Near-Infrared Transillumination for Macroscopic Functional Imaging of Animal Bodies

The classical transillumination technique has been revitalized through recent advancements in optical technology, enhancing its applicability in the realm of biomedical research. With a new perspective on near-axis scattered light, we have harnessed near-infrared (NIR) light to visualize intricate i...

Full description

Saved in:
Bibliographic Details
Published inBiology (Basel, Switzerland) Vol. 12; no. 11; p. 1362
Main Author Shimizu, Koichi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 24.10.2023
Subjects
Online AccessGet full text
ISSN2079-7737
2079-7737
DOI10.3390/biology12111362

Cover

Loading…
Abstract The classical transillumination technique has been revitalized through recent advancements in optical technology, enhancing its applicability in the realm of biomedical research. With a new perspective on near-axis scattered light, we have harnessed near-infrared (NIR) light to visualize intricate internal light-absorbing structures within animal bodies. By leveraging the principle of differentiation, we have extended the applicability of the Beer–Lambert law even in cases of scattering-dominant media, such as animal body tissues. This approach facilitates the visualization of dynamic physiological changes occurring within animal bodies, thereby enabling noninvasive, real-time imaging of macroscopic functionality in vivo. An important challenge inherent to transillumination imaging lies in the image blur caused by pronounced light scattering within body tissues. By extracting near-axis scattered components from the predominant diffusely scattered light, we have achieved cross-sectional imaging of animal bodies. Furthermore, we have introduced software-based techniques encompassing deconvolution using the point spread function and the application of deep learning principles to counteract the scattering effect. Finally, transillumination imaging has been elevated from two-dimensional to three-dimensional imaging. The effectiveness and applicability of these proposed techniques have been validated through comprehensive simulations and experiments involving human and animal subjects. As demonstrated through these studies, transillumination imaging coupled with emerging technologies offers a promising avenue for future biomedical applications.
AbstractList Simple SummaryAdvancements in optical technology have revitalized transillumination imaging for biomedical research. Using near-infrared (NIR) light, we have visualized internal structures in animals, even under conditions of heavy optical scattering. By extending the Beer–Lambert law’s applicability through differentiation principles, we can observe real-time physiological changes noninvasively. A hurdle in transillumination is image blurring caused by scattering in body tissues. We have addressed this difficulty by extracting near-axis scattered components from diffuse light, and by employing software techniques such as PSF deconvolution and deep learning. This shift has enabled the clear 3D imaging of internal structures from blurred 2D images. Validation through experimentation with human and animal subjects has underscored the effectiveness of these techniques. Integrating transillumination with modern technology holds great promise for future biomedical applications.AbstractThe classical transillumination technique has been revitalized through recent advancements in optical technology, enhancing its applicability in the realm of biomedical research. With a new perspective on near-axis scattered light, we have harnessed near-infrared (NIR) light to visualize intricate internal light-absorbing structures within animal bodies. By leveraging the principle of differentiation, we have extended the applicability of the Beer–Lambert law even in cases of scattering-dominant media, such as animal body tissues. This approach facilitates the visualization of dynamic physiological changes occurring within animal bodies, thereby enabling noninvasive, real-time imaging of macroscopic functionality in vivo. An important challenge inherent to transillumination imaging lies in the image blur caused by pronounced light scattering within body tissues. By extracting near-axis scattered components from the predominant diffusely scattered light, we have achieved cross-sectional imaging of animal bodies. Furthermore, we have introduced software-based techniques encompassing deconvolution using the point spread function and the application of deep learning principles to counteract the scattering effect. Finally, transillumination imaging has been elevated from two-dimensional to three-dimensional imaging. The effectiveness and applicability of these proposed techniques have been validated through comprehensive simulations and experiments involving human and animal subjects. As demonstrated through these studies, transillumination imaging coupled with emerging technologies offers a promising avenue for future biomedical applications.
The classical transillumination technique has been revitalized through recent advancements in optical technology, enhancing its applicability in the realm of biomedical research. With a new perspective on near-axis scattered light, we have harnessed near-infrared (NIR) light to visualize intricate internal light-absorbing structures within animal bodies. By leveraging the principle of differentiation, we have extended the applicability of the Beer-Lambert law even in cases of scattering-dominant media, such as animal body tissues. This approach facilitates the visualization of dynamic physiological changes occurring within animal bodies, thereby enabling noninvasive, real-time imaging of macroscopic functionality in vivo. An important challenge inherent to transillumination imaging lies in the image blur caused by pronounced light scattering within body tissues. By extracting near-axis scattered components from the predominant diffusely scattered light, we have achieved cross-sectional imaging of animal bodies. Furthermore, we have introduced software-based techniques encompassing deconvolution using the point spread function and the application of deep learning principles to counteract the scattering effect. Finally, transillumination imaging has been elevated from two-dimensional to three-dimensional imaging. The effectiveness and applicability of these proposed techniques have been validated through comprehensive simulations and experiments involving human and animal subjects. As demonstrated through these studies, transillumination imaging coupled with emerging technologies offers a promising avenue for future biomedical applications.The classical transillumination technique has been revitalized through recent advancements in optical technology, enhancing its applicability in the realm of biomedical research. With a new perspective on near-axis scattered light, we have harnessed near-infrared (NIR) light to visualize intricate internal light-absorbing structures within animal bodies. By leveraging the principle of differentiation, we have extended the applicability of the Beer-Lambert law even in cases of scattering-dominant media, such as animal body tissues. This approach facilitates the visualization of dynamic physiological changes occurring within animal bodies, thereby enabling noninvasive, real-time imaging of macroscopic functionality in vivo. An important challenge inherent to transillumination imaging lies in the image blur caused by pronounced light scattering within body tissues. By extracting near-axis scattered components from the predominant diffusely scattered light, we have achieved cross-sectional imaging of animal bodies. Furthermore, we have introduced software-based techniques encompassing deconvolution using the point spread function and the application of deep learning principles to counteract the scattering effect. Finally, transillumination imaging has been elevated from two-dimensional to three-dimensional imaging. The effectiveness and applicability of these proposed techniques have been validated through comprehensive simulations and experiments involving human and animal subjects. As demonstrated through these studies, transillumination imaging coupled with emerging technologies offers a promising avenue for future biomedical applications.
Advancements in optical technology have revitalized transillumination imaging for biomedical research. Using near-infrared (NIR) light, we have visualized internal structures in animals, even under conditions of heavy optical scattering. By extending the Beer–Lambert law’s applicability through differentiation principles, we can observe real-time physiological changes noninvasively. A hurdle in transillumination is image blurring caused by scattering in body tissues. We have addressed this difficulty by extracting near-axis scattered components from diffuse light, and by employing software techniques such as PSF deconvolution and deep learning. This shift has enabled the clear 3D imaging of internal structures from blurred 2D images. Validation through experimentation with human and animal subjects has underscored the effectiveness of these techniques. Integrating transillumination with modern technology holds great promise for future biomedical applications.
The classical transillumination technique has been revitalized through recent advancements in optical technology, enhancing its applicability in the realm of biomedical research. With a new perspective on near-axis scattered light, we have harnessed near-infrared (NIR) light to visualize intricate internal light-absorbing structures within animal bodies. By leveraging the principle of differentiation, we have extended the applicability of the Beer–Lambert law even in cases of scattering-dominant media, such as animal body tissues. This approach facilitates the visualization of dynamic physiological changes occurring within animal bodies, thereby enabling noninvasive, real-time imaging of macroscopic functionality in vivo. An important challenge inherent to transillumination imaging lies in the image blur caused by pronounced light scattering within body tissues. By extracting near-axis scattered components from the predominant diffusely scattered light, we have achieved cross-sectional imaging of animal bodies. Furthermore, we have introduced software-based techniques encompassing deconvolution using the point spread function and the application of deep learning principles to counteract the scattering effect. Finally, transillumination imaging has been elevated from two-dimensional to three-dimensional imaging. The effectiveness and applicability of these proposed techniques have been validated through comprehensive simulations and experiments involving human and animal subjects. As demonstrated through these studies, transillumination imaging coupled with emerging technologies offers a promising avenue for future biomedical applications.
Advancements in optical technology have revitalized transillumination imaging for biomedical research. Using near-infrared (NIR) light, we have visualized internal structures in animals, even under conditions of heavy optical scattering. By extending the Beer–Lambert law’s applicability through differentiation principles, we can observe real-time physiological changes noninvasively. A hurdle in transillumination is image blurring caused by scattering in body tissues. We have addressed this difficulty by extracting near-axis scattered components from diffuse light, and by employing software techniques such as PSF deconvolution and deep learning. This shift has enabled the clear 3D imaging of internal structures from blurred 2D images. Validation through experimentation with human and animal subjects has underscored the effectiveness of these techniques. Integrating transillumination with modern technology holds great promise for future biomedical applications. The classical transillumination technique has been revitalized through recent advancements in optical technology, enhancing its applicability in the realm of biomedical research. With a new perspective on near-axis scattered light, we have harnessed near-infrared (NIR) light to visualize intricate internal light-absorbing structures within animal bodies. By leveraging the principle of differentiation, we have extended the applicability of the Beer–Lambert law even in cases of scattering-dominant media, such as animal body tissues. This approach facilitates the visualization of dynamic physiological changes occurring within animal bodies, thereby enabling noninvasive, real-time imaging of macroscopic functionality in vivo. An important challenge inherent to transillumination imaging lies in the image blur caused by pronounced light scattering within body tissues. By extracting near-axis scattered components from the predominant diffusely scattered light, we have achieved cross-sectional imaging of animal bodies. Furthermore, we have introduced software-based techniques encompassing deconvolution using the point spread function and the application of deep learning principles to counteract the scattering effect. Finally, transillumination imaging has been elevated from two-dimensional to three-dimensional imaging. The effectiveness and applicability of these proposed techniques have been validated through comprehensive simulations and experiments involving human and animal subjects. As demonstrated through these studies, transillumination imaging coupled with emerging technologies offers a promising avenue for future biomedical applications.
Audience Academic
Author Shimizu, Koichi
Author_xml – sequence: 1
  givenname: Koichi
  surname: Shimizu
  fullname: Shimizu, Koichi
BookMark eNqFUk1v3CAQtapUaprk3KulXnpxwqexj9uoaVfKx6HpGeEBLFYYtmAf8u_D7kZRumpVEBo0vPcYhvexOgkxmKr6hNElpT26Glz0cXzCBGNMW_KuOiVI9I0QVJy82X-oLnLeoDIEIi1tT6uf90alZh1sUsno-jGpkJ33y-SCml0MtY2pvlOQYoa4dVDfLAF2B8rX60mNLox1tPUquKlkvkbtTD6v3lvls7l4iWfVr5tvj9c_mtuH7-vr1W0DXPC5oXawwAbCCVDdstZ2ncCkw53uoTUILBVcAEDXEma0sMLiXg2EgbUGCMf0rFofdHVUG7lNpYT0JKNycp-IaZQqzQ68kYYYYtkAHSWIgaK94YpBh7XSaOiFLVpfDlrbFH8vJs9ychmM9yqYuGRJEUOUIyHa_0JJ19Ou1M5ZgX4-gm7ikkrv9ijSs57t3_GCGlUp1QUb56RgJypXQjCKy0IFdfkXVJnaTA6KHawr-T8IVwfC7vNyMva1RRjJnWvkkWsKgx8xwM17G5SrnP8n7xk9y8gy
CitedBy_id crossref_primary_10_1038_s41597_025_04626_4
crossref_primary_10_1016_j_jqsrt_2024_109245
crossref_primary_10_3390_bioengineering11121281
crossref_primary_10_3390_app14051689
Cites_doi 10.1201/9780203008997
10.1093/braincomms/fcaa055
10.1109/CVPR.2015.7298965
10.1016/j.pacs.2021.100241
10.1109/TBME.2010.2072750
10.1109/JLT.2019.2960131
10.1364/AO.48.000D36
10.1016/j.inffus.2022.09.031
10.1088/0031-9155/44/7/307
10.1109/2944.577330
10.3390/cryst12081087
10.1103/PhysRevLett.60.1130
10.1007/978-3-540-68993-5
10.1073/pnas.1508524112
10.1007/978-3-030-27731-4
10.1038/s42256-020-00273-z
10.2174/2211555203666141117231651
10.1038/s41596-022-00788-2
10.1088/0031-9155/51/13/R02
10.1515/joc-2021-0190
10.1158/0008-5472.CAN-14-2522
10.1364/BOE.10.005251
10.1142/S1793545819300064
10.1088/1361-6439/abf333
10.1007/s10043-000-0383-4
10.3390/qubs5040029
10.1364/OL.18.001092
10.1088/0031-9155/42/5/009
10.1201/9781420011838
10.1109/JPHOT.2022.3226568
10.1364/AO.44.002154
10.1002/lpor.201200056
10.21037/atm.2020.02.44
10.1007/978-3-319-31903-2
10.1038/s41593-018-0301-3
10.1109/ICIP.2013.6738262
10.1115/1.4024973
10.1109/COMST.2016.2603518
10.5041/RMMJ.10355
10.1038/s41377-022-00714-x
10.1364/AO.35.001767
10.1016/0141-5425(88)90084-2
10.3390/s22155747
10.1007/BF00325156
10.3390/electronics11030305
10.1117/3.1003040
10.1038/nbt1074
10.1038/s41592-019-0458-z
10.1364/BOE.420337
10.1109/ACCESS.2020.3048315
10.1111/1469-8986.00053
10.1088/2057-1976/ac9847
10.3897/zookeys.464.8615
10.1002/lsm.23414
10.1109/SMART55829.2022.10046965
10.14326/abe.10.1
10.1364/OE.17.008332
10.1111/j.1460-9568.2007.05997.x
10.1109/MITP.2021.3073665
10.1038/s41583-019-0250-1
10.1117/1.3505020
10.1038/nmeth.1483
10.1097/00000658-193101000-00032
10.1117/1.JBO.26.4.040901
10.1109/TBME.2010.2059025
10.1109/TBME.2012.2209647
10.1016/j.chembiol.2015.11.009
10.1364/BOE.5.001321
10.1126/science.253.5021.769
10.3390/jmse10020241
10.1016/S0030-4018(99)00468-X
10.1007/978-3-319-12484-1
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QP
7TK
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
DOA
DOI 10.3390/biology12111362
DatabaseName CrossRef
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic



CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2079-7737
ExternalDocumentID oai_doaj_org_article_e2e2f4bc83204ca39e5a4c81dad0b97f
A774317430
10_3390_biology12111362
GroupedDBID 2XV
53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
EBD
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
PMFND
7QP
7TK
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c575t-3fbfc4b252c3d646f88712818d9c6e0cf3757ccc8624ed7f7f19ab24cffec2513
IEDL.DBID DOA
ISSN 2079-7737
IngestDate Wed Aug 27 01:22:06 EDT 2025
Fri Jul 11 06:59:21 EDT 2025
Fri Jul 11 01:20:47 EDT 2025
Fri Jul 25 12:00:48 EDT 2025
Tue Jun 17 22:19:06 EDT 2025
Tue Jun 10 21:20:12 EDT 2025
Tue Jul 01 01:29:05 EDT 2025
Thu Apr 24 23:00:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-3fbfc4b252c3d646f88712818d9c6e0cf3757ccc8624ed7f7f19ab24cffec2513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://doaj.org/article/e2e2f4bc83204ca39e5a4c81dad0b97f
PQID 2892949451
PQPubID 2032427
ParticipantIDs doaj_primary_oai_doaj_org_article_e2e2f4bc83204ca39e5a4c81dad0b97f
proquest_miscellaneous_3040350776
proquest_miscellaneous_2893837554
proquest_journals_2892949451
gale_infotracmisc_A774317430
gale_infotracacademiconefile_A774317430
crossref_primary_10_3390_biology12111362
crossref_citationtrail_10_3390_biology12111362
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231024
PublicationDateYYYYMMDD 2023-10-24
PublicationDate_xml – month: 10
  year: 2023
  text: 20231024
  day: 24
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Biology (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Tian (ref_43) 2021; 53
Gopal (ref_57) 1999; 170
Cutler (ref_26) 1931; 93
Schellenberg (ref_44) 2021; 22
Taka (ref_65) 1999; 7
ref_58
ref_13
ref_56
ref_11
ref_10
Gandjbakhche (ref_22) 1996; 35
ref_19
Takagi (ref_74) 2009; 48
ref_18
Tran (ref_77) 2014; 5
ref_17
Toida (ref_68) 1991; 52
Bercovich (ref_8) 2018; 9
ref_16
ref_15
ref_59
Ntziachristos (ref_4) 2010; 7
Das (ref_52) 1993; 18
Wang (ref_51) 1991; 253
ref_60
Zhang (ref_85) 2022; 44
Chan (ref_73) 1997; 42
Qureshi (ref_83) 2023; 90
Cai (ref_82) 2020; 8
Kamiyama (ref_61) 2021; 10
Ueda (ref_28) 2020; 21
Cheng (ref_48) 2019; 12
ref_62
Shimizu (ref_50) 2000; 7
Takagi (ref_75) 2009; 17
Taruttis (ref_2) 2015; 75
Doi (ref_12) 2006; 51
Wang (ref_46) 2020; 2
Dhawan (ref_25) 2012; 59
Shimizu (ref_76) 2005; 44
Pian (ref_3) 2014; 3
ref_72
ref_71
ref_70
Weissleder (ref_1) 2015; 112
Yamamoto (ref_78) 2014; 113
Gurcan (ref_23) 2010; 57
ref_34
ref_33
Kaushal (ref_36) 2017; 19
Belthangady (ref_47) 2019; 16
Tandon (ref_66) 2008; 27
Faragallah (ref_6) 2021; 9
Devaraj (ref_69) 1996; 2
Zhu (ref_32) 2013; 7
ref_39
Kasban (ref_9) 2015; 4
ref_37
Susaki (ref_31) 2016; 23
Umar (ref_7) 2019; 6
Freund (ref_54) 1988; 60
Djavanshir (ref_81) 2021; 23
Hoshi (ref_38) 2003; 40
Zuo (ref_40) 2022; 11
Brecko (ref_86) 2014; 464
Ntziachristos (ref_20) 2005; 23
Cai (ref_30) 2019; 22
Li (ref_14) 2022; 14
ref_80
Costantini (ref_29) 2019; 10
Cai (ref_27) 2023; 18
Chen (ref_55) 1999; 44
ref_45
Sun (ref_35) 2020; 38
ref_88
Galantucci (ref_87) 2013; 13
ref_42
ref_41
Das (ref_53) 1994; 21
Matsuda (ref_64) 2012; 111
Xu (ref_63) 2021; 31
Zhang (ref_67) 2020; 2
ref_84
Van (ref_79) 2021; 12
ref_49
Key (ref_21) 1988; 10
Dhawan (ref_24) 2010; 57
ref_5
References_xml – ident: ref_19
  doi: 10.1201/9780203008997
– ident: ref_5
– volume: 2
  start-page: fcaa055
  year: 2020
  ident: ref_67
  article-title: Hindlimb motor responses to unilateral brain injury: Spinal cord encoding and left-right asymmetry
  publication-title: Brain Commun.
  doi: 10.1093/braincomms/fcaa055
– ident: ref_80
  doi: 10.1109/CVPR.2015.7298965
– volume: 22
  start-page: 100241
  year: 2021
  ident: ref_44
  article-title: Deep learning for biomedical photoacoustic imaging: A review
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2021.100241
– volume: 57
  start-page: 2551
  year: 2010
  ident: ref_23
  article-title: Special Letters Issue on Emerging Technologies in Multiparameter Biomedical Optical Imaging and Image Analysis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2072750
– volume: 113
  start-page: 115
  year: 2014
  ident: ref_78
  article-title: Image improvement of absorbing structure in turbid medium for optical transillumination imaging of biological body
  publication-title: IEICE Tech. Rep.
– ident: ref_16
– volume: 38
  start-page: 421
  year: 2020
  ident: ref_35
  article-title: A review on practical considerations and solutions in underwater wireless optical communication
  publication-title: J. Light. Technol.
  doi: 10.1109/JLT.2019.2960131
– volume: 48
  start-page: D36
  year: 2009
  ident: ref_74
  article-title: Extraction of near-axis scattered light for transillumination imaging
  publication-title: Appl. Opt.
  doi: 10.1364/AO.48.000D36
– volume: 90
  start-page: 316
  year: 2023
  ident: ref_83
  article-title: Medical image segmentation using deep semantic-based methods: A review of techniques, applications and emerging trends
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.09.031
– volume: 44
  start-page: 1669
  year: 1999
  ident: ref_55
  article-title: Estimation of quasi-straightforward propagating light in tissues
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/44/7/307
– volume: 2
  start-page: 1008
  year: 1996
  ident: ref_69
  article-title: Recent advances in coherent detection imaging (CDI) in biomedicine: Laser tomography of human tissues in vivo and in vitro
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/2944.577330
– ident: ref_62
  doi: 10.3390/cryst12081087
– volume: 60
  start-page: 1130
  year: 1988
  ident: ref_54
  article-title: Dynamic Multiple Scattering: Ballistic Photons and the Breakdown of the Photon-Diffusion Approximation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.60.1130
– ident: ref_71
– ident: ref_58
– ident: ref_10
  doi: 10.1007/978-3-540-68993-5
– volume: 44
  start-page: 4819
  year: 2022
  ident: ref_85
  article-title: Deep Learning-Based Multi-Focus Image Fusion: A Survey and a Comparative Study
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 112
  start-page: 14424
  year: 2015
  ident: ref_1
  article-title: Advancing biomedical imaging
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1508524112
– ident: ref_59
  doi: 10.1007/978-3-030-27731-4
– volume: 2
  start-page: 737
  year: 2020
  ident: ref_46
  article-title: Deep learning for tomographic image reconstruction
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-00273-z
– volume: 3
  start-page: 72
  year: 2014
  ident: ref_3
  article-title: Multimodal biomedical optical imaging review: Towards comprehensive investigation of biological tissues
  publication-title: Curr. Mol. Imaging
  doi: 10.2174/2211555203666141117231651
– volume: 18
  start-page: 1197
  year: 2023
  ident: ref_27
  article-title: Whole-mouse clearing and imaging at the cellular level with vDISCO
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-022-00788-2
– volume: 51
  start-page: R5
  year: 2006
  ident: ref_12
  article-title: Diagnostic imaging over the last 50 years: Research and development in medical imaging science and technology
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/13/R02
– volume: 6
  start-page: 175
  year: 2019
  ident: ref_7
  article-title: A review of imaging techniques in scientific research/clinical diagnosis
  publication-title: MOJ Anat. Physiol.
– ident: ref_34
  doi: 10.1515/joc-2021-0190
– volume: 75
  start-page: 1548
  year: 2015
  ident: ref_2
  article-title: Mesoscopic and macroscopic optoacoustic imaging of cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-2522
– volume: 10
  start-page: 5251
  year: 2019
  ident: ref_29
  article-title: In-vivo and ex-vivo optical clearing methods for biological tissues
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.10.005251
– volume: 12
  start-page: 1930006
  year: 2019
  ident: ref_48
  article-title: Artificial intelligence-assisted light control and computational imaging through scattering media
  publication-title: J. Innov. Opt. Health Sci.
  doi: 10.1142/S1793545819300064
– volume: 31
  start-page: 054001
  year: 2021
  ident: ref_63
  article-title: Silicon electro-optic micro-modulator fabricated in standard CMOS technology as components for all silicon monolithic integrated optoelectronic systems
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/abf333
– volume: 7
  start-page: 383
  year: 2000
  ident: ref_50
  article-title: Fundamental study on near-axis scattered light and its application to optical computed tomography
  publication-title: Opt. Rev.
  doi: 10.1007/s10043-000-0383-4
– ident: ref_17
– ident: ref_72
– ident: ref_13
  doi: 10.3390/qubs5040029
– volume: 111
  start-page: 151
  year: 2012
  ident: ref_64
  article-title: Arteriovenous discrimination by spectroscopic analysis of transillumination images
  publication-title: IEICE Tech. Rep.
– volume: 18
  start-page: 1092
  year: 1993
  ident: ref_52
  article-title: Ultrafast time-gated imaging in thick tissues: A step toward optical mammography
  publication-title: Opt. Lett.
  doi: 10.1364/OL.18.001092
– volume: 42
  start-page: 855
  year: 1997
  ident: ref_73
  article-title: Coherent detection techniques in optical imaging of tissues
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/42/5/009
– ident: ref_18
  doi: 10.1201/9781420011838
– volume: 14
  start-page: 1
  year: 2022
  ident: ref_14
  article-title: All silicon microdisplay fabricated utilizing 0.18 μm CMOS-IC with monolithic integration
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2022.3226568
– volume: 21
  start-page: 166
  year: 1994
  ident: ref_53
  article-title: Snake Photon Imaging in Thick Tissues in Visible and Near Infrared Radiation Spectral Region
  publication-title: Adv. Opt. Imaging Photon Migr.
– volume: 44
  start-page: 2154
  year: 2005
  ident: ref_76
  article-title: Improvement of transcutaneous fluorescent images with a depth-dependent point-spread function
  publication-title: Appl. Opt.
  doi: 10.1364/AO.44.002154
– volume: 7
  start-page: 732
  year: 2013
  ident: ref_32
  article-title: Recent progress in tissue optical clearing
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201200056
– volume: 8
  start-page: 713
  year: 2020
  ident: ref_82
  article-title: A review of the application of deep learning in medical image classification and segmentation
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2020.02.44
– ident: ref_37
  doi: 10.1007/978-3-319-31903-2
– volume: 22
  start-page: 317
  year: 2019
  ident: ref_30
  article-title: Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0301-3
– ident: ref_88
  doi: 10.1109/ICIP.2013.6738262
– volume: 13
  start-page: 044501
  year: 2013
  ident: ref_87
  article-title: Multistack close range photogrammetry for low cost submillimeter metrology
  publication-title: J. Comput. Inf. Sci. Eng.
  doi: 10.1115/1.4024973
– ident: ref_11
– volume: 19
  start-page: 57
  year: 2017
  ident: ref_36
  article-title: Optical communication in space: Challenges and mitigation techniques
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2016.2603518
– volume: 9
  start-page: e0034
  year: 2018
  ident: ref_8
  article-title: Medical imaging: From roentgen to the digital revolution, and beyond
  publication-title: Rambam Maimonides Med. J.
  doi: 10.5041/RMMJ.10355
– volume: 11
  start-page: 39
  year: 2022
  ident: ref_40
  article-title: Deep learning in optical metrology: A review
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-022-00714-x
– volume: 35
  start-page: 1767
  year: 1996
  ident: ref_22
  article-title: Absorptivity contrast in transillumination imaging of tissue abnormalities
  publication-title: Appl. Opt.
  doi: 10.1364/AO.35.001767
– volume: 10
  start-page: 113
  year: 1988
  ident: ref_21
  article-title: New approaches to transillumination imaging
  publication-title: J. Biomed. Eng.
  doi: 10.1016/0141-5425(88)90084-2
– ident: ref_49
  doi: 10.3390/s22155747
– volume: 52
  start-page: 391
  year: 1991
  ident: ref_68
  article-title: Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method
  publication-title: Appl. Phys. B
  doi: 10.1007/BF00325156
– ident: ref_39
  doi: 10.3390/electronics11030305
– volume: 7
  start-page: 545
  year: 1999
  ident: ref_65
  article-title: Non—Invasive lmaging of absorption changes in rat brain by NIR transillumination
  publication-title: Med. Imaging Tech.
– ident: ref_15
  doi: 10.1117/3.1003040
– volume: 23
  start-page: 313
  year: 2005
  ident: ref_20
  article-title: Looking and listening to light: The evolution of whole-body photonic imaging
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1074
– volume: 16
  start-page: 1215
  year: 2019
  ident: ref_47
  article-title: Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0458-z
– volume: 12
  start-page: 2873
  year: 2021
  ident: ref_79
  article-title: Three-dimensional imaging through turbid media using deep learning: NIR transillumination imaging of animal bodies
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.420337
– volume: 9
  start-page: 11358
  year: 2021
  ident: ref_6
  article-title: A comprehensive survey analysis for present solutions of medical image fusion and future directions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3048315
– volume: 40
  start-page: 511
  year: 2003
  ident: ref_38
  article-title: Functional near-infrared optical imaging: Utility and limitations in human brain mapping
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.00053
– ident: ref_84
  doi: 10.1088/2057-1976/ac9847
– volume: 464
  start-page: 1
  year: 2014
  ident: ref_86
  article-title: Focus stacking: Comparing commercial top-end set-ups with a semi-automatic low budget approach. A possible solution for mass digitization of type specimens
  publication-title: ZooKeys
  doi: 10.3897/zookeys.464.8615
– volume: 53
  start-page: 748
  year: 2021
  ident: ref_43
  article-title: Deep learning in biomedical optics
  publication-title: Lasers Surg. Med.
  doi: 10.1002/lsm.23414
– ident: ref_41
  doi: 10.1109/SMART55829.2022.10046965
– volume: 10
  start-page: 1
  year: 2021
  ident: ref_61
  article-title: Fundamental study for optical transillumination imaging of arteriovenous fistula
  publication-title: Adv. Biomed. Eng.
  doi: 10.14326/abe.10.1
– volume: 17
  start-page: 8332
  year: 2009
  ident: ref_75
  article-title: CW transillumination imaging by extracting weakly scattered light from strongly diffused light
  publication-title: Opt. Express
  doi: 10.1364/OE.17.008332
– volume: 27
  start-page: 228
  year: 2008
  ident: ref_66
  article-title: Overlapping representations of the neck and whiskers in the rat motor cortex revealed by mapping at different anaesthetic depths
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2007.05997.x
– volume: 23
  start-page: 58
  year: 2021
  ident: ref_81
  article-title: A Review of artificial intelligence’s neural networks (deep learning) applications in medical diagnosis and prediction
  publication-title: IT Prof.
  doi: 10.1109/MITP.2021.3073665
– volume: 21
  start-page: 61
  year: 2020
  ident: ref_28
  article-title: Tissue clearing and its applications in neuroscience
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-019-0250-1
– ident: ref_56
  doi: 10.1117/1.3505020
– volume: 7
  start-page: 603
  year: 2010
  ident: ref_4
  article-title: Going deeper than microscopy: The optical imaging frontier in biology
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1483
– volume: 93
  start-page: 223
  year: 1931
  ident: ref_26
  article-title: Transillumination of the breast
  publication-title: Ann. Surg.
  doi: 10.1097/00000658-193101000-00032
– ident: ref_45
  doi: 10.1117/1.JBO.26.4.040901
– volume: 57
  start-page: 2568
  year: 2010
  ident: ref_24
  article-title: Depth-dependent hemoglobin analysis from multispectral transillumination images
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2059025
– volume: 59
  start-page: 2660
  year: 2012
  ident: ref_25
  article-title: Transillumination imaging for blood oxygen saturation estimation of skin lesions
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2209647
– volume: 23
  start-page: 137
  year: 2016
  ident: ref_31
  article-title: Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: Toward organism-level systems biology in mammals
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2015.11.009
– volume: 4
  start-page: 37
  year: 2015
  ident: ref_9
  article-title: A comparative study of medical imaging techniques
  publication-title: Int. J. Inf. Sci. Intell. Syst.
– ident: ref_70
– volume: 5
  start-page: 1321
  year: 2014
  ident: ref_77
  article-title: Three-dimensional transillumination image reconstruction for small animal with new scattering suppression technique
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.5.001321
– volume: 253
  start-page: 769
  year: 1991
  ident: ref_51
  article-title: Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate
  publication-title: Science
  doi: 10.1126/science.253.5021.769
– ident: ref_33
  doi: 10.1007/978-3-319-31903-2
– ident: ref_42
  doi: 10.3390/jmse10020241
– volume: 170
  start-page: 331
  year: 1999
  ident: ref_57
  article-title: Imaging in turbid media using quasi-ballistic photons
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(99)00468-X
– ident: ref_60
  doi: 10.1007/978-3-319-12484-1
SSID ssj0000702636
Score 2.3071008
SecondaryResourceType review_article
Snippet The classical transillumination technique has been revitalized through recent advancements in optical technology, enhancing its applicability in the realm of...
Advancements in optical technology have revitalized transillumination imaging for biomedical research. Using near-infrared (NIR) light, we have visualized...
Simple SummaryAdvancements in optical technology have revitalized transillumination imaging for biomedical research. Using near-infrared (NIR) light, we have...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1362
SubjectTerms Animal experimentation
Biological Sciences
Biomedical engineering
biomedical imaging
biomedical research
Blood
Deep learning
diffusion
functional imaging
Hemoglobin
humans
I.R. radiation
Laws, regulations and rules
Light
Light scattering
Magnetic resonance imaging
medical imaging
Medical research
near-axis scattered light
near-infrared light
Optics
Physiology
Spectrum analysis
Tissues
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA_aIvhS_MS1VSII-hK7l2Q3lye5kx6t0EPUQt9CdjaRA7t7Xq8P_vfOZHMnJ5yvyYTsTpL5yuQ3jL1tlW-shVqgpDOCLt6ED0ELiGUc6WAkpJW-nNfnV_rzdXWdA263Oa1yIxOToG57oBj5KToG0mqrq9HH5S9BVaPodjWX0LjPDlEEj9H5Opyezb983UZZcEPLmu4nCdNHoX9_mrGNCNlspGq5o44Sav8-2ZwUzuwRO8qWIp8MS_uY3QvdE_ZgqB35-yn7Nsc9Ki66uKIUcp50zoLKFi-G-B5Ha5RfepoW-uUC-Aw12BD44xc3qTYR7yOfdIsbbJn2lE34jF3Nzr5_Ohe5QoIANLPWQsUmgm5kJUG1ta4jigy6Ghu3yP5QQlSmMgBAr0BCa6KJI-sbqYFyRdCyUc_ZQdd34QXjQSsFEIMZ26B95ccQwVsrm2jqGsq2YB82jHKQ4cOpisVPh24Ecdb9w9mCvd8OWA7IGftJp8T5LRlBXqeGfvXD5RPkggwy6gZQBJUavLKh8hrQ3PZt2VgTC_aO1s3RwcQPA5_fF-DvEcSVm5hkLGlVFuxkhxIPFOx2b1be5QN96_5uv4K92XbTSEpS60J_l2jI30cDbT-NQqGpKsJQevn_aY7ZQ6psT2pS6hN2sF7dhVdo_6yb13mT_wFRzAd8
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBejZdCXsW5r5zYdGgy2F3eOJFvRQynpWEgH6csW6JuQz1IJpHabpdD-972TnYyM5W2v0glbd7q73-njjrFPlXSlMVCkaOl0SgdvqfNepRCy0FdeC4iSnlwV46n6cZ1f_ykH1DHw9z9DO6onNV3MTx_vn85R4c8o4sSQ_WuXroiSlfWjPd5Ft6RJSycd1o9mWWO4QUeVh1vGbXimmMB_m5mOvmf0mr3qQCMftlLeZy98_Ya9bMtIPr1lP69wuaaXdVjQbXIe3c-MKhjP2q0-jsCUTxx9Fpq7GfAROrN2D5Bf3sYyRbwJfFjPbrHloqGLhe_YdPT917dx2hVLSAER1zKVoQygSpELkFWhioDWg07JBhVKwmcQpM41ANCDEF_poEPfuFIooGsjCHLkAdupm9q_Z9wrKQGC1wPjlcvdAAI4Y0QZdFFAViXsdMUoC10mcSpoMbcYURBn7V-cTdiX9YC7NonGdtIL4vyajLJfx4ZmcWM7ZbJeeBFUCWiNMgVOGp87BYi8XZWVRoeEfSa5WVo1-GPguqcGOD3KdmWHOuImJbOE9TYoUbdgs3slebtamhZDVGGUUXk_YR_X3TSS7qvVvnmINBT6I1bbTiPRfsqc0ikd_Y9JH7M9gQCM_KpQPbazXDz4EwRMy_JDVIRnA7MXfA
  priority: 102
  providerName: Scholars Portal
Title Near-Infrared Transillumination for Macroscopic Functional Imaging of Animal Bodies
URI https://www.proquest.com/docview/2892949451
https://www.proquest.com/docview/2893837554
https://www.proquest.com/docview/3040350776
https://doaj.org/article/e2e2f4bc83204ca39e5a4c81dad0b97f
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5CSqGX0kdCnaRBhUJ7ceKVZGt13C1ZksIuoU0gNyGPJVho7JBsDv33nZGdJVtYeunFB3uMrdE8pdE3AJ8b5WtrscrJ0pmcN95yH4LOMRZxpIORmGZ6vqjOr_X3m_LmWasvrgnr4YF7xp0GGWTUNZLkFRq9sqH0GinK8k1RWxPZ-pLPe5ZMJRtsKLfgfUnG8lGU158OmEaMaDZSldxwQwmtf5tNTo5m9gZeDxGimPR_9hZ2QvsOXvY9I3-_h58Lks38oo33XDoukq9ZcrviZb-uJygKFXPPn8XuboliRp6rX_ATF7epJ5Hoopi0y1u6M-24inAPrmdnV9_O86EzQo4UXq1yFeuIupalRNVUuopkKnhLbNwQ20OBUZnSICKf_giNiSaOrK-lRq4RoYhG7cNu27XhA4iglUKMwYxt0L70Y4zorZV1NFWFRZPByROjHA6w4dy94pej9IE56_7ibAZf1y_c9YgZ20mnzPk1GUNdpxskAG4QAPcvAcjgC8-bY4WkH0M_nCug4TG0lZuYFCRpVWRwtEFJioSbj59m3g2K_OAoH5VWW12OMvi0fsxvcnFaG7rHRMN5PgVm22kUGUtVMnbSwf8Y9CG84r737ESlPoLd1f1j-EjR0ao-hhfTs8Xlj-OkEHSd6_EfbQQSHQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTgheEH9FYECQQPASltpOUj8g1MKqlq0Vgk3am-dcbFSJJaXrhPal-IzcJWlRkcrbXp1LHJ99dz-fz3cArwppc60xjUjTZREfvEXWORWhj31XuUxgPdOTaTo6UZ9Pk9Md-L26C8NhlSudWCvqokL2ke_TxkBopVXS_TD_GXHVKD5dXZXQaJbFobv6RVu2i_fjTzS_r4UYHhx_HEVtVYEICZosI-lzjyoXiUBZpCr1JGZ8nNQr6JddjF5mSYaIfHPCFZnPfFfbXCjk-ApCA5K-ewN2laStTAd2BwfTL1_XXh0SIJHyeSjnEJJSx_ttLiXOpNaVqdgwf3WVgG22oDZww7twp0WmYb9ZSvdgx5X34WZTq_LqAXyb0uCjcekXHLIe1jZuxmWSZ40_MST0G04sd4vVfIbhkCxm42gMx-d1LaSw8mG_nJ1Ty6Di6MWHcHItvHsEnbIq3WMInZIS0busp52yie2hR6u1yH2WphgXAbxbMcpgm66cq2b8MLRtYc6afzgbwNv1C_MmU8d20gFzfk3GKbbrhmrx3bQSa5xwwqscSeXFCq3ULrEKCd7bIs515gN4w_NmWBHQj6Ft7zPQ8DillulnNThTMg5gb4OSBBg3H69m3rQK5ML8Xe4BvFw_5jc5KK501WVNw_4FAoTbaSQpaZlwzqYn_-_mBdwaHU-OzNF4evgUbgvCcmyihdqDznJx6Z4R9lrmz9sFH8LZdcvYH0rIRXM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTiBeEH9FxoAggeAlNLWduH5AqGWrVsaqCZi0t8y52KgSS7quE9pX49Nxl6RFRSpve7UvcXL23f18Pt8BvC6kzY3BNCJNpyM-eIuscypCH_ueclpgPdNHk_TgRH0-TU634PfyLgyHVS51Yq2oiwrZR96ljYEwyqik1_VtWMTx3ujj7CLiClJ80rosp9EskUN3_Yu2b5cfxns012-EGO1__3QQtRUGIiSYsoikzz2qXCQCZZGq1JPI8dFSv6DPdzF6qRONiHyLwhXaa98zNhcKOdaCkIGk996CbU27orgD28P9yfHXlYeH2kTKZ6OcT0hKE3fbvEqcVa0nU7FmCuuKAZvsQm3sRvfhXotSw0GzrB7Alisfwu2mbuX1I_g2oZ-PxqWfc_h6WNu7KZdMnja-xZCQcHhkeVisZlMMR2Q9G6djOD6v6yKFlQ8H5fScWoYVRzI-hpMb4d0T6JRV6Z5C6JSUiN7pvnHKJraPHq0xIvc6TTEuAni_ZFSGbepyrqDxM6MtDHM2-4ezAbxbPTBrsnZsJh0y51dknG67bqjmP7JWejMnnPAqR1J_sUIrjUusQoL6tohzo30Ab3neMlYK9GFo27sN9HucXisb6BqoKRkHsLtGScKM693Lmc9aZXKZ_V36AbxadfOTHCBXuuqqpmFfA4HDzTSSFLZMOH_Tzv-HeQl3SLayL-PJ4TO4KwjWsbUWahc6i_mVe04wbJG_aNd7CGc3LWJ_ADGzSag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-Infrared+Transillumination+for+Macroscopic+Functional+Imaging+of+Animal+Bodies&rft.jtitle=Biology+%28Basel%2C+Switzerland%29&rft.au=Koichi+Shimizu&rft.date=2023-10-24&rft.pub=MDPI+AG&rft.eissn=2079-7737&rft.volume=12&rft.issue=11&rft.spage=1362&rft_id=info:doi/10.3390%2Fbiology12111362&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e2e2f4bc83204ca39e5a4c81dad0b97f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-7737&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-7737&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-7737&client=summon