A comparison of fMRI and behavioral models for predicting inter-temporal choices

In an inter-temporal choice (IteCh) task, subjects are offered a smaller amount of money immediately or a larger amount at a later time point. Here, we are using trial-by-trial fMRI data from 363 recording sessions and machine learning in an attempt to build a classifier that would ideally outperfor...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 211; p. 116634
Main Authors Knorr, Felix G., Neukam, Philipp T., Fröhner, Juliane H., Mohr, Holger, Smolka, Michael N., Marxen, Michael
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2020
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2020.116634

Cover

Loading…
Abstract In an inter-temporal choice (IteCh) task, subjects are offered a smaller amount of money immediately or a larger amount at a later time point. Here, we are using trial-by-trial fMRI data from 363 recording sessions and machine learning in an attempt to build a classifier that would ideally outperform established behavioral model given that it has access to brain activity specific to a single trial. Such methods could allow for future investigations of state-like factors that influence IteCh choices. To investigate this, coefficients of a GLM with one regressor per trial were used as features for a support vector machine (SVM) in combination with a searchlight approach for feature selection and cross-validation. We then compare the results to the performance of four different behavioral models. We found that the behavioral models reached mean accuracies of 90% and above, while the fMRI model only reached 54.84% at the best location in the brain with a spatial distribution similar to the well-known value-tracking network. This low, though significant, accuracy is in line with simulations showing that classifying based on signals with realistic correlations with subjective value produces comparable, low accuracies. These results emphasize the limitations of fMRI recordings from single events to predict human choices, especially when compared to conventional behavioral models. Better performance may be obtained with paradigms that allow the construction of miniblocks to improve the available signal-to-noise ratio. •Behavioral models outperform fMRI models for prediction (90% accuracy vs 54%).•Significant prediction performance based on single trials on 6s of fMRI data.•Large portions of the brain can be used to predict IteCh-Choices.
AbstractList In an inter-temporal choice (IteCh) task, subjects are offered a smaller amount of money immediately or a larger amount at a later time point. Here, we are using trial-by-trial fMRI data from 363 recording sessions and machine learning in an attempt to build a classifier that would ideally outperform established behavioral model given that it has access to brain activity specific to a single trial. Such methods could allow for future investigations of state-like factors that influence IteCh choices.To investigate this, coefficients of a GLM with one regressor per trial were used as features for a support vector machine (SVM) in combination with a searchlight approach for feature selection and cross-validation. We then compare the results to the performance of four different behavioral models.We found that the behavioral models reached mean accuracies of 90% and above, while the fMRI model only reached 54.84% at the best location in the brain with a spatial distribution similar to the well-known value-tracking network. This low, though significant, accuracy is in line with simulations showing that classifying based on signals with realistic correlations with subjective value produces comparable, low accuracies. These results emphasize the limitations of fMRI recordings from single events to predict human choices, especially when compared to conventional behavioral models. Better performance may be obtained with paradigms that allow the construction of miniblocks to improve the available signal-to-noise ratio.
In an inter-temporal choice (IteCh) task, subjects are offered a smaller amount of money immediately or a larger amount at a later time point. Here, we are using trial-by-trial fMRI data from 363 recording sessions and machine learning in an attempt to build a classifier that would ideally outperform established behavioral model given that it has access to brain activity specific to a single trial. Such methods could allow for future investigations of state-like factors that influence IteCh choices. To investigate this, coefficients of a GLM with one regressor per trial were used as features for a support vector machine (SVM) in combination with a searchlight approach for feature selection and cross-validation. We then compare the results to the performance of four different behavioral models. We found that the behavioral models reached mean accuracies of 90% and above, while the fMRI model only reached 54.84% at the best location in the brain with a spatial distribution similar to the well-known value-tracking network. This low, though significant, accuracy is in line with simulations showing that classifying based on signals with realistic correlations with subjective value produces comparable, low accuracies. These results emphasize the limitations of fMRI recordings from single events to predict human choices, especially when compared to conventional behavioral models. Better performance may be obtained with paradigms that allow the construction of miniblocks to improve the available signal-to-noise ratio.In an inter-temporal choice (IteCh) task, subjects are offered a smaller amount of money immediately or a larger amount at a later time point. Here, we are using trial-by-trial fMRI data from 363 recording sessions and machine learning in an attempt to build a classifier that would ideally outperform established behavioral model given that it has access to brain activity specific to a single trial. Such methods could allow for future investigations of state-like factors that influence IteCh choices. To investigate this, coefficients of a GLM with one regressor per trial were used as features for a support vector machine (SVM) in combination with a searchlight approach for feature selection and cross-validation. We then compare the results to the performance of four different behavioral models. We found that the behavioral models reached mean accuracies of 90% and above, while the fMRI model only reached 54.84% at the best location in the brain with a spatial distribution similar to the well-known value-tracking network. This low, though significant, accuracy is in line with simulations showing that classifying based on signals with realistic correlations with subjective value produces comparable, low accuracies. These results emphasize the limitations of fMRI recordings from single events to predict human choices, especially when compared to conventional behavioral models. Better performance may be obtained with paradigms that allow the construction of miniblocks to improve the available signal-to-noise ratio.
In an inter-temporal choice (IteCh) task, subjects are offered a smaller amount of money immediately or a larger amount at a later time point. Here, we are using trial-by-trial fMRI data from 363 recording sessions and machine learning in an attempt to build a classifier that would ideally outperform established behavioral model given that it has access to brain activity specific to a single trial. Such methods could allow for future investigations of state-like factors that influence IteCh choices. To investigate this, coefficients of a GLM with one regressor per trial were used as features for a support vector machine (SVM) in combination with a searchlight approach for feature selection and cross-validation. We then compare the results to the performance of four different behavioral models. We found that the behavioral models reached mean accuracies of 90% and above, while the fMRI model only reached 54.84% at the best location in the brain with a spatial distribution similar to the well-known value-tracking network. This low, though significant, accuracy is in line with simulations showing that classifying based on signals with realistic correlations with subjective value produces comparable, low accuracies. These results emphasize the limitations of fMRI recordings from single events to predict human choices, especially when compared to conventional behavioral models. Better performance may be obtained with paradigms that allow the construction of miniblocks to improve the available signal-to-noise ratio. •Behavioral models outperform fMRI models for prediction (90% accuracy vs 54%).•Significant prediction performance based on single trials on 6s of fMRI data.•Large portions of the brain can be used to predict IteCh-Choices.
ArticleNumber 116634
Author Mohr, Holger
Neukam, Philipp T.
Smolka, Michael N.
Marxen, Michael
Fröhner, Juliane H.
Knorr, Felix G.
Author_xml – sequence: 1
  givenname: Felix G.
  surname: Knorr
  fullname: Knorr, Felix G.
  organization: Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Germany
– sequence: 2
  givenname: Philipp T.
  surname: Neukam
  fullname: Neukam, Philipp T.
  organization: Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Germany
– sequence: 3
  givenname: Juliane H.
  surname: Fröhner
  fullname: Fröhner, Juliane H.
  organization: Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Germany
– sequence: 4
  givenname: Holger
  surname: Mohr
  fullname: Mohr, Holger
  organization: Department of General Psychology, Technische Universität Dresden, Germany
– sequence: 5
  givenname: Michael N.
  surname: Smolka
  fullname: Smolka, Michael N.
  organization: Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Germany
– sequence: 6
  givenname: Michael
  surname: Marxen
  fullname: Marxen, Michael
  email: michael.marxen@tu-dresden.de
  organization: Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32081783$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1rFDEUhoNUbLv6F2TAG29mzedkciO2xY-FiiJ6HTLJyTbrTLIms4X-e7PdWmGvepVweM5D8r7n6CSmCAg1BC8JJt27zTLCLqcwmTUsKaZ1TLqO8WfojGAlWiUkPdnfBWt7QtQpOi9lgzFWhPcv0CmjuCeyZ2fo-0Vj07Q1OZQUm-Qb__XHqjHRNQPcmNuQshmbKTkYS-NTbrYZXLBziOsmxBlyO8O0vYfsTQoWykv03JuxwKuHc4F-ffr48-pLe_3t8-rq4rq1Qoq55VJ4qZx1AKQTWNqeeioHZ9jApDW0U8IPvFMUWy-dE4wIRQbwnWSsB2nZAq0OXpfMRm9zzSLf6WSCvh-kvNYmz8GOoKH3znI2cGWB9z3psbFcgFfKcSY5r663B9c2pz87KLOeQrEwjiZC2hVNWScoIVLQir45Qjdpl2P9qaacSMwJq6Ev0OsHajdM4B6f9y_3CvQHwOZUSgb_iBCs9xXrjf5fsd5XrA8V19X3R6s2zGYOKc7ZhPEpgsuDoHYKtwGyLjZAtLXYDHau-YWnSD4cSewYYrBm_A13T1P8BcCY3Vw
CitedBy_id crossref_primary_10_3390_brainsci12111488
crossref_primary_10_2139_ssrn_4196718
crossref_primary_10_3389_fnins_2022_1077735
crossref_primary_10_1016_j_neuroscience_2020_11_026
crossref_primary_10_1017_S0033291720003864
crossref_primary_10_3389_fpsyt_2022_846119
crossref_primary_10_1002_brb3_3367
crossref_primary_10_1007_s00429_023_02720_0
Cites_doi 10.1007/PL00005490
10.1016/j.neuroimage.2014.10.025
10.1093/cercor/bhn098
10.1002/hbm.20326
10.1523/JNEUROSCI.1126-09.2009
10.1523/JNEUROSCI.3656-16.2017
10.1038/nn2007
10.1038/nn.2112
10.1016/j.neuroimage.2016.02.033
10.1016/j.biopsych.2009.10.029
10.1901/jeab.2011.96-363
10.1177/0956797616664342
10.1016/j.tics.2011.03.002
10.1016/j.neuropsychologia.2009.06.019
10.1007/s00429-013-0641-4
10.1016/j.neuroimage.2010.08.007
10.1007/BF03395339
10.1016/j.cub.2006.11.072
10.1038/nn1444
10.1371/journal.pone.0047225
10.1016/j.neuroimage.2011.02.006
10.1016/j.tics.2006.07.005
10.1016/j.neuroimage.2019.03.053
10.1006/obhd.1995.1086
10.1073/pnas.0600244103
10.1162/jocn_a_00698
10.1016/j.brainres.2008.07.105
10.1016/S0376-6357(03)00141-4
10.1023/B:MACH.0000035475.85309.1b
10.1016/j.addbeh.2005.09.005
10.1016/j.brainres.2012.08.034
10.1109/TAMD.2015.2434733
10.1001/archgenpsychiatry.2011.1552
10.1016/j.neuroimage.2018.05.025
10.1523/JNEUROSCI.0977-15.2015
10.1126/science.1100907
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
2020. The Authors
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2020. The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOA
DOI 10.1016/j.neuroimage.2020.116634
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology
MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_e8fdc43b49ce488180ac45ef99d43744
32081783
10_1016_j_neuroimage_2020_116634
S105381192030121X
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
RIG
SEW
WUQ
XPP
ZMT
0SF
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c575t-475f79dcdee16507c82f27bda3b37ca2695fb46920cf7dd531591bef67338e7c3
IEDL.DBID DOA
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:06:59 EDT 2025
Thu Sep 04 15:44:45 EDT 2025
Wed Aug 13 04:25:39 EDT 2025
Wed Feb 19 02:29:22 EST 2025
Tue Jul 01 03:02:12 EDT 2025
Thu Apr 24 23:10:25 EDT 2025
Fri Feb 23 02:48:11 EST 2024
Tue Aug 26 20:02:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Behavioral modeling
fMRI
SVM
Intertemporal choice
MVPA
Prediction
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-475f79dcdee16507c82f27bda3b37ca2695fb46920cf7dd531591bef67338e7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://doaj.org/article/e8fdc43b49ce488180ac45ef99d43744
PMID 32081783
PQID 2417041305
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_e8fdc43b49ce488180ac45ef99d43744
proquest_miscellaneous_2365211752
proquest_journals_2417041305
pubmed_primary_32081783
crossref_primary_10_1016_j_neuroimage_2020_116634
crossref_citationtrail_10_1016_j_neuroimage_2020_116634
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2020_116634
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2020_116634
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2020
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Peters, Büchel (bib27) 2011; 15
Gläscher, Hampton, O’Doherty (bib8) 2009; 19
Norman, Polyn, Detre, Haxby (bib25) 2006; 10
Liu, Guo, Fouche, Wang, Wang, Ding, Zeng, Qiu, Gong, Zhang, Chen (bib18) 2015; 220
Kamitani, Tong (bib13) 2005; 8
Radu, Yi, Bickel, Gross, McClure (bib31) 2011; 96
Loose, Wisniewski, Rusconi, Goschke, Haynes (bib19) 2017; 37
Wang, Chattaraman, Kim, Deshpande (bib39) 2015; 7
Bickel, Odum, Madden (bib1) 1999; 146
Holt, Green, Myerson (bib11) 2003; 64
Mohr, Wolfensteller, Frimmel, Ruge (bib24) 2015; 104
Papageorgiou, Curtis, McHenry, LaConte (bib26) 2009
Romer, Betancourt, Giannetta, Brodsky, Farah, Hurt (bib35) 2009; 47
Gluth, Meiran (bib7) 2019
Mitchell, Hutchinson, Niculescu, Pereira, Wang, Just, Newman (bib23) 2004; 57
Weber, Huettel (bib40) 2008; 1234
Bühler, Vollstädt-Klein, Kobiella, Budde, Reed, Braus, Büchel, Smolka (bib2) 2010; 67
Kirby, Maraković (bib14) 1995; 64
McClure, Laibson, Loewenstein, Cohen (bib21) 2004; 306
Fröhner, Teckentrup, Smolka, Kroemer (bib5) 2019; 195
Simpson, Vuchinich (bib36) 2000; 50
Peters, Miedl, Büchel (bib28) 2012; 7
Reverberi, Kuhlen, Seyed-Allaei, Greulich, Costa, Abutalebi, Haynes (bib32) 2018; 177
Kriegeskorte, Goebel, Bandettini (bib15) 2006; 103
Chen, Guo, Zhang, Feng (bib3) 2018
Gardumi, Ivanov, Hausfeld, Valente, Formisano, Uludaǧ (bib6) 2016; 132
Pine, Seymour, Roiser, Bossaerts, Friston, Curran, Dolan (bib29) 2009; 29
Heil, Johnson, Higgins, Bickel (bib10) 2006; 31
LaConte, Peltier, Hu (bib16) 2007; 28
Correia, Jansma, Bonte (bib4) 2015; 35
Mazur (bib20) 1987; vol. 5
Wulff, van den Bos (bib41) 2017; 29
Ripke, Hübner, Mennigen, Müller, Li, Smolka (bib33) 2015; 27
Pooseh, Bernhardt, Guevara, Huys, Smolka (bib30) 2017
Ripke, Hübner, Mennigen, Müller, Rodehacke, Schmidt, Jacob, Smolka (bib34) 2012; 1478
Haynes, Sakai, Rees, Gilbert, Frith, Passingham (bib9) 2007; 17
Kable, Glimcher (bib12) 2007; 10
Lee, Janata, Frost, Hanke, Granger (bib17) 2011; 57
Soon, Brass, Heinze, Haynes (bib38) 2008; 11
Miedl (bib22) 2012; 69
Sitaram, Lee, Ruiz, Rana, Veit, Birbaumer (bib37) 2011; 56
Romer (10.1016/j.neuroimage.2020.116634_bib35) 2009; 47
Ripke (10.1016/j.neuroimage.2020.116634_bib34) 2012; 1478
Kamitani (10.1016/j.neuroimage.2020.116634_bib13) 2005; 8
Soon (10.1016/j.neuroimage.2020.116634_bib38) 2008; 11
Gardumi (10.1016/j.neuroimage.2020.116634_bib6) 2016; 132
Mazur (10.1016/j.neuroimage.2020.116634_bib20) 1987; vol. 5
Kable (10.1016/j.neuroimage.2020.116634_bib12) 2007; 10
Mitchell (10.1016/j.neuroimage.2020.116634_bib23) 2004; 57
Mohr (10.1016/j.neuroimage.2020.116634_bib24) 2015; 104
Wang (10.1016/j.neuroimage.2020.116634_bib39) 2015; 7
Peters (10.1016/j.neuroimage.2020.116634_bib28) 2012; 7
Pine (10.1016/j.neuroimage.2020.116634_bib29) 2009; 29
Ripke (10.1016/j.neuroimage.2020.116634_bib33) 2015; 27
Chen (10.1016/j.neuroimage.2020.116634_bib3) 2018
Bühler (10.1016/j.neuroimage.2020.116634_bib2) 2010; 67
Radu (10.1016/j.neuroimage.2020.116634_bib31) 2011; 96
Holt (10.1016/j.neuroimage.2020.116634_bib11) 2003; 64
Miedl (10.1016/j.neuroimage.2020.116634_bib22) 2012; 69
Weber (10.1016/j.neuroimage.2020.116634_bib40) 2008; 1234
Haynes (10.1016/j.neuroimage.2020.116634_bib9) 2007; 17
Kirby (10.1016/j.neuroimage.2020.116634_bib14) 1995; 64
Sitaram (10.1016/j.neuroimage.2020.116634_bib37) 2011; 56
Norman (10.1016/j.neuroimage.2020.116634_bib25) 2006; 10
Gluth (10.1016/j.neuroimage.2020.116634_bib7) 2019
Heil (10.1016/j.neuroimage.2020.116634_bib10) 2006; 31
McClure (10.1016/j.neuroimage.2020.116634_bib21) 2004; 306
Loose (10.1016/j.neuroimage.2020.116634_bib19) 2017; 37
Correia (10.1016/j.neuroimage.2020.116634_bib4) 2015; 35
Gläscher (10.1016/j.neuroimage.2020.116634_bib8) 2009; 19
Fröhner (10.1016/j.neuroimage.2020.116634_bib5) 2019; 195
Papageorgiou (10.1016/j.neuroimage.2020.116634_bib26) 2009
Pooseh (10.1016/j.neuroimage.2020.116634_bib30) 2017
Wulff (10.1016/j.neuroimage.2020.116634_bib41) 2017; 29
Kriegeskorte (10.1016/j.neuroimage.2020.116634_bib15) 2006; 103
Bickel (10.1016/j.neuroimage.2020.116634_bib1) 1999; 146
LaConte (10.1016/j.neuroimage.2020.116634_bib16) 2007; 28
Peters (10.1016/j.neuroimage.2020.116634_bib27) 2011; 15
Reverberi (10.1016/j.neuroimage.2020.116634_bib32) 2018; 177
Liu (10.1016/j.neuroimage.2020.116634_bib18) 2015; 220
Lee (10.1016/j.neuroimage.2020.116634_bib17) 2011; 57
Simpson (10.1016/j.neuroimage.2020.116634_bib36) 2000; 50
References_xml – volume: 17
  start-page: 323
  year: 2007
  end-page: 328
  ident: bib9
  article-title: Reading hidden intentions in the human brain
  publication-title: Curr. Biol.
– volume: 177
  start-page: 108
  year: 2018
  end-page: 116
  ident: bib32
  article-title: The neural basis of free language choice in bilingual speakers: disentangling language choice and language execution
  publication-title: Neuroimage
– volume: 35
  start-page: 15015
  year: 2015
  end-page: 15025
  ident: bib4
  article-title: Decoding articulatory features from fMRI responses in dorsal speech regions
  publication-title: J. Neurosci.
– volume: 8
  start-page: 679
  year: 2005
  end-page: 685
  ident: bib13
  article-title: Decoding the visual and subjective contents of the human brain
  publication-title: Nat. Neurosci.
– volume: 220
  start-page: 101
  year: 2015
  end-page: 115
  ident: bib18
  article-title: Multivariate classification of social anxiety disorder using whole brain functional connectivity
  publication-title: Brain Struct. Funct.
– volume: 306
  start-page: 503
  year: 2004
  end-page: 507
  ident: bib21
  article-title: Separate neural Systems value immediate and delayed monetary rewards
  publication-title: Science
– volume: 7
  start-page: 248
  year: 2015
  end-page: 255
  ident: bib39
  article-title: Predicting purchase decisions based on spatio-temporal functional MRI features using machine learning
  publication-title: IEEE Trans. Aut. Ment. Dev.
– volume: 15
  start-page: 227
  year: 2011
  end-page: 239
  ident: bib27
  article-title: The neural mechanisms of inter-temporal decision-making: understanding variability
  publication-title: Trends Cognit. Sci.
– volume: 132
  start-page: 32
  year: 2016
  end-page: 42
  ident: bib6
  article-title: The effect of spatial resolution on decoding accuracy in fMRI multivariate pattern analysis
  publication-title: Neuroimage
– volume: 64
  start-page: 22
  year: 1995
  end-page: 30
  ident: bib14
  article-title: Modeling myopic decisions: evidence for hyperbolic delay-discounting within subjects and amounts
  publication-title: Organ. Behav. Hum. Decis. Process.
– volume: 50
  start-page: 3
  year: 2000
  end-page: 16
  ident: bib36
  article-title: Reliability of a measure of temporal discounting
  publication-title: Psychol. Rec.
– start-page: 1
  year: 2017
  end-page: 14
  ident: bib30
  article-title: Value-based decision-making battery: a Bayesian adaptive approach to assess impulsive and risky behavior
  publication-title: Behav. Res. Methods
– volume: 27
  start-page: 387
  year: 2015
  end-page: 399
  ident: bib33
  article-title: Common neural correlates of intertemporal choices and intelligence in adolescents
  publication-title: J. Cognit. Neurosci.
– volume: 56
  start-page: 753
  year: 2011
  end-page: 765
  ident: bib37
  article-title: Real-time support vector classification and feedback of multiple emotional brain states
  publication-title: Neuroimage
– volume: 1234
  start-page: 104
  year: 2008
  end-page: 115
  ident: bib40
  article-title: The neural substrates of probabilistic and intertemporal decision making
  publication-title: Brain Res.
– volume: 57
  start-page: 293
  year: 2011
  end-page: 300
  ident: bib17
  article-title: Investigation of melodic contour processing in the brain using multivariate pattern-based fMRI
  publication-title: Neuroimage
– volume: 67
  start-page: 745
  year: 2010
  end-page: 752
  ident: bib2
  article-title: Nicotine dependence is characterized by disordered reward processing in a network driving motivation
  publication-title: Biol. Psychiatr.
– volume: vol. 5
  start-page: 55
  year: 1987
  end-page: 73
  ident: bib20
  article-title: An adjusting procedure for studying delayed reinforcement
  publication-title: The Effect of Delay and of Intervening Events on Reinforcement Value, Quantitative Analyses of Behavior
– volume: 69
  start-page: 177
  year: 2012
  ident: bib22
  article-title: Altered neural reward representations in pathological gamblers revealed by delay and probability discounting
  publication-title: Arch. Gen. Psychiatr.
– volume: 103
  start-page: 3863
  year: 2006
  end-page: 3868
  ident: bib15
  article-title: Information-based functional brain mapping
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 57
  start-page: 145
  year: 2004
  end-page: 175
  ident: bib23
  article-title: Learning to decode cognitive states from brain images
  publication-title: Mach. Learn.
– volume: 96
  start-page: 363
  year: 2011
  end-page: 385
  ident: bib31
  article-title: A mechanism for reducing delay discounting by altering temporal attention
  publication-title: J. Exp. Anal. Behav.
– start-page: 39
  year: 2019
  ident: bib7
  article-title: Leave-One-Trial-Out, LOTO, a General Approach to Link Single-Trial Parameters of Cognitive Models to Neural Data
– volume: 37
  start-page: 8033
  year: 2017
  end-page: 8042
  ident: bib19
  article-title: Switch-independent task representations in frontal and parietal cortex
  publication-title: J. Neurosci.
– year: 2018
  ident: bib3
  article-title: Pattern Classification Differentiates Decision of Intertemporal Choices Using Multi-Voxel Pattern Analysis. Cortex
– start-page: 5377
  year: 2009
  end-page: 5380
  ident: bib26
  article-title: Neurofeedback of two motor functions using supervised learning-based real-time functional magnetic resonance imaging
  publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 10
  start-page: 1625
  year: 2007
  end-page: 1633
  ident: bib12
  article-title: The neural correlates of subjective value during intertemporal choice
  publication-title: Nat. Neurosci.
– volume: 10
  start-page: 424
  year: 2006
  end-page: 430
  ident: bib25
  article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data
  publication-title: Trends Cognit. Sci.
– volume: 146
  start-page: 447
  year: 1999
  end-page: 454
  ident: bib1
  article-title: Impulsivity and cigarette smoking: delay discounting in current, never, and ex-smokers
  publication-title: Psychopharmacology
– volume: 11
  start-page: 543
  year: 2008
  end-page: 545
  ident: bib38
  article-title: Unconscious determinants of free decisions in the human brain
  publication-title: Nat. Neurosci.
– volume: 28
  start-page: 1033
  year: 2007
  end-page: 1044
  ident: bib16
  article-title: Real-time fMRI using brain-state classification
  publication-title: Hum. Brain Mapp.
– volume: 195
  start-page: 174
  year: 2019
  end-page: 189
  ident: bib5
  article-title: Addressing the reliability fallacy in fMRI: similar group effects may arise from unreliable individual effects
  publication-title: Neuroimage
– volume: 31
  start-page: 1290
  year: 2006
  end-page: 1294
  ident: bib10
  article-title: Delay discounting in currently using and currently abstinent cocaine-dependent outpatients and non-drug-using matched controls
  publication-title: Addict. Behav.
– volume: 29
  year: 2017
  ident: bib41
  article-title: Modeling choices in delay discounting , modeling choices in delay discounting
  publication-title: Psychol. Sci.
– volume: 1478
  start-page: 36
  year: 2012
  end-page: 47
  ident: bib34
  article-title: Reward processing and intertemporal decision making in adults and adolescents: the role of impulsivity and decision consistency
  publication-title: Brain Res.
– volume: 104
  start-page: 163
  year: 2015
  end-page: 176
  ident: bib24
  article-title: Sparse regularization techniques provide novel insights into outcome integration processes
  publication-title: Neuroimage
– volume: 7
  year: 2012
  ident: bib28
  article-title: Formal comparison of dual-parameter temporal discounting models in controls and pathological gamblers
  publication-title: PloS One
– volume: 64
  start-page: 355
  year: 2003
  end-page: 367
  ident: bib11
  article-title: Is discounting impulsive?: evidence from temporal and probability discounting in gambling and non-gambling college students
  publication-title: Behav. Process.
– volume: 29
  start-page: 9575
  year: 2009
  end-page: 9581
  ident: bib29
  article-title: Encoding of marginal utility across time in the human brain
  publication-title: J. Neurosci. : Off. J. Soc. Neurosci.
– volume: 19
  start-page: 483
  year: 2009
  end-page: 495
  ident: bib8
  article-title: Determining a role for ventromedial prefrontal cortex in encoding action-based value signals during reward-related decision making
  publication-title: Cerebr. Cortex
– volume: 47
  start-page: 2916
  year: 2009
  end-page: 2926
  ident: bib35
  article-title: Executive cognitive functions and impulsivity as correlates of risk taking and problem behavior in preadolescents
  publication-title: Neuropsychologia
– volume: 146
  start-page: 447
  issue: 4
  year: 1999
  ident: 10.1016/j.neuroimage.2020.116634_bib1
  article-title: Impulsivity and cigarette smoking: delay discounting in current, never, and ex-smokers
  publication-title: Psychopharmacology
  doi: 10.1007/PL00005490
– volume: vol. 5
  start-page: 55
  year: 1987
  ident: 10.1016/j.neuroimage.2020.116634_bib20
  article-title: An adjusting procedure for studying delayed reinforcement
– volume: 104
  start-page: 163
  year: 2015
  ident: 10.1016/j.neuroimage.2020.116634_bib24
  article-title: Sparse regularization techniques provide novel insights into outcome integration processes
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.025
– volume: 19
  start-page: 483
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2020.116634_bib8
  article-title: Determining a role for ventromedial prefrontal cortex in encoding action-based value signals during reward-related decision making
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhn098
– volume: 28
  start-page: 1033
  issue: 10
  year: 2007
  ident: 10.1016/j.neuroimage.2020.116634_bib16
  article-title: Real-time fMRI using brain-state classification
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20326
– volume: 29
  start-page: 9575
  issue: 30
  year: 2009
  ident: 10.1016/j.neuroimage.2020.116634_bib29
  article-title: Encoding of marginal utility across time in the human brain
  publication-title: J. Neurosci. : Off. J. Soc. Neurosci.
  doi: 10.1523/JNEUROSCI.1126-09.2009
– volume: 37
  start-page: 8033
  issue: 33
  year: 2017
  ident: 10.1016/j.neuroimage.2020.116634_bib19
  article-title: Switch-independent task representations in frontal and parietal cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3656-16.2017
– volume: 10
  start-page: 1625
  issue: 12
  year: 2007
  ident: 10.1016/j.neuroimage.2020.116634_bib12
  article-title: The neural correlates of subjective value during intertemporal choice
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn2007
– volume: 11
  start-page: 543
  issue: 5
  year: 2008
  ident: 10.1016/j.neuroimage.2020.116634_bib38
  article-title: Unconscious determinants of free decisions in the human brain
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2112
– volume: 132
  start-page: 32
  year: 2016
  ident: 10.1016/j.neuroimage.2020.116634_bib6
  article-title: The effect of spatial resolution on decoding accuracy in fMRI multivariate pattern analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.02.033
– volume: 67
  start-page: 745
  issue: 8
  year: 2010
  ident: 10.1016/j.neuroimage.2020.116634_bib2
  article-title: Nicotine dependence is characterized by disordered reward processing in a network driving motivation
  publication-title: Biol. Psychiatr.
  doi: 10.1016/j.biopsych.2009.10.029
– year: 2018
  ident: 10.1016/j.neuroimage.2020.116634_bib3
– volume: 96
  start-page: 363
  issue: 3
  year: 2011
  ident: 10.1016/j.neuroimage.2020.116634_bib31
  article-title: A mechanism for reducing delay discounting by altering temporal attention
  publication-title: J. Exp. Anal. Behav.
  doi: 10.1901/jeab.2011.96-363
– volume: 29
  issue: 11
  year: 2017
  ident: 10.1016/j.neuroimage.2020.116634_bib41
  article-title: Modeling choices in delay discounting , modeling choices in delay discounting
  publication-title: Psychol. Sci.
  doi: 10.1177/0956797616664342
– volume: 15
  start-page: 227
  issue: 5
  year: 2011
  ident: 10.1016/j.neuroimage.2020.116634_bib27
  article-title: The neural mechanisms of inter-temporal decision-making: understanding variability
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2011.03.002
– volume: 47
  start-page: 2916
  issue: 13
  year: 2009
  ident: 10.1016/j.neuroimage.2020.116634_bib35
  article-title: Executive cognitive functions and impulsivity as correlates of risk taking and problem behavior in preadolescents
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2009.06.019
– volume: 220
  start-page: 101
  issue: 1
  year: 2015
  ident: 10.1016/j.neuroimage.2020.116634_bib18
  article-title: Multivariate classification of social anxiety disorder using whole brain functional connectivity
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-013-0641-4
– volume: 56
  start-page: 753
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2020.116634_bib37
  article-title: Real-time support vector classification and feedback of multiple emotional brain states
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.007
– volume: 50
  start-page: 3
  issue: 1
  year: 2000
  ident: 10.1016/j.neuroimage.2020.116634_bib36
  article-title: Reliability of a measure of temporal discounting
  publication-title: Psychol. Rec.
  doi: 10.1007/BF03395339
– volume: 17
  start-page: 323
  issue: 4
  year: 2007
  ident: 10.1016/j.neuroimage.2020.116634_bib9
  article-title: Reading hidden intentions in the human brain
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.11.072
– volume: 8
  start-page: 679
  issue: 5
  year: 2005
  ident: 10.1016/j.neuroimage.2020.116634_bib13
  article-title: Decoding the visual and subjective contents of the human brain
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1444
– volume: 7
  issue: 11
  year: 2012
  ident: 10.1016/j.neuroimage.2020.116634_bib28
  article-title: Formal comparison of dual-parameter temporal discounting models in controls and pathological gamblers
  publication-title: PloS One
  doi: 10.1371/journal.pone.0047225
– volume: 57
  start-page: 293
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2020.116634_bib17
  article-title: Investigation of melodic contour processing in the brain using multivariate pattern-based fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.02.006
– start-page: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2020.116634_bib30
  article-title: Value-based decision-making battery: a Bayesian adaptive approach to assess impulsive and risky behavior
  publication-title: Behav. Res. Methods
– volume: 10
  start-page: 424
  issue: 9
  year: 2006
  ident: 10.1016/j.neuroimage.2020.116634_bib25
  article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2006.07.005
– volume: 195
  start-page: 174
  year: 2019
  ident: 10.1016/j.neuroimage.2020.116634_bib5
  article-title: Addressing the reliability fallacy in fMRI: similar group effects may arise from unreliable individual effects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.03.053
– volume: 64
  start-page: 22
  issue: 1
  year: 1995
  ident: 10.1016/j.neuroimage.2020.116634_bib14
  article-title: Modeling myopic decisions: evidence for hyperbolic delay-discounting within subjects and amounts
  publication-title: Organ. Behav. Hum. Decis. Process.
  doi: 10.1006/obhd.1995.1086
– volume: 103
  start-page: 3863
  issue: 10
  year: 2006
  ident: 10.1016/j.neuroimage.2020.116634_bib15
  article-title: Information-based functional brain mapping
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0600244103
– volume: 27
  start-page: 387
  issue: 2
  year: 2015
  ident: 10.1016/j.neuroimage.2020.116634_bib33
  article-title: Common neural correlates of intertemporal choices and intelligence in adolescents
  publication-title: J. Cognit. Neurosci.
  doi: 10.1162/jocn_a_00698
– volume: 1234
  start-page: 104
  year: 2008
  ident: 10.1016/j.neuroimage.2020.116634_bib40
  article-title: The neural substrates of probabilistic and intertemporal decision making
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2008.07.105
– volume: 64
  start-page: 355
  issue: 3
  year: 2003
  ident: 10.1016/j.neuroimage.2020.116634_bib11
  article-title: Is discounting impulsive?: evidence from temporal and probability discounting in gambling and non-gambling college students
  publication-title: Behav. Process.
  doi: 10.1016/S0376-6357(03)00141-4
– volume: 57
  start-page: 145
  issue: 1
  year: 2004
  ident: 10.1016/j.neuroimage.2020.116634_bib23
  article-title: Learning to decode cognitive states from brain images
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000035475.85309.1b
– volume: 31
  start-page: 1290
  issue: 7
  year: 2006
  ident: 10.1016/j.neuroimage.2020.116634_bib10
  article-title: Delay discounting in currently using and currently abstinent cocaine-dependent outpatients and non-drug-using matched controls
  publication-title: Addict. Behav.
  doi: 10.1016/j.addbeh.2005.09.005
– volume: 1478
  start-page: 36
  year: 2012
  ident: 10.1016/j.neuroimage.2020.116634_bib34
  article-title: Reward processing and intertemporal decision making in adults and adolescents: the role of impulsivity and decision consistency
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2012.08.034
– volume: 7
  start-page: 248
  issue: 3
  year: 2015
  ident: 10.1016/j.neuroimage.2020.116634_bib39
  article-title: Predicting purchase decisions based on spatio-temporal functional MRI features using machine learning
  publication-title: IEEE Trans. Aut. Ment. Dev.
  doi: 10.1109/TAMD.2015.2434733
– volume: 69
  start-page: 177
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2020.116634_bib22
  article-title: Altered neural reward representations in pathological gamblers revealed by delay and probability discounting
  publication-title: Arch. Gen. Psychiatr.
  doi: 10.1001/archgenpsychiatry.2011.1552
– volume: 177
  start-page: 108
  year: 2018
  ident: 10.1016/j.neuroimage.2020.116634_bib32
  article-title: The neural basis of free language choice in bilingual speakers: disentangling language choice and language execution
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.05.025
– volume: 35
  start-page: 15015
  issue: 45
  year: 2015
  ident: 10.1016/j.neuroimage.2020.116634_bib4
  article-title: Decoding articulatory features from fMRI responses in dorsal speech regions
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0977-15.2015
– volume: 306
  start-page: 503
  issue: 5695
  year: 2004
  ident: 10.1016/j.neuroimage.2020.116634_bib21
  article-title: Separate neural Systems value immediate and delayed monetary rewards
  publication-title: Science
  doi: 10.1126/science.1100907
– start-page: 39
  year: 2019
  ident: 10.1016/j.neuroimage.2020.116634_bib7
– start-page: 5377
  year: 2009
  ident: 10.1016/j.neuroimage.2020.116634_bib26
  article-title: Neurofeedback of two motor functions using supervised learning-based real-time functional magnetic resonance imaging
SSID ssj0009148
Score 2.373089
Snippet In an inter-temporal choice (IteCh) task, subjects are offered a smaller amount of money immediately or a larger amount at a later time point. Here, we are...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 116634
SubjectTerms Accuracy
Adolescent
Adolescent Development - physiology
Algorithms
Behavior
Behavioral modeling
Brain mapping
Delay Discounting - physiology
Female
fMRI
Follow-Up Studies
Functional magnetic resonance imaging
Functional Neuroimaging
Gray Matter - diagnostic imaging
Gray Matter - physiology
Humans
Intertemporal choice
Learning algorithms
Machine learning
Magnetic Resonance Imaging
Male
Models, Psychological
Models, Theoretical
MVPA
Prediction
Psychomotor Performance - physiology
Spatial distribution
Support Vector Machine
Support vector machines
SVM
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBYhh9JL6btu06JCr6pXj11Z5JSGhrTgUtoGfBN6FpdkbRzn2t-emV3tGh8Khh5XqxFiJH3zCc2DkA9GpSgT90ykSjGsaMx8FRQTWnNoyrIxGDs8_9ZcXqmvi3pxRM6HWBh0qyzY32N6h9alZVq0OV0vl9OfwAzA3ABDQVYv-AIj2JXG_Pkf_-7cPAxXfThcLRn2Lt48vY9XlzNyeQMnF26KAvEDDLDaM1FdJv89S_UvJtpZpIvH5FGhkvSsn-0TcpTap-TBvDyWPyPfz2gYqwzSVaZ5_uMLdW2ku9h82lXCuaVAXel6g6LoBk0xicSGlbRV1xQgEvHkObm6-Pzr_JKVAgosAAvbMqXrrE0MMSUOTEyHmchC--iklzo40Zg6e7gfiypkHSMcx9pwn3Kj4eKadJAvyHG7atMrQqsIFz2ZpahFVj45ZxqXuHMqC89T1hOiB53ZULKLY5GLazu4kf2xO21b1LbttT0hfJRc9xk2DpD5hMsy9scc2V3DavPblk1i0yzHoKRXJiSAKT6rXFB1ysZEJbWCQcywqHYIQwXghIGWB0zgdJTd264HSp8Me8gWyLi1QKV0hZSinpD342847PiC49q0uoM-sgG6BYxPTMjLfu-NOpAC2J2eydf_NbU35CF-9S6dJ-R4u7lLb4F2bf277lzdA5NhKos
  priority: 102
  providerName: Elsevier
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA96BfFF_PZqlQi-Bjdfmw0-SCstVbhSioW-hXxKS909767_fye72T36oNxrdieESeY3vySTGYQ-axEDj9QRFitBckVj4iovCFOKQlPitc5vhxdn9eml-Hklr8qB27qEVY6Y2AN16Hw-I_8CnkZVGXHlt-VfkqtG5dvVUkLjMdoDCG7kDO0dHZ-dX2zT7lIxPIaTnDSU6hLLM0R49Rkjr_-A3cI-kWX0APcrHjioPo__Az_1Lx7a-6OT5-hZIZL4cJj5F-hRbF-iJ4tyVf4KnR9iP9UYxF3CaXHxA9s24O3LfNzXwVljIK54ucqiOQga5xQSK1KSVt1iAMiMJq_R5cnxr--npJRPIB442IYIJZPSwYcYKfAw5RuWmHLBcseVt6zWMjnYHbPKJxUCGKPU1MVUK9i2RuX5GzRruza-Q7gKsM3jiTPJknDRWl3bSK0ViTkak5ojNerM-JJbPJe4uDVjENmN2WrbZG2bQdtzRCfJ5ZBfYweZozwt0_85Q3bf0K1-m2JwJjYpeMGd0D4CSNGmsl7ImLQOgisBnehxUs34CBVgEzq63mEAXyfZQlQGArKj9MG4hkwBjLXZLu85-jR9BlPP9ze2jd0d_MNrIFvA99gcvR3W3qQDzoDbqYbv_7_z9-hpHskQsXmAZpvVXfwArGrjPhbTuQecPyCE
  priority: 102
  providerName: ProQuest
Title A comparison of fMRI and behavioral models for predicting inter-temporal choices
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381192030121X
https://dx.doi.org/10.1016/j.neuroimage.2020.116634
https://www.ncbi.nlm.nih.gov/pubmed/32081783
https://www.proquest.com/docview/2417041305
https://www.proquest.com/docview/2365211752
https://doaj.org/article/e8fdc43b49ce488180ac45ef99d43744
Volume 211
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtCqWX0nfdposKvbq1Hvas6GlTEjYtu4TQwN6EnpCSesNmc81vz8iyneZQuodebJA1RoxHM9_g0TeEfFIyeBGYLXmoZJk6Gpe2crLkAAyHomhUOju8WDbzM_l9Va_-aPWVasIyPXBW3Jcwjd5JYaVyAY2NTSvjZB2iUl4KkB0TKMa8IZka6HaZzIfgUifCGoYanlzZ1TFFnv_G_Yr5IU9eA8OuvBeYOv7-e_Hpb_izi0NHz8jTHkDSWV74c_IgtC_I40X_i_wlOZlRN_YWpOtI4-L0mJrW07sT-bTrf3NFEbDSy00STcXPNFFHbMqerOqComNMXuQVOTs6_PltXvZtE0qH2GtbSqgjKO98CAzxF7gpjxysN8IKcIY3qo4Ws2JeuQje4yasFbMhNoDpagAnXpO9dt2Gt4RWHtM7EQWveZQ2GKMaE5gxMnLLQoSCwKAz7XpO8dTa4kIPxWO_9J22ddK2ztouCBslLzOvxg4yB-mzjPMTM3Y3gPaie3vR_7KXgqjho-rh8Cm6S3zR-Q4L-DrK9gAlA48dpfcHG9K9o7jSCKCgSkCiLsjH8TFu8fTfxrRhfY1zRIMgC3EeL8ibbHujDgRHTAdT8e5_6OY9eZLWm-s598nednMdPiDm2toJefj5huEVVjAhj2bHP-ZLvB8cLk9OJ93WuwVfKS0c
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVgIuiGcJFFgkOFp4H_ZmhRBqoVVCm6iqWqm3ZZ-oqNghSYX4U_xGZu21ox5AufTqeFbW7Mw332RnZxB6I7l3zBOTUZ_zLE40zkxueUaFIPAosFLGu8OTaTk641_Oi_MN9Ke7CxPLKjtMbIDa1Tb-R_4OIo3II-IWH2c_szg1Kp6udiM0WrM49L9_Qcq2-DD-DPv7ltKD_dNPoyxNFcgsUJNlxkURhHTWeU-Angg7pIEK4zQzTFhNS1kEA0kjzW0QzoGNFpIYH0oB2ZwXlsG6t9AW0AwJXrS1tz89Plm1-SW8vXxXsGxIiEy1Q21FWdOh8uIH4ATkpTSiFYR7fi0gNnMDrsXFf_HeJv4d3Ef3EnHFu62lPUAbvnqIbk_S0fwjdLyLbT_TENcBh8nJGOvK4VUnANzM3VlgIMp4No-isegax5YV8yw1ybrEAMgRvR6jsxtR7BO0WdWVf4pw7iCtZIHRggZuvNay1J5ozQM1xAcxQKLTmbKpl3kcqXGpuqK172qlbRW1rVptDxDpJWdtP481ZPbitvTvx47czYN6_k0lB1d-GJzlzHBpPYAiGeba8sIHKR1ngsMisttU1V16BZiGhS7W-ID3vWwiRi3hWVN6p7MhlQBqoVbuNECv-58BWuJ5ka58fQXvsBLIHfBLOkDbre31OmAUuKQYsmf_X_wVujM6nRypo_H08Dm6G7-qrRbdQZvL-ZV_AYxuaV4mN8Lo60177l8OfV3V
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVKq4IN4NFFgkOFr1Puz1CiHU0kYNJVFUUam3xftCRcUOSSrEX-PXMWuvHfUAyqVXx7OyZme--SY7O4PQG8mdZY7ohLqUJ2GicaJTwxMqBIFHnuUy3B2eTPOTc_7pIrvYQn-6uzChrLLDxAaobW3Cf-T7EGlEGhA32_exLGJ2NPow_5mECVLhpLUbp9GayKn7_QvSt-X78RHs9VtKR8dfPp4kccJAYoCmrBIuMi-kNdY5AlRFmIJ6KrQtmWbClDSXmdeQQNLUeGEt2GsmiXY-F5DZOWEYrHsHbQuIisUAbR8eT2dn65a_hLcX8TKWFITIWEfUVpc13SovfwBmQI5KA3JB6Oc3gmMzQ-BGjPwXB25i4eg-uhdJLD5ore4B2nLVQ7Qzicf0j9DsAJt-viGuPfaTszEuK4vXXQFwM4NniYE04_kiiIYCbBzaVyyS2DDrCgM4ByR7jM5vRbFP0KCqK7eLcGohxWSe0Yx6rl1Zyrx0pCy5p5o4L4ZIdDpTJvY1D-M1rlRXwPZdrbWtgrZVq-0hIr3kvO3tsYHMYdiW_v3Qnbt5UC--qejsyhXeGs40l8YBQJIiLQ3PnJfSciY4LCK7TVXdBViAbFjocoMPeNfLRpLUkp8Npfc6G1IRrJZq7VpD9Lr_GWAmnB2Vlauv4R2WA9EDrkmH6Glre70OGAVeKQr27P-Lv0I74LHq83h6-hzdDR_VFo7uocFqce1eALlb6ZfRizD6etuO-xc9hWIB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+fMRI+and+behavioral+models+for+predicting+inter-temporal+choices&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Felix+G.+Knorr&rft.au=Philipp+T.+Neukam&rft.au=Juliane+H.+Fr%C3%B6hner&rft.au=Holger+Mohr&rft.date=2020-05-01&rft.pub=Elsevier&rft.issn=1095-9572&rft.volume=211&rft.spage=116634&rft_id=info:doi/10.1016%2Fj.neuroimage.2020.116634&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e8fdc43b49ce488180ac45ef99d43744
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon