Finite element models with automatic computed tomography bone segmentation for failure load computation

Bone segmentation is an important step to perform biomechanical failure load simulations on in-vivo CT data of patients with bone metastasis, as it is a mandatory operation to obtain meshes needed for numerical simulations. Segmentation can be a tedious and time consuming task when done manually, an...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 16576 - 9
Main Authors Saillard, Emile, Gardegaront, Marc, Levillain, Aurélie, Bermond, François, Mitton, David, Pialat, Jean-Baptiste, Confavreux, Cyrille, Grenier, Thomas, Follet, Hélène
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.07.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bone segmentation is an important step to perform biomechanical failure load simulations on in-vivo CT data of patients with bone metastasis, as it is a mandatory operation to obtain meshes needed for numerical simulations. Segmentation can be a tedious and time consuming task when done manually, and expert segmentations are subject to intra- and inter-operator variability. Deep learning methods are increasingly employed to automatically carry out image segmentation tasks. These networks usually need to be trained on a large image dataset along with the manual segmentations to maximize generalization to new images, but it is not always possible to have access to a multitude of CT-scans with the associated ground truth. It then becomes necessary to use training techniques to make the best use of the limited available data. In this paper, we propose a dedicated pipeline of preprocessing, deep learning based segmentation method and post-processing for in-vivo human femurs and vertebrae segmentation from CT-scans volumes. We experimented with three U-Net architectures and showed that out-of-the-box models enable automatic and high-quality volume segmentation if carefully trained. We compared the failure load simulation results obtained on femurs and vertebrae using either automatic or manual segmentations and studied the sensitivity of the simulations on small variations of the automatic segmentation. The failure loads obtained using automatic segmentations were comparable to those obtained using manual expert segmentations for all the femurs and vertebrae tested, demonstrating the effectiveness of the automated segmentation approach for failure load simulations.
AbstractList Bone segmentation is an important step to perform biomechanical failure load simulations on in-vivo CT data of patients with bone metastasis, as it is a mandatory operation to obtain meshes needed for numerical simulations. Segmentation can be a tedious and time consuming task when done manually, and expert segmentations are subject to intra- and inter-operator variability. Deep learning methods are increasingly employed to automatically carry out image segmentation tasks. These networks usually need to be trained on a large image dataset along with the manual segmentations to maximize generalization to new images, but it is not always possible to have access to a multitude of CT-scans with the associated ground truth. It then becomes necessary to use training techniques to make the best use of the limited available data. In this paper, we propose a dedicated pipeline of preprocessing, deep learning based segmentation method and post-processing for in-vivo human femurs and vertebrae segmentation from CT-scans volumes. We experimented with three U-Net architectures and showed that out-of-the-box models enable automatic and high-quality volume segmentation if carefully trained. We compared the failure load simulation results obtained on femurs and vertebrae using either automatic or manual segmentations and studied the sensitivity of the simulations on small variations of the automatic segmentation. The failure loads obtained using automatic segmentations were comparable to those obtained using manual expert segmentations for all the femurs and vertebrae tested, demonstrating the effectiveness of the automated segmentation approach for failure load simulations.
Bone segmentation is an important step to perform biomechanical failure load simulations on in-vivo CT data of patients with bone metastasis, as it is a mandatory operation to obtain meshes needed for numerical simulations. Segmentation can be a tedious and time consuming task when done manually, and expert segmentations are subject to intra- and inter-operator variability. Deep learning methods are increasingly employed to automatically carry out image segmentation tasks. These networks usually need to be trained on a large image dataset along with the manual segmentations to maximize generalization to new images, but it is not always possible to have access to a multitude of CT-scans with the associated ground truth. It then becomes necessary to use training techniques to make the best use of the limited available data. In this paper, we propose a dedicated pipeline of preprocessing, deep learning based segmentation method and post-processing for in-vivo human femurs and vertebrae segmentation from CT-scans volumes. We experimented with three U-Net architectures and showed that out-of-the-box models enable automatic and high-quality volume segmentation if carefully trained. We compared the failure load simulation results obtained on femurs and vertebrae using either automatic or manual segmentations and studied the sensitivity of the simulations on small variations of the automatic segmentation. The failure loads obtained using automatic segmentations were comparable to those obtained using manual expert segmentations for all the femurs and vertebrae tested, demonstrating the effectiveness of the automated segmentation approach for failure load simulations.Bone segmentation is an important step to perform biomechanical failure load simulations on in-vivo CT data of patients with bone metastasis, as it is a mandatory operation to obtain meshes needed for numerical simulations. Segmentation can be a tedious and time consuming task when done manually, and expert segmentations are subject to intra- and inter-operator variability. Deep learning methods are increasingly employed to automatically carry out image segmentation tasks. These networks usually need to be trained on a large image dataset along with the manual segmentations to maximize generalization to new images, but it is not always possible to have access to a multitude of CT-scans with the associated ground truth. It then becomes necessary to use training techniques to make the best use of the limited available data. In this paper, we propose a dedicated pipeline of preprocessing, deep learning based segmentation method and post-processing for in-vivo human femurs and vertebrae segmentation from CT-scans volumes. We experimented with three U-Net architectures and showed that out-of-the-box models enable automatic and high-quality volume segmentation if carefully trained. We compared the failure load simulation results obtained on femurs and vertebrae using either automatic or manual segmentations and studied the sensitivity of the simulations on small variations of the automatic segmentation. The failure loads obtained using automatic segmentations were comparable to those obtained using manual expert segmentations for all the femurs and vertebrae tested, demonstrating the effectiveness of the automated segmentation approach for failure load simulations.
Abstract Bone segmentation is an important step to perform biomechanical failure load simulations on in-vivo CT data of patients with bone metastasis, as it is a mandatory operation to obtain meshes needed for numerical simulations. Segmentation can be a tedious and time consuming task when done manually, and expert segmentations are subject to intra- and inter-operator variability. Deep learning methods are increasingly employed to automatically carry out image segmentation tasks. These networks usually need to be trained on a large image dataset along with the manual segmentations to maximize generalization to new images, but it is not always possible to have access to a multitude of CT-scans with the associated ground truth. It then becomes necessary to use training techniques to make the best use of the limited available data. In this paper, we propose a dedicated pipeline of preprocessing, deep learning based segmentation method and post-processing for in-vivo human femurs and vertebrae segmentation from CT-scans volumes. We experimented with three U-Net architectures and showed that out-of-the-box models enable automatic and high-quality volume segmentation if carefully trained. We compared the failure load simulation results obtained on femurs and vertebrae using either automatic or manual segmentations and studied the sensitivity of the simulations on small variations of the automatic segmentation. The failure loads obtained using automatic segmentations were comparable to those obtained using manual expert segmentations for all the femurs and vertebrae tested, demonstrating the effectiveness of the automated segmentation approach for failure load simulations.
ArticleNumber 16576
Author Mitton, David
Gardegaront, Marc
Confavreux, Cyrille
Pialat, Jean-Baptiste
Levillain, Aurélie
Saillard, Emile
Bermond, François
Follet, Hélène
Grenier, Thomas
Author_xml – sequence: 1
  givenname: Emile
  surname: Saillard
  fullname: Saillard, Emile
  organization: INSERM, LYOS UMR 1033, Université Claude Bernard Lyon 1, INSA-Lyon, CREATIS UMR5220, Université Claude Bernard Lyon 1
– sequence: 2
  givenname: Marc
  surname: Gardegaront
  fullname: Gardegaront, Marc
  organization: INSERM, LYOS UMR 1033, Université Claude Bernard Lyon 1, Univ Eiffel, LBMC UMRT9406, Université Claude Bernard Lyon 1
– sequence: 3
  givenname: Aurélie
  surname: Levillain
  fullname: Levillain, Aurélie
  organization: Univ Eiffel, LBMC UMRT9406, Université Claude Bernard Lyon 1
– sequence: 4
  givenname: François
  surname: Bermond
  fullname: Bermond, François
  organization: Univ Eiffel, LBMC UMRT9406, Université Claude Bernard Lyon 1
– sequence: 5
  givenname: David
  surname: Mitton
  fullname: Mitton, David
  organization: Univ Eiffel, LBMC UMRT9406, Université Claude Bernard Lyon 1
– sequence: 6
  givenname: Jean-Baptiste
  surname: Pialat
  fullname: Pialat, Jean-Baptiste
  organization: INSA-Lyon, CREATIS UMR5220, Université Claude Bernard Lyon 1, Hospices Civils de Lyon
– sequence: 7
  givenname: Cyrille
  surname: Confavreux
  fullname: Confavreux, Cyrille
  organization: INSERM, LYOS UMR 1033, Université Claude Bernard Lyon 1, Hospices Civils de Lyon
– sequence: 8
  givenname: Thomas
  surname: Grenier
  fullname: Grenier, Thomas
  organization: INSA-Lyon, CREATIS UMR5220, Université Claude Bernard Lyon 1
– sequence: 9
  givenname: Hélène
  orcidid: 0000-0002-3290-2899
  surname: Follet
  fullname: Follet, Hélène
  email: helene.follet@inserm.fr
  organization: INSERM, LYOS UMR 1033, Université Claude Bernard Lyon 1
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39019937$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04803712$$DView record in HAL
BookMark eNp9kstu1DAUhi1UREvpC7BAltjAIuBrYq9QVdGLNBIbWFuOY2c8SuLBTjrq2-NJhl5m0UiJo-Pv_8-xz3kPToYwWAA-YvQNIyq-J4a5FAUirChLSVmxewPOCGK8IJSQk2f_p-AipQ3KDyeSYfkOnFKJsJS0OgPttR_8aKHtbG-HEfahsV2COz-uoZ7G0OvRG2hCv51G28AcCG3U2_UDrHM9MNl2L8tQGKALETrtuyla2AXdHGTz5gfw1uku2YvDeg7-XP_8fXVbrH7d3F1drgrDKz4WTJaEmJLWBNXCMEQIFxy7UhqhZUMFKw3TTCNiatYIiqXAjba8qYSzuqaOnoO7xbcJeqO20fc6PqigvZoDIbZKx3ykziqBytpxh3AtKKPC5S_njBHKEak419nrx-K1nereNiYfNOruhenLncGvVRvuFcaEc4Jkdvi6OKyPdLeXK7WPISYQrTC5x5n9csgWw9_JplH1PhnbdXqwYUqKIkHyi2bbz0foJkxxyPc6U7nxGc3Up-flP-b_3_wMkAUwMaQUrXtEMFL7IVPLkKk8ZGoeMrXLInEkMn5pcb4C370upYs05TxDa-NT2a-o_gHdj-YW
CitedBy_id crossref_primary_10_1038_s41598_024_83598_8
crossref_primary_10_3389_fbioe_2024_1446829
Cites_doi 10.1002/jbmr.264
10.1016/j.bone.2009.06.009
10.1007/s00198-011-1568-3
10.1016/j.media.2021.102166
10.1016/j.injury.2014.10.038
10.1016/j.bonr.2016.02.003
10.3390/cancers14092193
10.1097/BRS.0b013e31815e3993
10.2352/J.ImagingSci.Technol.2021.65.3.030411
10.1016/S0021-9290(97)00123-1
10.1002/jbmr.1539
10.1080/10255840802144105
10.1007/s10237-008-0128-z
10.1016/j.prro.2018.02.001
10.1097/01.blo.0000093842.72468.73
10.1016/j.bone.2020.115598
10.1097/BRS.0b013e3181e16ae2
10.1016/j.bone.2023.116814
10.1109/JBHI.2017.2785389
10.1016/S0736-0266(01)00185-1
10.1080/10255840701535965
10.1038/s41592-020-01008-z
10.1016/j.bone.2019.115101
10.1016/j.bonr.2020.100263
10.1007/s11517-022-02529-9
10.1080/21681163.2022.2068160
10.1016/j.media.2009.02.004
10.1002/jbmr.4805
10.1016/j.media.2015.08.011
10.1007/978-3-319-24574-4_28
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.1038/s41598-024-66934-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

CrossRef
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
EISSN 2045-2322
EndPage 9
ExternalDocumentID oai_doaj_org_article_806bf5f01b83438f834554423502755a
PMC11255209
oai_HAL_hal_04803712v1
39019937
10_1038_s41598_024_66934_w
Genre Journal Article
GrantInformation_xml – fundername: LabEx Primes, France
  grantid: ANR-11-LABX-0063
– fundername: MSDAVENIR
  grantid: Research Grant
  funderid: http://dx.doi.org/10.13039/100016913
– fundername: MSDAVENIR
  grantid: Research Grant
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
1XC
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c575t-49622c63b20b8c40225851f69c8a9d3846c4a4a02cb4d831981dae5d78feab3f3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:23:50 EDT 2025
Thu Aug 21 18:32:55 EDT 2025
Tue Jun 17 06:52:04 EDT 2025
Fri Jul 11 05:25:21 EDT 2025
Wed Aug 13 09:17:45 EDT 2025
Thu Apr 03 07:08:17 EDT 2025
Tue Jul 01 01:02:11 EDT 2025
Thu Apr 24 22:51:40 EDT 2025
Fri Feb 21 02:39:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords metastasis, risk factors, Bone cancer, Bone metastases, Computational models, image processing, machine learning
Language English
License 2024. The Author(s).
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-49622c63b20b8c40225851f69c8a9d3846c4a4a02cb4d831981dae5d78feab3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3290-2899
0000-0002-4979-4097
0000-0001-9260-0916
0000-0002-3630-5856
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-66934-w
PMID 39019937
PQID 3082045823
PQPubID 2041939
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_806bf5f01b83438f834554423502755a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11255209
hal_primary_oai_HAL_hal_04803712v1
proquest_miscellaneous_3082308009
proquest_journals_3082045823
pubmed_primary_39019937
crossref_primary_10_1038_s41598_024_66934_w
crossref_citationtrail_10_1038_s41598_024_66934_w
springer_journals_10_1038_s41598_024_66934_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-17
PublicationDateYYYYMMDD 2024-07-17
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Lenschow (CR7) 2022; 14
Yosibash (CR16) 2020; 38
Chen (CR25) 2017; 23
Mirels (CR2) 1989; 249
Dall’Ara (CR15) 2012; 23
Pahr, Zysset (CR9) 2009; 12
Wang (CR36) 2012; 27
Wegrzyn (CR33) 2011; 26
Sas (CR10) 2020; 12
CR31
Kopperdahl, Morgan, Keaveny (CR34) 2002; 20
CR30
Rincón-Kohli, Zysset (CR35) 2009; 8
Duchemin (CR12) 2008; 11
Fisher (CR3) 2010; 35
Tanck (CR14) 2009; 45
Klinder (CR27) 2009; 13
Macedo (CR1) 2017; 11
Benca (CR6) 2016; 5
Keyak (CR11) 1997; 31
Sekuboyina (CR29) 2021; 73
Bjornsson (CR17) 2023; 11
Piccioli, Spinelli, Maccauro (CR5) 2014; 45
Palanca, Cavazzoni, Dall’Ara (CR19) 2023; 173
Eggermont (CR13) 2020; 130
Liang (CR23) 2021; 65
CR26
CR21
Imai (CR20) 2008; 33
Isensee (CR32) 2021; 18
Shi (CR8) 2018; 8
Chu (CR22) 2015; 26
Deng (CR24) 2022; 60
Forsberg, Yao (CR28) 2015
Stadelmann (CR18) 2020; 141
Damron (CR4) 2003; 415
DD Shi (66934_CR8) 2018; 8
D Forsberg (66934_CR28) 2015
Y Deng (66934_CR24) 2022; 60
A Sekuboyina (66934_CR29) 2021; 73
J Wegrzyn (66934_CR33) 2011; 26
K Liang (66934_CR23) 2021; 65
DL Kopperdahl (66934_CR34) 2002; 20
F Eggermont (66934_CR13) 2020; 130
F Chen (66934_CR25) 2017; 23
M Lenschow (66934_CR7) 2022; 14
M Palanca (66934_CR19) 2023; 173
E Tanck (66934_CR14) 2009; 45
K Imai (66934_CR20) 2008; 33
DH Pahr (66934_CR9) 2009; 12
C Chu (66934_CR22) 2015; 26
F Macedo (66934_CR1) 2017; 11
Z Yosibash (66934_CR16) 2020; 38
66934_CR30
66934_CR31
L Rincón-Kohli (66934_CR35) 2009; 8
TA Damron (66934_CR4) 2003; 415
MA Stadelmann (66934_CR18) 2020; 141
H Mirels (66934_CR2) 1989; 249
F Isensee (66934_CR32) 2021; 18
X Wang (66934_CR36) 2012; 27
T Klinder (66934_CR27) 2009; 13
E Benca (66934_CR6) 2016; 5
A Sas (66934_CR10) 2020; 12
L Duchemin (66934_CR12) 2008; 11
JH Keyak (66934_CR11) 1997; 31
E Dall’Ara (66934_CR15) 2012; 23
66934_CR21
PA Bjornsson (66934_CR17) 2023; 11
66934_CR26
A Piccioli (66934_CR5) 2014; 45
CG Fisher (66934_CR3) 2010; 35
References_xml – volume: 26
  start-page: 739
  issue: 4
  year: 2011
  end-page: 746
  ident: CR33
  article-title: Determinants of the mechanical behavior of human lumbar vertebrae after simulated mild fracture
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.264
– volume: 45
  start-page: 777
  issue: 4
  year: 2009
  end-page: 783
  ident: CR14
  article-title: Pathological fracture prediction in patients with metastatic lesions can be improved with quantitative computed tomography based computer models
  publication-title: Bone
  doi: 10.1016/j.bone.2009.06.009
– volume: 23
  start-page: 563
  year: 2012
  end-page: 572
  ident: CR15
  article-title: QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-011-1568-3
– volume: 73
  year: 2021
  ident: CR29
  article-title: VerSe: A vertebrae labelling and segmentation benchmark for multi-detector CT images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102166
– volume: 45
  start-page: S138
  year: 2014
  end-page: S141
  ident: CR5
  article-title: Impending fracture: A difficult diagnosis
  publication-title: Injury
  doi: 10.1016/j.injury.2014.10.038
– volume: 5
  start-page: 51
  year: 2016
  end-page: 56
  ident: CR6
  article-title: The insufficiencies of risk analysis of impending pathological fractures in patients with femoral metastases: A literature review
  publication-title: Bone Rep.
  doi: 10.1016/j.bonr.2016.02.003
– ident: CR30
– volume: 14
  start-page: 2193
  issue: 9
  year: 2022
  ident: CR7
  article-title: Impact of spinal instrumentation on neurological outcome in patients with intermediate spinal instability neoplastic score (SINS)
  publication-title: Cancers
  doi: 10.3390/cancers14092193
– volume: 249
  start-page: 256
  year: 1989
  end-page: 264
  ident: CR2
  article-title: Metastatic disease in long bones a proposed scoring system for diagnosing impending pathologic fractures
  publication-title: Clin. Orthop. Relat. Res. (1976–2007)
– start-page: 49
  year: 2015
  end-page: 59
  ident: CR28
  article-title: Atlas-based registration for accurate segmentation of thoracic and lumbar vertebrae in CT data
  publication-title: Recent Advances in Computational Methods and Clinical Applications for Spine Imaging. Lecture Notes in Computational Vision and Biomechanics
– volume: 33
  start-page: 27
  issue: 1
  year: 2008
  end-page: 32
  ident: CR20
  article-title: In vivo assessment of lumbar vertebral strength in elderly women using computed tomography-based nonlinear finite element model
  publication-title: Spine
  doi: 10.1097/BRS.0b013e31815e3993
– volume: 65
  start-page: 1
  issue: 3
  year: 2021
  end-page: 6
  ident: CR23
  article-title: Accurate and automatic 3D segmentation of femur and pelvis from CT images of the hip based on deep learning
  publication-title: J. Imaging Sci. Technol.
  doi: 10.2352/J.ImagingSci.Technol.2021.65.3.030411
– volume: 31
  start-page: 125
  issue: 2
  year: 1997
  end-page: 133
  ident: CR11
  article-title: Prediction of femoral fracture load using automated finite element modeling
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(97)00123-1
– volume: 27
  start-page: 808
  issue: 4
  year: 2012
  end-page: 816
  ident: CR36
  article-title: Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.1539
– volume: 12
  start-page: 45
  issue: 1
  year: 2009
  end-page: 57
  ident: CR9
  article-title: From high-resolution CT data to finite element models: Development of an integrated modular framework
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840802144105
– volume: 8
  start-page: 195
  year: 2009
  end-page: 208
  ident: CR35
  article-title: Multi-axial mechanical properties of human trabecular bone
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-008-0128-z
– volume: 8
  start-page: e285
  issue: 5
  year: 2018
  end-page: e294
  ident: CR8
  article-title: Assessing the utility of the spinal instability neoplastic score (SINS) to predict fracture after conventional radiation therapy (RT) for spinal metastases
  publication-title: Pract. Radiat. Oncol.
  doi: 10.1016/j.prro.2018.02.001
– ident: CR21
– volume: 415
  start-page: S201
  year: 2003
  end-page: S207
  ident: CR4
  article-title: Critical evaluation of Mirels’ rating system for impending pathologic fractures
  publication-title: Clin. Orthop. Relat. Res. ®
  doi: 10.1097/01.blo.0000093842.72468.73
– volume: 141
  year: 2020
  ident: CR18
  article-title: Conventional finite element models estimate the strength of metastatic human vertebrae despite alterations of the bone’s tissue and structure
  publication-title: Bone
  doi: 10.1016/j.bone.2020.115598
– volume: 35
  start-page: E1221
  issue: 22
  year: 2010
  end-page: E1229
  ident: CR3
  article-title: A novel classification system for spinal instability in neoplastic disease: An evidence-based approach and expert consensus from the spine oncology study group
  publication-title: Spine
  doi: 10.1097/BRS.0b013e3181e16ae2
– volume: 173
  year: 2023
  ident: CR19
  article-title: The role of bone metastases on the mechanical competence of human vertebrae
  publication-title: Bone
  doi: 10.1016/j.bone.2023.116814
– volume: 23
  start-page: 243
  issue: 1
  year: 2017
  end-page: 252
  ident: CR25
  article-title: Three-dimensional feature-enhanced network for automatic femur segmentation
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2785389
– volume: 20
  start-page: 801
  issue: 4
  year: 2002
  end-page: 805
  ident: CR34
  article-title: Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone
  publication-title: J. Orthop. Res.
  doi: 10.1016/S0736-0266(01)00185-1
– volume: 11
  start-page: 105
  issue: 2
  year: 2008
  end-page: 111
  ident: CR12
  article-title: An anatomical subject-specific FE-model for hip fracture load prediction
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840701535965
– ident: CR31
– volume: 11
  start-page: 321
  issue: 1
  year: 2017
  ident: CR1
  article-title: Bone metastases: An overview
  publication-title: Oncol. Rev.
– volume: 18
  start-page: 203
  issue: 2
  year: 2021
  end-page: 211
  ident: CR32
  article-title: nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01008-z
– volume: 130
  year: 2020
  ident: CR13
  article-title: Patient-specific finite element computer models improve fracture risk assessments in cancer patients with femoral bone metastases compared to clinical guidelines
  publication-title: Bone
  doi: 10.1016/j.bone.2019.115101
– volume: 12
  year: 2020
  ident: CR10
  article-title: Nonlinear voxel-based finite element model for strength assessment of healthy and metastatic proximal femurs
  publication-title: Bone Rep.
  doi: 10.1016/j.bonr.2020.100263
– volume: 60
  start-page: 1417
  issue: 5
  year: 2022
  end-page: 1429
  ident: CR24
  article-title: A deep learning-based approach to automatic proximal femur segmentation in quantitative CT images
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-022-02529-9
– volume: 11
  start-page: 253
  issue: 2
  year: 2023
  end-page: 265
  ident: CR17
  article-title: Fast and robust femur segmentation from computed tomography images for patient-specific hip fracture risk screening
  publication-title: Comput. Methods Biomech. Biomed. Eng. Imaging Vis.
  doi: 10.1080/21681163.2022.2068160
– volume: 13
  start-page: 471
  issue: 3
  year: 2009
  end-page: 482
  ident: CR27
  article-title: Automated model-based vertebra detection, identification, and segmentation in CT images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2009.02.004
– volume: 38
  start-page: 876
  issue: 6
  year: 2020
  end-page: 886
  ident: CR16
  article-title: Hip fracture risk assessment in elderly and diabetic patients: Combining autonomous finite element analysis and machine learning
  publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res.
  doi: 10.1002/jbmr.4805
– volume: 26
  start-page: 173
  issue: 1
  year: 2015
  end-page: 184
  ident: CR22
  article-title: MASCG: Multi-atlas segmentation constrained graph method for accurate segmentation of hip CT images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.08.011
– ident: CR26
– volume: 73
  year: 2021
  ident: 66934_CR29
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102166
– volume: 27
  start-page: 808
  issue: 4
  year: 2012
  ident: 66934_CR36
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.1539
– start-page: 49
  volume-title: Recent Advances in Computational Methods and Clinical Applications for Spine Imaging. Lecture Notes in Computational Vision and Biomechanics
  year: 2015
  ident: 66934_CR28
– volume: 14
  start-page: 2193
  issue: 9
  year: 2022
  ident: 66934_CR7
  publication-title: Cancers
  doi: 10.3390/cancers14092193
– volume: 12
  start-page: 45
  issue: 1
  year: 2009
  ident: 66934_CR9
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840802144105
– volume: 11
  start-page: 105
  issue: 2
  year: 2008
  ident: 66934_CR12
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840701535965
– volume: 45
  start-page: 777
  issue: 4
  year: 2009
  ident: 66934_CR14
  publication-title: Bone
  doi: 10.1016/j.bone.2009.06.009
– volume: 45
  start-page: S138
  year: 2014
  ident: 66934_CR5
  publication-title: Injury
  doi: 10.1016/j.injury.2014.10.038
– volume: 12
  year: 2020
  ident: 66934_CR10
  publication-title: Bone Rep.
  doi: 10.1016/j.bonr.2020.100263
– ident: 66934_CR31
  doi: 10.1007/978-3-319-24574-4_28
– volume: 18
  start-page: 203
  issue: 2
  year: 2021
  ident: 66934_CR32
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01008-z
– volume: 249
  start-page: 256
  year: 1989
  ident: 66934_CR2
  publication-title: Clin. Orthop. Relat. Res. (1976–2007)
– volume: 141
  year: 2020
  ident: 66934_CR18
  publication-title: Bone
  doi: 10.1016/j.bone.2020.115598
– volume: 26
  start-page: 739
  issue: 4
  year: 2011
  ident: 66934_CR33
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.264
– volume: 5
  start-page: 51
  year: 2016
  ident: 66934_CR6
  publication-title: Bone Rep.
  doi: 10.1016/j.bonr.2016.02.003
– volume: 11
  start-page: 253
  issue: 2
  year: 2023
  ident: 66934_CR17
  publication-title: Comput. Methods Biomech. Biomed. Eng. Imaging Vis.
  doi: 10.1080/21681163.2022.2068160
– volume: 8
  start-page: e285
  issue: 5
  year: 2018
  ident: 66934_CR8
  publication-title: Pract. Radiat. Oncol.
  doi: 10.1016/j.prro.2018.02.001
– volume: 11
  start-page: 321
  issue: 1
  year: 2017
  ident: 66934_CR1
  publication-title: Oncol. Rev.
– volume: 35
  start-page: E1221
  issue: 22
  year: 2010
  ident: 66934_CR3
  publication-title: Spine
  doi: 10.1097/BRS.0b013e3181e16ae2
– ident: 66934_CR21
– volume: 60
  start-page: 1417
  issue: 5
  year: 2022
  ident: 66934_CR24
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-022-02529-9
– volume: 23
  start-page: 243
  issue: 1
  year: 2017
  ident: 66934_CR25
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2785389
– volume: 8
  start-page: 195
  year: 2009
  ident: 66934_CR35
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-008-0128-z
– volume: 38
  start-page: 876
  issue: 6
  year: 2020
  ident: 66934_CR16
  publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res.
  doi: 10.1002/jbmr.4805
– volume: 65
  start-page: 1
  issue: 3
  year: 2021
  ident: 66934_CR23
  publication-title: J. Imaging Sci. Technol.
  doi: 10.2352/J.ImagingSci.Technol.2021.65.3.030411
– volume: 23
  start-page: 563
  year: 2012
  ident: 66934_CR15
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-011-1568-3
– volume: 415
  start-page: S201
  year: 2003
  ident: 66934_CR4
  publication-title: Clin. Orthop. Relat. Res. ®
  doi: 10.1097/01.blo.0000093842.72468.73
– volume: 130
  year: 2020
  ident: 66934_CR13
  publication-title: Bone
  doi: 10.1016/j.bone.2019.115101
– volume: 31
  start-page: 125
  issue: 2
  year: 1997
  ident: 66934_CR11
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(97)00123-1
– volume: 173
  year: 2023
  ident: 66934_CR19
  publication-title: Bone
  doi: 10.1016/j.bone.2023.116814
– ident: 66934_CR30
– ident: 66934_CR26
– volume: 20
  start-page: 801
  issue: 4
  year: 2002
  ident: 66934_CR34
  publication-title: J. Orthop. Res.
  doi: 10.1016/S0736-0266(01)00185-1
– volume: 13
  start-page: 471
  issue: 3
  year: 2009
  ident: 66934_CR27
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2009.02.004
– volume: 26
  start-page: 173
  issue: 1
  year: 2015
  ident: 66934_CR22
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.08.011
– volume: 33
  start-page: 27
  issue: 1
  year: 2008
  ident: 66934_CR20
  publication-title: Spine
  doi: 10.1097/BRS.0b013e31815e3993
SSID ssj0000529419
Score 2.440281
Snippet Bone segmentation is an important step to perform biomechanical failure load simulations on in-vivo CT data of patients with bone metastasis, as it is a...
Abstract Bone segmentation is an important step to perform biomechanical failure load simulations on in-vivo CT data of patients with bone metastasis, as it is...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16576
SubjectTerms 631/114/1305
631/114/1564
631/114/2397
631/67/1344
631/67/322
631/67/322/803
692/499
Biomechanical Phenomena
Biomechanics
Bone and Bones - diagnostic imaging
Computed tomography
Computer Science
Computer Simulation
Deep Learning
Engineering Sciences
Femur - diagnostic imaging
Finite Element Analysis
Humanities and Social Sciences
Humans
Image processing
Image Processing, Computer-Assisted - methods
Mathematical models
Mechanics
Medical Imaging
Metastases
multidisciplinary
Science
Science (multidisciplinary)
Simulation
Spine
Spine - diagnostic imaging
Tomography, X-Ray Computed - methods
Vertebrae
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBggziBlET2_Hax4JYrRDiRKXeLD_blUoWsbtU_HtmbO_SUAEXcsjBdhLLM6P5nBl_Q8irpDsXhYutFrA3EXoWWqVnqeXCggOU1gaX2T4_ycWJ-HA6nF4p9YU5YYUeuCzckeqkS0Pqeqe44CrBHTwggIABA25Dhkbg865spgqrN9Oi1_WUTMfV0Ro8FZ4mY6KVUnPRXk48USbsB_9yjumQ17Hm9ZTJ3-Km2R3N75DbFUfS4zL_u-RGHO-Rm6Wy5I_75Gy-RDBJY8kOp7ngzZriX1dqt5tVJmqlvpR0CBQaKnU1dasx0nU8-1IPJY0UYC1Ndon56_RiZUN9LHc-ICfz95_fLdpaU6H1AMw2IA3JmJfcsc4pD5tHhnHBJLVXVgcOaMQLC3Ji3omgwD4Bz9o4hJlK0Tqe-ENyMMJEHhMawOs5NgRuA-zhnHWeu0EmuGLfO-kb0u_W1_hKOI51Ly5MDnxzZYpMDMjEZJmYy4a83j_ztdBt_HX0WxTbfiRSZecGUCBTFcj8S4Ea8hKEPnnH4vijwTY8b89nPfveN-RwpxOmGvnaINMPxpkZb8iLfTeYJ8Zc7BhX2zKGIyrXDXlUVGj_KfzdhPCwIWqiXJO5THvG5XmmAAeUPGACU0Pe7PTw17z-vGBP_seCPSW3GJpRZhc9JAebb9v4DJDZxj3PRvgTV7IyLg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gIIO4QdTEdhznhApitUKIE5X2ZvmV7UolKc0uFf-eGcebKlR0D3uwnY0348l8nhl_Q8i7tilsEDbkjYC9iWhqn6umbnMuDBhAaYy3ke3zu1yeiK-rapUcbkNKq9y_E-OL2vcOfeRHSKuCQT3GP57_yrFqFEZXUwmN2-QOUpdhSle9qicfC0axRNmkszIFV0cD2Cs8U8ZELmXDRX45s0eRth-szCkmRV5HnNcTJ_-JnkajtHhA7ic0SY9H8T8kt0L3iNwd60v-eUzWiw1CShrGHHEay94MFH2v1Oy2faRrpW4s7OApNCQCa2r7LtAhrH-mo0kdBXBLW7PBLHZ61hufLoudT8jJ4suPz8s8VVbIHcCzLchEMuYkt6ywysEWkmF0sJWNU6bxHDCJEwakxZwVXoGWAqo1ofK1aoOxvOVPyUEHE3lOqAfbZ1nlufGwk7PGOm4r2cInlKWVLiPl_vlql2jHsfrFmY7hb670KBMNMtFRJvoyI--na85H0o0bR39CsU0jkTA7NvQXa530T6tC2rZqi9IqLrhq4RuAFGDJCuO2lcnIWxD67DeWx980tuGpe16X7HeZkcP9mtBJ1Qd9tTAz8mbqBiXFyIvpQr8bx3DE5k1Gno1LaLoVOp0QJGZEzRbXbC7znm5zGonAAStXmMaUkQ_7dXg1r_8_sBc3_42X5B5DBYnsoYfkYHuxC68AeW3t66hefwE0bivJ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NISReEN9kDGQQbxCR2I7rPI6KqkKIJybtzbIdu6s0ErS2TPz3u3OSojBAog998Edj5c69n313vwN4E-vCBelCXks8m8h61uS6nsVcSIsGUFnbuMT2-UUtT-Wns-rsAPiYC5OC9hOlZfqbHqPD3m_Q0FAyGJe5UrWQ-dUtuE3U7aTVczXf36uQ50qW9ZAfUwj9h6kTG5So-tGynFMg5E2UeTNY8jePaTJEi_twb0CQ7KRf8wM4CO1DuNPXlPz5CFaLNcFIFvq4cJZK3WwY3bcyu9t2iaKV-b6YQ8OwYSCtZq5rA9uE1bchHallCGhZtGuKXGcXnW2GaanzMZwuPn6dL_OhmkLuEZJtUQ6Kc6-E44XTHo-NnDyCUdVe27oRiEO8tCgh7p1sNO5MRLI2VM1Mx2CdiOIJHLa4kGfAGrR3jleNsA2e3px1XrhKRfyEsnTKZ1CO79f4gWqcKl5cmOTyFtr0MjEoE5NkYq4yeLuf870n2vjn6A8ktv1IIslODd3lygxKY3ShXKxiUTotpNARvxE8IX6syFdb2Qxeo9Anv7E8-WyojTLtxazkP8oMjkedMMP23hji-CEPMxcZvNp348Ykb4ttQ7frxwjC43UGT3sV2j-KLpoIGGagJ8o1Wcu0p12fJ_JvxMcVhS5l8G7Uw1_r-vsLO_q_4c_hLqcNkxhEj-Fwe7kLLxB9bd3LtN2uAYTVKj8
  priority: 102
  providerName: Springer Nature
Title Finite element models with automatic computed tomography bone segmentation for failure load computation
URI https://link.springer.com/article/10.1038/s41598-024-66934-w
https://www.ncbi.nlm.nih.gov/pubmed/39019937
https://www.proquest.com/docview/3082045823
https://www.proquest.com/docview/3082308009
https://hal.science/hal-04803712
https://pubmed.ncbi.nlm.nih.gov/PMC11255209
https://doaj.org/article/806bf5f01b83438f834554423502755a
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dixMxEB_uA8EX8dvVs0TxTVe7STabfRDplStH0UPUQt9CspvtFepW--F5_70z2W2l3in2oYUkuw2ZGeaXTOY3AC-qvOu8dD7OJe5NZJ6Vsc6zKhbSogNU1pYusH2eqdORHI7T8R5syh21C7i8dmtH9aRGi9nrn98v36HBv21SxvWbJTohShTjMlYqFzK-2IdD9EwZGeqHFu43XN88l6HWB5GwxwgmeJtHc_1rdnxVoPRHD3ROFyavotGrlyr_iKwGhzW4DbdapMl6jWrcgT1f34UbTe3Jy3swGUwJbjLf3B9noSTOktG5LLPr1TxQubKiKfpQMmxoya2Zm9eeLf3ka5u2VDMEvqyyU7rhzmZzW7aPhc77MBqcfOmfxm3VhbhA6LZCeSnOCyUc7zpd4PaSU-SwUnmhbV4KxCuFtChJXjhZarRgRLzWp2WmK2-dqMQDOKhxIo-AlegXHU9LYUvc5TnrCuFSVeHHJ4lTRQTJZn1N0VKSU2WMmQmhcaFNIxODMjFBJuYigpfbZ741hBz_HH1MYtuOJDLt0DBfTExrm0Z3lavSqps4LaTQFX4jyEKcmVJMN7URPEeh77zjtPfeUBtl5Iss4T-SCI42OmE2WmyIC4gi0VxE8GzbjQZMURlb-_m6GSMIt-cRPGxUaPtXdCBFADICvaNcO3PZ7amn54EkHHF0SlecIni10cPf8_r7gj3-j3k-gZucrCTQix7BwWqx9k8Rmq1cB_azcdaBw15v-HmIv8cnZx8_YWtf9TvhuKMTLPIXULQ5Ag
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTgheEP_JGGAQPEG0xnZS5wGhDVZ1rFQIbdLejJ04XaUtGWtLtS_FZ-TOSTqVib2tD32wnfTqO_t-5zvfAbwt0q510rowlWibyLSXhyrtFaGQBhVgYkxufbbPUTI4lF-P4qM1-NPehaGwynZP9Bt1XmV0Rr5FaVXIqcfFp7NfIVWNIu9qW0KjFot9d7FAk236ce8L8vcd5_3dg8-DsKkqEGYITWZIT8J5lgjLu1ZlaD5x8owVSZopk-YC9XEmDVLKMytzhRKKiM64OO-pwhkrCoHvvQXrUqAp04H1nd3R9x_LUx3ym8kobW7ndIXamqKGpFtsXIZJkgoZLlY0oC8UgHrtmMIwr2Lcq6Ga__hrvRrs34d7DX5l27XAPYA1Vz6E23VFy4tHMO5PCMQyV0elM19oZ8rotJeZ-azyCWJZVpeSyBk2NCmzma1Kx6ZufNpchioZwmlWmAnFzbOTyuTNY77zMRzeyKw_gU6JhDwDlqO2tTzOhcnRdrTGZsLGSYEfF0U2yQKI2vnVWZPonOptnGjvcBdK1zzRyBPteaIXAbxfPnNWp_m4dvQOsW05klJ0-4bqfKybFa9VN7FFXHQjq4QUqsBvhG6IXmPyFMcmgDfI9JV3DLaHmtronr_oRfx3FMBmKxO62Vym-nIpBPB62Y3bAvl6TOmqeT1GkDWQBvC0FqHlT9ExF8HSANSKcK3QstpTTo596nFE5zEFTgXwoZXDS7r-P2Eb1_-NV3BncPBtqId7o_3ncJfTYvG5SzehMzufuxeI-2b2ZbPYGPy86fX9F5VQaXg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRAviM8RGGAQPEHUxM6H84DQYFQdmyYemNQ3Y8dOV2kkY22p9q_x13HnJJ3KxN7Whz7YTur67ny_853vAN5URWRcYlxYJGibJEVuQ1nkVSgSjQow09oan-3zMBsdJV_H6XgD_vR3YSisst8T_UZtm5LOyAeUVoWcelwMqi4s4tvu8OPpr5AqSJGntS-n0bLIvjtfovk2-7C3i7R-y_nwy_fPo7CrMBCWCFPmOLeM8zIThkdGlmhKcfKSVVlRSl1Ygbq5TDTOmpcmsRK5FdGddqnNZeW0EZXA996Am7lIY5KxfJyvznfIg5bERXdPJxJyMENdSffZeBJmWSGScLmmC33JANRwxxSQeRntXg7a_Mdz6xXi8B7c7ZAs22lZ7z5suPoB3GprW54_hMlwSnCWuTY-nfmSOzNG575ML-aNTxXLyraohGXY0CXPZqapHZu5yc_uWlTNEFizSk8pgp6dNNp2j_nOR3B0LWv-GDZrnMgTYBb1ruGpFdqiFWm0KYVJswo_Lo5NVgYQ9-uryi7lOVXeOFHe9S6kammikCbK00QtA3i3eua0Tfhx5ehPRLbVSErW7Ruas4nqZF_JKDNVWkWxkSIRssJvBHGIY1PyGac6gNdI9LV3jHYOFLXRjX-Rx_x3HMB2zxOq22Zm6kIoAni16sYNgrw-unbNoh0jyC4oAthqWWj1U3TgRQA1ALnGXGtzWe-pp8c-CTni9JRCqAJ43_Phxbz-v2BPr_4bL-E2SrU62DvcfwZ3OMmKT2K6DZvzs4V7jgBwbl54SWPw47pF-y9n92xI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+element+models+with+automatic+computed+tomography+bone+segmentation+for+failure+load+computation&rft.jtitle=Scientific+reports&rft.au=Saillard%2C+Emile&rft.au=Gardegaront%2C+Marc&rft.au=Levillain%2C+Aur%C3%A9lie&rft.au=Bermond%2C+Fran%C3%A7ois&rft.date=2024-07-17&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=16576&rft_id=info:doi/10.1038%2Fs41598-024-66934-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon