downstream targets of vagal afferents, including the nucleus of the solitary tract, the substantia nigra, and the subthalamic nucleus. Most of these brainstem regions remarkably showed increased activity in response to taVNS, and these effect sustained during the post-stimulation period. These data demonstrate that taVNS activates key brainstem regions, and highlight the potential of this approach to modulate vagal afferent signalling. Furthermore, we show that carry-over effects need to be considered when interpreting fMRI data in the context of general vagal neurophysiology and its modulation by taVNS. |
---|---|
AbstractList | Our increasing knowledge about gut-brain interaction is revolutionising the understanding of the links between digestion, mood, health, and even decision making in our everyday lives. In support of this interaction, the vagus nerve is a crucial pathway transmitting diverse gut-derived signals to the brain to monitor of metabolic status, digestive processes, or immune control to adapt behavioural and autonomic responses. Hence, neuromodulation methods targeting the vagus nerve are currently explored as a treatment option in a number of clinical disorders, including diabetes, chronic pain, and depression. The non-invasive variant of vagus nerve stimulation (VNS), transcutaneous auricular VNS (taVNS), has been implicated in both acute and long-lasting effects by modulating afferent vagus nerve target areas in the brain. The physiology of neither of those effects is, however, well understood, and evidence for neuronal response upon taVNS in vagal afferent projection regions in the brainstem and its downstream targets remain to be established. Therefore, to examine time-dependent effects of taVNS on brainstem neuronal responses in healthy human subjects, we applied taVNS during task-free fMRI in a single-blinded crossover design. During fMRI data acquisition, we either stimulated the left earlobe (sham), or the target zone of the auricular branch of the vagus nerve in the outer ear (cymba conchae, verum) for several minutes, both followed by a short 'stimulation OFF' period. Time-dependent effects were assessed by averaging the BOLD response for consecutive 1-minute periods in an ROI-based analysis of the brainstem. We found a significant response to acute taVNS stimulation, relative to the control condition, in downstream targets of vagal afferents, including the nucleus of the solitary tract, the substantia nigra, and the subthalamic nucleus. Most of these brainstem regions remarkably showed increased activity in response to taVNS, and these effect sustained during the post-stimulation period. These data demonstrate that taVNS activates key brainstem regions, and highlight the potential of this approach to modulate vagal afferent signalling. Furthermore, we show that carry-over effects need to be considered when interpreting fMRI data in the context of general vagal neurophysiology and its modulation by taVNS. Our increasing knowledge about gut-brain interaction is revolutionising the understanding of the links between digestion, mood, health, and even decision making in our everyday lives. In support of this interaction, the vagus nerve is a crucial pathway transmitting diverse gut-derived signals to the brain to monitor of metabolic status, digestive processes, or immune control to adapt behavioural and autonomic responses. Hence, neuromodulation methods targeting the vagus nerve are currently explored as a treatment option in a number of clinical disorders, including diabetes, chronic pain, and depression. The non-invasive variant of vagus nerve stimulation (VNS), transcutaneous auricular VNS (taVNS), has been implicated in both acute and long-lasting effects by modulating afferent vagus nerve target areas in the brain. The physiology of neither of those effects is, however, well understood, and evidence for neuronal response upon taVNS in vagal afferent projection regions in the brainstem and its downstream targets remain to be established. Therefore, to examine time-dependent effects of taVNS on brainstem neuronal responses in healthy human subjects, we applied taVNS during task-free fMRI in a single-blinded crossover design. During fMRI data acquisition, we either stimulated the left earlobe (sham), or the target zone of the auricular branch of the vagus nerve in the outer ear (cymba conchae, verum) for several minutes, both followed by a short 'stimulation OFF' period. Time-dependent effects were assessed by averaging the BOLD response for consecutive 1-minute periods in an ROI-based analysis of the brainstem. We found a significant response to acute taVNS stimulation, relative to the control condition, in downstream targets of vagal afferents, including the nucleus of the solitary tract, the substantia nigra, and the subthalamic nucleus. Most of these brainstem regions remarkably showed increased activity in response to taVNS, and these effect sustained during the post-stimulation period. These data demonstrate that taVNS activates key brainstem regions, and highlight the potential of this approach to modulate vagal afferent signalling. Furthermore, we show that carry-over effects need to be considered when interpreting fMRI data in the context of general vagal neurophysiology and its modulation by taVNS.Our increasing knowledge about gut-brain interaction is revolutionising the understanding of the links between digestion, mood, health, and even decision making in our everyday lives. In support of this interaction, the vagus nerve is a crucial pathway transmitting diverse gut-derived signals to the brain to monitor of metabolic status, digestive processes, or immune control to adapt behavioural and autonomic responses. Hence, neuromodulation methods targeting the vagus nerve are currently explored as a treatment option in a number of clinical disorders, including diabetes, chronic pain, and depression. The non-invasive variant of vagus nerve stimulation (VNS), transcutaneous auricular VNS (taVNS), has been implicated in both acute and long-lasting effects by modulating afferent vagus nerve target areas in the brain. The physiology of neither of those effects is, however, well understood, and evidence for neuronal response upon taVNS in vagal afferent projection regions in the brainstem and its downstream targets remain to be established. Therefore, to examine time-dependent effects of taVNS on brainstem neuronal responses in healthy human subjects, we applied taVNS during task-free fMRI in a single-blinded crossover design. During fMRI data acquisition, we either stimulated the left earlobe (sham), or the target zone of the auricular branch of the vagus nerve in the outer ear (cymba conchae, verum) for several minutes, both followed by a short 'stimulation OFF' period. Time-dependent effects were assessed by averaging the BOLD response for consecutive 1-minute periods in an ROI-based analysis of the brainstem. We found a significant response to acute taVNS stimulation, relative to the control condition, in downstream targets of vagal afferents, including the nucleus of the solitary tract, the substantia nigra, and the subthalamic nucleus. Most of these brainstem regions remarkably showed increased activity in response to taVNS, and these effect sustained during the post-stimulation period. These data demonstrate that taVNS activates key brainstem regions, and highlight the potential of this approach to modulate vagal afferent signalling. Furthermore, we show that carry-over effects need to be considered when interpreting fMRI data in the context of general vagal neurophysiology and its modulation by taVNS. •taVNS effects on brainstem activity are assessed during fMRI.•taVNS modulates activity in brainstem vagal afferent targets (including the NTS).•The signal dynamics over time indicates both acute, persistent and delayed effects of taVNS. Our increasing knowledge about gut-brain interaction is revolutionising the understanding of the links between digestion, mood, health, and even decision making in our everyday lives. In support of this interaction, the vagus nerve is a crucial pathway transmitting diverse gut-derived signals to the brain to monitor of metabolic status, digestive processes, or immune control to adapt behavioural and autonomic responses. Hence, neuromodulation methods targeting the vagus nerve are currently explored as a treatment option in a number of clinical disorders, including diabetes, chronic pain, and depression. The non-invasive variant of vagus nerve stimulation (VNS), transcutaneous auricular VNS (taVNS), has been implicated in both acute and long-lasting effects by modulating afferent vagus nerve target areas in the brain. The physiology of neither of those effects is, however, well understood, and evidence for neuronal response upon taVNS in vagal afferent projection regions in the brainstem and its downstream targets remain to be established. Therefore, to examine time-dependent effects of taVNS on brainstem neuronal responses in healthy human subjects, we applied taVNS during task-free fMRI in a single-blinded crossover design. During fMRI data acquisition, we either stimulated the left earlobe (sham), or the target zone of the auricular branch of the vagus nerve in the outer ear (cymba conchae, verum) for several minutes, both followed by a short ‘stimulation OFF’ period. Time-dependent effects were assessed by averaging the BOLD response for consecutive 1-minute periods in an ROI-based analysis of the brainstem. We found a significant response to acute taVNS stimulation, relative to the control condition, in downstream targets of vagal afferents, including the nucleus of the solitary tract, the substantia nigra, and the subthalamic nucleus. Most of these brainstem regions remarkably showed increased activity in response to taVNS, and these effect sustained during the post-stimulation period. These data demonstrate that taVNS activates key brainstem regions, and highlight the potential of this approach to modulate vagal afferent signalling. Furthermore, we show that carry-over effects need to be considered when interpreting fMRI data in the context of general vagal neurophysiology and its modulation by taVNS. |
ArticleNumber | 118566 |
Author | Kuzmanovic, Bojana Tittgemeyer, Marc Borgmann, Diba Edwin Thanarajah, Sharmili Münte, Thomas F. Fenselau, Henning Rigoux, Lionel |
Author_xml | – sequence: 1 givenname: Diba surname: Borgmann fullname: Borgmann, Diba email: diba.borgmann@sf.mpg.de organization: Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany – sequence: 2 givenname: Lionel surname: Rigoux fullname: Rigoux, Lionel organization: Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany – sequence: 3 givenname: Bojana surname: Kuzmanovic fullname: Kuzmanovic, Bojana organization: Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany – sequence: 4 givenname: Sharmili surname: Edwin Thanarajah fullname: Edwin Thanarajah, Sharmili organization: Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany – sequence: 5 givenname: Thomas F. surname: Münte fullname: Münte, Thomas F. organization: Department of Neurology, University of Lübeck, 23538, Lübeck, Germany – sequence: 6 givenname: Henning surname: Fenselau fullname: Fenselau, Henning organization: Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany – sequence: 7 givenname: Marc surname: Tittgemeyer fullname: Tittgemeyer, Marc organization: Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34509623$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl2PEyEUhidmjfuhf8GQeONNKx8zDHhh1I0fTXY1Mes1MsyhUqfQBaZJ_72009WkV3sDhLznOZz35bI688FDVSGC5wQT_mY19zDG4NZ6CXOKKZkTIhrOn1QXBMtmJpuWnu3PDZsJQuR5dZnSCmMsSS2eVeesbrDklF1Uv-7A_PbO6AF9CxneotvQj4POLngULLK3Pxaoi9r5lGGNIqRN8AkS6nYoR-2TGbP2EMaEtnpZVg9xCyhltz5SnldPrR4SvDjuV9XPz5_urr_Obr5_WVx_uJmZpm3yrJEtacEwyw3XhgHYXkLLrKE9F1QAbmuwgK3BuGVQS8uZ7XGreyKMaXnHrqrFxO2DXqlNLN7EnQraqcNFiEulY3ZmAEUEYQxjDRhYjTXVrGOdtDVlVEiOZWG9nlibGO5HSFmtXTIwDNOoihZ7KcGc4yJ9dSJdhTH6MmlRCV4zTMVe9fKoGrs19P-e95BDEbybBCaGlCJYZVw--FdcdoMiWO2DVyv1P3i1D15NwReAOAE89HhE6cepFEo8WwdRJePAG-hdBJOLf-4xkPcnEDO4w7_6A7vHIf4CJv7kLw |
CitedBy_id | crossref_primary_10_1111_cns_14309 crossref_primary_10_1523_JNEUROSCI_2004_22_2023 crossref_primary_10_1016_j_brs_2025_01_018 crossref_primary_10_3390_jcm12031198 crossref_primary_10_3390_biomedicines13030700 crossref_primary_10_1111_psyp_14484 crossref_primary_10_1038_s41598_021_02307_x crossref_primary_10_1111_adb_13202 crossref_primary_10_3389_fnins_2023_1131063 crossref_primary_10_3390_jcm12196315 crossref_primary_10_1016_j_brs_2022_09_009 crossref_primary_10_3390_biomedicines12020407 crossref_primary_10_3389_fnins_2024_1494272 crossref_primary_10_1016_j_brs_2024_02_013 crossref_primary_10_1109_JSEN_2024_3441619 crossref_primary_10_3389_fnagi_2024_1498176 crossref_primary_10_1111_psyp_13984 crossref_primary_10_1111_psyp_14670 crossref_primary_10_1111_psyp_70017 crossref_primary_10_1038_s41598_023_34746_z crossref_primary_10_3389_fnagi_2024_1444703 crossref_primary_10_3389_fnmol_2023_1160006 crossref_primary_10_3390_brainsci14070690 crossref_primary_10_1002_jpn3_12174 crossref_primary_10_1007_s10548_024_01088_6 crossref_primary_10_1186_s13256_024_04994_2 |
Cites_doi | 10.1016/j.tins.2019.08.002 10.1016/j.cell.2017.01.025 10.1016/j.neuroimage.2013.05.039 10.1038/mp.2016.1 10.1016/j.neuroimage.2018.01.077 10.1016/j.clinph.2018.05.026 10.3389/fnins.2019.00911 10.1017/S1461145712000387 10.1016/j.neuropharm.2013.05.046 10.1016/j.neuroimage.2013.07.081 10.1111/joa.13122 10.1016/j.neuroimage.2014.10.044 10.1186/s12974-020-01732-5 10.1016/j.neuron.2019.02.008 10.1016/j.cell.2019.10.031 10.1016/j.cub.2020.07.084 10.1016/j.neuroimage.2013.11.046 10.1038/nrn.2018.8 10.3389/fnhum.2020.00206 10.1111/ner.12541 10.1016/j.biopsych.2015.03.025 10.1016/j.neuroimage.2014.03.034 10.3389/fnins.2019.00772 10.1210/endocr/bqab029 10.1038/s41598-019-47961-4 10.1124/jpet.106.104166 10.1002/hbm.23839 10.1038/s41586-020-2199-7 10.1016/j.brs.2013.01.011 10.1016/j.nicl.2016.10.002 10.1212/WNL.0000000000003751 10.1016/j.neuroimage.2019.03.050 10.1073/pnas.1602413113 10.1016/j.brs.2018.12.224 10.1002/hbm.10062 10.3389/fnins.2019.00854 10.1016/j.pnpbp.2018.01.005 10.1038/nrgastro.2016.76 10.1017/S0033291719003490 10.1016/j.cmet.2020.12.018 10.1113/JP271538 10.7554/eLife.55316 10.1111/jne.12643 10.1016/j.cmet.2021.05.002 10.1016/j.neuroimage.2015.10.019 10.1016/j.cell.2018.08.049 10.1038/s41467-020-17344-9 10.1523/JNEUROSCI.5339-03.2004 10.1016/j.euroneuro.2020.03.023 10.1006/nimg.2002.1132 10.18632/aging.102074 10.1016/j.conb.2020.03.006 10.1002/mrm.1910350312 10.1016/j.neuroimage.2016.12.027 10.1016/j.brs.2014.11.018 10.1038/s41598-021-87032-1 10.1038/s41598-020-58412-w 10.1016/0920-1211(94)00083-9 10.1523/JNEUROSCI.22-20-08850.2002 10.1152/jn.00057.2020 10.3171/2018.6.FOCUS18216 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier Inc. Copyright Elsevier Limited Dec 1, 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Dec 1, 2021 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 DOA |
DOI | 10.1016/j.neuroimage.2021.118566 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database ProQuest Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest One Psychology MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
ExternalDocumentID | oai_doaj_org_article_1813300ae0e340a2a3b3b9f423289609 34509623 10_1016_j_neuroimage_2021_118566 S1053811921008399 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 0SF 6I. AACTN AAFTH AFKWA AJOXV ALIPV AMFUW C45 HMQ NCXOZ 29N 53G AAQFI AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- RIG SEW SNS WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c575t-59717ec3f6c6ac3eefd9e73fc2d6828e074efe0fc0073e49f63fd07ad18cc76b3 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:25:58 EDT 2025 Fri Jul 11 05:35:50 EDT 2025 Sat Aug 23 13:14:02 EDT 2025 Wed Feb 19 02:27:42 EST 2025 Thu Apr 24 23:09:59 EDT 2025 Tue Jul 01 03:02:20 EDT 2025 Sat Dec 28 15:51:06 EST 2024 Tue Aug 26 20:02:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-59717ec3f6c6ac3eefd9e73fc2d6828e074efe0fc0073e49f63fd07ad18cc76b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811921008399 |
PMID | 34509623 |
PQID | 2586430280 |
PQPubID | 2031077 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1813300ae0e340a2a3b3b9f423289609 proquest_miscellaneous_2572210660 proquest_journals_2586430280 pubmed_primary_34509623 crossref_citationtrail_10_1016_j_neuroimage_2021_118566 crossref_primary_10_1016_j_neuroimage_2021_118566 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118566 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118566 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Aston-Jones, Zhu, Card (bib0004) 2004; 24 Kaniusas, Kampusch, Tittgemeyer, Panetsos, Gines, Papa, Kiss, Podesser, Cassara, Tanghe (bib0037) 2019; 13 Kaniusas, Samoudi, Kampusch, Bald, Tanghe, Martens, Joseph, Szeles (bib0038) 2020; 67 Cork (bib0018) 2018; 30 Kraus, Kiess, Hosl, Terekhin, Kornhuber, Forster (bib0043) 2013; 6 Flandin, Friston (bib0026) 2019; 40 Yu, Xu, Chang (bib0065) 2020; 62 von Wrede, Rings, Schach, Helmstaedter, Lehnertz (bib0061) 2021; 11 Jenkinson (bib0034) 2005 Wandschneider, Koepp (bib0062) 2016; 12 Travagli, Anselmi (bib0060) 2016; 13 Bai, Mesgarzadeh, Ramesh, Huey, Liu, Gray, Aitken, Chen, Beutler, Ahn (bib0005) 2019; 179 Alicart, Heldmann, Gottlich, Obst, Tittgemeyer, Munte (bib0002) 2020 Goldstein, McKnight, Carty, Arnold, Betley, Alhadeff (bib0030) 2021; 33 Power, Schlaggar, Petersen (bib0052) 2015; 105 Obst, Heldmann, Alicart, Tittgemeyer, Munte (bib0051) 2020; 14 Yakunina, Kim, Nam (bib0064) 2017; 20 Kaniusas, Kampusch, Tittgemeyer, Panetsos, Gines, Papa, Kiss, Podesser, Cassara, Tanghe (bib0036) 2019; 13 Warren, Tona, Ouwerkerk, van Paridon, Poletiek, van Steenbergen, Bosch, Nieuwenhuis (bib0063) 2019; 12 Beissner, Schumann, Brunn, Eisentrager, Bar (bib0007) 2014; 86 Han, Tellez, Perkins, Perez, Qu, Ferreira, Ferreira, Quinn, Liu, Gao (bib0033) 2018; 175 Tan, Sisti, Jin, Vignovich, Villavicencio, Tsang, Goffer, Zuker (bib0058) 2020; 580 Bretherton, Atkinson, Murray, Clancy, Deuchars, Deuchars (bib0010) 2019; 11 Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay (bib0031) 2014; 95 Manuel, Farber, Gerlach, Heusser, Jordan, Tank, Beissner (bib0048) 2020; 9 Brown, Sergeeva, Eriksson, Haas (bib0012) 2002; 22 Edwin Thanarajah, Iglesias, Kuzmanovic, Rigoux, Stephan, Bruning, Tittgemeyer (bib0022) 2019; 194 Koenig, Parzer, Haigis, Liebemann, Jung, Resch, Kaess (bib0042) 2021; 51 Kuhnel, Teckentrup, Neuser, Huys, Burrasch, Walter, Kroemer (bib0044) 2020; 35 Ben-Menachem, Hamberger, Hedner, Hammond, Uthman, Slater, Treig, Stefan, Ramsay, Wernicke (bib0008) 1995; 20 Colzato, Beste (bib0017) 2020; 123 Fang, Rong, Hong, Fan, Liu, Wang, Zhang, Chen, Shi, Wang (bib0025) 2016; 79 Andersson, Sotiropoulos (bib0003) 2016; 125 Lebow, Chen (bib0045) 2016; 21 Smith (bib0054) 2002; 17 Manta, El Mansari, Debonnel, Blier (bib0047) 2013; 16 Alhadeff (bib0001) 2021; 162 Hachem, Wong, Ibrahim (bib0032) 2018; 45 Szeska, Richter, Wendt, Weymar, Hamm (bib0057) 2020; 10 Jenkinson, Bannister, Brady, Smith (bib0035) 2002; 17 Liu, Yang, Zhang, Wang, Li, Li, Woelfer, Walter, Wang (bib0046) 2020; 17 Friston, Williams, Howard, Frackowiak, Turner (bib0028) 1996; 35 Fülling, Dinan, Cryan (bib0029) 2019; 101 Stamatakis, Sparta, Jennings, McElligott, Decot, Stuber (bib0056) 2014; 76 Pt B Neuser, Teckentrup, Kuhnel, Hallschmid, Walter, Kroemer (bib0049) 2020; 11 Cutsforth-Gregory, Benarroch (bib0019) 2017; 88 Butt, Albusoda, Farmer, Aziz (bib0013) 2020; 236 Ch’ng, Fu, Brown, McDougall, Lawrence (bib0014) 2018; 87 de Lartigue (bib0020) 2016; 594 Bright, Tench, Murphy (bib0011) 2017; 154 Frangos, Ellrich, Komisaruk (bib0027) 2015; 8 Noller, Levine, Urakov, Aronson, Nash (bib0050) 2019; 13 Smith, Beckmann, Andersson, Auerbach, Bijsterbosch, Douaud, Duff, Feinberg, Griffanti, Harms (bib0055) 2013; 80 Keute, Ruhnau, Heinze, Zaehle (bib0040) 2018; 129 Barraco (bib0006) 1994 Keute, Demirezen, Graf, Mueller, Zaehle (bib0039) 2019; 9 Chen, Cheng, Wang, Zhang, Xu, Cao, Wang, Herzog, Song, Zhan (bib0015) 2020; 30 Clemmensen, Muller, Woods, Berthoud, Seeley, Tschop (bib0016) 2017; 168 Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib0053) 2014; 90 Borgmann, Ciglieri, Biglari, Brandt, Cremer, Backes, Tittgemeyer, Wunderlich, Bruning, Fenselau (bib0009) 2021; 33 Kim, Seeley, Sandoval (bib0041) 2018; 19 Dorr, Debonnel (bib0021) 2006; 318 Egerod, Schwartz, Gautron (bib0023) 2019; 42 Tittgemeyer, Rigoux, Knösche (bib0059) 2018; 173 Eklund, Nichols, Knutsson (bib0024) 2016; 113 Goldstein (10.1016/j.neuroimage.2021.118566_bib0030) 2021; 33 Aston-Jones (10.1016/j.neuroimage.2021.118566_bib0004) 2004; 24 Jenkinson (10.1016/j.neuroimage.2021.118566_bib0035) 2002; 17 Frangos (10.1016/j.neuroimage.2021.118566_bib0027) 2015; 8 Borgmann (10.1016/j.neuroimage.2021.118566_bib0009) 2021; 33 Lebow (10.1016/j.neuroimage.2021.118566_bib0045) 2016; 21 Szeska (10.1016/j.neuroimage.2021.118566_bib0057) 2020; 10 Warren (10.1016/j.neuroimage.2021.118566_bib0063) 2019; 12 Manuel (10.1016/j.neuroimage.2021.118566_bib0048) 2020; 9 Keute (10.1016/j.neuroimage.2021.118566_bib0040) 2018; 129 Friston (10.1016/j.neuroimage.2021.118566_bib0028) 1996; 35 Alicart (10.1016/j.neuroimage.2021.118566_bib0002) 2020 Jenkinson (10.1016/j.neuroimage.2021.118566_bib0034) 2005 Kaniusas (10.1016/j.neuroimage.2021.118566_bib0038) 2020; 67 Kuhnel (10.1016/j.neuroimage.2021.118566_bib0044) 2020; 35 de Lartigue (10.1016/j.neuroimage.2021.118566_bib0020) 2016; 594 Eklund (10.1016/j.neuroimage.2021.118566_bib0024) 2016; 113 Bai (10.1016/j.neuroimage.2021.118566_bib0005) 2019; 179 Griffanti (10.1016/j.neuroimage.2021.118566_bib0031) 2014; 95 Flandin (10.1016/j.neuroimage.2021.118566_bib0026) 2019; 40 Kim (10.1016/j.neuroimage.2021.118566_bib0041) 2018; 19 Liu (10.1016/j.neuroimage.2021.118566_bib0046) 2020; 17 Power (10.1016/j.neuroimage.2021.118566_bib0052) 2015; 105 Ch’ng (10.1016/j.neuroimage.2021.118566_bib0014) 2018; 87 Fang (10.1016/j.neuroimage.2021.118566_bib0025) 2016; 79 Barraco (10.1016/j.neuroimage.2021.118566_bib0006) 1994 Edwin Thanarajah (10.1016/j.neuroimage.2021.118566_bib0022) 2019; 194 Salimi-Khorshidi (10.1016/j.neuroimage.2021.118566_bib0053) 2014; 90 Smith (10.1016/j.neuroimage.2021.118566_bib0054) 2002; 17 Clemmensen (10.1016/j.neuroimage.2021.118566_bib0016) 2017; 168 Kraus (10.1016/j.neuroimage.2021.118566_bib0043) 2013; 6 Smith (10.1016/j.neuroimage.2021.118566_bib0055) 2013; 80 Obst (10.1016/j.neuroimage.2021.118566_bib0051) 2020; 14 Colzato (10.1016/j.neuroimage.2021.118566_bib0017) 2020; 123 Hachem (10.1016/j.neuroimage.2021.118566_bib0032) 2018; 45 Neuser (10.1016/j.neuroimage.2021.118566_bib0049) 2020; 11 Kaniusas (10.1016/j.neuroimage.2021.118566_bib0036) 2019; 13 von Wrede (10.1016/j.neuroimage.2021.118566_bib0061) 2021; 11 Travagli (10.1016/j.neuroimage.2021.118566_bib0060) 2016; 13 Koenig (10.1016/j.neuroimage.2021.118566_bib0042) 2021; 51 Manta (10.1016/j.neuroimage.2021.118566_bib0047) 2013; 16 Yu (10.1016/j.neuroimage.2021.118566_bib0065) 2020; 62 Andersson (10.1016/j.neuroimage.2021.118566_bib0003) 2016; 125 Noller (10.1016/j.neuroimage.2021.118566_bib0050) 2019; 13 Tittgemeyer (10.1016/j.neuroimage.2021.118566_bib0059) 2018; 173 Han (10.1016/j.neuroimage.2021.118566_bib0033) 2018; 175 Cork (10.1016/j.neuroimage.2021.118566_bib0018) 2018; 30 Yakunina (10.1016/j.neuroimage.2021.118566_bib0064) 2017; 20 Bretherton (10.1016/j.neuroimage.2021.118566_bib0010) 2019; 11 Stamatakis (10.1016/j.neuroimage.2021.118566_bib0056) 2014; 76 Pt B Alhadeff (10.1016/j.neuroimage.2021.118566_bib0001) 2021; 162 Butt (10.1016/j.neuroimage.2021.118566_bib0013) 2020; 236 Wandschneider (10.1016/j.neuroimage.2021.118566_bib0062) 2016; 12 Kaniusas (10.1016/j.neuroimage.2021.118566_bib0037) 2019; 13 Brown (10.1016/j.neuroimage.2021.118566_bib0012) 2002; 22 Chen (10.1016/j.neuroimage.2021.118566_bib0015) 2020; 30 Ben-Menachem (10.1016/j.neuroimage.2021.118566_bib0008) 1995; 20 Bright (10.1016/j.neuroimage.2021.118566_bib0011) 2017; 154 Dorr (10.1016/j.neuroimage.2021.118566_bib0021) 2006; 318 Fülling (10.1016/j.neuroimage.2021.118566_bib0029) 2019; 101 Tan (10.1016/j.neuroimage.2021.118566_bib0058) 2020; 580 Egerod (10.1016/j.neuroimage.2021.118566_bib0023) 2019; 42 Beissner (10.1016/j.neuroimage.2021.118566_bib0007) 2014; 86 Keute (10.1016/j.neuroimage.2021.118566_bib0039) 2019; 9 Cutsforth-Gregory (10.1016/j.neuroimage.2021.118566_bib0019) 2017; 88 |
References_xml | – volume: 20 start-page: 290 year: 2017 end-page: 300 ident: bib0064 article-title: Optimization of transcutaneous vagus nerve stimulation using functional MRI publication-title: Neuromodulation – volume: 95 start-page: 232 year: 2014 end-page: 247 ident: bib0031 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: Neuroimage – volume: 11 start-page: 4836 year: 2019 end-page: 4857 ident: bib0010 article-title: Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation publication-title: Aging (Albany NY) – year: 1994 ident: bib0006 article-title: Nucleus of the Solitary Tract – volume: 45 start-page: E2 year: 2018 ident: bib0032 article-title: The vagus afferent network: emerging role in translational connectomics publication-title: Neurosurg. Focus – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: bib0035 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage – volume: 17 start-page: 54 year: 2020 ident: bib0046 article-title: Neural networks and the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation in depression publication-title: J. Neuroinflammation – volume: 318 start-page: 890 year: 2006 end-page: 898 ident: bib0021 article-title: Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission publication-title: J. Pharmacol. Exp. Ther. – volume: 154 start-page: 159 year: 2017 end-page: 168 ident: bib0011 article-title: Potential pitfalls when denoising resting state fMRI data using nuisance regression publication-title: Neuroimage – volume: 236 start-page: 588 year: 2020 end-page: 611 ident: bib0013 article-title: The anatomical basis for transcutaneous auricular vagus nerve stimulation publication-title: J. Anat. – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: bib0054 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. – volume: 105 start-page: 536 year: 2015 end-page: 551 ident: bib0052 article-title: Recent progress and outstanding issues in motion correction in resting state fMRI publication-title: Neuroimage – volume: 30 start-page: e12643 year: 2018 ident: bib0018 article-title: The role of the vagus nerve in appetite control: Implications for the pathogenesis of obesity publication-title: J. Neuroendocrinol. – volume: 35 start-page: 346 year: 1996 end-page: 355 ident: bib0028 article-title: Movement-related effects in fMRI time-series publication-title: Magn. Reson. Med. – volume: 40 start-page: 2052 year: 2019 end-page: 2054 ident: bib0026 article-title: Analysis of family-wise error rates in statistical parametric mapping using random field theory publication-title: Hum. Brain Mapp. – volume: 19 start-page: 185 year: 2018 end-page: 196 ident: bib0041 article-title: Signalling from the periphery to the brain that regulates energy homeostasis publication-title: Nat. Rev. Neurosci. – volume: 8 start-page: 624 year: 2015 end-page: 636 ident: bib0027 article-title: Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans publication-title: Brain Stimul. – volume: 11 start-page: 7906 year: 2021 ident: bib0061 article-title: Transcutaneous auricular vagus nerve stimulation induces stabilizing modifications in large-scale functional brain networks: towards understanding the effects of taVNS in subjects with epilepsy publication-title: Sci. Rep. – volume: 162 start-page: bqab029 year: 2021 ident: bib0001 article-title: Monitoring in vivo neural activity to understand gut-brain signaling publication-title: Endocrinology – volume: 22 start-page: 8850 year: 2002 end-page: 8859 ident: bib0012 article-title: Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline) publication-title: J. Neurosci. – volume: 125 start-page: 1063 year: 2016 end-page: 1078 ident: bib0003 article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: Neuroimage – volume: 88 start-page: 1187 year: 2017 end-page: 1196 ident: bib0019 article-title: Nucleus of the solitary tract, medullary reflexes, and clinical implications publication-title: Neurology – volume: 62 start-page: 133 year: 2020 end-page: 140 ident: bib0065 article-title: Vagal sensory neurons and gut-brain signaling publication-title: Curr. Opin. Neurobiol. – volume: 30 start-page: 3986 year: 2020 end-page: 3998 ident: bib0015 article-title: A vagal-NTS neural pathway that stimulates feeding publication-title: Curr. Biol. – volume: 24 start-page: 2313 year: 2004 end-page: 2321 ident: bib0004 article-title: Numerous GABAergic afferents to locus ceruleus in the pericerulear dendritic zone: possible interneuronal pool publication-title: J. Neurosci. – volume: 35 start-page: 17 year: 2020 end-page: 29 ident: bib0044 article-title: Stimulation of the vagus nerve reduces learning in a go/no-go reinforcement learning task publication-title: Eur. Neuropsychopharmacol. – volume: 79 start-page: 266 year: 2016 end-page: 273 ident: bib0025 article-title: Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder publication-title: Biol. Psychiatry – volume: 580 start-page: 511 year: 2020 end-page: 516 ident: bib0058 article-title: The gut-brain axis mediates sugar preference publication-title: Nature – volume: 594 start-page: 5791 year: 2016 end-page: 5815 ident: bib0020 article-title: Role of the vagus nerve in the development and treatment of diet-induced obesity publication-title: J. Physiol. – volume: 194 start-page: 120 year: 2019 end-page: 127 ident: bib0022 article-title: Modulation of midbrain neurocircuitry by intranasal insulin publication-title: Neuroimage – volume: 87 start-page: 108 year: 2018 end-page: 125 ident: bib0014 article-title: The intersection of stress and reward: BNST modulation of aversive and appetitive states publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry – volume: 175 start-page: 665 year: 2018 end-page: 678 ident: bib0033 article-title: A Neural Circuit for Gut-Induced Reward publication-title: Cell – volume: 13 start-page: 389 year: 2016 end-page: 401 ident: bib0060 article-title: Vagal neurocircuitry and its influence on gastric motility publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 86 start-page: 91 year: 2014 end-page: 98 ident: bib0007 article-title: Advances in functional magnetic resonance imaging of the human brainstem publication-title: Neuroimage – volume: 9 start-page: 11452 year: 2019 ident: bib0039 article-title: No modulation of pupil size and event-related pupil response by transcutaneous auricular vagus nerve stimulation (taVNS) publication-title: Sci. Rep. – volume: 33 start-page: 676 year: 2021 end-page: 687 ident: bib0030 article-title: Hypothalamic detection of macronutrients via multiple gut-brain pathways publication-title: Cell Metab. – volume: 123 start-page: 1739 year: 2020 end-page: 1755 ident: bib0017 article-title: A literature review on the neurophysiological underpinnings and cognitive effects of transcutaneous vagus nerve stimulation: challenges and future directions publication-title: J. Neurophysiol. – volume: 51 start-page: 511 year: 2021 end-page: 520 ident: bib0042 article-title: Effects of acute transcutaneous vagus nerve stimulation on emotion recognition in adolescent depression publication-title: Psychol. Med. – volume: 113 start-page: 7900 year: 2016 end-page: 7905 ident: bib0024 article-title: Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 21 start-page: 450 year: 2016 end-page: 463 ident: bib0045 article-title: Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders publication-title: Mol Psychiatr – volume: 10 start-page: 1529 year: 2020 ident: bib0057 article-title: Promoting long-term inhibition of human fear responses by non-invasive transcutaneous vagus nerve stimulation during extinction training publication-title: Sci. Rep. – volume: 16 start-page: 459 year: 2013 end-page: 470 ident: bib0047 article-title: Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems publication-title: Int. J. Neuropsychopharmacol. – volume: 80 start-page: 144 year: 2013 end-page: 168 ident: bib0055 article-title: Resting-state fMRI in the human connectome project publication-title: Neuroimage – volume: 12 start-page: 691 year: 2016 end-page: 697 ident: bib0062 article-title: Pharmaco fMRI: Determining the functional anatomy of the effects of medication publication-title: Neuroimage Clin – volume: 42 start-page: 663 year: 2019 end-page: 666 ident: bib0023 article-title: The molecular diversity of vagal afferents revealed publication-title: Trends Neurosci. – volume: 9 start-page: e55316 year: 2020 ident: bib0048 article-title: Deciphering the neural signature of human cardiovascular regulation publication-title: Elife – volume: 13 start-page: 854 year: 2019 ident: bib0037 article-title: Current directions in the auricular vagus nerve stimulation I - a physiological perspective publication-title: Front Neurosci. – volume: 168 start-page: 758 year: 2017 end-page: 774 ident: bib0016 article-title: Gut-brain cross-talk in metabolic control publication-title: Cell – volume: 13 start-page: 772 year: 2019 ident: bib0036 article-title: Current directions in the auricular vagus nerve stimulation ii - an engineering perspective publication-title: Front Neurosci. – volume: 173 start-page: 592 year: 2018 end-page: 603 ident: bib0059 article-title: Cortical parcellation based on structural connectivity: A case for generative models publication-title: Neuroimage – volume: 6 start-page: 798 year: 2013 end-page: 804 ident: bib0043 article-title: CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal - a pilot study publication-title: Brain Stimul. – start-page: 1 year: 2020 end-page: 12 ident: bib0002 article-title: Modulation of visual processing of food by transcutaneous vagus nerve stimulation (tVNS) publication-title: Brain Imaging Behav. – volume: 76 Pt B start-page: 320 year: 2014 end-page: 328 ident: bib0056 article-title: Amygdala and bed nucleus of the stria terminalis circuitry: Implications for addiction-related behaviors publication-title: Neuropharmacology – volume: 11 start-page: 3555 year: 2020 ident: bib0049 article-title: Vagus nerve stimulation boosts the drive to work for rewards publication-title: Nat. Commun. – volume: 14 start-page: 206 year: 2020 ident: bib0051 article-title: Effect of short-term transcutaneous vagus nerve stimulation (tVNS) on brain processing of food cues: an electrophysiological study publication-title: Front. Hum. Neurosci. – volume: 13 start-page: 911 year: 2019 ident: bib0050 article-title: Vagus nerve stimulation in rodent models: an overview of technical considerations publication-title: Front Neurosci – volume: 90 start-page: 449 year: 2014 end-page: 468 ident: bib0053 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage – volume: 20 start-page: 221 year: 1995 end-page: 227 ident: bib0008 article-title: Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures publication-title: Epilepsy Res. – volume: 67 start-page: 1921 year: 2020 end-page: 1935 ident: bib0038 article-title: Stimulation pattern efficiency in percutaneous auricular vagus nerve stimulation: experimental versus numerical data publication-title: IEEE Trans. Biomed. Eng. – volume: 179 start-page: 1129 year: 2019 end-page: 1143 ident: bib0005 article-title: Genetic identification of vagal sensory neurons that control feeding publication-title: Cell – volume: 33 start-page: 1466 year: 2021 end-page: 1482 ident: bib0009 article-title: Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism publication-title: Cell Metab. – year: 2005 ident: bib0034 article-title: BET2: MR-based estimation of brain, skull and scalp surfaces publication-title: Eleventh Annual Meeting of the Organization for Human Brain Mapping – volume: 101 start-page: 998 year: 2019 end-page: 1002 ident: bib0029 article-title: Gut microbe to brain signaling: what happens in vagus… publication-title: Neuron – volume: 129 start-page: 1789 year: 2018 end-page: 1795 ident: bib0040 article-title: Behavioral and electrophysiological evidence for GABAergic modulation through transcutaneous vagus nerve stimulation publication-title: Clin. Neurophysiol. – volume: 12 start-page: 635 year: 2019 end-page: 642 ident: bib0063 article-title: The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential publication-title: Brain Stimul. – volume: 42 start-page: 663 year: 2019 ident: 10.1016/j.neuroimage.2021.118566_bib0023 article-title: The molecular diversity of vagal afferents revealed publication-title: Trends Neurosci. doi: 10.1016/j.tins.2019.08.002 – volume: 168 start-page: 758 year: 2017 ident: 10.1016/j.neuroimage.2021.118566_bib0016 article-title: Gut-brain cross-talk in metabolic control publication-title: Cell doi: 10.1016/j.cell.2017.01.025 – year: 2005 ident: 10.1016/j.neuroimage.2021.118566_bib0034 article-title: BET2: MR-based estimation of brain, skull and scalp surfaces – volume: 80 start-page: 144 year: 2013 ident: 10.1016/j.neuroimage.2021.118566_bib0055 article-title: Resting-state fMRI in the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.039 – volume: 21 start-page: 450 year: 2016 ident: 10.1016/j.neuroimage.2021.118566_bib0045 article-title: Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders publication-title: Mol Psychiatr doi: 10.1038/mp.2016.1 – volume: 173 start-page: 592 year: 2018 ident: 10.1016/j.neuroimage.2021.118566_bib0059 article-title: Cortical parcellation based on structural connectivity: A case for generative models publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.01.077 – volume: 129 start-page: 1789 year: 2018 ident: 10.1016/j.neuroimage.2021.118566_bib0040 article-title: Behavioral and electrophysiological evidence for GABAergic modulation through transcutaneous vagus nerve stimulation publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2018.05.026 – volume: 13 start-page: 911 year: 2019 ident: 10.1016/j.neuroimage.2021.118566_bib0050 article-title: Vagus nerve stimulation in rodent models: an overview of technical considerations publication-title: Front Neurosci doi: 10.3389/fnins.2019.00911 – volume: 67 start-page: 1921 year: 2020 ident: 10.1016/j.neuroimage.2021.118566_bib0038 article-title: Stimulation pattern efficiency in percutaneous auricular vagus nerve stimulation: experimental versus numerical data publication-title: IEEE Trans. Biomed. Eng. – volume: 16 start-page: 459 year: 2013 ident: 10.1016/j.neuroimage.2021.118566_bib0047 article-title: Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems publication-title: Int. J. Neuropsychopharmacol. doi: 10.1017/S1461145712000387 – volume: 76 Pt B start-page: 320 year: 2014 ident: 10.1016/j.neuroimage.2021.118566_bib0056 article-title: Amygdala and bed nucleus of the stria terminalis circuitry: Implications for addiction-related behaviors publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2013.05.046 – volume: 86 start-page: 91 year: 2014 ident: 10.1016/j.neuroimage.2021.118566_bib0007 article-title: Advances in functional magnetic resonance imaging of the human brainstem publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.07.081 – volume: 236 start-page: 588 year: 2020 ident: 10.1016/j.neuroimage.2021.118566_bib0013 article-title: The anatomical basis for transcutaneous auricular vagus nerve stimulation publication-title: J. Anat. doi: 10.1111/joa.13122 – volume: 105 start-page: 536 year: 2015 ident: 10.1016/j.neuroimage.2021.118566_bib0052 article-title: Recent progress and outstanding issues in motion correction in resting state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.044 – volume: 17 start-page: 54 year: 2020 ident: 10.1016/j.neuroimage.2021.118566_bib0046 article-title: Neural networks and the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation in depression publication-title: J. Neuroinflammation doi: 10.1186/s12974-020-01732-5 – volume: 101 start-page: 998 year: 2019 ident: 10.1016/j.neuroimage.2021.118566_bib0029 article-title: Gut microbe to brain signaling: what happens in vagus… publication-title: Neuron doi: 10.1016/j.neuron.2019.02.008 – volume: 179 start-page: 1129 year: 2019 ident: 10.1016/j.neuroimage.2021.118566_bib0005 article-title: Genetic identification of vagal sensory neurons that control feeding publication-title: Cell doi: 10.1016/j.cell.2019.10.031 – volume: 30 start-page: 3986 year: 2020 ident: 10.1016/j.neuroimage.2021.118566_bib0015 article-title: A vagal-NTS neural pathway that stimulates feeding publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.07.084 – volume: 90 start-page: 449 year: 2014 ident: 10.1016/j.neuroimage.2021.118566_bib0053 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.11.046 – volume: 19 start-page: 185 year: 2018 ident: 10.1016/j.neuroimage.2021.118566_bib0041 article-title: Signalling from the periphery to the brain that regulates energy homeostasis publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2018.8 – volume: 14 start-page: 206 year: 2020 ident: 10.1016/j.neuroimage.2021.118566_bib0051 article-title: Effect of short-term transcutaneous vagus nerve stimulation (tVNS) on brain processing of food cues: an electrophysiological study publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2020.00206 – volume: 20 start-page: 290 year: 2017 ident: 10.1016/j.neuroimage.2021.118566_bib0064 article-title: Optimization of transcutaneous vagus nerve stimulation using functional MRI publication-title: Neuromodulation doi: 10.1111/ner.12541 – volume: 79 start-page: 266 year: 2016 ident: 10.1016/j.neuroimage.2021.118566_bib0025 article-title: Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2015.03.025 – volume: 95 start-page: 232 year: 2014 ident: 10.1016/j.neuroimage.2021.118566_bib0031 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.034 – volume: 13 start-page: 772 year: 2019 ident: 10.1016/j.neuroimage.2021.118566_bib0036 article-title: Current directions in the auricular vagus nerve stimulation ii - an engineering perspective publication-title: Front Neurosci. doi: 10.3389/fnins.2019.00772 – volume: 162 start-page: bqab029 year: 2021 ident: 10.1016/j.neuroimage.2021.118566_bib0001 article-title: Monitoring in vivo neural activity to understand gut-brain signaling publication-title: Endocrinology doi: 10.1210/endocr/bqab029 – volume: 9 start-page: 11452 year: 2019 ident: 10.1016/j.neuroimage.2021.118566_bib0039 article-title: No modulation of pupil size and event-related pupil response by transcutaneous auricular vagus nerve stimulation (taVNS) publication-title: Sci. Rep. doi: 10.1038/s41598-019-47961-4 – volume: 318 start-page: 890 year: 2006 ident: 10.1016/j.neuroimage.2021.118566_bib0021 article-title: Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.106.104166 – volume: 40 start-page: 2052 year: 2019 ident: 10.1016/j.neuroimage.2021.118566_bib0026 article-title: Analysis of family-wise error rates in statistical parametric mapping using random field theory publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23839 – volume: 580 start-page: 511 year: 2020 ident: 10.1016/j.neuroimage.2021.118566_bib0058 article-title: The gut-brain axis mediates sugar preference publication-title: Nature doi: 10.1038/s41586-020-2199-7 – volume: 6 start-page: 798 year: 2013 ident: 10.1016/j.neuroimage.2021.118566_bib0043 article-title: CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal - a pilot study publication-title: Brain Stimul. doi: 10.1016/j.brs.2013.01.011 – start-page: 1 year: 2020 ident: 10.1016/j.neuroimage.2021.118566_bib0002 article-title: Modulation of visual processing of food by transcutaneous vagus nerve stimulation (tVNS) publication-title: Brain Imaging Behav. – volume: 12 start-page: 691 year: 2016 ident: 10.1016/j.neuroimage.2021.118566_bib0062 article-title: Pharmaco fMRI: Determining the functional anatomy of the effects of medication publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2016.10.002 – volume: 88 start-page: 1187 year: 2017 ident: 10.1016/j.neuroimage.2021.118566_bib0019 article-title: Nucleus of the solitary tract, medullary reflexes, and clinical implications publication-title: Neurology doi: 10.1212/WNL.0000000000003751 – volume: 194 start-page: 120 year: 2019 ident: 10.1016/j.neuroimage.2021.118566_bib0022 article-title: Modulation of midbrain neurocircuitry by intranasal insulin publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.03.050 – volume: 113 start-page: 7900 year: 2016 ident: 10.1016/j.neuroimage.2021.118566_bib0024 article-title: Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1602413113 – volume: 12 start-page: 635 year: 2019 ident: 10.1016/j.neuroimage.2021.118566_bib0063 article-title: The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential publication-title: Brain Stimul. doi: 10.1016/j.brs.2018.12.224 – year: 1994 ident: 10.1016/j.neuroimage.2021.118566_bib0006 – volume: 17 start-page: 143 year: 2002 ident: 10.1016/j.neuroimage.2021.118566_bib0054 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10062 – volume: 13 start-page: 854 year: 2019 ident: 10.1016/j.neuroimage.2021.118566_bib0037 article-title: Current directions in the auricular vagus nerve stimulation I - a physiological perspective publication-title: Front Neurosci. doi: 10.3389/fnins.2019.00854 – volume: 87 start-page: 108 year: 2018 ident: 10.1016/j.neuroimage.2021.118566_bib0014 article-title: The intersection of stress and reward: BNST modulation of aversive and appetitive states publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry doi: 10.1016/j.pnpbp.2018.01.005 – volume: 13 start-page: 389 year: 2016 ident: 10.1016/j.neuroimage.2021.118566_bib0060 article-title: Vagal neurocircuitry and its influence on gastric motility publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2016.76 – volume: 51 start-page: 511 year: 2021 ident: 10.1016/j.neuroimage.2021.118566_bib0042 article-title: Effects of acute transcutaneous vagus nerve stimulation on emotion recognition in adolescent depression publication-title: Psychol. Med. doi: 10.1017/S0033291719003490 – volume: 33 start-page: 676 year: 2021 ident: 10.1016/j.neuroimage.2021.118566_bib0030 article-title: Hypothalamic detection of macronutrients via multiple gut-brain pathways publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.12.018 – volume: 594 start-page: 5791 year: 2016 ident: 10.1016/j.neuroimage.2021.118566_bib0020 article-title: Role of the vagus nerve in the development and treatment of diet-induced obesity publication-title: J. Physiol. doi: 10.1113/JP271538 – volume: 9 start-page: e55316 year: 2020 ident: 10.1016/j.neuroimage.2021.118566_bib0048 article-title: Deciphering the neural signature of human cardiovascular regulation publication-title: Elife doi: 10.7554/eLife.55316 – volume: 30 start-page: e12643 year: 2018 ident: 10.1016/j.neuroimage.2021.118566_bib0018 article-title: The role of the vagus nerve in appetite control: Implications for the pathogenesis of obesity publication-title: J. Neuroendocrinol. doi: 10.1111/jne.12643 – volume: 33 start-page: 1466 year: 2021 ident: 10.1016/j.neuroimage.2021.118566_bib0009 article-title: Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism publication-title: Cell Metab. doi: 10.1016/j.cmet.2021.05.002 – volume: 125 start-page: 1063 year: 2016 ident: 10.1016/j.neuroimage.2021.118566_bib0003 article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.10.019 – volume: 175 start-page: 665 year: 2018 ident: 10.1016/j.neuroimage.2021.118566_bib0033 article-title: A Neural Circuit for Gut-Induced Reward publication-title: Cell doi: 10.1016/j.cell.2018.08.049 – volume: 11 start-page: 3555 year: 2020 ident: 10.1016/j.neuroimage.2021.118566_bib0049 article-title: Vagus nerve stimulation boosts the drive to work for rewards publication-title: Nat. Commun. doi: 10.1038/s41467-020-17344-9 – volume: 24 start-page: 2313 year: 2004 ident: 10.1016/j.neuroimage.2021.118566_bib0004 article-title: Numerous GABAergic afferents to locus ceruleus in the pericerulear dendritic zone: possible interneuronal pool publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5339-03.2004 – volume: 35 start-page: 17 year: 2020 ident: 10.1016/j.neuroimage.2021.118566_bib0044 article-title: Stimulation of the vagus nerve reduces learning in a go/no-go reinforcement learning task publication-title: Eur. Neuropsychopharmacol. doi: 10.1016/j.euroneuro.2020.03.023 – volume: 17 start-page: 825 year: 2002 ident: 10.1016/j.neuroimage.2021.118566_bib0035 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage doi: 10.1006/nimg.2002.1132 – volume: 11 start-page: 4836 year: 2019 ident: 10.1016/j.neuroimage.2021.118566_bib0010 article-title: Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation publication-title: Aging (Albany NY) doi: 10.18632/aging.102074 – volume: 62 start-page: 133 year: 2020 ident: 10.1016/j.neuroimage.2021.118566_bib0065 article-title: Vagal sensory neurons and gut-brain signaling publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2020.03.006 – volume: 35 start-page: 346 year: 1996 ident: 10.1016/j.neuroimage.2021.118566_bib0028 article-title: Movement-related effects in fMRI time-series publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910350312 – volume: 154 start-page: 159 year: 2017 ident: 10.1016/j.neuroimage.2021.118566_bib0011 article-title: Potential pitfalls when denoising resting state fMRI data using nuisance regression publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.12.027 – volume: 8 start-page: 624 year: 2015 ident: 10.1016/j.neuroimage.2021.118566_bib0027 article-title: Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans publication-title: Brain Stimul. doi: 10.1016/j.brs.2014.11.018 – volume: 11 start-page: 7906 year: 2021 ident: 10.1016/j.neuroimage.2021.118566_bib0061 article-title: Transcutaneous auricular vagus nerve stimulation induces stabilizing modifications in large-scale functional brain networks: towards understanding the effects of taVNS in subjects with epilepsy publication-title: Sci. Rep. doi: 10.1038/s41598-021-87032-1 – volume: 10 start-page: 1529 year: 2020 ident: 10.1016/j.neuroimage.2021.118566_bib0057 article-title: Promoting long-term inhibition of human fear responses by non-invasive transcutaneous vagus nerve stimulation during extinction training publication-title: Sci. Rep. doi: 10.1038/s41598-020-58412-w – volume: 20 start-page: 221 year: 1995 ident: 10.1016/j.neuroimage.2021.118566_bib0008 article-title: Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures publication-title: Epilepsy Res. doi: 10.1016/0920-1211(94)00083-9 – volume: 22 start-page: 8850 year: 2002 ident: 10.1016/j.neuroimage.2021.118566_bib0012 article-title: Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline) publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-20-08850.2002 – volume: 123 start-page: 1739 year: 2020 ident: 10.1016/j.neuroimage.2021.118566_bib0017 article-title: A literature review on the neurophysiological underpinnings and cognitive effects of transcutaneous vagus nerve stimulation: challenges and future directions publication-title: J. Neurophysiol. doi: 10.1152/jn.00057.2020 – volume: 45 start-page: E2 year: 2018 ident: 10.1016/j.neuroimage.2021.118566_bib0032 article-title: The vagus afferent network: emerging role in translational connectomics publication-title: Neurosurg. Focus doi: 10.3171/2018.6.FOCUS18216 |
SSID | ssj0009148 |
Score | 2.5107923 |
Snippet | •taVNS effects on brainstem activity are assessed during fMRI.•taVNS modulates activity in brainstem vagal afferent targets (including the NTS).•The signal... Our increasing knowledge about gut-brain interaction is revolutionising the understanding of the links between digestion, mood, health, and even decision... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 118566 |
SubjectTerms | Adaptation, Physiological Adult Affect Afferent Pathways - physiology Autonomic nervous system Autonomic Nervous System - physiology Brain mapping Brain stem Brain Stem - physiology Cross-Over Studies Data acquisition Decision making Diabetes mellitus Digestive system Female Functional magnetic resonance imaging Gastrointestinal tract Humans Magnetic Resonance Imaging - methods Male Metabolism Neuromodulation Peripheral Nervous System - physiology Physiology Scanners Sensory neurons Signal transduction Solitary tract nucleus Substantia nigra Subthalamic nucleus Transcutaneous Electric Nerve Stimulation Vagus nerve Vagus Nerve - physiology Vagus Nerve Stimulation - methods |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQHhAXxDdbFmQkrhFZO7GT9tRWrQrS9oCo1JuxnTFaxG6q3Wwl_n1nYieFA2IPXHJI7MiaGXveZCZvGPugCy8q612GaMRlxbyCzDbEliedAFtWzvaB4uJSXVwVn6_L699afVFNWKQHjoL7iB4IQ-7cQg6yyK2w0klXB8ovVsSWRqcv-rwhmBrodhHlp7qdWM3Vs0MuV7hHMSYUczwpqrJnRrx3Rj1n_x8-6W-Ys_c950_Y4wQa-XFc7FP2ANbP2MNFSos_Z9_6D-Qkbn7ZdnDIF22T2nLxNvCw-PKJO-oFQazNfBPLYmHL3S_eka_yO4SI0O62_NZ-x-uayiA5bv5VessLdnV-9vX0IkutEzKP-KvLMEyYa_AyKK-slwChqUHL4EWjMMYCBA4QIA-eMnVQ1EHJ0OQa1VR5r5WTL9lk3a7hNeMVRigOtLZ1g-ilLK0rnCxDA6gIoUqYMj3I0PjEK07tLX6aoYDsh7mXviHpmyj9KZuPM28it8Yec05ITeN4Ysfub6DNmGQz5l82M2X1oGQz_ICKRya-aLnHAo7GuQmkRPCx5-zZYFMmHRZbI0qUsaQc95S9Hx_jNqfcTVQ_jtECo3OlcMyraIujDGRBHD5CHvwP2bxhj2i9sWJnxibdZgdvEXd17l2_xe4APzArKQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgSIgLKp9dWpCRuEYkdhIn9FABoipI2wOi0t6M7YyrIrppd7NI_HtmbCcrDqC95JDYljVjzzx7Jm8Ye6NKJxrjbIZoxGZl0UBmOmLLk1aAqRprwkFxfl6fXZRfFtUiXbitU1rlaBODoe56R3fkb0XVoPOkQODJzW1GVaMouppKaNxl94i6jFa1Wqgt6W5Rxl_hKpk12CBl8sT8rsAXeXWNuxZPiaJA29FUgStx654Ci_9fXupfKDR4o9N99jDBSP4-6v0RuwPLx-z-PAXKn7Dv4cqcFMDP-wHe8XnfpUJdvPfcz79-5paqQxCPM1_FRFlYc_ubD-S93AZBI_SbNf9lLvG5pMRIjubgOo3ylF2cfvr28SxLxRQyh4hsyPDgUChw0teuNk4C-K4FJb0TXY2nLkAoAR5y7yh2B2Xra-m7XKHiGudUbeUztrfsl3DAOCpCWFDKtB2qpKqMLa2sfAfSIhisYMbUKEPtEtM4Fbz4qceUsh96K31N0tdR-jNWTD1vItvGDn0-kJqm9sSXHV70q0udtp9GHCNlnhvIQZa5EQanaltPUeqGOPdmrB2VrMdfUtGI4kBXO0zgeOqbYEuEIzv2PhrXlE7mY623i33GXk-fceNTNCeqH9sogef1usY2z-NanGQgS2L1EfLF_wc_ZA9oJjE754jtDasNvESMNdhXYSP9AVGaJhU priority: 102 providerName: ProQuest |
Title | Technical Note: Modulation of fMRI brainstem responses by transcutaneous vagus nerve stimulation |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921008399 https://dx.doi.org/10.1016/j.neuroimage.2021.118566 https://www.ncbi.nlm.nih.gov/pubmed/34509623 https://www.proquest.com/docview/2586430280 https://www.proquest.com/docview/2572210660 https://doaj.org/article/1813300ae0e340a2a3b3b9f423289609 |
Volume | 244 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swEBalg7GXsd_L1gUN9urFtmTL3p7a0pJuJIxuhbxpknwqGWtcEmewl_3tu7Nlhz4MAntxiC0ZcXc6fec7fWLsnZIuLYyzEaIRG8mkgMhUxJYnbAomK6xpA8XZPJ9eyU-LbHHATvu9MFRWGXx_59Nbbx3uTII0J7fL5eQrIgNcbojPi3BESZv4pFRk5e__7Mo8ykR22-EyEVHrUM3T1Xi1nJHLG5y5GCmmCfqPImv5EndLVMvkf2el-hcSbVek80fsYYCS_Lgb7WN2AKsn7P4sJMufsu_tZ3NSAp_XDXzgs7oKh3Xx2nM_u7zglk6IIC5nvu6KZWHD7W_e0Armtggcod5u-C9zjdcVFUdydAk34S3P2NX52bfTaRQOVIgcorImwuAhUeCEz11unADwVQlKeJdWOUZegHACPMTeUf4OZOlz4atYofIK51RuxXN2uKpX8JLxAuMWC0qZskJMk2XGSisyX4GwCAgzGDHVy1C7wDZOh1781H1Z2Q-9k74m6etO-iOWDD1vO8aNPfqckJqG9sSZ3d6o19c6GI1GLCNEHBuIQcjYpAaHaktPmeqCePdGrOyVrPttqehI8UXLPQbwceh7x3z37H3U25QOLmSj0wxlLCjzPWJvh8c4-Smj06kf26gUzT_Psc2LzhYHGQhJzD6pePVfQ3vNHtC_roDniB026y28QRjW2HE7z_CqFmrM7h1ffJ7O8ffkbP7lctx-2vgLJio2YQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkIAXxDeFAUaCx4jETuIEhBBfU8vWPqBN6ptnO-dpaGu2NgXtn-Jv5C5OWvEA6ste8tDYlnt3vvtd7nzH2CuVOlEYZyNEIzZKkwIiU1G1PGkFmKywpnUUx5N8eJh-m2bTLfa7vwtDaZW9TmwVdVU7-kb-RmQFGk8KBH44v4ioaxRFV_sWGkEs9uDyF7psi_ejL8jf10Lsfj34PIy6rgKRQ2jSRIigEwVO-tzlxkkAX5WgpHeiytH9ALSp4CH2joJYkJY-l76KFf6DwjmVW4nrXmPX0fDG5OypqVoX-U3ScPUuk1GRJGWXORTyydr6lCdnqCXQKxUJ6qoia2szrs1h2zXgL6v4L9TbWr_dO-x2B1v5xyBnd9kWzO6xG-MuMH-fHbWf6InhfFI38JaP66prDMZrz_34-4hb6kZBdaP5PCTmwoLbS96QtXRLBKlQLxf8pznG54wSMTmqn7NulQfs8ErI_JBtz-oZPGYcGS8sKGXKCkUgy4xNrcx8BdIi-MxgwFRPQ-26yubUYONU9ylsP_Sa-pqorwP1ByxZzTwP1T02mPOJ2LQaT_W52x_q-bHujrtG3CRlHBuIQaaxEQa3aktPUfGCavwNWNkzWfdXYFFp40InG2zg3WpuB5MC_Nlw9k4vU7pTVwu9PlwD9nL1GhUNRY8C-3GMEiJBhIpjHgVZXNFAplRFSMgn_1_8Bbs5PBjv6_3RZO8pu0W7CplBO2y7mS_hGeK7xj5vDxVnR1d9iv8ApeNk0g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKlVcEG8CBYwEx1V37X2CEKK0UUNJVFVU6s21veOqiGZLHqD-NX4dM2tvIg6gXHrZQ9a2nJnxzDc74xnGXhepFaW2JkI0YqI0KSHSNVXLk0aAzkqjW0dxNM4PTtLPp9npBvvd3YWhtMpOJ7aKum4sfSPfEVmJxpMCgTsupEUc7Q0-XP2IqIMURVq7dhpeRA7h-he6b7P3wz3k9RshBvtfPx1EocNAZBGmzCNE00kBVrrc5tpKAFdXUEhnRZ2jKwJoX8FB7CwFtCCtXC5dHRf4b0pri9xIXPcW2yzIK-qxzd398dHxquRvkvqLeJmMyiSpQh6Rzy5rq1VeXKLOQB9VJKi5yqyt1Lgyjm0Pgb9s5L8wcGsLB3fZnQBi-UcvdffYBkzus61RCNM_YGftB3tiPx83c3jLR00d2oTxxnE3Oh5yQ70pqIo0n_o0XZhxc83nZDvtAiErNIsZ_6nP8TmhtEyOyugyrPKQndwIoR-x3qSZwBPGUQyEgaLQVY0CkWXapEZmrgZpEIpm0GdFR0NlQ51zarfxXXUJbd_UivqKqK889fssWc688rU-1pizS2xajqdq3e0PzfRchcOvEEVJGccaYpBprIXGrZrKUYy8pIp_fVZ1TFbdhVhU4bjQxRobeLecG0CTB0Nrzt7uZEoF5TVTq6PWZ6-Wr1HtUCzJsx_HFEIkiFdxzGMvi0sayJRqCgn59P-Lv2RbeILVl-H48Bm7TZvyaULbrDefLuA5gr25eRFOFWdnN32Q_wBAsGpt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Technical+Note%3A+Modulation+of+fMRI+brainstem+responses+by+transcutaneous+vagus+nerve+stimulation&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Borgmann%2C+Diba&rft.au=Rigoux%2C+Lionel&rft.au=Kuzmanovic%2C+Bojana&rft.au=Edwin+Thanarajah%2C+Sharmili&rft.date=2021-12-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=244&rft.spage=118566&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118566&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |