Confocal Laser Scanning Microscopy for Analysis of Pseudomonas aeruginosa Biofilm Architecture and Matrix Localization

Most microbes can produce surface-associated or suspended aggregates called biofilms, which are encased within a biopolymer-rich matrix. The biofilm matrix provides structural integrity to the aggregates and shields the resident cells against environmental stressors, including antibiotic treatment....

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 10; p. 677
Main Authors Reichhardt, Courtney, Parsek, Matthew R
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 02.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most microbes can produce surface-associated or suspended aggregates called biofilms, which are encased within a biopolymer-rich matrix. The biofilm matrix provides structural integrity to the aggregates and shields the resident cells against environmental stressors, including antibiotic treatment. Microscopy permits examination of biofilm structure in relation to the spatial localization of important biofilm matrix components. This review highlights microscopic approaches to investigate bacterial biofilm assembly, matrix composition, and localization using as a model organism. Initial microscopic investigations provided information about the role key matrix components play in elaborating biofilm aggregate structures. Additionally, staining of matrix components using specific labels revealed distinct positioning of matrix components within the aggregates relative to the resident cells. In some cases, it was found that individual matrix components co-localize within aggregates. The methodologies for studying the biofilm matrix are continuing to develop as our studies reveal novel aspects of its composition and function. We additionally describe some outstanding questions and how microscopy might be used to identify the functional aspects of biofilm matrix components.
AbstractList Most microbes can produce surface-associated or suspended aggregates called biofilms, which are encased within a biopolymer-rich matrix. The biofilm matrix provides structural integrity to the aggregates and shields the resident cells against environmental stressors, including antibiotic treatment. Microscopy permits examination of biofilm structure in relation to the spatial localization of important biofilm matrix components. This review highlights microscopic approaches to investigate bacterial biofilm assembly, matrix composition, and localization using Pseudomonas aeruginosa as a model organism. Initial microscopic investigations provided information about the role key matrix components play in elaborating biofilm aggregate structures. Additionally, staining of matrix components using specific labels revealed distinct positioning of matrix components within the aggregates relative to the resident cells. In some cases, it was found that individual matrix components co-localize within aggregates. The methodologies for studying the biofilm matrix are continuing to develop as our studies reveal novel aspects of its composition and function. We additionally describe some outstanding questions and how microscopy might be used to identify the functional aspects of biofilm matrix components.
Most microbes can produce surface-associated or suspended aggregates called biofilms, which are encased within a biopolymer-rich matrix. The biofilm matrix provides structural integrity to the aggregates and shields the resident cells against environmental stressors, including antibiotic treatment. Microscopy permits examination of biofilm structure in relation to the spatial localization of important biofilm matrix components. This review highlights microscopic approaches to investigate bacterial biofilm assembly, matrix composition, and localization using as a model organism. Initial microscopic investigations provided information about the role key matrix components play in elaborating biofilm aggregate structures. Additionally, staining of matrix components using specific labels revealed distinct positioning of matrix components within the aggregates relative to the resident cells. In some cases, it was found that individual matrix components co-localize within aggregates. The methodologies for studying the biofilm matrix are continuing to develop as our studies reveal novel aspects of its composition and function. We additionally describe some outstanding questions and how microscopy might be used to identify the functional aspects of biofilm matrix components.
Most microbes can produce surface-associated or suspended aggregates called biofilms, which are encased within a biopolymer-rich matrix. The biofilm matrix provides structural integrity to the aggregates and shields the resident cells against environmental stressors, including antibiotic treatment. Microscopy permits examination of biofilm structure in relation to the spatial localization of important biofilm matrix components. This review highlights microscopic approaches to investigate bacterial biofilm assembly, matrix composition, and localization using Pseudomonas aeruginosa as a model organism. Initial microscopic investigations provided information about the role key matrix components play in elaborating biofilm aggregate structures. Additionally, staining of matrix components using specific labels revealed distinct positioning of matrix components within the aggregates relative to the resident cells. In some cases, it was found that individual matrix components co-localize within aggregates. The methodologies for studying the biofilm matrix are continuing to develop as our studies reveal novel aspects of its composition and function. We additionally describe some outstanding questions and how microscopy might be used to identify the functional aspects of biofilm matrix components.
Author Parsek, Matthew R
Reichhardt, Courtney
AuthorAffiliation Department of Microbiology, University of Washington , Seattle, WA , United States
AuthorAffiliation_xml – name: Department of Microbiology, University of Washington , Seattle, WA , United States
Author_xml – sequence: 1
  givenname: Courtney
  surname: Reichhardt
  fullname: Reichhardt, Courtney
  organization: Department of Microbiology, University of Washington, Seattle, WA, United States
– sequence: 2
  givenname: Matthew R
  surname: Parsek
  fullname: Parsek, Matthew R
  organization: Department of Microbiology, University of Washington, Seattle, WA, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31001240$$D View this record in MEDLINE/PubMed
BookMark eNpVkU1vEzEQhi1UREvpnRPykUuCv9abvSCFCEqlVCABEjdr1h6nrnbtYO9WhF_fTVKq1gd7ZM88r6XnNTmJKSIhbzmbS7loPvg-2HYuGG_mjOm6fkHOuNZqJpn4ffKkPiUXpdyyaSkmpv0VOZWcMS4UOyN3qxR9stDRNRTM9IeFGEPc0Otgcyo2bXfUp0yXEbpdCYUmT78XHF3qU4RCAfO4CTEVoJ9C8qHr6TLbmzCgHcaMFKKj1zDk8Jeu9zHhHwwhxTfkpYeu4MXDeU5-ffn8c_V1tv52ebVarme2qqthJjlqqF3rrHS-VpK3XrZeKQdCN94xucCacbR1K7VSQtcNVLxlrfMLAGe9PCdXR65LcGu2OfSQdyZBMIeLlDcG8hBsh8b7SjCcRrluFEfRwhSC2jJhlfUtTqyPR9Z2bHt0FuOQoXsGff4Sw43ZpDujVaX4op4A7x8AOf0ZsQymD8Vi10HENBYjBOeNqiRbTK3s2LqXUDL6xxjOzN6-Odg3e_vmYH8aeff0e48D_13Le8VDsjQ
CitedBy_id crossref_primary_10_1007_s42250_022_00550_x
crossref_primary_10_1093_femsle_fnaa037
crossref_primary_10_1038_s41522_021_00236_1
crossref_primary_10_3389_fmicb_2021_686793
crossref_primary_10_1007_s00203_019_01764_3
crossref_primary_10_1016_j_envres_2024_118273
crossref_primary_10_52711_0974_360X_2022_00768
crossref_primary_10_1007_s10989_023_10519_0
crossref_primary_10_3390_ijms22158241
crossref_primary_10_1073_pnas_2113723119
crossref_primary_10_1038_s41579_020_0385_0
crossref_primary_10_1021_acs_analchem_0c01125
crossref_primary_10_1139_cjm_2020_0004
crossref_primary_10_1007_s00203_021_02499_w
crossref_primary_10_1016_j_bioflm_2020_100029
crossref_primary_10_3389_fmicb_2019_01908
crossref_primary_10_1016_j_micres_2022_127062
crossref_primary_10_3390_foods12071361
crossref_primary_10_3390_microorganisms10102030
crossref_primary_10_3390_ijms22169100
crossref_primary_10_5423_PPJ_OA_04_2022_0055
crossref_primary_10_1016_j_biortech_2021_126309
crossref_primary_10_1016_j_tifs_2022_07_016
crossref_primary_10_3389_fmicb_2023_1211761
crossref_primary_10_3390_bios13080777
crossref_primary_10_1007_s00216_022_04496_4
crossref_primary_10_1007_s10295_020_02293_5
crossref_primary_10_3389_fcimb_2023_1127256
crossref_primary_10_1080_26395940_2023_2220571
crossref_primary_10_1002_chem_202004698
crossref_primary_10_1038_s41522_021_00214_7
crossref_primary_10_3389_fmicb_2023_1225411
crossref_primary_10_3390_microorganisms9081743
crossref_primary_10_1073_pnas_2212650120
crossref_primary_10_3390_ijms232214259
crossref_primary_10_4014_jmb_2209_09045
crossref_primary_10_1016_j_tim_2020_03_016
crossref_primary_10_3390_ma15196727
crossref_primary_10_3390_microorganisms12061198
crossref_primary_10_1016_j_isci_2022_104308
crossref_primary_10_1016_j_agwat_2023_108624
crossref_primary_10_1371_journal_pone_0233973
crossref_primary_10_1016_j_snb_2021_129669
crossref_primary_10_3390_app10165435
crossref_primary_10_1021_acsbiomaterials_0c01691
crossref_primary_10_1016_j_jksus_2022_101845
crossref_primary_10_3390_app13137797
crossref_primary_10_3390_molecules29050935
crossref_primary_10_3389_fmicb_2023_1132781
crossref_primary_10_3389_fcimb_2022_898412
crossref_primary_10_3390_s22093548
crossref_primary_10_1016_j_micpath_2020_104240
crossref_primary_10_1021_acsomega_2c07255
crossref_primary_10_3390_ma15134691
crossref_primary_10_1016_j_bbalip_2021_159101
crossref_primary_10_1128_spectrum_00939_22
crossref_primary_10_3390_antibiotics13020184
crossref_primary_10_1021_acs_est_0c04645
crossref_primary_10_5005_jp_journals_10015_2097
crossref_primary_10_3390_gels9030251
crossref_primary_10_1021_acsami_9b21815
crossref_primary_10_3389_fmicb_2022_895526
crossref_primary_10_1021_acsbiomaterials_4c00060
crossref_primary_10_1186_s12951_022_01307_x
crossref_primary_10_3390_microorganisms10010138
crossref_primary_10_1016_j_jep_2020_112965
crossref_primary_10_1016_j_bioflm_2024_100177
crossref_primary_10_1364_OSAC_428601
crossref_primary_10_3390_molecules29051080
crossref_primary_10_1016_j_bioflm_2024_100176
crossref_primary_10_1111_1462_2920_14834
crossref_primary_10_1007_s00253_020_10687_9
Cites_doi 10.1016/j.mimet.2016.11.002
10.1099/00221287-146-10-2409
10.1128/AEM.01585-15
10.1073/pnas.90.18.8377
10.1128/JB.01202-06
10.1080/1040841X.2016.1208146
10.1016/j.bpj.2014.10.015
10.1111/j.1365-2958.2009.06795.x
10.1111/j.1365-2958.2009.06991.x
10.1128/AAC.00935-10
10.1186/gb-2003-4-6-219
10.1128/JB.00673-06
10.1046/j.1365-2958.1998.01062.x
10.1128/JB.00369-15
10.1146/annurev.mi.49.100195.003431
10.1099/00221287-146-10-2395
10.1128/JB.00119-09
10.1128/mBio.00645-13
10.1038/nrmicro821
10.1002/mbo3.301
10.1038/npjbiofilms.2015.31
10.1080/00268976.2013.837983
10.1126/science.295.5559.1487
10.4103/2321-3868.113329
10.1073/pnas.0610226104
10.1128/mBio.00543-18
10.1111/j.1365-2958.2005.05008.x
10.1016/S0021-9258(18)37956-0
10.1128/AEM.02361-09
10.1371/journal.ppat.1000354
10.1111/j.1574-6976.2011.00322.x
10.1073/pnas.1503058112
10.1073/pnas.1217993109
10.1021/acs.jpcb.6b02074
10.1038/s41522-018-0051-8
10.1007/s00248-013-0297-x
10.1126/science.1222981
10.1128/CMR.15.2.167-193.2002
10.3389/fcimb.2017.00039
10.1128/JB.02516-14
10.1099/mic.0.040196-0
10.1093/jac/22.5.667
10.1371/journal.ppat.1002210
10.1111/j.1462-2920.2011.02657.x
10.1128/JB.185.15.4585-4592.2003
10.1016/S0141-8130(02)00002-8
10.1099/00221287-147-2-299
10.1021/pr300395j
10.1038/nrmicro2415
10.1016/S0140-6736(01)05321-1
10.1128/mBio.00103-13
10.1111/1462-2920.12155
10.1038/nrmicro.2016.94
10.1128/AEM.00113-17
10.1126/science.284.5418.1318
10.1128/mBio.01333-14
10.1128/AEM.03954-15
10.1128/JB.00620-07
10.1146/annurev.micro.57.030502.090720
10.1016/j.tim.2016.12.010
ContentType Journal Article
Copyright Copyright © 2019 Reichhardt and Parsek. 2019 Reichhardt and Parsek
Copyright_xml – notice: Copyright © 2019 Reichhardt and Parsek. 2019 Reichhardt and Parsek
DBID NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fmicb.2019.00677
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
EndPage 677
ExternalDocumentID oai_doaj_org_article_ff520ebdf16941e2baa26e6c02c4cfbe
10_3389_fmicb_2019_00677
31001240
Genre Journal Article
Review
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI077628
– fundername: NIAID NIH HHS
  grantid: R01 AI097511
– fundername: NIAID NIH HHS
  grantid: R01 AI143916
– fundername: NIH
  grantid: R01AI34895; R01AI077628; R01AI097511
– fundername: CFF
  grantid: REICHH17F0
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IHR
IPNFZ
KQ8
M48
M~E
NPM
O5R
O5S
OK1
PGMZT
RIG
RNS
RPM
AAYXX
CITATION
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c575t-31e6a7dbdc3df7431bf3bf44da269fd038e701ec7b36442679a51b0bdf8aadcf3
IEDL.DBID RPM
ISSN 1664-302X
IngestDate Tue Oct 22 15:08:29 EDT 2024
Tue Sep 17 21:04:11 EDT 2024
Fri Oct 25 10:35:59 EDT 2024
Thu Nov 21 21:27:56 EST 2024
Sat Nov 02 12:27:27 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords flow-cell
Pseudomonas aeruginosa
exopolysaccharides
confocal laser scanning microscopy
biofilm
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-31e6a7dbdc3df7431bf3bf44da269fd038e701ec7b36442679a51b0bdf8aadcf3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
This article was submitted to Systems Microbiology, a section of the journal Frontiers in Microbiology
Edited by: Allon Hochbaum, University of California, Irvine, United States
Reviewed by: Ilana Kolodkin-Gal, Weizmann Institute of Science, Israel; Rosalia Cavaliere, University of Technology Sydney, Australia
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454187/
PMID 31001240
PQID 2211945308
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_ff520ebdf16941e2baa26e6c02c4cfbe
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6454187
proquest_miscellaneous_2211945308
crossref_primary_10_3389_fmicb_2019_00677
pubmed_primary_31001240
PublicationCentury 2000
PublicationDate 2019-04-02
PublicationDateYYYYMMDD 2019-04-02
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-02
  day: 02
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Absalon (ref1) 2011; 7
Mann (ref35) 2012; 36
Costerton (ref10) 1999; 284
Stewart (ref55) 2001; 358
Sønderholm (ref52) 2017; 83
Berk (ref4) 2012; 337
Reichhardt (ref46) 2018
Donlan (ref11) 2002; 15
Azeredo (ref3) 2017; 43
Moradali (ref38) 2017; 7
Hollenbeck (ref22) 2014; 107
Toyofuku (ref57) 2012; 11
Costerton (ref9) 1995; 49
Li (ref30) 2015; 81
Reichhardt (ref45) 2014; 112
O’Toole (ref41) 1998; 30
Oppenheimer-Shaanan (ref43) 2016; 2
Keren-Paz (ref27) 2018; 4
Ma (ref32) 2009; 5
Parsek (ref44) 2003; 57
Whitchurch (ref61) 2002; 295
Kocharova (ref29) 1988; 263
Tseng (ref59) 2013; 15
Colvin (ref7) 2012; 14
Hollenbeck (ref21) 2016; 120
Starkey (ref53) 2009; 191
Heydorn (ref19); 146
Schürks (ref50) 2002; 30
Serra (ref51) 2013; 4
Mulcahy (ref40) 2014; 68
Swerhone (ref56) 2001; 147
Metcalf (ref37) 2013; 1
Kindrachuk (ref28) 2011; 55
Webb (ref60) 2003; 185
Byrd (ref6) 2009; 73
Heydorn (ref20); 146
Gordon (ref16) 1988; 22
Flemming (ref13) 2010; 8
Moscoso (ref39) 2006; 188
Li (ref31) 2016; 82
Steinberg (ref54) 2015; 197
Allesen-Holm (ref2) 2006; 59
Zarnowski (ref62) 2014; 5
Rybtke (ref48) 2015; 4
Ma (ref33) 2006; 188
Harmsen (ref18) 2010; 76
Rice (ref47) 2007; 104
Sauer (ref49) 2003; 4
Hall-Stoodley (ref17) 2004; 2
Flemming (ref14) 2016; 14
Tseng (ref58) 2018; 9
Irie (ref24) 2012; 109
Dragoš (ref12) 2017; 25
Martin (ref36) 1993; 90
Fong (ref15) 2010; 156
O’Toole (ref42) 1999
Jennings (ref25) 2015; 112
Borlee (ref5) 2010; 75
Ma (ref34) 2007; 189
Hung (ref23) 2013; 4
Joubert (ref26) 2017; 132
Cooley (ref8) 2016; 198
References_xml – volume: 132
  start-page: 46
  year: 2017
  ident: ref26
  article-title: Visualization of Aspergillus fumigatus biofilms with scanning electron microscopy and variable pressure-scanning electron microscopy: a comparison of processing techniques
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2016.11.002
  contributor:
    fullname: Joubert
– volume: 146
  start-page: 2409
  ident: ref19
  article-title: Experimental reproducibility in flow-chamber biofilms
  publication-title: Microbiology
  doi: 10.1099/00221287-146-10-2409
  contributor:
    fullname: Heydorn
– volume: 81
  start-page: 7403
  year: 2015
  ident: ref30
  article-title: Spatial patterns of carbonate biomineralization in biofilms
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01585-15
  contributor:
    fullname: Li
– volume: 90
  start-page: 8377
  year: 1993
  ident: ref36
  article-title: Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.90.18.8377
  contributor:
    fullname: Martin
– volume: 188
  start-page: 8213
  year: 2006
  ident: ref33
  article-title: Analysis of Pseudomonas aeruginosa conditional Psl variants reveals roles for the Psl polysaccharide in adhesion and maintaining biofilm structure postattachment
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01202-06
  contributor:
    fullname: Ma
– volume: 43
  start-page: 313
  year: 2017
  ident: ref3
  article-title: Critical review on biofilm methods
  publication-title: Crit. Rev. Microbiol.
  doi: 10.1080/1040841X.2016.1208146
  contributor:
    fullname: Azeredo
– volume: 107
  start-page: 2245
  year: 2014
  ident: ref22
  article-title: Molecular determinants of mechanical properties of V. cholerae biofilms at the air-liquid interface
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2014.10.015
  contributor:
    fullname: Hollenbeck
– volume: 73
  start-page: 622
  year: 2009
  ident: ref6
  article-title: Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2009.06795.x
  contributor:
    fullname: Byrd
– volume: 75
  start-page: 827
  year: 2010
  ident: ref5
  article-title: Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2009.06991.x
  contributor:
    fullname: Borlee
– volume: 55
  start-page: 1874
  year: 2011
  ident: ref28
  article-title: Involvement of an ATP-dependent protease, PA0779/AsrA, in inducing heat shock in response to tobramycin in Pseudomonas aeruginosa
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00935-10
  contributor:
    fullname: Kindrachuk
– volume: 4
  start-page: 219
  year: 2003
  ident: ref49
  article-title: The genomics and proteomics of biofilm formation
  publication-title: Genome Biol.
  doi: 10.1186/gb-2003-4-6-219
  contributor:
    fullname: Sauer
– volume: 188
  start-page: 7785
  year: 2006
  ident: ref39
  article-title: Biofilm formation by Streptococcus pneumoniae: role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00673-06
  contributor:
    fullname: Moscoso
– volume: 30
  start-page: 295
  year: 1998
  ident: ref41
  article-title: Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1998.01062.x
  contributor:
    fullname: O’Toole
– volume: 198
  start-page: 66
  year: 2016
  ident: ref8
  article-title: Cyclic Di-GMP-regulated periplasmic proteolysis of a Pseudomonas aeruginosa Type Vb secretion system substrate
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00369-15
  contributor:
    fullname: Cooley
– volume: 49
  start-page: 711
  year: 1995
  ident: ref9
  article-title: Microbial biofilms
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.mi.49.100195.003431
  contributor:
    fullname: Costerton
– volume: 146
  start-page: 2395
  ident: ref20
  article-title: Quantification of biofilm structures by the novel computer program COMSTAT
  publication-title: Microbiology
  doi: 10.1099/00221287-146-10-2395
  contributor:
    fullname: Heydorn
– volume: 191
  start-page: 3492
  year: 2009
  ident: ref53
  article-title: Pseudomonas aeruginosa rugose small colony variants have adaptations likely to promote persistence in the cystic fibrosis lung
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00119-09
  contributor:
    fullname: Starkey
– volume: 4
  start-page: e00645
  year: 2013
  ident: ref23
  article-title: Escherichia coli biofilms have an organized and complex extracellular matrix structure
  publication-title: mBio
  doi: 10.1128/mBio.00645-13
  contributor:
    fullname: Hung
– volume: 2
  start-page: 95
  year: 2004
  ident: ref17
  article-title: Bacterial biofilms: from the natural environment to infectious diseases
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro821
  contributor:
    fullname: Hall-Stoodley
– volume: 4
  start-page: 917
  year: 2015
  ident: ref48
  article-title: The LapG protein plays a role in Pseudomonas aeruginosa biofilm formation by controlling the presence of the CdrA adhesin on the cell surface
  publication-title: MicrobiologyOpen
  doi: 10.1002/mbo3.301
  contributor:
    fullname: Rybtke
– volume: 2
  start-page: 15031
  year: 2016
  ident: ref43
  article-title: Spatio-temporal assembly of functional mineral scaffolds within microbial biofilms
  publication-title: NPJ Biofilms Microbiomes
  doi: 10.1038/npjbiofilms.2015.31
  contributor:
    fullname: Oppenheimer-Shaanan
– volume: 112
  start-page: 887
  year: 2014
  ident: ref45
  article-title: Solid-state NMR for bacterial biofilms
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2013.837983
  contributor:
    fullname: Reichhardt
– volume: 295
  start-page: 1487
  year: 2002
  ident: ref61
  article-title: Extracellular DNA required for bacterial biofilm formation
  publication-title: Science
  doi: 10.1126/science.295.5559.1487
  contributor:
    fullname: Whitchurch
– volume: 1
  start-page: 5
  year: 2013
  ident: ref37
  article-title: Biofilm delays wound healing: a review of the evidence
  publication-title: Burns Trauma
  doi: 10.4103/2321-3868.113329
  contributor:
    fullname: Metcalf
– volume: 104
  start-page: 8113
  year: 2007
  ident: ref47
  article-title: The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0610226104
  contributor:
    fullname: Rice
– volume: 9
  year: 2018
  ident: ref58
  article-title: A biofilm matrix-associated protease inhibitor protects Pseudomonas aeruginosa from proteolytic attack
  publication-title: mBio
  doi: 10.1128/mBio.00543-18
  contributor:
    fullname: Tseng
– volume: 59
  start-page: 1114
  year: 2006
  ident: ref2
  article-title: A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2005.05008.x
  contributor:
    fullname: Allesen-Holm
– volume: 263
  start-page: 11291
  year: 1988
  ident: ref29
  article-title: Structure of an extracellular cross-reactive polysaccharide from Pseudomonas aeruginosa immunotype 4
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)37956-0
  contributor:
    fullname: Kocharova
– volume: 76
  start-page: 2271
  year: 2010
  ident: ref18
  article-title: Role of extracellular DNA during biofilm formation by Listeria monocytogenes
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02361-09
  contributor:
    fullname: Harmsen
– volume: 5
  start-page: e1000354
  year: 2009
  ident: ref32
  article-title: Assembly and development of the Pseudomonas aeruginosa biofilm matrix
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000354
  contributor:
    fullname: Ma
– volume: 36
  start-page: 893
  year: 2012
  ident: ref35
  article-title: Pseudomonas biofilm matrix composition and niche biology
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2011.00322.x
  contributor:
    fullname: Mann
– volume: 112
  start-page: 11353
  year: 2015
  ident: ref25
  article-title: Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1503058112
  contributor:
    fullname: Jennings
– volume: 109
  start-page: 20632
  year: 2012
  ident: ref24
  article-title: Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1217993109
  contributor:
    fullname: Irie
– volume: 120
  start-page: 6080
  year: 2016
  ident: ref21
  article-title: Mechanical behavior of a Bacillus subtilis pellicle
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.6b02074
  contributor:
    fullname: Hollenbeck
– volume: 4
  start-page: 8
  year: 2018
  ident: ref27
  article-title: Micro-CT X-ray imaging exposes structured diffusion barriers within biofilms
  publication-title: NPJ Biofilms Microbiomes
  doi: 10.1038/s41522-018-0051-8
  contributor:
    fullname: Keren-Paz
– start-page: 91
  volume-title: Methods in Enzymology
  year: 1999
  ident: ref42
  article-title: Genetic approaches to study of biofilms
  contributor:
    fullname: O’Toole
– volume: 68
  start-page: 1
  year: 2014
  ident: ref40
  article-title: Pseudomonas aeruginosa biofilms in disease
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-013-0297-x
  contributor:
    fullname: Mulcahy
– volume: 337
  start-page: 236
  year: 2012
  ident: ref4
  article-title: Molecular architecture and assembly principles of Vibrio cholerae biofilms
  publication-title: Science
  doi: 10.1126/science.1222981
  contributor:
    fullname: Berk
– volume: 15
  start-page: 167
  year: 2002
  ident: ref11
  article-title: Biofilms: survival mechanisms of clinically relevant microorganisms
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.15.2.167-193.2002
  contributor:
    fullname: Donlan
– volume: 7
  start-page: 39
  year: 2017
  ident: ref38
  article-title: Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2017.00039
  contributor:
    fullname: Moradali
– volume: 197
  start-page: 2092
  year: 2015
  ident: ref54
  article-title: The matrix reloaded: how sensing the extracellular matrix synchronizes bacterial communities
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.02516-14
  contributor:
    fullname: Steinberg
– volume: 156
  start-page: 2757
  year: 2010
  ident: ref15
  article-title: Role of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis
  publication-title: Microbiology
  doi: 10.1099/mic.0.040196-0
  contributor:
    fullname: Fong
– volume: 22
  start-page: 667
  year: 1988
  ident: ref16
  article-title: Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/22.5.667
  contributor:
    fullname: Gordon
– volume: 7
  start-page: e1002210
  year: 2011
  ident: ref1
  article-title: A communal bacterial adhesin anchors biofilm and bystander cells to surfaces
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002210
  contributor:
    fullname: Absalon
– volume: 14
  start-page: 1913
  year: 2012
  ident: ref7
  article-title: The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix: polysaccharides of the P. aeruginosa biofilm matrix
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2011.02657.x
  contributor:
    fullname: Colvin
– volume: 185
  start-page: 4585
  year: 2003
  ident: ref60
  article-title: Cell death in Pseudomonas aeruginosa biofilm development
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.185.15.4585-4592.2003
  contributor:
    fullname: Webb
– volume: 30
  start-page: 105
  year: 2002
  ident: ref50
  article-title: Monomer composition and sequence of alginates from Pseudomonas aeruginosa
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/S0141-8130(02)00002-8
  contributor:
    fullname: Schürks
– volume: 147
  start-page: 299
  year: 2001
  ident: ref56
  article-title: Assessment of lectin-binding analysis for in situ detection of glycoconjugates in biofilm systems
  publication-title: Microbiology
  doi: 10.1099/00221287-147-2-299
  contributor:
    fullname: Swerhone
– volume: 11
  start-page: 4906
  year: 2012
  ident: ref57
  article-title: Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix
  publication-title: J. Proteome Res.
  doi: 10.1021/pr300395j
  contributor:
    fullname: Toyofuku
– volume: 8
  start-page: 623
  year: 2010
  ident: ref13
  article-title: The biofilm matrix
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2415
  contributor:
    fullname: Flemming
– volume: 358
  start-page: 135
  year: 2001
  ident: ref55
  article-title: Antibiotic resistance of bacteria in biofilms
  publication-title: Lancet
  doi: 10.1016/S0140-6736(01)05321-1
  contributor:
    fullname: Stewart
– volume: 4
  start-page: e00103
  year: 2013
  ident: ref51
  article-title: Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm
  publication-title: mBio
  doi: 10.1128/mBio.00103-13
  contributor:
    fullname: Serra
– volume: 15
  start-page: 2865
  year: 2013
  ident: ref59
  article-title: The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12155
  contributor:
    fullname: Tseng
– volume: 14
  start-page: 563
  year: 2016
  ident: ref14
  article-title: Biofilms: an emergent form of bacterial life
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2016.94
  contributor:
    fullname: Flemming
– volume: 83
  start-page: e00113
  year: 2017
  ident: ref52
  article-title: Pseudomonas aeruginosa aggregate formation in an alginate bead model system exhibits in vivo-like characteristics
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00113-17
  contributor:
    fullname: Sønderholm
– volume: 284
  start-page: 1318
  year: 1999
  ident: ref10
  article-title: Bacterial biofilms: a common cause of persistent infections
  publication-title: Science
  doi: 10.1126/science.284.5418.1318
  contributor:
    fullname: Costerton
– volume: 5
  start-page: e01333
  year: 2014
  ident: ref62
  article-title: Novel entries in a fungal biofilm matrix encyclopedia
  publication-title: mBio
  doi: 10.1128/mBio.01333-14
  contributor:
    fullname: Zarnowski
– volume: 82
  start-page: 2886
  year: 2016
  ident: ref31
  article-title: In situ biomineralization and particle deposition distinctively mediate biofilm susceptibility to chlorine
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.03954-15
  contributor:
    fullname: Li
– start-page: 12
  volume-title: MBio
  year: 2018
  ident: ref46
  article-title: CdrA interactions within the Pseudomonas aeruginosa biofilm matrix safeguard it from proteolysis and promote cellular packing
  contributor:
    fullname: Reichhardt
– volume: 189
  start-page: 8353
  year: 2007
  ident: ref34
  article-title: Pseudomonas aeruginosa Psl is a galactose- and mannose-rich exopolysaccharide
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00620-07
  contributor:
    fullname: Ma
– volume: 57
  start-page: 677
  year: 2003
  ident: ref44
  article-title: Bacterial biofilms: an emerging link to disease pathogenesis
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.57.030502.090720
  contributor:
    fullname: Parsek
– volume: 25
  start-page: 257
  year: 2017
  ident: ref12
  article-title: The peculiar functions of the bacterial extracellular matrix
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2016.12.010
  contributor:
    fullname: Dragoš
SSID ssj0000402000
Score 2.5323427
SecondaryResourceType review_article
Snippet Most microbes can produce surface-associated or suspended aggregates called biofilms, which are encased within a biopolymer-rich matrix. The biofilm matrix...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 677
SubjectTerms biofilm
confocal laser scanning microscopy
exopolysaccharides
flow-cell
Microbiology
Pseudomonas aeruginosa
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA-lIPQiaqtu1RLBi4fFbDab7B6rtJTSilALvYXJlz7Q3fI-Svvfdyb7XnlPCl563a-EmdnMb5iZ3zD2KQC45NB4vW59qRpoSgcaSkf9yyl2XqdcbfFdn1yq06vmam3UF9WEjfTAo-C-pNRIEV1IFbVcRukApI7aC-mVTy7m01fItWAqn8EUFgkx5iUxCutQTRPvqJSL-Cm1MRt-KNP1P4Yx_y2VXPM9xy_Y8yVo5IfjZl-yrdi_Ys_GMZJ3u-yG2vbIJ_Ez9ElTfuHHQUT8nKrtqO_kjiM25SsCEj4k_mMWF2FAG4QZhzhd_Jr0www4fjNN_vzlh2v5BQ594OdE5X_Lz2iZZevmHrs8Pvr57aRczlMoPYKyOR63UYMJLvg6JEIOLtUuKRVQol0Kom6jEVX0xtWIkqQ2HTSVEyj7FiD4VL9m2_3Qx7eM18lBDPg-yKi0TF3wylAG1jTQqioV7PNKuvZ6pM2wGG6QJmzWhCVN2KyJgn0l8T88R4TX-QKagV2agf2fGRTs40p5Fn8QynpAH4fFzErisFNNLdqCvRmV-bAUZTcQ4IiCmQ01b-xl804_-Z1JuIkJrWrN_lNs_h3bIXHkgiD5nm3Pp4v4AbHO3B1ks74HwUIExQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9QwELagCNQLKu_wkpG4cAhKnMTOHhAqiKpCXYQEK-3NGr_KSm1Skl3U_fedcbKli5ZrHrbjb-yZycx8ZuytAzDBoPBaWdu0rKBKDUhIDdUvBz-xMsRsi2_yeFZ-nVfzv-XR4wT2O107Ok9q1p29v_y9_ogL_gN5nKhvEYGFNZSlRdSTUqnb7I5AvUgJXtPR2I_7MrlKsSYll5LCAWI-xC13NrLP7tG_b1R_2ZbKisz-u8zRf7Mqb6ipowN2f7Qv-eEgEA_YLd88ZHeHEyfXj9gfqvAj9cVPUH11_IcdziziU0rMoxKVNUczlm-4Sngb-Pfer1yL4go9B9-tThdN2wPHNsPi7Jwf3ghFcGgcnxLr_yU_oW7GKs_HbHb05efn43Q8eiG1aL8tcWf2EpQzzhYukJFhQmFCWToQchJcVtReZbm3yhRoUAmpJlDlJjMu1ADOhuIJ22vaxj9jvAgGvMP3QfhSijBxtlQUrFUV1GUeEvZuM7v6YmDY0OiZECg6gqIJFB1BSdgnmv7r54gbO15ou1M9LjUdQiUyj0PJqUjXCwM4aC9tJmxpg_EJe7MBT-NaogAJNL5d9VoQ3V1ZFVmdsKcDmNddbYQhYWoL5q2xbN9pFr8iXzeRpuW1ev7fNl-wffrGmBAkXrK9Zbfyr9DWWZrXUYSvANSG_54
  priority: 102
  providerName: Scholars Portal
Title Confocal Laser Scanning Microscopy for Analysis of Pseudomonas aeruginosa Biofilm Architecture and Matrix Localization
URI https://www.ncbi.nlm.nih.gov/pubmed/31001240
https://search.proquest.com/docview/2211945308
https://pubmed.ncbi.nlm.nih.gov/PMC6454187
https://doaj.org/article/ff520ebdf16941e2baa26e6c02c4cfbe
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJoNBLadOXmzao0EsPzvohy_YxDU1DyZZAG9ibGL1SQ9YO-wjJv8-MbIfd0lMuOtiWLfSNNTPSzDeMfbEA2msUXiMrE4sCiliDhFhT_rJ3tZE-RFv8kmeX4uesmO2wYsyFCUH7RjdH7fX8qG3-htjKm7mZjHFik4vpCbFQpVU52WW7qH43XPSw_JJHlCT9kSQ6YDUi1BhNUVxETSlLqrtH29qo2ZItbRRI-_9naf4bMLmhgU5fsheD6ciP-yG-Yjuu3WfP-mKS96_ZLSXvkWbi56iZFvy36csR8SnF3FH2yT1HC5WPNCS88_xi6da2Q0mEJQe3WF81bbcEju_0zfWcH2-cMnBoLZ8Sof8dP6fPDAmcb9jl6fc_J2fxUFUhNmiarXDRdRJKq63JrSf7QftceyEsZLL2NskrVyapM6XO0VbKZFlDkepEW18BWOPzt2yv7Vr3nvHca3AW-0PmhMx8bY0o6Ry2LKASqY_Y13F21U1PnqHQ6SBQVABFESgqgBKxbzT9j88R7XW40C2u1AC-8r7IEodDSSn_1mUacNBOmiQzwnjtIvZ5BE_hb0JnH9C6br1UGTHZiSJPqoi968F8_NQoDBErt2DeGsv2HZTMQMU9SOKHJ_c8YM9pDkIsUPaR7a0Wa_cJzZyVPgzbA9j-mKXYTkV1GAT9ATG7Bho
link.rule.ids 230,314,727,780,784,864,885,2102,24318,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXxJvwNBIXDunmaSfHUlEtsFtVopV6s8avEqmbVPtA9N_jcZJqF3HimsTxyN_EM87MfAPw0SAqp7zyal7puCixjBVyjBXVLztba-5CtsUJn54X3y7Kiz0ox1qYkLSvVXPQXi0O2uZnyK28XujJmCc2OZ0fEQtVWonJHbhb5qJOtw7pYQOmM1GS9EFJfwSrPUaNVpTHReSUXFDnPfqx7W1bsmOPAm3_v3zNv1Mmt2zQ8SN4ODiP7LAX8jHs2fYJ3OvbSd48hV9Uvke2ic28bVqyH7pvSMTmlHVH9Sc3zPuobCQiYZ1jpyu7MZ3XRVwxtMvNZdN2K2T-na65WrDDrTgDw9awOVH6_2YzmmYo4XwG58dfzo6m8dBXIdbeOVv7bddyFEYZnRtHHoRyuXJFYTDjtTNJXlmRpFYLlXtvKeOixjJViTKuQjTa5c9hv-1a-xJY7hRa48djZgueudroQlAkVpRYFamL4NO4uvK6p8-Q_thBoMgAiiRQZAAlgs-0_LfPEfF1uNAtL-UAv3SuzBLrRUmpAtdmCr3Qlusk04V2ykbwYQRP-g-Foh_Y2m6zkhlx2RVlnlQRvOjBvJ1qVIYIxA7MO7Ls3vG6Gci4B1189d8j38P96dl8JmdfT76_hge0HiEzKHsD--vlxr71Ts9avQsq_gegXAav
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCMQF8WwDFIzEhUO6eTrJsbSsCuxWK0Gl3qzxq43UTVb7QPTfM-Mk1S7ixDWJ45G_iWecmfmGsY8GQDmFyqtFqcMshzxUICBUVL_sbKWF89kW5-LsIvt2mV9utfrySfta1UfNzfyoqa99buVirkdDnthoNj0hFqq4LEYL40b32YM8RSXbOqj7TZjORVHUBSbxGFYhTrVWlMtFBJWioO579HMb7Vu0Y5M8df-__M2_0ya37ND4KXvSO5D8uBP0Gbtnm-fsYddS8vYF-0UlfGSf-ATt05L_0F1TIj6lzDuqQbnl6KfygYyEt47PVnZjWtRHWHGwy81V3bQr4PhOV9_M-fFWrIFDY_iUaP1_8wlN05dxvmQX4y8_T87CvrdCqNFBW-PWawUURhmdGkdehHKpcllmIBGVM1Fa2iKKrS5Uih5TIooK8lhFyrgSwGiXvmJ7TdvYA8ZTp8AaHA-JzUTiKqOzgqKxRQ5lFruAfRpWVy46Cg2JRw8CRXpQJIEiPSgB-0zLf_cckV_7C-3ySvYqIJ3Lk8iiKDFV4dpEAQpthY4SnWmnbMA-DOBJ_FgoAgKNbTcrmRCfXZanURmw_Q7Mu6kGZQhYsQPzjiy7d1A_PSF3r4-v_3vke_ZodjqWk6_n39-wx7QcPjkoecv21suNPUS_Z63eeQ3_A023B8I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Confocal+Laser+Scanning+Microscopy+for+Analysis+of+Pseudomonas+aeruginosa+Biofilm+Architecture+and+Matrix+Localization&rft.jtitle=Frontiers+in+microbiology&rft.au=Reichhardt%2C+Courtney&rft.au=Parsek%2C+Matthew+R&rft.date=2019-04-02&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=10&rft.spage=677&rft_id=info:doi/10.3389%2Ffmicb.2019.00677&rft_id=info%3Apmid%2F31001240&rft.externalDocID=31001240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon