Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults

Departments of 1 Physiology and Biophysics and 3 Surgery, University of Alabama at Birmingham, and 2 Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Birmingham, Alabama Submitted 22 November 2005 ; accepted in final form 4 April 2006 Resistance training (RT) has...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 101; no. 2; pp. 531 - 544
Main Authors Kosek, David J, Kim, Jeong-su, Petrella, John K, Cross, James M, Bamman, Marcas M
Format Journal Article
LanguageEnglish
Published Bethesda, MD Am Physiological Soc 01.08.2006
American Physiological Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Departments of 1 Physiology and Biophysics and 3 Surgery, University of Alabama at Birmingham, and 2 Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Birmingham, Alabama Submitted 22 November 2005 ; accepted in final form 4 April 2006 Resistance training (RT) has shown the most promise in reducing/reversing effects of sarcopenia, although the optimum regime specific for older adults remains unclear. We hypothesized myofiber hypertrophy resulting from frequent (3 days/wk, 16 wk) RT would be impaired in older (O; 60–75 yr; 12 women, 13 men), sarcopenic adults compared with young (Y; 20–35 yr; 11 women, 13 men) due to slowed repair/regeneration processes. Myofiber-type distribution and cross-sectional area (CSA) were determined at 0 and 16 wk. Transcript and protein levels of myogenic regulatory factors (MRFs) were assessed as markers of regeneration at 0 and 24 h postexercise, and after 16 wk. Only Y increased type I CSA 18% ( P < 0.001). O showed smaller type IIa (–16%) and type IIx (–24%) myofibers before training ( P < 0.05), with differences most notable in women. Both age groups increased type IIa (O, 16%; Y, 25%) and mean type II (O, 23%; Y, 32%) size ( P < 0.05). Growth was generally most favorable in young men. Percent change scores on fiber size revealed an age x gender interaction for type I fibers ( P < 0.05) as growth among Y (25%) exceeded that of O (4%) men. Myogenin and myogenic differentiation factor D (MyoD) mRNAs increased ( P < 0.05) in Y and O, whereas myogenic factor (myf)-5 mRNA increased in Y only ( P < 0.05). Myf-6 protein increased ( P < 0.05) in both Y and O. The results generally support our hypothesis as 3 days/wk training led to more robust hypertrophy in Y vs. O, particularly among men. However, this differential hypertrophy adaptation was not explained by age variation in MRF expression. sarcopenia; myogenin; MyoD; myosin heavy chain Address for reprint requests and other correspondence: M. M. Bamman, UAB Dept. of Physiology and Biophysics, Muscle Research Laboratory, GRECC/11G VA Medical Center, 1530 3rd Ave., South Birmingham, AL 35294-0001 (e-mail mbamman{at}uab.edu )
AbstractList Departments of 1 Physiology and Biophysics and 3 Surgery, University of Alabama at Birmingham, and 2 Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Birmingham, Alabama Submitted 22 November 2005 ; accepted in final form 4 April 2006 Resistance training (RT) has shown the most promise in reducing/reversing effects of sarcopenia, although the optimum regime specific for older adults remains unclear. We hypothesized myofiber hypertrophy resulting from frequent (3 days/wk, 16 wk) RT would be impaired in older (O; 60–75 yr; 12 women, 13 men), sarcopenic adults compared with young (Y; 20–35 yr; 11 women, 13 men) due to slowed repair/regeneration processes. Myofiber-type distribution and cross-sectional area (CSA) were determined at 0 and 16 wk. Transcript and protein levels of myogenic regulatory factors (MRFs) were assessed as markers of regeneration at 0 and 24 h postexercise, and after 16 wk. Only Y increased type I CSA 18% ( P < 0.001). O showed smaller type IIa (–16%) and type IIx (–24%) myofibers before training ( P < 0.05), with differences most notable in women. Both age groups increased type IIa (O, 16%; Y, 25%) and mean type II (O, 23%; Y, 32%) size ( P < 0.05). Growth was generally most favorable in young men. Percent change scores on fiber size revealed an age x gender interaction for type I fibers ( P < 0.05) as growth among Y (25%) exceeded that of O (4%) men. Myogenin and myogenic differentiation factor D (MyoD) mRNAs increased ( P < 0.05) in Y and O, whereas myogenic factor (myf)-5 mRNA increased in Y only ( P < 0.05). Myf-6 protein increased ( P < 0.05) in both Y and O. The results generally support our hypothesis as 3 days/wk training led to more robust hypertrophy in Y vs. O, particularly among men. However, this differential hypertrophy adaptation was not explained by age variation in MRF expression. sarcopenia; myogenin; MyoD; myosin heavy chain Address for reprint requests and other correspondence: M. M. Bamman, UAB Dept. of Physiology and Biophysics, Muscle Research Laboratory, GRECC/11G VA Medical Center, 1530 3rd Ave., South Birmingham, AL 35294-0001 (e-mail mbamman{at}uab.edu )
Resistance training (RT) has shown the most promise in reducing/reversing effects of sarcopenia, although the optimum regime specific for older adults remains unclear. We hypothesized myofiber hypertrophy resulting from frequent (3 days/wk, 16 wk) RT would be impaired in older (O; 60-75 yr; 12 women, 13 men), sarcopenic adults compared with young (Y; 20-35 yr; 11 women, 13 men) due to slowed repair/regeneration processes. Myofiber-type distribution and cross-sectional area (CSA) were determined at 0 and 16 wk. Transcript and protein levels of myogenic regulatory factors (MRFs) were assessed as markers of regeneration at 0 and 24 h postexercise, and after 16 wk. Only Y increased type I CSA 18% (P < 0.001). O showed smaller type IIa (-16%) and type IIx (-24%) myofibers before training (P < 0.05), with differences most notable in women. Both age groups increased type IIa (O, 16%; Y, 25%) and mean type II (O, 23%; Y, 32%) size (P < 0.05). Growth was generally most favorable in young men. Percent change scores on fiber size revealed an age x gender interaction for type I fibers (P < 0.05) as growth among Y (25%) exceeded that of O (4%) men. Myogenin and myogenic differentiation factor D (MyoD) mRNAs increased (P < 0.05) in Y and O, whereas myogenic factor (myf)-5 mRNA increased in Y only (P < 0.05). Myf-6 protein increased (P < 0.05) in both Y and O. The results generally support our hypothesis as 3 days/wk training led to more robust hypertrophy in Y vs. O, particularly among men. However, this differential hypertrophy adaptation was not explained by age variation in MRF expression.Resistance training (RT) has shown the most promise in reducing/reversing effects of sarcopenia, although the optimum regime specific for older adults remains unclear. We hypothesized myofiber hypertrophy resulting from frequent (3 days/wk, 16 wk) RT would be impaired in older (O; 60-75 yr; 12 women, 13 men), sarcopenic adults compared with young (Y; 20-35 yr; 11 women, 13 men) due to slowed repair/regeneration processes. Myofiber-type distribution and cross-sectional area (CSA) were determined at 0 and 16 wk. Transcript and protein levels of myogenic regulatory factors (MRFs) were assessed as markers of regeneration at 0 and 24 h postexercise, and after 16 wk. Only Y increased type I CSA 18% (P < 0.001). O showed smaller type IIa (-16%) and type IIx (-24%) myofibers before training (P < 0.05), with differences most notable in women. Both age groups increased type IIa (O, 16%; Y, 25%) and mean type II (O, 23%; Y, 32%) size (P < 0.05). Growth was generally most favorable in young men. Percent change scores on fiber size revealed an age x gender interaction for type I fibers (P < 0.05) as growth among Y (25%) exceeded that of O (4%) men. Myogenin and myogenic differentiation factor D (MyoD) mRNAs increased (P < 0.05) in Y and O, whereas myogenic factor (myf)-5 mRNA increased in Y only (P < 0.05). Myf-6 protein increased (P < 0.05) in both Y and O. The results generally support our hypothesis as 3 days/wk training led to more robust hypertrophy in Y vs. O, particularly among men. However, this differential hypertrophy adaptation was not explained by age variation in MRF expression.
Resistance training (RT) has shown the most promise in reducing/reversing effects of sarcopenia, although the optimum regime specific for older adults remains unclear. We hypothesized myofiber hypertrophy resulting from frequent (3 days/wk, 16 wk) RT would be impaired in older (O; 60-75 yr; 12 women, 13 men), sarcopenic adults compared with young (Y; 20-35 yr; 11 women, 13 men) due to slowed repair/regeneration processes. Myofiber-type distribution and cross-sectional area (CSA) were determined at 0 and 16 wk. Transcript and protein levels of myogenic regulatory factors (MRFs) were assessed as markers of regeneration at 0 and 24 h postexercise, and after 16 wk. Only Y increased type I CSA 18% (P < 0.001). O showed smaller type IIa (-16%) and type IIx (-24%) myofibers before training (P < 0.05), with differences most notable in women. Both age groups increased type IIa (O, 16%; Y, 25%) and mean type II (O, 23%; Y, 32%) size (P < 0.05). Growth was generally most favorable in young men. Percent change scores on fiber size revealed an age x gender interaction for type I fibers (P < 0.05) as growth among Y (25%) exceeded that of O (4%) men. Myogenin and myogenic differentiation factor D (MyoD) mRNAs increased (P < 0.05) in Y and O, whereas myogenic factor (myf)-5 mRNA increased in Y only (P < 0.05). Myf-6 protein increased (P < 0.05) in both Y and O. The results generally support our hypothesis as 3 days/wk training led to more robust hypertrophy in Y vs. O, particularly among men. However, this differential hypertrophy adaptation was not explained by age variation in MRF expression.
Resistance training (RT) has shown the most promise in reducing/reversing effects of sarcopenia, although the optimum regime specific for older adults remains unclear. We hypothesized myofiber hypertrophy resulting from frequent (3 days/wk, 16 wk) RT would be impaired in older (O; 60–75 yr; 12 women, 13 men), sarcopenic adults compared with young (Y; 20–35 yr; 11 women, 13 men) due to slowed repair/regeneration processes. Myofiber-type distribution and cross-sectional area (CSA) were determined at 0 and 16 wk. Transcript and protein levels of myogenic regulatory factors (MRFs) were assessed as markers of regeneration at 0 and 24 h postexercise, and after 16 wk. Only Y increased type I CSA 18% ( P < 0.001). O showed smaller type IIa (−16%) and type IIx (−24%) myofibers before training ( P < 0.05), with differences most notable in women. Both age groups increased type IIa (O, 16%; Y, 25%) and mean type II (O, 23%; Y, 32%) size ( P < 0.05). Growth was generally most favorable in young men. Percent change scores on fiber size revealed an age × gender interaction for type I fibers ( P < 0.05) as growth among Y (25%) exceeded that of O (4%) men. Myogenin and myogenic differentiation factor D (MyoD) mRNAs increased ( P < 0.05) in Y and O, whereas myogenic factor (myf)-5 mRNA increased in Y only ( P < 0.05). Myf-6 protein increased ( P < 0.05) in both Y and O. The results generally support our hypothesis as 3 days/wk training led to more robust hypertrophy in Y vs. O, particularly among men. However, this differential hypertrophy adaptation was not explained by age variation in MRF expression.
Resistance training (RT) has shown the most promise in reducing/reversing effects of sarcopenia, although the optimum regime specific for older adults remains unclear. We hypothesized myofiber hypertrophy resulting from frequent (3 days/wk, 16 wk) RT would be impaired in older (0; 60-75 yr; 12 women, 13 men), sarcopenic adults compared with young (Y; 20-35 yr; 11 women, 13 men) due to slowed repair/regeneration processes. Myofiber-type distribution and cross-sectional area (CSA) were determined at 0 and 16 wk. Transcript and protein levels of myogenic regulatory factors (MRFs) were assessed as markers of regeneration at 0 and 24 h postexercise, and after 16 wk. Only Y increased type I CSA 18% (P < 0.00 1). O showed smaller type IIa (-16%) and type IIx (-24%) myofibers before training (P < 0.05), with differences most notable in women. Both age groups increased type IIa (O, 16%; Y, 25%) and mean type II(O, 23%; Y, 32%) size (P < 0.05). Growth was generally most favorable in young men. Percent change scores on fiber size revealed an age x gender interaction for type I fibers (P < 0.05) as growth among Y (25%) exceeded that of O (4%) men. Myogenin and myogenic differentiation factor D (MyoD) mRNAs increased (P < 0.05) in Y and O, whereas myogenic factor (myf)-5 mRNA increased in Y only (P < 0.05). Myf-6 protein increased (P < 0.05) in both Y and O. The results generally support our hypothesis as 3 days/wk training led to more robust hypertrophy in Y vs. O, particularly among men. However, this differential hypertrophy adaptation was not explained by age variation in MRF expression. [PUBLICATION ABSTRACT]
Author Petrella, John K
Kim, Jeong-su
Cross, James M
Bamman, Marcas M
Kosek, David J
Author_xml – sequence: 1
  fullname: Kosek, David J
– sequence: 2
  fullname: Kim, Jeong-su
– sequence: 3
  fullname: Petrella, John K
– sequence: 4
  fullname: Cross, James M
– sequence: 5
  fullname: Bamman, Marcas M
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17976664$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16614355$$D View this record in MEDLINE/PubMed
BookMark eNqF0stu1DAUgGELFdELvAJYSFw2M_XxNVmwQFULSJXYlLXlcZwZD4kd7ISSt8fDDAVVgq6y8Pcnsc45RUchBofQCyBLAEHPt2YYumEzZx-7JQGu-JISIh6hk3JKFyAJHKGTSgmyUKJSx-g05y0pkAt4go5BSuBMiBOUL9vWW2NnHFvMcGPmfH77FSeXfR5NsA6PyfjgwxrHgPs5tn7lEt7Mg0tjiuUXsAnN7mDtgre4d3Zjgs99xj7gOU4l_J6XOHZNyUwzdWN-ih63psvu2eF5hr5cXd5cfFxcf_7w6eL99cIKJcYFA0ZqRpRlDWOONpRBKxkFJyiRgsvVSoAlvFFNoypLCRhuCKGGGGuqtnbsDL3Zv3dI8dvk8qh7n63rOhNcnLJWChQTTNZFvv6vlJXkFQf6IISaSSmgKvDlPbiNUwrluppSWuZTUyjo-QFNq941eki-N2nWv8dTwKsDMNmark1lIj7_capWUkpe3Lu9synmnFyrrR_N6GPYTa_TQPRubfTfa6N_rY3erU3p1b3-7hMPlnxfbvx6c-uT0wcU17O-mrruxv0YdzUQ0FQLBnpo2pK9_XdWtL7j7CeVG-x_
CODEN JAPHEV
CitedBy_id crossref_primary_10_1136_bmjopen_2019_033824
crossref_primary_10_1055_a_2338_8226
crossref_primary_10_1186_s12970_017_0163_1
crossref_primary_10_1016_j_jsams_2014_07_018
crossref_primary_10_1249_MSS_0b013e3181915670
crossref_primary_10_1371_journal_pone_0198611
crossref_primary_10_1113_jphysiol_2008_164483
crossref_primary_10_3389_fspor_2022_903992
crossref_primary_10_1007_s00421_009_1292_2
crossref_primary_10_1016_j_metabol_2016_01_014
crossref_primary_10_1152_ajpcell_00209_2019
crossref_primary_10_1519_JSC_0000000000001653
crossref_primary_10_1016_j_clnu_2012_07_009
crossref_primary_10_1080_07315724_2016_1274691
crossref_primary_10_3390_nu14132739
crossref_primary_10_1016_j_mlong_2009_06_003
crossref_primary_10_1007_s12603_010_0319_z
crossref_primary_10_1016_j_yfrne_2023_101101
crossref_primary_10_14814_phy2_13725
crossref_primary_10_1183_23120541_00282_2023
crossref_primary_10_1097_JES_0b013e3181877e13
crossref_primary_10_1111_sms_14134
crossref_primary_10_1080_17461391_2014_989922
crossref_primary_10_1016_j_celrep_2021_108796
crossref_primary_10_1519_JSC_0b013e3181d09ef6
crossref_primary_10_1038_s41598_024_77092_4
crossref_primary_10_1002_mus_23317
crossref_primary_10_1007_s00421_012_2466_x
crossref_primary_10_1152_japplphysiol_00560_2007
crossref_primary_10_1519_JSC_0000000000001788
crossref_primary_10_1519_JSC_0000000000003601
crossref_primary_10_1139_H09_038
crossref_primary_10_3390_ijms232314716
crossref_primary_10_1016_j_arr_2009_05_003
crossref_primary_10_1152_physiolgenomics_00151_2009
crossref_primary_10_1016_j_exger_2016_10_009
crossref_primary_10_1007_s11357_015_9841_6
crossref_primary_10_3945_jn_113_183996
crossref_primary_10_1016_j_exger_2017_03_014
crossref_primary_10_1186_2044_5040_1_11
crossref_primary_10_1007_s00421_008_0846_z
crossref_primary_10_1152_physiolgenomics_00167_2012
crossref_primary_10_1016_j_cbpa_2023_111415
crossref_primary_10_3389_fragi_2023_1171850
crossref_primary_10_1016_j_exger_2017_03_018
crossref_primary_10_3390_nu10030335
crossref_primary_10_1007_s11357_016_9894_1
crossref_primary_10_1016_j_jshs_2020_06_010
crossref_primary_10_1152_ajpendo_00164_2016
crossref_primary_10_1519_00139143_200932020_00008
crossref_primary_10_1152_japplphysiol_00489_2015
crossref_primary_10_1089_rej_2016_1816
crossref_primary_10_1155_2019_8031705
crossref_primary_10_1152_japplphysiol_00924_2016
crossref_primary_10_1016_j_celrep_2020_107980
crossref_primary_10_1155_2013_589361
crossref_primary_10_3390_cells9071658
crossref_primary_10_3390_ijms21186732
crossref_primary_10_1113_JP270536
crossref_primary_10_1111_apha_12168
crossref_primary_10_1097_BTO_0000000000000271
crossref_primary_10_1111_apha_12601
crossref_primary_10_1113_JP271188
crossref_primary_10_1093_gerona_gln050
crossref_primary_10_1093_nutrit_nuae055
crossref_primary_10_1002_oby_20949
crossref_primary_10_1007_s11556_013_0127_7
crossref_primary_10_1172_jci_insight_95581
crossref_primary_10_2165_00007256_200737090_00001
crossref_primary_10_4040_jkan_2020_50_2_286
crossref_primary_10_1007_s42978_022_00164_2
crossref_primary_10_1007_s10059_012_0196_x
crossref_primary_10_1097_01_NAJ_0000408184_21770_98
crossref_primary_10_1111_j_1600_0838_2010_01196_x
crossref_primary_10_3390_jcm9072188
crossref_primary_10_1017_S0029665110003927
crossref_primary_10_1093_gerona_glp026
crossref_primary_10_1096_fj_201700531R
crossref_primary_10_1519_JSC_0000000000000760
crossref_primary_10_1519_JSC_0000000000004329
crossref_primary_10_1152_japplphysiol_01277_2013
crossref_primary_10_1016_j_meatsci_2012_04_027
crossref_primary_10_1152_japplphysiol_00170_2020
crossref_primary_10_1097_AJP_0b013e31823e9378
crossref_primary_10_1152_japplphysiol_00150_2007
crossref_primary_10_1249_MSS_0b013e3181eb6265
crossref_primary_10_1152_japplphysiol_00195_2007
crossref_primary_10_1177_15347354211035442
crossref_primary_10_1016_S2213_8587_14_70034_8
crossref_primary_10_1152_japplphysiol_00702_2019
crossref_primary_10_1519_JSC_0000000000001191
crossref_primary_10_1016_j_arr_2010_04_004
crossref_primary_10_1249_MSS_0b013e318272fcdb
crossref_primary_10_1016_j_crphys_2024_100138
crossref_primary_10_1016_j_npg_2010_12_006
crossref_primary_10_1155_2013_237260
crossref_primary_10_3390_nu14163436
crossref_primary_10_1152_japplphysiol_01260_2006
crossref_primary_10_7600_jpfsm_1_83
crossref_primary_10_1016_j_jamda_2012_09_009
crossref_primary_10_1007_s40279_013_0088_z
crossref_primary_10_3389_fresc_2021_724052
crossref_primary_10_1016_j_exger_2018_02_009
crossref_primary_10_1007_s10522_013_9429_4
crossref_primary_10_1152_japplphysiol_00495_2019
crossref_primary_10_1093_gerona_glv231
crossref_primary_10_1007_s40279_020_01388_4
crossref_primary_10_1123_japa_18_1_43
crossref_primary_10_1007_s00421_015_3150_8
crossref_primary_10_3390_nu14214701
crossref_primary_10_1113_JP284442
crossref_primary_10_1002_jor_22531
crossref_primary_10_1007_s11427_023_2400_3
crossref_primary_10_1111_j_1365_2354_2011_01287_x
crossref_primary_10_1369_jhc_2010_956201
crossref_primary_10_1519_JPT_0000000000000105
crossref_primary_10_1152_japplphysiol_00632_2016
crossref_primary_10_1007_s00421_007_0521_9
crossref_primary_10_1007_s40279_023_01946_6
crossref_primary_10_1186_1471_2164_15_1165
crossref_primary_10_1002_ca_24091
crossref_primary_10_1007_s11332_012_0131_8
crossref_primary_10_1016_j_exger_2013_02_012
crossref_primary_10_1152_japplphysiol_00563_2017
crossref_primary_10_1002_mus_21087
crossref_primary_10_1038_s41598_024_66034_9
crossref_primary_10_1002_biof_1138
crossref_primary_10_1016_j_jelekin_2008_07_007
crossref_primary_10_1097_01_CSMR_0000306468_72466_af
crossref_primary_10_1186_s12970_017_0175_x
crossref_primary_10_1152_japplphysiol_00015_2020
crossref_primary_10_2174_1875399X01710010191
crossref_primary_10_4196_kjpp_2022_26_3_207
crossref_primary_10_1152_ajpendo_00481_2014
crossref_primary_10_1152_japplphysiol_90842_2008
crossref_primary_10_1152_japplphysiol_00122_2013
crossref_primary_10_1249_MSS_0b013e3182667c2e
crossref_primary_10_1007_s00421_010_1392_z
crossref_primary_10_3389_fnut_2020_628405
crossref_primary_10_1007_s42978_019_00037_1
crossref_primary_10_1016_j_exger_2018_02_023
crossref_primary_10_3177_jnsv_63_379
crossref_primary_10_1111_sms_12804
crossref_primary_10_1152_japplphysiol_01213_2009
crossref_primary_10_1186_s13075_023_03065_z
crossref_primary_10_7717_peerj_19042
crossref_primary_10_1186_s12877_024_05459_3
crossref_primary_10_3390_app11093905
crossref_primary_10_1007_s10529_011_0610_z
crossref_primary_10_1152_japplphysiol_00708_2007
crossref_primary_10_1007_s11357_014_9699_z
crossref_primary_10_1152_japplphysiol_00466_2007
crossref_primary_10_1186_s13104_023_06317_y
crossref_primary_10_1152_japplphysiol_00257_2019
crossref_primary_10_7600_jpfsm_3_347
crossref_primary_10_1249_JES_0000000000000153
crossref_primary_10_1007_s00421_012_2458_x
crossref_primary_10_1111_j_1600_0838_2009_01084_x
crossref_primary_10_1007_s40279_017_0676_4
crossref_primary_10_1007_s40279_021_01636_1
crossref_primary_10_1111_j_1748_1716_2010_02074_x
crossref_primary_10_5888_pcd11_140007
crossref_primary_10_1016_j_exger_2017_09_018
crossref_primary_10_1016_j_exger_2016_07_007
crossref_primary_10_23949_kjpe_2017_01_56_1_49
crossref_primary_10_1186_1743_7075_8_68
crossref_primary_10_14814_phy2_13444
crossref_primary_10_1111_sms_12914
crossref_primary_10_1155_2012_486930
crossref_primary_10_1111_apha_12532
crossref_primary_10_1152_ajpregu_00354_2009
crossref_primary_10_1007_s11932_007_0029_4
crossref_primary_10_1002_jcsm_12137
crossref_primary_10_1113_jphysiol_2009_180174
crossref_primary_10_1007_s00125_017_4461_6
crossref_primary_10_1044_2018_JSLHR_S_18_0179
crossref_primary_10_1016_j_exger_2014_12_020
crossref_primary_10_1152_japplphysiol_01119_2010
crossref_primary_10_1016_j_exger_2021_111519
crossref_primary_10_1186_1743_7075_10_39
crossref_primary_10_1089_rej_2007_0643
crossref_primary_10_18632_aging_101210
crossref_primary_10_1016_j_mayocp_2020_07_033
crossref_primary_10_1152_japplphysiol_91587_2008
crossref_primary_10_1136_bmjopen_2016_014619
crossref_primary_10_23736_S1973_9087_22_07612_2
crossref_primary_10_1007_s11897_015_0257_5
crossref_primary_10_1152_japplphysiol_01141_2017
crossref_primary_10_1152_japplphysiol_01266_2009
crossref_primary_10_1186_1743_7075_8_78
crossref_primary_10_1152_japplphysiol_00274_2022
crossref_primary_10_1007_s11357_020_00272_3
crossref_primary_10_1111_1440_1681_13824
crossref_primary_10_1093_gerona_gls209
crossref_primary_10_1249_MSS_0b013e318207c15d
crossref_primary_10_1152_japplphysiol_00024_2007
crossref_primary_10_2196_49322
crossref_primary_10_1016_j_celrep_2020_107808
crossref_primary_10_1016_j_arr_2023_102023
crossref_primary_10_1007_s13670_016_0176_7
crossref_primary_10_3390_app12147310
crossref_primary_10_5650_jos_ess21045
crossref_primary_10_1007_s00268_017_3999_2
crossref_primary_10_1186_1471_2164_11_659
crossref_primary_10_1093_jn_nxy169
crossref_primary_10_1186_s40798_020_0242_8
crossref_primary_10_1007_s40520_019_01234_2
crossref_primary_10_3389_fphys_2015_00283
crossref_primary_10_14336_AD_2015_0920
crossref_primary_10_1152_japplphysiol_00867_2016
crossref_primary_10_1007_s00421_014_2976_9
crossref_primary_10_1249_MSS_0000000000001991
crossref_primary_10_1111_j_1600_0838_2011_01318_x
crossref_primary_10_1097_BCR_0b013e3182331e4b
crossref_primary_10_1111_j_1600_0838_2010_01108_x
crossref_primary_10_1016_j_exger_2021_111420
crossref_primary_10_1159_000450922
crossref_primary_10_1096_fj_202000196R
crossref_primary_10_32725_sk_2012_094
crossref_primary_10_7600_jpfsm_6_25
crossref_primary_10_1152_japplphysiol_91351_2008
crossref_primary_10_1002_jcsm_12105
crossref_primary_10_1039_C9FO00182D
crossref_primary_10_11622_smedj_2021103
crossref_primary_10_1089_rej_2014_1623
crossref_primary_10_1152_japplphysiol_00662_2022
crossref_primary_10_4103_ijmh_IJMH_36_19
crossref_primary_10_1007_s00056_011_0051_2
crossref_primary_10_1016_j_steroids_2018_01_011
crossref_primary_10_1016_j_archger_2024_105474
crossref_primary_10_1111_j_1600_0838_2009_01018_x
crossref_primary_10_1519_JSC_0000000000003230
crossref_primary_10_1007_s00421_019_04230_6
crossref_primary_10_1152_japplphysiol_00605_2022
crossref_primary_10_1519_JSC_0000000000000995
crossref_primary_10_1519_JSC_0b013e31822ac367
crossref_primary_10_1152_ajpendo_00240_2015
crossref_primary_10_1093_gerona_glu086
crossref_primary_10_1096_fj_202000668RR
crossref_primary_10_1093_gerona_glp196
crossref_primary_10_1007_s00418_020_01895_5
crossref_primary_10_1016_j_pmrj_2013_11_009
crossref_primary_10_3389_fphys_2022_1106425
crossref_primary_10_17987_jcsm_cr_v3i2_65
crossref_primary_10_1007_s12603_020_1431_3
crossref_primary_10_1096_fj_202301291RR
crossref_primary_10_3390_sports10060095
crossref_primary_10_1242_jeb_125401
crossref_primary_10_1111_j_1532_5415_2011_03484_x
crossref_primary_10_1152_japplphysiol_00865_2019
crossref_primary_10_3390_ijms11041509
crossref_primary_10_1186_1550_2783_6_16
crossref_primary_10_1080_13645700801969816
crossref_primary_10_1152_japplphysiol_00296_2015
crossref_primary_10_1519_JSC_0b013e318234eb6f
crossref_primary_10_1016_j_apmr_2023_01_022
crossref_primary_10_1007_s00421_017_3733_7
crossref_primary_10_1152_ajpendo_00190_2006
crossref_primary_10_1111_apha_13302
crossref_primary_10_1152_japplphysiol_00066_2015
crossref_primary_10_1249_MSS_0b013e318223b037
crossref_primary_10_3389_fphys_2020_00874
crossref_primary_10_1152_physiol_00044_2018
crossref_primary_10_3945_ajcn_2008_26626
crossref_primary_10_1017_S0029665120008010
crossref_primary_10_1152_physrev_00039_2022
crossref_primary_10_1152_ajpregu_00093_2008
crossref_primary_10_1152_physiolgenomics_00124_2015
crossref_primary_10_3389_fresc_2023_1076010
crossref_primary_10_1002_cbf_1614
crossref_primary_10_1080_19390211_2021_1897057
crossref_primary_10_1152_physiolgenomics_00056_2009
crossref_primary_10_1186_2052_1847_6_28
crossref_primary_10_1152_japplphysiol_01215_2007
crossref_primary_10_1016_j_ygeno_2021_06_035
crossref_primary_10_3389_fphys_2020_00653
crossref_primary_10_1016_j_critrevonc_2021_103371
crossref_primary_10_1111_j_1469_185X_2010_00161_x
crossref_primary_10_1111_j_1600_0838_2009_01059_x
crossref_primary_10_1152_japplphysiol_00435_2011
crossref_primary_10_1152_japplphysiol_91234_2008
crossref_primary_10_1016_j_cger_2011_03_009
crossref_primary_10_1113_JP272857
crossref_primary_10_1139_h11_132
crossref_primary_10_1152_ajpendo_90562_2008
crossref_primary_10_1519_JSC_0000000000003521
crossref_primary_10_1161_HYPERTENSIONAHA_116_07431
crossref_primary_10_1519_SSC_0b013e3182221ec2
crossref_primary_10_1519_JSC_0000000000003768
crossref_primary_10_1007_s10522_015_9631_7
crossref_primary_10_1093_gerona_gls241
crossref_primary_10_1152_japplphysiol_00021_2008
crossref_primary_10_1007_s00421_022_05093_0
crossref_primary_10_1111_sms_12543
crossref_primary_10_1016_j_cmet_2016_05_007
crossref_primary_10_1519_JSC_0b013e31824f207e
crossref_primary_10_1016_j_apmr_2012_11_013
crossref_primary_10_17987_jcsm_cr_v3i2_72
crossref_primary_10_1152_japplphysiol_01029_2017
crossref_primary_10_1016_j_jamda_2017_02_006
crossref_primary_10_3389_fphys_2017_00383
crossref_primary_10_3389_fphys_2019_01459
crossref_primary_10_1007_s12603_013_0362_7
crossref_primary_10_1152_japplphysiol_00723_2019
crossref_primary_10_3389_fphys_2019_00247
crossref_primary_10_1007_s11357_015_9784_y
crossref_primary_10_1139_apnm_2016_0415
crossref_primary_10_1519_SSC_0000000000000819
crossref_primary_10_1038_s41598_019_44329_6
crossref_primary_10_1139_apnm_2014_0329
crossref_primary_10_1016_j_smhs_2025_02_011
crossref_primary_10_1152_japplphysiol_00424_2021
crossref_primary_10_1152_japplphysiol_01194_2006
crossref_primary_10_3389_fphys_2014_00189
crossref_primary_10_1007_s40279_021_01509_7
crossref_primary_10_1111_sms_12416
crossref_primary_10_1007_s00421_021_04688_3
crossref_primary_10_7759_cureus_15454
crossref_primary_10_1002_mus_23667
crossref_primary_10_3390_sports7010014
crossref_primary_10_1249_MSS_0000000000001438
crossref_primary_10_1016_j_jamda_2015_01_071
crossref_primary_10_1152_japplphysiol_00768_2022
crossref_primary_10_1371_journal_pone_0224866
crossref_primary_10_1093_gerona_gly130
crossref_primary_10_1111_j_1447_0594_2007_00421_x
crossref_primary_10_1152_japplphysiol_91551_2008
crossref_primary_10_3945_jn_114_208371
crossref_primary_10_1007_s11357_010_9141_0
crossref_primary_10_15857_ksep_2023_00234
crossref_primary_10_1007_s40279_013_0017_1
crossref_primary_10_1123_japa_2023_0178
crossref_primary_10_1016_j_actbio_2024_12_023
crossref_primary_10_1152_japplphysiol_00106_2018
crossref_primary_10_1186_2042_6410_3_11
crossref_primary_10_3390_cells11091389
crossref_primary_10_1113_jphysiol_2013_257121
crossref_primary_10_1002_mus_25711
crossref_primary_10_1519_SSC_0000000000000030
crossref_primary_10_1088_1742_6596_1272_1_012004
crossref_primary_10_3390_jfmk3030045
crossref_primary_10_1152_ajpcell_00344_2021
crossref_primary_10_1177_02692155211035539
crossref_primary_10_1519_JSC_0000000000000958
Cites_doi 10.1152/ajpendo.00464.2004
10.1007/s00418-004-0630-z
10.1034/j.1399-0004.2000.570103.x
10.1152/jappl.1994.76.3.1247
10.1152/jappl.2001.91.2.569
10.1046/j.1532-5415.2001.4911233.x
10.1152/japplphysiol.00903.2002
10.1152/ajpendo.1999.277.1.E118
10.1152/jappl.1998.84.4.1359
10.1152/japplphysiol.01351.2003
10.1152/japplphysiol.01387.2003
10.1093/nar/19.20.5645
10.1097/00005768-200202000-00027
10.1002/mus.880060809
10.1152/jappl.1997.83.4.1270
10.1152/ajpendo.1995.268.3.E422
10.1093/gerona/58.10.M918
10.1152/jappl.1998.84.4.1341
10.1152/jappl.1998.84.1.157
10.1007/s004410051314
10.1152/jappl.2000.88.3.1112
10.1152/japplphysiol.00437.2003
10.1152/japplphysiol.01153.2001
10.1152/japplphysiol.00811.2004
10.1152/japplphysiol.00513.2005
10.1152/jappl.1999.87.5.1705
10.2165/00007256-200434050-00005
10.1152/ajpcell.1998.275.1.C155
10.1249/00005768-198201000-00018
10.1006/excr.1995.1372
10.1093/gerona/51A.6.M270
10.1111/j.1474-9728.2005.00145.x
10.1016/j.semcdb.2005.07.004
10.1152/japplphysiol.00294.2004
10.1152/japplphysiol.00895.2004
10.1152/ajpcell.2000.278.6.C1143
10.1152/japplphysiol.00012.2002
10.1111/j.1532-5415.2004.52014.x
10.1111/j.1365-2990.1997.tb01324.x
10.1152/jappl.1999.86.6.1833
10.1152/ajpregu.2000.279.1.R179
10.2165/00007256-200434120-00002
10.1152/jappl.1988.64.3.1038
10.1126/science.1111443
10.1016/0022-510X(86)90009-2
10.1093/gerona/53A.6.B415
10.1007/BF00376773
10.1111/j.1469-7793.2001.0625c.xd
10.1152/ajpendo.1997.273.4.E790
10.1016/S0014-5793(01)02825-3
10.1152/ajpcell.00173.2002
10.1152/jappl.1987.63.5.1816
10.1002/mus.10278
10.1152/jappl.1993.74.2.911
10.1152/jappl.1998.84.1.284
10.1016/0022-510X(88)90132-3
10.1093/gerona/58.2.B108
10.1016/0960-8966(91)90038-T
10.1152/japplphysiol.00006.2004
10.1126/science.1087573
10.1007/s004240050593
10.1152/ajpcell.1998.275.4.C1124
10.1007/s00421-004-1104-7
10.1046/j.1365-201X.2001.00781.x
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright American Physiological Society Aug 2006
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Copyright American Physiological Society Aug 2006
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
DOI 10.1152/japplphysiol.01474.2005
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
CrossRef
Physical Education Index
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1601
EndPage 544
ExternalDocumentID 1148163061
16614355
17976664
10_1152_japplphysiol_01474_2005
jap_101_2_531
Genre Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Clinical Trial
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: M01 RR-00032
– fundername: NIA NIH HHS
  grantid: R01 AG-17896
GroupedDBID -
02
2WC
39C
3O-
4.4
53G
55
5VS
85S
AALRV
ABFLS
ABOCM
ABUFD
ACGFS
ACIWK
ACPRK
ADBBV
ADBIT
AEILP
AENEX
AEULQ
AFDAS
AFRAH
AGCDD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GJ
GX1
H13
H~9
KQ8
L7B
MYA
NEJ
O0-
OHT
OK1
P-O
P2P
PQEST
PQQKQ
RAP
RHF
RHI
RPL
SJN
UHB
UKR
UPT
WH7
WOQ
X
X7M
YCJ
---
-~X
.55
.GJ
18M
1CY
29J
8M5
AAFWJ
AAYXX
ABCQX
ABDNZ
ABHWK
ABJNI
ABKWE
ACBEA
ACGFO
ACKIV
ACYGS
ADFNX
ADXHL
AETEA
AFOSN
AGNAY
AI.
AIDAL
AJUXI
BKKCC
BTFSW
C2-
CITATION
EMOBN
ITBOX
J5H
MVM
P6G
RPRKH
TR2
VH1
W8F
XOL
XSW
YBH
YQJ
YQT
YWH
ZXP
~02
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c575t-31309307c3d33e2d231f6321e5206546bb51c04d7dd78c201a4a002a0aca8f9e3
ISSN 8750-7587
IngestDate Fri Jul 11 00:15:59 EDT 2025
Fri Jul 11 07:28:43 EDT 2025
Fri Jul 11 09:12:23 EDT 2025
Mon Jun 30 09:02:38 EDT 2025
Wed Feb 19 01:49:13 EST 2025
Mon Jul 21 09:16:40 EDT 2025
Thu Apr 24 22:55:12 EDT 2025
Tue Jul 01 01:13:17 EDT 2025
Tue Jan 05 17:53:17 EST 2021
Mon May 06 11:52:07 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Human
myosin heavy chain
Vertebrata
Heavy peptide chain
Physical training
Mammalia
MyoD
myogenin
Myosin
Elderly
Hypertrophy
sarcopenia
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c575t-31309307c3d33e2d231f6321e5206546bb51c04d7dd78c201a4a002a0aca8f9e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PMID 16614355
PQID 222160921
PQPubID 40905
PageCount 14
ParticipantIDs proquest_miscellaneous_771735369
proquest_miscellaneous_68648412
proquest_miscellaneous_19366518
proquest_journals_222160921
pubmed_primary_16614355
crossref_citationtrail_10_1152_japplphysiol_01474_2005
pascalfrancis_primary_17976664
highwire_physiology_jap_101_2_531
crossref_primary_10_1152_japplphysiol_01474_2005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-08-01
PublicationDateYYYYMMDD 2006-08-01
PublicationDate_xml – month: 08
  year: 2006
  text: 2006-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
– name: Bethesda
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2006
Publisher Am Physiological Soc
American Physiological Society
Publisher_xml – name: Am Physiological Soc
– name: American Physiological Society
References R61
R60
R63
R62
R21
R65
R20
R64
R23
R22
R66
R25
R24
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R30
R32
R31
R34
R33
R36
R35
R38
R37
R39
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R50
R52
R51
R10
R54
R53
R12
R56
R11
R55
R14
R58
R13
R57
R16
R15
R59
R18
R17
R19
References_xml – ident: R33
  doi: 10.1152/ajpendo.00464.2004
– ident: R32
  doi: 10.1007/s00418-004-0630-z
– ident: R58
  doi: 10.1034/j.1399-0004.2000.570103.x
– ident: R60
  doi: 10.1152/jappl.1994.76.3.1247
– ident: R26
  doi: 10.1152/jappl.2001.91.2.569
– ident: R57
  doi: 10.1046/j.1532-5415.2001.4911233.x
– ident: R53
  doi: 10.1152/japplphysiol.00903.2002
– ident: R46
– ident: R65
  doi: 10.1152/ajpendo.1999.277.1.E118
– ident: R47
  doi: 10.1152/jappl.1998.84.4.1359
– ident: R37
  doi: 10.1152/japplphysiol.01351.2003
– ident: R7
  doi: 10.1152/japplphysiol.01387.2003
– ident: R10
  doi: 10.1093/nar/19.20.5645
– ident: R36
  doi: 10.1097/00005768-200202000-00027
– ident: R38
  doi: 10.1002/mus.880060809
– ident: R43
  doi: 10.1152/jappl.1997.83.4.1270
– ident: R63
  doi: 10.1152/ajpendo.1995.268.3.E422
– ident: R66
  doi: 10.1093/gerona/58.10.M918
– ident: R23
  doi: 10.1152/jappl.1998.84.4.1341
– ident: R5
  doi: 10.1152/jappl.1998.84.1.157
– ident: R42
  doi: 10.1007/s004410051314
– ident: R56
  doi: 10.1152/jappl.2000.88.3.1112
– ident: R8
  doi: 10.1152/japplphysiol.00437.2003
– ident: R22
  doi: 10.1152/japplphysiol.01153.2001
– ident: R62
  doi: 10.1152/japplphysiol.00811.2004
– ident: R34
  doi: 10.1152/japplphysiol.00513.2005
– ident: R2
  doi: 10.1152/jappl.1999.87.5.1705
– ident: R29
  doi: 10.2165/00007256-200434050-00005
– ident: R41
  doi: 10.1152/ajpcell.1998.275.1.C155
– ident: R18
  doi: 10.1249/00005768-198201000-00018
– ident: R49
  doi: 10.1006/excr.1995.1372
– ident: R64
  doi: 10.1093/gerona/51A.6.M270
– ident: R17
  doi: 10.1111/j.1474-9728.2005.00145.x
– ident: R28
  doi: 10.1016/j.semcdb.2005.07.004
– ident: R52
  doi: 10.1152/japplphysiol.00294.2004
– ident: R9
  doi: 10.1152/japplphysiol.00895.2004
– ident: R61
  doi: 10.1152/ajpcell.2000.278.6.C1143
– ident: R30
  doi: 10.1152/japplphysiol.00012.2002
– ident: R31
  doi: 10.1111/j.1532-5415.2004.52014.x
– ident: R50
  doi: 10.1111/j.1365-2990.1997.tb01324.x
– ident: R55
  doi: 10.1152/jappl.1999.86.6.1833
– ident: R35
  doi: 10.1152/ajpregu.2000.279.1.R179
– ident: R15
  doi: 10.2165/00007256-200434120-00002
– ident: R19
  doi: 10.1152/jappl.1988.64.3.1038
– ident: R45
  doi: 10.1126/science.1111443
– ident: R39
  doi: 10.1016/0022-510X(86)90009-2
– ident: R24
  doi: 10.1093/gerona/53A.6.B415
– ident: R20
  doi: 10.1007/BF00376773
– ident: R27
  doi: 10.1111/j.1469-7793.2001.0625c.xd
– ident: R4
  doi: 10.1152/ajpendo.1997.273.4.E790
– ident: R51
  doi: 10.1016/S0014-5793(01)02825-3
– ident: R3
  doi: 10.1152/ajpcell.00173.2002
– ident: R13
  doi: 10.1152/jappl.1987.63.5.1816
– ident: R59
  doi: 10.1002/mus.10278
– ident: R1
  doi: 10.1152/jappl.1993.74.2.911
– ident: R14
  doi: 10.1152/jappl.1998.84.1.284
– ident: R40
  doi: 10.1016/0022-510X(88)90132-3
– ident: R6
  doi: 10.1093/gerona/58.2.B108
– ident: R48
– ident: R44
  doi: 10.1016/0960-8966(91)90038-T
– ident: R21
  doi: 10.1152/japplphysiol.00006.2004
– ident: R12
  doi: 10.1126/science.1087573
– ident: R11
  doi: 10.1007/s004240050593
– ident: R16
  doi: 10.1152/ajpcell.1998.275.4.C1124
– ident: R54
  doi: 10.1007/s00421-004-1104-7
– ident: R25
  doi: 10.1046/j.1365-201X.2001.00781.x
SSID ssj0014451
Score 2.3953786
Snippet Departments of 1 Physiology and Biophysics and 3 Surgery, University of Alabama at Birmingham, and 2 Geriatric Research, Education, and Clinical Center,...
Resistance training (RT) has shown the most promise in reducing/reversing effects of sarcopenia, although the optimum regime specific for older adults remains...
SourceID proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 531
SubjectTerms Adult
Aged
Aging - physiology
Biological and medical sciences
Exercise
Exercise - physiology
Female
Fundamental and applied biological sciences. Psychology
Human subjects
Humans
Hypertrophy - pathology
Hypertrophy - physiopathology
Male
Middle Aged
Muscle Development - physiology
Muscular system
MyoD Protein - genetics
MyoD Protein - physiology
Myofibrils - pathology
Myofibrils - physiology
Myogenic Regulatory Factor 5 - genetics
Myogenic Regulatory Factor 5 - physiology
Myogenic Regulatory Factors - genetics
Myogenic Regulatory Factors - physiology
Myogenin - genetics
Myogenin - physiology
Older people
Physical training
RNA, Messenger - analysis
Sex Characteristics
Time Factors
Tissues
Weight Lifting
Title Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults
URI http://jap.physiology.org/cgi/content/abstract/101/2/531
https://www.ncbi.nlm.nih.gov/pubmed/16614355
https://www.proquest.com/docview/222160921
https://www.proquest.com/docview/19366518
https://www.proquest.com/docview/68648412
https://www.proquest.com/docview/771735369
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqISFeEGx8hMEwEuKlytbEsZM8TtOmadOQEJ20tygfLlSlSdWkTOW_5T_hzh9JCqsYvERtEieO72f7fufzHSHveQDzxiRmboxb3AMZZG7MOHO9vIgLEbMik2jvuPoozq-Dixt-Mxj87HktrZrsMP9x576S_5EqnAO54i7Zf5Bs-1A4Ab9BvnAECcPxXjI-xfgPmK8dND42LFIUytntbAgUGtVC7LM2BQQuCszX8LZMLodfgXwum2UFTawWD-ACvGOaD-cSNwJP67nykl3jSDD8Xh8OK8zlrWN11FvU2dSos8pUogM7YQyoOOI9Y8NlVctZ60rfLUmZnM4Xsiq_uDoVi033hd5Z1me4s8me2GzvysvXmHR7xotowxFkrlL8TNtx_nO16fw5coHP6AlZmgEayLMnzDPsCG7-TntMWo_HXE8xf84T3Ff5CaBpTLMcAlcMtZGtXwIEvpgr-HioyTAdU3gzbvdv82nr5QiPRw-6xE847vR_4AOTwSQbl5-6hS6MD6dN0PpTjQsi1O9oS-0wzK2pyqYuZeNbo3tvWkNrTnRqlu3cSelQ4yfksUELPdZIfkoGstwle8dl2lTzNf1AWymtd8nDK-P1sUdqi3NaTSijiPOj2xntUE4tymlVUoty2kM5BZRTi3LaoZxOS6pQTgHlVKGcapQ_I9dnp-OTc9ckC3FzYBwN6BK4pj8Kc1YwJv0CeMtEMN-T3Mf90yLLuJePgiIsijDKQe1NgxS0gXSU5ikMVpI9JztlVcqXhIoc1IAs8kIJunYQy3hShJmMsoKP_Aya3SHCNnuSm0j6-J3fEsWouZ_0RZco0WG6Vyg4agsudDCZvxdxrVyTrgMnaJ8aA9qwWAuxZFFMHPLurvs3oOiQgw2AdHUJgZwIEThk3yImMcNdnQCRgH4X-1D8bXsV5iJcYExLWa3qBMigENyLtt8hIhFEgec7hG65I0S3IM5E7JAXGqtd9QzsX93jG_fJo268eU12muVKvgH60GQHqgP-AkHMHs0
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficacy+of+3+days%2Fwk+resistance+training+on+myofiber+hypertrophy+and+myogenic+mechanisms+in+young+vs.+older+adults&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Kosek%2C+David+J&rft.au=Kim%2C+Jeong-su&rft.au=Petrella%2C+John+K&rft.au=Cross%2C+James+M&rft.date=2006-08-01&rft.pub=Am+Physiological+Soc&rft.issn=8750-7587&rft.eissn=1522-1601&rft.volume=101&rft.issue=2&rft.spage=531&rft_id=info:doi/10.1152%2Fjapplphysiol.01474.2005&rft_id=info%3Apmid%2F16614355&rft.externalDBID=n%2Fa&rft.externalDocID=jap_101_2_531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon