Finite element models with automatic computed tomography bone segmentation for failure load computation
Bone segmentation is an important step to perform biomechanical failure load simulations on in-vivo CT data of patients with bone metastasis, as it is a mandatory operation to obtain meshes needed for numerical simulations. Segmentation can be a tedious and time consuming task when done manually, an...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 16576 - 9 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.07.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bone segmentation is an important step to perform biomechanical failure load simulations on in-vivo CT data of patients with bone metastasis, as it is a mandatory operation to obtain meshes needed for numerical simulations. Segmentation can be a tedious and time consuming task when done manually, and expert segmentations are subject to intra- and inter-operator variability. Deep learning methods are increasingly employed to automatically carry out image segmentation tasks. These networks usually need to be trained on a large image dataset along with the manual segmentations to maximize generalization to new images, but it is not always possible to have access to a multitude of CT-scans with the associated ground truth. It then becomes necessary to use training techniques to make the best use of the limited available data. In this paper, we propose a dedicated pipeline of preprocessing, deep learning based segmentation method and post-processing for in-vivo human femurs and vertebrae segmentation from CT-scans volumes. We experimented with three U-Net architectures and showed that out-of-the-box models enable automatic and high-quality volume segmentation if carefully trained. We compared the failure load simulation results obtained on femurs and vertebrae using either automatic or manual segmentations and studied the sensitivity of the simulations on small variations of the automatic segmentation. The failure loads obtained using automatic segmentations were comparable to those obtained using manual expert segmentations for all the femurs and vertebrae tested, demonstrating the effectiveness of the automated segmentation approach for failure load simulations. |
---|---|
AbstractList | Bone segmentation is an important step to perform biomechanical failure load simulations on in-vivo CT data of patients with bone metastasis, as it is a mandatory operation to obtain meshes needed for numerical simulations. Segmentation can be a tedious and time consuming task when done manually, and expert segmentations are subject to intra- and inter-operator variability. Deep learning methods are increasingly employed to automatically carry out image segmentation tasks. These networks usually need to be trained on a large image dataset along with the manual segmentations to maximize generalization to new images, but it is not always possible to have access to a multitude of CT-scans with the associated ground truth. It then becomes necessary to use training techniques to make the best use of the limited available data. In this paper, we propose a dedicated pipeline of preprocessing, deep learning based segmentation method and post-processing for in-vivo human femurs and vertebrae segmentation from CT-scans volumes. We experimented with three U-Net architectures and showed that out-of-the-box models enable automatic and high-quality volume segmentation if carefully trained. We compared the failure load simulation results obtained on femurs and vertebrae using either automatic or manual segmentations and studied the sensitivity of the simulations on small variations of the automatic segmentation. The failure loads obtained using automatic segmentations were comparable to those obtained using manual expert segmentations for all the femurs and vertebrae tested, demonstrating the effectiveness of the automated segmentation approach for failure load simulations. Bone segmentation is an important step to perform biomechanical failure load simulations on in-vivo CT data of patients with bone metastasis, as it is a mandatory operation to obtain meshes needed for numerical simulations. Segmentation can be a tedious and time consuming task when done manually, and expert segmentations are subject to intra- and inter-operator variability. Deep learning methods are increasingly employed to automatically carry out image segmentation tasks. These networks usually need to be trained on a large image dataset along with the manual segmentations to maximize generalization to new images, but it is not always possible to have access to a multitude of CT-scans with the associated ground truth. It then becomes necessary to use training techniques to make the best use of the limited available data. In this paper, we propose a dedicated pipeline of preprocessing, deep learning based segmentation method and post-processing for in-vivo human femurs and vertebrae segmentation from CT-scans volumes. We experimented with three U-Net architectures and showed that out-of-the-box models enable automatic and high-quality volume segmentation if carefully trained. We compared the failure load simulation results obtained on femurs and vertebrae using either automatic or manual segmentations and studied the sensitivity of the simulations on small variations of the automatic segmentation. The failure loads obtained using automatic segmentations were comparable to those obtained using manual expert segmentations for all the femurs and vertebrae tested, demonstrating the effectiveness of the automated segmentation approach for failure load simulations.Bone segmentation is an important step to perform biomechanical failure load simulations on in-vivo CT data of patients with bone metastasis, as it is a mandatory operation to obtain meshes needed for numerical simulations. Segmentation can be a tedious and time consuming task when done manually, and expert segmentations are subject to intra- and inter-operator variability. Deep learning methods are increasingly employed to automatically carry out image segmentation tasks. These networks usually need to be trained on a large image dataset along with the manual segmentations to maximize generalization to new images, but it is not always possible to have access to a multitude of CT-scans with the associated ground truth. It then becomes necessary to use training techniques to make the best use of the limited available data. In this paper, we propose a dedicated pipeline of preprocessing, deep learning based segmentation method and post-processing for in-vivo human femurs and vertebrae segmentation from CT-scans volumes. We experimented with three U-Net architectures and showed that out-of-the-box models enable automatic and high-quality volume segmentation if carefully trained. We compared the failure load simulation results obtained on femurs and vertebrae using either automatic or manual segmentations and studied the sensitivity of the simulations on small variations of the automatic segmentation. The failure loads obtained using automatic segmentations were comparable to those obtained using manual expert segmentations for all the femurs and vertebrae tested, demonstrating the effectiveness of the automated segmentation approach for failure load simulations. Abstract Bone segmentation is an important step to perform biomechanical failure load simulations on in-vivo CT data of patients with bone metastasis, as it is a mandatory operation to obtain meshes needed for numerical simulations. Segmentation can be a tedious and time consuming task when done manually, and expert segmentations are subject to intra- and inter-operator variability. Deep learning methods are increasingly employed to automatically carry out image segmentation tasks. These networks usually need to be trained on a large image dataset along with the manual segmentations to maximize generalization to new images, but it is not always possible to have access to a multitude of CT-scans with the associated ground truth. It then becomes necessary to use training techniques to make the best use of the limited available data. In this paper, we propose a dedicated pipeline of preprocessing, deep learning based segmentation method and post-processing for in-vivo human femurs and vertebrae segmentation from CT-scans volumes. We experimented with three U-Net architectures and showed that out-of-the-box models enable automatic and high-quality volume segmentation if carefully trained. We compared the failure load simulation results obtained on femurs and vertebrae using either automatic or manual segmentations and studied the sensitivity of the simulations on small variations of the automatic segmentation. The failure loads obtained using automatic segmentations were comparable to those obtained using manual expert segmentations for all the femurs and vertebrae tested, demonstrating the effectiveness of the automated segmentation approach for failure load simulations. |
ArticleNumber | 16576 |
Author | Mitton, David Gardegaront, Marc Confavreux, Cyrille Pialat, Jean-Baptiste Levillain, Aurélie Saillard, Emile Bermond, François Follet, Hélène Grenier, Thomas |
Author_xml | – sequence: 1 givenname: Emile surname: Saillard fullname: Saillard, Emile organization: INSERM, LYOS UMR 1033, Université Claude Bernard Lyon 1, INSA-Lyon, CREATIS UMR5220, Université Claude Bernard Lyon 1 – sequence: 2 givenname: Marc surname: Gardegaront fullname: Gardegaront, Marc organization: INSERM, LYOS UMR 1033, Université Claude Bernard Lyon 1, Univ Eiffel, LBMC UMRT9406, Université Claude Bernard Lyon 1 – sequence: 3 givenname: Aurélie surname: Levillain fullname: Levillain, Aurélie organization: Univ Eiffel, LBMC UMRT9406, Université Claude Bernard Lyon 1 – sequence: 4 givenname: François surname: Bermond fullname: Bermond, François organization: Univ Eiffel, LBMC UMRT9406, Université Claude Bernard Lyon 1 – sequence: 5 givenname: David surname: Mitton fullname: Mitton, David organization: Univ Eiffel, LBMC UMRT9406, Université Claude Bernard Lyon 1 – sequence: 6 givenname: Jean-Baptiste surname: Pialat fullname: Pialat, Jean-Baptiste organization: INSA-Lyon, CREATIS UMR5220, Université Claude Bernard Lyon 1, Hospices Civils de Lyon – sequence: 7 givenname: Cyrille surname: Confavreux fullname: Confavreux, Cyrille organization: INSERM, LYOS UMR 1033, Université Claude Bernard Lyon 1, Hospices Civils de Lyon – sequence: 8 givenname: Thomas surname: Grenier fullname: Grenier, Thomas organization: INSA-Lyon, CREATIS UMR5220, Université Claude Bernard Lyon 1 – sequence: 9 givenname: Hélène orcidid: 0000-0002-3290-2899 surname: Follet fullname: Follet, Hélène email: helene.follet@inserm.fr organization: INSERM, LYOS UMR 1033, Université Claude Bernard Lyon 1 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39019937$$D View this record in MEDLINE/PubMed https://hal.science/hal-04803712$$DView record in HAL |
BookMark | eNp9kstu1DAUhi1UREvpC7BAltjAIuBrYq9QVdGLNBIbWFuOY2c8SuLBTjrq2-NJhl5m0UiJo-Pv_8-xz3kPToYwWAA-YvQNIyq-J4a5FAUirChLSVmxewPOCGK8IJSQk2f_p-AipQ3KDyeSYfkOnFKJsJS0OgPttR_8aKHtbG-HEfahsV2COz-uoZ7G0OvRG2hCv51G28AcCG3U2_UDrHM9MNl2L8tQGKALETrtuyla2AXdHGTz5gfw1uku2YvDeg7-XP_8fXVbrH7d3F1drgrDKz4WTJaEmJLWBNXCMEQIFxy7UhqhZUMFKw3TTCNiatYIiqXAjba8qYSzuqaOnoO7xbcJeqO20fc6PqigvZoDIbZKx3ykziqBytpxh3AtKKPC5S_njBHKEak419nrx-K1nereNiYfNOruhenLncGvVRvuFcaEc4Jkdvi6OKyPdLeXK7WPISYQrTC5x5n9csgWw9_JplH1PhnbdXqwYUqKIkHyi2bbz0foJkxxyPc6U7nxGc3Up-flP-b_3_wMkAUwMaQUrXtEMFL7IVPLkKk8ZGoeMrXLInEkMn5pcb4C370upYs05TxDa-NT2a-o_gHdj-YW |
CitedBy_id | crossref_primary_10_1038_s41598_024_83598_8 crossref_primary_10_3389_fbioe_2024_1446829 |
Cites_doi | 10.1002/jbmr.264 10.1016/j.bone.2009.06.009 10.1007/s00198-011-1568-3 10.1016/j.media.2021.102166 10.1016/j.injury.2014.10.038 10.1016/j.bonr.2016.02.003 10.3390/cancers14092193 10.1097/BRS.0b013e31815e3993 10.2352/J.ImagingSci.Technol.2021.65.3.030411 10.1016/S0021-9290(97)00123-1 10.1002/jbmr.1539 10.1080/10255840802144105 10.1007/s10237-008-0128-z 10.1016/j.prro.2018.02.001 10.1097/01.blo.0000093842.72468.73 10.1016/j.bone.2020.115598 10.1097/BRS.0b013e3181e16ae2 10.1016/j.bone.2023.116814 10.1109/JBHI.2017.2785389 10.1016/S0736-0266(01)00185-1 10.1080/10255840701535965 10.1038/s41592-020-01008-z 10.1016/j.bone.2019.115101 10.1016/j.bonr.2020.100263 10.1007/s11517-022-02529-9 10.1080/21681163.2022.2068160 10.1016/j.media.2009.02.004 10.1002/jbmr.4805 10.1016/j.media.2015.08.011 10.1007/978-3-319-24574-4_28 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 1XC VOOES 5PM DOA |
DOI | 10.1038/s41598-024-66934-w |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Computer Science |
EISSN | 2045-2322 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_806bf5f01b83438f834554423502755a PMC11255209 oai_HAL_hal_04803712v1 39019937 10_1038_s41598_024_66934_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: LabEx Primes, France grantid: ANR-11-LABX-0063 – fundername: MSDAVENIR grantid: Research Grant funderid: http://dx.doi.org/10.13039/100016913 – fundername: MSDAVENIR grantid: Research Grant |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 1XC VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c575t-49622c63b20b8c40225851f69c8a9d3846c4a4a02cb4d831981dae5d78feab3f3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:23:50 EDT 2025 Thu Aug 21 18:32:55 EDT 2025 Tue Jun 17 06:52:04 EDT 2025 Fri Jul 11 05:25:21 EDT 2025 Wed Aug 13 09:17:45 EDT 2025 Thu Apr 03 07:08:17 EDT 2025 Tue Jul 01 01:02:11 EDT 2025 Thu Apr 24 22:51:40 EDT 2025 Fri Feb 21 02:39:41 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | metastasis, risk factors, Bone cancer, Bone metastases, Computational models, image processing, machine learning |
Language | English |
License | 2024. The Author(s). Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-49622c63b20b8c40225851f69c8a9d3846c4a4a02cb4d831981dae5d78feab3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3290-2899 0000-0002-4979-4097 0000-0001-9260-0916 0000-0002-3630-5856 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-66934-w |
PMID | 39019937 |
PQID | 3082045823 |
PQPubID | 2041939 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_806bf5f01b83438f834554423502755a pubmedcentral_primary_oai_pubmedcentral_nih_gov_11255209 hal_primary_oai_HAL_hal_04803712v1 proquest_miscellaneous_3082308009 proquest_journals_3082045823 pubmed_primary_39019937 crossref_primary_10_1038_s41598_024_66934_w crossref_citationtrail_10_1038_s41598_024_66934_w springer_journals_10_1038_s41598_024_66934_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-17 |
PublicationDateYYYYMMDD | 2024-07-17 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Lenschow (CR7) 2022; 14 Yosibash (CR16) 2020; 38 Chen (CR25) 2017; 23 Mirels (CR2) 1989; 249 Dall’Ara (CR15) 2012; 23 Pahr, Zysset (CR9) 2009; 12 Wang (CR36) 2012; 27 Wegrzyn (CR33) 2011; 26 Sas (CR10) 2020; 12 CR31 Kopperdahl, Morgan, Keaveny (CR34) 2002; 20 CR30 Rincón-Kohli, Zysset (CR35) 2009; 8 Duchemin (CR12) 2008; 11 Fisher (CR3) 2010; 35 Tanck (CR14) 2009; 45 Klinder (CR27) 2009; 13 Macedo (CR1) 2017; 11 Benca (CR6) 2016; 5 Keyak (CR11) 1997; 31 Sekuboyina (CR29) 2021; 73 Bjornsson (CR17) 2023; 11 Piccioli, Spinelli, Maccauro (CR5) 2014; 45 Palanca, Cavazzoni, Dall’Ara (CR19) 2023; 173 Eggermont (CR13) 2020; 130 Liang (CR23) 2021; 65 CR26 CR21 Imai (CR20) 2008; 33 Isensee (CR32) 2021; 18 Shi (CR8) 2018; 8 Chu (CR22) 2015; 26 Deng (CR24) 2022; 60 Forsberg, Yao (CR28) 2015 Stadelmann (CR18) 2020; 141 Damron (CR4) 2003; 415 DD Shi (66934_CR8) 2018; 8 D Forsberg (66934_CR28) 2015 Y Deng (66934_CR24) 2022; 60 A Sekuboyina (66934_CR29) 2021; 73 J Wegrzyn (66934_CR33) 2011; 26 K Liang (66934_CR23) 2021; 65 DL Kopperdahl (66934_CR34) 2002; 20 F Eggermont (66934_CR13) 2020; 130 F Chen (66934_CR25) 2017; 23 M Lenschow (66934_CR7) 2022; 14 M Palanca (66934_CR19) 2023; 173 E Tanck (66934_CR14) 2009; 45 K Imai (66934_CR20) 2008; 33 DH Pahr (66934_CR9) 2009; 12 C Chu (66934_CR22) 2015; 26 F Macedo (66934_CR1) 2017; 11 Z Yosibash (66934_CR16) 2020; 38 66934_CR30 66934_CR31 L Rincón-Kohli (66934_CR35) 2009; 8 TA Damron (66934_CR4) 2003; 415 MA Stadelmann (66934_CR18) 2020; 141 H Mirels (66934_CR2) 1989; 249 F Isensee (66934_CR32) 2021; 18 X Wang (66934_CR36) 2012; 27 T Klinder (66934_CR27) 2009; 13 E Benca (66934_CR6) 2016; 5 A Sas (66934_CR10) 2020; 12 L Duchemin (66934_CR12) 2008; 11 JH Keyak (66934_CR11) 1997; 31 E Dall’Ara (66934_CR15) 2012; 23 66934_CR21 PA Bjornsson (66934_CR17) 2023; 11 66934_CR26 A Piccioli (66934_CR5) 2014; 45 CG Fisher (66934_CR3) 2010; 35 |
References_xml | – volume: 26 start-page: 739 issue: 4 year: 2011 end-page: 746 ident: CR33 article-title: Determinants of the mechanical behavior of human lumbar vertebrae after simulated mild fracture publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.264 – volume: 45 start-page: 777 issue: 4 year: 2009 end-page: 783 ident: CR14 article-title: Pathological fracture prediction in patients with metastatic lesions can be improved with quantitative computed tomography based computer models publication-title: Bone doi: 10.1016/j.bone.2009.06.009 – volume: 23 start-page: 563 year: 2012 end-page: 572 ident: CR15 article-title: QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA publication-title: Osteoporos. Int. doi: 10.1007/s00198-011-1568-3 – volume: 73 year: 2021 ident: CR29 article-title: VerSe: A vertebrae labelling and segmentation benchmark for multi-detector CT images publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102166 – volume: 45 start-page: S138 year: 2014 end-page: S141 ident: CR5 article-title: Impending fracture: A difficult diagnosis publication-title: Injury doi: 10.1016/j.injury.2014.10.038 – volume: 5 start-page: 51 year: 2016 end-page: 56 ident: CR6 article-title: The insufficiencies of risk analysis of impending pathological fractures in patients with femoral metastases: A literature review publication-title: Bone Rep. doi: 10.1016/j.bonr.2016.02.003 – ident: CR30 – volume: 14 start-page: 2193 issue: 9 year: 2022 ident: CR7 article-title: Impact of spinal instrumentation on neurological outcome in patients with intermediate spinal instability neoplastic score (SINS) publication-title: Cancers doi: 10.3390/cancers14092193 – volume: 249 start-page: 256 year: 1989 end-page: 264 ident: CR2 article-title: Metastatic disease in long bones a proposed scoring system for diagnosing impending pathologic fractures publication-title: Clin. Orthop. Relat. Res. (1976–2007) – start-page: 49 year: 2015 end-page: 59 ident: CR28 article-title: Atlas-based registration for accurate segmentation of thoracic and lumbar vertebrae in CT data publication-title: Recent Advances in Computational Methods and Clinical Applications for Spine Imaging. Lecture Notes in Computational Vision and Biomechanics – volume: 33 start-page: 27 issue: 1 year: 2008 end-page: 32 ident: CR20 article-title: In vivo assessment of lumbar vertebral strength in elderly women using computed tomography-based nonlinear finite element model publication-title: Spine doi: 10.1097/BRS.0b013e31815e3993 – volume: 65 start-page: 1 issue: 3 year: 2021 end-page: 6 ident: CR23 article-title: Accurate and automatic 3D segmentation of femur and pelvis from CT images of the hip based on deep learning publication-title: J. Imaging Sci. Technol. doi: 10.2352/J.ImagingSci.Technol.2021.65.3.030411 – volume: 31 start-page: 125 issue: 2 year: 1997 end-page: 133 ident: CR11 article-title: Prediction of femoral fracture load using automated finite element modeling publication-title: J. Biomech. doi: 10.1016/S0021-9290(97)00123-1 – volume: 27 start-page: 808 issue: 4 year: 2012 end-page: 816 ident: CR36 article-title: Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.1539 – volume: 12 start-page: 45 issue: 1 year: 2009 end-page: 57 ident: CR9 article-title: From high-resolution CT data to finite element models: Development of an integrated modular framework publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255840802144105 – volume: 8 start-page: 195 year: 2009 end-page: 208 ident: CR35 article-title: Multi-axial mechanical properties of human trabecular bone publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-008-0128-z – volume: 8 start-page: e285 issue: 5 year: 2018 end-page: e294 ident: CR8 article-title: Assessing the utility of the spinal instability neoplastic score (SINS) to predict fracture after conventional radiation therapy (RT) for spinal metastases publication-title: Pract. Radiat. Oncol. doi: 10.1016/j.prro.2018.02.001 – ident: CR21 – volume: 415 start-page: S201 year: 2003 end-page: S207 ident: CR4 article-title: Critical evaluation of Mirels’ rating system for impending pathologic fractures publication-title: Clin. Orthop. Relat. Res. ® doi: 10.1097/01.blo.0000093842.72468.73 – volume: 141 year: 2020 ident: CR18 article-title: Conventional finite element models estimate the strength of metastatic human vertebrae despite alterations of the bone’s tissue and structure publication-title: Bone doi: 10.1016/j.bone.2020.115598 – volume: 35 start-page: E1221 issue: 22 year: 2010 end-page: E1229 ident: CR3 article-title: A novel classification system for spinal instability in neoplastic disease: An evidence-based approach and expert consensus from the spine oncology study group publication-title: Spine doi: 10.1097/BRS.0b013e3181e16ae2 – volume: 173 year: 2023 ident: CR19 article-title: The role of bone metastases on the mechanical competence of human vertebrae publication-title: Bone doi: 10.1016/j.bone.2023.116814 – volume: 23 start-page: 243 issue: 1 year: 2017 end-page: 252 ident: CR25 article-title: Three-dimensional feature-enhanced network for automatic femur segmentation publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2785389 – volume: 20 start-page: 801 issue: 4 year: 2002 end-page: 805 ident: CR34 article-title: Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone publication-title: J. Orthop. Res. doi: 10.1016/S0736-0266(01)00185-1 – volume: 11 start-page: 105 issue: 2 year: 2008 end-page: 111 ident: CR12 article-title: An anatomical subject-specific FE-model for hip fracture load prediction publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255840701535965 – ident: CR31 – volume: 11 start-page: 321 issue: 1 year: 2017 ident: CR1 article-title: Bone metastases: An overview publication-title: Oncol. Rev. – volume: 18 start-page: 203 issue: 2 year: 2021 end-page: 211 ident: CR32 article-title: nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat. Methods doi: 10.1038/s41592-020-01008-z – volume: 130 year: 2020 ident: CR13 article-title: Patient-specific finite element computer models improve fracture risk assessments in cancer patients with femoral bone metastases compared to clinical guidelines publication-title: Bone doi: 10.1016/j.bone.2019.115101 – volume: 12 year: 2020 ident: CR10 article-title: Nonlinear voxel-based finite element model for strength assessment of healthy and metastatic proximal femurs publication-title: Bone Rep. doi: 10.1016/j.bonr.2020.100263 – volume: 60 start-page: 1417 issue: 5 year: 2022 end-page: 1429 ident: CR24 article-title: A deep learning-based approach to automatic proximal femur segmentation in quantitative CT images publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-022-02529-9 – volume: 11 start-page: 253 issue: 2 year: 2023 end-page: 265 ident: CR17 article-title: Fast and robust femur segmentation from computed tomography images for patient-specific hip fracture risk screening publication-title: Comput. Methods Biomech. Biomed. Eng. Imaging Vis. doi: 10.1080/21681163.2022.2068160 – volume: 13 start-page: 471 issue: 3 year: 2009 end-page: 482 ident: CR27 article-title: Automated model-based vertebra detection, identification, and segmentation in CT images publication-title: Med. Image Anal. doi: 10.1016/j.media.2009.02.004 – volume: 38 start-page: 876 issue: 6 year: 2020 end-page: 886 ident: CR16 article-title: Hip fracture risk assessment in elderly and diabetic patients: Combining autonomous finite element analysis and machine learning publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. doi: 10.1002/jbmr.4805 – volume: 26 start-page: 173 issue: 1 year: 2015 end-page: 184 ident: CR22 article-title: MASCG: Multi-atlas segmentation constrained graph method for accurate segmentation of hip CT images publication-title: Med. Image Anal. doi: 10.1016/j.media.2015.08.011 – ident: CR26 – volume: 73 year: 2021 ident: 66934_CR29 publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102166 – volume: 27 start-page: 808 issue: 4 year: 2012 ident: 66934_CR36 publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.1539 – start-page: 49 volume-title: Recent Advances in Computational Methods and Clinical Applications for Spine Imaging. Lecture Notes in Computational Vision and Biomechanics year: 2015 ident: 66934_CR28 – volume: 14 start-page: 2193 issue: 9 year: 2022 ident: 66934_CR7 publication-title: Cancers doi: 10.3390/cancers14092193 – volume: 12 start-page: 45 issue: 1 year: 2009 ident: 66934_CR9 publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255840802144105 – volume: 11 start-page: 105 issue: 2 year: 2008 ident: 66934_CR12 publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255840701535965 – volume: 45 start-page: 777 issue: 4 year: 2009 ident: 66934_CR14 publication-title: Bone doi: 10.1016/j.bone.2009.06.009 – volume: 45 start-page: S138 year: 2014 ident: 66934_CR5 publication-title: Injury doi: 10.1016/j.injury.2014.10.038 – volume: 12 year: 2020 ident: 66934_CR10 publication-title: Bone Rep. doi: 10.1016/j.bonr.2020.100263 – ident: 66934_CR31 doi: 10.1007/978-3-319-24574-4_28 – volume: 18 start-page: 203 issue: 2 year: 2021 ident: 66934_CR32 publication-title: Nat. Methods doi: 10.1038/s41592-020-01008-z – volume: 249 start-page: 256 year: 1989 ident: 66934_CR2 publication-title: Clin. Orthop. Relat. Res. (1976–2007) – volume: 141 year: 2020 ident: 66934_CR18 publication-title: Bone doi: 10.1016/j.bone.2020.115598 – volume: 26 start-page: 739 issue: 4 year: 2011 ident: 66934_CR33 publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.264 – volume: 5 start-page: 51 year: 2016 ident: 66934_CR6 publication-title: Bone Rep. doi: 10.1016/j.bonr.2016.02.003 – volume: 11 start-page: 253 issue: 2 year: 2023 ident: 66934_CR17 publication-title: Comput. Methods Biomech. Biomed. Eng. Imaging Vis. doi: 10.1080/21681163.2022.2068160 – volume: 8 start-page: e285 issue: 5 year: 2018 ident: 66934_CR8 publication-title: Pract. Radiat. Oncol. doi: 10.1016/j.prro.2018.02.001 – volume: 11 start-page: 321 issue: 1 year: 2017 ident: 66934_CR1 publication-title: Oncol. Rev. – volume: 35 start-page: E1221 issue: 22 year: 2010 ident: 66934_CR3 publication-title: Spine doi: 10.1097/BRS.0b013e3181e16ae2 – ident: 66934_CR21 – volume: 60 start-page: 1417 issue: 5 year: 2022 ident: 66934_CR24 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-022-02529-9 – volume: 23 start-page: 243 issue: 1 year: 2017 ident: 66934_CR25 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2785389 – volume: 8 start-page: 195 year: 2009 ident: 66934_CR35 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-008-0128-z – volume: 38 start-page: 876 issue: 6 year: 2020 ident: 66934_CR16 publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. doi: 10.1002/jbmr.4805 – volume: 65 start-page: 1 issue: 3 year: 2021 ident: 66934_CR23 publication-title: J. Imaging Sci. Technol. doi: 10.2352/J.ImagingSci.Technol.2021.65.3.030411 – volume: 23 start-page: 563 year: 2012 ident: 66934_CR15 publication-title: Osteoporos. Int. doi: 10.1007/s00198-011-1568-3 – volume: 415 start-page: S201 year: 2003 ident: 66934_CR4 publication-title: Clin. Orthop. Relat. Res. ® doi: 10.1097/01.blo.0000093842.72468.73 – volume: 130 year: 2020 ident: 66934_CR13 publication-title: Bone doi: 10.1016/j.bone.2019.115101 – volume: 31 start-page: 125 issue: 2 year: 1997 ident: 66934_CR11 publication-title: J. Biomech. doi: 10.1016/S0021-9290(97)00123-1 – volume: 173 year: 2023 ident: 66934_CR19 publication-title: Bone doi: 10.1016/j.bone.2023.116814 – ident: 66934_CR30 – ident: 66934_CR26 – volume: 20 start-page: 801 issue: 4 year: 2002 ident: 66934_CR34 publication-title: J. Orthop. Res. doi: 10.1016/S0736-0266(01)00185-1 – volume: 13 start-page: 471 issue: 3 year: 2009 ident: 66934_CR27 publication-title: Med. Image Anal. doi: 10.1016/j.media.2009.02.004 – volume: 26 start-page: 173 issue: 1 year: 2015 ident: 66934_CR22 publication-title: Med. Image Anal. doi: 10.1016/j.media.2015.08.011 – volume: 33 start-page: 27 issue: 1 year: 2008 ident: 66934_CR20 publication-title: Spine doi: 10.1097/BRS.0b013e31815e3993 |
SSID | ssj0000529419 |
Score | 2.440281 |
Snippet | Bone segmentation is an important step to perform biomechanical failure load simulations on in-vivo CT data of patients with bone metastasis, as it is a... Abstract Bone segmentation is an important step to perform biomechanical failure load simulations on in-vivo CT data of patients with bone metastasis, as it is... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16576 |
SubjectTerms | 631/114/1305 631/114/1564 631/114/2397 631/67/1344 631/67/322 631/67/322/803 692/499 Biomechanical Phenomena Biomechanics Bone and Bones - diagnostic imaging Computed tomography Computer Science Computer Simulation Deep Learning Engineering Sciences Femur - diagnostic imaging Finite Element Analysis Humanities and Social Sciences Humans Image processing Image Processing, Computer-Assisted - methods Mathematical models Mechanics Medical Imaging Metastases multidisciplinary Science Science (multidisciplinary) Simulation Spine Spine - diagnostic imaging Tomography, X-Ray Computed - methods Vertebrae |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBggziBlET2_Hax4JYrRDiRKXeLD_blUoWsbtU_HtmbO_SUAEXcsjBdhLLM6P5nBl_Q8irpDsXhYutFrA3EXoWWqVnqeXCggOU1gaX2T4_ycWJ-HA6nF4p9YU5YYUeuCzckeqkS0Pqeqe44CrBHTwggIABA25Dhkbg865spgqrN9Oi1_WUTMfV0Ro8FZ4mY6KVUnPRXk48USbsB_9yjumQ17Hm9ZTJ3-Km2R3N75DbFUfS4zL_u-RGHO-Rm6Wy5I_75Gy-RDBJY8kOp7ngzZriX1dqt5tVJmqlvpR0CBQaKnU1dasx0nU8-1IPJY0UYC1Ndon56_RiZUN9LHc-ICfz95_fLdpaU6H1AMw2IA3JmJfcsc4pD5tHhnHBJLVXVgcOaMQLC3Ji3omgwD4Bz9o4hJlK0Tqe-ENyMMJEHhMawOs5NgRuA-zhnHWeu0EmuGLfO-kb0u_W1_hKOI51Ly5MDnxzZYpMDMjEZJmYy4a83j_ztdBt_HX0WxTbfiRSZecGUCBTFcj8S4Ea8hKEPnnH4vijwTY8b89nPfveN-RwpxOmGvnaINMPxpkZb8iLfTeYJ8Zc7BhX2zKGIyrXDXlUVGj_KfzdhPCwIWqiXJO5THvG5XmmAAeUPGACU0Pe7PTw17z-vGBP_seCPSW3GJpRZhc9JAebb9v4DJDZxj3PRvgTV7IyLg priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gIIO4QdTEdhznhApitUKIE5X2ZvmV7UolKc0uFf-eGcebKlR0D3uwnY0348l8nhl_Q8i7tilsEDbkjYC9iWhqn6umbnMuDBhAaYy3ke3zu1yeiK-rapUcbkNKq9y_E-OL2vcOfeRHSKuCQT3GP57_yrFqFEZXUwmN2-QOUpdhSle9qicfC0axRNmkszIFV0cD2Cs8U8ZELmXDRX45s0eRth-szCkmRV5HnNcTJ_-JnkajtHhA7ic0SY9H8T8kt0L3iNwd60v-eUzWiw1CShrGHHEay94MFH2v1Oy2faRrpW4s7OApNCQCa2r7LtAhrH-mo0kdBXBLW7PBLHZ61hufLoudT8jJ4suPz8s8VVbIHcCzLchEMuYkt6ywysEWkmF0sJWNU6bxHDCJEwakxZwVXoGWAqo1ofK1aoOxvOVPyUEHE3lOqAfbZ1nlufGwk7PGOm4r2cInlKWVLiPl_vlql2jHsfrFmY7hb670KBMNMtFRJvoyI--na85H0o0bR39CsU0jkTA7NvQXa530T6tC2rZqi9IqLrhq4RuAFGDJCuO2lcnIWxD67DeWx980tuGpe16X7HeZkcP9mtBJ1Qd9tTAz8mbqBiXFyIvpQr8bx3DE5k1Gno1LaLoVOp0QJGZEzRbXbC7znm5zGonAAStXmMaUkQ_7dXg1r_8_sBc3_42X5B5DBYnsoYfkYHuxC68AeW3t66hefwE0bivJ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NISReEN9kDGQQbxCR2I7rPI6KqkKIJybtzbIdu6s0ErS2TPz3u3OSojBAog998Edj5c69n313vwN4E-vCBelCXks8m8h61uS6nsVcSIsGUFnbuMT2-UUtT-Wns-rsAPiYC5OC9hOlZfqbHqPD3m_Q0FAyGJe5UrWQ-dUtuE3U7aTVczXf36uQ50qW9ZAfUwj9h6kTG5So-tGynFMg5E2UeTNY8jePaTJEi_twb0CQ7KRf8wM4CO1DuNPXlPz5CFaLNcFIFvq4cJZK3WwY3bcyu9t2iaKV-b6YQ8OwYSCtZq5rA9uE1bchHallCGhZtGuKXGcXnW2GaanzMZwuPn6dL_OhmkLuEZJtUQ6Kc6-E44XTHo-NnDyCUdVe27oRiEO8tCgh7p1sNO5MRLI2VM1Mx2CdiOIJHLa4kGfAGrR3jleNsA2e3px1XrhKRfyEsnTKZ1CO79f4gWqcKl5cmOTyFtr0MjEoE5NkYq4yeLuf870n2vjn6A8ktv1IIslODd3lygxKY3ShXKxiUTotpNARvxE8IX6syFdb2Qxeo9Anv7E8-WyojTLtxazkP8oMjkedMMP23hji-CEPMxcZvNp348Ykb4ttQ7frxwjC43UGT3sV2j-KLpoIGGagJ8o1Wcu0p12fJ_JvxMcVhS5l8G7Uw1_r-vsLO_q_4c_hLqcNkxhEj-Fwe7kLLxB9bd3LtN2uAYTVKj8 priority: 102 providerName: Springer Nature |
Title | Finite element models with automatic computed tomography bone segmentation for failure load computation |
URI | https://link.springer.com/article/10.1038/s41598-024-66934-w https://www.ncbi.nlm.nih.gov/pubmed/39019937 https://www.proquest.com/docview/3082045823 https://www.proquest.com/docview/3082308009 https://hal.science/hal-04803712 https://pubmed.ncbi.nlm.nih.gov/PMC11255209 https://doaj.org/article/806bf5f01b83438f834554423502755a |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dixMxEB_uA8EX8dvVs0TxTVe7STabfRDplStH0UPUQt9CspvtFepW--F5_70z2W2l3in2oYUkuw2ZGeaXTOY3AC-qvOu8dD7OJe5NZJ6Vsc6zKhbSogNU1pYusH2eqdORHI7T8R5syh21C7i8dmtH9aRGi9nrn98v36HBv21SxvWbJTohShTjMlYqFzK-2IdD9EwZGeqHFu43XN88l6HWB5GwxwgmeJtHc_1rdnxVoPRHD3ROFyavotGrlyr_iKwGhzW4DbdapMl6jWrcgT1f34UbTe3Jy3swGUwJbjLf3B9noSTOktG5LLPr1TxQubKiKfpQMmxoya2Zm9eeLf3ka5u2VDMEvqyyU7rhzmZzW7aPhc77MBqcfOmfxm3VhbhA6LZCeSnOCyUc7zpd4PaSU-SwUnmhbV4KxCuFtChJXjhZarRgRLzWp2WmK2-dqMQDOKhxIo-AlegXHU9LYUvc5TnrCuFSVeHHJ4lTRQTJZn1N0VKSU2WMmQmhcaFNIxODMjFBJuYigpfbZ741hBz_HH1MYtuOJDLt0DBfTExrm0Z3lavSqps4LaTQFX4jyEKcmVJMN7URPEeh77zjtPfeUBtl5Iss4T-SCI42OmE2WmyIC4gi0VxE8GzbjQZMURlb-_m6GSMIt-cRPGxUaPtXdCBFADICvaNcO3PZ7amn54EkHHF0SlecIni10cPf8_r7gj3-j3k-gZucrCTQix7BwWqx9k8Rmq1cB_azcdaBw15v-HmIv8cnZx8_YWtf9TvhuKMTLPIXULQ5Ag |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTgheEP_JGGAQPEG0xnZS5wGhDVZ1rFQIbdLejJ04XaUtGWtLtS_FZ-TOSTqVib2tD32wnfTqO_t-5zvfAbwt0q510rowlWibyLSXhyrtFaGQBhVgYkxufbbPUTI4lF-P4qM1-NPehaGwynZP9Bt1XmV0Rr5FaVXIqcfFp7NfIVWNIu9qW0KjFot9d7FAk236ce8L8vcd5_3dg8-DsKkqEGYITWZIT8J5lgjLu1ZlaD5x8owVSZopk-YC9XEmDVLKMytzhRKKiM64OO-pwhkrCoHvvQXrUqAp04H1nd3R9x_LUx3ym8kobW7ndIXamqKGpFtsXIZJkgoZLlY0oC8UgHrtmMIwr2Lcq6Ga__hrvRrs34d7DX5l27XAPYA1Vz6E23VFy4tHMO5PCMQyV0elM19oZ8rotJeZ-azyCWJZVpeSyBk2NCmzma1Kx6ZufNpchioZwmlWmAnFzbOTyuTNY77zMRzeyKw_gU6JhDwDlqO2tTzOhcnRdrTGZsLGSYEfF0U2yQKI2vnVWZPonOptnGjvcBdK1zzRyBPteaIXAbxfPnNWp_m4dvQOsW05klJ0-4bqfKybFa9VN7FFXHQjq4QUqsBvhG6IXmPyFMcmgDfI9JV3DLaHmtronr_oRfx3FMBmKxO62Vym-nIpBPB62Y3bAvl6TOmqeT1GkDWQBvC0FqHlT9ExF8HSANSKcK3QstpTTo596nFE5zEFTgXwoZXDS7r-P2Eb1_-NV3BncPBtqId7o_3ncJfTYvG5SzehMzufuxeI-2b2ZbPYGPy86fX9F5VQaXg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRAviM8RGGAQPEHUxM6H84DQYFQdmyYemNQ3Y8dOV2kkY22p9q_x13HnJJ3KxN7Whz7YTur67ny_853vAN5URWRcYlxYJGibJEVuQ1nkVSgSjQow09oan-3zMBsdJV_H6XgD_vR3YSisst8T_UZtm5LOyAeUVoWcelwMqi4s4tvu8OPpr5AqSJGntS-n0bLIvjtfovk2-7C3i7R-y_nwy_fPo7CrMBCWCFPmOLeM8zIThkdGlmhKcfKSVVlRSl1Ygbq5TDTOmpcmsRK5FdGddqnNZeW0EZXA996Am7lIY5KxfJyvznfIg5bERXdPJxJyMENdSffZeBJmWSGScLmmC33JANRwxxSQeRntXg7a_Mdz6xXi8B7c7ZAs22lZ7z5suPoB3GprW54_hMlwSnCWuTY-nfmSOzNG575ML-aNTxXLyraohGXY0CXPZqapHZu5yc_uWlTNEFizSk8pgp6dNNp2j_nOR3B0LWv-GDZrnMgTYBb1ruGpFdqiFWm0KYVJswo_Lo5NVgYQ9-uryi7lOVXeOFHe9S6kammikCbK00QtA3i3eua0Tfhx5ehPRLbVSErW7Ruas4nqZF_JKDNVWkWxkSIRssJvBHGIY1PyGac6gNdI9LV3jHYOFLXRjX-Rx_x3HMB2zxOq22Zm6kIoAni16sYNgrw-unbNoh0jyC4oAthqWWj1U3TgRQA1ALnGXGtzWe-pp8c-CTni9JRCqAJ43_Phxbz-v2BPr_4bL-E2SrU62DvcfwZ3OMmKT2K6DZvzs4V7jgBwbl54SWPw47pF-y9n92xI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+element+models+with+automatic+computed+tomography+bone+segmentation+for+failure+load+computation&rft.jtitle=Scientific+reports&rft.au=Saillard%2C+Emile&rft.au=Gardegaront%2C+Marc&rft.au=Levillain%2C+Aur%C3%A9lie&rft.au=Bermond%2C+Fran%C3%A7ois&rft.date=2024-07-17&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=16576&rft_id=info:doi/10.1038%2Fs41598-024-66934-w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |