Long short term memory networks for predicting resilient Modulus of stabilized base material subject to wet-dry cycles

The resilient modulus (M R ) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design approach. The dynamic triaxial test is the most often used method for evaluating the M R , although it is expensive, time-consuming, and requires s...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 27928 - 28
Main Authors Al‑Zubi, Mohammad A., Ahmad, Mahmood, Abdullah, Shahriar, Khan, Beenish Jehan, Qamar, Wajeeha, Abdullah, Gamil M. S., González-Lezcano, Roberto Alonso, Paul, Sonjoy, EL-Gawaad, N. S. Abd, Ouahbi, Tariq, Kashif, Muhammad
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.11.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The resilient modulus (M R ) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design approach. The dynamic triaxial test is the most often used method for evaluating the M R , although it is expensive, time-consuming, and requires specialized lab facilities. The purpose of this study is to establish a new model based on Long Short-Term Memory (LSTM) networks for predicting the M R of stabilized base materials with various additives during wet-dry cycles (WDC). A laboratory dataset of 704 records has been used using input parameters, including WDC, ratio of calcium oxide to silica, alumina, and ferric oxide compound, Maximum dry density to the optimal moisture content ratio (DMR), deviator stress ( σ d ), and confining stress ( σ 3 ). The results demonstrate that the LSTM technique is very accurate, with coefficients of determination of 0.995 and 0.980 for the training and testing datasets, respectively. The LSTM model outperforms other developed models, such as support vector regression and least squares approaches, in the literature. A sensitivity analysis study has determined that the DMR parameter is the most significant factor, while the σ d parameter is the least significant factor in predicting the M R of the stabilized base material under WDC. Furthermore, the SHapley Additive exPlanations approach is employed to elucidate the optimal model and examine the impact of its features on the final result.
AbstractList The resilient modulus (MR) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design approach. The dynamic triaxial test is the most often used method for evaluating the MR, although it is expensive, time-consuming, and requires specialized lab facilities. The purpose of this study is to establish a new model based on Long Short-Term Memory (LSTM) networks for predicting the MR of stabilized base materials with various additives during wet-dry cycles (WDC). A laboratory dataset of 704 records has been used using input parameters, including WDC, ratio of calcium oxide to silica, alumina, and ferric oxide compound, Maximum dry density to the optimal moisture content ratio (DMR), deviator stress (σd), and confining stress (σ3). The results demonstrate that the LSTM technique is very accurate, with coefficients of determination of 0.995 and 0.980 for the training and testing datasets, respectively. The LSTM model outperforms other developed models, such as support vector regression and least squares approaches, in the literature. A sensitivity analysis study has determined that the DMR parameter is the most significant factor, while the σd parameter is the least significant factor in predicting the MR of the stabilized base material under WDC. Furthermore, the SHapley Additive exPlanations approach is employed to elucidate the optimal model and examine the impact of its features on the final result.The resilient modulus (MR) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design approach. The dynamic triaxial test is the most often used method for evaluating the MR, although it is expensive, time-consuming, and requires specialized lab facilities. The purpose of this study is to establish a new model based on Long Short-Term Memory (LSTM) networks for predicting the MR of stabilized base materials with various additives during wet-dry cycles (WDC). A laboratory dataset of 704 records has been used using input parameters, including WDC, ratio of calcium oxide to silica, alumina, and ferric oxide compound, Maximum dry density to the optimal moisture content ratio (DMR), deviator stress (σd), and confining stress (σ3). The results demonstrate that the LSTM technique is very accurate, with coefficients of determination of 0.995 and 0.980 for the training and testing datasets, respectively. The LSTM model outperforms other developed models, such as support vector regression and least squares approaches, in the literature. A sensitivity analysis study has determined that the DMR parameter is the most significant factor, while the σd parameter is the least significant factor in predicting the MR of the stabilized base material under WDC. Furthermore, the SHapley Additive exPlanations approach is employed to elucidate the optimal model and examine the impact of its features on the final result.
The resilient modulus (M R ) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design approach. The dynamic triaxial test is the most often used method for evaluating the M R , although it is expensive, time-consuming, and requires specialized lab facilities. The purpose of this study is to establish a new model based on Long Short-Term Memory (LSTM) networks for predicting the M R of stabilized base materials with various additives during wet-dry cycles (WDC). A laboratory dataset of 704 records has been used using input parameters, including WDC, ratio of calcium oxide to silica, alumina, and ferric oxide compound, Maximum dry density to the optimal moisture content ratio (DMR), deviator stress (σ d ), and confining stress (σ 3 ). The results demonstrate that the LSTM technique is very accurate, with coefficients of determination of 0.995 and 0.980 for the training and testing datasets, respectively. The LSTM model outperforms other developed models, such as support vector regression and least squares approaches, in the literature. A sensitivity analysis study has determined that the DMR parameter is the most significant factor, while the σ d parameter is the least significant factor in predicting the M R of the stabilized base material under WDC. Furthermore, the SHapley Additive exPlanations approach is employed to elucidate the optimal model and examine the impact of its features on the final result.
The resilient modulus (M R ) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design approach. The dynamic triaxial test is the most often used method for evaluating the M R , although it is expensive, time-consuming, and requires specialized lab facilities. The purpose of this study is to establish a new model based on Long Short-Term Memory (LSTM) networks for predicting the M R of stabilized base materials with various additives during wet-dry cycles (WDC). A laboratory dataset of 704 records has been used using input parameters, including WDC, ratio of calcium oxide to silica, alumina, and ferric oxide compound, Maximum dry density to the optimal moisture content ratio (DMR), deviator stress ( σ d ), and confining stress ( σ 3 ). The results demonstrate that the LSTM technique is very accurate, with coefficients of determination of 0.995 and 0.980 for the training and testing datasets, respectively. The LSTM model outperforms other developed models, such as support vector regression and least squares approaches, in the literature. A sensitivity analysis study has determined that the DMR parameter is the most significant factor, while the σ d parameter is the least significant factor in predicting the M R of the stabilized base material under WDC. Furthermore, the SHapley Additive exPlanations approach is employed to elucidate the optimal model and examine the impact of its features on the final result.
Abstract The resilient modulus (MR) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design approach. The dynamic triaxial test is the most often used method for evaluating the MR, although it is expensive, time-consuming, and requires specialized lab facilities. The purpose of this study is to establish a new model based on Long Short-Term Memory (LSTM) networks for predicting the MR of stabilized base materials with various additives during wet-dry cycles (WDC). A laboratory dataset of 704 records has been used using input parameters, including WDC, ratio of calcium oxide to silica, alumina, and ferric oxide compound, Maximum dry density to the optimal moisture content ratio (DMR), deviator stress (σ d ), and confining stress (σ 3). The results demonstrate that the LSTM technique is very accurate, with coefficients of determination of 0.995 and 0.980 for the training and testing datasets, respectively. The LSTM model outperforms other developed models, such as support vector regression and least squares approaches, in the literature. A sensitivity analysis study has determined that the DMR parameter is the most significant factor, while the σ d parameter is the least significant factor in predicting the MR of the stabilized base material under WDC. Furthermore, the SHapley Additive exPlanations approach is employed to elucidate the optimal model and examine the impact of its features on the final result.
The resilient modulus (M ) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design approach. The dynamic triaxial test is the most often used method for evaluating the M , although it is expensive, time-consuming, and requires specialized lab facilities. The purpose of this study is to establish a new model based on Long Short-Term Memory (LSTM) networks for predicting the M of stabilized base materials with various additives during wet-dry cycles (WDC). A laboratory dataset of 704 records has been used using input parameters, including WDC, ratio of calcium oxide to silica, alumina, and ferric oxide compound, Maximum dry density to the optimal moisture content ratio (DMR), deviator stress (σ ), and confining stress (σ ). The results demonstrate that the LSTM technique is very accurate, with coefficients of determination of 0.995 and 0.980 for the training and testing datasets, respectively. The LSTM model outperforms other developed models, such as support vector regression and least squares approaches, in the literature. A sensitivity analysis study has determined that the DMR parameter is the most significant factor, while the σ parameter is the least significant factor in predicting the M of the stabilized base material under WDC. Furthermore, the SHapley Additive exPlanations approach is employed to elucidate the optimal model and examine the impact of its features on the final result.
The resilient modulus (MR) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design approach. The dynamic triaxial test is the most often used method for evaluating the MR, although it is expensive, time-consuming, and requires specialized lab facilities. The purpose of this study is to establish a new model based on Long Short-Term Memory (LSTM) networks for predicting the MR of stabilized base materials with various additives during wet-dry cycles (WDC). A laboratory dataset of 704 records has been used using input parameters, including WDC, ratio of calcium oxide to silica, alumina, and ferric oxide compound, Maximum dry density to the optimal moisture content ratio (DMR), deviator stress (σd), and confining stress (σ3). The results demonstrate that the LSTM technique is very accurate, with coefficients of determination of 0.995 and 0.980 for the training and testing datasets, respectively. The LSTM model outperforms other developed models, such as support vector regression and least squares approaches, in the literature. A sensitivity analysis study has determined that the DMR parameter is the most significant factor, while the σd parameter is the least significant factor in predicting the MR of the stabilized base material under WDC. Furthermore, the SHapley Additive exPlanations approach is employed to elucidate the optimal model and examine the impact of its features on the final result.
ArticleNumber 27928
Author Ouahbi, Tariq
Khan, Beenish Jehan
Qamar, Wajeeha
Paul, Sonjoy
EL-Gawaad, N. S. Abd
González-Lezcano, Roberto Alonso
Kashif, Muhammad
Abdullah, Shahriar
Abdullah, Gamil M. S.
Al‑Zubi, Mohammad A.
Ahmad, Mahmood
Author_xml – sequence: 1
  givenname: Mohammad A.
  surname: Al‑Zubi
  fullname: Al‑Zubi, Mohammad A.
  organization: Department of Mechanical Engineering, Hijjawai Faculty for Engineering, Yarmouk University
– sequence: 2
  givenname: Mahmood
  surname: Ahmad
  fullname: Ahmad, Mahmood
  email: ahmadm@uetpeshawar.edu.pk, ahmadm@uniten.edu.my
  organization: Institute of Energy Infrastructure, Universiti Tenaga Nasional, Department of Civil Engineering, University of Engineering and Technology Peshawar (Bannu Campus), Department of Artificial Intelligence, University of Engineering and Technology Peshawar (Bannu Campus)
– sequence: 3
  givenname: Shahriar
  surname: Abdullah
  fullname: Abdullah, Shahriar
  organization: Department of Civil and Environmental Engineering, Lamar University
– sequence: 4
  givenname: Beenish Jehan
  surname: Khan
  fullname: Khan, Beenish Jehan
  organization: Department of Civil Engineering, CECOS University of IT and Emerging Sciences
– sequence: 5
  givenname: Wajeeha
  surname: Qamar
  fullname: Qamar, Wajeeha
  organization: Department of Civil Engineering, Institute of Engineering and Fertilizer Research
– sequence: 6
  givenname: Gamil M. S.
  surname: Abdullah
  fullname: Abdullah, Gamil M. S.
  organization: Department of Civil Engineering, College of Engineering, Najran University
– sequence: 7
  givenname: Roberto Alonso
  surname: González-Lezcano
  fullname: González-Lezcano, Roberto Alonso
  organization: Department of Architecture and Design, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities
– sequence: 8
  givenname: Sonjoy
  surname: Paul
  fullname: Paul, Sonjoy
  organization: Department of Civil and Environmental Engineering, Lamar University
– sequence: 9
  givenname: N. S. Abd
  surname: EL-Gawaad
  fullname: EL-Gawaad, N. S. Abd
  organization: Muhayil Asir, Applied College, King Khalid University
– sequence: 10
  givenname: Tariq
  surname: Ouahbi
  fullname: Ouahbi, Tariq
  organization: LOMC, UMR 6294 CNRS, Université Le Havre Normandie, Normandie Université
– sequence: 11
  givenname: Muhammad
  surname: Kashif
  fullname: Kashif, Muhammad
  organization: Department of Civil Engineering, University of Engineering and Technology Peshawar (Bannu Campus)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39537833$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04825065$$DView record in HAL
BookMark eNp9ks1u1DAUhSNURMvQF2CBLLGBRcA_cWKvUFUBrTSIDawtx76Z8ZDExXamGp4ez6SFdhb1xtb1OZ-vr87L4mT0IxTFa4I_EMzEx1gRLkWJaVU2kgtR8mfFGcUVLymj9OTB-bQ4j3GD8-JUVkS-KE6Z5KwRjJ0V26UfVyiufUgoQRjQAIMPOzRCuvXhV0SdD-gmgHUmuawMEF3vYEzom7dTP0XkOxSTbnP1D1jU6gho0BnldI_i1G7AZLJHt5BKm8FmZ3qIr4rnne4jnN_ti-Lnl88_Lq_K5fev15cXy9LwhqeyAtF0bVsz2UoDlcXCNKLjprNW2oZWjNasw7g1wISusaUVl7SmnIOkQKRki-J65lqvN-omuEGHnfLaqUPBh5XSIbnckmIcugobTa3gebaixTU2pqbQai0aKTLr08y6mdoBrMlDCLp_BH18M7q1WvmtIoTXZN_qong_E9ZHvquLpdrXcCUoxzXfkqx9d_da8L8niEkNLhroez2Cn6JihApBJKY0S98eSTd-CmOe60GF829ok1VvHrb_7_37LGSBmAUm-BgDdMq4pJPz-9-4XhGs9slTc_JUTp46JE_xbKVH1nv6kyY2m2IWjysI_9t-wvUXTebrlA
CitedBy_id crossref_primary_10_2166_hydro_2024_051
Cites_doi 10.1007/s00521-020-05535-w
10.1177/0361198106197000117
10.1061/(ASCE)MT.1943-5533.0000574
10.1007/s11069-016-2454-2
10.1162/089976600300015015
10.3390/app9163221
10.3390/buildings12122137
10.1007/s11709-020-0669-5
10.1061/JPSEA2.PSENG-1453
10.1162/neco.1997.9.8.1735
10.1016/0169-2070(92)90008-W
10.32604/cmes.2023.025993
10.3141/2473-15
10.3390/app12031753
10.21203/rs.3.rs-3575223/v1
10.1038/s41598-020-66904-y
10.1016/j.conbuildmat.2021.124450
10.3390/math10050787
10.1109/ICCISTA.2019.8830667
10.1016/j.conbuildmat.2018.03.119
10.3390/su141912066
10.1109/BigData.2015.7364089
10.1007/s00521-021-06004-8
10.1016/j.engstruct.2021.113297
10.1080/14680629.2017.1374994
10.3141/1687-04
10.1007/s11227-023-05592-7
10.3934/mbe.2022209
10.1016/j.physd.2019.132306
10.1016/j.trgeo.2014.12.003
10.1061/(ASCE)1532-3641(2010)10:1(1)
10.1061/(ASCE)MT.1943-5533.0000055
10.1002/nag.1023
10.1016/j.tust.2016.12.009
10.3934/mbe.2023939
10.3390/app12041977
10.3141/2369-02
10.1109/TII.2020.3008223
10.3390/en13071718
10.3141/2104-08
10.1162/089976602320263980
10.1007/s41939-023-00203-7
10.2478/v10060-011-0070-0
10.1080/10298430701342874
10.3141/1874-11
10.1520/STP12523S
10.3390/ma15134386
10.1061/(ASCE)MT.1943-5533.0000494
10.1007/s12517-013-1174-0
10.3141/2001-01
10.1007/s12665-013-2531-8
10.1007/s00521-020-05214-w
10.1016/j.knosys.2014.08.012
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.1038/s41598-024-79588-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
ProQuest Biological Science
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic




PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
EISSN 2045-2322
EndPage 28
ExternalDocumentID oai_doaj_org_article_35ef40ca2d854158b060cc62ebaa8798
PMC11561326
oai_HAL_hal_04825065v1
39537833
10_1038_s41598_024_79588_5
Genre Journal Article
GrantInformation_xml – fundername: The current work was assisted financially to the Dean of Science and Research at King Khalid University via the Large Group Project under grant number RGP. 2/100/45.
  grantid: RGP. 2/100/45.
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c575t-4e87fbb639b9ce4d08c78f5cfdd9d7243263f00bce38a60d245926255e92e1993
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:32:16 EDT 2025
Thu Aug 21 18:30:15 EDT 2025
Fri May 09 12:23:53 EDT 2025
Fri Jul 11 09:28:50 EDT 2025
Wed Aug 13 09:13:02 EDT 2025
Wed Feb 19 02:02:46 EST 2025
Tue Jul 01 03:23:34 EDT 2025
Thu Apr 24 23:09:06 EDT 2025
Fri Feb 21 02:40:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Pavements
Stabilized base
Long short-term memory networks
Wet-dry cycles
Resilient modulus
Graphical user interface
Resilient modulus Pavements Stabilized base Wet-dry cycles Long short-term memory networks Graphical user interface
Language English
License 2024. The Author(s).
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-4e87fbb639b9ce4d08c78f5cfdd9d7243263f00bce38a60d245926255e92e1993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2573-3230
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-79588-5
PMID 39537833
PQID 3128041527
PQPubID 2041939
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_35ef40ca2d854158b060cc62ebaa8798
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11561326
hal_primary_oai_HAL_hal_04825065v1
proquest_miscellaneous_3128819022
proquest_journals_3128041527
pubmed_primary_39537833
crossref_citationtrail_10_1038_s41598_024_79588_5
crossref_primary_10_1038_s41598_024_79588_5
springer_journals_10_1038_s41598_024_79588_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-13
PublicationDateYYYYMMDD 2024-11-13
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Sas, W., Gluchowski, A. & Szymanski, A. Determination of the Resilient modulus MR for the lime stabilized clay obtained from the repeated loading CBR tests, Annals of Warsaw University of Life Sciences-SGGW. Land Reclamation, vol. 44, no. 2, (2012).
Nunan, T. A. & Humphrey, D. A REVIEW AND EXPERIMENTATION OF GRAVEL STABILIZATION METHODS (EXECUTIVE SUMMARY, 1990).
Gu, X., Chen, X., Lu, P., Lan, X. & Li, X. and Y. J. T. J. o. S. Du, SiMaLSTM-SNP: novel semantic relatedness learning model preserving both Siamese networks and membrane computing, vol. 80, no. 3, pp. 3382–3411, (2024).
MaaloufMHomouzDKernel ridge regression using truncated newton methodKnowl. Based Syst.20147133934410.1016/j.knosys.2014.08.012
PutriEERaoNMannanMEvaluation of the modulus of elasticity and resilient modulus for highway subgradesElectron. J. Geotech. Eng.20101512851293
Li, D., Liu, Z., Armaghani, D. J., Xiao, P. & Zhou, J. J. M. Novel ensemble tree solution for rockburst prediction using deep forest, vol. 10, no. 5, p. 787, (2022).
Karballaeezadeh, N. et al. Intelligent road inspection with advanced machine learning; hybrid prediction models for smart mobility and transportation maintenance systems, vol. 13, no. 7, p. 1718, (2020).
GhanizadehARahrovanMApplication of artifitial neural network to predict the resilient modulus of stabilized base subjected to wet dry cyclesComput. Mater. Civ. Eng.201613747
Khan, K. et al. Prediction Models for Evaluating Resilient Modulus of Stabilized Aggregate Bases in Wet and Dry Alternating Environments: ANN and GEP Approaches, Materials, vol. 15, no. 13, p. 4386, (2022).
George, K. P. & Davidson, D. T. Development of a freeze-thaw test for design of soil-cement. Highway Res. Record no 36, (1963).
Zhou, F., Hu, S., Chen, D. H. & Scullion, T. Overlay tester: simple performance test for fatigue cracking, Transportation Research Record, vol. no. 1, pp. 1–8, 2007. (2001).
AsterisPGLemonisMELeTTTsavdaridisKDEvaluation of the ultimate eccentric load of rectangular CFSTs using advanced neural network modelingEng. Struct.202124811329710.1016/j.engstruct.2021.113297
Berg, K. Durability and strength of activated reclaimed Iowa Class C fly ash aggregate in road bases, 1998.
WangJLiJWangXWangJHuangMAir quality prediction using CT-LSTMNeural Comput. Appl.202133477947921:CAS:528:DC%2BB38XotlKqs7k%3D10.1007/s00521-020-05535-w
Butalia, T. S., Huang, J., Kim, D. G. & Croft, F. Effect of moisture content and pore water pressure buildup on resilient modulus of cohesive soils in Ohio, ASTM Special Technical Publication, 1437, pp. 70–84, (2003).
FedrigoWNúñezWPLópezMACKleinertTRCerattiJAPA study on the resilient modulus of cement-treated mixtures of RAP and aggregates using indirect tensile, triaxial and flexural testsConstr. Build. Mater.201817116116910.1016/j.conbuildmat.2018.03.119
ArmstrongJCollopyFThe selection of Error measures for Generaliz-ing about forecasting methods: empirical comparisonsInt. J. Forecast.199281698010.1016/0169-2070(92)90008-W
Khoury, N., I. J., M. J. & Zaman, P. E. Influences of various cementitious agents on the performance of stabilized aggregate base subjected to wet-dry cycles, 8, 4, pp. 265–276, (2007).
Jalali, H. et al. Prediction of vertical displacement for a buried pipeline subjected to normal fault using a hybrid FEM-ANN approach, pp. 1–16, (2024).
Chen, K., Zhou, Y. & Dai, F. A LSTM-based method for stock returns prediction: A case study of China stock market, in 2015 IEEE international conference on big data (big data), pp. 2823–2824: IEEE. (2015).
AsterisPGKoopialipoorMArmaghaniDJKotsonisEALourençoPBPrediction of cement-based mortars compressive strength using machine learning techniquesNeural Comput. Appl.20213319130891312110.1007/s00521-021-06004-8
Armaghani, D. J. et al. Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition, vol. 63, pp. 29–43, (2017).
KhouryNZamanMMDurability of stabilized base courses subjected to wet–dry cyclesInt. J. Pavement Eng.2007842652761:CAS:528:DC%2BD2sXhtFyqs7rO10.1080/10298430701342874
Barkhordari, M. S., Barkhordari, M. M., Armaghani, D. J., Mohamad, E. T. & Gordan, B. Straightforward slope stability prediction under seismic conditions using machine learning algorithms, (2023).
ErlingssonSRahmanMSEvaluation of permanent deformation characteristics of unbound granular materials by means of multistage repeated-load triaxial testsTransp. Res. Rec.201323691111910.3141/2369-02
Hochreiter, S. & Schmidhuber, J. Long short-term memory, neural computation, 9, 8, pp. 1735–1780, (1997).
Ahmad, F. et al. Stability risk assessment of slopes using logistic model tree based on updated case histories, 20, 12, pp. 21229–21245, (2023).
Khoury, N. N. & Zaman, M. M. Correlation between resilient modulus, moisture variation, and soil suction for subgrade soils, Transportation research record, vol. 1874, no. 1, pp. 99–107, (2004).
RadhakrishnanVDudipalaRRMaityASudhakar ReddyKEvaluation of rutting potential of asphalts using resilient modulus test parametersRoad. Mater. Pavement Des.2019201203510.1080/14680629.2017.1374994
Asteris, P. G. et al. Slope stability classification under seismic conditions using several tree-based intelligent techniques, vol. 12, no. 3, p. 1753, (2022).
Armaghani, D. J., Hajihassani, M., Mohamad, E. T. & Marto, A. and S. J. A. J. o. G. Noorani, blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization, 7, pp. 5383–5396, (2014).
Alhirmizy, S. & Qader, B. Multivariate time series forecasting with LSTM for Madrid, Spain pollution, in 2019 international conference on computing and information science and technology and their applications (ICCISTA), pp. 1–5: IEEE. (2019).
Kaloop, M. R. et al. Particle swarm optimization algorithm-extreme learning machine (PSO-ELM) model for predicting resilient modulus of stabilized aggregate bases, Applied Sciences, 9, 16, p. 3221, (2019).
Wang, H., Zhang, X. & Jiang, S. J. S. A laboratory and field universal estimation method for tire–pavement interaction noise (TPIN) based on 3D image technology, vol. 14, no. 19, p. 12066, (2022).
ZamanMMZhuJHLagurosJGDurability effects on resilient moduli of stabilized aggregate baseTransp. Res. Rec.199916871293810.3141/1687-04
Barksdale, R. D. et al. Laboratory determination of resilient modulus for flexible pavement design, (1997).
KhouryNNBrooksRPerformance of a stabilized aggregate base subject to different durability proceduresJ. Mater. Civ. Eng.20102255065141:CAS:528:DC%2BC3cXkvV2ku7Y%3D10.1061/(ASCE)MT.1943-5533.0000055
Gers, F. A., Schmidhuber, J. & Cummins, F. Learning to forget: Continual prediction with LSTM, Neural computation, vol. 12, no. 10, pp. 2451–2471, (2000).
GandomiAHBabanajadSKAlaviAHFarnamYNovel approach to strength modeling of concrete under triaxial compressionJ. Mater. Civ. Eng.20122491132114310.1061/(ASCE)MT.1943-5533.0000494
Ahmad, M. et al. Unconfined compressive strength prediction of stabilized expansive clay soil using machine learning techniques, pp. 1–15, (2023).
Maalouf, M., Khoury, N., Laguros, J. G. & Kumin, H. Support vector regression to predict the performance of stabilized aggregate bases subject to wet–dry cycles, International journal for numerical and analytical methods in geomechanics, 36, 6, pp. 675–696, (2012).
Olidis, C. & Hein, D. Guide for the mechanistic-empirical design of new and rehabilitated pavement structures materials characterization: Is your agency ready, in 2004 annual conference of the transportation association of Canada, (2004).
KhouryNBrooksRBoeniSYYadaDVariation of resilient modulus, strength, and modulus of elasticity of stabilized soils with postcompaction moisture contentsJ. Mater. Civ. Eng.201325216016610.1061/(ASCE)MT.1943-5533.0000574
Schmidhuber, J., Gers, F. & Eck, D. Learning nonregular languages: a comparison of simple recurrent networks and LSTM, neural computation, 14, 9, pp. 2039–2041, (2002).
HossainMSKimWSEstimation of subgrade resilient modulus for fine-grained soil from unconfined compression testTransp. Res. Rec.20152473112613510.3141/2473-15
Ahmad, F. et al. Prediction of slope stability using Tree Augmented Naive-Bayes classifier: Modeling and performance evaluation, vol. 19, no. 5, pp. 4526–4546, (2022).
LyHBEstimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate modelsNeural Comput. Appl.20213383437345810.1007/s00521-020-05214-w
Suman, S., Khan, S., Das, S. & Chand, S. Slope stability analysis using artificial intelligence techniques, Natural Hazards, vol. 84, pp. 727–748, (2016).
RenLA data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful lifeIEEE Trans. Industr. Inf.20201753478348710.1109/TII.2020.3008223
Diagne, M., Tinjum, J. M. & Nokkaew, K. The effects of recycled clay brick content on the engineering properties, weathering durability, and resilient modulus of recycled concrete aggregate, Transportation Geotechnics, 3, pp. 15–23, (2015).
ManouchehrianAGholamnejadJSharifzadehMDevelopment of a model for analysis of slope stability for circular mode failure using genetic algorithmEnviron. Earth Sci.201471126712772014EES....71.1267M10.1007/s12665-013-2531-8
AsterisPGSkentouADBardhanASamuiPLourençoPBSoft computing techniques for the prediction of concrete compressive strength using non-destructive testsConstr. Build. Mater.202130312445010.1016/j.conbuildmat.2021.124450
Arora, H. C. et al. Axial Capacity of FRP-Reinforced Concrete Columns: Computational Intelligence-Based Prognosis for Sustainable Structures, Buildings, vol. 12, no. 12, p. 2137, (2022).
GhanizadehARHeidarabadizadehNHeraviFGaussian process regression (gpr) for auto-estimation of resilient modulus of stabilized base materialsJ. Soft Comput. Civil Eng.2021518094
Ahmad, M. et al. Prediction of liquefaction-induced lateral displacements using Gaussian process regression, vol. 12, no. 4, p. 2022. (1977).
Hu, D. et al. Surface Settlement Prediction of Rectangular Pipe-Jacking Tunnel Based on the Mach
PG Asteris (79588_CR59) 2021; 303
79588_CR28
79588_CR29
AH Gandomi (79588_CR62) 2012; 24
N Khoury (79588_CR26) 2013; 25
79588_CR31
79588_CR30
79588_CR33
79588_CR32
MM Zaman (79588_CR19) 1999; 1687
79588_CR35
MS Hossain (79588_CR9) 2015; 2473
79588_CR34
79588_CR37
79588_CR36
PG Asteris (79588_CR57) 2021; 33
AR Ghanizadeh (79588_CR47) 2021; 5
HB Ly (79588_CR58) 2021; 33
M Zaman (79588_CR6) 2010; 10
79588_CR17
79588_CR16
79588_CR18
M Maalouf (79588_CR44) 2014; 71
79588_CR20
79588_CR63
79588_CR22
79588_CR21
79588_CR65
79588_CR24
79588_CR23
79588_CR25
PG Asteris (79588_CR60) 2021; 248
V Radhakrishnan (79588_CR13) 2019; 20
79588_CR61
A Manouchehrian (79588_CR64) 2014; 71
A Sherstinsky (79588_CR56) 2020; 404
79588_CR53
79588_CR55
79588_CR54
79588_CR12
J Wang (79588_CR52) 2021; 33
79588_CR15
79588_CR14
79588_CR51
79588_CR50
79588_CR2
79588_CR1
79588_CR39
79588_CR3
79588_CR38
S Erlingsson (79588_CR8) 2013; 2369
79588_CR5
EE Putri (79588_CR11) 2010; 15
79588_CR7
W Fedrigo (79588_CR10) 2018; 171
N Khoury (79588_CR4) 2007; 8
79588_CR42
79588_CR41
A Ghanizadeh (79588_CR45) 2016; 1
79588_CR43
79588_CR46
79588_CR48
NN Khoury (79588_CR27) 2010; 22
J Armstrong (79588_CR66) 1992; 8
79588_CR40
L Ren (79588_CR49) 2020; 17
References_xml – reference: Jalali, H. et al. Prediction of vertical displacement for a buried pipeline subjected to normal fault using a hybrid FEM-ANN approach, pp. 1–16, (2024).
– reference: ZamanMSolankiPEbrahimiAWhiteLNeural network modeling of resilient modulus using routine subgrade soil propertiesInt. J. Geomech.201010111210.1061/(ASCE)1532-3641(2010)10:1(1)
– reference: HossainMSKimWSEstimation of subgrade resilient modulus for fine-grained soil from unconfined compression testTransp. Res. Rec.20152473112613510.3141/2473-15
– reference: Zhou, F., Hu, S., Chen, D. H. & Scullion, T. Overlay tester: simple performance test for fatigue cracking, Transportation Research Record, vol. no. 1, pp. 1–8, 2007. (2001).
– reference: Khoury, N. N. Durability of Cementitiously Stabilized Aggregate Bases for Pavement Application (The University of Oklahoma, 2005).
– reference: Sas, W., Gluchowski, A. & Szymanski, A. Determination of the Resilient modulus MR for the lime stabilized clay obtained from the repeated loading CBR tests, Annals of Warsaw University of Life Sciences-SGGW. Land Reclamation, vol. 44, no. 2, (2012).
– reference: Suman, S., Khan, S., Das, S. & Chand, S. Slope stability analysis using artificial intelligence techniques, Natural Hazards, vol. 84, pp. 727–748, (2016).
– reference: MaaloufMHomouzDKernel ridge regression using truncated newton methodKnowl. Based Syst.20147133934410.1016/j.knosys.2014.08.012
– reference: Schmidhuber, J., Gers, F. & Eck, D. Learning nonregular languages: a comparison of simple recurrent networks and LSTM, neural computation, 14, 9, pp. 2039–2041, (2002).
– reference: Wang, H., Zhang, X. & Jiang, S. J. S. A laboratory and field universal estimation method for tire–pavement interaction noise (TPIN) based on 3D image technology, vol. 14, no. 19, p. 12066, (2022).
– reference: Gers, F. A., Schmidhuber, J. & Cummins, F. Learning to forget: Continual prediction with LSTM, Neural computation, vol. 12, no. 10, pp. 2451–2471, (2000).
– reference: Barksdale, R. D. et al. Laboratory determination of resilient modulus for flexible pavement design, (1997).
– reference: AsterisPGSkentouADBardhanASamuiPLourençoPBSoft computing techniques for the prediction of concrete compressive strength using non-destructive testsConstr. Build. Mater.202130312445010.1016/j.conbuildmat.2021.124450
– reference: Asteris, P. G. et al. Slope stability classification under seismic conditions using several tree-based intelligent techniques, vol. 12, no. 3, p. 1753, (2022).
– reference: Li, D., Liu, Z., Armaghani, D. J., Xiao, P. & Zhou, J. J. M. Novel ensemble tree solution for rockburst prediction using deep forest, vol. 10, no. 5, p. 787, (2022).
– reference: GandomiAHBabanajadSKAlaviAHFarnamYNovel approach to strength modeling of concrete under triaxial compressionJ. Mater. Civ. Eng.20122491132114310.1061/(ASCE)MT.1943-5533.0000494
– reference: RadhakrishnanVDudipalaRRMaityASudhakar ReddyKEvaluation of rutting potential of asphalts using resilient modulus test parametersRoad. Mater. Pavement Des.2019201203510.1080/14680629.2017.1374994
– reference: George, K. P. & Davidson, D. T. Development of a freeze-thaw test for design of soil-cement. Highway Res. Record no 36, (1963).
– reference: Loulizi, A., Flintsch, G. W., Al-Qadi, I. L. & Mokarem, D. Comparing resilient modulus and dynamic modulus of hot-mix asphalt as material properties for flexible pavement design, Transportation Research Record, vol. no. 1, pp. 161–170, 2006. (1970).
– reference: Khoury, N. N. & Zaman, M. M. Correlation between resilient modulus, moisture variation, and soil suction for subgrade soils, Transportation research record, vol. 1874, no. 1, pp. 99–107, (2004).
– reference: Khan, K. et al. Prediction Models for Evaluating Resilient Modulus of Stabilized Aggregate Bases in Wet and Dry Alternating Environments: ANN and GEP Approaches, Materials, vol. 15, no. 13, p. 4386, (2022).
– reference: Ahmad, M. et al. Prediction of liquefaction-induced lateral displacements using Gaussian process regression, vol. 12, no. 4, p. 2022. (1977).
– reference: KhouryNBrooksRBoeniSYYadaDVariation of resilient modulus, strength, and modulus of elasticity of stabilized soils with postcompaction moisture contentsJ. Mater. Civ. Eng.201325216016610.1061/(ASCE)MT.1943-5533.0000574
– reference: Ahmad, F., Tang, X., Hu, J., Ahmad, M. & Gordan, B. J. Improved Prediction of Slope Stability under Static and Dynamic Conditions Using Tree-Based Models, vol. 1, p. 3, (2023).
– reference: AASHTO. AASHTO Guide for Design of Pavement Structures. (1993).
– reference: Butalia, T. S., Huang, J., Kim, D. G. & Croft, F. Effect of moisture content and pore water pressure buildup on resilient modulus of cohesive soils in Ohio, ASTM Special Technical Publication, 1437, pp. 70–84, (2003).
– reference: Nunan, T. A. & Humphrey, D. A REVIEW AND EXPERIMENTATION OF GRAVEL STABILIZATION METHODS (EXECUTIVE SUMMARY, 1990).
– reference: Diagne, M., Tinjum, J. M. & Nokkaew, K. The effects of recycled clay brick content on the engineering properties, weathering durability, and resilient modulus of recycled concrete aggregate, Transportation Geotechnics, 3, pp. 15–23, (2015).
– reference: Barkhordari, M. S., Barkhordari, M. M., Armaghani, D. J., Mohamad, E. T. & Gordan, B. Straightforward slope stability prediction under seismic conditions using machine learning algorithms, (2023).
– reference: Kaloop, M. R. et al. Particle swarm optimization algorithm-extreme learning machine (PSO-ELM) model for predicting resilient modulus of stabilized aggregate bases, Applied Sciences, 9, 16, p. 3221, (2019).
– reference: KhouryNNBrooksRPerformance of a stabilized aggregate base subject to different durability proceduresJ. Mater. Civ. Eng.20102255065141:CAS:528:DC%2BC3cXkvV2ku7Y%3D10.1061/(ASCE)MT.1943-5533.0000055
– reference: Hu, D. et al. Surface Settlement Prediction of Rectangular Pipe-Jacking Tunnel Based on the Machine-Learning Algorithm, vol. 15, no. 1, p. 04023061, (2024).
– reference: Armaghani, D. J. et al. Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition, vol. 63, pp. 29–43, (2017).
– reference: AsterisPGKoopialipoorMArmaghaniDJKotsonisEALourençoPBPrediction of cement-based mortars compressive strength using machine learning techniquesNeural Comput. Appl.20213319130891312110.1007/s00521-021-06004-8
– reference: RenLA data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful lifeIEEE Trans. Industr. Inf.20201753478348710.1109/TII.2020.3008223
– reference: Olidis, C. & Hein, D. Guide for the mechanistic-empirical design of new and rehabilitated pavement structures materials characterization: Is your agency ready, in 2004 annual conference of the transportation association of Canada, (2004).
– reference: Alhirmizy, S. & Qader, B. Multivariate time series forecasting with LSTM for Madrid, Spain pollution, in 2019 international conference on computing and information science and technology and their applications (ICCISTA), pp. 1–5: IEEE. (2019).
– reference: Ghanizadeh, A., Tavana, A., Amlashi & Abbasou, H. Prediction of Resilient Modulus of Stabilized Aggregate Base Subjected To Wet-Dry Cycles Using Adaptive Neuro-Fuzzy Inference System (ANFIS), Road, vol. 25, no. 90, pp. 65–75, (2017).
– reference: ManouchehrianAGholamnejadJSharifzadehMDevelopment of a model for analysis of slope stability for circular mode failure using genetic algorithmEnviron. Earth Sci.201471126712772014EES....71.1267M10.1007/s12665-013-2531-8
– reference: Khoury, N., I. J., M. J. & Zaman, P. E. Influences of various cementitious agents on the performance of stabilized aggregate base subjected to wet-dry cycles, 8, 4, pp. 265–276, (2007).
– reference: Berg, K. Durability and strength of activated reclaimed Iowa Class C fly ash aggregate in road bases, 1998.
– reference: ZamanMMZhuJHLagurosJGDurability effects on resilient moduli of stabilized aggregate baseTransp. Res. Rec.199916871293810.3141/1687-04
– reference: FedrigoWNúñezWPLópezMACKleinertTRCerattiJAPA study on the resilient modulus of cement-treated mixtures of RAP and aggregates using indirect tensile, triaxial and flexural testsConstr. Build. Mater.201817116116910.1016/j.conbuildmat.2018.03.119
– reference: GhanizadehARHeidarabadizadehNHeraviFGaussian process regression (gpr) for auto-estimation of resilient modulus of stabilized base materialsJ. Soft Comput. Civil Eng.2021518094
– reference: Maalouf, M., Khoury, N., Laguros, J. G. & Kumin, H. Support vector regression to predict the performance of stabilized aggregate bases subject to wet–dry cycles, International journal for numerical and analytical methods in geomechanics, 36, 6, pp. 675–696, (2012).
– reference: Ahmad, F. et al. Prediction of slope stability using Tree Augmented Naive-Bayes classifier: Modeling and performance evaluation, vol. 19, no. 5, pp. 4526–4546, (2022).
– reference: WangJLiJWangXWangJHuangMAir quality prediction using CT-LSTMNeural Comput. Appl.202133477947921:CAS:528:DC%2BB38XotlKqs7k%3D10.1007/s00521-020-05535-w
– reference: Ahmad, M. et al. Unconfined compressive strength prediction of stabilized expansive clay soil using machine learning techniques, pp. 1–15, (2023).
– reference: Bui, X. N. et al. Prediction of slope failure in open-pit mines using a novel hybrid artificial intelligence model based on decision tree and evolution algorithm, scientific reports, 10, 1, pp. 1–17, (2020).
– reference: GhanizadehARahrovanMApplication of artifitial neural network to predict the resilient modulus of stabilized base subjected to wet dry cyclesComput. Mater. Civ. Eng.201613747
– reference: Chen, K., Zhou, Y. & Dai, F. A LSTM-based method for stock returns prediction: A case study of China stock market, in 2015 IEEE international conference on big data (big data), pp. 2823–2824: IEEE. (2015).
– reference: KhouryNZamanMMDurability of stabilized base courses subjected to wet–dry cyclesInt. J. Pavement Eng.2007842652761:CAS:528:DC%2BD2sXhtFyqs7rO10.1080/10298430701342874
– reference: Hochreiter, S. & Schmidhuber, J. Long short-term memory, neural computation, 9, 8, pp. 1735–1780, (1997).
– reference: Ahmad, F. et al. Stability risk assessment of slopes using logistic model tree based on updated case histories, 20, 12, pp. 21229–21245, (2023).
– reference: LyHBEstimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate modelsNeural Comput. Appl.20213383437345810.1007/s00521-020-05214-w
– reference: PutriEERaoNMannanMEvaluation of the modulus of elasticity and resilient modulus for highway subgradesElectron. J. Geotech. Eng.20101512851293
– reference: ArmstrongJCollopyFThe selection of Error measures for Generaliz-ing about forecasting methods: empirical comparisonsInt. J. Forecast.199281698010.1016/0169-2070(92)90008-W
– reference: Arora, H. C. et al. Axial Capacity of FRP-Reinforced Concrete Columns: Computational Intelligence-Based Prognosis for Sustainable Structures, Buildings, vol. 12, no. 12, p. 2137, (2022).
– reference: SherstinskyAFundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) networkPhys. D: Nonlinear Phenom.2020404132306405756010.1016/j.physd.2019.132306
– reference: ErlingssonSRahmanMSEvaluation of permanent deformation characteristics of unbound granular materials by means of multistage repeated-load triaxial testsTransp. Res. Rec.201323691111910.3141/2369-02
– reference: Ahmad, M. et al. Application of machine learning algorithms for the evaluation of seismic soil liquefaction potential, vol. 15, pp. 490–505, (2021).
– reference: Guthrie, W. S., Michener, J. E., Wilson, B. T. & Eggett, D. L. Effects of environmental factors on construction of soil–cement pavement layers, Transportation research record, 2104, 1, pp. 71–79, (2009).
– reference: Gu, X., Chen, X., Lu, P., Lan, X. & Li, X. and Y. J. T. J. o. S. Du, SiMaLSTM-SNP: novel semantic relatedness learning model preserving both Siamese networks and membrane computing, vol. 80, no. 3, pp. 3382–3411, (2024).
– reference: AsterisPGLemonisMELeTTTsavdaridisKDEvaluation of the ultimate eccentric load of rectangular CFSTs using advanced neural network modelingEng. Struct.202124811329710.1016/j.engstruct.2021.113297
– reference: Karballaeezadeh, N. et al. Intelligent road inspection with advanced machine learning; hybrid prediction models for smart mobility and transportation maintenance systems, vol. 13, no. 7, p. 1718, (2020).
– reference: Armaghani, D. J., Hajihassani, M., Mohamad, E. T. & Marto, A. and S. J. A. J. o. G. Noorani, blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization, 7, pp. 5383–5396, (2014).
– volume: 33
  start-page: 4779
  year: 2021
  ident: 79588_CR52
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05535-w
– ident: 79588_CR14
  doi: 10.1177/0361198106197000117
– volume: 25
  start-page: 160
  issue: 2
  year: 2013
  ident: 79588_CR26
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0000574
– ident: 79588_CR65
  doi: 10.1007/s11069-016-2454-2
– ident: 79588_CR50
  doi: 10.1162/089976600300015015
– ident: 79588_CR1
  doi: 10.3390/app9163221
– ident: 79588_CR5
– ident: 79588_CR42
– ident: 79588_CR18
– ident: 79588_CR46
– ident: 79588_CR61
  doi: 10.3390/buildings12122137
– ident: 79588_CR28
  doi: 10.1007/s11709-020-0669-5
– volume: 15
  start-page: 1285
  year: 2010
  ident: 79588_CR11
  publication-title: Electron. J. Geotech. Eng.
– ident: 79588_CR39
  doi: 10.1061/JPSEA2.PSENG-1453
– volume: 5
  start-page: 80
  issue: 1
  year: 2021
  ident: 79588_CR47
  publication-title: J. Soft Comput. Civil Eng.
– ident: 79588_CR55
  doi: 10.1162/neco.1997.9.8.1735
– volume: 8
  start-page: 69
  issue: 1
  year: 1992
  ident: 79588_CR66
  publication-title: Int. J. Forecast.
  doi: 10.1016/0169-2070(92)90008-W
– ident: 79588_CR31
  doi: 10.32604/cmes.2023.025993
– volume: 2473
  start-page: 126
  issue: 1
  year: 2015
  ident: 79588_CR9
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2473-15
– ident: 79588_CR35
  doi: 10.3390/app12031753
– volume: 1
  start-page: 37
  year: 2016
  ident: 79588_CR45
  publication-title: Comput. Mater. Civ. Eng.
– ident: 79588_CR22
– ident: 79588_CR34
  doi: 10.21203/rs.3.rs-3575223/v1
– ident: 79588_CR63
  doi: 10.1038/s41598-020-66904-y
– volume: 303
  start-page: 124450
  year: 2021
  ident: 79588_CR59
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.124450
– ident: 79588_CR36
  doi: 10.3390/math10050787
– ident: 79588_CR53
  doi: 10.1109/ICCISTA.2019.8830667
– volume: 171
  start-page: 161
  year: 2018
  ident: 79588_CR10
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.03.119
– ident: 79588_CR7
  doi: 10.3390/su141912066
– ident: 79588_CR51
  doi: 10.1109/BigData.2015.7364089
– volume: 33
  start-page: 13089
  issue: 19
  year: 2021
  ident: 79588_CR57
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06004-8
– volume: 248
  start-page: 113297
  year: 2021
  ident: 79588_CR60
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2021.113297
– volume: 20
  start-page: 20
  issue: 1
  year: 2019
  ident: 79588_CR13
  publication-title: Road. Mater. Pavement Des.
  doi: 10.1080/14680629.2017.1374994
– volume: 1687
  start-page: 29
  issue: 1
  year: 1999
  ident: 79588_CR19
  publication-title: Transp. Res. Rec.
  doi: 10.3141/1687-04
– ident: 79588_CR40
  doi: 10.1007/s11227-023-05592-7
– ident: 79588_CR30
  doi: 10.3934/mbe.2022209
– volume: 404
  start-page: 132306
  year: 2020
  ident: 79588_CR56
  publication-title: Phys. D: Nonlinear Phenom.
  doi: 10.1016/j.physd.2019.132306
– ident: 79588_CR25
  doi: 10.1016/j.trgeo.2014.12.003
– ident: 79588_CR16
– ident: 79588_CR3
– volume: 10
  start-page: 1
  issue: 1
  year: 2010
  ident: 79588_CR6
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)1532-3641(2010)10:1(1)
– volume: 22
  start-page: 506
  issue: 5
  year: 2010
  ident: 79588_CR27
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0000055
– ident: 79588_CR43
  doi: 10.1002/nag.1023
– ident: 79588_CR38
  doi: 10.1016/j.tust.2016.12.009
– ident: 79588_CR21
– ident: 79588_CR32
  doi: 10.3934/mbe.2023939
– ident: 79588_CR29
  doi: 10.3390/app12041977
– volume: 2369
  start-page: 11
  issue: 1
  year: 2013
  ident: 79588_CR8
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2369-02
– volume: 17
  start-page: 3478
  issue: 5
  year: 2020
  ident: 79588_CR49
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2020.3008223
– ident: 79588_CR41
  doi: 10.3390/en13071718
– ident: 79588_CR20
  doi: 10.3141/2104-08
– ident: 79588_CR54
  doi: 10.1162/089976602320263980
– ident: 79588_CR33
  doi: 10.1007/s41939-023-00203-7
– ident: 79588_CR2
  doi: 10.2478/v10060-011-0070-0
– ident: 79588_CR48
  doi: 10.1080/10298430701342874
– ident: 79588_CR24
  doi: 10.3141/1874-11
– ident: 79588_CR23
  doi: 10.1520/STP12523S
– ident: 79588_CR15
  doi: 10.3390/ma15134386
– ident: 79588_CR17
– volume: 24
  start-page: 1132
  issue: 9
  year: 2012
  ident: 79588_CR62
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0000494
– volume: 8
  start-page: 265
  issue: 4
  year: 2007
  ident: 79588_CR4
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298430701342874
– ident: 79588_CR37
  doi: 10.1007/s12517-013-1174-0
– ident: 79588_CR12
  doi: 10.3141/2001-01
– volume: 71
  start-page: 1267
  year: 2014
  ident: 79588_CR64
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-013-2531-8
– volume: 33
  start-page: 3437
  issue: 8
  year: 2021
  ident: 79588_CR58
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05214-w
– volume: 71
  start-page: 339
  year: 2014
  ident: 79588_CR44
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2014.08.012
SSID ssj0000529419
Score 2.4494545
Snippet The resilient modulus (M R ) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design...
The resilient modulus (M ) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design...
The resilient modulus (MR) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design...
The resilient modulus (M R ) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design...
Abstract The resilient modulus (MR) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 27928
SubjectTerms 639/166
639/301
704/172
Accuracy
Algorithms
Aluminum oxide
Artificial Intelligence
Calcium oxide
Civil Engineering
College campuses
Computer Science
Datasets
Engineering Sciences
Ferric oxide
Graphical user interface
Humanities and Social Sciences
Long short-term memory
Long short-term memory networks
Moisture content
multidisciplinary
Pavements
Regression analysis
Resilient modulus
Science
Science (multidisciplinary)
Sensitivity analysis
Silica
Stabilized base
Support vector machines
Water content
Wet-dry cycles
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuiG8CBRnEDaJ6_ZHYx4KoVqjlRKXerPgjbKUlqZqkaPn1zDjZpaECLlxySJys5XnOvKyf3xDyJojSRRNlXsYocsmDybWQDg5VMDUceVK7n3wulqfy05k6u1bqCzVhoz3wOHAHQsVaMl_xoBUkG-1YwbwveHRVpUuTtvlCzrv2MTW6enMjF2baJcOEPujgZtxNxqFbRgE81CwTJcN-yC8rlEPe5Jo3JZO_rZumdHR0j9ydeCQ9HPt_n9yKzQNye6wsuXlIro7b5ivtVkCuKb586TdU1G5oM6q-OwpclV5c4ioN6p4pfHSfr3FrJD1pw7AeOtrWFIgjSmd_xEAx2VEgtwmvtBsc_n1D-5Z-j30e4MF-g_K6R-T06OOXD8t8KrGQe-BpfS6jLmvngKY446MMTPtS18rXIZhQcgnkTtSMOR-FrgoWuFRoMKhUNDyi9u8x2WvaJj4ltArM1BAgw-tSKuEqhVUWFfMKAiWZzMhiO9zWT_7jWAZjbdM6uNB2DJGFENkUIqsy8nZ3z8XovvHX1u8xiruW6JydTgCe7IQn-y88ZeQ1YGD2jOXhscVz8LIDwlioq0VG9rcQsdOc76yAVI-GB7zMyKvdZZituARTNbEdxjbIwTjPyJMRUbufEkaJUguRET3D2qwv8yvN-So5ggOtB1rGi4y828LyV7_-PGDP_seAPSd3OM4qlEaKfbLXXw7xBRC13r1Mc_In0Ik4eA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gIIO4QdSsH7F9QgVRrVDLiUp7s-JHupW2ybLZbbX99cwk2VShopccEsdxMg9_8XyeIeRT4MpFE0WqYuSpYMGkmgsHhyKYEo6sZbuf_Mqnp-LnTM76Bbemp1XufGLrqEPtcY38gIMjxe3kTH1d_kmxahRGV_sSGvfJA0xdhpQuNVPDGgtGscTE9HtlMq4PGugB95QxGBy016kczUdt2n6YZeZIiryNOG8TJ_-JnraT0tET8rhHk_SwE_9Tci9Wz8jDrr7k9jm5PK6rM9rMAWJTdMH0Anm1W1p13O-GAmKlyxXGapD9TOHX-3yBGyTpSR02i01D65ICfEQC7XUMFKc8ChC31VrabBwu4tB1Ta_iOg3Qsd8iye4FOT368fv7NO0LLaQe0No6FVGr0jkAK874KEKmvdKl9GUIJigmAOLxMsucj1wXeRaYkJhmUMpoWEQG4EuyV9VVfE1oETJTTqQ2rFRCcldIrLUoMy-LAv4lRUImu89tfZ-FHIthLGwbDefadiKyICLbisjKhHwe7ll2OTjubP0NpTi0xPzZ7Yl6dWZ7c7RcxlJkvmBBS-hBuyzPvM9ZdDBMZXRCPoIOjPqYHh5bPAcuD2BjLi8nCdnfqYjtLb-xN3qakA_DZbBZDMQUVaw3XRtEYowl5FWnUcOjuJFcac4Toke6NhrL-Ep1Pm_zggO4B3DG8oR82anlzbj-_8He3P0ab8kjhvaC1Ee-T_bWq018B0Bs7d631vYXGnov1w
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDeBggziBhFZPxL7WFZUFWo5Uak3K36kW2lJqs1u0fLrmXGyi5YCEpccEsexPGPP58znzwBvg6hcNFHmVYwilzyYXAvp8FIH0-CVJ7b76Zfy-Ex-Plfne8A3e2ESaT9JWqZpesMO-9BjoKHNYBxrNQqtq27BbZJuJ6-eltPtfxXKXMmJGffHFEL_4dWdGJSk-jGyzIgIeRNl3iRL_pYxTYHo6D7cGxEkOxza_AD2YvsQ7gxnSq4fwfVJ116wfoawmtG0y74Rl3bN2oHv3TNEqexqQfkZYjwzXG5fzmlTJDvtwmq-6lnXMISMRJr9EQOjMMcQ1iZPZf3K0Y8btuzY97jMA1bs19R1j-Hs6NPX6XE-Hq6Qe0Roy1xGXTXOIUBxxkcZCu0r3SjfhGBCxSXCOtEUhfNR6LosApeKpAWVioZHYv09gf22a-MzYHUoTDNR2vCmkkq4WtH5iqrwqq5x_SgzmGy62_pReZwOwJjblAEX2g4msmgim0xkVQbvtu9cDbob_yz9kay4LUma2elGt7iwow9ZoWIjC1_zoBXWoF1RFt6XPDpsZmV0Bm_QB3bqOD48sXQPpzmEiqW6nmRwsHERO4723goM8iR1wKsMXm8f4zil5Evdxm41lCH0xXkGTweP2n5KGCUqLUQGesfXdtqy-6S9nCUtcAT0CMh4mcH7jVv-atffO-z5_xV_AXc5jR-iP4oD2F8uVvElgrGle5VG30-GxS3f
  priority: 102
  providerName: Springer Nature
Title Long short term memory networks for predicting resilient Modulus of stabilized base material subject to wet-dry cycles
URI https://link.springer.com/article/10.1038/s41598-024-79588-5
https://www.ncbi.nlm.nih.gov/pubmed/39537833
https://www.proquest.com/docview/3128041527
https://www.proquest.com/docview/3128819022
https://hal.science/hal-04825065
https://pubmed.ncbi.nlm.nih.gov/PMC11561326
https://doaj.org/article/35ef40ca2d854158b060cc62ebaa8798
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0i8IL4JjMog3iCQ-iO2HxDqqk3VtE4IqNS3KImddVJJRj8G5a_nLkmLygYSL4nkOI7ju8v9HP98B_DKCZ1562WovReh5M6GRsgMD6mzBR55zXYfnsWDkTwZq_EOrNMdtQM4v3FqR_mkRrPp2x_fVh_Q4N83W8bNuzk6IdooxvGJVqHk1S7so2fSZKjDFu43sb65lV3b7p25-dYt_1SH8UevMyGS5HUEep1I-cdqau2kju_CnRZdsl6jDvdgx5f34VaTb3L1AK5Oq_KczSf4tow-yewr8WxXrGy44HOGCJZdzmjthtjQDKfiF1PaMMmGlVtOl3NWFQzhJBFqf3rHyAUyhLy1FrP5MqOfOmxRse9-ETpsOF8R6e4hjI6PvvQHYZt4IcwRvS1C6Y0usgzBS2ZzL11kcm0KlRfOWae5RMgniijKci9MGkeOS0VhB5XylntiBD6CvbIq_RNgqYts0VXG8kJLJbJUUe5FFeUqTXFuKQPoroc7yduo5JQcY5rUq-PCJI2IEhRRUosoUQG83txz2cTk-GftQ5LipibF064Lqtl50ppnIpQvZJSn3BmFLZgsiqM8j7nPsJvamgBeog5stTHonSZUhp9AhJGxuuoGcLBWkWStyIlAAEBhELgO4MXmMtowLcykpa-WTR1CZpwH8LjRqM2jhFVCGyECMFu6ttWX7SvlxaSOE45gH8EajwN4s1bL3_36-4A9_b_qz-A2J_shaqQ4gL3FbOmfI1BbZB3Y1WPdgf1e7-TzCZ4Pj84-fsLSftzv1D8_OrV9_gKIcD1c
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviG8CAwyCJ4iW-qOxHxDaYFPH2gmhTdqbl9jOOqkkpWk3lT-Kv5G7fHQqE3vbSx4Sx3F85_PvfD_7CHnneJx67UUYe89DwZwOFRcpXBKnM7iyiu0-POj1j8S3Y3m8Rv60e2GQVtnaxMpQu8LiGvkmB0OK28lZ_HnyK8SsURhdbVNo1Gqx7xcX4LKVn_a-gnzfM7a7c_ilHzZZBUIL0GQWCq_iLE1hZk619cJFysYqkzZzTruYCcAzPIui1Hqukl7kmJB4pp6UXjOPdDeo9xZZFxxcmQ5Z3945-P5juaqDcTPR1c3unIirzRLajLvYGHSHlqCWcmUGrBIFwLw2QhrmVYx7lar5T7y2mgZ375N7DX6lW7XCPSBrPn9IbtcZLRePyPmgyE9pOQJQT9Ho05_I5F3QvGablxQwMp1MMTqEfGsKzv7ZGLdk0mHh5uN5SYuMAmBFyu5v7yhOshRAdTVOaDlPcdmIzgp64Wehg4rtAml9j8nRjQjhCenkRe6fEZq4SGddqTTLYiF5mkjM7igjK5MEvFcRkG7b3cY2555j-o2xqeLvXJlaRAZEZCoRGRmQD8t3JvWpH9eW3kYpLkviid3VjWJ6ahoDYLj0mYhswpySUINKo15kbY_5FJoZaxWQt6ADK3X0twYG74GRBaDak-fdgGy0KmIaW1Oay5ERkDfLx2AlMPST5L6Y12UQ-zEWkKe1Ri0_xbXkseI8IGpF11basvokPxtVJ5GDOwFwkPUC8rFVy8t2_b_Dnl__G6_Jnf7hcGAGewf7L8hdhmMHiZd8g3Rm07l_CTBwlr5qxh4lJzc93P8CIB1twg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxJ3AAIPgCaKlviT2A0KDUXWsm3hgUt-8xHbWSSUpTbup_DR-Hefk0qlM7G0veUgcx_G5-LPPZx9C3jqeZF57ESbe81Awp0PFRQaX1Okcrqxmux8cxoMj8W0kRxvkT7cXBmmVnU-sHbUrLa6Rb3NwpLidHKbqeUuL-L7b_zT9FWIGKYy0duk0GhXZ98tzmL5VH_d2QdbvGOt__fFlELYZBkILMGUeCq-SPMtglM609cJFyiYqlzZ3TruECcA2PI-izHqu0jhyTEg8X09Kr5lH6hvUe4PcTLjsoY0lo2S1voMRNNHT7T6diKvtClqP-9kYdIyWoKBybSysUwbACDdGQuZltHuZtPlP5LYeEPv3yN0WydKdRvXukw1fPCC3mtyWy4fkbFgWJ7QaA7yn6P7pT-T0LmnR8M4rCmiZTmcYJ0LmNYVp_-kEN2fSg9ItJouKljkF6Irk3d_eURxuKcDr2mJotchwAYnOS3ru56GDiu0SCX6PyNG1iOAx2SzKwj8lNHWRzntSaZYnQvIslZjnUUZWpinMY0VAel13G9uegI6JOCamjsRzZRoRGRCRqUVkZEDer96ZNud_XFn6M0pxVRLP7q5vlLMT07oCw6XPRWRT5pSEGlQWxZG1MfMZNDPRKiBvQAfW6hjsDA3eA3cLkDWWZ72AbHUqYlqvU5kLGwnI69Vj8BcYBEoLXy6aMogCGQvIk0ajVp_iWvJEcR4QtaZra21Zf1KcjuszyWFiAcCQxQH50KnlRbv-32HPrv6NV-Q2GLkZ7h3uPyd3GJoOMjD5Ftmczxb-BeDBefayNjxKjq_b0v8CIHpwkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long+short+term+memory+networks+for+predicting+resilient+Modulus+of+stabilized+base+material+subject+to+wet-dry+cycles&rft.jtitle=Scientific+reports&rft.au=Al%E2%80%91Zubi%2C+Mohammad+A.&rft.au=Ahmad%2C+Mahmood&rft.au=Abdullah%2C+Shahriar&rft.au=Khan%2C+Beenish+Jehan&rft.date=2024-11-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-79588-5&rft.externalDocID=10_1038_s41598_024_79588_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon