Technical Note: Modulation of fMRI brainstem responses by transcutaneous vagus nerve stimulation

•taVNS effects on brainstem activity are assessed during fMRI.•taVNS modulates activity in brainstem vagal afferent targets (including the NTS).•The signal dynamics over time indicates both acute, persistent and delayed effects of taVNS. Our increasing knowledge about gut-brain interaction is revolu...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 244; p. 118566
Main Authors Borgmann, Diba, Rigoux, Lionel, Kuzmanovic, Bojana, Edwin Thanarajah, Sharmili, Münte, Thomas F., Fenselau, Henning, Tittgemeyer, Marc
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2021
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •taVNS effects on brainstem activity are assessed during fMRI.•taVNS modulates activity in brainstem vagal afferent targets (including the NTS).•The signal dynamics over time indicates both acute, persistent and delayed effects of taVNS. Our increasing knowledge about gut-brain interaction is revolutionising the understanding of the links between digestion, mood, health, and even decision making in our everyday lives. In support of this interaction, the vagus nerve is a crucial pathway transmitting diverse gut-derived signals to the brain to monitor of metabolic status, digestive processes, or immune control to adapt behavioural and autonomic responses. Hence, neuromodulation methods targeting the vagus nerve are currently explored as a treatment option in a number of clinical disorders, including diabetes, chronic pain, and depression. The non-invasive variant of vagus nerve stimulation (VNS), transcutaneous auricular VNS (taVNS), has been implicated in both acute and long-lasting effects by modulating afferent vagus nerve target areas in the brain. The physiology of neither of those effects is, however, well understood, and evidence for neuronal response upon taVNS in vagal afferent projection regions in the brainstem and its downstream targets remain to be established. Therefore, to examine time-dependent effects of taVNS on brainstem neuronal responses in healthy human subjects, we applied taVNS during task-free fMRI in a single-blinded crossover design. During fMRI data acquisition, we either stimulated the left earlobe (sham), or the target zone of the auricular branch of the vagus nerve in the outer ear (cymba conchae, verum) for several minutes, both followed by a short ‘stimulation OFF’ period. Time-dependent effects were assessed by averaging the BOLD response for consecutive 1-minute periods in an ROI-based analysis of the brainstem. We found a significant response to acute taVNS stimulation, relative to the control condition, in downstream targets of vagal afferents, including the nucleus of the solitary tract, the substantia nigra, and the subthalamic nucleus. Most of these brainstem regions remarkably showed increased activity in response to taVNS, and these effect sustained during the post-stimulation period. These data demonstrate that taVNS activates key brainstem regions, and highlight the potential of this approach to modulate vagal afferent signalling. Furthermore, we show that carry-over effects need to be considered when interpreting fMRI data in the context of general vagal neurophysiology and its modulation by taVNS.
AbstractList Our increasing knowledge about gut-brain interaction is revolutionising the understanding of the links between digestion, mood, health, and even decision making in our everyday lives. In support of this interaction, the vagus nerve is a crucial pathway transmitting diverse gut-derived signals to the brain to monitor of metabolic status, digestive processes, or immune control to adapt behavioural and autonomic responses. Hence, neuromodulation methods targeting the vagus nerve are currently explored as a treatment option in a number of clinical disorders, including diabetes, chronic pain, and depression. The non-invasive variant of vagus nerve stimulation (VNS), transcutaneous auricular VNS (taVNS), has been implicated in both acute and long-lasting effects by modulating afferent vagus nerve target areas in the brain. The physiology of neither of those effects is, however, well understood, and evidence for neuronal response upon taVNS in vagal afferent projection regions in the brainstem and its downstream targets remain to be established. Therefore, to examine time-dependent effects of taVNS on brainstem neuronal responses in healthy human subjects, we applied taVNS during task-free fMRI in a single-blinded crossover design. During fMRI data acquisition, we either stimulated the left earlobe (sham), or the target zone of the auricular branch of the vagus nerve in the outer ear (cymba conchae, verum) for several minutes, both followed by a short 'stimulation OFF' period. Time-dependent effects were assessed by averaging the BOLD response for consecutive 1-minute periods in an ROI-based analysis of the brainstem. We found a significant response to acute taVNS stimulation, relative to the control condition, in downstream targets of vagal afferents, including the nucleus of the solitary tract, the substantia nigra, and the subthalamic nucleus. Most of these brainstem regions remarkably showed increased activity in response to taVNS, and these effect sustained during the post-stimulation period. These data demonstrate that taVNS activates key brainstem regions, and highlight the potential of this approach to modulate vagal afferent signalling. Furthermore, we show that carry-over effects need to be considered when interpreting fMRI data in the context of general vagal neurophysiology and its modulation by taVNS.
Our increasing knowledge about gut-brain interaction is revolutionising the understanding of the links between digestion, mood, health, and even decision making in our everyday lives. In support of this interaction, the vagus nerve is a crucial pathway transmitting diverse gut-derived signals to the brain to monitor of metabolic status, digestive processes, or immune control to adapt behavioural and autonomic responses. Hence, neuromodulation methods targeting the vagus nerve are currently explored as a treatment option in a number of clinical disorders, including diabetes, chronic pain, and depression. The non-invasive variant of vagus nerve stimulation (VNS), transcutaneous auricular VNS (taVNS), has been implicated in both acute and long-lasting effects by modulating afferent vagus nerve target areas in the brain. The physiology of neither of those effects is, however, well understood, and evidence for neuronal response upon taVNS in vagal afferent projection regions in the brainstem and its downstream targets remain to be established. Therefore, to examine time-dependent effects of taVNS on brainstem neuronal responses in healthy human subjects, we applied taVNS during task-free fMRI in a single-blinded crossover design. During fMRI data acquisition, we either stimulated the left earlobe (sham), or the target zone of the auricular branch of the vagus nerve in the outer ear (cymba conchae, verum) for several minutes, both followed by a short 'stimulation OFF' period. Time-dependent effects were assessed by averaging the BOLD response for consecutive 1-minute periods in an ROI-based analysis of the brainstem. We found a significant response to acute taVNS stimulation, relative to the control condition, in downstream targets of vagal afferents, including the nucleus of the solitary tract, the substantia nigra, and the subthalamic nucleus. Most of these brainstem regions remarkably showed increased activity in response to taVNS, and these effect sustained during the post-stimulation period. These data demonstrate that taVNS activates key brainstem regions, and highlight the potential of this approach to modulate vagal afferent signalling. Furthermore, we show that carry-over effects need to be considered when interpreting fMRI data in the context of general vagal neurophysiology and its modulation by taVNS.Our increasing knowledge about gut-brain interaction is revolutionising the understanding of the links between digestion, mood, health, and even decision making in our everyday lives. In support of this interaction, the vagus nerve is a crucial pathway transmitting diverse gut-derived signals to the brain to monitor of metabolic status, digestive processes, or immune control to adapt behavioural and autonomic responses. Hence, neuromodulation methods targeting the vagus nerve are currently explored as a treatment option in a number of clinical disorders, including diabetes, chronic pain, and depression. The non-invasive variant of vagus nerve stimulation (VNS), transcutaneous auricular VNS (taVNS), has been implicated in both acute and long-lasting effects by modulating afferent vagus nerve target areas in the brain. The physiology of neither of those effects is, however, well understood, and evidence for neuronal response upon taVNS in vagal afferent projection regions in the brainstem and its downstream targets remain to be established. Therefore, to examine time-dependent effects of taVNS on brainstem neuronal responses in healthy human subjects, we applied taVNS during task-free fMRI in a single-blinded crossover design. During fMRI data acquisition, we either stimulated the left earlobe (sham), or the target zone of the auricular branch of the vagus nerve in the outer ear (cymba conchae, verum) for several minutes, both followed by a short 'stimulation OFF' period. Time-dependent effects were assessed by averaging the BOLD response for consecutive 1-minute periods in an ROI-based analysis of the brainstem. We found a significant response to acute taVNS stimulation, relative to the control condition, in downstream targets of vagal afferents, including the nucleus of the solitary tract, the substantia nigra, and the subthalamic nucleus. Most of these brainstem regions remarkably showed increased activity in response to taVNS, and these effect sustained during the post-stimulation period. These data demonstrate that taVNS activates key brainstem regions, and highlight the potential of this approach to modulate vagal afferent signalling. Furthermore, we show that carry-over effects need to be considered when interpreting fMRI data in the context of general vagal neurophysiology and its modulation by taVNS.
•taVNS effects on brainstem activity are assessed during fMRI.•taVNS modulates activity in brainstem vagal afferent targets (including the NTS).•The signal dynamics over time indicates both acute, persistent and delayed effects of taVNS. Our increasing knowledge about gut-brain interaction is revolutionising the understanding of the links between digestion, mood, health, and even decision making in our everyday lives. In support of this interaction, the vagus nerve is a crucial pathway transmitting diverse gut-derived signals to the brain to monitor of metabolic status, digestive processes, or immune control to adapt behavioural and autonomic responses. Hence, neuromodulation methods targeting the vagus nerve are currently explored as a treatment option in a number of clinical disorders, including diabetes, chronic pain, and depression. The non-invasive variant of vagus nerve stimulation (VNS), transcutaneous auricular VNS (taVNS), has been implicated in both acute and long-lasting effects by modulating afferent vagus nerve target areas in the brain. The physiology of neither of those effects is, however, well understood, and evidence for neuronal response upon taVNS in vagal afferent projection regions in the brainstem and its downstream targets remain to be established. Therefore, to examine time-dependent effects of taVNS on brainstem neuronal responses in healthy human subjects, we applied taVNS during task-free fMRI in a single-blinded crossover design. During fMRI data acquisition, we either stimulated the left earlobe (sham), or the target zone of the auricular branch of the vagus nerve in the outer ear (cymba conchae, verum) for several minutes, both followed by a short ‘stimulation OFF’ period. Time-dependent effects were assessed by averaging the BOLD response for consecutive 1-minute periods in an ROI-based analysis of the brainstem. We found a significant response to acute taVNS stimulation, relative to the control condition, in downstream targets of vagal afferents, including the nucleus of the solitary tract, the substantia nigra, and the subthalamic nucleus. Most of these brainstem regions remarkably showed increased activity in response to taVNS, and these effect sustained during the post-stimulation period. These data demonstrate that taVNS activates key brainstem regions, and highlight the potential of this approach to modulate vagal afferent signalling. Furthermore, we show that carry-over effects need to be considered when interpreting fMRI data in the context of general vagal neurophysiology and its modulation by taVNS.
ArticleNumber 118566
Author Kuzmanovic, Bojana
Tittgemeyer, Marc
Borgmann, Diba
Edwin Thanarajah, Sharmili
Münte, Thomas F.
Fenselau, Henning
Rigoux, Lionel
Author_xml – sequence: 1
  givenname: Diba
  surname: Borgmann
  fullname: Borgmann, Diba
  email: diba.borgmann@sf.mpg.de
  organization: Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
– sequence: 2
  givenname: Lionel
  surname: Rigoux
  fullname: Rigoux, Lionel
  organization: Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
– sequence: 3
  givenname: Bojana
  surname: Kuzmanovic
  fullname: Kuzmanovic, Bojana
  organization: Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
– sequence: 4
  givenname: Sharmili
  surname: Edwin Thanarajah
  fullname: Edwin Thanarajah, Sharmili
  organization: Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
– sequence: 5
  givenname: Thomas F.
  surname: Münte
  fullname: Münte, Thomas F.
  organization: Department of Neurology, University of Lübeck, 23538, Lübeck, Germany
– sequence: 6
  givenname: Henning
  surname: Fenselau
  fullname: Fenselau, Henning
  organization: Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
– sequence: 7
  givenname: Marc
  surname: Tittgemeyer
  fullname: Tittgemeyer, Marc
  organization: Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34509623$$D View this record in MEDLINE/PubMed
BookMark eNqNkl2PEyEUhidmjfuhf8GQeONNKx8zDHhh1I0fTXY1Mes1MsyhUqfQBaZJ_72009WkV3sDhLznOZz35bI688FDVSGC5wQT_mY19zDG4NZ6CXOKKZkTIhrOn1QXBMtmJpuWnu3PDZsJQuR5dZnSCmMsSS2eVeesbrDklF1Uv-7A_PbO6AF9CxneotvQj4POLngULLK3Pxaoi9r5lGGNIqRN8AkS6nYoR-2TGbP2EMaEtnpZVg9xCyhltz5SnldPrR4SvDjuV9XPz5_urr_Obr5_WVx_uJmZpm3yrJEtacEwyw3XhgHYXkLLrKE9F1QAbmuwgK3BuGVQS8uZ7XGreyKMaXnHrqrFxO2DXqlNLN7EnQraqcNFiEulY3ZmAEUEYQxjDRhYjTXVrGOdtDVlVEiOZWG9nlibGO5HSFmtXTIwDNOoihZ7KcGc4yJ9dSJdhTH6MmlRCV4zTMVe9fKoGrs19P-e95BDEbybBCaGlCJYZVw--FdcdoMiWO2DVyv1P3i1D15NwReAOAE89HhE6cepFEo8WwdRJePAG-hdBJOLf-4xkPcnEDO4w7_6A7vHIf4CJv7kLw
CitedBy_id crossref_primary_10_1111_cns_14309
crossref_primary_10_1523_JNEUROSCI_2004_22_2023
crossref_primary_10_1016_j_brs_2025_01_018
crossref_primary_10_3390_jcm12031198
crossref_primary_10_3390_biomedicines13030700
crossref_primary_10_1111_psyp_14484
crossref_primary_10_1038_s41598_021_02307_x
crossref_primary_10_1111_adb_13202
crossref_primary_10_3389_fnins_2023_1131063
crossref_primary_10_3390_jcm12196315
crossref_primary_10_1016_j_brs_2022_09_009
crossref_primary_10_3390_biomedicines12020407
crossref_primary_10_3389_fnins_2024_1494272
crossref_primary_10_1016_j_brs_2024_02_013
crossref_primary_10_1109_JSEN_2024_3441619
crossref_primary_10_3389_fnagi_2024_1498176
crossref_primary_10_1111_psyp_13984
crossref_primary_10_1111_psyp_14670
crossref_primary_10_1111_psyp_70017
crossref_primary_10_1038_s41598_023_34746_z
crossref_primary_10_3389_fnagi_2024_1444703
crossref_primary_10_3389_fnmol_2023_1160006
crossref_primary_10_3390_brainsci14070690
crossref_primary_10_1002_jpn3_12174
crossref_primary_10_1007_s10548_024_01088_6
crossref_primary_10_1186_s13256_024_04994_2
Cites_doi 10.1016/j.tins.2019.08.002
10.1016/j.cell.2017.01.025
10.1016/j.neuroimage.2013.05.039
10.1038/mp.2016.1
10.1016/j.neuroimage.2018.01.077
10.1016/j.clinph.2018.05.026
10.3389/fnins.2019.00911
10.1017/S1461145712000387
10.1016/j.neuropharm.2013.05.046
10.1016/j.neuroimage.2013.07.081
10.1111/joa.13122
10.1016/j.neuroimage.2014.10.044
10.1186/s12974-020-01732-5
10.1016/j.neuron.2019.02.008
10.1016/j.cell.2019.10.031
10.1016/j.cub.2020.07.084
10.1016/j.neuroimage.2013.11.046
10.1038/nrn.2018.8
10.3389/fnhum.2020.00206
10.1111/ner.12541
10.1016/j.biopsych.2015.03.025
10.1016/j.neuroimage.2014.03.034
10.3389/fnins.2019.00772
10.1210/endocr/bqab029
10.1038/s41598-019-47961-4
10.1124/jpet.106.104166
10.1002/hbm.23839
10.1038/s41586-020-2199-7
10.1016/j.brs.2013.01.011
10.1016/j.nicl.2016.10.002
10.1212/WNL.0000000000003751
10.1016/j.neuroimage.2019.03.050
10.1073/pnas.1602413113
10.1016/j.brs.2018.12.224
10.1002/hbm.10062
10.3389/fnins.2019.00854
10.1016/j.pnpbp.2018.01.005
10.1038/nrgastro.2016.76
10.1017/S0033291719003490
10.1016/j.cmet.2020.12.018
10.1113/JP271538
10.7554/eLife.55316
10.1111/jne.12643
10.1016/j.cmet.2021.05.002
10.1016/j.neuroimage.2015.10.019
10.1016/j.cell.2018.08.049
10.1038/s41467-020-17344-9
10.1523/JNEUROSCI.5339-03.2004
10.1016/j.euroneuro.2020.03.023
10.1006/nimg.2002.1132
10.18632/aging.102074
10.1016/j.conb.2020.03.006
10.1002/mrm.1910350312
10.1016/j.neuroimage.2016.12.027
10.1016/j.brs.2014.11.018
10.1038/s41598-021-87032-1
10.1038/s41598-020-58412-w
10.1016/0920-1211(94)00083-9
10.1523/JNEUROSCI.22-20-08850.2002
10.1152/jn.00057.2020
10.3171/2018.6.FOCUS18216
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Inc.
Copyright Elsevier Limited Dec 1, 2021
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Dec 1, 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOA
DOI 10.1016/j.neuroimage.2021.118566
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest One Psychology
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_1813300ae0e340a2a3b3b9f423289609
34509623
10_1016_j_neuroimage_2021_118566
S1053811921008399
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
0SF
6I.
AACTN
AAFTH
AFKWA
AJOXV
ALIPV
AMFUW
C45
HMQ
NCXOZ
29N
53G
AAQFI
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
RIG
SEW
SNS
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c575t-59717ec3f6c6ac3eefd9e73fc2d6828e074efe0fc0073e49f63fd07ad18cc76b3
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:25:58 EDT 2025
Fri Jul 11 05:35:50 EDT 2025
Sat Aug 23 13:14:02 EDT 2025
Wed Feb 19 02:27:42 EST 2025
Thu Apr 24 23:09:59 EDT 2025
Tue Jul 01 03:02:20 EDT 2025
Sat Dec 28 15:51:06 EST 2024
Tue Aug 26 20:02:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-59717ec3f6c6ac3eefd9e73fc2d6828e074efe0fc0073e49f63fd07ad18cc76b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811921008399
PMID 34509623
PQID 2586430280
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_1813300ae0e340a2a3b3b9f423289609
proquest_miscellaneous_2572210660
proquest_journals_2586430280
pubmed_primary_34509623
crossref_citationtrail_10_1016_j_neuroimage_2021_118566
crossref_primary_10_1016_j_neuroimage_2021_118566
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118566
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118566
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Aston-Jones, Zhu, Card (bib0004) 2004; 24
Kaniusas, Kampusch, Tittgemeyer, Panetsos, Gines, Papa, Kiss, Podesser, Cassara, Tanghe (bib0037) 2019; 13
Kaniusas, Samoudi, Kampusch, Bald, Tanghe, Martens, Joseph, Szeles (bib0038) 2020; 67
Cork (bib0018) 2018; 30
Kraus, Kiess, Hosl, Terekhin, Kornhuber, Forster (bib0043) 2013; 6
Flandin, Friston (bib0026) 2019; 40
Yu, Xu, Chang (bib0065) 2020; 62
von Wrede, Rings, Schach, Helmstaedter, Lehnertz (bib0061) 2021; 11
Jenkinson (bib0034) 2005
Wandschneider, Koepp (bib0062) 2016; 12
Travagli, Anselmi (bib0060) 2016; 13
Bai, Mesgarzadeh, Ramesh, Huey, Liu, Gray, Aitken, Chen, Beutler, Ahn (bib0005) 2019; 179
Alicart, Heldmann, Gottlich, Obst, Tittgemeyer, Munte (bib0002) 2020
Goldstein, McKnight, Carty, Arnold, Betley, Alhadeff (bib0030) 2021; 33
Power, Schlaggar, Petersen (bib0052) 2015; 105
Obst, Heldmann, Alicart, Tittgemeyer, Munte (bib0051) 2020; 14
Yakunina, Kim, Nam (bib0064) 2017; 20
Kaniusas, Kampusch, Tittgemeyer, Panetsos, Gines, Papa, Kiss, Podesser, Cassara, Tanghe (bib0036) 2019; 13
Warren, Tona, Ouwerkerk, van Paridon, Poletiek, van Steenbergen, Bosch, Nieuwenhuis (bib0063) 2019; 12
Beissner, Schumann, Brunn, Eisentrager, Bar (bib0007) 2014; 86
Han, Tellez, Perkins, Perez, Qu, Ferreira, Ferreira, Quinn, Liu, Gao (bib0033) 2018; 175
Tan, Sisti, Jin, Vignovich, Villavicencio, Tsang, Goffer, Zuker (bib0058) 2020; 580
Bretherton, Atkinson, Murray, Clancy, Deuchars, Deuchars (bib0010) 2019; 11
Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay (bib0031) 2014; 95
Manuel, Farber, Gerlach, Heusser, Jordan, Tank, Beissner (bib0048) 2020; 9
Brown, Sergeeva, Eriksson, Haas (bib0012) 2002; 22
Edwin Thanarajah, Iglesias, Kuzmanovic, Rigoux, Stephan, Bruning, Tittgemeyer (bib0022) 2019; 194
Koenig, Parzer, Haigis, Liebemann, Jung, Resch, Kaess (bib0042) 2021; 51
Kuhnel, Teckentrup, Neuser, Huys, Burrasch, Walter, Kroemer (bib0044) 2020; 35
Ben-Menachem, Hamberger, Hedner, Hammond, Uthman, Slater, Treig, Stefan, Ramsay, Wernicke (bib0008) 1995; 20
Colzato, Beste (bib0017) 2020; 123
Fang, Rong, Hong, Fan, Liu, Wang, Zhang, Chen, Shi, Wang (bib0025) 2016; 79
Andersson, Sotiropoulos (bib0003) 2016; 125
Lebow, Chen (bib0045) 2016; 21
Smith (bib0054) 2002; 17
Manta, El Mansari, Debonnel, Blier (bib0047) 2013; 16
Alhadeff (bib0001) 2021; 162
Hachem, Wong, Ibrahim (bib0032) 2018; 45
Szeska, Richter, Wendt, Weymar, Hamm (bib0057) 2020; 10
Jenkinson, Bannister, Brady, Smith (bib0035) 2002; 17
Liu, Yang, Zhang, Wang, Li, Li, Woelfer, Walter, Wang (bib0046) 2020; 17
Friston, Williams, Howard, Frackowiak, Turner (bib0028) 1996; 35
Fülling, Dinan, Cryan (bib0029) 2019; 101
Stamatakis, Sparta, Jennings, McElligott, Decot, Stuber (bib0056) 2014; 76 Pt B
Neuser, Teckentrup, Kuhnel, Hallschmid, Walter, Kroemer (bib0049) 2020; 11
Cutsforth-Gregory, Benarroch (bib0019) 2017; 88
Butt, Albusoda, Farmer, Aziz (bib0013) 2020; 236
Ch’ng, Fu, Brown, McDougall, Lawrence (bib0014) 2018; 87
de Lartigue (bib0020) 2016; 594
Bright, Tench, Murphy (bib0011) 2017; 154
Frangos, Ellrich, Komisaruk (bib0027) 2015; 8
Noller, Levine, Urakov, Aronson, Nash (bib0050) 2019; 13
Smith, Beckmann, Andersson, Auerbach, Bijsterbosch, Douaud, Duff, Feinberg, Griffanti, Harms (bib0055) 2013; 80
Keute, Ruhnau, Heinze, Zaehle (bib0040) 2018; 129
Barraco (bib0006) 1994
Keute, Demirezen, Graf, Mueller, Zaehle (bib0039) 2019; 9
Chen, Cheng, Wang, Zhang, Xu, Cao, Wang, Herzog, Song, Zhan (bib0015) 2020; 30
Clemmensen, Muller, Woods, Berthoud, Seeley, Tschop (bib0016) 2017; 168
Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib0053) 2014; 90
Borgmann, Ciglieri, Biglari, Brandt, Cremer, Backes, Tittgemeyer, Wunderlich, Bruning, Fenselau (bib0009) 2021; 33
Kim, Seeley, Sandoval (bib0041) 2018; 19
Dorr, Debonnel (bib0021) 2006; 318
Egerod, Schwartz, Gautron (bib0023) 2019; 42
Tittgemeyer, Rigoux, Knösche (bib0059) 2018; 173
Eklund, Nichols, Knutsson (bib0024) 2016; 113
Goldstein (10.1016/j.neuroimage.2021.118566_bib0030) 2021; 33
Aston-Jones (10.1016/j.neuroimage.2021.118566_bib0004) 2004; 24
Jenkinson (10.1016/j.neuroimage.2021.118566_bib0035) 2002; 17
Frangos (10.1016/j.neuroimage.2021.118566_bib0027) 2015; 8
Borgmann (10.1016/j.neuroimage.2021.118566_bib0009) 2021; 33
Lebow (10.1016/j.neuroimage.2021.118566_bib0045) 2016; 21
Szeska (10.1016/j.neuroimage.2021.118566_bib0057) 2020; 10
Warren (10.1016/j.neuroimage.2021.118566_bib0063) 2019; 12
Manuel (10.1016/j.neuroimage.2021.118566_bib0048) 2020; 9
Keute (10.1016/j.neuroimage.2021.118566_bib0040) 2018; 129
Friston (10.1016/j.neuroimage.2021.118566_bib0028) 1996; 35
Alicart (10.1016/j.neuroimage.2021.118566_bib0002) 2020
Jenkinson (10.1016/j.neuroimage.2021.118566_bib0034) 2005
Kaniusas (10.1016/j.neuroimage.2021.118566_bib0038) 2020; 67
Kuhnel (10.1016/j.neuroimage.2021.118566_bib0044) 2020; 35
de Lartigue (10.1016/j.neuroimage.2021.118566_bib0020) 2016; 594
Eklund (10.1016/j.neuroimage.2021.118566_bib0024) 2016; 113
Bai (10.1016/j.neuroimage.2021.118566_bib0005) 2019; 179
Griffanti (10.1016/j.neuroimage.2021.118566_bib0031) 2014; 95
Flandin (10.1016/j.neuroimage.2021.118566_bib0026) 2019; 40
Kim (10.1016/j.neuroimage.2021.118566_bib0041) 2018; 19
Liu (10.1016/j.neuroimage.2021.118566_bib0046) 2020; 17
Power (10.1016/j.neuroimage.2021.118566_bib0052) 2015; 105
Ch’ng (10.1016/j.neuroimage.2021.118566_bib0014) 2018; 87
Fang (10.1016/j.neuroimage.2021.118566_bib0025) 2016; 79
Barraco (10.1016/j.neuroimage.2021.118566_bib0006) 1994
Edwin Thanarajah (10.1016/j.neuroimage.2021.118566_bib0022) 2019; 194
Salimi-Khorshidi (10.1016/j.neuroimage.2021.118566_bib0053) 2014; 90
Smith (10.1016/j.neuroimage.2021.118566_bib0054) 2002; 17
Clemmensen (10.1016/j.neuroimage.2021.118566_bib0016) 2017; 168
Kraus (10.1016/j.neuroimage.2021.118566_bib0043) 2013; 6
Smith (10.1016/j.neuroimage.2021.118566_bib0055) 2013; 80
Obst (10.1016/j.neuroimage.2021.118566_bib0051) 2020; 14
Colzato (10.1016/j.neuroimage.2021.118566_bib0017) 2020; 123
Hachem (10.1016/j.neuroimage.2021.118566_bib0032) 2018; 45
Neuser (10.1016/j.neuroimage.2021.118566_bib0049) 2020; 11
Kaniusas (10.1016/j.neuroimage.2021.118566_bib0036) 2019; 13
von Wrede (10.1016/j.neuroimage.2021.118566_bib0061) 2021; 11
Travagli (10.1016/j.neuroimage.2021.118566_bib0060) 2016; 13
Koenig (10.1016/j.neuroimage.2021.118566_bib0042) 2021; 51
Manta (10.1016/j.neuroimage.2021.118566_bib0047) 2013; 16
Yu (10.1016/j.neuroimage.2021.118566_bib0065) 2020; 62
Andersson (10.1016/j.neuroimage.2021.118566_bib0003) 2016; 125
Noller (10.1016/j.neuroimage.2021.118566_bib0050) 2019; 13
Tittgemeyer (10.1016/j.neuroimage.2021.118566_bib0059) 2018; 173
Han (10.1016/j.neuroimage.2021.118566_bib0033) 2018; 175
Cork (10.1016/j.neuroimage.2021.118566_bib0018) 2018; 30
Yakunina (10.1016/j.neuroimage.2021.118566_bib0064) 2017; 20
Bretherton (10.1016/j.neuroimage.2021.118566_bib0010) 2019; 11
Stamatakis (10.1016/j.neuroimage.2021.118566_bib0056) 2014; 76 Pt B
Alhadeff (10.1016/j.neuroimage.2021.118566_bib0001) 2021; 162
Butt (10.1016/j.neuroimage.2021.118566_bib0013) 2020; 236
Wandschneider (10.1016/j.neuroimage.2021.118566_bib0062) 2016; 12
Kaniusas (10.1016/j.neuroimage.2021.118566_bib0037) 2019; 13
Brown (10.1016/j.neuroimage.2021.118566_bib0012) 2002; 22
Chen (10.1016/j.neuroimage.2021.118566_bib0015) 2020; 30
Ben-Menachem (10.1016/j.neuroimage.2021.118566_bib0008) 1995; 20
Bright (10.1016/j.neuroimage.2021.118566_bib0011) 2017; 154
Dorr (10.1016/j.neuroimage.2021.118566_bib0021) 2006; 318
Fülling (10.1016/j.neuroimage.2021.118566_bib0029) 2019; 101
Tan (10.1016/j.neuroimage.2021.118566_bib0058) 2020; 580
Egerod (10.1016/j.neuroimage.2021.118566_bib0023) 2019; 42
Beissner (10.1016/j.neuroimage.2021.118566_bib0007) 2014; 86
Keute (10.1016/j.neuroimage.2021.118566_bib0039) 2019; 9
Cutsforth-Gregory (10.1016/j.neuroimage.2021.118566_bib0019) 2017; 88
References_xml – volume: 20
  start-page: 290
  year: 2017
  end-page: 300
  ident: bib0064
  article-title: Optimization of transcutaneous vagus nerve stimulation using functional MRI
  publication-title: Neuromodulation
– volume: 95
  start-page: 232
  year: 2014
  end-page: 247
  ident: bib0031
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: Neuroimage
– volume: 11
  start-page: 4836
  year: 2019
  end-page: 4857
  ident: bib0010
  article-title: Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation
  publication-title: Aging (Albany NY)
– year: 1994
  ident: bib0006
  article-title: Nucleus of the Solitary Tract
– volume: 45
  start-page: E2
  year: 2018
  ident: bib0032
  article-title: The vagus afferent network: emerging role in translational connectomics
  publication-title: Neurosurg. Focus
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: bib0035
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– volume: 17
  start-page: 54
  year: 2020
  ident: bib0046
  article-title: Neural networks and the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation in depression
  publication-title: J. Neuroinflammation
– volume: 318
  start-page: 890
  year: 2006
  end-page: 898
  ident: bib0021
  article-title: Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 154
  start-page: 159
  year: 2017
  end-page: 168
  ident: bib0011
  article-title: Potential pitfalls when denoising resting state fMRI data using nuisance regression
  publication-title: Neuroimage
– volume: 236
  start-page: 588
  year: 2020
  end-page: 611
  ident: bib0013
  article-title: The anatomical basis for transcutaneous auricular vagus nerve stimulation
  publication-title: J. Anat.
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: bib0054
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
– volume: 105
  start-page: 536
  year: 2015
  end-page: 551
  ident: bib0052
  article-title: Recent progress and outstanding issues in motion correction in resting state fMRI
  publication-title: Neuroimage
– volume: 30
  start-page: e12643
  year: 2018
  ident: bib0018
  article-title: The role of the vagus nerve in appetite control: Implications for the pathogenesis of obesity
  publication-title: J. Neuroendocrinol.
– volume: 35
  start-page: 346
  year: 1996
  end-page: 355
  ident: bib0028
  article-title: Movement-related effects in fMRI time-series
  publication-title: Magn. Reson. Med.
– volume: 40
  start-page: 2052
  year: 2019
  end-page: 2054
  ident: bib0026
  article-title: Analysis of family-wise error rates in statistical parametric mapping using random field theory
  publication-title: Hum. Brain Mapp.
– volume: 19
  start-page: 185
  year: 2018
  end-page: 196
  ident: bib0041
  article-title: Signalling from the periphery to the brain that regulates energy homeostasis
  publication-title: Nat. Rev. Neurosci.
– volume: 8
  start-page: 624
  year: 2015
  end-page: 636
  ident: bib0027
  article-title: Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans
  publication-title: Brain Stimul.
– volume: 11
  start-page: 7906
  year: 2021
  ident: bib0061
  article-title: Transcutaneous auricular vagus nerve stimulation induces stabilizing modifications in large-scale functional brain networks: towards understanding the effects of taVNS in subjects with epilepsy
  publication-title: Sci. Rep.
– volume: 162
  start-page: bqab029
  year: 2021
  ident: bib0001
  article-title: Monitoring in vivo neural activity to understand gut-brain signaling
  publication-title: Endocrinology
– volume: 22
  start-page: 8850
  year: 2002
  end-page: 8859
  ident: bib0012
  article-title: Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline)
  publication-title: J. Neurosci.
– volume: 125
  start-page: 1063
  year: 2016
  end-page: 1078
  ident: bib0003
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: Neuroimage
– volume: 88
  start-page: 1187
  year: 2017
  end-page: 1196
  ident: bib0019
  article-title: Nucleus of the solitary tract, medullary reflexes, and clinical implications
  publication-title: Neurology
– volume: 62
  start-page: 133
  year: 2020
  end-page: 140
  ident: bib0065
  article-title: Vagal sensory neurons and gut-brain signaling
  publication-title: Curr. Opin. Neurobiol.
– volume: 30
  start-page: 3986
  year: 2020
  end-page: 3998
  ident: bib0015
  article-title: A vagal-NTS neural pathway that stimulates feeding
  publication-title: Curr. Biol.
– volume: 24
  start-page: 2313
  year: 2004
  end-page: 2321
  ident: bib0004
  article-title: Numerous GABAergic afferents to locus ceruleus in the pericerulear dendritic zone: possible interneuronal pool
  publication-title: J. Neurosci.
– volume: 35
  start-page: 17
  year: 2020
  end-page: 29
  ident: bib0044
  article-title: Stimulation of the vagus nerve reduces learning in a go/no-go reinforcement learning task
  publication-title: Eur. Neuropsychopharmacol.
– volume: 79
  start-page: 266
  year: 2016
  end-page: 273
  ident: bib0025
  article-title: Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder
  publication-title: Biol. Psychiatry
– volume: 580
  start-page: 511
  year: 2020
  end-page: 516
  ident: bib0058
  article-title: The gut-brain axis mediates sugar preference
  publication-title: Nature
– volume: 594
  start-page: 5791
  year: 2016
  end-page: 5815
  ident: bib0020
  article-title: Role of the vagus nerve in the development and treatment of diet-induced obesity
  publication-title: J. Physiol.
– volume: 194
  start-page: 120
  year: 2019
  end-page: 127
  ident: bib0022
  article-title: Modulation of midbrain neurocircuitry by intranasal insulin
  publication-title: Neuroimage
– volume: 87
  start-page: 108
  year: 2018
  end-page: 125
  ident: bib0014
  article-title: The intersection of stress and reward: BNST modulation of aversive and appetitive states
  publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry
– volume: 175
  start-page: 665
  year: 2018
  end-page: 678
  ident: bib0033
  article-title: A Neural Circuit for Gut-Induced Reward
  publication-title: Cell
– volume: 13
  start-page: 389
  year: 2016
  end-page: 401
  ident: bib0060
  article-title: Vagal neurocircuitry and its influence on gastric motility
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 86
  start-page: 91
  year: 2014
  end-page: 98
  ident: bib0007
  article-title: Advances in functional magnetic resonance imaging of the human brainstem
  publication-title: Neuroimage
– volume: 9
  start-page: 11452
  year: 2019
  ident: bib0039
  article-title: No modulation of pupil size and event-related pupil response by transcutaneous auricular vagus nerve stimulation (taVNS)
  publication-title: Sci. Rep.
– volume: 33
  start-page: 676
  year: 2021
  end-page: 687
  ident: bib0030
  article-title: Hypothalamic detection of macronutrients via multiple gut-brain pathways
  publication-title: Cell Metab.
– volume: 123
  start-page: 1739
  year: 2020
  end-page: 1755
  ident: bib0017
  article-title: A literature review on the neurophysiological underpinnings and cognitive effects of transcutaneous vagus nerve stimulation: challenges and future directions
  publication-title: J. Neurophysiol.
– volume: 51
  start-page: 511
  year: 2021
  end-page: 520
  ident: bib0042
  article-title: Effects of acute transcutaneous vagus nerve stimulation on emotion recognition in adolescent depression
  publication-title: Psychol. Med.
– volume: 113
  start-page: 7900
  year: 2016
  end-page: 7905
  ident: bib0024
  article-title: Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 21
  start-page: 450
  year: 2016
  end-page: 463
  ident: bib0045
  article-title: Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders
  publication-title: Mol Psychiatr
– volume: 10
  start-page: 1529
  year: 2020
  ident: bib0057
  article-title: Promoting long-term inhibition of human fear responses by non-invasive transcutaneous vagus nerve stimulation during extinction training
  publication-title: Sci. Rep.
– volume: 16
  start-page: 459
  year: 2013
  end-page: 470
  ident: bib0047
  article-title: Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 80
  start-page: 144
  year: 2013
  end-page: 168
  ident: bib0055
  article-title: Resting-state fMRI in the human connectome project
  publication-title: Neuroimage
– volume: 12
  start-page: 691
  year: 2016
  end-page: 697
  ident: bib0062
  article-title: Pharmaco fMRI: Determining the functional anatomy of the effects of medication
  publication-title: Neuroimage Clin
– volume: 42
  start-page: 663
  year: 2019
  end-page: 666
  ident: bib0023
  article-title: The molecular diversity of vagal afferents revealed
  publication-title: Trends Neurosci.
– volume: 9
  start-page: e55316
  year: 2020
  ident: bib0048
  article-title: Deciphering the neural signature of human cardiovascular regulation
  publication-title: Elife
– volume: 13
  start-page: 854
  year: 2019
  ident: bib0037
  article-title: Current directions in the auricular vagus nerve stimulation I - a physiological perspective
  publication-title: Front Neurosci.
– volume: 168
  start-page: 758
  year: 2017
  end-page: 774
  ident: bib0016
  article-title: Gut-brain cross-talk in metabolic control
  publication-title: Cell
– volume: 13
  start-page: 772
  year: 2019
  ident: bib0036
  article-title: Current directions in the auricular vagus nerve stimulation ii - an engineering perspective
  publication-title: Front Neurosci.
– volume: 173
  start-page: 592
  year: 2018
  end-page: 603
  ident: bib0059
  article-title: Cortical parcellation based on structural connectivity: A case for generative models
  publication-title: Neuroimage
– volume: 6
  start-page: 798
  year: 2013
  end-page: 804
  ident: bib0043
  article-title: CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal - a pilot study
  publication-title: Brain Stimul.
– start-page: 1
  year: 2020
  end-page: 12
  ident: bib0002
  article-title: Modulation of visual processing of food by transcutaneous vagus nerve stimulation (tVNS)
  publication-title: Brain Imaging Behav.
– volume: 76 Pt B
  start-page: 320
  year: 2014
  end-page: 328
  ident: bib0056
  article-title: Amygdala and bed nucleus of the stria terminalis circuitry: Implications for addiction-related behaviors
  publication-title: Neuropharmacology
– volume: 11
  start-page: 3555
  year: 2020
  ident: bib0049
  article-title: Vagus nerve stimulation boosts the drive to work for rewards
  publication-title: Nat. Commun.
– volume: 14
  start-page: 206
  year: 2020
  ident: bib0051
  article-title: Effect of short-term transcutaneous vagus nerve stimulation (tVNS) on brain processing of food cues: an electrophysiological study
  publication-title: Front. Hum. Neurosci.
– volume: 13
  start-page: 911
  year: 2019
  ident: bib0050
  article-title: Vagus nerve stimulation in rodent models: an overview of technical considerations
  publication-title: Front Neurosci
– volume: 90
  start-page: 449
  year: 2014
  end-page: 468
  ident: bib0053
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
– volume: 20
  start-page: 221
  year: 1995
  end-page: 227
  ident: bib0008
  article-title: Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures
  publication-title: Epilepsy Res.
– volume: 67
  start-page: 1921
  year: 2020
  end-page: 1935
  ident: bib0038
  article-title: Stimulation pattern efficiency in percutaneous auricular vagus nerve stimulation: experimental versus numerical data
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 179
  start-page: 1129
  year: 2019
  end-page: 1143
  ident: bib0005
  article-title: Genetic identification of vagal sensory neurons that control feeding
  publication-title: Cell
– volume: 33
  start-page: 1466
  year: 2021
  end-page: 1482
  ident: bib0009
  article-title: Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism
  publication-title: Cell Metab.
– year: 2005
  ident: bib0034
  article-title: BET2: MR-based estimation of brain, skull and scalp surfaces
  publication-title: Eleventh Annual Meeting of the Organization for Human Brain Mapping
– volume: 101
  start-page: 998
  year: 2019
  end-page: 1002
  ident: bib0029
  article-title: Gut microbe to brain signaling: what happens in vagus…
  publication-title: Neuron
– volume: 129
  start-page: 1789
  year: 2018
  end-page: 1795
  ident: bib0040
  article-title: Behavioral and electrophysiological evidence for GABAergic modulation through transcutaneous vagus nerve stimulation
  publication-title: Clin. Neurophysiol.
– volume: 12
  start-page: 635
  year: 2019
  end-page: 642
  ident: bib0063
  article-title: The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential
  publication-title: Brain Stimul.
– volume: 42
  start-page: 663
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118566_bib0023
  article-title: The molecular diversity of vagal afferents revealed
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2019.08.002
– volume: 168
  start-page: 758
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118566_bib0016
  article-title: Gut-brain cross-talk in metabolic control
  publication-title: Cell
  doi: 10.1016/j.cell.2017.01.025
– year: 2005
  ident: 10.1016/j.neuroimage.2021.118566_bib0034
  article-title: BET2: MR-based estimation of brain, skull and scalp surfaces
– volume: 80
  start-page: 144
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118566_bib0055
  article-title: Resting-state fMRI in the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.039
– volume: 21
  start-page: 450
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118566_bib0045
  article-title: Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders
  publication-title: Mol Psychiatr
  doi: 10.1038/mp.2016.1
– volume: 173
  start-page: 592
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118566_bib0059
  article-title: Cortical parcellation based on structural connectivity: A case for generative models
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.01.077
– volume: 129
  start-page: 1789
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118566_bib0040
  article-title: Behavioral and electrophysiological evidence for GABAergic modulation through transcutaneous vagus nerve stimulation
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2018.05.026
– volume: 13
  start-page: 911
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118566_bib0050
  article-title: Vagus nerve stimulation in rodent models: an overview of technical considerations
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2019.00911
– volume: 67
  start-page: 1921
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118566_bib0038
  article-title: Stimulation pattern efficiency in percutaneous auricular vagus nerve stimulation: experimental versus numerical data
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 16
  start-page: 459
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118566_bib0047
  article-title: Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems
  publication-title: Int. J. Neuropsychopharmacol.
  doi: 10.1017/S1461145712000387
– volume: 76 Pt B
  start-page: 320
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118566_bib0056
  article-title: Amygdala and bed nucleus of the stria terminalis circuitry: Implications for addiction-related behaviors
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2013.05.046
– volume: 86
  start-page: 91
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118566_bib0007
  article-title: Advances in functional magnetic resonance imaging of the human brainstem
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.07.081
– volume: 236
  start-page: 588
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118566_bib0013
  article-title: The anatomical basis for transcutaneous auricular vagus nerve stimulation
  publication-title: J. Anat.
  doi: 10.1111/joa.13122
– volume: 105
  start-page: 536
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118566_bib0052
  article-title: Recent progress and outstanding issues in motion correction in resting state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.044
– volume: 17
  start-page: 54
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118566_bib0046
  article-title: Neural networks and the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation in depression
  publication-title: J. Neuroinflammation
  doi: 10.1186/s12974-020-01732-5
– volume: 101
  start-page: 998
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118566_bib0029
  article-title: Gut microbe to brain signaling: what happens in vagus…
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.02.008
– volume: 179
  start-page: 1129
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118566_bib0005
  article-title: Genetic identification of vagal sensory neurons that control feeding
  publication-title: Cell
  doi: 10.1016/j.cell.2019.10.031
– volume: 30
  start-page: 3986
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118566_bib0015
  article-title: A vagal-NTS neural pathway that stimulates feeding
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2020.07.084
– volume: 90
  start-page: 449
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118566_bib0053
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.046
– volume: 19
  start-page: 185
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118566_bib0041
  article-title: Signalling from the periphery to the brain that regulates energy homeostasis
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2018.8
– volume: 14
  start-page: 206
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118566_bib0051
  article-title: Effect of short-term transcutaneous vagus nerve stimulation (tVNS) on brain processing of food cues: an electrophysiological study
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2020.00206
– volume: 20
  start-page: 290
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118566_bib0064
  article-title: Optimization of transcutaneous vagus nerve stimulation using functional MRI
  publication-title: Neuromodulation
  doi: 10.1111/ner.12541
– volume: 79
  start-page: 266
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118566_bib0025
  article-title: Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2015.03.025
– volume: 95
  start-page: 232
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118566_bib0031
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.034
– volume: 13
  start-page: 772
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118566_bib0036
  article-title: Current directions in the auricular vagus nerve stimulation ii - an engineering perspective
  publication-title: Front Neurosci.
  doi: 10.3389/fnins.2019.00772
– volume: 162
  start-page: bqab029
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118566_bib0001
  article-title: Monitoring in vivo neural activity to understand gut-brain signaling
  publication-title: Endocrinology
  doi: 10.1210/endocr/bqab029
– volume: 9
  start-page: 11452
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118566_bib0039
  article-title: No modulation of pupil size and event-related pupil response by transcutaneous auricular vagus nerve stimulation (taVNS)
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-47961-4
– volume: 318
  start-page: 890
  year: 2006
  ident: 10.1016/j.neuroimage.2021.118566_bib0021
  article-title: Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.106.104166
– volume: 40
  start-page: 2052
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118566_bib0026
  article-title: Analysis of family-wise error rates in statistical parametric mapping using random field theory
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23839
– volume: 580
  start-page: 511
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118566_bib0058
  article-title: The gut-brain axis mediates sugar preference
  publication-title: Nature
  doi: 10.1038/s41586-020-2199-7
– volume: 6
  start-page: 798
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118566_bib0043
  article-title: CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal - a pilot study
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2013.01.011
– start-page: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118566_bib0002
  article-title: Modulation of visual processing of food by transcutaneous vagus nerve stimulation (tVNS)
  publication-title: Brain Imaging Behav.
– volume: 12
  start-page: 691
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118566_bib0062
  article-title: Pharmaco fMRI: Determining the functional anatomy of the effects of medication
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2016.10.002
– volume: 88
  start-page: 1187
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118566_bib0019
  article-title: Nucleus of the solitary tract, medullary reflexes, and clinical implications
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000003751
– volume: 194
  start-page: 120
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118566_bib0022
  article-title: Modulation of midbrain neurocircuitry by intranasal insulin
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.03.050
– volume: 113
  start-page: 7900
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118566_bib0024
  article-title: Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1602413113
– volume: 12
  start-page: 635
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118566_bib0063
  article-title: The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2018.12.224
– year: 1994
  ident: 10.1016/j.neuroimage.2021.118566_bib0006
– volume: 17
  start-page: 143
  year: 2002
  ident: 10.1016/j.neuroimage.2021.118566_bib0054
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10062
– volume: 13
  start-page: 854
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118566_bib0037
  article-title: Current directions in the auricular vagus nerve stimulation I - a physiological perspective
  publication-title: Front Neurosci.
  doi: 10.3389/fnins.2019.00854
– volume: 87
  start-page: 108
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118566_bib0014
  article-title: The intersection of stress and reward: BNST modulation of aversive and appetitive states
  publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry
  doi: 10.1016/j.pnpbp.2018.01.005
– volume: 13
  start-page: 389
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118566_bib0060
  article-title: Vagal neurocircuitry and its influence on gastric motility
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2016.76
– volume: 51
  start-page: 511
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118566_bib0042
  article-title: Effects of acute transcutaneous vagus nerve stimulation on emotion recognition in adolescent depression
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291719003490
– volume: 33
  start-page: 676
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118566_bib0030
  article-title: Hypothalamic detection of macronutrients via multiple gut-brain pathways
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.12.018
– volume: 594
  start-page: 5791
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118566_bib0020
  article-title: Role of the vagus nerve in the development and treatment of diet-induced obesity
  publication-title: J. Physiol.
  doi: 10.1113/JP271538
– volume: 9
  start-page: e55316
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118566_bib0048
  article-title: Deciphering the neural signature of human cardiovascular regulation
  publication-title: Elife
  doi: 10.7554/eLife.55316
– volume: 30
  start-page: e12643
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118566_bib0018
  article-title: The role of the vagus nerve in appetite control: Implications for the pathogenesis of obesity
  publication-title: J. Neuroendocrinol.
  doi: 10.1111/jne.12643
– volume: 33
  start-page: 1466
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118566_bib0009
  article-title: Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2021.05.002
– volume: 125
  start-page: 1063
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118566_bib0003
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.10.019
– volume: 175
  start-page: 665
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118566_bib0033
  article-title: A Neural Circuit for Gut-Induced Reward
  publication-title: Cell
  doi: 10.1016/j.cell.2018.08.049
– volume: 11
  start-page: 3555
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118566_bib0049
  article-title: Vagus nerve stimulation boosts the drive to work for rewards
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17344-9
– volume: 24
  start-page: 2313
  year: 2004
  ident: 10.1016/j.neuroimage.2021.118566_bib0004
  article-title: Numerous GABAergic afferents to locus ceruleus in the pericerulear dendritic zone: possible interneuronal pool
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5339-03.2004
– volume: 35
  start-page: 17
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118566_bib0044
  article-title: Stimulation of the vagus nerve reduces learning in a go/no-go reinforcement learning task
  publication-title: Eur. Neuropsychopharmacol.
  doi: 10.1016/j.euroneuro.2020.03.023
– volume: 17
  start-page: 825
  year: 2002
  ident: 10.1016/j.neuroimage.2021.118566_bib0035
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 11
  start-page: 4836
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118566_bib0010
  article-title: Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.102074
– volume: 62
  start-page: 133
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118566_bib0065
  article-title: Vagal sensory neurons and gut-brain signaling
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2020.03.006
– volume: 35
  start-page: 346
  year: 1996
  ident: 10.1016/j.neuroimage.2021.118566_bib0028
  article-title: Movement-related effects in fMRI time-series
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910350312
– volume: 154
  start-page: 159
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118566_bib0011
  article-title: Potential pitfalls when denoising resting state fMRI data using nuisance regression
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.12.027
– volume: 8
  start-page: 624
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118566_bib0027
  article-title: Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2014.11.018
– volume: 11
  start-page: 7906
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118566_bib0061
  article-title: Transcutaneous auricular vagus nerve stimulation induces stabilizing modifications in large-scale functional brain networks: towards understanding the effects of taVNS in subjects with epilepsy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-87032-1
– volume: 10
  start-page: 1529
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118566_bib0057
  article-title: Promoting long-term inhibition of human fear responses by non-invasive transcutaneous vagus nerve stimulation during extinction training
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-58412-w
– volume: 20
  start-page: 221
  year: 1995
  ident: 10.1016/j.neuroimage.2021.118566_bib0008
  article-title: Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures
  publication-title: Epilepsy Res.
  doi: 10.1016/0920-1211(94)00083-9
– volume: 22
  start-page: 8850
  year: 2002
  ident: 10.1016/j.neuroimage.2021.118566_bib0012
  article-title: Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline)
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-20-08850.2002
– volume: 123
  start-page: 1739
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118566_bib0017
  article-title: A literature review on the neurophysiological underpinnings and cognitive effects of transcutaneous vagus nerve stimulation: challenges and future directions
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00057.2020
– volume: 45
  start-page: E2
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118566_bib0032
  article-title: The vagus afferent network: emerging role in translational connectomics
  publication-title: Neurosurg. Focus
  doi: 10.3171/2018.6.FOCUS18216
SSID ssj0009148
Score 2.5107923
Snippet •taVNS effects on brainstem activity are assessed during fMRI.•taVNS modulates activity in brainstem vagal afferent targets (including the NTS).•The signal...
Our increasing knowledge about gut-brain interaction is revolutionising the understanding of the links between digestion, mood, health, and even decision...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118566
SubjectTerms Adaptation, Physiological
Adult
Affect
Afferent Pathways - physiology
Autonomic nervous system
Autonomic Nervous System - physiology
Brain mapping
Brain stem
Brain Stem - physiology
Cross-Over Studies
Data acquisition
Decision making
Diabetes mellitus
Digestive system
Female
Functional magnetic resonance imaging
Gastrointestinal tract
Humans
Magnetic Resonance Imaging - methods
Male
Metabolism
Neuromodulation
Peripheral Nervous System - physiology
Physiology
Scanners
Sensory neurons
Signal transduction
Solitary tract nucleus
Substantia nigra
Subthalamic nucleus
Transcutaneous Electric Nerve Stimulation
Vagus nerve
Vagus Nerve - physiology
Vagus Nerve Stimulation - methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQHhAXxDdbFmQkrhFZO7GT9tRWrQrS9oCo1JuxnTFaxG6q3Wwl_n1nYieFA2IPXHJI7MiaGXveZCZvGPugCy8q612GaMRlxbyCzDbEliedAFtWzvaB4uJSXVwVn6_L699afVFNWKQHjoL7iB4IQ-7cQg6yyK2w0klXB8ovVsSWRqcv-rwhmBrodhHlp7qdWM3Vs0MuV7hHMSYUczwpqrJnRrx3Rj1n_x8-6W-Ys_c950_Y4wQa-XFc7FP2ANbP2MNFSos_Z9_6D-Qkbn7ZdnDIF22T2nLxNvCw-PKJO-oFQazNfBPLYmHL3S_eka_yO4SI0O62_NZ-x-uayiA5bv5VessLdnV-9vX0IkutEzKP-KvLMEyYa_AyKK-slwChqUHL4EWjMMYCBA4QIA-eMnVQ1EHJ0OQa1VR5r5WTL9lk3a7hNeMVRigOtLZ1g-ilLK0rnCxDA6gIoUqYMj3I0PjEK07tLX6aoYDsh7mXviHpmyj9KZuPM28it8Yec05ITeN4Ysfub6DNmGQz5l82M2X1oGQz_ICKRya-aLnHAo7GuQmkRPCx5-zZYFMmHRZbI0qUsaQc95S9Hx_jNqfcTVQ_jtECo3OlcMyraIujDGRBHD5CHvwP2bxhj2i9sWJnxibdZgdvEXd17l2_xe4APzArKQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgSIgLKp9dWpCRuEYkdhIn9FABoipI2wOi0t6M7YyrIrppd7NI_HtmbCcrDqC95JDYljVjzzx7Jm8Ye6NKJxrjbIZoxGZl0UBmOmLLk1aAqRprwkFxfl6fXZRfFtUiXbitU1rlaBODoe56R3fkb0XVoPOkQODJzW1GVaMouppKaNxl94i6jFa1Wqgt6W5Rxl_hKpk12CBl8sT8rsAXeXWNuxZPiaJA29FUgStx654Ci_9fXupfKDR4o9N99jDBSP4-6v0RuwPLx-z-PAXKn7Dv4cqcFMDP-wHe8XnfpUJdvPfcz79-5paqQxCPM1_FRFlYc_ubD-S93AZBI_SbNf9lLvG5pMRIjubgOo3ylF2cfvr28SxLxRQyh4hsyPDgUChw0teuNk4C-K4FJb0TXY2nLkAoAR5y7yh2B2Xra-m7XKHiGudUbeUztrfsl3DAOCpCWFDKtB2qpKqMLa2sfAfSIhisYMbUKEPtEtM4Fbz4qceUsh96K31N0tdR-jNWTD1vItvGDn0-kJqm9sSXHV70q0udtp9GHCNlnhvIQZa5EQanaltPUeqGOPdmrB2VrMdfUtGI4kBXO0zgeOqbYEuEIzv2PhrXlE7mY623i33GXk-fceNTNCeqH9sogef1usY2z-NanGQgS2L1EfLF_wc_ZA9oJjE754jtDasNvESMNdhXYSP9AVGaJhU
  priority: 102
  providerName: ProQuest
Title Technical Note: Modulation of fMRI brainstem responses by transcutaneous vagus nerve stimulation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921008399
https://dx.doi.org/10.1016/j.neuroimage.2021.118566
https://www.ncbi.nlm.nih.gov/pubmed/34509623
https://www.proquest.com/docview/2586430280
https://www.proquest.com/docview/2572210660
https://doaj.org/article/1813300ae0e340a2a3b3b9f423289609
Volume 244
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swEBalg7GXsd_L1gUN9urFtmTL3p7a0pJuJIxuhbxpknwqGWtcEmewl_3tu7Nlhz4MAntxiC0ZcXc6fec7fWLsnZIuLYyzEaIRG8mkgMhUxJYnbAomK6xpA8XZPJ9eyU-LbHHATvu9MFRWGXx_59Nbbx3uTII0J7fL5eQrIgNcbojPi3BESZv4pFRk5e__7Mo8ykR22-EyEVHrUM3T1Xi1nJHLG5y5GCmmCfqPImv5EndLVMvkf2el-hcSbVek80fsYYCS_Lgb7WN2AKsn7P4sJMufsu_tZ3NSAp_XDXzgs7oKh3Xx2nM_u7zglk6IIC5nvu6KZWHD7W_e0Armtggcod5u-C9zjdcVFUdydAk34S3P2NX52bfTaRQOVIgcorImwuAhUeCEz11unADwVQlKeJdWOUZegHACPMTeUf4OZOlz4atYofIK51RuxXN2uKpX8JLxAuMWC0qZskJMk2XGSisyX4GwCAgzGDHVy1C7wDZOh1781H1Z2Q-9k74m6etO-iOWDD1vO8aNPfqckJqG9sSZ3d6o19c6GI1GLCNEHBuIQcjYpAaHaktPmeqCePdGrOyVrPttqehI8UXLPQbwceh7x3z37H3U25QOLmSj0wxlLCjzPWJvh8c4-Smj06kf26gUzT_Psc2LzhYHGQhJzD6pePVfQ3vNHtC_roDniB026y28QRjW2HE7z_CqFmrM7h1ffJ7O8ffkbP7lctx-2vgLJio2YQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkIAXxDeFAUaCx4jETuIEhBBfU8vWPqBN6ptnO-dpaGu2NgXtn-Jv5C5OWvEA6ste8tDYlnt3vvtd7nzH2CuVOlEYZyNEIzZKkwIiU1G1PGkFmKywpnUUx5N8eJh-m2bTLfa7vwtDaZW9TmwVdVU7-kb-RmQFGk8KBH44v4ioaxRFV_sWGkEs9uDyF7psi_ejL8jf10Lsfj34PIy6rgKRQ2jSRIigEwVO-tzlxkkAX5WgpHeiytH9ALSp4CH2joJYkJY-l76KFf6DwjmVW4nrXmPX0fDG5OypqVoX-U3ScPUuk1GRJGWXORTyydr6lCdnqCXQKxUJ6qoia2szrs1h2zXgL6v4L9TbWr_dO-x2B1v5xyBnd9kWzO6xG-MuMH-fHbWf6InhfFI38JaP66prDMZrz_34-4hb6kZBdaP5PCTmwoLbS96QtXRLBKlQLxf8pznG54wSMTmqn7NulQfs8ErI_JBtz-oZPGYcGS8sKGXKCkUgy4xNrcx8BdIi-MxgwFRPQ-26yubUYONU9ylsP_Sa-pqorwP1ByxZzTwP1T02mPOJ2LQaT_W52x_q-bHujrtG3CRlHBuIQaaxEQa3aktPUfGCavwNWNkzWfdXYFFp40InG2zg3WpuB5MC_Nlw9k4vU7pTVwu9PlwD9nL1GhUNRY8C-3GMEiJBhIpjHgVZXNFAplRFSMgn_1_8Bbs5PBjv6_3RZO8pu0W7CplBO2y7mS_hGeK7xj5vDxVnR1d9iv8ApeNk0g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKlVcEG8CBYwEx1V37X2CEKK0UUNJVFVU6s21veOqiGZLHqD-NX4dM2tvIg6gXHrZQ9a2nJnxzDc74xnGXhepFaW2JkI0YqI0KSHSNVXLk0aAzkqjW0dxNM4PTtLPp9npBvvd3YWhtMpOJ7aKum4sfSPfEVmJxpMCgTsupEUc7Q0-XP2IqIMURVq7dhpeRA7h-he6b7P3wz3k9RshBvtfPx1EocNAZBGmzCNE00kBVrrc5tpKAFdXUEhnRZ2jKwJoX8FB7CwFtCCtXC5dHRf4b0pri9xIXPcW2yzIK-qxzd398dHxquRvkvqLeJmMyiSpQh6Rzy5rq1VeXKLOQB9VJKi5yqyt1Lgyjm0Pgb9s5L8wcGsLB3fZnQBi-UcvdffYBkzus61RCNM_YGftB3tiPx83c3jLR00d2oTxxnE3Oh5yQ70pqIo0n_o0XZhxc83nZDvtAiErNIsZ_6nP8TmhtEyOyugyrPKQndwIoR-x3qSZwBPGUQyEgaLQVY0CkWXapEZmrgZpEIpm0GdFR0NlQ51zarfxXXUJbd_UivqKqK889fssWc688rU-1pizS2xajqdq3e0PzfRchcOvEEVJGccaYpBprIXGrZrKUYy8pIp_fVZ1TFbdhVhU4bjQxRobeLecG0CTB0Nrzt7uZEoF5TVTq6PWZ6-Wr1HtUCzJsx_HFEIkiFdxzGMvi0sayJRqCgn59P-Lv2RbeILVl-H48Bm7TZvyaULbrDefLuA5gr25eRFOFWdnN32Q_wBAsGpt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Technical+Note%3A+Modulation+of+fMRI+brainstem+responses+by+transcutaneous+vagus+nerve+stimulation&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Borgmann%2C+Diba&rft.au=Rigoux%2C+Lionel&rft.au=Kuzmanovic%2C+Bojana&rft.au=Edwin+Thanarajah%2C+Sharmili&rft.date=2021-12-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=244&rft.spage=118566&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118566&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon