Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults
Departments of 1 Physiology and Biophysics and 3 Surgery, University of Alabama at Birmingham, and 2 Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Birmingham, Alabama Submitted 22 November 2005 ; accepted in final form 4 April 2006 Resistance training (RT) has...
Saved in:
Published in | Journal of applied physiology (1985) Vol. 101; no. 2; pp. 531 - 544 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
Am Physiological Soc
01.08.2006
American Physiological Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Departments of 1 Physiology and Biophysics and 3 Surgery, University of Alabama at Birmingham, and 2 Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Birmingham, Alabama
Submitted 22 November 2005
; accepted in final form 4 April 2006
Resistance training (RT) has shown the most promise in reducing/reversing effects of sarcopenia, although the optimum regime specific for older adults remains unclear. We hypothesized myofiber hypertrophy resulting from frequent (3 days/wk, 16 wk) RT would be impaired in older (O; 6075 yr; 12 women, 13 men), sarcopenic adults compared with young (Y; 2035 yr; 11 women, 13 men) due to slowed repair/regeneration processes. Myofiber-type distribution and cross-sectional area (CSA) were determined at 0 and 16 wk. Transcript and protein levels of myogenic regulatory factors (MRFs) were assessed as markers of regeneration at 0 and 24 h postexercise, and after 16 wk. Only Y increased type I CSA 18% ( P < 0.001). O showed smaller type IIa (16%) and type IIx (24%) myofibers before training ( P < 0.05), with differences most notable in women. Both age groups increased type IIa (O, 16%; Y, 25%) and mean type II (O, 23%; Y, 32%) size ( P < 0.05). Growth was generally most favorable in young men. Percent change scores on fiber size revealed an age x gender interaction for type I fibers ( P < 0.05) as growth among Y (25%) exceeded that of O (4%) men. Myogenin and myogenic differentiation factor D (MyoD) mRNAs increased ( P < 0.05) in Y and O, whereas myogenic factor (myf)-5 mRNA increased in Y only ( P < 0.05). Myf-6 protein increased ( P < 0.05) in both Y and O. The results generally support our hypothesis as 3 days/wk training led to more robust hypertrophy in Y vs. O, particularly among men. However, this differential hypertrophy adaptation was not explained by age variation in MRF expression.
sarcopenia; myogenin; MyoD; myosin heavy chain
Address for reprint requests and other correspondence: M. M. Bamman, UAB Dept. of Physiology and Biophysics, Muscle Research Laboratory, GRECC/11G VA Medical Center, 1530 3rd Ave., South Birmingham, AL 35294-0001 (e-mail mbamman{at}uab.edu ) |
---|---|
AbstractList | Departments of 1 Physiology and Biophysics and 3 Surgery, University of Alabama at Birmingham, and 2 Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Birmingham, Alabama
Submitted 22 November 2005
; accepted in final form 4 April 2006
Resistance training (RT) has shown the most promise in reducing/reversing effects of sarcopenia, although the optimum regime specific for older adults remains unclear. We hypothesized myofiber hypertrophy resulting from frequent (3 days/wk, 16 wk) RT would be impaired in older (O; 6075 yr; 12 women, 13 men), sarcopenic adults compared with young (Y; 2035 yr; 11 women, 13 men) due to slowed repair/regeneration processes. Myofiber-type distribution and cross-sectional area (CSA) were determined at 0 and 16 wk. Transcript and protein levels of myogenic regulatory factors (MRFs) were assessed as markers of regeneration at 0 and 24 h postexercise, and after 16 wk. Only Y increased type I CSA 18% ( P < 0.001). O showed smaller type IIa (16%) and type IIx (24%) myofibers before training ( P < 0.05), with differences most notable in women. Both age groups increased type IIa (O, 16%; Y, 25%) and mean type II (O, 23%; Y, 32%) size ( P < 0.05). Growth was generally most favorable in young men. Percent change scores on fiber size revealed an age x gender interaction for type I fibers ( P < 0.05) as growth among Y (25%) exceeded that of O (4%) men. Myogenin and myogenic differentiation factor D (MyoD) mRNAs increased ( P < 0.05) in Y and O, whereas myogenic factor (myf)-5 mRNA increased in Y only ( P < 0.05). Myf-6 protein increased ( P < 0.05) in both Y and O. The results generally support our hypothesis as 3 days/wk training led to more robust hypertrophy in Y vs. O, particularly among men. However, this differential hypertrophy adaptation was not explained by age variation in MRF expression.
sarcopenia; myogenin; MyoD; myosin heavy chain
Address for reprint requests and other correspondence: M. M. Bamman, UAB Dept. of Physiology and Biophysics, Muscle Research Laboratory, GRECC/11G VA Medical Center, 1530 3rd Ave., South Birmingham, AL 35294-0001 (e-mail mbamman{at}uab.edu ) Resistance training (RT) has shown the most promise in reducing/reversing effects of sarcopenia, although the optimum regime specific for older adults remains unclear. We hypothesized myofiber hypertrophy resulting from frequent (3 days/wk, 16 wk) RT would be impaired in older (O; 60-75 yr; 12 women, 13 men), sarcopenic adults compared with young (Y; 20-35 yr; 11 women, 13 men) due to slowed repair/regeneration processes. Myofiber-type distribution and cross-sectional area (CSA) were determined at 0 and 16 wk. Transcript and protein levels of myogenic regulatory factors (MRFs) were assessed as markers of regeneration at 0 and 24 h postexercise, and after 16 wk. Only Y increased type I CSA 18% (P < 0.001). O showed smaller type IIa (-16%) and type IIx (-24%) myofibers before training (P < 0.05), with differences most notable in women. Both age groups increased type IIa (O, 16%; Y, 25%) and mean type II (O, 23%; Y, 32%) size (P < 0.05). Growth was generally most favorable in young men. Percent change scores on fiber size revealed an age x gender interaction for type I fibers (P < 0.05) as growth among Y (25%) exceeded that of O (4%) men. Myogenin and myogenic differentiation factor D (MyoD) mRNAs increased (P < 0.05) in Y and O, whereas myogenic factor (myf)-5 mRNA increased in Y only (P < 0.05). Myf-6 protein increased (P < 0.05) in both Y and O. The results generally support our hypothesis as 3 days/wk training led to more robust hypertrophy in Y vs. O, particularly among men. However, this differential hypertrophy adaptation was not explained by age variation in MRF expression.Resistance training (RT) has shown the most promise in reducing/reversing effects of sarcopenia, although the optimum regime specific for older adults remains unclear. We hypothesized myofiber hypertrophy resulting from frequent (3 days/wk, 16 wk) RT would be impaired in older (O; 60-75 yr; 12 women, 13 men), sarcopenic adults compared with young (Y; 20-35 yr; 11 women, 13 men) due to slowed repair/regeneration processes. Myofiber-type distribution and cross-sectional area (CSA) were determined at 0 and 16 wk. Transcript and protein levels of myogenic regulatory factors (MRFs) were assessed as markers of regeneration at 0 and 24 h postexercise, and after 16 wk. Only Y increased type I CSA 18% (P < 0.001). O showed smaller type IIa (-16%) and type IIx (-24%) myofibers before training (P < 0.05), with differences most notable in women. Both age groups increased type IIa (O, 16%; Y, 25%) and mean type II (O, 23%; Y, 32%) size (P < 0.05). Growth was generally most favorable in young men. Percent change scores on fiber size revealed an age x gender interaction for type I fibers (P < 0.05) as growth among Y (25%) exceeded that of O (4%) men. Myogenin and myogenic differentiation factor D (MyoD) mRNAs increased (P < 0.05) in Y and O, whereas myogenic factor (myf)-5 mRNA increased in Y only (P < 0.05). Myf-6 protein increased (P < 0.05) in both Y and O. The results generally support our hypothesis as 3 days/wk training led to more robust hypertrophy in Y vs. O, particularly among men. However, this differential hypertrophy adaptation was not explained by age variation in MRF expression. Resistance training (RT) has shown the most promise in reducing/reversing effects of sarcopenia, although the optimum regime specific for older adults remains unclear. We hypothesized myofiber hypertrophy resulting from frequent (3 days/wk, 16 wk) RT would be impaired in older (O; 60-75 yr; 12 women, 13 men), sarcopenic adults compared with young (Y; 20-35 yr; 11 women, 13 men) due to slowed repair/regeneration processes. Myofiber-type distribution and cross-sectional area (CSA) were determined at 0 and 16 wk. Transcript and protein levels of myogenic regulatory factors (MRFs) were assessed as markers of regeneration at 0 and 24 h postexercise, and after 16 wk. Only Y increased type I CSA 18% (P < 0.001). O showed smaller type IIa (-16%) and type IIx (-24%) myofibers before training (P < 0.05), with differences most notable in women. Both age groups increased type IIa (O, 16%; Y, 25%) and mean type II (O, 23%; Y, 32%) size (P < 0.05). Growth was generally most favorable in young men. Percent change scores on fiber size revealed an age x gender interaction for type I fibers (P < 0.05) as growth among Y (25%) exceeded that of O (4%) men. Myogenin and myogenic differentiation factor D (MyoD) mRNAs increased (P < 0.05) in Y and O, whereas myogenic factor (myf)-5 mRNA increased in Y only (P < 0.05). Myf-6 protein increased (P < 0.05) in both Y and O. The results generally support our hypothesis as 3 days/wk training led to more robust hypertrophy in Y vs. O, particularly among men. However, this differential hypertrophy adaptation was not explained by age variation in MRF expression. Resistance training (RT) has shown the most promise in reducing/reversing effects of sarcopenia, although the optimum regime specific for older adults remains unclear. We hypothesized myofiber hypertrophy resulting from frequent (3 days/wk, 16 wk) RT would be impaired in older (O; 60–75 yr; 12 women, 13 men), sarcopenic adults compared with young (Y; 20–35 yr; 11 women, 13 men) due to slowed repair/regeneration processes. Myofiber-type distribution and cross-sectional area (CSA) were determined at 0 and 16 wk. Transcript and protein levels of myogenic regulatory factors (MRFs) were assessed as markers of regeneration at 0 and 24 h postexercise, and after 16 wk. Only Y increased type I CSA 18% ( P < 0.001). O showed smaller type IIa (−16%) and type IIx (−24%) myofibers before training ( P < 0.05), with differences most notable in women. Both age groups increased type IIa (O, 16%; Y, 25%) and mean type II (O, 23%; Y, 32%) size ( P < 0.05). Growth was generally most favorable in young men. Percent change scores on fiber size revealed an age × gender interaction for type I fibers ( P < 0.05) as growth among Y (25%) exceeded that of O (4%) men. Myogenin and myogenic differentiation factor D (MyoD) mRNAs increased ( P < 0.05) in Y and O, whereas myogenic factor (myf)-5 mRNA increased in Y only ( P < 0.05). Myf-6 protein increased ( P < 0.05) in both Y and O. The results generally support our hypothesis as 3 days/wk training led to more robust hypertrophy in Y vs. O, particularly among men. However, this differential hypertrophy adaptation was not explained by age variation in MRF expression. Resistance training (RT) has shown the most promise in reducing/reversing effects of sarcopenia, although the optimum regime specific for older adults remains unclear. We hypothesized myofiber hypertrophy resulting from frequent (3 days/wk, 16 wk) RT would be impaired in older (0; 60-75 yr; 12 women, 13 men), sarcopenic adults compared with young (Y; 20-35 yr; 11 women, 13 men) due to slowed repair/regeneration processes. Myofiber-type distribution and cross-sectional area (CSA) were determined at 0 and 16 wk. Transcript and protein levels of myogenic regulatory factors (MRFs) were assessed as markers of regeneration at 0 and 24 h postexercise, and after 16 wk. Only Y increased type I CSA 18% (P < 0.00 1). O showed smaller type IIa (-16%) and type IIx (-24%) myofibers before training (P < 0.05), with differences most notable in women. Both age groups increased type IIa (O, 16%; Y, 25%) and mean type II(O, 23%; Y, 32%) size (P < 0.05). Growth was generally most favorable in young men. Percent change scores on fiber size revealed an age x gender interaction for type I fibers (P < 0.05) as growth among Y (25%) exceeded that of O (4%) men. Myogenin and myogenic differentiation factor D (MyoD) mRNAs increased (P < 0.05) in Y and O, whereas myogenic factor (myf)-5 mRNA increased in Y only (P < 0.05). Myf-6 protein increased (P < 0.05) in both Y and O. The results generally support our hypothesis as 3 days/wk training led to more robust hypertrophy in Y vs. O, particularly among men. However, this differential hypertrophy adaptation was not explained by age variation in MRF expression. [PUBLICATION ABSTRACT] |
Author | Petrella, John K Kim, Jeong-su Cross, James M Bamman, Marcas M Kosek, David J |
Author_xml | – sequence: 1 fullname: Kosek, David J – sequence: 2 fullname: Kim, Jeong-su – sequence: 3 fullname: Petrella, John K – sequence: 4 fullname: Cross, James M – sequence: 5 fullname: Bamman, Marcas M |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17976664$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16614355$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0stu1DAUgGELFdELvAJYSFw2M_XxNVmwQFULSJXYlLXlcZwZD4kd7ISSt8fDDAVVgq6y8Pcnsc45RUchBofQCyBLAEHPt2YYumEzZx-7JQGu-JISIh6hk3JKFyAJHKGTSgmyUKJSx-g05y0pkAt4go5BSuBMiBOUL9vWW2NnHFvMcGPmfH77FSeXfR5NsA6PyfjgwxrHgPs5tn7lEt7Mg0tjiuUXsAnN7mDtgre4d3Zjgs99xj7gOU4l_J6XOHZNyUwzdWN-ih63psvu2eF5hr5cXd5cfFxcf_7w6eL99cIKJcYFA0ZqRpRlDWOONpRBKxkFJyiRgsvVSoAlvFFNoypLCRhuCKGGGGuqtnbsDL3Zv3dI8dvk8qh7n63rOhNcnLJWChQTTNZFvv6vlJXkFQf6IISaSSmgKvDlPbiNUwrluppSWuZTUyjo-QFNq941eki-N2nWv8dTwKsDMNmark1lIj7_capWUkpe3Lu9synmnFyrrR_N6GPYTa_TQPRubfTfa6N_rY3erU3p1b3-7hMPlnxfbvx6c-uT0wcU17O-mrruxv0YdzUQ0FQLBnpo2pK9_XdWtL7j7CeVG-x_ |
CODEN | JAPHEV |
CitedBy_id | crossref_primary_10_1136_bmjopen_2019_033824 crossref_primary_10_1055_a_2338_8226 crossref_primary_10_1186_s12970_017_0163_1 crossref_primary_10_1016_j_jsams_2014_07_018 crossref_primary_10_1249_MSS_0b013e3181915670 crossref_primary_10_1371_journal_pone_0198611 crossref_primary_10_1113_jphysiol_2008_164483 crossref_primary_10_3389_fspor_2022_903992 crossref_primary_10_1007_s00421_009_1292_2 crossref_primary_10_1016_j_metabol_2016_01_014 crossref_primary_10_1152_ajpcell_00209_2019 crossref_primary_10_1519_JSC_0000000000001653 crossref_primary_10_1016_j_clnu_2012_07_009 crossref_primary_10_1080_07315724_2016_1274691 crossref_primary_10_3390_nu14132739 crossref_primary_10_1016_j_mlong_2009_06_003 crossref_primary_10_1007_s12603_010_0319_z crossref_primary_10_1016_j_yfrne_2023_101101 crossref_primary_10_14814_phy2_13725 crossref_primary_10_1183_23120541_00282_2023 crossref_primary_10_1097_JES_0b013e3181877e13 crossref_primary_10_1111_sms_14134 crossref_primary_10_1080_17461391_2014_989922 crossref_primary_10_1016_j_celrep_2021_108796 crossref_primary_10_1519_JSC_0b013e3181d09ef6 crossref_primary_10_1038_s41598_024_77092_4 crossref_primary_10_1002_mus_23317 crossref_primary_10_1007_s00421_012_2466_x crossref_primary_10_1152_japplphysiol_00560_2007 crossref_primary_10_1519_JSC_0000000000001788 crossref_primary_10_1519_JSC_0000000000003601 crossref_primary_10_1139_H09_038 crossref_primary_10_3390_ijms232314716 crossref_primary_10_1016_j_arr_2009_05_003 crossref_primary_10_1152_physiolgenomics_00151_2009 crossref_primary_10_1016_j_exger_2016_10_009 crossref_primary_10_1007_s11357_015_9841_6 crossref_primary_10_3945_jn_113_183996 crossref_primary_10_1016_j_exger_2017_03_014 crossref_primary_10_1186_2044_5040_1_11 crossref_primary_10_1007_s00421_008_0846_z crossref_primary_10_1152_physiolgenomics_00167_2012 crossref_primary_10_1016_j_cbpa_2023_111415 crossref_primary_10_3389_fragi_2023_1171850 crossref_primary_10_1016_j_exger_2017_03_018 crossref_primary_10_3390_nu10030335 crossref_primary_10_1007_s11357_016_9894_1 crossref_primary_10_1016_j_jshs_2020_06_010 crossref_primary_10_1152_ajpendo_00164_2016 crossref_primary_10_1519_00139143_200932020_00008 crossref_primary_10_1152_japplphysiol_00489_2015 crossref_primary_10_1089_rej_2016_1816 crossref_primary_10_1155_2019_8031705 crossref_primary_10_1152_japplphysiol_00924_2016 crossref_primary_10_1016_j_celrep_2020_107980 crossref_primary_10_1155_2013_589361 crossref_primary_10_3390_cells9071658 crossref_primary_10_3390_ijms21186732 crossref_primary_10_1113_JP270536 crossref_primary_10_1111_apha_12168 crossref_primary_10_1097_BTO_0000000000000271 crossref_primary_10_1111_apha_12601 crossref_primary_10_1113_JP271188 crossref_primary_10_1093_gerona_gln050 crossref_primary_10_1093_nutrit_nuae055 crossref_primary_10_1002_oby_20949 crossref_primary_10_1007_s11556_013_0127_7 crossref_primary_10_1172_jci_insight_95581 crossref_primary_10_2165_00007256_200737090_00001 crossref_primary_10_4040_jkan_2020_50_2_286 crossref_primary_10_1007_s42978_022_00164_2 crossref_primary_10_1007_s10059_012_0196_x crossref_primary_10_1097_01_NAJ_0000408184_21770_98 crossref_primary_10_1111_j_1600_0838_2010_01196_x crossref_primary_10_3390_jcm9072188 crossref_primary_10_1017_S0029665110003927 crossref_primary_10_1093_gerona_glp026 crossref_primary_10_1096_fj_201700531R crossref_primary_10_1519_JSC_0000000000000760 crossref_primary_10_1519_JSC_0000000000004329 crossref_primary_10_1152_japplphysiol_01277_2013 crossref_primary_10_1016_j_meatsci_2012_04_027 crossref_primary_10_1152_japplphysiol_00170_2020 crossref_primary_10_1097_AJP_0b013e31823e9378 crossref_primary_10_1152_japplphysiol_00150_2007 crossref_primary_10_1249_MSS_0b013e3181eb6265 crossref_primary_10_1152_japplphysiol_00195_2007 crossref_primary_10_1177_15347354211035442 crossref_primary_10_1016_S2213_8587_14_70034_8 crossref_primary_10_1152_japplphysiol_00702_2019 crossref_primary_10_1519_JSC_0000000000001191 crossref_primary_10_1016_j_arr_2010_04_004 crossref_primary_10_1249_MSS_0b013e318272fcdb crossref_primary_10_1016_j_crphys_2024_100138 crossref_primary_10_1016_j_npg_2010_12_006 crossref_primary_10_1155_2013_237260 crossref_primary_10_3390_nu14163436 crossref_primary_10_1152_japplphysiol_01260_2006 crossref_primary_10_7600_jpfsm_1_83 crossref_primary_10_1016_j_jamda_2012_09_009 crossref_primary_10_1007_s40279_013_0088_z crossref_primary_10_3389_fresc_2021_724052 crossref_primary_10_1016_j_exger_2018_02_009 crossref_primary_10_1007_s10522_013_9429_4 crossref_primary_10_1152_japplphysiol_00495_2019 crossref_primary_10_1093_gerona_glv231 crossref_primary_10_1007_s40279_020_01388_4 crossref_primary_10_1123_japa_18_1_43 crossref_primary_10_1007_s00421_015_3150_8 crossref_primary_10_3390_nu14214701 crossref_primary_10_1113_JP284442 crossref_primary_10_1002_jor_22531 crossref_primary_10_1007_s11427_023_2400_3 crossref_primary_10_1111_j_1365_2354_2011_01287_x crossref_primary_10_1369_jhc_2010_956201 crossref_primary_10_1519_JPT_0000000000000105 crossref_primary_10_1152_japplphysiol_00632_2016 crossref_primary_10_1007_s00421_007_0521_9 crossref_primary_10_1007_s40279_023_01946_6 crossref_primary_10_1186_1471_2164_15_1165 crossref_primary_10_1002_ca_24091 crossref_primary_10_1007_s11332_012_0131_8 crossref_primary_10_1016_j_exger_2013_02_012 crossref_primary_10_1152_japplphysiol_00563_2017 crossref_primary_10_1002_mus_21087 crossref_primary_10_1038_s41598_024_66034_9 crossref_primary_10_1002_biof_1138 crossref_primary_10_1016_j_jelekin_2008_07_007 crossref_primary_10_1097_01_CSMR_0000306468_72466_af crossref_primary_10_1186_s12970_017_0175_x crossref_primary_10_1152_japplphysiol_00015_2020 crossref_primary_10_2174_1875399X01710010191 crossref_primary_10_4196_kjpp_2022_26_3_207 crossref_primary_10_1152_ajpendo_00481_2014 crossref_primary_10_1152_japplphysiol_90842_2008 crossref_primary_10_1152_japplphysiol_00122_2013 crossref_primary_10_1249_MSS_0b013e3182667c2e crossref_primary_10_1007_s00421_010_1392_z crossref_primary_10_3389_fnut_2020_628405 crossref_primary_10_1007_s42978_019_00037_1 crossref_primary_10_1016_j_exger_2018_02_023 crossref_primary_10_3177_jnsv_63_379 crossref_primary_10_1111_sms_12804 crossref_primary_10_1152_japplphysiol_01213_2009 crossref_primary_10_1186_s13075_023_03065_z crossref_primary_10_7717_peerj_19042 crossref_primary_10_1186_s12877_024_05459_3 crossref_primary_10_3390_app11093905 crossref_primary_10_1007_s10529_011_0610_z crossref_primary_10_1152_japplphysiol_00708_2007 crossref_primary_10_1007_s11357_014_9699_z crossref_primary_10_1152_japplphysiol_00466_2007 crossref_primary_10_1186_s13104_023_06317_y crossref_primary_10_1152_japplphysiol_00257_2019 crossref_primary_10_7600_jpfsm_3_347 crossref_primary_10_1249_JES_0000000000000153 crossref_primary_10_1007_s00421_012_2458_x crossref_primary_10_1111_j_1600_0838_2009_01084_x crossref_primary_10_1007_s40279_017_0676_4 crossref_primary_10_1007_s40279_021_01636_1 crossref_primary_10_1111_j_1748_1716_2010_02074_x crossref_primary_10_5888_pcd11_140007 crossref_primary_10_1016_j_exger_2017_09_018 crossref_primary_10_1016_j_exger_2016_07_007 crossref_primary_10_23949_kjpe_2017_01_56_1_49 crossref_primary_10_1186_1743_7075_8_68 crossref_primary_10_14814_phy2_13444 crossref_primary_10_1111_sms_12914 crossref_primary_10_1155_2012_486930 crossref_primary_10_1111_apha_12532 crossref_primary_10_1152_ajpregu_00354_2009 crossref_primary_10_1007_s11932_007_0029_4 crossref_primary_10_1002_jcsm_12137 crossref_primary_10_1113_jphysiol_2009_180174 crossref_primary_10_1007_s00125_017_4461_6 crossref_primary_10_1044_2018_JSLHR_S_18_0179 crossref_primary_10_1016_j_exger_2014_12_020 crossref_primary_10_1152_japplphysiol_01119_2010 crossref_primary_10_1016_j_exger_2021_111519 crossref_primary_10_1186_1743_7075_10_39 crossref_primary_10_1089_rej_2007_0643 crossref_primary_10_18632_aging_101210 crossref_primary_10_1016_j_mayocp_2020_07_033 crossref_primary_10_1152_japplphysiol_91587_2008 crossref_primary_10_1136_bmjopen_2016_014619 crossref_primary_10_23736_S1973_9087_22_07612_2 crossref_primary_10_1007_s11897_015_0257_5 crossref_primary_10_1152_japplphysiol_01141_2017 crossref_primary_10_1152_japplphysiol_01266_2009 crossref_primary_10_1186_1743_7075_8_78 crossref_primary_10_1152_japplphysiol_00274_2022 crossref_primary_10_1007_s11357_020_00272_3 crossref_primary_10_1111_1440_1681_13824 crossref_primary_10_1093_gerona_gls209 crossref_primary_10_1249_MSS_0b013e318207c15d crossref_primary_10_1152_japplphysiol_00024_2007 crossref_primary_10_2196_49322 crossref_primary_10_1016_j_celrep_2020_107808 crossref_primary_10_1016_j_arr_2023_102023 crossref_primary_10_1007_s13670_016_0176_7 crossref_primary_10_3390_app12147310 crossref_primary_10_5650_jos_ess21045 crossref_primary_10_1007_s00268_017_3999_2 crossref_primary_10_1186_1471_2164_11_659 crossref_primary_10_1093_jn_nxy169 crossref_primary_10_1186_s40798_020_0242_8 crossref_primary_10_1007_s40520_019_01234_2 crossref_primary_10_3389_fphys_2015_00283 crossref_primary_10_14336_AD_2015_0920 crossref_primary_10_1152_japplphysiol_00867_2016 crossref_primary_10_1007_s00421_014_2976_9 crossref_primary_10_1249_MSS_0000000000001991 crossref_primary_10_1111_j_1600_0838_2011_01318_x crossref_primary_10_1097_BCR_0b013e3182331e4b crossref_primary_10_1111_j_1600_0838_2010_01108_x crossref_primary_10_1016_j_exger_2021_111420 crossref_primary_10_1159_000450922 crossref_primary_10_1096_fj_202000196R crossref_primary_10_32725_sk_2012_094 crossref_primary_10_7600_jpfsm_6_25 crossref_primary_10_1152_japplphysiol_91351_2008 crossref_primary_10_1002_jcsm_12105 crossref_primary_10_1039_C9FO00182D crossref_primary_10_11622_smedj_2021103 crossref_primary_10_1089_rej_2014_1623 crossref_primary_10_1152_japplphysiol_00662_2022 crossref_primary_10_4103_ijmh_IJMH_36_19 crossref_primary_10_1007_s00056_011_0051_2 crossref_primary_10_1016_j_steroids_2018_01_011 crossref_primary_10_1016_j_archger_2024_105474 crossref_primary_10_1111_j_1600_0838_2009_01018_x crossref_primary_10_1519_JSC_0000000000003230 crossref_primary_10_1007_s00421_019_04230_6 crossref_primary_10_1152_japplphysiol_00605_2022 crossref_primary_10_1519_JSC_0000000000000995 crossref_primary_10_1519_JSC_0b013e31822ac367 crossref_primary_10_1152_ajpendo_00240_2015 crossref_primary_10_1093_gerona_glu086 crossref_primary_10_1096_fj_202000668RR crossref_primary_10_1093_gerona_glp196 crossref_primary_10_1007_s00418_020_01895_5 crossref_primary_10_1016_j_pmrj_2013_11_009 crossref_primary_10_3389_fphys_2022_1106425 crossref_primary_10_17987_jcsm_cr_v3i2_65 crossref_primary_10_1007_s12603_020_1431_3 crossref_primary_10_1096_fj_202301291RR crossref_primary_10_3390_sports10060095 crossref_primary_10_1242_jeb_125401 crossref_primary_10_1111_j_1532_5415_2011_03484_x crossref_primary_10_1152_japplphysiol_00865_2019 crossref_primary_10_3390_ijms11041509 crossref_primary_10_1186_1550_2783_6_16 crossref_primary_10_1080_13645700801969816 crossref_primary_10_1152_japplphysiol_00296_2015 crossref_primary_10_1519_JSC_0b013e318234eb6f crossref_primary_10_1016_j_apmr_2023_01_022 crossref_primary_10_1007_s00421_017_3733_7 crossref_primary_10_1152_ajpendo_00190_2006 crossref_primary_10_1111_apha_13302 crossref_primary_10_1152_japplphysiol_00066_2015 crossref_primary_10_1249_MSS_0b013e318223b037 crossref_primary_10_3389_fphys_2020_00874 crossref_primary_10_1152_physiol_00044_2018 crossref_primary_10_3945_ajcn_2008_26626 crossref_primary_10_1017_S0029665120008010 crossref_primary_10_1152_physrev_00039_2022 crossref_primary_10_1152_ajpregu_00093_2008 crossref_primary_10_1152_physiolgenomics_00124_2015 crossref_primary_10_3389_fresc_2023_1076010 crossref_primary_10_1002_cbf_1614 crossref_primary_10_1080_19390211_2021_1897057 crossref_primary_10_1152_physiolgenomics_00056_2009 crossref_primary_10_1186_2052_1847_6_28 crossref_primary_10_1152_japplphysiol_01215_2007 crossref_primary_10_1016_j_ygeno_2021_06_035 crossref_primary_10_3389_fphys_2020_00653 crossref_primary_10_1016_j_critrevonc_2021_103371 crossref_primary_10_1111_j_1469_185X_2010_00161_x crossref_primary_10_1111_j_1600_0838_2009_01059_x crossref_primary_10_1152_japplphysiol_00435_2011 crossref_primary_10_1152_japplphysiol_91234_2008 crossref_primary_10_1016_j_cger_2011_03_009 crossref_primary_10_1113_JP272857 crossref_primary_10_1139_h11_132 crossref_primary_10_1152_ajpendo_90562_2008 crossref_primary_10_1519_JSC_0000000000003521 crossref_primary_10_1161_HYPERTENSIONAHA_116_07431 crossref_primary_10_1519_SSC_0b013e3182221ec2 crossref_primary_10_1519_JSC_0000000000003768 crossref_primary_10_1007_s10522_015_9631_7 crossref_primary_10_1093_gerona_gls241 crossref_primary_10_1152_japplphysiol_00021_2008 crossref_primary_10_1007_s00421_022_05093_0 crossref_primary_10_1111_sms_12543 crossref_primary_10_1016_j_cmet_2016_05_007 crossref_primary_10_1519_JSC_0b013e31824f207e crossref_primary_10_1016_j_apmr_2012_11_013 crossref_primary_10_17987_jcsm_cr_v3i2_72 crossref_primary_10_1152_japplphysiol_01029_2017 crossref_primary_10_1016_j_jamda_2017_02_006 crossref_primary_10_3389_fphys_2017_00383 crossref_primary_10_3389_fphys_2019_01459 crossref_primary_10_1007_s12603_013_0362_7 crossref_primary_10_1152_japplphysiol_00723_2019 crossref_primary_10_3389_fphys_2019_00247 crossref_primary_10_1007_s11357_015_9784_y crossref_primary_10_1139_apnm_2016_0415 crossref_primary_10_1519_SSC_0000000000000819 crossref_primary_10_1038_s41598_019_44329_6 crossref_primary_10_1139_apnm_2014_0329 crossref_primary_10_1016_j_smhs_2025_02_011 crossref_primary_10_1152_japplphysiol_00424_2021 crossref_primary_10_1152_japplphysiol_01194_2006 crossref_primary_10_3389_fphys_2014_00189 crossref_primary_10_1007_s40279_021_01509_7 crossref_primary_10_1111_sms_12416 crossref_primary_10_1007_s00421_021_04688_3 crossref_primary_10_7759_cureus_15454 crossref_primary_10_1002_mus_23667 crossref_primary_10_3390_sports7010014 crossref_primary_10_1249_MSS_0000000000001438 crossref_primary_10_1016_j_jamda_2015_01_071 crossref_primary_10_1152_japplphysiol_00768_2022 crossref_primary_10_1371_journal_pone_0224866 crossref_primary_10_1093_gerona_gly130 crossref_primary_10_1111_j_1447_0594_2007_00421_x crossref_primary_10_1152_japplphysiol_91551_2008 crossref_primary_10_3945_jn_114_208371 crossref_primary_10_1007_s11357_010_9141_0 crossref_primary_10_15857_ksep_2023_00234 crossref_primary_10_1007_s40279_013_0017_1 crossref_primary_10_1123_japa_2023_0178 crossref_primary_10_1016_j_actbio_2024_12_023 crossref_primary_10_1152_japplphysiol_00106_2018 crossref_primary_10_1186_2042_6410_3_11 crossref_primary_10_3390_cells11091389 crossref_primary_10_1113_jphysiol_2013_257121 crossref_primary_10_1002_mus_25711 crossref_primary_10_1519_SSC_0000000000000030 crossref_primary_10_1088_1742_6596_1272_1_012004 crossref_primary_10_3390_jfmk3030045 crossref_primary_10_1152_ajpcell_00344_2021 crossref_primary_10_1177_02692155211035539 crossref_primary_10_1519_JSC_0000000000000958 |
Cites_doi | 10.1152/ajpendo.00464.2004 10.1007/s00418-004-0630-z 10.1034/j.1399-0004.2000.570103.x 10.1152/jappl.1994.76.3.1247 10.1152/jappl.2001.91.2.569 10.1046/j.1532-5415.2001.4911233.x 10.1152/japplphysiol.00903.2002 10.1152/ajpendo.1999.277.1.E118 10.1152/jappl.1998.84.4.1359 10.1152/japplphysiol.01351.2003 10.1152/japplphysiol.01387.2003 10.1093/nar/19.20.5645 10.1097/00005768-200202000-00027 10.1002/mus.880060809 10.1152/jappl.1997.83.4.1270 10.1152/ajpendo.1995.268.3.E422 10.1093/gerona/58.10.M918 10.1152/jappl.1998.84.4.1341 10.1152/jappl.1998.84.1.157 10.1007/s004410051314 10.1152/jappl.2000.88.3.1112 10.1152/japplphysiol.00437.2003 10.1152/japplphysiol.01153.2001 10.1152/japplphysiol.00811.2004 10.1152/japplphysiol.00513.2005 10.1152/jappl.1999.87.5.1705 10.2165/00007256-200434050-00005 10.1152/ajpcell.1998.275.1.C155 10.1249/00005768-198201000-00018 10.1006/excr.1995.1372 10.1093/gerona/51A.6.M270 10.1111/j.1474-9728.2005.00145.x 10.1016/j.semcdb.2005.07.004 10.1152/japplphysiol.00294.2004 10.1152/japplphysiol.00895.2004 10.1152/ajpcell.2000.278.6.C1143 10.1152/japplphysiol.00012.2002 10.1111/j.1532-5415.2004.52014.x 10.1111/j.1365-2990.1997.tb01324.x 10.1152/jappl.1999.86.6.1833 10.1152/ajpregu.2000.279.1.R179 10.2165/00007256-200434120-00002 10.1152/jappl.1988.64.3.1038 10.1126/science.1111443 10.1016/0022-510X(86)90009-2 10.1093/gerona/53A.6.B415 10.1007/BF00376773 10.1111/j.1469-7793.2001.0625c.xd 10.1152/ajpendo.1997.273.4.E790 10.1016/S0014-5793(01)02825-3 10.1152/ajpcell.00173.2002 10.1152/jappl.1987.63.5.1816 10.1002/mus.10278 10.1152/jappl.1993.74.2.911 10.1152/jappl.1998.84.1.284 10.1016/0022-510X(88)90132-3 10.1093/gerona/58.2.B108 10.1016/0960-8966(91)90038-T 10.1152/japplphysiol.00006.2004 10.1126/science.1087573 10.1007/s004240050593 10.1152/ajpcell.1998.275.4.C1124 10.1007/s00421-004-1104-7 10.1046/j.1365-201X.2001.00781.x |
ContentType | Journal Article |
Copyright | 2006 INIST-CNRS Copyright American Physiological Society Aug 2006 |
Copyright_xml | – notice: 2006 INIST-CNRS – notice: Copyright American Physiological Society Aug 2006 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 |
DOI | 10.1152/japplphysiol.01474.2005 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Physical Education Index Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1601 |
EndPage | 544 |
ExternalDocumentID | 1148163061 16614355 17976664 10_1152_japplphysiol_01474_2005 jap_101_2_531 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Comparative Study Clinical Trial Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: M01 RR-00032 – fundername: NIA NIH HHS grantid: R01 AG-17896 |
GroupedDBID | - 02 2WC 39C 3O- 4.4 53G 55 5VS 85S AALRV ABFLS ABOCM ABUFD ACGFS ACIWK ACPRK ADBBV ADBIT AEILP AENEX AEULQ AFDAS AFRAH AGCDD ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P FRP GJ GX1 H13 H~9 KQ8 L7B MYA NEJ O0- OHT OK1 P-O P2P PQEST PQQKQ RAP RHF RHI RPL SJN UHB UKR UPT WH7 WOQ X X7M YCJ --- -~X .55 .GJ 18M 1CY 29J 8M5 AAFWJ AAYXX ABCQX ABDNZ ABHWK ABJNI ABKWE ACBEA ACGFO ACKIV ACYGS ADFNX ADXHL AETEA AFOSN AGNAY AI. AIDAL AJUXI BKKCC BTFSW C2- CITATION EMOBN ITBOX J5H MVM P6G RPRKH TR2 VH1 W8F XOL XSW YBH YQJ YQT YWH ZXP ~02 IQODW CGR CUY CVF ECM EIF NPM VXZ 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c575t-31309307c3d33e2d231f6321e5206546bb51c04d7dd78c201a4a002a0aca8f9e3 |
ISSN | 8750-7587 |
IngestDate | Fri Jul 11 00:15:59 EDT 2025 Fri Jul 11 07:28:43 EDT 2025 Fri Jul 11 09:12:23 EDT 2025 Mon Jun 30 09:02:38 EDT 2025 Wed Feb 19 01:49:13 EST 2025 Mon Jul 21 09:16:40 EDT 2025 Thu Apr 24 22:55:12 EDT 2025 Tue Jul 01 01:13:17 EDT 2025 Tue Jan 05 17:53:17 EST 2021 Mon May 06 11:52:07 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Human myosin heavy chain Vertebrata Heavy peptide chain Physical training Mammalia MyoD myogenin Myosin Elderly Hypertrophy sarcopenia |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c575t-31309307c3d33e2d231f6321e5206546bb51c04d7dd78c201a4a002a0aca8f9e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
PMID | 16614355 |
PQID | 222160921 |
PQPubID | 40905 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_771735369 proquest_miscellaneous_68648412 proquest_miscellaneous_19366518 proquest_journals_222160921 pubmed_primary_16614355 crossref_citationtrail_10_1152_japplphysiol_01474_2005 pascalfrancis_primary_17976664 highwire_physiology_jap_101_2_531 crossref_primary_10_1152_japplphysiol_01474_2005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-08-01 |
PublicationDateYYYYMMDD | 2006-08-01 |
PublicationDate_xml | – month: 08 year: 2006 text: 2006-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Bethesda, MD |
PublicationPlace_xml | – name: Bethesda, MD – name: United States – name: Bethesda |
PublicationTitle | Journal of applied physiology (1985) |
PublicationTitleAlternate | J Appl Physiol (1985) |
PublicationYear | 2006 |
Publisher | Am Physiological Soc American Physiological Society |
Publisher_xml | – name: Am Physiological Soc – name: American Physiological Society |
References | R61 R60 R63 R62 R21 R65 R20 R64 R23 R22 R66 R25 R24 R27 R26 R29 R28 R1 R2 R3 R4 R5 R6 R7 R8 R9 R30 R32 R31 R34 R33 R36 R35 R38 R37 R39 R41 R40 R43 R42 R45 R44 R47 R46 R49 R48 R50 R52 R51 R10 R54 R53 R12 R56 R11 R55 R14 R58 R13 R57 R16 R15 R59 R18 R17 R19 |
References_xml | – ident: R33 doi: 10.1152/ajpendo.00464.2004 – ident: R32 doi: 10.1007/s00418-004-0630-z – ident: R58 doi: 10.1034/j.1399-0004.2000.570103.x – ident: R60 doi: 10.1152/jappl.1994.76.3.1247 – ident: R26 doi: 10.1152/jappl.2001.91.2.569 – ident: R57 doi: 10.1046/j.1532-5415.2001.4911233.x – ident: R53 doi: 10.1152/japplphysiol.00903.2002 – ident: R46 – ident: R65 doi: 10.1152/ajpendo.1999.277.1.E118 – ident: R47 doi: 10.1152/jappl.1998.84.4.1359 – ident: R37 doi: 10.1152/japplphysiol.01351.2003 – ident: R7 doi: 10.1152/japplphysiol.01387.2003 – ident: R10 doi: 10.1093/nar/19.20.5645 – ident: R36 doi: 10.1097/00005768-200202000-00027 – ident: R38 doi: 10.1002/mus.880060809 – ident: R43 doi: 10.1152/jappl.1997.83.4.1270 – ident: R63 doi: 10.1152/ajpendo.1995.268.3.E422 – ident: R66 doi: 10.1093/gerona/58.10.M918 – ident: R23 doi: 10.1152/jappl.1998.84.4.1341 – ident: R5 doi: 10.1152/jappl.1998.84.1.157 – ident: R42 doi: 10.1007/s004410051314 – ident: R56 doi: 10.1152/jappl.2000.88.3.1112 – ident: R8 doi: 10.1152/japplphysiol.00437.2003 – ident: R22 doi: 10.1152/japplphysiol.01153.2001 – ident: R62 doi: 10.1152/japplphysiol.00811.2004 – ident: R34 doi: 10.1152/japplphysiol.00513.2005 – ident: R2 doi: 10.1152/jappl.1999.87.5.1705 – ident: R29 doi: 10.2165/00007256-200434050-00005 – ident: R41 doi: 10.1152/ajpcell.1998.275.1.C155 – ident: R18 doi: 10.1249/00005768-198201000-00018 – ident: R49 doi: 10.1006/excr.1995.1372 – ident: R64 doi: 10.1093/gerona/51A.6.M270 – ident: R17 doi: 10.1111/j.1474-9728.2005.00145.x – ident: R28 doi: 10.1016/j.semcdb.2005.07.004 – ident: R52 doi: 10.1152/japplphysiol.00294.2004 – ident: R9 doi: 10.1152/japplphysiol.00895.2004 – ident: R61 doi: 10.1152/ajpcell.2000.278.6.C1143 – ident: R30 doi: 10.1152/japplphysiol.00012.2002 – ident: R31 doi: 10.1111/j.1532-5415.2004.52014.x – ident: R50 doi: 10.1111/j.1365-2990.1997.tb01324.x – ident: R55 doi: 10.1152/jappl.1999.86.6.1833 – ident: R35 doi: 10.1152/ajpregu.2000.279.1.R179 – ident: R15 doi: 10.2165/00007256-200434120-00002 – ident: R19 doi: 10.1152/jappl.1988.64.3.1038 – ident: R45 doi: 10.1126/science.1111443 – ident: R39 doi: 10.1016/0022-510X(86)90009-2 – ident: R24 doi: 10.1093/gerona/53A.6.B415 – ident: R20 doi: 10.1007/BF00376773 – ident: R27 doi: 10.1111/j.1469-7793.2001.0625c.xd – ident: R4 doi: 10.1152/ajpendo.1997.273.4.E790 – ident: R51 doi: 10.1016/S0014-5793(01)02825-3 – ident: R3 doi: 10.1152/ajpcell.00173.2002 – ident: R13 doi: 10.1152/jappl.1987.63.5.1816 – ident: R59 doi: 10.1002/mus.10278 – ident: R1 doi: 10.1152/jappl.1993.74.2.911 – ident: R14 doi: 10.1152/jappl.1998.84.1.284 – ident: R40 doi: 10.1016/0022-510X(88)90132-3 – ident: R6 doi: 10.1093/gerona/58.2.B108 – ident: R48 – ident: R44 doi: 10.1016/0960-8966(91)90038-T – ident: R21 doi: 10.1152/japplphysiol.00006.2004 – ident: R12 doi: 10.1126/science.1087573 – ident: R11 doi: 10.1007/s004240050593 – ident: R16 doi: 10.1152/ajpcell.1998.275.4.C1124 – ident: R54 doi: 10.1007/s00421-004-1104-7 – ident: R25 doi: 10.1046/j.1365-201X.2001.00781.x |
SSID | ssj0014451 |
Score | 2.3953786 |
Snippet | Departments of 1 Physiology and Biophysics and 3 Surgery, University of Alabama at Birmingham, and 2 Geriatric Research, Education, and Clinical Center,... Resistance training (RT) has shown the most promise in reducing/reversing effects of sarcopenia, although the optimum regime specific for older adults remains... |
SourceID | proquest pubmed pascalfrancis crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 531 |
SubjectTerms | Adult Aged Aging - physiology Biological and medical sciences Exercise Exercise - physiology Female Fundamental and applied biological sciences. Psychology Human subjects Humans Hypertrophy - pathology Hypertrophy - physiopathology Male Middle Aged Muscle Development - physiology Muscular system MyoD Protein - genetics MyoD Protein - physiology Myofibrils - pathology Myofibrils - physiology Myogenic Regulatory Factor 5 - genetics Myogenic Regulatory Factor 5 - physiology Myogenic Regulatory Factors - genetics Myogenic Regulatory Factors - physiology Myogenin - genetics Myogenin - physiology Older people Physical training RNA, Messenger - analysis Sex Characteristics Time Factors Tissues Weight Lifting |
Title | Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults |
URI | http://jap.physiology.org/cgi/content/abstract/101/2/531 https://www.ncbi.nlm.nih.gov/pubmed/16614355 https://www.proquest.com/docview/222160921 https://www.proquest.com/docview/19366518 https://www.proquest.com/docview/68648412 https://www.proquest.com/docview/771735369 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqISFeEGx8hMEwEuKlytbEsZM8TtOmadOQEJ20tygfLlSlSdWkTOW_5T_hzh9JCqsYvERtEieO72f7fufzHSHveQDzxiRmboxb3AMZZG7MOHO9vIgLEbMik2jvuPoozq-Dixt-Mxj87HktrZrsMP9x576S_5EqnAO54i7Zf5Bs-1A4Ab9BvnAECcPxXjI-xfgPmK8dND42LFIUytntbAgUGtVC7LM2BQQuCszX8LZMLodfgXwum2UFTawWD-ACvGOaD-cSNwJP67nykl3jSDD8Xh8OK8zlrWN11FvU2dSos8pUogM7YQyoOOI9Y8NlVctZ60rfLUmZnM4Xsiq_uDoVi033hd5Z1me4s8me2GzvysvXmHR7xotowxFkrlL8TNtx_nO16fw5coHP6AlZmgEayLMnzDPsCG7-TntMWo_HXE8xf84T3Ff5CaBpTLMcAlcMtZGtXwIEvpgr-HioyTAdU3gzbvdv82nr5QiPRw-6xE847vR_4AOTwSQbl5-6hS6MD6dN0PpTjQsi1O9oS-0wzK2pyqYuZeNbo3tvWkNrTnRqlu3cSelQ4yfksUELPdZIfkoGstwle8dl2lTzNf1AWymtd8nDK-P1sUdqi3NaTSijiPOj2xntUE4tymlVUoty2kM5BZRTi3LaoZxOS6pQTgHlVKGcapQ_I9dnp-OTc9ckC3FzYBwN6BK4pj8Kc1YwJv0CeMtEMN-T3Mf90yLLuJePgiIsijDKQe1NgxS0gXSU5ikMVpI9JztlVcqXhIoc1IAs8kIJunYQy3hShJmMsoKP_Aya3SHCNnuSm0j6-J3fEsWouZ_0RZco0WG6Vyg4agsudDCZvxdxrVyTrgMnaJ8aA9qwWAuxZFFMHPLurvs3oOiQgw2AdHUJgZwIEThk3yImMcNdnQCRgH4X-1D8bXsV5iJcYExLWa3qBMigENyLtt8hIhFEgec7hG65I0S3IM5E7JAXGqtd9QzsX93jG_fJo268eU12muVKvgH60GQHqgP-AkHMHs0 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficacy+of+3+days%2Fwk+resistance+training+on+myofiber+hypertrophy+and+myogenic+mechanisms+in+young+vs.+older+adults&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Kosek%2C+David+J&rft.au=Kim%2C+Jeong-su&rft.au=Petrella%2C+John+K&rft.au=Cross%2C+James+M&rft.date=2006-08-01&rft.pub=Am+Physiological+Soc&rft.issn=8750-7587&rft.eissn=1522-1601&rft.volume=101&rft.issue=2&rft.spage=531&rft_id=info:doi/10.1152%2Fjapplphysiol.01474.2005&rft_id=info%3Apmid%2F16614355&rft.externalDBID=n%2Fa&rft.externalDocID=jap_101_2_531 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon |