A comparison of fMRI and behavioral models for predicting inter-temporal choices
In an inter-temporal choice (IteCh) task, subjects are offered a smaller amount of money immediately or a larger amount at a later time point. Here, we are using trial-by-trial fMRI data from 363 recording sessions and machine learning in an attempt to build a classifier that would ideally outperfor...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 211; p. 116634 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2020
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2020.116634 |
Cover
Loading…
Abstract | In an inter-temporal choice (IteCh) task, subjects are offered a smaller amount of money immediately or a larger amount at a later time point. Here, we are using trial-by-trial fMRI data from 363 recording sessions and machine learning in an attempt to build a classifier that would ideally outperform established behavioral model given that it has access to brain activity specific to a single trial. Such methods could allow for future investigations of state-like factors that influence IteCh choices.
To investigate this, coefficients of a GLM with one regressor per trial were used as features for a support vector machine (SVM) in combination with a searchlight approach for feature selection and cross-validation. We then compare the results to the performance of four different behavioral models.
We found that the behavioral models reached mean accuracies of 90% and above, while the fMRI model only reached 54.84% at the best location in the brain with a spatial distribution similar to the well-known value-tracking network. This low, though significant, accuracy is in line with simulations showing that classifying based on signals with realistic correlations with subjective value produces comparable, low accuracies. These results emphasize the limitations of fMRI recordings from single events to predict human choices, especially when compared to conventional behavioral models. Better performance may be obtained with paradigms that allow the construction of miniblocks to improve the available signal-to-noise ratio.
•Behavioral models outperform fMRI models for prediction (90% accuracy vs 54%).•Significant prediction performance based on single trials on 6s of fMRI data.•Large portions of the brain can be used to predict IteCh-Choices. |
---|---|
AbstractList | In an inter-temporal choice (IteCh) task, subjects are offered a smaller amount of money immediately or a larger amount at a later time point. Here, we are using trial-by-trial fMRI data from 363 recording sessions and machine learning in an attempt to build a classifier that would ideally outperform established behavioral model given that it has access to brain activity specific to a single trial. Such methods could allow for future investigations of state-like factors that influence IteCh choices.To investigate this, coefficients of a GLM with one regressor per trial were used as features for a support vector machine (SVM) in combination with a searchlight approach for feature selection and cross-validation. We then compare the results to the performance of four different behavioral models.We found that the behavioral models reached mean accuracies of 90% and above, while the fMRI model only reached 54.84% at the best location in the brain with a spatial distribution similar to the well-known value-tracking network. This low, though significant, accuracy is in line with simulations showing that classifying based on signals with realistic correlations with subjective value produces comparable, low accuracies. These results emphasize the limitations of fMRI recordings from single events to predict human choices, especially when compared to conventional behavioral models. Better performance may be obtained with paradigms that allow the construction of miniblocks to improve the available signal-to-noise ratio. In an inter-temporal choice (IteCh) task, subjects are offered a smaller amount of money immediately or a larger amount at a later time point. Here, we are using trial-by-trial fMRI data from 363 recording sessions and machine learning in an attempt to build a classifier that would ideally outperform established behavioral model given that it has access to brain activity specific to a single trial. Such methods could allow for future investigations of state-like factors that influence IteCh choices. To investigate this, coefficients of a GLM with one regressor per trial were used as features for a support vector machine (SVM) in combination with a searchlight approach for feature selection and cross-validation. We then compare the results to the performance of four different behavioral models. We found that the behavioral models reached mean accuracies of 90% and above, while the fMRI model only reached 54.84% at the best location in the brain with a spatial distribution similar to the well-known value-tracking network. This low, though significant, accuracy is in line with simulations showing that classifying based on signals with realistic correlations with subjective value produces comparable, low accuracies. These results emphasize the limitations of fMRI recordings from single events to predict human choices, especially when compared to conventional behavioral models. Better performance may be obtained with paradigms that allow the construction of miniblocks to improve the available signal-to-noise ratio.In an inter-temporal choice (IteCh) task, subjects are offered a smaller amount of money immediately or a larger amount at a later time point. Here, we are using trial-by-trial fMRI data from 363 recording sessions and machine learning in an attempt to build a classifier that would ideally outperform established behavioral model given that it has access to brain activity specific to a single trial. Such methods could allow for future investigations of state-like factors that influence IteCh choices. To investigate this, coefficients of a GLM with one regressor per trial were used as features for a support vector machine (SVM) in combination with a searchlight approach for feature selection and cross-validation. We then compare the results to the performance of four different behavioral models. We found that the behavioral models reached mean accuracies of 90% and above, while the fMRI model only reached 54.84% at the best location in the brain with a spatial distribution similar to the well-known value-tracking network. This low, though significant, accuracy is in line with simulations showing that classifying based on signals with realistic correlations with subjective value produces comparable, low accuracies. These results emphasize the limitations of fMRI recordings from single events to predict human choices, especially when compared to conventional behavioral models. Better performance may be obtained with paradigms that allow the construction of miniblocks to improve the available signal-to-noise ratio. In an inter-temporal choice (IteCh) task, subjects are offered a smaller amount of money immediately or a larger amount at a later time point. Here, we are using trial-by-trial fMRI data from 363 recording sessions and machine learning in an attempt to build a classifier that would ideally outperform established behavioral model given that it has access to brain activity specific to a single trial. Such methods could allow for future investigations of state-like factors that influence IteCh choices. To investigate this, coefficients of a GLM with one regressor per trial were used as features for a support vector machine (SVM) in combination with a searchlight approach for feature selection and cross-validation. We then compare the results to the performance of four different behavioral models. We found that the behavioral models reached mean accuracies of 90% and above, while the fMRI model only reached 54.84% at the best location in the brain with a spatial distribution similar to the well-known value-tracking network. This low, though significant, accuracy is in line with simulations showing that classifying based on signals with realistic correlations with subjective value produces comparable, low accuracies. These results emphasize the limitations of fMRI recordings from single events to predict human choices, especially when compared to conventional behavioral models. Better performance may be obtained with paradigms that allow the construction of miniblocks to improve the available signal-to-noise ratio. •Behavioral models outperform fMRI models for prediction (90% accuracy vs 54%).•Significant prediction performance based on single trials on 6s of fMRI data.•Large portions of the brain can be used to predict IteCh-Choices. |
ArticleNumber | 116634 |
Author | Mohr, Holger Neukam, Philipp T. Smolka, Michael N. Marxen, Michael Fröhner, Juliane H. Knorr, Felix G. |
Author_xml | – sequence: 1 givenname: Felix G. surname: Knorr fullname: Knorr, Felix G. organization: Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Germany – sequence: 2 givenname: Philipp T. surname: Neukam fullname: Neukam, Philipp T. organization: Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Germany – sequence: 3 givenname: Juliane H. surname: Fröhner fullname: Fröhner, Juliane H. organization: Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Germany – sequence: 4 givenname: Holger surname: Mohr fullname: Mohr, Holger organization: Department of General Psychology, Technische Universität Dresden, Germany – sequence: 5 givenname: Michael N. surname: Smolka fullname: Smolka, Michael N. organization: Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Germany – sequence: 6 givenname: Michael surname: Marxen fullname: Marxen, Michael email: michael.marxen@tu-dresden.de organization: Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32081783$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV1rFDEUhoNUbLv6F2TAG29mzedkciO2xY-FiiJ6HTLJyTbrTLIms4X-e7PdWmGvepVweM5D8r7n6CSmCAg1BC8JJt27zTLCLqcwmTUsKaZ1TLqO8WfojGAlWiUkPdnfBWt7QtQpOi9lgzFWhPcv0CmjuCeyZ2fo-0Vj07Q1OZQUm-Qb__XHqjHRNQPcmNuQshmbKTkYS-NTbrYZXLBziOsmxBlyO8O0vYfsTQoWykv03JuxwKuHc4F-ffr48-pLe_3t8-rq4rq1Qoq55VJ4qZx1AKQTWNqeeioHZ9jApDW0U8IPvFMUWy-dE4wIRQbwnWSsB2nZAq0OXpfMRm9zzSLf6WSCvh-kvNYmz8GOoKH3znI2cGWB9z3psbFcgFfKcSY5r663B9c2pz87KLOeQrEwjiZC2hVNWScoIVLQir45Qjdpl2P9qaacSMwJq6Ev0OsHajdM4B6f9y_3CvQHwOZUSgb_iBCs9xXrjf5fsd5XrA8V19X3R6s2zGYOKc7ZhPEpgsuDoHYKtwGyLjZAtLXYDHau-YWnSD4cSewYYrBm_A13T1P8BcCY3Vw |
CitedBy_id | crossref_primary_10_3390_brainsci12111488 crossref_primary_10_2139_ssrn_4196718 crossref_primary_10_3389_fnins_2022_1077735 crossref_primary_10_1016_j_neuroscience_2020_11_026 crossref_primary_10_1017_S0033291720003864 crossref_primary_10_3389_fpsyt_2022_846119 crossref_primary_10_1002_brb3_3367 crossref_primary_10_1007_s00429_023_02720_0 |
Cites_doi | 10.1007/PL00005490 10.1016/j.neuroimage.2014.10.025 10.1093/cercor/bhn098 10.1002/hbm.20326 10.1523/JNEUROSCI.1126-09.2009 10.1523/JNEUROSCI.3656-16.2017 10.1038/nn2007 10.1038/nn.2112 10.1016/j.neuroimage.2016.02.033 10.1016/j.biopsych.2009.10.029 10.1901/jeab.2011.96-363 10.1177/0956797616664342 10.1016/j.tics.2011.03.002 10.1016/j.neuropsychologia.2009.06.019 10.1007/s00429-013-0641-4 10.1016/j.neuroimage.2010.08.007 10.1007/BF03395339 10.1016/j.cub.2006.11.072 10.1038/nn1444 10.1371/journal.pone.0047225 10.1016/j.neuroimage.2011.02.006 10.1016/j.tics.2006.07.005 10.1016/j.neuroimage.2019.03.053 10.1006/obhd.1995.1086 10.1073/pnas.0600244103 10.1162/jocn_a_00698 10.1016/j.brainres.2008.07.105 10.1016/S0376-6357(03)00141-4 10.1023/B:MACH.0000035475.85309.1b 10.1016/j.addbeh.2005.09.005 10.1016/j.brainres.2012.08.034 10.1109/TAMD.2015.2434733 10.1001/archgenpsychiatry.2011.1552 10.1016/j.neuroimage.2018.05.025 10.1523/JNEUROSCI.0977-15.2015 10.1126/science.1100907 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. 2020. The Authors |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2020. The Authors |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 DOA |
DOI | 10.1016/j.neuroimage.2020.116634 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
ExternalDocumentID | oai_doaj_org_article_e8fdc43b49ce488180ac45ef99d43744 32081783 10_1016_j_neuroimage_2020_116634 S105381192030121X |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- RIG SEW WUQ XPP ZMT 0SF CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c575t-475f79dcdee16507c82f27bda3b37ca2695fb46920cf7dd531591bef67338e7c3 |
IEDL.DBID | DOA |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:06:59 EDT 2025 Thu Sep 04 15:44:45 EDT 2025 Wed Aug 13 04:25:39 EDT 2025 Wed Feb 19 02:29:22 EST 2025 Tue Jul 01 03:02:12 EDT 2025 Thu Apr 24 23:10:25 EDT 2025 Fri Feb 23 02:48:11 EST 2024 Tue Aug 26 20:02:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Behavioral modeling fMRI SVM Intertemporal choice MVPA Prediction |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-475f79dcdee16507c82f27bda3b37ca2695fb46920cf7dd531591bef67338e7c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://doaj.org/article/e8fdc43b49ce488180ac45ef99d43744 |
PMID | 32081783 |
PQID | 2417041305 |
PQPubID | 2031077 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e8fdc43b49ce488180ac45ef99d43744 proquest_miscellaneous_2365211752 proquest_journals_2417041305 pubmed_primary_32081783 crossref_primary_10_1016_j_neuroimage_2020_116634 crossref_citationtrail_10_1016_j_neuroimage_2020_116634 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2020_116634 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2020_116634 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 2020-05-00 20200501 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Peters, Büchel (bib27) 2011; 15 Gläscher, Hampton, O’Doherty (bib8) 2009; 19 Norman, Polyn, Detre, Haxby (bib25) 2006; 10 Liu, Guo, Fouche, Wang, Wang, Ding, Zeng, Qiu, Gong, Zhang, Chen (bib18) 2015; 220 Kamitani, Tong (bib13) 2005; 8 Radu, Yi, Bickel, Gross, McClure (bib31) 2011; 96 Loose, Wisniewski, Rusconi, Goschke, Haynes (bib19) 2017; 37 Wang, Chattaraman, Kim, Deshpande (bib39) 2015; 7 Bickel, Odum, Madden (bib1) 1999; 146 Holt, Green, Myerson (bib11) 2003; 64 Mohr, Wolfensteller, Frimmel, Ruge (bib24) 2015; 104 Papageorgiou, Curtis, McHenry, LaConte (bib26) 2009 Romer, Betancourt, Giannetta, Brodsky, Farah, Hurt (bib35) 2009; 47 Gluth, Meiran (bib7) 2019 Mitchell, Hutchinson, Niculescu, Pereira, Wang, Just, Newman (bib23) 2004; 57 Weber, Huettel (bib40) 2008; 1234 Bühler, Vollstädt-Klein, Kobiella, Budde, Reed, Braus, Büchel, Smolka (bib2) 2010; 67 Kirby, Maraković (bib14) 1995; 64 McClure, Laibson, Loewenstein, Cohen (bib21) 2004; 306 Fröhner, Teckentrup, Smolka, Kroemer (bib5) 2019; 195 Simpson, Vuchinich (bib36) 2000; 50 Peters, Miedl, Büchel (bib28) 2012; 7 Reverberi, Kuhlen, Seyed-Allaei, Greulich, Costa, Abutalebi, Haynes (bib32) 2018; 177 Kriegeskorte, Goebel, Bandettini (bib15) 2006; 103 Chen, Guo, Zhang, Feng (bib3) 2018 Gardumi, Ivanov, Hausfeld, Valente, Formisano, Uludaǧ (bib6) 2016; 132 Pine, Seymour, Roiser, Bossaerts, Friston, Curran, Dolan (bib29) 2009; 29 Heil, Johnson, Higgins, Bickel (bib10) 2006; 31 LaConte, Peltier, Hu (bib16) 2007; 28 Correia, Jansma, Bonte (bib4) 2015; 35 Mazur (bib20) 1987; vol. 5 Wulff, van den Bos (bib41) 2017; 29 Ripke, Hübner, Mennigen, Müller, Li, Smolka (bib33) 2015; 27 Pooseh, Bernhardt, Guevara, Huys, Smolka (bib30) 2017 Ripke, Hübner, Mennigen, Müller, Rodehacke, Schmidt, Jacob, Smolka (bib34) 2012; 1478 Haynes, Sakai, Rees, Gilbert, Frith, Passingham (bib9) 2007; 17 Kable, Glimcher (bib12) 2007; 10 Lee, Janata, Frost, Hanke, Granger (bib17) 2011; 57 Soon, Brass, Heinze, Haynes (bib38) 2008; 11 Miedl (bib22) 2012; 69 Sitaram, Lee, Ruiz, Rana, Veit, Birbaumer (bib37) 2011; 56 Romer (10.1016/j.neuroimage.2020.116634_bib35) 2009; 47 Ripke (10.1016/j.neuroimage.2020.116634_bib34) 2012; 1478 Kamitani (10.1016/j.neuroimage.2020.116634_bib13) 2005; 8 Soon (10.1016/j.neuroimage.2020.116634_bib38) 2008; 11 Gardumi (10.1016/j.neuroimage.2020.116634_bib6) 2016; 132 Mazur (10.1016/j.neuroimage.2020.116634_bib20) 1987; vol. 5 Kable (10.1016/j.neuroimage.2020.116634_bib12) 2007; 10 Mitchell (10.1016/j.neuroimage.2020.116634_bib23) 2004; 57 Mohr (10.1016/j.neuroimage.2020.116634_bib24) 2015; 104 Wang (10.1016/j.neuroimage.2020.116634_bib39) 2015; 7 Peters (10.1016/j.neuroimage.2020.116634_bib28) 2012; 7 Pine (10.1016/j.neuroimage.2020.116634_bib29) 2009; 29 Ripke (10.1016/j.neuroimage.2020.116634_bib33) 2015; 27 Chen (10.1016/j.neuroimage.2020.116634_bib3) 2018 Bühler (10.1016/j.neuroimage.2020.116634_bib2) 2010; 67 Radu (10.1016/j.neuroimage.2020.116634_bib31) 2011; 96 Holt (10.1016/j.neuroimage.2020.116634_bib11) 2003; 64 Miedl (10.1016/j.neuroimage.2020.116634_bib22) 2012; 69 Weber (10.1016/j.neuroimage.2020.116634_bib40) 2008; 1234 Haynes (10.1016/j.neuroimage.2020.116634_bib9) 2007; 17 Kirby (10.1016/j.neuroimage.2020.116634_bib14) 1995; 64 Sitaram (10.1016/j.neuroimage.2020.116634_bib37) 2011; 56 Norman (10.1016/j.neuroimage.2020.116634_bib25) 2006; 10 Gluth (10.1016/j.neuroimage.2020.116634_bib7) 2019 Heil (10.1016/j.neuroimage.2020.116634_bib10) 2006; 31 McClure (10.1016/j.neuroimage.2020.116634_bib21) 2004; 306 Loose (10.1016/j.neuroimage.2020.116634_bib19) 2017; 37 Correia (10.1016/j.neuroimage.2020.116634_bib4) 2015; 35 Gläscher (10.1016/j.neuroimage.2020.116634_bib8) 2009; 19 Fröhner (10.1016/j.neuroimage.2020.116634_bib5) 2019; 195 Papageorgiou (10.1016/j.neuroimage.2020.116634_bib26) 2009 Pooseh (10.1016/j.neuroimage.2020.116634_bib30) 2017 Wulff (10.1016/j.neuroimage.2020.116634_bib41) 2017; 29 Kriegeskorte (10.1016/j.neuroimage.2020.116634_bib15) 2006; 103 Bickel (10.1016/j.neuroimage.2020.116634_bib1) 1999; 146 LaConte (10.1016/j.neuroimage.2020.116634_bib16) 2007; 28 Peters (10.1016/j.neuroimage.2020.116634_bib27) 2011; 15 Reverberi (10.1016/j.neuroimage.2020.116634_bib32) 2018; 177 Liu (10.1016/j.neuroimage.2020.116634_bib18) 2015; 220 Lee (10.1016/j.neuroimage.2020.116634_bib17) 2011; 57 Simpson (10.1016/j.neuroimage.2020.116634_bib36) 2000; 50 |
References_xml | – volume: 17 start-page: 323 year: 2007 end-page: 328 ident: bib9 article-title: Reading hidden intentions in the human brain publication-title: Curr. Biol. – volume: 177 start-page: 108 year: 2018 end-page: 116 ident: bib32 article-title: The neural basis of free language choice in bilingual speakers: disentangling language choice and language execution publication-title: Neuroimage – volume: 35 start-page: 15015 year: 2015 end-page: 15025 ident: bib4 article-title: Decoding articulatory features from fMRI responses in dorsal speech regions publication-title: J. Neurosci. – volume: 8 start-page: 679 year: 2005 end-page: 685 ident: bib13 article-title: Decoding the visual and subjective contents of the human brain publication-title: Nat. Neurosci. – volume: 220 start-page: 101 year: 2015 end-page: 115 ident: bib18 article-title: Multivariate classification of social anxiety disorder using whole brain functional connectivity publication-title: Brain Struct. Funct. – volume: 306 start-page: 503 year: 2004 end-page: 507 ident: bib21 article-title: Separate neural Systems value immediate and delayed monetary rewards publication-title: Science – volume: 7 start-page: 248 year: 2015 end-page: 255 ident: bib39 article-title: Predicting purchase decisions based on spatio-temporal functional MRI features using machine learning publication-title: IEEE Trans. Aut. Ment. Dev. – volume: 15 start-page: 227 year: 2011 end-page: 239 ident: bib27 article-title: The neural mechanisms of inter-temporal decision-making: understanding variability publication-title: Trends Cognit. Sci. – volume: 132 start-page: 32 year: 2016 end-page: 42 ident: bib6 article-title: The effect of spatial resolution on decoding accuracy in fMRI multivariate pattern analysis publication-title: Neuroimage – volume: 64 start-page: 22 year: 1995 end-page: 30 ident: bib14 article-title: Modeling myopic decisions: evidence for hyperbolic delay-discounting within subjects and amounts publication-title: Organ. Behav. Hum. Decis. Process. – volume: 50 start-page: 3 year: 2000 end-page: 16 ident: bib36 article-title: Reliability of a measure of temporal discounting publication-title: Psychol. Rec. – start-page: 1 year: 2017 end-page: 14 ident: bib30 article-title: Value-based decision-making battery: a Bayesian adaptive approach to assess impulsive and risky behavior publication-title: Behav. Res. Methods – volume: 27 start-page: 387 year: 2015 end-page: 399 ident: bib33 article-title: Common neural correlates of intertemporal choices and intelligence in adolescents publication-title: J. Cognit. Neurosci. – volume: 56 start-page: 753 year: 2011 end-page: 765 ident: bib37 article-title: Real-time support vector classification and feedback of multiple emotional brain states publication-title: Neuroimage – volume: 1234 start-page: 104 year: 2008 end-page: 115 ident: bib40 article-title: The neural substrates of probabilistic and intertemporal decision making publication-title: Brain Res. – volume: 57 start-page: 293 year: 2011 end-page: 300 ident: bib17 article-title: Investigation of melodic contour processing in the brain using multivariate pattern-based fMRI publication-title: Neuroimage – volume: 67 start-page: 745 year: 2010 end-page: 752 ident: bib2 article-title: Nicotine dependence is characterized by disordered reward processing in a network driving motivation publication-title: Biol. Psychiatr. – volume: vol. 5 start-page: 55 year: 1987 end-page: 73 ident: bib20 article-title: An adjusting procedure for studying delayed reinforcement publication-title: The Effect of Delay and of Intervening Events on Reinforcement Value, Quantitative Analyses of Behavior – volume: 69 start-page: 177 year: 2012 ident: bib22 article-title: Altered neural reward representations in pathological gamblers revealed by delay and probability discounting publication-title: Arch. Gen. Psychiatr. – volume: 103 start-page: 3863 year: 2006 end-page: 3868 ident: bib15 article-title: Information-based functional brain mapping publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 57 start-page: 145 year: 2004 end-page: 175 ident: bib23 article-title: Learning to decode cognitive states from brain images publication-title: Mach. Learn. – volume: 96 start-page: 363 year: 2011 end-page: 385 ident: bib31 article-title: A mechanism for reducing delay discounting by altering temporal attention publication-title: J. Exp. Anal. Behav. – start-page: 39 year: 2019 ident: bib7 article-title: Leave-One-Trial-Out, LOTO, a General Approach to Link Single-Trial Parameters of Cognitive Models to Neural Data – volume: 37 start-page: 8033 year: 2017 end-page: 8042 ident: bib19 article-title: Switch-independent task representations in frontal and parietal cortex publication-title: J. Neurosci. – year: 2018 ident: bib3 article-title: Pattern Classification Differentiates Decision of Intertemporal Choices Using Multi-Voxel Pattern Analysis. Cortex – start-page: 5377 year: 2009 end-page: 5380 ident: bib26 article-title: Neurofeedback of two motor functions using supervised learning-based real-time functional magnetic resonance imaging publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 10 start-page: 1625 year: 2007 end-page: 1633 ident: bib12 article-title: The neural correlates of subjective value during intertemporal choice publication-title: Nat. Neurosci. – volume: 10 start-page: 424 year: 2006 end-page: 430 ident: bib25 article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data publication-title: Trends Cognit. Sci. – volume: 146 start-page: 447 year: 1999 end-page: 454 ident: bib1 article-title: Impulsivity and cigarette smoking: delay discounting in current, never, and ex-smokers publication-title: Psychopharmacology – volume: 11 start-page: 543 year: 2008 end-page: 545 ident: bib38 article-title: Unconscious determinants of free decisions in the human brain publication-title: Nat. Neurosci. – volume: 28 start-page: 1033 year: 2007 end-page: 1044 ident: bib16 article-title: Real-time fMRI using brain-state classification publication-title: Hum. Brain Mapp. – volume: 195 start-page: 174 year: 2019 end-page: 189 ident: bib5 article-title: Addressing the reliability fallacy in fMRI: similar group effects may arise from unreliable individual effects publication-title: Neuroimage – volume: 31 start-page: 1290 year: 2006 end-page: 1294 ident: bib10 article-title: Delay discounting in currently using and currently abstinent cocaine-dependent outpatients and non-drug-using matched controls publication-title: Addict. Behav. – volume: 29 year: 2017 ident: bib41 article-title: Modeling choices in delay discounting , modeling choices in delay discounting publication-title: Psychol. Sci. – volume: 1478 start-page: 36 year: 2012 end-page: 47 ident: bib34 article-title: Reward processing and intertemporal decision making in adults and adolescents: the role of impulsivity and decision consistency publication-title: Brain Res. – volume: 104 start-page: 163 year: 2015 end-page: 176 ident: bib24 article-title: Sparse regularization techniques provide novel insights into outcome integration processes publication-title: Neuroimage – volume: 7 year: 2012 ident: bib28 article-title: Formal comparison of dual-parameter temporal discounting models in controls and pathological gamblers publication-title: PloS One – volume: 64 start-page: 355 year: 2003 end-page: 367 ident: bib11 article-title: Is discounting impulsive?: evidence from temporal and probability discounting in gambling and non-gambling college students publication-title: Behav. Process. – volume: 29 start-page: 9575 year: 2009 end-page: 9581 ident: bib29 article-title: Encoding of marginal utility across time in the human brain publication-title: J. Neurosci. : Off. J. Soc. Neurosci. – volume: 19 start-page: 483 year: 2009 end-page: 495 ident: bib8 article-title: Determining a role for ventromedial prefrontal cortex in encoding action-based value signals during reward-related decision making publication-title: Cerebr. Cortex – volume: 47 start-page: 2916 year: 2009 end-page: 2926 ident: bib35 article-title: Executive cognitive functions and impulsivity as correlates of risk taking and problem behavior in preadolescents publication-title: Neuropsychologia – volume: 146 start-page: 447 issue: 4 year: 1999 ident: 10.1016/j.neuroimage.2020.116634_bib1 article-title: Impulsivity and cigarette smoking: delay discounting in current, never, and ex-smokers publication-title: Psychopharmacology doi: 10.1007/PL00005490 – volume: vol. 5 start-page: 55 year: 1987 ident: 10.1016/j.neuroimage.2020.116634_bib20 article-title: An adjusting procedure for studying delayed reinforcement – volume: 104 start-page: 163 year: 2015 ident: 10.1016/j.neuroimage.2020.116634_bib24 article-title: Sparse regularization techniques provide novel insights into outcome integration processes publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.025 – volume: 19 start-page: 483 issue: 2 year: 2009 ident: 10.1016/j.neuroimage.2020.116634_bib8 article-title: Determining a role for ventromedial prefrontal cortex in encoding action-based value signals during reward-related decision making publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhn098 – volume: 28 start-page: 1033 issue: 10 year: 2007 ident: 10.1016/j.neuroimage.2020.116634_bib16 article-title: Real-time fMRI using brain-state classification publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20326 – volume: 29 start-page: 9575 issue: 30 year: 2009 ident: 10.1016/j.neuroimage.2020.116634_bib29 article-title: Encoding of marginal utility across time in the human brain publication-title: J. Neurosci. : Off. J. Soc. Neurosci. doi: 10.1523/JNEUROSCI.1126-09.2009 – volume: 37 start-page: 8033 issue: 33 year: 2017 ident: 10.1016/j.neuroimage.2020.116634_bib19 article-title: Switch-independent task representations in frontal and parietal cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3656-16.2017 – volume: 10 start-page: 1625 issue: 12 year: 2007 ident: 10.1016/j.neuroimage.2020.116634_bib12 article-title: The neural correlates of subjective value during intertemporal choice publication-title: Nat. Neurosci. doi: 10.1038/nn2007 – volume: 11 start-page: 543 issue: 5 year: 2008 ident: 10.1016/j.neuroimage.2020.116634_bib38 article-title: Unconscious determinants of free decisions in the human brain publication-title: Nat. Neurosci. doi: 10.1038/nn.2112 – volume: 132 start-page: 32 year: 2016 ident: 10.1016/j.neuroimage.2020.116634_bib6 article-title: The effect of spatial resolution on decoding accuracy in fMRI multivariate pattern analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.02.033 – volume: 67 start-page: 745 issue: 8 year: 2010 ident: 10.1016/j.neuroimage.2020.116634_bib2 article-title: Nicotine dependence is characterized by disordered reward processing in a network driving motivation publication-title: Biol. Psychiatr. doi: 10.1016/j.biopsych.2009.10.029 – year: 2018 ident: 10.1016/j.neuroimage.2020.116634_bib3 – volume: 96 start-page: 363 issue: 3 year: 2011 ident: 10.1016/j.neuroimage.2020.116634_bib31 article-title: A mechanism for reducing delay discounting by altering temporal attention publication-title: J. Exp. Anal. Behav. doi: 10.1901/jeab.2011.96-363 – volume: 29 issue: 11 year: 2017 ident: 10.1016/j.neuroimage.2020.116634_bib41 article-title: Modeling choices in delay discounting , modeling choices in delay discounting publication-title: Psychol. Sci. doi: 10.1177/0956797616664342 – volume: 15 start-page: 227 issue: 5 year: 2011 ident: 10.1016/j.neuroimage.2020.116634_bib27 article-title: The neural mechanisms of inter-temporal decision-making: understanding variability publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2011.03.002 – volume: 47 start-page: 2916 issue: 13 year: 2009 ident: 10.1016/j.neuroimage.2020.116634_bib35 article-title: Executive cognitive functions and impulsivity as correlates of risk taking and problem behavior in preadolescents publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2009.06.019 – volume: 220 start-page: 101 issue: 1 year: 2015 ident: 10.1016/j.neuroimage.2020.116634_bib18 article-title: Multivariate classification of social anxiety disorder using whole brain functional connectivity publication-title: Brain Struct. Funct. doi: 10.1007/s00429-013-0641-4 – volume: 56 start-page: 753 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2020.116634_bib37 article-title: Real-time support vector classification and feedback of multiple emotional brain states publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.007 – volume: 50 start-page: 3 issue: 1 year: 2000 ident: 10.1016/j.neuroimage.2020.116634_bib36 article-title: Reliability of a measure of temporal discounting publication-title: Psychol. Rec. doi: 10.1007/BF03395339 – volume: 17 start-page: 323 issue: 4 year: 2007 ident: 10.1016/j.neuroimage.2020.116634_bib9 article-title: Reading hidden intentions in the human brain publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.11.072 – volume: 8 start-page: 679 issue: 5 year: 2005 ident: 10.1016/j.neuroimage.2020.116634_bib13 article-title: Decoding the visual and subjective contents of the human brain publication-title: Nat. Neurosci. doi: 10.1038/nn1444 – volume: 7 issue: 11 year: 2012 ident: 10.1016/j.neuroimage.2020.116634_bib28 article-title: Formal comparison of dual-parameter temporal discounting models in controls and pathological gamblers publication-title: PloS One doi: 10.1371/journal.pone.0047225 – volume: 57 start-page: 293 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2020.116634_bib17 article-title: Investigation of melodic contour processing in the brain using multivariate pattern-based fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.02.006 – start-page: 1 year: 2017 ident: 10.1016/j.neuroimage.2020.116634_bib30 article-title: Value-based decision-making battery: a Bayesian adaptive approach to assess impulsive and risky behavior publication-title: Behav. Res. Methods – volume: 10 start-page: 424 issue: 9 year: 2006 ident: 10.1016/j.neuroimage.2020.116634_bib25 article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2006.07.005 – volume: 195 start-page: 174 year: 2019 ident: 10.1016/j.neuroimage.2020.116634_bib5 article-title: Addressing the reliability fallacy in fMRI: similar group effects may arise from unreliable individual effects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.03.053 – volume: 64 start-page: 22 issue: 1 year: 1995 ident: 10.1016/j.neuroimage.2020.116634_bib14 article-title: Modeling myopic decisions: evidence for hyperbolic delay-discounting within subjects and amounts publication-title: Organ. Behav. Hum. Decis. Process. doi: 10.1006/obhd.1995.1086 – volume: 103 start-page: 3863 issue: 10 year: 2006 ident: 10.1016/j.neuroimage.2020.116634_bib15 article-title: Information-based functional brain mapping publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0600244103 – volume: 27 start-page: 387 issue: 2 year: 2015 ident: 10.1016/j.neuroimage.2020.116634_bib33 article-title: Common neural correlates of intertemporal choices and intelligence in adolescents publication-title: J. Cognit. Neurosci. doi: 10.1162/jocn_a_00698 – volume: 1234 start-page: 104 year: 2008 ident: 10.1016/j.neuroimage.2020.116634_bib40 article-title: The neural substrates of probabilistic and intertemporal decision making publication-title: Brain Res. doi: 10.1016/j.brainres.2008.07.105 – volume: 64 start-page: 355 issue: 3 year: 2003 ident: 10.1016/j.neuroimage.2020.116634_bib11 article-title: Is discounting impulsive?: evidence from temporal and probability discounting in gambling and non-gambling college students publication-title: Behav. Process. doi: 10.1016/S0376-6357(03)00141-4 – volume: 57 start-page: 145 issue: 1 year: 2004 ident: 10.1016/j.neuroimage.2020.116634_bib23 article-title: Learning to decode cognitive states from brain images publication-title: Mach. Learn. doi: 10.1023/B:MACH.0000035475.85309.1b – volume: 31 start-page: 1290 issue: 7 year: 2006 ident: 10.1016/j.neuroimage.2020.116634_bib10 article-title: Delay discounting in currently using and currently abstinent cocaine-dependent outpatients and non-drug-using matched controls publication-title: Addict. Behav. doi: 10.1016/j.addbeh.2005.09.005 – volume: 1478 start-page: 36 year: 2012 ident: 10.1016/j.neuroimage.2020.116634_bib34 article-title: Reward processing and intertemporal decision making in adults and adolescents: the role of impulsivity and decision consistency publication-title: Brain Res. doi: 10.1016/j.brainres.2012.08.034 – volume: 7 start-page: 248 issue: 3 year: 2015 ident: 10.1016/j.neuroimage.2020.116634_bib39 article-title: Predicting purchase decisions based on spatio-temporal functional MRI features using machine learning publication-title: IEEE Trans. Aut. Ment. Dev. doi: 10.1109/TAMD.2015.2434733 – volume: 69 start-page: 177 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2020.116634_bib22 article-title: Altered neural reward representations in pathological gamblers revealed by delay and probability discounting publication-title: Arch. Gen. Psychiatr. doi: 10.1001/archgenpsychiatry.2011.1552 – volume: 177 start-page: 108 year: 2018 ident: 10.1016/j.neuroimage.2020.116634_bib32 article-title: The neural basis of free language choice in bilingual speakers: disentangling language choice and language execution publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.05.025 – volume: 35 start-page: 15015 issue: 45 year: 2015 ident: 10.1016/j.neuroimage.2020.116634_bib4 article-title: Decoding articulatory features from fMRI responses in dorsal speech regions publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0977-15.2015 – volume: 306 start-page: 503 issue: 5695 year: 2004 ident: 10.1016/j.neuroimage.2020.116634_bib21 article-title: Separate neural Systems value immediate and delayed monetary rewards publication-title: Science doi: 10.1126/science.1100907 – start-page: 39 year: 2019 ident: 10.1016/j.neuroimage.2020.116634_bib7 – start-page: 5377 year: 2009 ident: 10.1016/j.neuroimage.2020.116634_bib26 article-title: Neurofeedback of two motor functions using supervised learning-based real-time functional magnetic resonance imaging |
SSID | ssj0009148 |
Score | 2.373089 |
Snippet | In an inter-temporal choice (IteCh) task, subjects are offered a smaller amount of money immediately or a larger amount at a later time point. Here, we are... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 116634 |
SubjectTerms | Accuracy Adolescent Adolescent Development - physiology Algorithms Behavior Behavioral modeling Brain mapping Delay Discounting - physiology Female fMRI Follow-Up Studies Functional magnetic resonance imaging Functional Neuroimaging Gray Matter - diagnostic imaging Gray Matter - physiology Humans Intertemporal choice Learning algorithms Machine learning Magnetic Resonance Imaging Male Models, Psychological Models, Theoretical MVPA Prediction Psychomotor Performance - physiology Spatial distribution Support Vector Machine Support vector machines SVM |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBYhh9JL6btu06JCr6pXj11Z5JSGhrTgUtoGfBN6FpdkbRzn2t-emV3tGh8Khh5XqxFiJH3zCc2DkA9GpSgT90ykSjGsaMx8FRQTWnNoyrIxGDs8_9ZcXqmvi3pxRM6HWBh0qyzY32N6h9alZVq0OV0vl9OfwAzA3ABDQVYv-AIj2JXG_Pkf_-7cPAxXfThcLRn2Lt48vY9XlzNyeQMnF26KAvEDDLDaM1FdJv89S_UvJtpZpIvH5FGhkvSsn-0TcpTap-TBvDyWPyPfz2gYqwzSVaZ5_uMLdW2ku9h82lXCuaVAXel6g6LoBk0xicSGlbRV1xQgEvHkObm6-Pzr_JKVAgosAAvbMqXrrE0MMSUOTEyHmchC--iklzo40Zg6e7gfiypkHSMcx9pwn3Kj4eKadJAvyHG7atMrQqsIFz2ZpahFVj45ZxqXuHMqC89T1hOiB53ZULKLY5GLazu4kf2xO21b1LbttT0hfJRc9xk2DpD5hMsy9scc2V3DavPblk1i0yzHoKRXJiSAKT6rXFB1ysZEJbWCQcywqHYIQwXghIGWB0zgdJTd264HSp8Me8gWyLi1QKV0hZSinpD342847PiC49q0uoM-sgG6BYxPTMjLfu-NOpAC2J2eydf_NbU35CF-9S6dJ-R4u7lLb4F2bf277lzdA5NhKos priority: 102 providerName: Elsevier – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA96BfFF_PZqlQi-Bjdfmw0-SCstVbhSioW-hXxKS909767_fye72T36oNxrdieESeY3vySTGYQ-axEDj9QRFitBckVj4iovCFOKQlPitc5vhxdn9eml-Hklr8qB27qEVY6Y2AN16Hw-I_8CnkZVGXHlt-VfkqtG5dvVUkLjMdoDCG7kDO0dHZ-dX2zT7lIxPIaTnDSU6hLLM0R49Rkjr_-A3cI-kWX0APcrHjioPo__Az_1Lx7a-6OT5-hZIZL4cJj5F-hRbF-iJ4tyVf4KnR9iP9UYxF3CaXHxA9s24O3LfNzXwVljIK54ucqiOQga5xQSK1KSVt1iAMiMJq_R5cnxr--npJRPIB442IYIJZPSwYcYKfAw5RuWmHLBcseVt6zWMjnYHbPKJxUCGKPU1MVUK9i2RuX5GzRruza-Q7gKsM3jiTPJknDRWl3bSK0ViTkak5ojNerM-JJbPJe4uDVjENmN2WrbZG2bQdtzRCfJ5ZBfYweZozwt0_85Q3bf0K1-m2JwJjYpeMGd0D4CSNGmsl7ImLQOgisBnehxUs34CBVgEzq63mEAXyfZQlQGArKj9MG4hkwBjLXZLu85-jR9BlPP9ze2jd0d_MNrIFvA99gcvR3W3qQDzoDbqYbv_7_z9-hpHskQsXmAZpvVXfwArGrjPhbTuQecPyCE priority: 102 providerName: ProQuest |
Title | A comparison of fMRI and behavioral models for predicting inter-temporal choices |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381192030121X https://dx.doi.org/10.1016/j.neuroimage.2020.116634 https://www.ncbi.nlm.nih.gov/pubmed/32081783 https://www.proquest.com/docview/2417041305 https://www.proquest.com/docview/2365211752 https://doaj.org/article/e8fdc43b49ce488180ac45ef99d43744 |
Volume | 211 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtCqWX0nfdposKvbq1Hvas6GlTEjYtu4TQwN6EnpCSesNmc81vz8iyneZQuodebJA1RoxHM9_g0TeEfFIyeBGYLXmoZJk6Gpe2crLkAAyHomhUOju8WDbzM_l9Va_-aPWVasIyPXBW3Jcwjd5JYaVyAY2NTSvjZB2iUl4KkB0TKMa8IZka6HaZzIfgUifCGoYanlzZ1TFFnv_G_Yr5IU9eA8OuvBeYOv7-e_Hpb_izi0NHz8jTHkDSWV74c_IgtC_I40X_i_wlOZlRN_YWpOtI4-L0mJrW07sT-bTrf3NFEbDSy00STcXPNFFHbMqerOqComNMXuQVOTs6_PltXvZtE0qH2GtbSqgjKO98CAzxF7gpjxysN8IKcIY3qo4Ws2JeuQje4yasFbMhNoDpagAnXpO9dt2Gt4RWHtM7EQWveZQ2GKMaE5gxMnLLQoSCwKAz7XpO8dTa4kIPxWO_9J22ddK2ztouCBslLzOvxg4yB-mzjPMTM3Y3gPaie3vR_7KXgqjho-rh8Cm6S3zR-Q4L-DrK9gAlA48dpfcHG9K9o7jSCKCgSkCiLsjH8TFu8fTfxrRhfY1zRIMgC3EeL8ibbHujDgRHTAdT8e5_6OY9eZLWm-s598nednMdPiDm2toJefj5huEVVjAhj2bHP-ZLvB8cLk9OJ93WuwVfKS0c |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVgIuiGcJFFgkOFp4H_ZmhRBqoVVCm6iqWqm3ZZ-oqNghSYX4U_xGZu21ox5AufTqeFbW7Mw332RnZxB6I7l3zBOTUZ_zLE40zkxueUaFIPAosFLGu8OTaTk641_Oi_MN9Ke7CxPLKjtMbIDa1Tb-R_4OIo3II-IWH2c_szg1Kp6udiM0WrM49L9_Qcq2-DD-DPv7ltKD_dNPoyxNFcgsUJNlxkURhHTWeU-Angg7pIEK4zQzTFhNS1kEA0kjzW0QzoGNFpIYH0oB2ZwXlsG6t9AW0AwJXrS1tz89Plm1-SW8vXxXsGxIiEy1Q21FWdOh8uIH4ATkpTSiFYR7fi0gNnMDrsXFf_HeJv4d3Ef3EnHFu62lPUAbvnqIbk_S0fwjdLyLbT_TENcBh8nJGOvK4VUnANzM3VlgIMp4No-isegax5YV8yw1ybrEAMgRvR6jsxtR7BO0WdWVf4pw7iCtZIHRggZuvNay1J5ozQM1xAcxQKLTmbKpl3kcqXGpuqK172qlbRW1rVptDxDpJWdtP481ZPbitvTvx47czYN6_k0lB1d-GJzlzHBpPYAiGeba8sIHKR1ngsMisttU1V16BZiGhS7W-ID3vWwiRi3hWVN6p7MhlQBqoVbuNECv-58BWuJ5ka58fQXvsBLIHfBLOkDbre31OmAUuKQYsmf_X_wVujM6nRypo_H08Dm6G7-qrRbdQZvL-ZV_AYxuaV4mN8Lo60177l8OfV3V |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVKq4IN4NFFgkOFr1Puz1CiHU0kYNJVFUUam3xftCRcUOSSrEX-PXMWuvHfUAyqVXx7OyZme--SY7O4PQG8mdZY7ohLqUJ2GicaJTwxMqBIFHnuUy3B2eTPOTc_7pIrvYQn-6uzChrLLDxAaobW3Cf-T7EGlEGhA32_exLGJ2NPow_5mECVLhpLUbp9GayKn7_QvSt-X78RHs9VtKR8dfPp4kccJAYoCmrBIuMi-kNdY5AlRFmIJ6KrQtmWbClDSXmdeQQNLUeGEt2GsmiXY-F5DZOWEYrHsHbQuIisUAbR8eT2dn65a_hLcX8TKWFITIWEfUVpc13SovfwBmQI5KA3JB6Oc3gmMzQ-BGjPwXB25i4eg-uhdJLD5ore4B2nLVQ7Qzicf0j9DsAJt-viGuPfaTszEuK4vXXQFwM4NniYE04_kiiIYCbBzaVyyS2DDrCgM4ByR7jM5vRbFP0KCqK7eLcGohxWSe0Yx6rl1Zyrx0pCy5p5o4L4ZIdDpTJvY1D-M1rlRXwPZdrbWtgrZVq-0hIr3kvO3tsYHMYdiW_v3Qnbt5UC--qejsyhXeGs40l8YBQJIiLQ3PnJfSciY4LCK7TVXdBViAbFjocoMPeNfLRpLUkp8Npfc6G1IRrJZq7VpD9Lr_GWAmnB2Vlauv4R2WA9EDrkmH6Glre70OGAVeKQr27P-Lv0I74LHq83h6-hzdDR_VFo7uocFqce1eALlb6ZfRizD6etuO-xc9hWIB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+fMRI+and+behavioral+models+for+predicting+inter-temporal+choices&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Felix+G.+Knorr&rft.au=Philipp+T.+Neukam&rft.au=Juliane+H.+Fr%C3%B6hner&rft.au=Holger+Mohr&rft.date=2020-05-01&rft.pub=Elsevier&rft.issn=1095-9572&rft.volume=211&rft.spage=116634&rft_id=info:doi/10.1016%2Fj.neuroimage.2020.116634&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e8fdc43b49ce488180ac45ef99d43744 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |