Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods

A comparative analysis of methods for scoring human sleep data, in particular sleep spindles, from encephalographic recordings is reported. The authors develop methods for crowdsourcing the identification of sleep spindles and compare the detection performance of experts, non-experts and automated a...

Full description

Saved in:
Bibliographic Details
Published inNature methods Vol. 11; no. 4; pp. 385 - 392
Main Authors Warby, Simon C, Wendt, Sabrina L, Welinder, Peter, Munk, Emil G S, Carrillo, Oscar, Sorensen, Helge B D, Jennum, Poul, Peppard, Paul E, Perona, Pietro, Mignot, Emmanuel
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.04.2014
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A comparative analysis of methods for scoring human sleep data, in particular sleep spindles, from encephalographic recordings is reported. The authors develop methods for crowdsourcing the identification of sleep spindles and compare the detection performance of experts, non-experts and automated algorithms. Sleep spindles are discrete, intermittent patterns of brain activity observed in human electroencephalographic data. Increasingly, these oscillations are of biological and clinical interest because of their role in development, learning and neurological disorders. We used an Internet interface to crowdsource spindle identification by human experts and non-experts, and we compared their performance with that of automated detection algorithms in data from middle- to older-aged subjects from the general population. We also refined methods for forming group consensus and evaluating the performance of event detectors in physiological data such as electroencephalographic recordings from polysomnography. Compared to the expert group consensus gold standard, the highest performance was by individual experts and the non-expert group consensus, followed by automated spindle detectors. This analysis showed that crowdsourcing the scoring of sleep data is an efficient method to collect large data sets, even for difficult tasks such as spindle identification. Further refinements to spindle detection algorithms are needed for middle- to older-aged subjects.
AbstractList Sleep spindles are discrete, intermittent patterns of brain activity that arise as a result of interactions of several circuits in the brain. Increasingly, these oscillations are of biological and clinical interest because of their role in development, learning, and neurological disorders. We used an internet interface to ‘crowdsource’ spindle identification from human experts and non-experts, and compared performance with 6 automated detection algorithms in middle-to-older aged subjects from the general population. We also developed a method for forming group consensus, and refined methods of evaluating the performance of event detectors in physiological data such as polysomnography. Compared to the gold standard, the highest performance was by individual experts and the non-expert group consensus, followed by automated spindle detectors. Crowdsourcing the scoring of sleep data is an efficient method to collect large datasets, even for difficult tasks such as spindle identification. Further refinements to automated sleep spindle algorithms are needed for middle-to-older aged subjects.
A comparative analysis of methods for scoring human sleep data, in particular sleep spindles, from encephalographic recordings is reported. The authors develop methods for crowdsourcing the identification of sleep spindles and compare the detection performance of experts, non-experts and automated algorithms. Sleep spindles are discrete, intermittent patterns of brain activity observed in human electroencephalographic data. Increasingly, these oscillations are of biological and clinical interest because of their role in development, learning and neurological disorders. We used an Internet interface to crowdsource spindle identification by human experts and non-experts, and we compared their performance with that of automated detection algorithms in data from middle- to older-aged subjects from the general population. We also refined methods for forming group consensus and evaluating the performance of event detectors in physiological data such as electroencephalographic recordings from polysomnography. Compared to the expert group consensus gold standard, the highest performance was by individual experts and the non-expert group consensus, followed by automated spindle detectors. This analysis showed that crowdsourcing the scoring of sleep data is an efficient method to collect large data sets, even for difficult tasks such as spindle identification. Further refinements to spindle detection algorithms are needed for middle- to older-aged subjects.
Sleep spindles are discrete, intermittent patterns of brain activity observed in human electroencephalographic data. Increasingly, these oscillations are of biological and clinical interest because of their role in development, learning and neurological disorders. We used an Internet interface to crowdsource spindle identification by human experts and non-experts, and we compared their performance with that of automated detection algorithms in data from middle- to older-aged subjects from the general population. We also refined methods for forming group consensus and evaluating the performance of event detectors in physiological data such as electroencephalographic recordings from polysomnography. Compared to the expert group consensus gold standard, the highest performance was by individual experts and the non-expert group consensus, followed by automated spindle detectors. This analysis showed that crowdsourcing the scoring of sleep data is an efficient method to collect large data sets, even for difficult tasks such as spindle identification. Further refinements to spindle detection algorithms are needed for middle- to older-aged subjects.
Sleep spindles are discrete, intermittent patterns of brain activity observed in human electroencephalographic data. Increasingly, these oscillations are of biological and clinical interest because of their role in development, learning and neurological disorders. We used an Internet interface to crowdsource spindle identification by human experts and non-experts, and we compared their performance with that of automated detection algorithms in data from middle- to older-aged subjects from the general population. We also refined methods for forming group consensus and evaluating the performance of event detectors in physiological data such as electroencephalographic recordings from polysomnography. Compared to the expert group consensus gold standard, the highest performance was by individual experts and the non-expert group consensus, followed by automated spindle detectors. This analysis showed that crowdsourcing the scoring of sleep data is an efficient method to collect large data sets, even for difficult tasks such as spindle identification. Further refinements to spindle detection algorithms are needed for middle- to older-aged subjects.Sleep spindles are discrete, intermittent patterns of brain activity observed in human electroencephalographic data. Increasingly, these oscillations are of biological and clinical interest because of their role in development, learning and neurological disorders. We used an Internet interface to crowdsource spindle identification by human experts and non-experts, and we compared their performance with that of automated detection algorithms in data from middle- to older-aged subjects from the general population. We also refined methods for forming group consensus and evaluating the performance of event detectors in physiological data such as electroencephalographic recordings from polysomnography. Compared to the expert group consensus gold standard, the highest performance was by individual experts and the non-expert group consensus, followed by automated spindle detectors. This analysis showed that crowdsourcing the scoring of sleep data is an efficient method to collect large data sets, even for difficult tasks such as spindle identification. Further refinements to spindle detection algorithms are needed for middle- to older-aged subjects.
Audience Academic
Author Warby, Simon C
Wendt, Sabrina L
Jennum, Poul
Perona, Pietro
Sorensen, Helge B D
Munk, Emil G S
Carrillo, Oscar
Mignot, Emmanuel
Welinder, Peter
Peppard, Paul E
AuthorAffiliation 3 Computational Vision Laboratory, California Institute of Technology, Pasadena, California, USA
2 Danish Center for Sleep Medicine, Glostrup University Hospital, Glostrup, Denmark
5 Department of Population Health Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
4 Dept. of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
1 Center for Sleep Science and Medicine, Stanford University, California, USA
AuthorAffiliation_xml – name: 4 Dept. of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
– name: 2 Danish Center for Sleep Medicine, Glostrup University Hospital, Glostrup, Denmark
– name: 5 Department of Population Health Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
– name: 1 Center for Sleep Science and Medicine, Stanford University, California, USA
– name: 3 Computational Vision Laboratory, California Institute of Technology, Pasadena, California, USA
Author_xml – sequence: 1
  givenname: Simon C
  surname: Warby
  fullname: Warby, Simon C
  organization: Center for Sleep Science and Medicine, Stanford University
– sequence: 2
  givenname: Sabrina L
  surname: Wendt
  fullname: Wendt, Sabrina L
  organization: Center for Sleep Science and Medicine, Stanford University, Danish Center for Sleep Medicine, Glostrup University Hospital
– sequence: 3
  givenname: Peter
  surname: Welinder
  fullname: Welinder, Peter
  organization: Computational Vision Laboratory, California Institute of Technology
– sequence: 4
  givenname: Emil G S
  surname: Munk
  fullname: Munk, Emil G S
  organization: Center for Sleep Science and Medicine, Stanford University, Danish Center for Sleep Medicine, Glostrup University Hospital
– sequence: 5
  givenname: Oscar
  surname: Carrillo
  fullname: Carrillo, Oscar
  organization: Center for Sleep Science and Medicine, Stanford University
– sequence: 6
  givenname: Helge B D
  surname: Sorensen
  fullname: Sorensen, Helge B D
  organization: Department of Electrical Engineering, Technical University of Denmark
– sequence: 7
  givenname: Poul
  surname: Jennum
  fullname: Jennum, Poul
  organization: Danish Center for Sleep Medicine, Glostrup University Hospital
– sequence: 8
  givenname: Paul E
  surname: Peppard
  fullname: Peppard, Paul E
  organization: Department of Population Health Sciences, University of Wisconsin–Madison
– sequence: 9
  givenname: Pietro
  surname: Perona
  fullname: Perona, Pietro
  email: perona@caltech.edu
  organization: Computational Vision Laboratory, California Institute of Technology
– sequence: 10
  givenname: Emmanuel
  surname: Mignot
  fullname: Mignot, Emmanuel
  email: mignot@stanford.edu
  organization: Center for Sleep Science and Medicine, Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24562424$$D View this record in MEDLINE/PubMed
BookMark eNptkltvFSEQx4mpsRd98QOYTXwx6h657sUHk6bxljTxQX0mLAynNLtwBLbqt5ftOUfb2pAAA7_5M8PMMTrwwQNCTwleEcy6N36CfLGinRAP0BERvKtbgsXBfo97coiOU7rEmDFOxSN0SLloKKf8CIWvI8CmThvnzQiVgQw6u-DfVjqGnyaFOWrn15XypoIrNc4qL-YGog1xUl5DFWwFv8pBTq-rElm9M65d1JzDpDKYaokxmPQYPbRqTPBkt56g7x_efzv7VJ9_-fj57PS81qIVueZE9-3Q8WYQSlCuiRi4xT2nFHOh-8ZyxpTF1ra2E70ehFFUC60t7gimBrMT9G6ru5mHCYwGn6Ma5Sa6ScXfMignb994dyHX4UqyvqWkZ0XgxU4ghh8zpCwnlzSMo_IQ5iSJIKSjrEwFfX4HvSzf5kt6hRJtw4te849aqxGk8zaUd_UiKk9ZI5oed_2itbqHKsPA5HSpu3Xl_JbDs5uJ_s1wX-IC4C1QCppSBCu1y2qpcVF2oyRYLl0kr7tILl1UXF7ecdmr3gu_2sKpQH4N8Ub2_9N_ADst2OI
CitedBy_id crossref_primary_10_1109_TBCAS_2017_2690908
crossref_primary_10_1371_journal_pone_0106847
crossref_primary_10_1136_bmjopen_2020_044295
crossref_primary_10_1088_1741_2552_aadc1c
crossref_primary_10_1016_j_nicl_2020_102390
crossref_primary_10_1016_j_jneumeth_2015_10_010
crossref_primary_10_1134_S1054661818020153
crossref_primary_10_1111_brv_12688
crossref_primary_10_3389_fnhum_2015_00052
crossref_primary_10_3758_s13414_015_0912_7
crossref_primary_10_7554_eLife_75769
crossref_primary_10_1016_j_cortex_2022_10_013
crossref_primary_10_1371_journal_pone_0165141
crossref_primary_10_3389_fnhum_2017_00109
crossref_primary_10_1016_j_tics_2024_02_002
crossref_primary_10_1016_j_nlm_2014_06_006
crossref_primary_10_1146_annurev_publhealth_081519_062400
crossref_primary_10_1111_psyp_13523
crossref_primary_10_1016_j_clinph_2018_01_006
crossref_primary_10_1111_ejn_16178
crossref_primary_10_1016_j_ijpsycho_2022_11_001
crossref_primary_10_1164_rccm_201811_2119OC
crossref_primary_10_1016_j_cub_2016_06_044
crossref_primary_10_3389_fnhum_2015_00181
crossref_primary_10_1109_TNSRE_2021_3105443
crossref_primary_10_1186_s40537_023_00751_2
crossref_primary_10_1287_deca_2022_0466
crossref_primary_10_1093_sysbio_syx052
crossref_primary_10_1145_3274297
crossref_primary_10_3389_fnhum_2015_00507
crossref_primary_10_3389_fnhum_2015_00624
crossref_primary_10_1016_j_neuroimage_2018_04_046
crossref_primary_10_1146_annurev_clinpsy_050718_095754
crossref_primary_10_1038_srep43286
crossref_primary_10_1088_1741_2552_aba6dd
crossref_primary_10_1126_sciadv_adn6247
crossref_primary_10_3389_fnhum_2015_00070
crossref_primary_10_1152_physrev_00042_2018
crossref_primary_10_1523_JNEUROSCI_2009_20_2020
crossref_primary_10_1111_jsr_12698
crossref_primary_10_3389_fnhum_2014_00762
crossref_primary_10_1371_journal_pone_0100647
crossref_primary_10_3389_fpsyt_2023_1055459
crossref_primary_10_1016_j_ynstr_2023_100516
crossref_primary_10_1016_j_nicl_2023_103552
crossref_primary_10_1093_braincomms_fcab108
crossref_primary_10_1016_j_clinph_2024_11_020
crossref_primary_10_1016_j_jneumeth_2018_11_023
crossref_primary_10_1088_1741_2552_abd463
crossref_primary_10_1016_j_schres_2020_03_025
crossref_primary_10_1371_journal_pcbi_1011395
crossref_primary_10_1167_jov_21_6_8
crossref_primary_10_3389_fnhum_2017_00261
crossref_primary_10_1038_s41598_020_63573_9
crossref_primary_10_1186_s13229_018_0214_8
crossref_primary_10_1371_journal_pone_0177437
crossref_primary_10_1097_WCO_0000000000000663
crossref_primary_10_3389_fnins_2023_1105696
crossref_primary_10_1113_JP270941
crossref_primary_10_1016_j_jneumeth_2018_08_014
crossref_primary_10_1016_j_jneumeth_2017_06_004
crossref_primary_10_1093_sleep_zsad159
crossref_primary_10_1111_jsr_12672
crossref_primary_10_3390_data8060108
crossref_primary_10_1109_ACCESS_2019_2913457
crossref_primary_10_7554_eLife_17267
crossref_primary_10_1002_acn3_796
crossref_primary_10_1016_j_chaos_2021_110712
crossref_primary_10_1038_s41746_021_00440_5
crossref_primary_10_1016_j_neuroimage_2023_120319
crossref_primary_10_1109_ACCESS_2020_3042737
crossref_primary_10_1016_j_schres_2020_08_022
crossref_primary_10_1176_appi_ajp_2020_20070968
crossref_primary_10_1111_jsr_12309
crossref_primary_10_1093_sleep_zsz055
crossref_primary_10_1016_j_clinph_2025_01_011
crossref_primary_10_1111_isj_12318
crossref_primary_10_1186_s41606_016_0005_0
crossref_primary_10_1109_ACCESS_2023_3319597
crossref_primary_10_2337_dc15_0907
crossref_primary_10_1038_s41598_020_80417_8
crossref_primary_10_1155_2016_3670951
crossref_primary_10_1016_j_neuroimage_2022_119055
crossref_primary_10_1016_j_cobeha_2020_01_009
crossref_primary_10_1007_s10439_015_1344_1
crossref_primary_10_3233_RNN_150521
crossref_primary_10_1016_j_bspc_2017_11_019
crossref_primary_10_1016_j_neuroimage_2020_116779
crossref_primary_10_1093_sleep_zsy077
crossref_primary_10_1016_j_brainres_2021_147491
crossref_primary_10_1016_j_bpsc_2019_04_012
crossref_primary_10_3233_SW_222925
crossref_primary_10_1523_JNEUROSCI_0945_18_2018
crossref_primary_10_1016_j_clinph_2024_08_017
crossref_primary_10_1093_sleep_zsaa230
crossref_primary_10_1016_j_jneumeth_2019_01_009
crossref_primary_10_1088_1361_6579_ad66aa
crossref_primary_10_1109_TCDS_2022_3159285
crossref_primary_10_1016_j_chest_2016_04_016
crossref_primary_10_1093_sleep_zsad248
crossref_primary_10_1080_13632469_2017_1342304
crossref_primary_10_1016_j_apacoust_2021_108286
crossref_primary_10_1016_j_compbiomed_2024_109477
crossref_primary_10_1093_sleep_zsab069
crossref_primary_10_1093_sleep_zsz315
crossref_primary_10_3389_fneur_2021_598632
crossref_primary_10_3389_fnins_2019_00148
crossref_primary_10_1111_jsr_12524
crossref_primary_10_1111_jsr_13733
crossref_primary_10_1016_j_schres_2024_10_026
crossref_primary_10_1088_1742_6596_1748_2_022009
crossref_primary_10_3390_ctn7040036
crossref_primary_10_1016_j_jneumeth_2017_12_023
crossref_primary_10_1038_s41386_020_00833_2
crossref_primary_10_1155_2016_6783812
crossref_primary_10_1109_ACCESS_2025_3532536
crossref_primary_10_1093_sleep_zsab191
crossref_primary_10_1212_WNL_0000000000005759
crossref_primary_10_1109_TMI_2018_2883237
crossref_primary_10_1113_JP279045
crossref_primary_10_1186_s12916_020_01812_6
crossref_primary_10_3389_fneur_2022_871166
crossref_primary_10_1121_1_5024340
crossref_primary_10_1142_S179353691550003X
crossref_primary_10_1371_journal_pcbi_1010485
crossref_primary_10_1016_j_neuroimage_2019_01_049
crossref_primary_10_1093_sleep_zsy218
crossref_primary_10_1088_1361_6579_ac77d2
crossref_primary_10_1016_j_jtbi_2021_110837
crossref_primary_10_1007_s12652_022_04202_3
crossref_primary_10_1016_j_jneumeth_2015_04_006
crossref_primary_10_3389_frsle_2024_1427540
crossref_primary_10_1038_s41597_020_0533_4
crossref_primary_10_1093_sleepadvances_zpae090
crossref_primary_10_3917_popu_2002_0391
crossref_primary_10_1186_s12883_023_03376_3
crossref_primary_10_1111_jsr_13037
crossref_primary_10_1111_jsr_13831
crossref_primary_10_1016_j_clinph_2022_01_132
crossref_primary_10_1016_j_smrv_2022_101605
crossref_primary_10_1016_j_jsmc_2024_10_001
crossref_primary_10_1111_epi_18282
crossref_primary_10_1162_NECO_a_00936
crossref_primary_10_4258_hir_2022_28_1_16
crossref_primary_10_1093_sleep_zsad034
crossref_primary_10_1093_sleep_zsab099
crossref_primary_10_1016_j_sleep_2021_01_035
crossref_primary_10_1093_sleep_zsw013
crossref_primary_10_1093_sleep_zsad017
crossref_primary_10_1016_j_cmpb_2021_105955
crossref_primary_10_1016_j_neurobiolaging_2023_01_006
crossref_primary_10_1111_jsr_13385
crossref_primary_10_1007_s10517_022_05557_5
crossref_primary_10_1186_s40535_016_0027_9
crossref_primary_10_1016_j_jneumeth_2015_11_015
crossref_primary_10_1111_jsr_12614
crossref_primary_10_1177_10738584211017018
crossref_primary_10_1080_17517575_2019_1597385
crossref_primary_10_3389_fninf_2017_00060
crossref_primary_10_1007_s00115_022_01340_z
crossref_primary_10_1109_JBHI_2022_3159727
crossref_primary_10_1111_jsr_12169
crossref_primary_10_1038_s41467_020_19076_2
crossref_primary_10_1093_sleep_zsy024
crossref_primary_10_1093_sleep_zsac112
crossref_primary_10_1093_sleep_zsaa058
crossref_primary_10_1016_j_neuroimage_2022_119325
crossref_primary_10_3389_fnins_2021_751730
crossref_primary_10_3390_brainsci14101007
crossref_primary_10_1093_sleep_zsy142
crossref_primary_10_2196_jmir_9330
crossref_primary_10_1016_j_jphysparis_2017_02_003
crossref_primary_10_5665_sleep_4820
crossref_primary_10_2196_28659
crossref_primary_10_1093_sleep_zsaa064
crossref_primary_10_1093_sleep_zsac001
crossref_primary_10_1016_j_schres_2019_11_002
crossref_primary_10_1038_ncomms15930
crossref_primary_10_1016_j_jneumeth_2019_03_017
crossref_primary_10_1016_j_jneumeth_2015_01_022
crossref_primary_10_1016_j_nlm_2021_107529
crossref_primary_10_1093_sleep_zsac223
crossref_primary_10_1016_j_neuroscience_2018_12_049
crossref_primary_10_5665_sleep_5242
crossref_primary_10_1016_j_clinph_2021_09_008
crossref_primary_10_1016_j_schres_2020_05_022
crossref_primary_10_1109_TNSRE_2020_2964597
crossref_primary_10_1038_s41598_018_19880_3
crossref_primary_10_3389_fnhum_2015_00414
crossref_primary_10_3390_e21121201
crossref_primary_10_1212_WNL_0000000000210232
crossref_primary_10_1088_1741_2552_ab0933
crossref_primary_10_3389_fnhum_2017_00433
crossref_primary_10_1016_j_euroneuro_2015_06_005
crossref_primary_10_1038_s41598_017_15195_x
crossref_primary_10_1007_s11920_016_0713_2
crossref_primary_10_1186_s13024_019_0309_5
crossref_primary_10_1016_j_neuroimage_2014_10_048
crossref_primary_10_1038_s41467_017_01045_x
crossref_primary_10_1093_sleep_zsae098
crossref_primary_10_3390_s24247881
crossref_primary_10_1088_1742_6596_1096_1_012082
crossref_primary_10_3390_jpm12040509
crossref_primary_10_1093_sleep_zsac139
crossref_primary_10_1038_s41598_023_50736_7
crossref_primary_10_1155_2018_3076986
crossref_primary_10_1631_FITEE_1700810
crossref_primary_10_1016_j_bspc_2018_10_004
crossref_primary_10_1093_sleep_zsac013
crossref_primary_10_1038_s41598_022_11210_y
crossref_primary_10_1155_2016_6413473
crossref_primary_10_1002_acn3_51840
crossref_primary_10_1038_s41467_023_37682_8
crossref_primary_10_1016_j_clinph_2014_10_158
crossref_primary_10_1038_s41598_018_36327_x
crossref_primary_10_1093_sleep_zsaa084
crossref_primary_10_1073_pnas_2405276121
crossref_primary_10_1109_TNSRE_2022_3186942
crossref_primary_10_1016_j_jneumeth_2018_12_002
crossref_primary_10_1016_j_nlm_2016_06_015
crossref_primary_10_1016_j_nlm_2020_107206
crossref_primary_10_1016_j_sleep_2020_07_044
crossref_primary_10_1111_jsr_13583
crossref_primary_10_3389_fncom_2022_769860
crossref_primary_10_1016_j_bspc_2021_103026
crossref_primary_10_1016_j_sleep_2017_02_022
crossref_primary_10_1371_journal_pone_0288909
crossref_primary_10_1016_j_neuroimage_2024_120916
crossref_primary_10_1152_physiol_00062_2015
crossref_primary_10_1016_j_jbi_2017_04_003
crossref_primary_10_1016_j_nanoen_2021_106682
crossref_primary_10_1093_sleep_zsac010
crossref_primary_10_1016_j_jneumeth_2024_110064
crossref_primary_10_1007_s11818_015_0696_y
crossref_primary_10_1088_1741_2552_abe8ad
Cites_doi 10.1053/smrv.2002.0252
10.1002/ana.21434
10.1523/JNEUROSCI.22-24-10941.2002
10.1016/S1388-2457(00)00249-2
10.1016/j.biopsych.2008.03.002
10.1016/j.biopsych.2011.08.008
10.1177/155005949402500108
10.1016/0013-4694(76)90142-5
10.1093/brain/awh425
10.1073/pnas.0703084104
10.1016/0022-3956(67)90027-1
10.1111/j.1749-6632.2009.04416.x
10.1016/j.jneumeth.2008.11.006
10.1016/j.jad.2012.06.016
10.1016/j.neuroscience.2005.10.029
10.1523/JNEUROSCI.22-15-06830.2002
10.1016/j.jneumeth.2009.04.006
10.1016/j.pediatrneurol.2006.09.014
10.1016/S1388-2457(02)00237-7
10.1038/nrn2762
10.1016/j.ridd.2011.09.004
10.1016/S0013-4694(97)00070-9
10.1016/j.neuron.2011.02.043
10.5665/sleep.2722
10.1016/j.bbr.2010.10.019
10.1002/hbm.22116
10.1016/S1388-2457(01)00570-3
10.1176/ajp.2007.164.3.483
10.1111/j.1460-9568.2006.04694.x
10.1016/S1389-9457(02)00239-3
10.1016/S1388-2457(00)00556-3
10.1046/j.1365-2869.2000.00220.x
10.1093/biostatistics/kxq028
10.1016/S1474-4422(03)00323-5
10.3389/fneur.2012.00057
10.1093/sleep/5.1.47
10.1093/aje/kws342
10.1016/j.neubiorev.2010.12.003
10.1109/IEMBS.2006.259298
10.1016/j.neurobiolaging.2012.05.020
10.1016/j.jpsychores.2004.02.001
10.1016/j.neuroimage.2005.01.020
10.1016/j.artmed.2007.04.003
10.1111/j.1460-9568.2011.07822.x
10.1111/j.1365-2869.2009.00802.x
10.1093/sleep/20.11.939
10.1159/000085205
10.1016/j.neuropsychologia.2012.06.008
10.1016/j.neuroimage.2011.10.036
ContentType Journal Article
Copyright Springer Nature America, Inc. 2014
COPYRIGHT 2014 Nature Publishing Group
Copyright Nature Publishing Group Apr 2014
Copyright_xml – notice: Springer Nature America, Inc. 2014
– notice: COPYRIGHT 2014 Nature Publishing Group
– notice: Copyright Nature Publishing Group Apr 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QO
7SS
7TK
7U9
7X2
7X7
7XB
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
L6V
LK8
M0K
M0S
M1P
M2P
M7N
M7P
M7S
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
RC3
7X8
5PM
DOI 10.1038/nmeth.2855
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Agricultural Science Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1548-7105
EndPage 392
ExternalDocumentID PMC3972193
3415770261
A365690898
24562424
10_1038_nmeth_2855
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL062252
– fundername: NINDS NIH HHS
  grantid: P50 NS023724
– fundername: CIHR
  grantid: 112940-1
– fundername: NCATS NIH HHS
  grantid: UL1 TR000427
– fundername: NCRR NIH HHS
  grantid: 1UL1RR025011
– fundername: NINDS NIH HHS
  grantid: NS23724
– fundername: NHLBI NIH HHS
  grantid: R01HL62252
– fundername: NCRR NIH HHS
  grantid: UL1 RR025011
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
7X2
7X7
7XC
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AHBCP
AHMBA
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
D1I
D1J
D1K
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESX
F5P
FEDTE
FSGXE
FYUFA
FZEXT
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ITC
K6-
KB.
L6V
LK5
LK8
M0K
M1P
M2P
M7P
M7R
M7S
NNMJJ
O9-
ODYON
P2P
P62
PATMY
PCBAR
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
PUEGO
PMFND
7QL
7QO
7SS
7TK
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c575t-41c97b846b5a524c15b4f09422045c96f433af0ff7f859cb5da2c5ccf08102d03
IEDL.DBID 7X7
ISSN 1548-7091
1548-7105
IngestDate Thu Aug 21 13:52:11 EDT 2025
Tue Aug 05 10:41:39 EDT 2025
Fri Jul 25 09:09:43 EDT 2025
Tue Jun 17 21:26:19 EDT 2025
Tue Jun 10 20:22:46 EDT 2025
Thu Aug 28 04:17:30 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Tue Jul 01 00:44:27 EDT 2025
Fri Feb 21 02:37:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://www.springer.com/tdm
Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-41c97b846b5a524c15b4f09422045c96f433af0ff7f859cb5da2c5ccf08102d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3972193
PMID 24562424
PQID 1557641936
PQPubID 28015
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3972193
proquest_miscellaneous_1511823118
proquest_journals_1557641936
gale_infotracmisc_A365690898
gale_infotracacademiconefile_A365690898
pubmed_primary_24562424
crossref_citationtrail_10_1038_nmeth_2855
crossref_primary_10_1038_nmeth_2855
springer_journals_10_1038_nmeth_2855
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle Techniques for life scientists and chemists
PublicationTitle Nature methods
PublicationTitleAbbrev Nat Methods
PublicationTitleAlternate Nat Methods
PublicationYear 2014
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References MartinNTopography of age-related changes in sleep spindlesNeurobiol. Aging20133446847610.1016/j.neurobiolaging.2012.05.020
HuupponenEOptimization of sigma amplitude threshold in sleep spindle detectionJ. Sleep Res.200093273341:STN:280:DC%2BD3Mzht1GntQ%3D%3D10.1046/j.1365-2869.2000.00220.x
McCormickLNielsenTNicolasAPtitoMMontplaisirJTopographical distribution of spindles and K-complexes in normal subjectsSleep1997209399411:STN:280:DyaK1c7hslGksQ%3D%3D10.1093/sleep/20.11.939
FeinbergIKoreskoRLHellerNEEG sleep patterns as a function of normal and pathological aging in manJ. Psychiatr. Res.196751071441:STN:280:DyaF1c%2FktFKnsg%3D%3D10.1016/0022-3956(67)90027-1
De GennaroLThe electroencephalographic fingerprint of sleep is genetically determined: a twin studyAnn. Neurol.20086445546010.1002/ana.21434
BódizsRGombosFKovácsISleep EEG fingerprints reveal accelerated thalamocortical oscillatory dynamics in Williams syndromeRes. Dev. Disabil.20123315316410.1016/j.ridd.2011.09.004
WalkerMPThe role of sleep in cognition and emotionAnn. NY Acad. Sci.2009115616819710.1111/j.1749-6632.2009.04416.x
BarakatMSleep spindles predict neural and behavioral changes in motor sequence consolidationHum. Brain Mapp.2013342918292810.1002/hbm.22116
WendtSLValidation of a novel automatic sleep spindle detector with high performance during sleep in middle aged subjectsConf. Proc. IEEE Eng. Med. Biol. Soc.201220124250425323366866
VukadinovicZSleep abnormalities in schizophrenia may suggest impaired trans-thalamic cortico-cortical communication: towards a dynamic model of the illnessEur. J. Neurosci.2011341031103910.1111/j.1460-9568.2011.07822.x
HimanenS-LVirkkalaJHuupponenEHasanJSpindle frequency remains slow in sleep apnea patients throughout the nightSleep Med.2003422923410.1016/S1389-9457(02)00239-3
MölleMMarshallLGaisSBornJGrouping of spindle activity during slow oscillations in human non-rapid eye movement sleepJ. Neurosci.200222109411094710.1523/JNEUROSCI.22-24-10941.2002
Iber, C., Ancoli-Israel, S., Chesson, A. & Quan, S.F. AASM Manual for the Scoring of Sleep and Associated Events 1st edn. (American Academy of Sleep Medicine, 2007).
PlanteDTTopographic and sex-related differences in sleep spindles in major depressive disorder: a high-density EEG investigationJ. Affect. Disord.20131461201251:STN:280:DC%2BC38bms1agsw%3D%3D10.1016/j.jad.2012.06.016
MyatchinILagaeLSleep spindle abnormalities in children with generalized spike-wave dischargesPediatr. Neurol.20073610611110.1016/j.pediatrneurol.2006.09.014
De GennaroLFerraraMVecchioFCurcioGBertiniMAn electroencephalographic fingerprint of human sleepNeuroimage20052611412210.1016/j.neuroimage.2005.01.020
AndererPAn E-health solution for automatic sleep classification according to Rechtschaffen and Kales: validation study of the Somnolyzer 24 x 7 utilizing the Siesta databaseNeuropsychobiology20055111513310.1159/000085205
EspaFOndzeBDeglisePBilliardMBessetASleep architecture, slow wave activity, and sleep spindles in adult patients with sleepwalking and sleep terrorsClin. Neurophysiol.20001119299391:STN:280:DC%2BD3c3msVarsg%3D%3D10.1016/S1388-2457(00)00249-2
BergmannTOMolleMDiedrichsJBornJSiebnerHRSleep spindle-related reactivation of category-specific cortical regions after learning face-scene associationsNeuroimage2012592733274210.1016/j.neuroimage.2011.10.036
FerrarelliFReduced sleep spindle activity in schizophrenia patientsAm. J. Psychiatry200716448349210.1176/ajp.2007.164.3.483
RuchSSleep stage II contributes to the consolidation of declarative memoriesNeuropsychologia2012502389239610.1016/j.neuropsychologia.2012.06.008
WerthEAchermannPDijkDJBorbélyAASpindle frequency activity in the sleep EEG: individual differences and topographic distributionElectroencephalogr. Clin. Neurophysiol.19971035355421:STN:280:DyaK1c%2Fms1Grug%3D%3D10.1016/S0013-4694(97)00070-9
SchimicekPZeitlhoferJAndererPSaletuBAutomatic sleep-spindle detection procedure: aspects of reliability and validityClin. Electroencephalogr.19942526291:STN:280:DyaK2c3ivVOhuw%3D%3D10.1177/155005949402500108
PetitDGagnonJ-FFantiniMLFerini-StrambiLMontplaisirJSleep and quantitative EEG in neurodegenerative disordersJ. Psychosom. Res.20045648749610.1016/j.jpsychores.2004.02.001
DiekelmannSBornJThe memory function of sleepNat. Rev. Neurosci.2010111141261:CAS:528:DC%2BC3cXktFKi20046194
WamsleyEJReduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation?Biol. Psychiatry20127115416110.1016/j.biopsych.2011.08.008
AmbrosiusUHeritability of sleep electroencephalogramBiol. Psychiatry20086434434810.1016/j.biopsych.2008.03.002
FerraraMMoroniFDe GennaroLNobiliLHippocampal sleep features: relations to human memory functionFront. Neurol.201235710.3389/fneur.2012.00057
SilversteinLDLevyCMThe stability of the sigma sleep spindleElectroencephalogr. Clin. Neurophysiol.1976406666701:STN:280:DyaE287msFSnsg%3D%3D10.1016/0013-4694(76)90142-5
BarakatMFast and slow spindle involvement in the consolidation of a new motor sequenceBehav. Brain Res.20112171171211:STN:280:DC%2BC3M%2FltVOhug%3D%3D10.1016/j.bbr.2010.10.019
FogelSMSmithCTThe function of the sleep spindle: a physiological index of intelligence and a mechanism for sleep-dependent memory consolidationNeurosci. Biobehav. Rev.2011351154116510.1016/j.neubiorev.2010.12.003
ShibagakiMKiyonoSWatanabeKSpindle evolution in normal and mentally retarded children: a reviewSleep1982547571:STN:280:DyaL387nsFKrtQ%3D%3D10.1093/sleep/5.1.47
SchabusMHemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleepProc. Natl. Acad. Sci. USA200710413164131691:CAS:528:DC%2BD2sXpt1Gnurs%3D10.1073/pnas.0703084104
PeppardPEIncreased prevalence of sleep-disordered breathing in adultsAm. J. Epidemiol.20131771006101410.1093/aje/kws342
DevuystSAutomatic sleep spindle detection in patients with sleep disordersConf. Proc. IEEE Eng. Med. Biol. Soc.20061388338861:STN:280:DC%2BD2snis1KrsQ%3D%3D10.1109/IEMBS.2006.259298
RayLBFogelSMSmithCTPetersKRValidating an automated sleep spindle detection algorithm using an individualized approachJ. Sleep Res.20101937437810.1111/j.1365-2869.2009.00802.x
NirYRegional slow waves and spindles in human sleepNeuron2011701531691:CAS:528:DC%2BC3MXksFelt7s%3D10.1016/j.neuron.2011.02.043
SitnikovaEHramovAEKoronovskyAAvan LuijtelaarGSleep spindles and spike-wave discharges in EEG: their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysisJ. Neurosci. Methods200918030431610.1016/j.jneumeth.2009.04.006
De GennaroLFerraraMSleep spindles: an overviewSleep Med. Rev.2003742344010.1053/smrv.2002.0252
LimogesEMottronLBolducCBerthiaumeCGodboutRAtypical sleep architecture and the autism phenotypeBrain20051281049106110.1093/brain/awh425
TanXCampbellIGFeinbergIInternight reliability and benchmark values for computer analyses of non-rapid eye movement (NREM) and REM EEG in normal young adult and elderly subjectsClin. Neurophysiol.2001112154015521:STN:280:DC%2BD3MvgvVSgtQ%3D%3D10.1016/S1388-2457(01)00570-3
CrowleyKTrinderJKimYCarringtonMColrainIMThe effects of normal aging on sleep spindle and K-complex productionClin. Neurophysiol.20021131615162210.1016/S1388-2457(02)00237-7
AyoubADifferential effects on fast and slow spindle activity, and the sleep slow oscillation in humans with carbamazepine and flunarizine to antagonize voltage-dependent Na+ and Ca2+ channel activitySleep20133690591110.5665/sleep.2722
SchabusMSleep spindle-related activity in the human EEG and its relation to general cognitive and learning abilitiesEur. J. Neurosci.200623173817461:STN:280:DC%2BD283hslersg%3D%3D10.1111/j.1460-9568.2006.04694.x
SteriadeMGrouping of brain rhythms in corticothalamic systemsNeuroscience2006137108711061:CAS:528:DC%2BD28Xos1emsg%3D%3D10.1016/j.neuroscience.2005.10.029
MontagnaPGambettiPCortelliPLugaresiEFamilial and sporadic fatal insomniaLancet Neurol.200321671761:CAS:528:DC%2BD3sXkvFOgtrw%3D10.1016/S1474-4422(03)00323-5
HuupponenEDevelopment and comparison of four sleep spindle detection methodsArtif. Intell. Med.20074015717010.1016/j.artmed.2007.04.003
GaisSMölleMHelmsKBornJLearning-dependent increases in sleep spindle densityJ. Neurosci.200222683068341:CAS:528:DC%2BD38XlvFKntLs%3D10.1523/JNEUROSCI.22-15-06830.2002
NicolasAPetitDRompréSMontplaisirJSleep spindle characteristics in healthy subjects of different age groupsClin. Neurophysiol.20011125215271:STN:280:DC%2BD3M3gs1antQ%3D%3D10.1016/S1388-2457(00)00556-3
BódizsRKörmendiJRigóPLázárASThe individual adjustment method of sleep spindle analysis: methodological improvements and roots in the fingerprint paradigmJ. Neurosci. Methods200917820521310.1016/j.jneumeth.2008.11.006
DonohoDLAn invitation to reproducible computational researchBiostatistics20101138538810.1093/biostatistics/kxq028
K Crowley (BFnmeth2855_CR8) 2002; 113
M Shibagaki (BFnmeth2855_CR7) 1982; 5
A Nicolas (BFnmeth2855_CR9) 2001; 112
E Sitnikova (BFnmeth2855_CR44) 2009; 180
R Bódizs (BFnmeth2855_CR43) 2012; 33
R Bódizs (BFnmeth2855_CR41) 2009; 178
DL Donoho (BFnmeth2855_CR51) 2010; 11
U Ambrosius (BFnmeth2855_CR12) 2008; 64
P Montagna (BFnmeth2855_CR21) 2003; 2
Z Vukadinovic (BFnmeth2855_CR27) 2011; 34
Y Nir (BFnmeth2855_CR49) 2011; 70
M Barakat (BFnmeth2855_CR36) 2013; 34
N Martin (BFnmeth2855_CR10) 2013; 34
L De Gennaro (BFnmeth2855_CR5) 2005; 26
BFnmeth2855_CR1
F Espa (BFnmeth2855_CR22) 2000; 111
S Diekelmann (BFnmeth2855_CR15) 2010; 11
S Gais (BFnmeth2855_CR30) 2002; 22
L De Gennaro (BFnmeth2855_CR11) 2008; 64
DT Plante (BFnmeth2855_CR46) 2013; 146
M Schabus (BFnmeth2855_CR40) 2007; 104
L McCormick (BFnmeth2855_CR50) 1997; 20
L De Gennaro (BFnmeth2855_CR6) 2003; 7
TO Bergmann (BFnmeth2855_CR37) 2012; 59
MP Walker (BFnmeth2855_CR14) 2009; 1156
A Ayoub (BFnmeth2855_CR38) 2013; 36
F Ferrarelli (BFnmeth2855_CR17) 2007; 164
M Schabus (BFnmeth2855_CR33) 2006; 23
EJ Wamsley (BFnmeth2855_CR18) 2012; 71
E Limoges (BFnmeth2855_CR19) 2005; 128
SM Fogel (BFnmeth2855_CR13) 2011; 35
D Petit (BFnmeth2855_CR24) 2004; 56
M Mölle (BFnmeth2855_CR31) 2002; 22
P Anderer (BFnmeth2855_CR32) 2005; 51
I Myatchin (BFnmeth2855_CR20) 2007; 36
I Feinberg (BFnmeth2855_CR48) 1967; 5
X Tan (BFnmeth2855_CR3) 2001; 112
E Huupponen (BFnmeth2855_CR29) 2000; 9
S-L Himanen (BFnmeth2855_CR23) 2003; 4
P Schimicek (BFnmeth2855_CR28) 1994; 25
E Huupponen (BFnmeth2855_CR34) 2007; 40
S Ruch (BFnmeth2855_CR42) 2012; 50
SL Wendt (BFnmeth2855_CR45) 2012; 2012
M Ferrara (BFnmeth2855_CR25) 2012; 3
LD Silverstein (BFnmeth2855_CR2) 1976; 40
S Devuyst (BFnmeth2855_CR35) 2006; 1
M Barakat (BFnmeth2855_CR16) 2011; 217
M Steriade (BFnmeth2855_CR26) 2006; 137
LB Ray (BFnmeth2855_CR39) 2010; 19
E Werth (BFnmeth2855_CR4) 1997; 103
PE Peppard (BFnmeth2855_CR47) 2013; 177
References_xml – reference: De GennaroLFerraraMVecchioFCurcioGBertiniMAn electroencephalographic fingerprint of human sleepNeuroimage20052611412210.1016/j.neuroimage.2005.01.020
– reference: DiekelmannSBornJThe memory function of sleepNat. Rev. Neurosci.2010111141261:CAS:528:DC%2BC3cXktFKi20046194
– reference: AyoubADifferential effects on fast and slow spindle activity, and the sleep slow oscillation in humans with carbamazepine and flunarizine to antagonize voltage-dependent Na+ and Ca2+ channel activitySleep20133690591110.5665/sleep.2722
– reference: WerthEAchermannPDijkDJBorbélyAASpindle frequency activity in the sleep EEG: individual differences and topographic distributionElectroencephalogr. Clin. Neurophysiol.19971035355421:STN:280:DyaK1c%2Fms1Grug%3D%3D10.1016/S0013-4694(97)00070-9
– reference: PlanteDTTopographic and sex-related differences in sleep spindles in major depressive disorder: a high-density EEG investigationJ. Affect. Disord.20131461201251:STN:280:DC%2BC38bms1agsw%3D%3D10.1016/j.jad.2012.06.016
– reference: SitnikovaEHramovAEKoronovskyAAvan LuijtelaarGSleep spindles and spike-wave discharges in EEG: their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysisJ. Neurosci. Methods200918030431610.1016/j.jneumeth.2009.04.006
– reference: HimanenS-LVirkkalaJHuupponenEHasanJSpindle frequency remains slow in sleep apnea patients throughout the nightSleep Med.2003422923410.1016/S1389-9457(02)00239-3
– reference: SchabusMSleep spindle-related activity in the human EEG and its relation to general cognitive and learning abilitiesEur. J. Neurosci.200623173817461:STN:280:DC%2BD283hslersg%3D%3D10.1111/j.1460-9568.2006.04694.x
– reference: FerrarelliFReduced sleep spindle activity in schizophrenia patientsAm. J. Psychiatry200716448349210.1176/ajp.2007.164.3.483
– reference: WamsleyEJReduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation?Biol. Psychiatry20127115416110.1016/j.biopsych.2011.08.008
– reference: WendtSLValidation of a novel automatic sleep spindle detector with high performance during sleep in middle aged subjectsConf. Proc. IEEE Eng. Med. Biol. Soc.201220124250425323366866
– reference: SteriadeMGrouping of brain rhythms in corticothalamic systemsNeuroscience2006137108711061:CAS:528:DC%2BD28Xos1emsg%3D%3D10.1016/j.neuroscience.2005.10.029
– reference: SchabusMHemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleepProc. Natl. Acad. Sci. USA200710413164131691:CAS:528:DC%2BD2sXpt1Gnurs%3D10.1073/pnas.0703084104
– reference: ShibagakiMKiyonoSWatanabeKSpindle evolution in normal and mentally retarded children: a reviewSleep1982547571:STN:280:DyaL387nsFKrtQ%3D%3D10.1093/sleep/5.1.47
– reference: De GennaroLFerraraMSleep spindles: an overviewSleep Med. Rev.2003742344010.1053/smrv.2002.0252
– reference: PetitDGagnonJ-FFantiniMLFerini-StrambiLMontplaisirJSleep and quantitative EEG in neurodegenerative disordersJ. Psychosom. Res.20045648749610.1016/j.jpsychores.2004.02.001
– reference: BergmannTOMolleMDiedrichsJBornJSiebnerHRSleep spindle-related reactivation of category-specific cortical regions after learning face-scene associationsNeuroimage2012592733274210.1016/j.neuroimage.2011.10.036
– reference: MyatchinILagaeLSleep spindle abnormalities in children with generalized spike-wave dischargesPediatr. Neurol.20073610611110.1016/j.pediatrneurol.2006.09.014
– reference: Iber, C., Ancoli-Israel, S., Chesson, A. & Quan, S.F. AASM Manual for the Scoring of Sleep and Associated Events 1st edn. (American Academy of Sleep Medicine, 2007).
– reference: DonohoDLAn invitation to reproducible computational researchBiostatistics20101138538810.1093/biostatistics/kxq028
– reference: NicolasAPetitDRompréSMontplaisirJSleep spindle characteristics in healthy subjects of different age groupsClin. Neurophysiol.20011125215271:STN:280:DC%2BD3M3gs1antQ%3D%3D10.1016/S1388-2457(00)00556-3
– reference: AmbrosiusUHeritability of sleep electroencephalogramBiol. Psychiatry20086434434810.1016/j.biopsych.2008.03.002
– reference: FogelSMSmithCTThe function of the sleep spindle: a physiological index of intelligence and a mechanism for sleep-dependent memory consolidationNeurosci. Biobehav. Rev.2011351154116510.1016/j.neubiorev.2010.12.003
– reference: LimogesEMottronLBolducCBerthiaumeCGodboutRAtypical sleep architecture and the autism phenotypeBrain20051281049106110.1093/brain/awh425
– reference: BarakatMFast and slow spindle involvement in the consolidation of a new motor sequenceBehav. Brain Res.20112171171211:STN:280:DC%2BC3M%2FltVOhug%3D%3D10.1016/j.bbr.2010.10.019
– reference: PeppardPEIncreased prevalence of sleep-disordered breathing in adultsAm. J. Epidemiol.20131771006101410.1093/aje/kws342
– reference: MartinNTopography of age-related changes in sleep spindlesNeurobiol. Aging20133446847610.1016/j.neurobiolaging.2012.05.020
– reference: RuchSSleep stage II contributes to the consolidation of declarative memoriesNeuropsychologia2012502389239610.1016/j.neuropsychologia.2012.06.008
– reference: SilversteinLDLevyCMThe stability of the sigma sleep spindleElectroencephalogr. Clin. Neurophysiol.1976406666701:STN:280:DyaE287msFSnsg%3D%3D10.1016/0013-4694(76)90142-5
– reference: CrowleyKTrinderJKimYCarringtonMColrainIMThe effects of normal aging on sleep spindle and K-complex productionClin. Neurophysiol.20021131615162210.1016/S1388-2457(02)00237-7
– reference: EspaFOndzeBDeglisePBilliardMBessetASleep architecture, slow wave activity, and sleep spindles in adult patients with sleepwalking and sleep terrorsClin. Neurophysiol.20001119299391:STN:280:DC%2BD3c3msVarsg%3D%3D10.1016/S1388-2457(00)00249-2
– reference: MontagnaPGambettiPCortelliPLugaresiEFamilial and sporadic fatal insomniaLancet Neurol.200321671761:CAS:528:DC%2BD3sXkvFOgtrw%3D10.1016/S1474-4422(03)00323-5
– reference: VukadinovicZSleep abnormalities in schizophrenia may suggest impaired trans-thalamic cortico-cortical communication: towards a dynamic model of the illnessEur. J. Neurosci.2011341031103910.1111/j.1460-9568.2011.07822.x
– reference: RayLBFogelSMSmithCTPetersKRValidating an automated sleep spindle detection algorithm using an individualized approachJ. Sleep Res.20101937437810.1111/j.1365-2869.2009.00802.x
– reference: MölleMMarshallLGaisSBornJGrouping of spindle activity during slow oscillations in human non-rapid eye movement sleepJ. Neurosci.200222109411094710.1523/JNEUROSCI.22-24-10941.2002
– reference: AndererPAn E-health solution for automatic sleep classification according to Rechtschaffen and Kales: validation study of the Somnolyzer 24 x 7 utilizing the Siesta databaseNeuropsychobiology20055111513310.1159/000085205
– reference: HuupponenEDevelopment and comparison of four sleep spindle detection methodsArtif. Intell. Med.20074015717010.1016/j.artmed.2007.04.003
– reference: WalkerMPThe role of sleep in cognition and emotionAnn. NY Acad. Sci.2009115616819710.1111/j.1749-6632.2009.04416.x
– reference: BódizsRKörmendiJRigóPLázárASThe individual adjustment method of sleep spindle analysis: methodological improvements and roots in the fingerprint paradigmJ. Neurosci. Methods200917820521310.1016/j.jneumeth.2008.11.006
– reference: SchimicekPZeitlhoferJAndererPSaletuBAutomatic sleep-spindle detection procedure: aspects of reliability and validityClin. Electroencephalogr.19942526291:STN:280:DyaK2c3ivVOhuw%3D%3D10.1177/155005949402500108
– reference: DevuystSAutomatic sleep spindle detection in patients with sleep disordersConf. Proc. IEEE Eng. Med. Biol. Soc.20061388338861:STN:280:DC%2BD2snis1KrsQ%3D%3D10.1109/IEMBS.2006.259298
– reference: GaisSMölleMHelmsKBornJLearning-dependent increases in sleep spindle densityJ. Neurosci.200222683068341:CAS:528:DC%2BD38XlvFKntLs%3D10.1523/JNEUROSCI.22-15-06830.2002
– reference: McCormickLNielsenTNicolasAPtitoMMontplaisirJTopographical distribution of spindles and K-complexes in normal subjectsSleep1997209399411:STN:280:DyaK1c7hslGksQ%3D%3D10.1093/sleep/20.11.939
– reference: NirYRegional slow waves and spindles in human sleepNeuron2011701531691:CAS:528:DC%2BC3MXksFelt7s%3D10.1016/j.neuron.2011.02.043
– reference: BarakatMSleep spindles predict neural and behavioral changes in motor sequence consolidationHum. Brain Mapp.2013342918292810.1002/hbm.22116
– reference: FerraraMMoroniFDe GennaroLNobiliLHippocampal sleep features: relations to human memory functionFront. Neurol.201235710.3389/fneur.2012.00057
– reference: FeinbergIKoreskoRLHellerNEEG sleep patterns as a function of normal and pathological aging in manJ. Psychiatr. Res.196751071441:STN:280:DyaF1c%2FktFKnsg%3D%3D10.1016/0022-3956(67)90027-1
– reference: De GennaroLThe electroencephalographic fingerprint of sleep is genetically determined: a twin studyAnn. Neurol.20086445546010.1002/ana.21434
– reference: HuupponenEOptimization of sigma amplitude threshold in sleep spindle detectionJ. Sleep Res.200093273341:STN:280:DC%2BD3Mzht1GntQ%3D%3D10.1046/j.1365-2869.2000.00220.x
– reference: TanXCampbellIGFeinbergIInternight reliability and benchmark values for computer analyses of non-rapid eye movement (NREM) and REM EEG in normal young adult and elderly subjectsClin. Neurophysiol.2001112154015521:STN:280:DC%2BD3MvgvVSgtQ%3D%3D10.1016/S1388-2457(01)00570-3
– reference: BódizsRGombosFKovácsISleep EEG fingerprints reveal accelerated thalamocortical oscillatory dynamics in Williams syndromeRes. Dev. Disabil.20123315316410.1016/j.ridd.2011.09.004
– volume: 7
  start-page: 423
  year: 2003
  ident: BFnmeth2855_CR6
  publication-title: Sleep Med. Rev.
  doi: 10.1053/smrv.2002.0252
– volume: 64
  start-page: 455
  year: 2008
  ident: BFnmeth2855_CR11
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.21434
– volume: 22
  start-page: 10941
  year: 2002
  ident: BFnmeth2855_CR31
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-24-10941.2002
– volume: 111
  start-page: 929
  year: 2000
  ident: BFnmeth2855_CR22
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(00)00249-2
– volume: 64
  start-page: 344
  year: 2008
  ident: BFnmeth2855_CR12
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2008.03.002
– volume: 71
  start-page: 154
  year: 2012
  ident: BFnmeth2855_CR18
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2011.08.008
– volume: 25
  start-page: 26
  year: 1994
  ident: BFnmeth2855_CR28
  publication-title: Clin. Electroencephalogr.
  doi: 10.1177/155005949402500108
– volume: 40
  start-page: 666
  year: 1976
  ident: BFnmeth2855_CR2
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(76)90142-5
– volume: 128
  start-page: 1049
  year: 2005
  ident: BFnmeth2855_CR19
  publication-title: Brain
  doi: 10.1093/brain/awh425
– volume: 104
  start-page: 13164
  year: 2007
  ident: BFnmeth2855_CR40
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0703084104
– ident: BFnmeth2855_CR1
– volume: 5
  start-page: 107
  year: 1967
  ident: BFnmeth2855_CR48
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/0022-3956(67)90027-1
– volume: 1156
  start-page: 168
  year: 2009
  ident: BFnmeth2855_CR14
  publication-title: Ann. NY Acad. Sci.
  doi: 10.1111/j.1749-6632.2009.04416.x
– volume: 178
  start-page: 205
  year: 2009
  ident: BFnmeth2855_CR41
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2008.11.006
– volume: 146
  start-page: 120
  year: 2013
  ident: BFnmeth2855_CR46
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2012.06.016
– volume: 137
  start-page: 1087
  year: 2006
  ident: BFnmeth2855_CR26
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2005.10.029
– volume: 22
  start-page: 6830
  year: 2002
  ident: BFnmeth2855_CR30
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-15-06830.2002
– volume: 180
  start-page: 304
  year: 2009
  ident: BFnmeth2855_CR44
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2009.04.006
– volume: 36
  start-page: 106
  year: 2007
  ident: BFnmeth2855_CR20
  publication-title: Pediatr. Neurol.
  doi: 10.1016/j.pediatrneurol.2006.09.014
– volume: 113
  start-page: 1615
  year: 2002
  ident: BFnmeth2855_CR8
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00237-7
– volume: 11
  start-page: 114
  year: 2010
  ident: BFnmeth2855_CR15
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2762
– volume: 33
  start-page: 153
  year: 2012
  ident: BFnmeth2855_CR43
  publication-title: Res. Dev. Disabil.
  doi: 10.1016/j.ridd.2011.09.004
– volume: 103
  start-page: 535
  year: 1997
  ident: BFnmeth2855_CR4
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(97)00070-9
– volume: 70
  start-page: 153
  year: 2011
  ident: BFnmeth2855_CR49
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.02.043
– volume: 36
  start-page: 905
  year: 2013
  ident: BFnmeth2855_CR38
  publication-title: Sleep
  doi: 10.5665/sleep.2722
– volume: 217
  start-page: 117
  year: 2011
  ident: BFnmeth2855_CR16
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2010.10.019
– volume: 34
  start-page: 2918
  year: 2013
  ident: BFnmeth2855_CR36
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22116
– volume: 112
  start-page: 1540
  year: 2001
  ident: BFnmeth2855_CR3
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(01)00570-3
– volume: 164
  start-page: 483
  year: 2007
  ident: BFnmeth2855_CR17
  publication-title: Am. J. Psychiatry
  doi: 10.1176/ajp.2007.164.3.483
– volume: 2012
  start-page: 4250
  year: 2012
  ident: BFnmeth2855_CR45
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 23
  start-page: 1738
  year: 2006
  ident: BFnmeth2855_CR33
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2006.04694.x
– volume: 4
  start-page: 229
  year: 2003
  ident: BFnmeth2855_CR23
  publication-title: Sleep Med.
  doi: 10.1016/S1389-9457(02)00239-3
– volume: 112
  start-page: 521
  year: 2001
  ident: BFnmeth2855_CR9
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(00)00556-3
– volume: 9
  start-page: 327
  year: 2000
  ident: BFnmeth2855_CR29
  publication-title: J. Sleep Res.
  doi: 10.1046/j.1365-2869.2000.00220.x
– volume: 11
  start-page: 385
  year: 2010
  ident: BFnmeth2855_CR51
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxq028
– volume: 2
  start-page: 167
  year: 2003
  ident: BFnmeth2855_CR21
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(03)00323-5
– volume: 3
  start-page: 57
  year: 2012
  ident: BFnmeth2855_CR25
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2012.00057
– volume: 5
  start-page: 47
  year: 1982
  ident: BFnmeth2855_CR7
  publication-title: Sleep
  doi: 10.1093/sleep/5.1.47
– volume: 177
  start-page: 1006
  year: 2013
  ident: BFnmeth2855_CR47
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kws342
– volume: 35
  start-page: 1154
  year: 2011
  ident: BFnmeth2855_CR13
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2010.12.003
– volume: 1
  start-page: 3883
  year: 2006
  ident: BFnmeth2855_CR35
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
  doi: 10.1109/IEMBS.2006.259298
– volume: 34
  start-page: 468
  year: 2013
  ident: BFnmeth2855_CR10
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2012.05.020
– volume: 56
  start-page: 487
  year: 2004
  ident: BFnmeth2855_CR24
  publication-title: J. Psychosom. Res.
  doi: 10.1016/j.jpsychores.2004.02.001
– volume: 26
  start-page: 114
  year: 2005
  ident: BFnmeth2855_CR5
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.01.020
– volume: 40
  start-page: 157
  year: 2007
  ident: BFnmeth2855_CR34
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2007.04.003
– volume: 34
  start-page: 1031
  year: 2011
  ident: BFnmeth2855_CR27
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2011.07822.x
– volume: 19
  start-page: 374
  year: 2010
  ident: BFnmeth2855_CR39
  publication-title: J. Sleep Res.
  doi: 10.1111/j.1365-2869.2009.00802.x
– volume: 20
  start-page: 939
  year: 1997
  ident: BFnmeth2855_CR50
  publication-title: Sleep
  doi: 10.1093/sleep/20.11.939
– volume: 51
  start-page: 115
  year: 2005
  ident: BFnmeth2855_CR32
  publication-title: Neuropsychobiology
  doi: 10.1159/000085205
– volume: 50
  start-page: 2389
  year: 2012
  ident: BFnmeth2855_CR42
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2012.06.008
– volume: 59
  start-page: 2733
  year: 2012
  ident: BFnmeth2855_CR37
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.036
SSID ssj0033425
Score 2.5651023
Snippet A comparative analysis of methods for scoring human sleep data, in particular sleep spindles, from encephalographic recordings is reported. The authors develop...
Sleep spindles are discrete, intermittent patterns of brain activity observed in human electroencephalographic data. Increasingly, these oscillations are of...
Sleep spindles are discrete, intermittent patterns of brain activity that arise as a result of interactions of several circuits in the brain. Increasingly,...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 385
SubjectTerms 631/1647/1453/1450
631/378/1385
631/443/376
692/308/1892
9/26
Aged
Algorithms
analysis
Automation
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical Engineering/Biotechnology
Brain
Crowdsourcing
Electroencephalography
Encephalitis
Health aspects
Humans
Internet
Life Sciences
Methods
Middle Aged
Physiology
Proteomics
Sleep
Sleep Stages - physiology
Title Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods
URI https://link.springer.com/article/10.1038/nmeth.2855
https://www.ncbi.nlm.nih.gov/pubmed/24562424
https://www.proquest.com/docview/1557641936
https://www.proquest.com/docview/1511823118
https://pubmed.ncbi.nlm.nih.gov/PMC3972193
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_0DsEX8due5xHxQATjbZv0Y32RU249BA9RD_atJGmCB0dbr13E_96ZNO3truJLoCRth8wk-SUz-Q3AYYVmo7HgLo0rLnOpuUKYy7XNXZGl2hh_fezzWXZ6Lj8t02U4cOtCWOU4J_qJumoMnZEf4bqXZxLhRvau_ckpaxR5V0MKjZuwS9RlFNKVL6cNlxDSJ10lVM5zXBhHelJRHNWUoPlNUtAVv7UFaXtaXluXtmMmtxynfj1a3IU7AUiy40Hz9-CGre_DrSG15O8H0Hy7tLblXXtBLAqssr2PuarfMhTjV-XP7PG7TNUVGxm_8bG9vkfAGsc8_3_fvWZ1U_Pw4F9Rq75BrGsrNqSg7h7C-eLk-4dTHpIrcIMIrecyNvNcI_rQqUoTaeJUS4d7vYT46c08c1II5WbOoc7SudFppRKTGuMQQ8ySaiYewQ7-2z4BpoUVOhZGJVLL1CVKqdhYo2bCZMpaFcGrsYdLE5jHKQHGZek94KIovTZK0kYEL6a27cC38c9WL0lRJQ1C_JJR4S4BykN0VuWxQJhKHs0igv2Nljh4zGb1qOoyDN6uvDa1CJ5P1fQmBaTVtllRG9qZCSwieDxYxiQv-ZLp1k0E-YbNTA2I0nuzpr744am9BZEpzUUEh6N1rYn1Vzfs_V_6p3Ab4V2IM9qHnf5qZZ8hhOr1gR8nWBaLjwew-_7k7MvXPyndIhc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGEIIXxDeFAUEMISTCrk3S9pAQmoDjxj5e2KS9lSRNxaSpLbSnaf8UfyN22t7uDsTbXipVcXNW7MTO2f4ZYDNHtTH44IUKcy4TabhGN5cblxRprIy1vnxs_yCeHsmvx-p4DX4PtTCUVjmcif6gzitL_5Fvod1LYonuRvyh_smpaxRFV4cWGp1a7LrzM7yyNe93PqF8X0bR5PPhxynvuwpwi65Jy2Vox4lBs2uUVpG0oTKywEtORMDsdhwXUghdjIoCmVVja1SuI6usLdB4jqJ8JHDeK3AVqca0o9LJl-HkF0L6Jq90C-AJGuIBDlWkWyU1hH4bpVRSuGAAV83Agh1czdFcCdR6-ze5BTd7x5Vtd5p2G9ZceQeuda0sz-9C9e3UuZo39QmhNrDctT7Hq3zHkI2z3McIcF6my5wNCOP4Wl_ULbCqYL7fQNu8YWVV8v7Ff6JnbYW-tctZ1_K6uQdHl7Ls92Edf9s9BGaEEyYUVkfSSFVEWuvQOqtHwsbaOR3A62GFM9sjnVPDjdPMR9xFmnlpZCSNAF7MaesO3-OfVK9IUBltepzJ6r52Afkh-KxsW6BbTBHUNICNJUrcrHZ5eBB11h8WTXah2gE8nw_Tl5QAV7pqRjR0ExT4COBBpxlzfil2TVU-ASRLOjMnIAjx5ZHy5IeHEhcE3jQWAWwO2rXA1l_L8Oj_3D-D69PD_b1sb-dg9zHcQNeyz3HagPX218w9QfetNU_9nmHw_bI36R-9rFvT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9RAcKgVxRfx22jVFSsiuN4lu5vcCSLFerRWi6CFe4u7m10slCR6OUr_mr_OmU1yvTvFt74Ewk72hp2ZnZmbL4DtAtnG4IN7FRdcZtJwjWYuNy7zo1QZa0P52OfDdO9Ifpyq6Qb87mthKK2yvxPDRV1Ulv4jH6Dey1KJ5kY68F1axJfdybv6J6cJUhRp7cdptCxy4M5O0X2bvd3fRVo_T5LJh2_v93g3YYBbNFMaLmM7zgyqYKO0SqSNlZEeHZ6EmrTbceqlENoPvUfE1dgaVejEKms9KtJhUgwF7nsJLmdCxSRj2XTh7Akhw8BX8gh4hkq5b40qRoOShkO_TkZUXrikDNdVwpJOXM_XXAvaBl04uQHXOyOW7bRcdxM2XHkLrrRjLc9uQ_X1xLmaz-pj6uDACteEfK_yDUM0TosQL8B9mS4L1ncbx9f6vIaBVZ6F2QPN7BUrq5J3L-ETPW8qtLNdwdrx17M7cHQhx34XNvG33X1gRjhhYmF1Io1UPtFax9ZZPRQ21c7pCF72J5zbrus5Dd84yUP0XYzyQI2cqBHBswVs3fb6-CfUCyJUThcA7mR1V8eA-FArrXxHoIlM0dRRBFsrkCi4dnW5J3XeXRyz_JzNI3i6WKYvKRmudNWcYMgrFPiI4F7LGQt8KY5NFT8RZCs8swCgduKrK-Xxj9BWXFAjp7GIYLvnriW0_jqGB__H_glcRfHMP-0fHjyEa2hldulOW7DZ_Jq7R2jJNeZxEBkG3y9aRv8Al8hgAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sleep+spindle+detection%3A+crowdsourcing+and+evaluating+performance+of+experts%2C+non-experts%2C+and+automated+methods&rft.jtitle=Nature+methods&rft.au=Warby%2C+Simon+C.&rft.au=Wendt%2C+Sabrina+L.&rft.au=Welinder%2C+Peter&rft.au=Munk%2C+Emil+G.S.&rft.date=2014-04-01&rft.issn=1548-7091&rft.eissn=1548-7105&rft.volume=11&rft.issue=4&rft.spage=385&rft.epage=392&rft_id=info:doi/10.1038%2Fnmeth.2855&rft_id=info%3Apmid%2F24562424&rft.externalDocID=PMC3972193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon