Long short term memory networks for predicting resilient Modulus of stabilized base material subject to wet-dry cycles
The resilient modulus (M R ) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design approach. The dynamic triaxial test is the most often used method for evaluating the M R , although it is expensive, time-consuming, and requires s...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 27928 - 28 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.11.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The resilient modulus (M
R
) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design approach. The dynamic triaxial test is the most often used method for evaluating the M
R
, although it is expensive, time-consuming, and requires specialized lab facilities. The purpose of this study is to establish a new model based on Long Short-Term Memory (LSTM) networks for predicting the M
R
of stabilized base materials with various additives during wet-dry cycles (WDC). A laboratory dataset of 704 records has been used using input parameters, including WDC, ratio of calcium oxide to silica, alumina, and ferric oxide compound, Maximum dry density to the optimal moisture content ratio (DMR), deviator stress (
σ
d
), and confining stress (
σ
3
). The results demonstrate that the LSTM technique is very accurate, with coefficients of determination of 0.995 and 0.980 for the training and testing datasets, respectively. The LSTM model outperforms other developed models, such as support vector regression and least squares approaches, in the literature. A sensitivity analysis study has determined that the DMR parameter is the most significant factor, while the
σ
d
parameter is the least significant factor in predicting the M
R
of the stabilized base material under WDC. Furthermore, the SHapley Additive exPlanations approach is employed to elucidate the optimal model and examine the impact of its features on the final result. |
---|---|
AbstractList | The resilient modulus (MR) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design approach. The dynamic triaxial test is the most often used method for evaluating the MR, although it is expensive, time-consuming, and requires specialized lab facilities. The purpose of this study is to establish a new model based on Long Short-Term Memory (LSTM) networks for predicting the MR of stabilized base materials with various additives during wet-dry cycles (WDC). A laboratory dataset of 704 records has been used using input parameters, including WDC, ratio of calcium oxide to silica, alumina, and ferric oxide compound, Maximum dry density to the optimal moisture content ratio (DMR), deviator stress (σd), and confining stress (σ3). The results demonstrate that the LSTM technique is very accurate, with coefficients of determination of 0.995 and 0.980 for the training and testing datasets, respectively. The LSTM model outperforms other developed models, such as support vector regression and least squares approaches, in the literature. A sensitivity analysis study has determined that the DMR parameter is the most significant factor, while the σd parameter is the least significant factor in predicting the MR of the stabilized base material under WDC. Furthermore, the SHapley Additive exPlanations approach is employed to elucidate the optimal model and examine the impact of its features on the final result.The resilient modulus (MR) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design approach. The dynamic triaxial test is the most often used method for evaluating the MR, although it is expensive, time-consuming, and requires specialized lab facilities. The purpose of this study is to establish a new model based on Long Short-Term Memory (LSTM) networks for predicting the MR of stabilized base materials with various additives during wet-dry cycles (WDC). A laboratory dataset of 704 records has been used using input parameters, including WDC, ratio of calcium oxide to silica, alumina, and ferric oxide compound, Maximum dry density to the optimal moisture content ratio (DMR), deviator stress (σd), and confining stress (σ3). The results demonstrate that the LSTM technique is very accurate, with coefficients of determination of 0.995 and 0.980 for the training and testing datasets, respectively. The LSTM model outperforms other developed models, such as support vector regression and least squares approaches, in the literature. A sensitivity analysis study has determined that the DMR parameter is the most significant factor, while the σd parameter is the least significant factor in predicting the MR of the stabilized base material under WDC. Furthermore, the SHapley Additive exPlanations approach is employed to elucidate the optimal model and examine the impact of its features on the final result. The resilient modulus (M R ) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design approach. The dynamic triaxial test is the most often used method for evaluating the M R , although it is expensive, time-consuming, and requires specialized lab facilities. The purpose of this study is to establish a new model based on Long Short-Term Memory (LSTM) networks for predicting the M R of stabilized base materials with various additives during wet-dry cycles (WDC). A laboratory dataset of 704 records has been used using input parameters, including WDC, ratio of calcium oxide to silica, alumina, and ferric oxide compound, Maximum dry density to the optimal moisture content ratio (DMR), deviator stress (σ d ), and confining stress (σ 3 ). The results demonstrate that the LSTM technique is very accurate, with coefficients of determination of 0.995 and 0.980 for the training and testing datasets, respectively. The LSTM model outperforms other developed models, such as support vector regression and least squares approaches, in the literature. A sensitivity analysis study has determined that the DMR parameter is the most significant factor, while the σ d parameter is the least significant factor in predicting the M R of the stabilized base material under WDC. Furthermore, the SHapley Additive exPlanations approach is employed to elucidate the optimal model and examine the impact of its features on the final result. The resilient modulus (M R ) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design approach. The dynamic triaxial test is the most often used method for evaluating the M R , although it is expensive, time-consuming, and requires specialized lab facilities. The purpose of this study is to establish a new model based on Long Short-Term Memory (LSTM) networks for predicting the M R of stabilized base materials with various additives during wet-dry cycles (WDC). A laboratory dataset of 704 records has been used using input parameters, including WDC, ratio of calcium oxide to silica, alumina, and ferric oxide compound, Maximum dry density to the optimal moisture content ratio (DMR), deviator stress ( σ d ), and confining stress ( σ 3 ). The results demonstrate that the LSTM technique is very accurate, with coefficients of determination of 0.995 and 0.980 for the training and testing datasets, respectively. The LSTM model outperforms other developed models, such as support vector regression and least squares approaches, in the literature. A sensitivity analysis study has determined that the DMR parameter is the most significant factor, while the σ d parameter is the least significant factor in predicting the M R of the stabilized base material under WDC. Furthermore, the SHapley Additive exPlanations approach is employed to elucidate the optimal model and examine the impact of its features on the final result. Abstract The resilient modulus (MR) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design approach. The dynamic triaxial test is the most often used method for evaluating the MR, although it is expensive, time-consuming, and requires specialized lab facilities. The purpose of this study is to establish a new model based on Long Short-Term Memory (LSTM) networks for predicting the MR of stabilized base materials with various additives during wet-dry cycles (WDC). A laboratory dataset of 704 records has been used using input parameters, including WDC, ratio of calcium oxide to silica, alumina, and ferric oxide compound, Maximum dry density to the optimal moisture content ratio (DMR), deviator stress (σ d ), and confining stress (σ 3). The results demonstrate that the LSTM technique is very accurate, with coefficients of determination of 0.995 and 0.980 for the training and testing datasets, respectively. The LSTM model outperforms other developed models, such as support vector regression and least squares approaches, in the literature. A sensitivity analysis study has determined that the DMR parameter is the most significant factor, while the σ d parameter is the least significant factor in predicting the MR of the stabilized base material under WDC. Furthermore, the SHapley Additive exPlanations approach is employed to elucidate the optimal model and examine the impact of its features on the final result. The resilient modulus (M ) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design approach. The dynamic triaxial test is the most often used method for evaluating the M , although it is expensive, time-consuming, and requires specialized lab facilities. The purpose of this study is to establish a new model based on Long Short-Term Memory (LSTM) networks for predicting the M of stabilized base materials with various additives during wet-dry cycles (WDC). A laboratory dataset of 704 records has been used using input parameters, including WDC, ratio of calcium oxide to silica, alumina, and ferric oxide compound, Maximum dry density to the optimal moisture content ratio (DMR), deviator stress (σ ), and confining stress (σ ). The results demonstrate that the LSTM technique is very accurate, with coefficients of determination of 0.995 and 0.980 for the training and testing datasets, respectively. The LSTM model outperforms other developed models, such as support vector regression and least squares approaches, in the literature. A sensitivity analysis study has determined that the DMR parameter is the most significant factor, while the σ parameter is the least significant factor in predicting the M of the stabilized base material under WDC. Furthermore, the SHapley Additive exPlanations approach is employed to elucidate the optimal model and examine the impact of its features on the final result. The resilient modulus (MR) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design approach. The dynamic triaxial test is the most often used method for evaluating the MR, although it is expensive, time-consuming, and requires specialized lab facilities. The purpose of this study is to establish a new model based on Long Short-Term Memory (LSTM) networks for predicting the MR of stabilized base materials with various additives during wet-dry cycles (WDC). A laboratory dataset of 704 records has been used using input parameters, including WDC, ratio of calcium oxide to silica, alumina, and ferric oxide compound, Maximum dry density to the optimal moisture content ratio (DMR), deviator stress (σd), and confining stress (σ3). The results demonstrate that the LSTM technique is very accurate, with coefficients of determination of 0.995 and 0.980 for the training and testing datasets, respectively. The LSTM model outperforms other developed models, such as support vector regression and least squares approaches, in the literature. A sensitivity analysis study has determined that the DMR parameter is the most significant factor, while the σd parameter is the least significant factor in predicting the MR of the stabilized base material under WDC. Furthermore, the SHapley Additive exPlanations approach is employed to elucidate the optimal model and examine the impact of its features on the final result. |
ArticleNumber | 27928 |
Author | Ouahbi, Tariq Khan, Beenish Jehan Qamar, Wajeeha Paul, Sonjoy EL-Gawaad, N. S. Abd González-Lezcano, Roberto Alonso Kashif, Muhammad Abdullah, Shahriar Abdullah, Gamil M. S. Al‑Zubi, Mohammad A. Ahmad, Mahmood |
Author_xml | – sequence: 1 givenname: Mohammad A. surname: Al‑Zubi fullname: Al‑Zubi, Mohammad A. organization: Department of Mechanical Engineering, Hijjawai Faculty for Engineering, Yarmouk University – sequence: 2 givenname: Mahmood surname: Ahmad fullname: Ahmad, Mahmood email: ahmadm@uetpeshawar.edu.pk, ahmadm@uniten.edu.my organization: Institute of Energy Infrastructure, Universiti Tenaga Nasional, Department of Civil Engineering, University of Engineering and Technology Peshawar (Bannu Campus), Department of Artificial Intelligence, University of Engineering and Technology Peshawar (Bannu Campus) – sequence: 3 givenname: Shahriar surname: Abdullah fullname: Abdullah, Shahriar organization: Department of Civil and Environmental Engineering, Lamar University – sequence: 4 givenname: Beenish Jehan surname: Khan fullname: Khan, Beenish Jehan organization: Department of Civil Engineering, CECOS University of IT and Emerging Sciences – sequence: 5 givenname: Wajeeha surname: Qamar fullname: Qamar, Wajeeha organization: Department of Civil Engineering, Institute of Engineering and Fertilizer Research – sequence: 6 givenname: Gamil M. S. surname: Abdullah fullname: Abdullah, Gamil M. S. organization: Department of Civil Engineering, College of Engineering, Najran University – sequence: 7 givenname: Roberto Alonso surname: González-Lezcano fullname: González-Lezcano, Roberto Alonso organization: Department of Architecture and Design, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities – sequence: 8 givenname: Sonjoy surname: Paul fullname: Paul, Sonjoy organization: Department of Civil and Environmental Engineering, Lamar University – sequence: 9 givenname: N. S. Abd surname: EL-Gawaad fullname: EL-Gawaad, N. S. Abd organization: Muhayil Asir, Applied College, King Khalid University – sequence: 10 givenname: Tariq surname: Ouahbi fullname: Ouahbi, Tariq organization: LOMC, UMR 6294 CNRS, Université Le Havre Normandie, Normandie Université – sequence: 11 givenname: Muhammad surname: Kashif fullname: Kashif, Muhammad organization: Department of Civil Engineering, University of Engineering and Technology Peshawar (Bannu Campus) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39537833$$D View this record in MEDLINE/PubMed https://hal.science/hal-04825065$$DView record in HAL |
BookMark | eNp9ks1u1DAUhSNURMvQF2CBLLGBRcA_cWKvUFUBrTSIDawtx76Z8ZDExXamGp4ez6SFdhb1xtb1OZ-vr87L4mT0IxTFa4I_EMzEx1gRLkWJaVU2kgtR8mfFGcUVLymj9OTB-bQ4j3GD8-JUVkS-KE6Z5KwRjJ0V26UfVyiufUgoQRjQAIMPOzRCuvXhV0SdD-gmgHUmuawMEF3vYEzom7dTP0XkOxSTbnP1D1jU6gho0BnldI_i1G7AZLJHt5BKm8FmZ3qIr4rnne4jnN_ti-Lnl88_Lq_K5fev15cXy9LwhqeyAtF0bVsz2UoDlcXCNKLjprNW2oZWjNasw7g1wISusaUVl7SmnIOkQKRki-J65lqvN-omuEGHnfLaqUPBh5XSIbnckmIcugobTa3gebaixTU2pqbQai0aKTLr08y6mdoBrMlDCLp_BH18M7q1WvmtIoTXZN_qong_E9ZHvquLpdrXcCUoxzXfkqx9d_da8L8niEkNLhroez2Cn6JihApBJKY0S98eSTd-CmOe60GF829ok1VvHrb_7_37LGSBmAUm-BgDdMq4pJPz-9-4XhGs9slTc_JUTp46JE_xbKVH1nv6kyY2m2IWjysI_9t-wvUXTebrlA |
CitedBy_id | crossref_primary_10_2166_hydro_2024_051 |
Cites_doi | 10.1007/s00521-020-05535-w 10.1177/0361198106197000117 10.1061/(ASCE)MT.1943-5533.0000574 10.1007/s11069-016-2454-2 10.1162/089976600300015015 10.3390/app9163221 10.3390/buildings12122137 10.1007/s11709-020-0669-5 10.1061/JPSEA2.PSENG-1453 10.1162/neco.1997.9.8.1735 10.1016/0169-2070(92)90008-W 10.32604/cmes.2023.025993 10.3141/2473-15 10.3390/app12031753 10.21203/rs.3.rs-3575223/v1 10.1038/s41598-020-66904-y 10.1016/j.conbuildmat.2021.124450 10.3390/math10050787 10.1109/ICCISTA.2019.8830667 10.1016/j.conbuildmat.2018.03.119 10.3390/su141912066 10.1109/BigData.2015.7364089 10.1007/s00521-021-06004-8 10.1016/j.engstruct.2021.113297 10.1080/14680629.2017.1374994 10.3141/1687-04 10.1007/s11227-023-05592-7 10.3934/mbe.2022209 10.1016/j.physd.2019.132306 10.1016/j.trgeo.2014.12.003 10.1061/(ASCE)1532-3641(2010)10:1(1) 10.1061/(ASCE)MT.1943-5533.0000055 10.1002/nag.1023 10.1016/j.tust.2016.12.009 10.3934/mbe.2023939 10.3390/app12041977 10.3141/2369-02 10.1109/TII.2020.3008223 10.3390/en13071718 10.3141/2104-08 10.1162/089976602320263980 10.1007/s41939-023-00203-7 10.2478/v10060-011-0070-0 10.1080/10298430701342874 10.3141/1874-11 10.1520/STP12523S 10.3390/ma15134386 10.1061/(ASCE)MT.1943-5533.0000494 10.1007/s12517-013-1174-0 10.3141/2001-01 10.1007/s12665-013-2531-8 10.1007/s00521-020-05214-w 10.1016/j.knosys.2014.08.012 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM DOA |
DOI | 10.1038/s41598-024-79588-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database ProQuest Biological Science ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Computer Science |
EISSN | 2045-2322 |
EndPage | 28 |
ExternalDocumentID | oai_doaj_org_article_35ef40ca2d854158b060cc62ebaa8798 PMC11561326 oai_HAL_hal_04825065v1 39537833 10_1038_s41598_024_79588_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: The current work was assisted financially to the Dean of Science and Research at King Khalid University via the Large Group Project under grant number RGP. 2/100/45. grantid: RGP. 2/100/45. |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 1XC VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c575t-4e87fbb639b9ce4d08c78f5cfdd9d7243263f00bce38a60d245926255e92e1993 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:32:16 EDT 2025 Thu Aug 21 18:30:15 EDT 2025 Fri May 09 12:23:53 EDT 2025 Fri Jul 11 09:28:50 EDT 2025 Wed Aug 13 09:13:02 EDT 2025 Wed Feb 19 02:02:46 EST 2025 Tue Jul 01 03:23:34 EDT 2025 Thu Apr 24 23:09:06 EDT 2025 Fri Feb 21 02:40:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Pavements Stabilized base Long short-term memory networks Wet-dry cycles Resilient modulus Graphical user interface Resilient modulus Pavements Stabilized base Wet-dry cycles Long short-term memory networks Graphical user interface |
Language | English |
License | 2024. The Author(s). Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-4e87fbb639b9ce4d08c78f5cfdd9d7243263f00bce38a60d245926255e92e1993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2573-3230 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-79588-5 |
PMID | 39537833 |
PQID | 3128041527 |
PQPubID | 2041939 |
PageCount | 28 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_35ef40ca2d854158b060cc62ebaa8798 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11561326 hal_primary_oai_HAL_hal_04825065v1 proquest_miscellaneous_3128819022 proquest_journals_3128041527 pubmed_primary_39537833 crossref_citationtrail_10_1038_s41598_024_79588_5 crossref_primary_10_1038_s41598_024_79588_5 springer_journals_10_1038_s41598_024_79588_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-13 |
PublicationDateYYYYMMDD | 2024-11-13 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Sas, W., Gluchowski, A. & Szymanski, A. Determination of the Resilient modulus MR for the lime stabilized clay obtained from the repeated loading CBR tests, Annals of Warsaw University of Life Sciences-SGGW. Land Reclamation, vol. 44, no. 2, (2012). Nunan, T. A. & Humphrey, D. A REVIEW AND EXPERIMENTATION OF GRAVEL STABILIZATION METHODS (EXECUTIVE SUMMARY, 1990). Gu, X., Chen, X., Lu, P., Lan, X. & Li, X. and Y. J. T. J. o. S. Du, SiMaLSTM-SNP: novel semantic relatedness learning model preserving both Siamese networks and membrane computing, vol. 80, no. 3, pp. 3382–3411, (2024). MaaloufMHomouzDKernel ridge regression using truncated newton methodKnowl. Based Syst.20147133934410.1016/j.knosys.2014.08.012 PutriEERaoNMannanMEvaluation of the modulus of elasticity and resilient modulus for highway subgradesElectron. J. Geotech. Eng.20101512851293 Li, D., Liu, Z., Armaghani, D. J., Xiao, P. & Zhou, J. J. M. Novel ensemble tree solution for rockburst prediction using deep forest, vol. 10, no. 5, p. 787, (2022). Karballaeezadeh, N. et al. Intelligent road inspection with advanced machine learning; hybrid prediction models for smart mobility and transportation maintenance systems, vol. 13, no. 7, p. 1718, (2020). GhanizadehARahrovanMApplication of artifitial neural network to predict the resilient modulus of stabilized base subjected to wet dry cyclesComput. Mater. Civ. Eng.201613747 Khan, K. et al. Prediction Models for Evaluating Resilient Modulus of Stabilized Aggregate Bases in Wet and Dry Alternating Environments: ANN and GEP Approaches, Materials, vol. 15, no. 13, p. 4386, (2022). George, K. P. & Davidson, D. T. Development of a freeze-thaw test for design of soil-cement. Highway Res. Record no 36, (1963). Zhou, F., Hu, S., Chen, D. H. & Scullion, T. Overlay tester: simple performance test for fatigue cracking, Transportation Research Record, vol. no. 1, pp. 1–8, 2007. (2001). AsterisPGLemonisMELeTTTsavdaridisKDEvaluation of the ultimate eccentric load of rectangular CFSTs using advanced neural network modelingEng. Struct.202124811329710.1016/j.engstruct.2021.113297 Berg, K. Durability and strength of activated reclaimed Iowa Class C fly ash aggregate in road bases, 1998. WangJLiJWangXWangJHuangMAir quality prediction using CT-LSTMNeural Comput. Appl.202133477947921:CAS:528:DC%2BB38XotlKqs7k%3D10.1007/s00521-020-05535-w Butalia, T. S., Huang, J., Kim, D. G. & Croft, F. Effect of moisture content and pore water pressure buildup on resilient modulus of cohesive soils in Ohio, ASTM Special Technical Publication, 1437, pp. 70–84, (2003). FedrigoWNúñezWPLópezMACKleinertTRCerattiJAPA study on the resilient modulus of cement-treated mixtures of RAP and aggregates using indirect tensile, triaxial and flexural testsConstr. Build. Mater.201817116116910.1016/j.conbuildmat.2018.03.119 ArmstrongJCollopyFThe selection of Error measures for Generaliz-ing about forecasting methods: empirical comparisonsInt. J. Forecast.199281698010.1016/0169-2070(92)90008-W Khoury, N., I. J., M. J. & Zaman, P. E. Influences of various cementitious agents on the performance of stabilized aggregate base subjected to wet-dry cycles, 8, 4, pp. 265–276, (2007). Jalali, H. et al. Prediction of vertical displacement for a buried pipeline subjected to normal fault using a hybrid FEM-ANN approach, pp. 1–16, (2024). Chen, K., Zhou, Y. & Dai, F. A LSTM-based method for stock returns prediction: A case study of China stock market, in 2015 IEEE international conference on big data (big data), pp. 2823–2824: IEEE. (2015). AsterisPGKoopialipoorMArmaghaniDJKotsonisEALourençoPBPrediction of cement-based mortars compressive strength using machine learning techniquesNeural Comput. Appl.20213319130891312110.1007/s00521-021-06004-8 Armaghani, D. J. et al. Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition, vol. 63, pp. 29–43, (2017). KhouryNZamanMMDurability of stabilized base courses subjected to wet–dry cyclesInt. J. Pavement Eng.2007842652761:CAS:528:DC%2BD2sXhtFyqs7rO10.1080/10298430701342874 Barkhordari, M. S., Barkhordari, M. M., Armaghani, D. J., Mohamad, E. T. & Gordan, B. Straightforward slope stability prediction under seismic conditions using machine learning algorithms, (2023). ErlingssonSRahmanMSEvaluation of permanent deformation characteristics of unbound granular materials by means of multistage repeated-load triaxial testsTransp. Res. Rec.201323691111910.3141/2369-02 Hochreiter, S. & Schmidhuber, J. Long short-term memory, neural computation, 9, 8, pp. 1735–1780, (1997). Ahmad, F. et al. Stability risk assessment of slopes using logistic model tree based on updated case histories, 20, 12, pp. 21229–21245, (2023). Khoury, N. N. & Zaman, M. M. Correlation between resilient modulus, moisture variation, and soil suction for subgrade soils, Transportation research record, vol. 1874, no. 1, pp. 99–107, (2004). RadhakrishnanVDudipalaRRMaityASudhakar ReddyKEvaluation of rutting potential of asphalts using resilient modulus test parametersRoad. Mater. Pavement Des.2019201203510.1080/14680629.2017.1374994 Asteris, P. G. et al. Slope stability classification under seismic conditions using several tree-based intelligent techniques, vol. 12, no. 3, p. 1753, (2022). Armaghani, D. J., Hajihassani, M., Mohamad, E. T. & Marto, A. and S. J. A. J. o. G. Noorani, blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization, 7, pp. 5383–5396, (2014). Alhirmizy, S. & Qader, B. Multivariate time series forecasting with LSTM for Madrid, Spain pollution, in 2019 international conference on computing and information science and technology and their applications (ICCISTA), pp. 1–5: IEEE. (2019). Kaloop, M. R. et al. Particle swarm optimization algorithm-extreme learning machine (PSO-ELM) model for predicting resilient modulus of stabilized aggregate bases, Applied Sciences, 9, 16, p. 3221, (2019). Wang, H., Zhang, X. & Jiang, S. J. S. A laboratory and field universal estimation method for tire–pavement interaction noise (TPIN) based on 3D image technology, vol. 14, no. 19, p. 12066, (2022). ZamanMMZhuJHLagurosJGDurability effects on resilient moduli of stabilized aggregate baseTransp. Res. Rec.199916871293810.3141/1687-04 Barksdale, R. D. et al. Laboratory determination of resilient modulus for flexible pavement design, (1997). KhouryNNBrooksRPerformance of a stabilized aggregate base subject to different durability proceduresJ. Mater. Civ. Eng.20102255065141:CAS:528:DC%2BC3cXkvV2ku7Y%3D10.1061/(ASCE)MT.1943-5533.0000055 Gers, F. A., Schmidhuber, J. & Cummins, F. Learning to forget: Continual prediction with LSTM, Neural computation, vol. 12, no. 10, pp. 2451–2471, (2000). GandomiAHBabanajadSKAlaviAHFarnamYNovel approach to strength modeling of concrete under triaxial compressionJ. Mater. Civ. Eng.20122491132114310.1061/(ASCE)MT.1943-5533.0000494 Ahmad, M. et al. Unconfined compressive strength prediction of stabilized expansive clay soil using machine learning techniques, pp. 1–15, (2023). Maalouf, M., Khoury, N., Laguros, J. G. & Kumin, H. Support vector regression to predict the performance of stabilized aggregate bases subject to wet–dry cycles, International journal for numerical and analytical methods in geomechanics, 36, 6, pp. 675–696, (2012). Olidis, C. & Hein, D. Guide for the mechanistic-empirical design of new and rehabilitated pavement structures materials characterization: Is your agency ready, in 2004 annual conference of the transportation association of Canada, (2004). KhouryNBrooksRBoeniSYYadaDVariation of resilient modulus, strength, and modulus of elasticity of stabilized soils with postcompaction moisture contentsJ. Mater. Civ. Eng.201325216016610.1061/(ASCE)MT.1943-5533.0000574 Schmidhuber, J., Gers, F. & Eck, D. Learning nonregular languages: a comparison of simple recurrent networks and LSTM, neural computation, 14, 9, pp. 2039–2041, (2002). HossainMSKimWSEstimation of subgrade resilient modulus for fine-grained soil from unconfined compression testTransp. Res. Rec.20152473112613510.3141/2473-15 Ahmad, F. et al. Prediction of slope stability using Tree Augmented Naive-Bayes classifier: Modeling and performance evaluation, vol. 19, no. 5, pp. 4526–4546, (2022). LyHBEstimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate modelsNeural Comput. Appl.20213383437345810.1007/s00521-020-05214-w Suman, S., Khan, S., Das, S. & Chand, S. Slope stability analysis using artificial intelligence techniques, Natural Hazards, vol. 84, pp. 727–748, (2016). RenLA data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful lifeIEEE Trans. Industr. Inf.20201753478348710.1109/TII.2020.3008223 Diagne, M., Tinjum, J. M. & Nokkaew, K. The effects of recycled clay brick content on the engineering properties, weathering durability, and resilient modulus of recycled concrete aggregate, Transportation Geotechnics, 3, pp. 15–23, (2015). ManouchehrianAGholamnejadJSharifzadehMDevelopment of a model for analysis of slope stability for circular mode failure using genetic algorithmEnviron. Earth Sci.201471126712772014EES....71.1267M10.1007/s12665-013-2531-8 AsterisPGSkentouADBardhanASamuiPLourençoPBSoft computing techniques for the prediction of concrete compressive strength using non-destructive testsConstr. Build. Mater.202130312445010.1016/j.conbuildmat.2021.124450 Arora, H. C. et al. Axial Capacity of FRP-Reinforced Concrete Columns: Computational Intelligence-Based Prognosis for Sustainable Structures, Buildings, vol. 12, no. 12, p. 2137, (2022). GhanizadehARHeidarabadizadehNHeraviFGaussian process regression (gpr) for auto-estimation of resilient modulus of stabilized base materialsJ. Soft Comput. Civil Eng.2021518094 Ahmad, M. et al. Prediction of liquefaction-induced lateral displacements using Gaussian process regression, vol. 12, no. 4, p. 2022. (1977). Hu, D. et al. Surface Settlement Prediction of Rectangular Pipe-Jacking Tunnel Based on the Mach PG Asteris (79588_CR59) 2021; 303 79588_CR28 79588_CR29 AH Gandomi (79588_CR62) 2012; 24 N Khoury (79588_CR26) 2013; 25 79588_CR31 79588_CR30 79588_CR33 79588_CR32 MM Zaman (79588_CR19) 1999; 1687 79588_CR35 MS Hossain (79588_CR9) 2015; 2473 79588_CR34 79588_CR37 79588_CR36 PG Asteris (79588_CR57) 2021; 33 AR Ghanizadeh (79588_CR47) 2021; 5 HB Ly (79588_CR58) 2021; 33 M Zaman (79588_CR6) 2010; 10 79588_CR17 79588_CR16 79588_CR18 M Maalouf (79588_CR44) 2014; 71 79588_CR20 79588_CR63 79588_CR22 79588_CR21 79588_CR65 79588_CR24 79588_CR23 79588_CR25 PG Asteris (79588_CR60) 2021; 248 V Radhakrishnan (79588_CR13) 2019; 20 79588_CR61 A Manouchehrian (79588_CR64) 2014; 71 A Sherstinsky (79588_CR56) 2020; 404 79588_CR53 79588_CR55 79588_CR54 79588_CR12 J Wang (79588_CR52) 2021; 33 79588_CR15 79588_CR14 79588_CR51 79588_CR50 79588_CR2 79588_CR1 79588_CR39 79588_CR3 79588_CR38 S Erlingsson (79588_CR8) 2013; 2369 79588_CR5 EE Putri (79588_CR11) 2010; 15 79588_CR7 W Fedrigo (79588_CR10) 2018; 171 N Khoury (79588_CR4) 2007; 8 79588_CR42 79588_CR41 A Ghanizadeh (79588_CR45) 2016; 1 79588_CR43 79588_CR46 79588_CR48 NN Khoury (79588_CR27) 2010; 22 J Armstrong (79588_CR66) 1992; 8 79588_CR40 L Ren (79588_CR49) 2020; 17 |
References_xml | – reference: Jalali, H. et al. Prediction of vertical displacement for a buried pipeline subjected to normal fault using a hybrid FEM-ANN approach, pp. 1–16, (2024). – reference: ZamanMSolankiPEbrahimiAWhiteLNeural network modeling of resilient modulus using routine subgrade soil propertiesInt. J. Geomech.201010111210.1061/(ASCE)1532-3641(2010)10:1(1) – reference: HossainMSKimWSEstimation of subgrade resilient modulus for fine-grained soil from unconfined compression testTransp. Res. Rec.20152473112613510.3141/2473-15 – reference: Zhou, F., Hu, S., Chen, D. H. & Scullion, T. Overlay tester: simple performance test for fatigue cracking, Transportation Research Record, vol. no. 1, pp. 1–8, 2007. (2001). – reference: Khoury, N. N. Durability of Cementitiously Stabilized Aggregate Bases for Pavement Application (The University of Oklahoma, 2005). – reference: Sas, W., Gluchowski, A. & Szymanski, A. Determination of the Resilient modulus MR for the lime stabilized clay obtained from the repeated loading CBR tests, Annals of Warsaw University of Life Sciences-SGGW. Land Reclamation, vol. 44, no. 2, (2012). – reference: Suman, S., Khan, S., Das, S. & Chand, S. Slope stability analysis using artificial intelligence techniques, Natural Hazards, vol. 84, pp. 727–748, (2016). – reference: MaaloufMHomouzDKernel ridge regression using truncated newton methodKnowl. Based Syst.20147133934410.1016/j.knosys.2014.08.012 – reference: Schmidhuber, J., Gers, F. & Eck, D. Learning nonregular languages: a comparison of simple recurrent networks and LSTM, neural computation, 14, 9, pp. 2039–2041, (2002). – reference: Wang, H., Zhang, X. & Jiang, S. J. S. A laboratory and field universal estimation method for tire–pavement interaction noise (TPIN) based on 3D image technology, vol. 14, no. 19, p. 12066, (2022). – reference: Gers, F. A., Schmidhuber, J. & Cummins, F. Learning to forget: Continual prediction with LSTM, Neural computation, vol. 12, no. 10, pp. 2451–2471, (2000). – reference: Barksdale, R. D. et al. Laboratory determination of resilient modulus for flexible pavement design, (1997). – reference: AsterisPGSkentouADBardhanASamuiPLourençoPBSoft computing techniques for the prediction of concrete compressive strength using non-destructive testsConstr. Build. Mater.202130312445010.1016/j.conbuildmat.2021.124450 – reference: Asteris, P. G. et al. Slope stability classification under seismic conditions using several tree-based intelligent techniques, vol. 12, no. 3, p. 1753, (2022). – reference: Li, D., Liu, Z., Armaghani, D. J., Xiao, P. & Zhou, J. J. M. Novel ensemble tree solution for rockburst prediction using deep forest, vol. 10, no. 5, p. 787, (2022). – reference: GandomiAHBabanajadSKAlaviAHFarnamYNovel approach to strength modeling of concrete under triaxial compressionJ. Mater. Civ. Eng.20122491132114310.1061/(ASCE)MT.1943-5533.0000494 – reference: RadhakrishnanVDudipalaRRMaityASudhakar ReddyKEvaluation of rutting potential of asphalts using resilient modulus test parametersRoad. Mater. Pavement Des.2019201203510.1080/14680629.2017.1374994 – reference: George, K. P. & Davidson, D. T. Development of a freeze-thaw test for design of soil-cement. Highway Res. Record no 36, (1963). – reference: Loulizi, A., Flintsch, G. W., Al-Qadi, I. L. & Mokarem, D. Comparing resilient modulus and dynamic modulus of hot-mix asphalt as material properties for flexible pavement design, Transportation Research Record, vol. no. 1, pp. 161–170, 2006. (1970). – reference: Khoury, N. N. & Zaman, M. M. Correlation between resilient modulus, moisture variation, and soil suction for subgrade soils, Transportation research record, vol. 1874, no. 1, pp. 99–107, (2004). – reference: Khan, K. et al. Prediction Models for Evaluating Resilient Modulus of Stabilized Aggregate Bases in Wet and Dry Alternating Environments: ANN and GEP Approaches, Materials, vol. 15, no. 13, p. 4386, (2022). – reference: Ahmad, M. et al. Prediction of liquefaction-induced lateral displacements using Gaussian process regression, vol. 12, no. 4, p. 2022. (1977). – reference: KhouryNBrooksRBoeniSYYadaDVariation of resilient modulus, strength, and modulus of elasticity of stabilized soils with postcompaction moisture contentsJ. Mater. Civ. Eng.201325216016610.1061/(ASCE)MT.1943-5533.0000574 – reference: Ahmad, F., Tang, X., Hu, J., Ahmad, M. & Gordan, B. J. Improved Prediction of Slope Stability under Static and Dynamic Conditions Using Tree-Based Models, vol. 1, p. 3, (2023). – reference: AASHTO. AASHTO Guide for Design of Pavement Structures. (1993). – reference: Butalia, T. S., Huang, J., Kim, D. G. & Croft, F. Effect of moisture content and pore water pressure buildup on resilient modulus of cohesive soils in Ohio, ASTM Special Technical Publication, 1437, pp. 70–84, (2003). – reference: Nunan, T. A. & Humphrey, D. A REVIEW AND EXPERIMENTATION OF GRAVEL STABILIZATION METHODS (EXECUTIVE SUMMARY, 1990). – reference: Diagne, M., Tinjum, J. M. & Nokkaew, K. The effects of recycled clay brick content on the engineering properties, weathering durability, and resilient modulus of recycled concrete aggregate, Transportation Geotechnics, 3, pp. 15–23, (2015). – reference: Barkhordari, M. S., Barkhordari, M. M., Armaghani, D. J., Mohamad, E. T. & Gordan, B. Straightforward slope stability prediction under seismic conditions using machine learning algorithms, (2023). – reference: Kaloop, M. R. et al. Particle swarm optimization algorithm-extreme learning machine (PSO-ELM) model for predicting resilient modulus of stabilized aggregate bases, Applied Sciences, 9, 16, p. 3221, (2019). – reference: KhouryNNBrooksRPerformance of a stabilized aggregate base subject to different durability proceduresJ. Mater. Civ. Eng.20102255065141:CAS:528:DC%2BC3cXkvV2ku7Y%3D10.1061/(ASCE)MT.1943-5533.0000055 – reference: Hu, D. et al. Surface Settlement Prediction of Rectangular Pipe-Jacking Tunnel Based on the Machine-Learning Algorithm, vol. 15, no. 1, p. 04023061, (2024). – reference: Armaghani, D. J. et al. Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition, vol. 63, pp. 29–43, (2017). – reference: AsterisPGKoopialipoorMArmaghaniDJKotsonisEALourençoPBPrediction of cement-based mortars compressive strength using machine learning techniquesNeural Comput. Appl.20213319130891312110.1007/s00521-021-06004-8 – reference: RenLA data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful lifeIEEE Trans. Industr. Inf.20201753478348710.1109/TII.2020.3008223 – reference: Olidis, C. & Hein, D. Guide for the mechanistic-empirical design of new and rehabilitated pavement structures materials characterization: Is your agency ready, in 2004 annual conference of the transportation association of Canada, (2004). – reference: Alhirmizy, S. & Qader, B. Multivariate time series forecasting with LSTM for Madrid, Spain pollution, in 2019 international conference on computing and information science and technology and their applications (ICCISTA), pp. 1–5: IEEE. (2019). – reference: Ghanizadeh, A., Tavana, A., Amlashi & Abbasou, H. Prediction of Resilient Modulus of Stabilized Aggregate Base Subjected To Wet-Dry Cycles Using Adaptive Neuro-Fuzzy Inference System (ANFIS), Road, vol. 25, no. 90, pp. 65–75, (2017). – reference: ManouchehrianAGholamnejadJSharifzadehMDevelopment of a model for analysis of slope stability for circular mode failure using genetic algorithmEnviron. Earth Sci.201471126712772014EES....71.1267M10.1007/s12665-013-2531-8 – reference: Khoury, N., I. J., M. J. & Zaman, P. E. Influences of various cementitious agents on the performance of stabilized aggregate base subjected to wet-dry cycles, 8, 4, pp. 265–276, (2007). – reference: Berg, K. Durability and strength of activated reclaimed Iowa Class C fly ash aggregate in road bases, 1998. – reference: ZamanMMZhuJHLagurosJGDurability effects on resilient moduli of stabilized aggregate baseTransp. Res. Rec.199916871293810.3141/1687-04 – reference: FedrigoWNúñezWPLópezMACKleinertTRCerattiJAPA study on the resilient modulus of cement-treated mixtures of RAP and aggregates using indirect tensile, triaxial and flexural testsConstr. Build. Mater.201817116116910.1016/j.conbuildmat.2018.03.119 – reference: GhanizadehARHeidarabadizadehNHeraviFGaussian process regression (gpr) for auto-estimation of resilient modulus of stabilized base materialsJ. Soft Comput. Civil Eng.2021518094 – reference: Maalouf, M., Khoury, N., Laguros, J. G. & Kumin, H. Support vector regression to predict the performance of stabilized aggregate bases subject to wet–dry cycles, International journal for numerical and analytical methods in geomechanics, 36, 6, pp. 675–696, (2012). – reference: Ahmad, F. et al. Prediction of slope stability using Tree Augmented Naive-Bayes classifier: Modeling and performance evaluation, vol. 19, no. 5, pp. 4526–4546, (2022). – reference: WangJLiJWangXWangJHuangMAir quality prediction using CT-LSTMNeural Comput. Appl.202133477947921:CAS:528:DC%2BB38XotlKqs7k%3D10.1007/s00521-020-05535-w – reference: Ahmad, M. et al. Unconfined compressive strength prediction of stabilized expansive clay soil using machine learning techniques, pp. 1–15, (2023). – reference: Bui, X. N. et al. Prediction of slope failure in open-pit mines using a novel hybrid artificial intelligence model based on decision tree and evolution algorithm, scientific reports, 10, 1, pp. 1–17, (2020). – reference: GhanizadehARahrovanMApplication of artifitial neural network to predict the resilient modulus of stabilized base subjected to wet dry cyclesComput. Mater. Civ. Eng.201613747 – reference: Chen, K., Zhou, Y. & Dai, F. A LSTM-based method for stock returns prediction: A case study of China stock market, in 2015 IEEE international conference on big data (big data), pp. 2823–2824: IEEE. (2015). – reference: KhouryNZamanMMDurability of stabilized base courses subjected to wet–dry cyclesInt. J. Pavement Eng.2007842652761:CAS:528:DC%2BD2sXhtFyqs7rO10.1080/10298430701342874 – reference: Hochreiter, S. & Schmidhuber, J. Long short-term memory, neural computation, 9, 8, pp. 1735–1780, (1997). – reference: Ahmad, F. et al. Stability risk assessment of slopes using logistic model tree based on updated case histories, 20, 12, pp. 21229–21245, (2023). – reference: LyHBEstimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate modelsNeural Comput. Appl.20213383437345810.1007/s00521-020-05214-w – reference: PutriEERaoNMannanMEvaluation of the modulus of elasticity and resilient modulus for highway subgradesElectron. J. Geotech. Eng.20101512851293 – reference: ArmstrongJCollopyFThe selection of Error measures for Generaliz-ing about forecasting methods: empirical comparisonsInt. J. Forecast.199281698010.1016/0169-2070(92)90008-W – reference: Arora, H. C. et al. Axial Capacity of FRP-Reinforced Concrete Columns: Computational Intelligence-Based Prognosis for Sustainable Structures, Buildings, vol. 12, no. 12, p. 2137, (2022). – reference: SherstinskyAFundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) networkPhys. D: Nonlinear Phenom.2020404132306405756010.1016/j.physd.2019.132306 – reference: ErlingssonSRahmanMSEvaluation of permanent deformation characteristics of unbound granular materials by means of multistage repeated-load triaxial testsTransp. Res. Rec.201323691111910.3141/2369-02 – reference: Ahmad, M. et al. Application of machine learning algorithms for the evaluation of seismic soil liquefaction potential, vol. 15, pp. 490–505, (2021). – reference: Guthrie, W. S., Michener, J. E., Wilson, B. T. & Eggett, D. L. Effects of environmental factors on construction of soil–cement pavement layers, Transportation research record, 2104, 1, pp. 71–79, (2009). – reference: Gu, X., Chen, X., Lu, P., Lan, X. & Li, X. and Y. J. T. J. o. S. Du, SiMaLSTM-SNP: novel semantic relatedness learning model preserving both Siamese networks and membrane computing, vol. 80, no. 3, pp. 3382–3411, (2024). – reference: AsterisPGLemonisMELeTTTsavdaridisKDEvaluation of the ultimate eccentric load of rectangular CFSTs using advanced neural network modelingEng. Struct.202124811329710.1016/j.engstruct.2021.113297 – reference: Karballaeezadeh, N. et al. Intelligent road inspection with advanced machine learning; hybrid prediction models for smart mobility and transportation maintenance systems, vol. 13, no. 7, p. 1718, (2020). – reference: Armaghani, D. J., Hajihassani, M., Mohamad, E. T. & Marto, A. and S. J. A. J. o. G. Noorani, blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization, 7, pp. 5383–5396, (2014). – volume: 33 start-page: 4779 year: 2021 ident: 79588_CR52 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05535-w – ident: 79588_CR14 doi: 10.1177/0361198106197000117 – volume: 25 start-page: 160 issue: 2 year: 2013 ident: 79588_CR26 publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0000574 – ident: 79588_CR65 doi: 10.1007/s11069-016-2454-2 – ident: 79588_CR50 doi: 10.1162/089976600300015015 – ident: 79588_CR1 doi: 10.3390/app9163221 – ident: 79588_CR5 – ident: 79588_CR42 – ident: 79588_CR18 – ident: 79588_CR46 – ident: 79588_CR61 doi: 10.3390/buildings12122137 – ident: 79588_CR28 doi: 10.1007/s11709-020-0669-5 – volume: 15 start-page: 1285 year: 2010 ident: 79588_CR11 publication-title: Electron. J. Geotech. Eng. – ident: 79588_CR39 doi: 10.1061/JPSEA2.PSENG-1453 – volume: 5 start-page: 80 issue: 1 year: 2021 ident: 79588_CR47 publication-title: J. Soft Comput. Civil Eng. – ident: 79588_CR55 doi: 10.1162/neco.1997.9.8.1735 – volume: 8 start-page: 69 issue: 1 year: 1992 ident: 79588_CR66 publication-title: Int. J. Forecast. doi: 10.1016/0169-2070(92)90008-W – ident: 79588_CR31 doi: 10.32604/cmes.2023.025993 – volume: 2473 start-page: 126 issue: 1 year: 2015 ident: 79588_CR9 publication-title: Transp. Res. Rec. doi: 10.3141/2473-15 – ident: 79588_CR35 doi: 10.3390/app12031753 – volume: 1 start-page: 37 year: 2016 ident: 79588_CR45 publication-title: Comput. Mater. Civ. Eng. – ident: 79588_CR22 – ident: 79588_CR34 doi: 10.21203/rs.3.rs-3575223/v1 – ident: 79588_CR63 doi: 10.1038/s41598-020-66904-y – volume: 303 start-page: 124450 year: 2021 ident: 79588_CR59 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.124450 – ident: 79588_CR36 doi: 10.3390/math10050787 – ident: 79588_CR53 doi: 10.1109/ICCISTA.2019.8830667 – volume: 171 start-page: 161 year: 2018 ident: 79588_CR10 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.03.119 – ident: 79588_CR7 doi: 10.3390/su141912066 – ident: 79588_CR51 doi: 10.1109/BigData.2015.7364089 – volume: 33 start-page: 13089 issue: 19 year: 2021 ident: 79588_CR57 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06004-8 – volume: 248 start-page: 113297 year: 2021 ident: 79588_CR60 publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2021.113297 – volume: 20 start-page: 20 issue: 1 year: 2019 ident: 79588_CR13 publication-title: Road. Mater. Pavement Des. doi: 10.1080/14680629.2017.1374994 – volume: 1687 start-page: 29 issue: 1 year: 1999 ident: 79588_CR19 publication-title: Transp. Res. Rec. doi: 10.3141/1687-04 – ident: 79588_CR40 doi: 10.1007/s11227-023-05592-7 – ident: 79588_CR30 doi: 10.3934/mbe.2022209 – volume: 404 start-page: 132306 year: 2020 ident: 79588_CR56 publication-title: Phys. D: Nonlinear Phenom. doi: 10.1016/j.physd.2019.132306 – ident: 79588_CR25 doi: 10.1016/j.trgeo.2014.12.003 – ident: 79588_CR16 – ident: 79588_CR3 – volume: 10 start-page: 1 issue: 1 year: 2010 ident: 79588_CR6 publication-title: Int. J. Geomech. doi: 10.1061/(ASCE)1532-3641(2010)10:1(1) – volume: 22 start-page: 506 issue: 5 year: 2010 ident: 79588_CR27 publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0000055 – ident: 79588_CR43 doi: 10.1002/nag.1023 – ident: 79588_CR38 doi: 10.1016/j.tust.2016.12.009 – ident: 79588_CR21 – ident: 79588_CR32 doi: 10.3934/mbe.2023939 – ident: 79588_CR29 doi: 10.3390/app12041977 – volume: 2369 start-page: 11 issue: 1 year: 2013 ident: 79588_CR8 publication-title: Transp. Res. Rec. doi: 10.3141/2369-02 – volume: 17 start-page: 3478 issue: 5 year: 2020 ident: 79588_CR49 publication-title: IEEE Trans. Industr. Inf. doi: 10.1109/TII.2020.3008223 – ident: 79588_CR41 doi: 10.3390/en13071718 – ident: 79588_CR20 doi: 10.3141/2104-08 – ident: 79588_CR54 doi: 10.1162/089976602320263980 – ident: 79588_CR33 doi: 10.1007/s41939-023-00203-7 – ident: 79588_CR2 doi: 10.2478/v10060-011-0070-0 – ident: 79588_CR48 doi: 10.1080/10298430701342874 – ident: 79588_CR24 doi: 10.3141/1874-11 – ident: 79588_CR23 doi: 10.1520/STP12523S – ident: 79588_CR15 doi: 10.3390/ma15134386 – ident: 79588_CR17 – volume: 24 start-page: 1132 issue: 9 year: 2012 ident: 79588_CR62 publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0000494 – volume: 8 start-page: 265 issue: 4 year: 2007 ident: 79588_CR4 publication-title: Int. J. Pavement Eng. doi: 10.1080/10298430701342874 – ident: 79588_CR37 doi: 10.1007/s12517-013-1174-0 – ident: 79588_CR12 doi: 10.3141/2001-01 – volume: 71 start-page: 1267 year: 2014 ident: 79588_CR64 publication-title: Environ. Earth Sci. doi: 10.1007/s12665-013-2531-8 – volume: 33 start-page: 3437 issue: 8 year: 2021 ident: 79588_CR58 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05214-w – volume: 71 start-page: 339 year: 2014 ident: 79588_CR44 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2014.08.012 |
SSID | ssj0000529419 |
Score | 2.4494545 |
Snippet | The resilient modulus (M
R
) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design... The resilient modulus (M ) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design... The resilient modulus (MR) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design... The resilient modulus (M R ) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design... Abstract The resilient modulus (MR) of different pavement materials is one of the most important input parameters for the mechanistic-empirical pavement design... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 27928 |
SubjectTerms | 639/166 639/301 704/172 Accuracy Algorithms Aluminum oxide Artificial Intelligence Calcium oxide Civil Engineering College campuses Computer Science Datasets Engineering Sciences Ferric oxide Graphical user interface Humanities and Social Sciences Long short-term memory Long short-term memory networks Moisture content multidisciplinary Pavements Regression analysis Resilient modulus Science Science (multidisciplinary) Sensitivity analysis Silica Stabilized base Support vector machines Water content Wet-dry cycles |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuiG8CBRnEDaJ6_ZHYx4KoVqjlRKXerPgjbKUlqZqkaPn1zDjZpaECLlxySJys5XnOvKyf3xDyJojSRRNlXsYocsmDybWQDg5VMDUceVK7n3wulqfy05k6u1bqCzVhoz3wOHAHQsVaMl_xoBUkG-1YwbwveHRVpUuTtvlCzrv2MTW6enMjF2baJcOEPujgZtxNxqFbRgE81CwTJcN-yC8rlEPe5Jo3JZO_rZumdHR0j9ydeCQ9HPt_n9yKzQNye6wsuXlIro7b5ivtVkCuKb586TdU1G5oM6q-OwpclV5c4ioN6p4pfHSfr3FrJD1pw7AeOtrWFIgjSmd_xEAx2VEgtwmvtBsc_n1D-5Z-j30e4MF-g_K6R-T06OOXD8t8KrGQe-BpfS6jLmvngKY446MMTPtS18rXIZhQcgnkTtSMOR-FrgoWuFRoMKhUNDyi9u8x2WvaJj4ltArM1BAgw-tSKuEqhVUWFfMKAiWZzMhiO9zWT_7jWAZjbdM6uNB2DJGFENkUIqsy8nZ3z8XovvHX1u8xiruW6JydTgCe7IQn-y88ZeQ1YGD2jOXhscVz8LIDwlioq0VG9rcQsdOc76yAVI-GB7zMyKvdZZituARTNbEdxjbIwTjPyJMRUbufEkaJUguRET3D2qwv8yvN-So5ggOtB1rGi4y828LyV7_-PGDP_seAPSd3OM4qlEaKfbLXXw7xBRC13r1Mc_In0Ik4eA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gIIO4QdSsH7F9QgVRrVDLiUp7s-JHupW2ybLZbbX99cwk2VShopccEsdxMg9_8XyeIeRT4MpFE0WqYuSpYMGkmgsHhyKYEo6sZbuf_Mqnp-LnTM76Bbemp1XufGLrqEPtcY38gIMjxe3kTH1d_kmxahRGV_sSGvfJA0xdhpQuNVPDGgtGscTE9HtlMq4PGugB95QxGBy016kczUdt2n6YZeZIiryNOG8TJ_-JnraT0tET8rhHk_SwE_9Tci9Wz8jDrr7k9jm5PK6rM9rMAWJTdMH0Anm1W1p13O-GAmKlyxXGapD9TOHX-3yBGyTpSR02i01D65ICfEQC7XUMFKc8ChC31VrabBwu4tB1Ta_iOg3Qsd8iye4FOT368fv7NO0LLaQe0No6FVGr0jkAK874KEKmvdKl9GUIJigmAOLxMsucj1wXeRaYkJhmUMpoWEQG4EuyV9VVfE1oETJTTqQ2rFRCcldIrLUoMy-LAv4lRUImu89tfZ-FHIthLGwbDefadiKyICLbisjKhHwe7ll2OTjubP0NpTi0xPzZ7Yl6dWZ7c7RcxlJkvmBBS-hBuyzPvM9ZdDBMZXRCPoIOjPqYHh5bPAcuD2BjLi8nCdnfqYjtLb-xN3qakA_DZbBZDMQUVaw3XRtEYowl5FWnUcOjuJFcac4Toke6NhrL-Ep1Pm_zggO4B3DG8oR82anlzbj-_8He3P0ab8kjhvaC1Ee-T_bWq018B0Bs7d631vYXGnov1w priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDeBggziBhFZPxL7WFZUFWo5Uak3K36kW2lJqs1u0fLrmXGyi5YCEpccEsexPGPP58znzwBvg6hcNFHmVYwilzyYXAvp8FIH0-CVJ7b76Zfy-Ex-Plfne8A3e2ESaT9JWqZpesMO-9BjoKHNYBxrNQqtq27BbZJuJ6-eltPtfxXKXMmJGffHFEL_4dWdGJSk-jGyzIgIeRNl3iRL_pYxTYHo6D7cGxEkOxza_AD2YvsQ7gxnSq4fwfVJ116wfoawmtG0y74Rl3bN2oHv3TNEqexqQfkZYjwzXG5fzmlTJDvtwmq-6lnXMISMRJr9EQOjMMcQ1iZPZf3K0Y8btuzY97jMA1bs19R1j-Hs6NPX6XE-Hq6Qe0Roy1xGXTXOIUBxxkcZCu0r3SjfhGBCxSXCOtEUhfNR6LosApeKpAWVioZHYv09gf22a-MzYHUoTDNR2vCmkkq4WtH5iqrwqq5x_SgzmGy62_pReZwOwJjblAEX2g4msmgim0xkVQbvtu9cDbob_yz9kay4LUma2elGt7iwow9ZoWIjC1_zoBXWoF1RFt6XPDpsZmV0Bm_QB3bqOD48sXQPpzmEiqW6nmRwsHERO4723goM8iR1wKsMXm8f4zil5Evdxm41lCH0xXkGTweP2n5KGCUqLUQGesfXdtqy-6S9nCUtcAT0CMh4mcH7jVv-atffO-z5_xV_AXc5jR-iP4oD2F8uVvElgrGle5VG30-GxS3f priority: 102 providerName: Springer Nature |
Title | Long short term memory networks for predicting resilient Modulus of stabilized base material subject to wet-dry cycles |
URI | https://link.springer.com/article/10.1038/s41598-024-79588-5 https://www.ncbi.nlm.nih.gov/pubmed/39537833 https://www.proquest.com/docview/3128041527 https://www.proquest.com/docview/3128819022 https://hal.science/hal-04825065 https://pubmed.ncbi.nlm.nih.gov/PMC11561326 https://doaj.org/article/35ef40ca2d854158b060cc62ebaa8798 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0i8IL4JjMog3iCQ-iO2HxDqqk3VtE4IqNS3KImddVJJRj8G5a_nLkmLygYSL4nkOI7ju8v9HP98B_DKCZ1562WovReh5M6GRsgMD6mzBR55zXYfnsWDkTwZq_EOrNMdtQM4v3FqR_mkRrPp2x_fVh_Q4N83W8bNuzk6IdooxvGJVqHk1S7so2fSZKjDFu43sb65lV3b7p25-dYt_1SH8UevMyGS5HUEep1I-cdqau2kju_CnRZdsl6jDvdgx5f34VaTb3L1AK5Oq_KczSf4tow-yewr8WxXrGy44HOGCJZdzmjthtjQDKfiF1PaMMmGlVtOl3NWFQzhJBFqf3rHyAUyhLy1FrP5MqOfOmxRse9-ETpsOF8R6e4hjI6PvvQHYZt4IcwRvS1C6Y0usgzBS2ZzL11kcm0KlRfOWae5RMgniijKci9MGkeOS0VhB5XylntiBD6CvbIq_RNgqYts0VXG8kJLJbJUUe5FFeUqTXFuKQPoroc7yduo5JQcY5rUq-PCJI2IEhRRUosoUQG83txz2cTk-GftQ5LipibF064Lqtl50ppnIpQvZJSn3BmFLZgsiqM8j7nPsJvamgBeog5stTHonSZUhp9AhJGxuuoGcLBWkWStyIlAAEBhELgO4MXmMtowLcykpa-WTR1CZpwH8LjRqM2jhFVCGyECMFu6ttWX7SvlxaSOE45gH8EajwN4s1bL3_36-4A9_b_qz-A2J_shaqQ4gL3FbOmfI1BbZB3Y1WPdgf1e7-TzCZ4Pj84-fsLSftzv1D8_OrV9_gKIcD1c |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviG8CAwyCJ4iW-qOxHxDaYFPH2gmhTdqbl9jOOqkkpWk3lT-Kv5G7fHQqE3vbSx4Sx3F85_PvfD_7CHnneJx67UUYe89DwZwOFRcpXBKnM7iyiu0-POj1j8S3Y3m8Rv60e2GQVtnaxMpQu8LiGvkmB0OK28lZ_HnyK8SsURhdbVNo1Gqx7xcX4LKVn_a-gnzfM7a7c_ilHzZZBUIL0GQWCq_iLE1hZk619cJFysYqkzZzTruYCcAzPIui1Hqukl7kmJB4pp6UXjOPdDeo9xZZFxxcmQ5Z3945-P5juaqDcTPR1c3unIirzRLajLvYGHSHlqCWcmUGrBIFwLw2QhrmVYx7lar5T7y2mgZ375N7DX6lW7XCPSBrPn9IbtcZLRePyPmgyE9pOQJQT9Ho05_I5F3QvGablxQwMp1MMTqEfGsKzv7ZGLdk0mHh5uN5SYuMAmBFyu5v7yhOshRAdTVOaDlPcdmIzgp64Wehg4rtAml9j8nRjQjhCenkRe6fEZq4SGddqTTLYiF5mkjM7igjK5MEvFcRkG7b3cY2555j-o2xqeLvXJlaRAZEZCoRGRmQD8t3JvWpH9eW3kYpLkviid3VjWJ6ahoDYLj0mYhswpySUINKo15kbY_5FJoZaxWQt6ADK3X0twYG74GRBaDak-fdgGy0KmIaW1Oay5ERkDfLx2AlMPST5L6Y12UQ-zEWkKe1Ri0_xbXkseI8IGpF11basvokPxtVJ5GDOwFwkPUC8rFVy8t2_b_Dnl__G6_Jnf7hcGAGewf7L8hdhmMHiZd8g3Rm07l_CTBwlr5qxh4lJzc93P8CIB1twg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxJ3AAIPgCaKlviT2A0KDUXWsm3hgUt-8xHbWSSUpTbup_DR-Hefk0qlM7G0veUgcx_G5-LPPZx9C3jqeZF57ESbe81Awp0PFRQaX1Okcrqxmux8cxoMj8W0kRxvkT7cXBmmVnU-sHbUrLa6Rb3NwpLidHKbqeUuL-L7b_zT9FWIGKYy0duk0GhXZ98tzmL5VH_d2QdbvGOt__fFlELYZBkILMGUeCq-SPMtglM609cJFyiYqlzZ3TruECcA2PI-izHqu0jhyTEg8X09Kr5lH6hvUe4PcTLjsoY0lo2S1voMRNNHT7T6diKvtClqP-9kYdIyWoKBybSysUwbACDdGQuZltHuZtPlP5LYeEPv3yN0WydKdRvXukw1fPCC3mtyWy4fkbFgWJ7QaA7yn6P7pT-T0LmnR8M4rCmiZTmcYJ0LmNYVp_-kEN2fSg9ItJouKljkF6Irk3d_eURxuKcDr2mJotchwAYnOS3ru56GDiu0SCX6PyNG1iOAx2SzKwj8lNHWRzntSaZYnQvIslZjnUUZWpinMY0VAel13G9uegI6JOCamjsRzZRoRGRCRqUVkZEDer96ZNud_XFn6M0pxVRLP7q5vlLMT07oCw6XPRWRT5pSEGlQWxZG1MfMZNDPRKiBvQAfW6hjsDA3eA3cLkDWWZ72AbHUqYlqvU5kLGwnI69Vj8BcYBEoLXy6aMogCGQvIk0ajVp_iWvJEcR4QtaZra21Zf1KcjuszyWFiAcCQxQH50KnlRbv-32HPrv6NV-Q2GLkZ7h3uPyd3GJoOMjD5Ftmczxb-BeDBefayNjxKjq_b0v8CIHpwkg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long+short+term+memory+networks+for+predicting+resilient+Modulus+of+stabilized+base+material+subject+to+wet-dry+cycles&rft.jtitle=Scientific+reports&rft.au=Al%E2%80%91Zubi%2C+Mohammad+A.&rft.au=Ahmad%2C+Mahmood&rft.au=Abdullah%2C+Shahriar&rft.au=Khan%2C+Beenish+Jehan&rft.date=2024-11-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-79588-5&rft.externalDocID=10_1038_s41598_024_79588_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |