The dynamic functional connectome: State-of-the-art and perspectives
Resting-state functional magnetic resonance imaging (fMRI) has highlighted the rich structure of brain activity in absence of a task or stimulus. A great effort has been dedicated in the last two decades to investigate functional connectivity (FC), i.e. the functional interplay between different reg...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 160; pp. 41 - 54 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.10.2017
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Resting-state functional magnetic resonance imaging (fMRI) has highlighted the rich structure of brain activity in absence of a task or stimulus. A great effort has been dedicated in the last two decades to investigate functional connectivity (FC), i.e. the functional interplay between different regions of the brain, which was for a long time assumed to have stationary nature. Only recently was the dynamic behaviour of FC revealed, showing that on top of correlational patterns of spontaneous fMRI signal fluctuations, connectivity between different brain regions exhibits meaningful variations within a typical resting-state fMRI experiment. As a consequence, a considerable amount of work has been directed to assessing and characterising dynamic FC (dFC), and several different approaches were explored to identify relevant FC fluctuations. At the same time, several questions were raised about the nature of dFC, which would be of interest only if brought back to a neural origin. In support of this, correlations with electroencephalography (EEG) recordings, demographic and behavioural data were established, and various clinical applications were explored, where the potential of dFC could be preliminarily demonstrated. In this review, we aim to provide a comprehensive description of the dFC approaches proposed so far, and point at the directions that we see as most promising for the future developments of the field. Advantages and pitfalls of dFC analyses are addressed, helping the readers to orient themselves through the complex web of available methodologies and tools.
[Display omitted]
•A great effort has been spent on dynamic functional connectivity characterization.•We exhaustively describe existing approaches, their advantages and pitfalls.•We discuss future analytical directions: frame-wise analysis and temporal modeling.•Frame-wise analysis extracts the meaningful functional networks from events.•Temporal modeling parameterizes brain dynamics in flexible and realistic manners. |
---|---|
AbstractList | Resting-state functional magnetic resonance imaging (fMRI) has highlighted the rich structure of brain activity in absence of a task or stimulus. A great effort has been dedicated in the last two decades to investigate functional connectivity (FC), i.e. the functional interplay between different regions of the brain, which was for a long time assumed to have stationary nature. Only recently was the dynamic behaviour of FC revealed, showing that on top of correlational patterns of spontaneous fMRI signal fluctuations, connectivity between different brain regions exhibits meaningful variations within a typical resting-state fMRI experiment. As a consequence, a considerable amount of work has been directed to assessing and characterising dynamic FC (dFC), and several different approaches were explored to identify relevant FC fluctuations. At the same time, several questions were raised about the nature of dFC, which would be of interest only if brought back to a neural origin. In support of this, correlations with electroencephalography (EEG) recordings, demographic and behavioural data were established, and various clinical applications were explored, where the potential of dFC could be preliminarily demonstrated. In this review, we aim to provide a comprehensive description of the dFC approaches proposed so far, and point at the directions that we see as most promising for the future developments of the field. Advantages and pitfalls of dFC analyses are addressed, helping the readers to orient themselves through the complex web of available methodologies and tools.
[Display omitted]
•A great effort has been spent on dynamic functional connectivity characterization.•We exhaustively describe existing approaches, their advantages and pitfalls.•We discuss future analytical directions: frame-wise analysis and temporal modeling.•Frame-wise analysis extracts the meaningful functional networks from events.•Temporal modeling parameterizes brain dynamics in flexible and realistic manners. Resting-state functional magnetic resonance imaging (fMRI) has highlighted the rich structure of brain activity in absence of a task or stimulus. A great effort has been dedicated in the last two decades to investigate functional connectivity (FC), i.e. the functional interplay between different regions of the brain, which was for a long time assumed to have stationary nature. Only recently was the dynamic behaviour of FC revealed, showing that on top of correlational patterns of spontaneous fMRI signal fluctuations, connectivity between different brain regions exhibits meaningful variations within a typical resting-state fMRI experiment. As a consequence, a considerable amount of work has been directed to assessing and characterising dynamic FC (dFC), and several different approaches were explored to identify relevant FC fluctuations. At the same time, several questions were raised about the nature of dFC, which would be of interest only if brought back to a neural origin. In support of this, correlations with electroencephalography (EEG) recordings, demographic and behavioural data were established, and various clinical applications were explored, where the potential of dFC could be preliminarily demonstrated. In this review, we aim to provide a comprehensive description of the dFC approaches proposed so far, and point at the directions that we see as most promising for the future developments of the field. Advantages and pitfalls of dFC analyses are addressed, helping the readers to orient themselves through the complex web of available methodologies and tools. |
Author | Bolton, Thomas AW Van De Ville, Dimitri Preti, Maria Giulia |
Author_xml | – sequence: 1 givenname: Maria Giulia surname: Preti fullname: Preti, Maria Giulia email: maria.preti@epfl.ch organization: Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland – sequence: 2 givenname: Thomas AW surname: Bolton fullname: Bolton, Thomas AW organization: Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland – sequence: 3 givenname: Dimitri surname: Van De Ville fullname: Van De Ville, Dimitri organization: Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28034766$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAURi1URNuBV0CR2LBJ8I3_EhYIKC0gVWJBWVse54Z6SOzBdirN2-PRtEKa1axsWeeeK3_fJTnzwSMhFdAGKMh3m8bjEoObzW9s2vLSQNtQCc_IBdBe1L1Q7dn-LljdAfTn5DKlDaW0B969IOdtRxlXUl6QL3f3WA07b2Znq3HxNrvgzVTZ4D3aHGZ8X_3MJmMdxjrfY21irowfqi3GtC2Ee8D0kjwfzZTw1eO5Ir9uru-uvtW3P75-v_p0W1uhRK5h4K0EwwHWqh-5gHZNkTIFRinLhLSjwA74SJVkvFXIB9GtGeWAho-SjWxF3h682xj-Lpiynl2yOE3GY1iShk5wCUz2rKBvjtBNWGL5WaF6KTjnrGxZkdeP1LKecdDbWCKNO_2UTwE-HAAbQ0oRR21dSaNklKNxkwaq94Xojf5fiN4XoqHVpZAi6I4ETztOGP18GMUS6YPDqJN16C0OLpbg9RDcKZKPRxI7Oe-smf7g7jTFP1Z-v9Y |
CitedBy_id | crossref_primary_10_1002_hbm_24580 crossref_primary_10_1007_s11571_023_10054_0 crossref_primary_10_1016_j_neuroimage_2021_117738 crossref_primary_10_3389_fnhum_2022_980280 crossref_primary_10_1016_j_bbr_2024_115319 crossref_primary_10_1016_j_nic_2020_09_004 crossref_primary_10_1016_j_neuroimage_2020_117464 crossref_primary_10_1016_j_nicl_2020_102396 crossref_primary_10_1038_s41380_024_02708_0 crossref_primary_10_1097_j_pain_0000000000002281 crossref_primary_10_1002_hbm_24336 crossref_primary_10_1063_1_5043447 crossref_primary_10_1186_s10194_021_01354_z crossref_primary_10_1016_j_jneumeth_2019_05_004 crossref_primary_10_1002_hbm_25663 crossref_primary_10_1038_s41598_019_42090_4 crossref_primary_10_1038_s42003_020_01331_3 crossref_primary_10_1111_epi_14646 crossref_primary_10_3389_fnins_2020_00327 crossref_primary_10_3390_brainsci11050582 crossref_primary_10_1016_j_bpsc_2017_09_010 crossref_primary_10_1016_j_jad_2021_04_005 crossref_primary_10_1016_j_media_2024_103290 crossref_primary_10_1038_s41593_024_01647_x crossref_primary_10_1038_s41467_019_08934_3 crossref_primary_10_1093_schbul_sbz052 crossref_primary_10_1080_14656566_2019_1637419 crossref_primary_10_3389_fnins_2019_00685 crossref_primary_10_1016_j_bspc_2023_104892 crossref_primary_10_1016_j_nicl_2024_103583 crossref_primary_10_1016_j_nicl_2024_103585 crossref_primary_10_1016_j_wneu_2019_08_087 crossref_primary_10_3389_fnins_2021_700171 crossref_primary_10_3390_brainsci9060144 crossref_primary_10_1111_cns_14660 crossref_primary_10_3390_ma13030736 crossref_primary_10_1002_aur_3227 crossref_primary_10_1093_braincomms_fcae049 crossref_primary_10_1016_j_bpsc_2024_02_013 crossref_primary_10_1002_hbm_25201 crossref_primary_10_1002_hbm_25442 crossref_primary_10_1016_j_neurobiolaging_2020_05_017 crossref_primary_10_1227_neu_0000000000003124 crossref_primary_10_1002_hbm_24590 crossref_primary_10_3389_fnins_2020_550923 crossref_primary_10_1016_j_neuroimage_2019_06_041 crossref_primary_10_1016_j_nbd_2020_104808 crossref_primary_10_1016_j_neuroimage_2017_12_074 crossref_primary_10_1016_j_mex_2020_101168 crossref_primary_10_1016_j_neuroimage_2017_10_003 crossref_primary_10_1016_j_neuroimage_2024_120955 crossref_primary_10_1038_s41598_024_79052_4 crossref_primary_10_1016_j_pnpbp_2024_111169 crossref_primary_10_1016_j_neuroscience_2024_08_013 crossref_primary_10_1016_j_tine_2019_04_001 crossref_primary_10_3389_fnins_2019_00856 crossref_primary_10_3389_fnins_2019_00618 crossref_primary_10_3389_fnins_2024_1352409 crossref_primary_10_1016_j_neuroimage_2020_116571 crossref_primary_10_1016_j_neucom_2020_09_092 crossref_primary_10_3389_fneur_2020_602586 crossref_primary_10_1109_TBME_2022_3222072 crossref_primary_10_1002_brb3_2790 crossref_primary_10_1016_j_jneumeth_2019_108480 crossref_primary_10_1016_j_csbj_2022_11_060 crossref_primary_10_3389_fpsyt_2024_1165424 crossref_primary_10_3389_fpsyt_2022_963634 crossref_primary_10_3389_fpsyg_2022_1008407 crossref_primary_10_3389_fnrgo_2021_718176 crossref_primary_10_1016_j_neuroimage_2021_118801 crossref_primary_10_3389_fnagi_2022_806032 crossref_primary_10_1016_j_neuroimage_2020_117653 crossref_primary_10_1148_radiol_2019182623 crossref_primary_10_1002_hbm_24529 crossref_primary_10_1016_j_neuroimage_2022_119391 crossref_primary_10_1007_s11682_022_00651_8 crossref_primary_10_1089_brain_2020_0918 crossref_primary_10_1016_j_jpsychires_2018_09_015 crossref_primary_10_1016_j_neuroimage_2022_119188 crossref_primary_10_1007_s11682_021_00593_7 crossref_primary_10_1126_sciadv_abj0751 crossref_primary_10_1017_S0033291724000655 crossref_primary_10_1016_j_pnpbp_2024_111181 crossref_primary_10_1109_TNSRE_2023_3276896 crossref_primary_10_1002_brb3_1255 crossref_primary_10_3389_fnins_2022_861402 crossref_primary_10_1016_j_ynirp_2023_100186 crossref_primary_10_1002_hbm_25405 crossref_primary_10_1002_hbm_24559 crossref_primary_10_1002_hbm_25649 crossref_primary_10_3389_fnins_2023_1199150 crossref_primary_10_1002_hbm_25884 crossref_primary_10_3171_2019_2_JNS183454 crossref_primary_10_1073_pnas_1905534116 crossref_primary_10_3389_fnins_2019_00657 crossref_primary_10_1007_s12021_024_09686_2 crossref_primary_10_1016_j_schres_2024_05_003 crossref_primary_10_1097_PR9_0000000000000752 crossref_primary_10_3389_fnagi_2022_817137 crossref_primary_10_3389_fnins_2019_00648 crossref_primary_10_1016_j_nicl_2020_102163 crossref_primary_10_1016_j_neuroimage_2023_120459 crossref_primary_10_1109_TBME_2018_2875467 crossref_primary_10_1038_s42003_022_03330_y crossref_primary_10_1002_hbm_23890 crossref_primary_10_3389_fnins_2023_934138 crossref_primary_10_3389_fneur_2021_735999 crossref_primary_10_3389_fnhum_2021_655576 crossref_primary_10_1162_netn_a_00325 crossref_primary_10_3389_fnins_2022_821179 crossref_primary_10_1016_j_neuroscience_2020_04_030 crossref_primary_10_1016_j_jad_2018_11_002 crossref_primary_10_1016_j_neuroimage_2021_118679 crossref_primary_10_1093_nsr_nwae124 crossref_primary_10_1098_rsta_2020_0424 crossref_primary_10_3389_fnhum_2019_00006 crossref_primary_10_1093_cercor_bhad546 crossref_primary_10_1093_cercor_bhac454 crossref_primary_10_1093_cercor_bhad542 crossref_primary_10_1093_cercor_bhac214 crossref_primary_10_3389_fneur_2022_928389 crossref_primary_10_1038_s41598_018_28237_9 crossref_primary_10_3390_app9204298 crossref_primary_10_1523_ENEURO_0531_19_2020 crossref_primary_10_3389_fpsyt_2023_1078779 crossref_primary_10_1016_j_neuroimage_2018_09_024 crossref_primary_10_3389_fnsys_2022_817962 crossref_primary_10_3389_fnhum_2018_00029 crossref_primary_10_1093_cercor_bhz219 crossref_primary_10_1089_brain_2016_0476 crossref_primary_10_1186_s40708_022_00178_0 crossref_primary_10_1093_braincomms_fcad143 crossref_primary_10_1073_pnas_2400082121 crossref_primary_10_1038_s41467_023_44050_z crossref_primary_10_1162_netn_a_00307 crossref_primary_10_1162_netn_a_00301 crossref_primary_10_1016_j_arr_2020_101108 crossref_primary_10_1371_journal_pcbi_1011007 crossref_primary_10_1002_hbm_24519 crossref_primary_10_1016_j_neuroimage_2021_118657 crossref_primary_10_1016_j_neuroimage_2020_117047 crossref_primary_10_1016_j_neuroimage_2021_118413 crossref_primary_10_1016_j_neuroimage_2020_117046 crossref_primary_10_1007_s11682_024_00923_5 crossref_primary_10_1016_j_neuroimage_2021_118653 crossref_primary_10_1038_s41593_020_00726_z crossref_primary_10_1016_j_neuroimage_2019_03_019 crossref_primary_10_1016_j_heliyon_2024_e41120 crossref_primary_10_1002_hbm_24991 crossref_primary_10_1186_s40359_024_02051_7 crossref_primary_10_3389_fnsys_2018_00068 crossref_primary_10_1016_j_jad_2022_02_052 crossref_primary_10_1002_alz_13411 crossref_primary_10_1002_hbm_24509 crossref_primary_10_1016_j_neuroimage_2021_118427 crossref_primary_10_1016_j_jad_2022_11_074 crossref_primary_10_1016_j_bpsc_2021_01_007 crossref_primary_10_3389_fnhum_2018_00041 crossref_primary_10_1093_gigascience_giae009 crossref_primary_10_1016_j_bpsgos_2024_100367 crossref_primary_10_1109_ACCESS_2023_3244066 crossref_primary_10_1002_hbm_24505 crossref_primary_10_1109_ACCESS_2020_3015292 crossref_primary_10_1016_j_neubiorev_2020_02_023 crossref_primary_10_1007_s00429_024_02796_2 crossref_primary_10_1016_j_neuroimage_2019_116276 crossref_primary_10_1093_cercor_bhz025 crossref_primary_10_1016_j_bpsc_2024_12_016 crossref_primary_10_1093_braincomms_fcac095 crossref_primary_10_1177_09544119221092503 crossref_primary_10_1162_netn_a_00114 crossref_primary_10_1007_s10586_020_03141_y crossref_primary_10_1162_netn_a_00357 crossref_primary_10_1162_netn_a_00116 crossref_primary_10_1038_s41390_022_02342_y crossref_primary_10_1162_netn_a_00117 crossref_primary_10_3389_fncir_2021_649417 crossref_primary_10_1007_s11571_022_09874_3 crossref_primary_10_1038_s41467_018_03664_4 crossref_primary_10_1109_ACCESS_2024_3445580 crossref_primary_10_3389_fnagi_2024_1497874 crossref_primary_10_1016_j_neuropsychologia_2023_108519 crossref_primary_10_1016_j_neuron_2020_07_024 crossref_primary_10_1038_s42003_021_02494_3 crossref_primary_10_1088_1741_2552_aba55e crossref_primary_10_3389_fnins_2022_937145 crossref_primary_10_1016_j_neuroimage_2023_120050 crossref_primary_10_1016_j_neuroimage_2021_118615 crossref_primary_10_1038_s41598_017_05425_7 crossref_primary_10_3389_fnins_2021_731596 crossref_primary_10_1016_j_neuroimage_2022_118928 crossref_primary_10_3389_fnins_2021_627445 crossref_primary_10_1016_j_neuroimage_2021_117760 crossref_primary_10_1088_1741_2552_ac23bb crossref_primary_10_3389_fpsyt_2020_00422 crossref_primary_10_3389_fnhum_2019_00062 crossref_primary_10_1073_pnas_2415102122 crossref_primary_10_3389_fninf_2018_00003 crossref_primary_10_1007_s00062_022_01173_y crossref_primary_10_1038_s42003_020_0961_x crossref_primary_10_1038_s41467_024_48302_4 crossref_primary_10_1109_TNNLS_2022_3225179 crossref_primary_10_3389_fnins_2019_00803 crossref_primary_10_1002_aur_3035 crossref_primary_10_1002_jnr_24915 crossref_primary_10_1038_s41398_023_02615_y crossref_primary_10_1371_journal_pcbi_1012521 crossref_primary_10_1016_j_compbiomed_2022_106202 crossref_primary_10_1016_j_neuroimage_2021_118862 crossref_primary_10_1016_j_tins_2024_05_011 crossref_primary_10_1016_j_neuroimage_2020_117230 crossref_primary_10_1155_2021_6890024 crossref_primary_10_1093_brain_awaa101 crossref_primary_10_1109_TNSRE_2024_3450443 crossref_primary_10_1002_aur_3037 crossref_primary_10_1016_j_csda_2020_107006 crossref_primary_10_1038_s41386_021_01038_x crossref_primary_10_1016_j_neuroimage_2019_116116 crossref_primary_10_1038_s41598_018_26730_9 crossref_primary_10_1027_1864_1105_a000271 crossref_primary_10_1038_s41598_022_21376_0 crossref_primary_10_1038_s41467_019_08840_8 crossref_primary_10_1093_cercor_bhab080 crossref_primary_10_1371_journal_pone_0231767 crossref_primary_10_1038_s41398_024_02779_1 crossref_primary_10_1109_ACCESS_2023_3277731 crossref_primary_10_1038_s42003_024_06858_3 crossref_primary_10_1109_JPROC_2018_2798928 crossref_primary_10_1162_netn_a_00163 crossref_primary_10_1016_j_jneumeth_2024_110275 crossref_primary_10_7554_eLife_33562 crossref_primary_10_1016_j_eplepsyres_2022_106969 crossref_primary_10_1038_s41598_024_72945_4 crossref_primary_10_1016_j_tins_2023_11_011 crossref_primary_10_3389_fnins_2019_01190 crossref_primary_10_1523_ENEURO_0111_17_2017 crossref_primary_10_1016_j_biopsych_2023_12_002 crossref_primary_10_1016_j_neuroimage_2019_116129 crossref_primary_10_1109_JBHI_2023_3327023 crossref_primary_10_1007_s10072_020_04759_x crossref_primary_10_1162_netn_a_00390 crossref_primary_10_1016_j_brainres_2023_148634 crossref_primary_10_1162_netn_a_00391 crossref_primary_10_1109_TAFFC_2021_3126263 crossref_primary_10_3390_brainsci14050507 crossref_primary_10_3389_fnins_2022_911034 crossref_primary_10_1016_j_jad_2019_04_030 crossref_primary_10_1162_netn_a_00148 crossref_primary_10_1016_j_nbd_2024_106425 crossref_primary_10_1109_TETCI_2024_3386612 crossref_primary_10_1007_s12559_021_09931_9 crossref_primary_10_1016_j_trci_2018_04_009 crossref_primary_10_1109_TBME_2024_3377109 crossref_primary_10_1016_j_neuroimage_2021_118377 crossref_primary_10_1109_TAC_2018_2879597 crossref_primary_10_3389_fnhum_2022_774921 crossref_primary_10_1016_j_jneumeth_2022_109629 crossref_primary_10_1016_j_neuron_2020_01_039 crossref_primary_10_1186_s12916_023_03208_8 crossref_primary_10_1038_s42003_024_07274_3 crossref_primary_10_1002_jmri_27521 crossref_primary_10_1016_j_mri_2019_05_031 crossref_primary_10_1073_pnas_1912226117 crossref_primary_10_1142_S0129065722500022 crossref_primary_10_1111_ejn_15663 crossref_primary_10_1016_j_clinph_2020_07_018 crossref_primary_10_1162_netn_a_00130 crossref_primary_10_1016_j_neuroimage_2021_118148 crossref_primary_10_3389_fnins_2022_855582 crossref_primary_10_1212_WNL_0000000000209952 crossref_primary_10_1111_adb_13395 crossref_primary_10_1038_s41598_024_83542_w crossref_primary_10_1152_jn_00027_2024 crossref_primary_10_1093_cercor_bhac133 crossref_primary_10_1080_23273798_2022_2129084 crossref_primary_10_3389_fnagi_2022_873605 crossref_primary_10_1038_s41598_023_49746_2 crossref_primary_10_3389_fneur_2021_675728 crossref_primary_10_1016_j_neuroimage_2018_09_054 crossref_primary_10_1016_j_patrec_2020_07_005 crossref_primary_10_1016_j_celrep_2020_108128 crossref_primary_10_1016_j_bspc_2020_102056 crossref_primary_10_1093_cercor_bhad228 crossref_primary_10_2139_ssrn_4003229 crossref_primary_10_1016_j_jneumeth_2019_01_019 crossref_primary_10_1016_j_neuroimage_2021_118590 crossref_primary_10_1016_j_neuroimage_2018_09_063 crossref_primary_10_1016_j_neuroimage_2022_119716 crossref_primary_10_3389_fncom_2022_866517 crossref_primary_10_1126_sciadv_aat7854 crossref_primary_10_3390_app112311392 crossref_primary_10_1016_j_jad_2025_01_066 crossref_primary_10_1214_22_AOS2205 crossref_primary_10_1016_j_neuroimage_2018_06_003 crossref_primary_10_1016_j_clinimag_2020_04_004 crossref_primary_10_1016_j_neuroimage_2025_121009 crossref_primary_10_1038_s41467_022_32304_1 crossref_primary_10_1017_S0033291723003719 crossref_primary_10_1038_s43856_025_00736_7 crossref_primary_10_31887_DCNS_2018_20_2_vcalhoun crossref_primary_10_3758_s13415_021_00892_y crossref_primary_10_1162_netn_a_00183 crossref_primary_10_1162_netn_a_00181 crossref_primary_10_1016_j_ynirp_2021_100022 crossref_primary_10_1162_netn_a_00182 crossref_primary_10_1162_imag_a_00267 crossref_primary_10_3389_fnins_2019_00080 crossref_primary_10_1080_15622975_2020_1785006 crossref_primary_10_1016_j_nicl_2019_102071 crossref_primary_10_1016_j_bspc_2024_106364 crossref_primary_10_3389_fnhum_2024_1482353 crossref_primary_10_1038_s44220_024_00377_0 crossref_primary_10_1177_02841851221127271 crossref_primary_10_1007_s12539_023_00592_w crossref_primary_10_1063_1_5115267 crossref_primary_10_1371_journal_pcbi_1006497 crossref_primary_10_1016_j_neuroimage_2021_118100 crossref_primary_10_1016_j_jad_2024_10_066 crossref_primary_10_3389_fpsyt_2020_608197 crossref_primary_10_1002_hbm_25036 crossref_primary_10_1002_hbm_25277 crossref_primary_10_1016_j_neuroimage_2022_119128 crossref_primary_10_1038_s42003_024_06335_x crossref_primary_10_3390_brainsci13040554 crossref_primary_10_1038_s41467_022_33578_1 crossref_primary_10_1088_1741_2552_ac16b3 crossref_primary_10_3389_fnins_2024_1477181 crossref_primary_10_1088_1741_2552_ad27ee crossref_primary_10_1016_j_brainres_2023_148469 crossref_primary_10_1007_s11682_024_00907_5 crossref_primary_10_3389_fnagi_2022_788571 crossref_primary_10_1016_j_jad_2024_10_055 crossref_primary_10_1016_j_neuroimage_2023_119890 crossref_primary_10_1111_pcn_13675 crossref_primary_10_1016_j_appet_2024_107210 crossref_primary_10_1016_j_neuroimage_2022_119595 crossref_primary_10_3389_fnsys_2022_885304 crossref_primary_10_1016_j_brs_2019_10_017 crossref_primary_10_1016_j_ynstr_2021_100377 crossref_primary_10_1109_JBHI_2022_3166826 crossref_primary_10_1016_j_jad_2020_06_062 crossref_primary_10_1038_s41598_019_44103_8 crossref_primary_10_1016_j_plrev_2018_10_001 crossref_primary_10_3389_fnins_2018_00287 crossref_primary_10_1038_s41467_022_32381_2 crossref_primary_10_1016_j_dadr_2022_100065 crossref_primary_10_1007_s00787_025_02651_7 crossref_primary_10_1016_j_neuroimage_2020_116989 crossref_primary_10_1186_s40035_018_0122_z crossref_primary_10_1016_j_media_2020_101709 crossref_primary_10_1016_j_bbr_2024_115255 crossref_primary_10_3389_fnins_2021_749887 crossref_primary_10_1038_s41598_022_25016_5 crossref_primary_10_1098_rsta_2021_0247 crossref_primary_10_1007_s00429_017_1539_3 crossref_primary_10_7868_S0869813918070110 crossref_primary_10_1002_jmri_29306 crossref_primary_10_1016_j_jad_2021_11_050 crossref_primary_10_3389_fneur_2022_910054 crossref_primary_10_1016_j_cmpb_2024_108479 crossref_primary_10_1002_hbm_70049 crossref_primary_10_1016_j_cub_2020_04_090 crossref_primary_10_1162_imag_a_00234 crossref_primary_10_1016_j_neuroimage_2018_06_020 crossref_primary_10_1038_s41467_021_25876_x crossref_primary_10_1016_j_neuroimage_2021_118193 crossref_primary_10_3389_fnins_2024_1363255 crossref_primary_10_1002_hbm_26561 crossref_primary_10_1016_j_neuroimage_2021_118190 crossref_primary_10_1016_j_neuroimage_2022_119321 crossref_primary_10_1016_j_nicl_2020_102467 crossref_primary_10_1093_cercor_bhae391 crossref_primary_10_1038_s41598_021_81884_3 crossref_primary_10_3390_e21100995 crossref_primary_10_3389_fnins_2021_799916 crossref_primary_10_1177_13524585211018116 crossref_primary_10_1007_s10548_020_00809_x crossref_primary_10_1016_j_biopsych_2020_05_010 crossref_primary_10_1097_j_pain_0000000000001676 crossref_primary_10_1109_JBHI_2024_3371097 crossref_primary_10_1038_s41598_024_52410_y crossref_primary_10_1162_imag_a_00443 crossref_primary_10_1038_s41537_022_00299_9 crossref_primary_10_1038_s41598_018_36976_y crossref_primary_10_1523_ENEURO_0341_20_2021 crossref_primary_10_1016_j_neuroimage_2018_05_040 crossref_primary_10_1002_hbm_25225 crossref_primary_10_1002_jnr_25230 crossref_primary_10_1002_hbm_26554 crossref_primary_10_1186_s12888_024_06096_1 crossref_primary_10_1016_j_eng_2021_11_013 crossref_primary_10_1016_j_neuroimage_2020_116718 crossref_primary_10_1016_j_nicl_2021_102758 crossref_primary_10_1159_000534033 crossref_primary_10_1002_hbm_70029 crossref_primary_10_1016_j_media_2021_102063 crossref_primary_10_3389_fpsyt_2023_1152332 crossref_primary_10_1371_journal_pone_0319346 crossref_primary_10_1016_j_neuroimage_2022_119585 crossref_primary_10_1073_pnas_2011796118 crossref_primary_10_3389_fphys_2020_00066 crossref_primary_10_1016_j_nicl_2021_102721 crossref_primary_10_1007_s11682_018_9869_1 crossref_primary_10_3389_fcogn_2024_1433234 crossref_primary_10_1016_j_neuroimage_2021_118177 crossref_primary_10_1002_hbm_26331 crossref_primary_10_1126_sciadv_adm8430 crossref_primary_10_1111_cns_13387 crossref_primary_10_3389_fncir_2025_1500227 crossref_primary_10_1016_j_pnpbp_2024_111110 crossref_primary_10_1038_s41598_017_12993_1 crossref_primary_10_1109_TNSRE_2023_3242263 crossref_primary_10_1038_s41398_019_0560_0 crossref_primary_10_1016_j_neuroimage_2021_118188 crossref_primary_10_1016_j_neuroimage_2024_120911 crossref_primary_10_1007_s00787_025_02679_9 crossref_primary_10_3389_fnagi_2022_912895 crossref_primary_10_31887_DCNS_2018_20_2_agriffa crossref_primary_10_3389_fnimg_2022_815423 crossref_primary_10_1109_TNSE_2021_3138436 crossref_primary_10_1016_j_pnpbp_2021_110396 crossref_primary_10_3389_fnins_2024_1373264 crossref_primary_10_3390_e21070661 crossref_primary_10_1007_s11571_022_09868_1 crossref_primary_10_3390_brainsci14121209 crossref_primary_10_3390_nu16203525 crossref_primary_10_3389_fnins_2021_794151 crossref_primary_10_1109_MSP_2023_3262906 crossref_primary_10_1002_hbm_25308 crossref_primary_10_1016_j_gpb_2018_11_005 crossref_primary_10_3389_fnins_2020_00446 crossref_primary_10_1017_S0033291718001502 crossref_primary_10_1016_j_nicl_2021_102797 crossref_primary_10_1186_s40673_021_00132_6 crossref_primary_10_3389_fnins_2019_00309 crossref_primary_10_3389_fnagi_2021_710735 crossref_primary_10_1080_10618600_2023_2250411 crossref_primary_10_1016_j_neuroimage_2021_118722 crossref_primary_10_1002_hbm_24447 crossref_primary_10_1016_j_neuroimage_2018_12_037 crossref_primary_10_1089_brain_2022_0044 crossref_primary_10_1016_j_isci_2024_109206 crossref_primary_10_1002_hbm_25575 crossref_primary_10_1016_j_eswa_2022_118121 crossref_primary_10_1016_j_neuroimage_2021_117840 crossref_primary_10_1016_j_dcn_2025_101528 crossref_primary_10_1093_cercor_bhac512 crossref_primary_10_1017_S0033291722000484 crossref_primary_10_1038_s41467_024_48781_5 crossref_primary_10_1089_brain_2020_0847 crossref_primary_10_1038_s41598_021_00508_y crossref_primary_10_3280_rpc2_2022oa14002 crossref_primary_10_1002_hbm_25561 crossref_primary_10_1093_nc_niaa008 crossref_primary_10_1155_2022_9958525 crossref_primary_10_3389_fnins_2023_1077808 crossref_primary_10_1002_hbm_24235 crossref_primary_10_1016_j_bpsc_2020_10_004 crossref_primary_10_1016_j_neuroimage_2023_120386 crossref_primary_10_1016_j_sleep_2025_02_009 crossref_primary_10_1111_psyp_13786 crossref_primary_10_1016_j_nicl_2019_101753 crossref_primary_10_1080_17588928_2020_1793752 crossref_primary_10_1016_j_neuroimage_2017_09_036 crossref_primary_10_1016_j_nicl_2020_102237 crossref_primary_10_1177_13524585221101470 crossref_primary_10_3389_fnins_2022_770468 crossref_primary_10_3390_brainsci12070937 crossref_primary_10_1016_j_pnpbp_2021_110369 crossref_primary_10_1002_aur_3117 crossref_primary_10_1016_j_artmed_2019_03_007 crossref_primary_10_1523_ENEURO_0283_21_2021 crossref_primary_10_1093_braincomms_fcad088 crossref_primary_10_1093_texcom_tgaa004 crossref_primary_10_3389_fnins_2022_816331 crossref_primary_10_1002_hbm_26649 crossref_primary_10_3389_fneur_2024_1489822 crossref_primary_10_1016_j_neuroimage_2022_119288 crossref_primary_10_3389_fnins_2022_830808 crossref_primary_10_1088_1741_2552_ab20bc crossref_primary_10_1016_j_nicl_2021_102593 crossref_primary_10_1109_TBME_2020_3011363 crossref_primary_10_1007_s11682_020_00266_x crossref_primary_10_3389_fpsyt_2019_00234 crossref_primary_10_1002_hbm_25986 crossref_primary_10_3389_fnins_2023_1126262 crossref_primary_10_1016_j_neuroimage_2022_119037 crossref_primary_10_1038_s42003_024_06531_9 crossref_primary_10_1093_braincomms_fcaf083 crossref_primary_10_1002_jnr_24421 crossref_primary_10_1016_j_jneumeth_2020_108651 crossref_primary_10_1016_j_pnpbp_2022_110644 crossref_primary_10_1371_journal_pone_0238994 crossref_primary_10_1016_j_nicl_2019_101776 crossref_primary_10_1016_j_neuroimage_2021_117827 crossref_primary_10_1016_j_nicl_2025_103731 crossref_primary_10_1109_ACCESS_2024_3354711 crossref_primary_10_1038_s41598_019_49726_5 crossref_primary_10_1016_j_cobeha_2020_12_007 crossref_primary_10_1002_hbm_25732 crossref_primary_10_3389_fneur_2019_00420 crossref_primary_10_3389_fnins_2017_00696 crossref_primary_10_1002_hbm_25736 crossref_primary_10_1093_scan_nsad063 crossref_primary_10_1109_TMI_2017_2755369 crossref_primary_10_1002_hbm_24202 crossref_primary_10_3389_fnins_2020_00214 crossref_primary_10_3389_fnins_2022_953356 crossref_primary_10_1016_j_jneumeth_2019_108356 crossref_primary_10_1016_j_neuroimage_2019_01_080 crossref_primary_10_1016_j_compbiomed_2022_105643 crossref_primary_10_1007_s00429_024_02847_8 crossref_primary_10_1371_journal_pone_0222161 crossref_primary_10_1089_brain_2023_0092 crossref_primary_10_1002_aur_2212 crossref_primary_10_1038_s42003_022_04109_x crossref_primary_10_1016_j_bpsc_2019_04_004 crossref_primary_10_3389_fphys_2020_615961 crossref_primary_10_3389_fnsys_2021_642225 crossref_primary_10_1126_sciadv_abq7547 crossref_primary_10_1016_j_neuroimage_2022_119057 crossref_primary_10_3390_philosophies3040036 crossref_primary_10_1126_sciadv_abf2709 crossref_primary_10_3389_fnins_2022_852822 crossref_primary_10_1016_j_neuroimage_2023_120342 crossref_primary_10_1016_j_pnpbp_2024_111076 crossref_primary_10_1016_j_brainresbull_2025_111313 crossref_primary_10_1016_j_bbr_2021_113618 crossref_primary_10_1016_j_nicl_2020_102284 crossref_primary_10_3389_fnins_2017_00439 crossref_primary_10_1002_hbm_25754 crossref_primary_10_1016_j_neuroimage_2018_04_070 crossref_primary_10_1016_j_neuroimage_2022_119291 crossref_primary_10_1016_j_cub_2019_06_006 crossref_primary_10_1002_hbm_26606 crossref_primary_10_1093_cercor_bhaa393 crossref_primary_10_3389_fnins_2017_00639 crossref_primary_10_1073_pnas_1814785115 crossref_primary_10_1371_journal_pcbi_1011350 crossref_primary_10_3390_app11136216 crossref_primary_10_1016_j_conb_2018_12_010 crossref_primary_10_1109_ACCESS_2020_2974997 crossref_primary_10_1002_hbm_24855 crossref_primary_10_1016_j_knosys_2023_110661 crossref_primary_10_1016_j_neuroimage_2017_08_044 crossref_primary_10_1016_j_pnpbp_2019_109833 crossref_primary_10_1038_s41597_020_00680_2 crossref_primary_10_3390_brainsci13111601 crossref_primary_10_1371_journal_pone_0267456 crossref_primary_10_1109_TMI_2019_2928790 crossref_primary_10_3389_fncir_2021_719364 crossref_primary_10_1088_1741_2552_ac20e7 crossref_primary_10_1111_jon_13011 crossref_primary_10_1038_s41598_020_66967_x crossref_primary_10_1162_netn_a_00432 crossref_primary_10_1038_s42003_022_03466_x crossref_primary_10_1016_j_bpsc_2024_07_021 crossref_primary_10_1016_j_neuroimage_2018_02_029 crossref_primary_10_1007_s11571_022_09899_8 crossref_primary_10_1038_s41380_021_01298_5 crossref_primary_10_1002_hbm_24600 crossref_primary_10_3389_fnagi_2024_1375091 crossref_primary_10_1146_annurev_statistics_040522_100329 crossref_primary_10_3390_brainsci12111527 crossref_primary_10_1002_brx2_41 crossref_primary_10_3389_fnhum_2023_1295326 crossref_primary_10_1002_brb3_3511 crossref_primary_10_1111_adb_13329 crossref_primary_10_1038_s41598_024_76695_1 crossref_primary_10_3389_fnins_2017_00624 crossref_primary_10_1016_j_neucom_2020_01_071 crossref_primary_10_1186_s13634_024_01128_0 crossref_primary_10_1093_cercor_bhac115 crossref_primary_10_1093_cercor_bhad204 crossref_primary_10_1016_j_neuroimage_2024_120684 crossref_primary_10_1016_j_bandl_2022_105149 crossref_primary_10_3389_fncir_2022_681544 crossref_primary_10_1002_hbm_25720 crossref_primary_10_1038_s41598_022_20979_x crossref_primary_10_1142_S0129065721500313 crossref_primary_10_1016_j_neuroimage_2018_03_074 crossref_primary_10_1186_s13195_022_01006_7 crossref_primary_10_1016_j_tins_2020_06_005 crossref_primary_10_1016_j_neuroimage_2020_117156 crossref_primary_10_3390_electronics12245040 crossref_primary_10_3389_fnins_2022_975305 crossref_primary_10_1017_S0033291723000089 crossref_primary_10_1016_j_neuroimage_2020_117155 crossref_primary_10_1016_j_neuroimage_2018_01_019 crossref_primary_10_1109_TPAMI_2021_3081744 crossref_primary_10_1016_j_brainresbull_2021_04_025 crossref_primary_10_1016_j_pneurobio_2021_102171 crossref_primary_10_3389_fnins_2022_1008652 crossref_primary_10_1002_hbm_25905 crossref_primary_10_3389_fnsys_2020_00049 crossref_primary_10_1016_j_neuroimage_2019_116150 crossref_primary_10_1002_hbm_24812 crossref_primary_10_1073_pnas_1921475117 crossref_primary_10_2139_ssrn_3862788 crossref_primary_10_1016_j_neuroimage_2023_120162 crossref_primary_10_1162_netn_a_00238 crossref_primary_10_1016_j_neuroimage_2021_118518 crossref_primary_10_1093_cercor_bhy296 crossref_primary_10_1002_hbm_24808 crossref_primary_10_1016_j_neuroimage_2020_117137 crossref_primary_10_1016_j_neuroimage_2021_118763 crossref_primary_10_1038_s41567_022_01852_0 crossref_primary_10_1259_bjr_20180910 crossref_primary_10_1093_braincomms_fcae154 crossref_primary_10_1007_s11571_023_10039_z crossref_primary_10_1111_cns_14904 crossref_primary_10_3389_fnins_2023_1146264 crossref_primary_10_1016_j_neuroimage_2017_08_029 crossref_primary_10_1371_journal_pone_0268752 crossref_primary_10_1016_j_neuropsychologia_2022_108350 crossref_primary_10_1016_j_ynirp_2022_100144 crossref_primary_10_1089_brain_2018_0605 crossref_primary_10_1089_brain_2018_0608 crossref_primary_10_1002_wics_1467 crossref_primary_10_3390_s22072553 crossref_primary_10_1007_s00429_023_02689_w crossref_primary_10_3390_brainsci12091263 crossref_primary_10_1007_s12035_020_01995_2 crossref_primary_10_1162_netn_a_00216 crossref_primary_10_3389_fninf_2020_575999 crossref_primary_10_1016_j_neuroimage_2018_01_041 crossref_primary_10_1186_s12877_022_03678_0 crossref_primary_10_7717_peerj_10751 crossref_primary_10_1109_TAC_2019_2926854 crossref_primary_10_1016_j_dcn_2024_101496 crossref_primary_10_1007_s11517_020_02244_3 crossref_primary_10_1016_j_neuroscience_2023_08_020 crossref_primary_10_1063_1_5025242 crossref_primary_10_1016_j_neuroimage_2020_117111 crossref_primary_10_1016_j_neulet_2018_09_008 crossref_primary_10_1093_cercor_bhad143 crossref_primary_10_3389_fncom_2022_885126 crossref_primary_10_1016_j_biopsych_2022_02_005 crossref_primary_10_1016_j_neuroimage_2018_01_056 crossref_primary_10_3389_fphys_2018_01704 crossref_primary_10_1016_j_neuroimage_2018_01_053 crossref_primary_10_1162_netn_a_00047 crossref_primary_10_3389_fnsys_2020_00008 crossref_primary_10_1088_1361_6633_ace6bc crossref_primary_10_1162_netn_a_00280 crossref_primary_10_1016_j_nic_2017_06_009 crossref_primary_10_1016_j_bbr_2019_112142 crossref_primary_10_3390_s23052383 crossref_primary_10_1007_s11571_022_09807_0 crossref_primary_10_1016_j_nicl_2022_103108 crossref_primary_10_1016_j_bpsc_2021_07_004 crossref_primary_10_1523_JNEUROSCI_1786_20_2020 crossref_primary_10_3389_fnins_2018_00327 crossref_primary_10_3390_diagnostics12112720 crossref_primary_10_1016_j_neuroimage_2019_02_001 crossref_primary_10_1038_s41598_018_34841_6 crossref_primary_10_1109_TMI_2024_3502545 crossref_primary_10_1523_ENEURO_0449_24_2025 crossref_primary_10_1016_j_neuroimage_2021_118287 crossref_primary_10_1016_j_neuroimage_2019_116017 crossref_primary_10_1109_ACCESS_2019_2946322 crossref_primary_10_1016_j_jpsychires_2021_05_010 crossref_primary_10_1016_j_nbd_2025_106866 crossref_primary_10_3389_fnsys_2020_00020 crossref_primary_10_1016_j_neuroimage_2018_01_075 crossref_primary_10_1016_j_jneumeth_2024_110138 crossref_primary_10_1016_j_neuroimage_2021_118497 crossref_primary_10_1002_hbm_23821 crossref_primary_10_1016_j_jpain_2020_08_002 crossref_primary_10_3389_fnhum_2025_1515902 crossref_primary_10_1088_1741_2552_ad33b1 crossref_primary_10_1016_j_bbr_2022_114121 crossref_primary_10_1109_TMI_2018_2863944 crossref_primary_10_1016_j_media_2020_101899 crossref_primary_10_2147_JPR_S242807 crossref_primary_10_1109_TNSRE_2019_2953315 crossref_primary_10_1038_s41467_023_36025_x crossref_primary_10_1002_hbm_26096 crossref_primary_10_3389_fnagi_2021_711009 crossref_primary_10_1016_j_media_2023_103010 crossref_primary_10_1093_braincomms_fcab227 crossref_primary_10_1111_head_14900 crossref_primary_10_1089_brain_2018_0636 crossref_primary_10_3389_fnagi_2021_758137 crossref_primary_10_1016_j_neuroimage_2019_116433 crossref_primary_10_1016_j_neuroimage_2022_118993 crossref_primary_10_1186_s12888_024_06356_0 crossref_primary_10_1016_j_seizure_2024_02_021 crossref_primary_10_1371_journal_pcbi_1006359 crossref_primary_10_3389_fnhum_2022_875201 crossref_primary_10_1016_j_dcn_2020_100850 crossref_primary_10_1016_j_neuroimage_2021_118471 crossref_primary_10_1093_brain_awad004 crossref_primary_10_1142_S0129065724500588 crossref_primary_10_1088_1741_2552_abffe6 crossref_primary_10_3390_land11030338 crossref_primary_10_1007_s10072_024_07506_8 crossref_primary_10_1038_s41562_024_02017_0 crossref_primary_10_1109_TNSRE_2021_3078460 crossref_primary_10_1523_JNEUROSCI_1939_24_2025 crossref_primary_10_3389_fnins_2018_00525 crossref_primary_10_1162_netn_a_00071 crossref_primary_10_1073_pnas_1903403116 crossref_primary_10_1093_cercor_bhae204 crossref_primary_10_1007_s00429_022_02467_0 crossref_primary_10_1093_cercor_bhad120 crossref_primary_10_3389_fnhum_2023_1229618 crossref_primary_10_1016_j_schres_2024_06_019 crossref_primary_10_3389_fnins_2024_1530967 crossref_primary_10_1088_1741_2552_ac542d crossref_primary_10_3389_fneur_2021_744688 crossref_primary_10_1002_brb3_1932 crossref_primary_10_1093_scan_nsaa114 crossref_primary_10_1038_s41598_019_55452_9 crossref_primary_10_3389_fnint_2022_922577 crossref_primary_10_1162_imag_a_00381 crossref_primary_10_1007_s00787_023_02242_4 crossref_primary_10_1155_2021_6614520 crossref_primary_10_3389_fnins_2018_00551 crossref_primary_10_1016_j_neuroimage_2019_116453 crossref_primary_10_3389_fnins_2023_1220848 crossref_primary_10_1113_JP286639 crossref_primary_10_3389_fneur_2021_651663 crossref_primary_10_1093_cercor_bhae461 crossref_primary_10_1002_hbm_26291 crossref_primary_10_1016_j_neucom_2021_02_096 crossref_primary_10_1016_j_neuroimage_2022_119618 crossref_primary_10_1016_j_neuroimage_2023_119915 crossref_primary_10_1088_1741_2552_ab7ad3 crossref_primary_10_1016_j_brainres_2019_03_023 crossref_primary_10_1016_j_pscychresns_2024_111943 crossref_primary_10_1109_TMI_2019_2953584 crossref_primary_10_3389_fneur_2020_606592 crossref_primary_10_1002_int_22737 crossref_primary_10_1016_j_biopsych_2024_05_025 crossref_primary_10_1038_s41467_024_52721_8 crossref_primary_10_1016_j_neuroimage_2022_119489 crossref_primary_10_1038_s41398_024_02929_5 crossref_primary_10_1016_j_neulet_2023_137097 crossref_primary_10_1038_s41467_019_10317_7 crossref_primary_10_1016_j_jad_2021_10_109 crossref_primary_10_1088_1741_2552_ab0169 crossref_primary_10_1111_biom_13362 crossref_primary_10_1155_2021_5573740 crossref_primary_10_1162_imag_a_00366 crossref_primary_10_1162_imag_a_00364 crossref_primary_10_1016_j_jad_2020_05_148 crossref_primary_10_3389_fncir_2020_570583 crossref_primary_10_1002_hbm_26477 crossref_primary_10_3390_brainsci15030263 crossref_primary_10_1016_j_tics_2019_12_004 crossref_primary_10_3389_fnins_2019_01006 crossref_primary_10_1093_schbul_sbad042 crossref_primary_10_1073_pnas_2209953120 crossref_primary_10_1016_j_neuroimage_2019_07_018 crossref_primary_10_1523_JNEUROSCI_0037_21_2021 crossref_primary_10_1109_TFUZZ_2024_3363623 crossref_primary_10_1016_j_neuroimage_2018_10_004 crossref_primary_10_1093_cercor_bhae098 crossref_primary_10_3389_fnhum_2024_1412572 crossref_primary_10_1016_j_conb_2022_102606 crossref_primary_10_17116_jnevro202012010222 crossref_primary_10_1016_j_neuroimage_2020_116631 crossref_primary_10_1109_TMI_2021_3131142 crossref_primary_10_1089_brain_2021_0015 crossref_primary_10_7717_peerj_15721 crossref_primary_10_1089_brain_2017_0543 crossref_primary_10_1016_j_tins_2018_01_003 crossref_primary_10_1016_j_neuroimage_2019_116425 crossref_primary_10_1002_hbm_26498 crossref_primary_10_3389_fnins_2019_00174 crossref_primary_10_1016_j_clineuro_2022_107481 crossref_primary_10_1109_JBHI_2018_2875456 crossref_primary_10_1016_j_neuroimage_2020_116621 crossref_primary_10_1038_s41598_024_83696_7 crossref_primary_10_1038_s41598_025_87248_5 crossref_primary_10_1007_s41133_021_00046_2 crossref_primary_10_1089_brain_2020_0794 crossref_primary_10_1016_j_jneumeth_2021_109299 crossref_primary_10_1016_j_neuroimage_2017_04_015 crossref_primary_10_3389_fnhum_2020_00003 crossref_primary_10_3390_app13127130 crossref_primary_10_1016_j_neucli_2018_10_004 crossref_primary_10_3389_fnimg_2022_924811 crossref_primary_10_1016_j_pscychresns_2024_111906 crossref_primary_10_1038_s41597_020_00699_5 crossref_primary_10_1002_mds_29898 crossref_primary_10_1016_j_neuroimage_2022_119250 crossref_primary_10_1002_hbm_26200 crossref_primary_10_1016_j_yebeh_2024_109751 crossref_primary_10_3390_brainsci13030429 crossref_primary_10_1002_hbm_25357 crossref_primary_10_1016_j_neuroimage_2022_119201 crossref_primary_10_3389_fnins_2019_00583 crossref_primary_10_1002_hbm_26202 crossref_primary_10_1093_cercor_bhad185 crossref_primary_10_3174_ajnr_A5527 crossref_primary_10_3897_rio_3_e12641 crossref_primary_10_3389_fpsyt_2024_1353103 crossref_primary_10_1016_j_nicl_2020_102352 crossref_primary_10_1002_hbm_70157 crossref_primary_10_1186_s13195_023_01349_9 crossref_primary_10_1002_hbm_25589 crossref_primary_10_1002_hbm_70150 crossref_primary_10_1007_s00429_021_02248_1 crossref_primary_10_1080_15374416_2018_1443461 crossref_primary_10_1371_journal_pcbi_1008929 crossref_primary_10_1002_hbm_25345 crossref_primary_10_1007_s11682_023_00835_w crossref_primary_10_1002_brb3_2157 crossref_primary_10_1002_jnr_25357 crossref_primary_10_7554_eLife_62116 crossref_primary_10_1016_j_psychres_2024_115774 crossref_primary_10_1002_hbm_70145 crossref_primary_10_3389_fnetp_2021_755016 crossref_primary_10_3390_brainsci9110309 crossref_primary_10_1016_j_neures_2020_06_006 crossref_primary_10_1038_s42003_023_05262_7 crossref_primary_10_1016_j_neuroimage_2022_119460 crossref_primary_10_1038_s42003_024_06210_9 crossref_primary_10_1002_hbm_25379 crossref_primary_10_1007_s00723_019_01117_9 crossref_primary_10_1073_pnas_2005531117 crossref_primary_10_1016_j_jneumeth_2019_108519 crossref_primary_10_3389_fnhum_2021_679086 crossref_primary_10_1007_s11357_023_01022_x crossref_primary_10_1093_ijnp_pyy100 crossref_primary_10_3389_fpsyt_2022_973921 crossref_primary_10_3389_fncir_2020_593263 crossref_primary_10_1016_j_media_2022_102471 crossref_primary_10_1002_brb3_2174 crossref_primary_10_1186_s12916_021_01962_1 crossref_primary_10_1002_hbm_26215 crossref_primary_10_1002_hbm_25124 crossref_primary_10_1016_j_neuroimage_2019_06_006 crossref_primary_10_1080_19312458_2020_1860206 crossref_primary_10_1089_neu_2022_0257 crossref_primary_10_1038_s41398_017_0074_6 crossref_primary_10_1038_s41587_022_01397_w crossref_primary_10_1371_journal_pcbi_1008943 crossref_primary_10_3390_e26070545 crossref_primary_10_1186_s12877_020_01761_y crossref_primary_10_3389_fimmu_2023_1216310 crossref_primary_10_1016_j_nicl_2020_102556 crossref_primary_10_1111_rssc_12463 crossref_primary_10_1016_j_pscychresns_2020_111149 crossref_primary_10_1002_hbm_70125 crossref_primary_10_1002_hbm_25358 crossref_primary_10_1007_s10548_024_01082_y crossref_primary_10_3389_fnins_2023_1196290 |
Cites_doi | 10.1073/pnas.1312902110 10.1371/journal.pone.0149849 10.1002/jmri.1880070624 10.1016/j.neuroimage.2009.10.003 10.1038/ncomms9885 10.1016/j.neuroimage.2013.05.079 10.1016/j.neuroimage.2008.09.036 10.3389/fneur.2015.00010 10.1016/j.neuroimage.2015.05.015 10.1109/ISBI.2015.7163808 10.1016/j.neuroimage.2009.12.027 10.1016/j.neuroimage.2015.01.057 10.1016/j.neuroimage.2014.06.044 10.1073/pnas.1121049109 10.1152/jn.00783.2009 10.1073/pnas.0504136102 10.1016/j.neucom.2014.05.045 10.1007/s00429-015-1083-y 10.1098/rstb.2005.1634 10.1016/j.neuroimage.2015.12.001 10.1016/j.neuroimage.2013.01.049 10.1038/nrn.2016.113 10.1371/journal.pbio.1002469 10.1038/ncomms9414 10.1016/j.neuron.2014.10.015 10.1016/j.neuroimage.2009.12.011 10.1002/hbm.23215 10.1016/j.neuron.2015.06.037 10.1002/mrm.1910400211 10.1016/j.neuroimage.2013.12.063 10.1002/hbm.22583 10.1073/pnas.1216856110 10.1073/pnas.1831638100 10.1093/cercor/bhs352 10.1007/s10548-014-0406-2 10.1002/hbm.22562 10.1371/journal.pone.0039731 10.1002/hbm.22599 10.1073/pnas.0601417103 10.1002/hbm.22847 10.1016/j.neuroimage.2015.11.055 10.1016/j.nicl.2014.07.003 10.1016/j.neuroimage.2015.03.047 10.1109/MSP.2015.2478915 10.1089/brain.2014.0248 10.1002/jmri.1880070623 10.1016/j.neuroimage.2012.06.078 10.1016/j.neuroimage.2015.10.070 10.1002/nav.3800020109 10.1093/cercor/bhw253 10.1103/PhysRevE.70.066111 10.1016/j.neuroimage.2011.03.033 10.1016/S0730-725X(97)00277-4 10.1109/ISBI.2016.7493503 10.1371/journal.pone.0013311 10.1109/NER.2013.6695998 10.1371/journal.pone.0140134 10.1093/cercor/bhw265 10.1016/j.neuroimage.2015.07.022 10.1073/pnas.1520613113 10.1016/j.neuroimage.2012.03.070 10.1007/978-3-319-02267-3_18 10.1126/science.1099745 10.1016/j.neulet.2010.11.020 10.1016/j.neuroimage.2012.10.015 10.1016/j.schres.2015.11.021 10.1038/sdata.2015.31 10.1016/j.neuroimage.2014.02.014 10.1016/j.neulet.2010.08.053 10.1016/j.neuroimage.2010.08.030 10.1016/j.neuroimage.2014.10.044 10.1097/WNR.0000000000000622 10.1523/JNEUROSCI.3920-14.2015 10.1038/ncomms8751 10.1073/pnas.1418031112 10.1016/j.nicl.2016.10.004 10.1093/cercor/bhw029 10.1073/pnas.1018985108 10.1002/mrm.1910340409 10.1109/ISBI.2015.7163811 10.1089/brain.2015.0389 10.1007/s00429-013-0619-2 10.1089/brain.2014.0230 10.1016/j.neuroimage.2014.06.052 10.1073/pnas.1523980113 10.1016/j.neuroimage.2015.07.064 10.1016/j.neuroimage.2015.04.052 10.1073/pnas.1121329109 10.1089/brain.2014.0251 10.3389/fnins.2016.00381 10.1016/j.neuroimage.2014.07.033 10.1006/nimg.1998.0391 10.1002/hbm.22058 10.1016/j.neuroimage.2013.07.019 10.1016/j.neuroimage.2014.09.007 10.1038/nn.3993 10.1371/journal.pone.0100012 10.1371/journal.pone.0124577 10.1007/s10334-010-0197-8 10.1016/j.neuroimage.2013.07.036 10.1089/brain.2013.0205 10.1073/pnas.1400181111 10.1089/brain.2014.0253 10.1073/pnas.1422487112 10.1109/EMBC.2014.6944460 10.1109/EMBC.2014.6943757 10.1117/2.1201607.006521 10.1007/s00429-013-0634-3 10.1002/hbm.22290 10.1073/pnas.0700668104 10.1002/(SICI)1098-1098(1999)10:2<166::AID-IMA7>3.0.CO;2-F 10.1002/hbm.22140 10.1016/j.nicl.2014.07.002 10.1016/j.neuroimage.2014.12.020 10.1073/pnas.1311989110 10.1097/WNR.0000000000000267 10.1002/hbm.21452 10.1016/j.neuroimage.2016.02.074 10.1016/j.neuroimage.2016.04.051 10.1089/brain.2012.0115 10.1073/pnas.1420687112 10.1016/j.neuroimage.2013.05.039 10.1016/j.neuroimage.2013.05.010 10.1038/nrn2575 10.3389/fnins.2012.00152 10.1007/s11682-015-9408-2 10.1523/JNEUROSCI.4638-14.2015 10.1038/npp.2015.352 10.1016/j.neuroimage.2015.09.010 10.1016/j.neuroimage.2009.09.037 10.1371/journal.pone.0037828 10.1016/j.neuroimage.2015.07.002 10.1089/brain.2011.0036 10.1111/cns.12499 10.1073/pnas.1604898113 10.1016/j.neuroimage.2013.01.067 10.1523/JNEUROSCI.4341-13.2014 10.1016/j.neuroimage.2010.11.059 10.1073/pnas.1501242112 10.1016/j.neuroimage.2011.10.001 10.1038/srep26976 10.1007/978-3-319-10443-0_23 10.1016/j.neuroimage.2014.11.054 10.1089/brain.2014.0300 10.1126/science.1184819 10.1002/hbm.23240 |
ContentType | Journal Article |
Copyright | 2017 The Authors Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. Copyright Elsevier Limited Oct 15, 2017 |
Copyright_xml | – notice: 2017 The Authors – notice: Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Oct 15, 2017 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
DOI | 10.1016/j.neuroimage.2016.12.061 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 54 |
ExternalDocumentID | 28034766 10_1016_j_neuroimage_2016_12_061 S1053811916307881 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c575t-1d4261a411b79f4512b0e0371a77c356cf5e814f0763427e4d58b3041ea4f63f3 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 |
IngestDate | Mon Jul 21 11:34:13 EDT 2025 Wed Aug 13 04:58:59 EDT 2025 Wed Feb 19 02:40:48 EST 2025 Thu Apr 24 23:07:37 EDT 2025 Tue Jul 01 03:01:50 EDT 2025 Fri Feb 23 02:25:05 EST 2024 Tue Aug 26 20:08:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Frame-wise description Sliding window analysis Temporal modeling Time/frequency analysis State characterization Dynamic functional connectivity Dynamic graph analysis |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-1d4261a411b79f4512b0e0371a77c356cf5e814f0763427e4d58b3041ea4f63f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811916307881 |
PMID | 28034766 |
PQID | 1965444376 |
PQPubID | 2031077 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1854613693 proquest_journals_1965444376 pubmed_primary_28034766 crossref_citationtrail_10_1016_j_neuroimage_2016_12_061 crossref_primary_10_1016_j_neuroimage_2016_12_061 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2016_12_061 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2016_12_061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-15 |
PublicationDateYYYYMMDD | 2017-10-15 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Chang, C., Leopold, D.A., Schölvinck, M.L., Mandelkow, H., Picchioni, D., Liu, X., Frank, Q.Y., Turchi, J.N., Duyn, J.H., 2016. Tracking brain arousal fluctuations with fmri. In: Proceedings of the National Academy of Sciences, 201520613. Li, Li, Hu, Chen, Dai (bib80) 2014; 145 Sadaghiani, Poline, Kleinschmidt, D'Esposito (bib116) 2015; 112 Shakil, S., Magnuson, M.E., Keilholz, S.D., Chin-Hui Lee, 2014. Cluster-based analysis for characterizing dynamic functional connectivity. In: 2014 Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp. 982–985. Baumgartner, Windischberger, Moser (bib8) 1998; 16 Cribben, Haraldsdottir, Atlas, Wager, Lindquist (bib29) 2012; 61 Rack-Gomer, Liu (bib112) 2012; 59 Shakil, Lee, Keilholz (bib120) 2016; 133 Yaesoubi, Miller, Calhoun (bib156) 2015; 107 Calhoun, Miller, Pearlson, Adal (bib17) 2014; 84 Guidotti, Del Gratta, Baldassarre, Romani, Corbetta (bib48) 2015; 35 Jia, Hu, Deshpande (bib58) 2014; 4 Christoff, Irving, Fox, Spreng, Andrews-Hanna (bib26) 2016; 17 Ou, J., Xie, L., Wang, P., Li, X., Zhu, D., Jiang, R., Wang, Y., Chen, Y., Zhang, J., Liu, T., 2013. Modeling brain functional dynamics via hidden Markov models. In: 2013 Proceedings of the 6th International IEEE/EMBS Conference on Neural Engineering (NER). No. c. IEEE, pp. 569–572. Li, Zhu, Jiang, Jin, Zhang, Guo, Zhang, Hu, Li, Liu (bib79) 2014; 35 Marusak, Calhoun, Brown, Crespo, Sala-Hamrick, Gotlib, Thomason (bib92) 2016; 00 Betzel, Fukushima, He, Zuo, Sporns (bib10) 2016; 127 Miller, Yaesoubi, Turner, Mathalon, Preda, Pearlson, Adali, Calhoun (bib96) 2016; 11 Poldrack, Laumann, Koyejo, Gregory, Hover, Chen, Gorgolewski, Luci, Joo, Boyd (bib107) 2015; 6 Price, T., Wee, C.-Y., Gao, W., Shen, D., 2014. Multiple-network classification of childhood autism using functional connectivity dynamics. In: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 177–184. Rashid, Arbabshirani, Damaraju, Cetin, Miller, Pearlson, Calhoun (bib113) 2016; 134 Du, Pearlson, Yu, He, Lin, Sui, Wu, Calhoun (bib36) 2016; 170 Shen, Li, Zeng, Yuan, Chen, Liu, Hu (bib123) 2014; 25 Leonardi, Shirer, Greicius, Van De Ville (bib77) 2014; 35 Thompson, Magnuson, Merritt, Schwarb, Pan, McKinley, Tripp, Schumacher, Keilholz (bib144) 2013; 34 Wee, Yang, Yap, Shen (bib151) 2016; 10 Keilholz, Magnuson, Pan, Willis, Thompson (bib64) 2013; 3 Rubinov, Sporns (bib115) 2010; 52 . Di, Biswal (bib35) 2015; 220 Sourty, Thoraval, Roquet, Armspach, Foucher, Blanc (bib133) 2016; 10 Damaraju, Allen, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda, Turner, Vaidya, van Erp, Calhoun (bib31) 2014; 5 Qin, Chen, Hu, Zeng, Fan, Chen, Shen (bib111) 2015; 9 Thompson, Merritt, Pan, Magnuson, Grooms, Jaeger, Keilholz (bib145) 2013; 83 Wang, C., Ong, J.L., Patanaik, A., Zhou, J., Chee, M.W., 2016. Spontaneous eyelid closures link vigilance fluctuation with fmri dynamic connectivity states. Proceedings of the National Academy of Sciences, 201523980. Chen, Zhang, Gao, Wee, Li, Shen (bib23) 2016; 37 Wee, Yap, Shen (bib153) 2016; 22 Gonzalez-Castillo, Saad, Handwerker, Inati, Brenowitz, Bandettini (bib44) 2012; 109 Grigg, Grady (bib46) 2010; 5 Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (bib2) 2014; 24 Gu, Pasqualetti, Cieslak, Telesford, Yu, Kahn, Medaglia, Vettel, Miller, Grafton, Bassett (bib47) 2015; 6 Kucyi, Hove, Esterman, Hutchison, Valera (bib68) 2016 Shen, Li, Qin, Liu, Wang, Zeng, Li, Hu (bib122) 2016; 124 Kuhn (bib70) 1955; 2 Stoeckel, Garrison, Ghosh, Wighton, Hanlon, Gilman, Greer, Turk-Browne, Scheinost, Craddock (bib135) 2014; 5 Han, Wang, Zhao, Min, Lu, Li, He, Jia (bib49) 2011; 55 Caballero Gaudes, Petridou, Francis, Dryden, Gowland (bib15) 2013; 34 Buzsaki, Draguhn (bib14) 2004; 304 Baumgartner, Scarth, Teichtmeiste, Somorjai, Moser (bib7) 1997; 7 Bassett, Yang, Wymbs, Grafton (bib6) 2015; 18 Nooner, Colcombe, Tobe, Mennes, Benedict, Moreno, Panek, Brown, Zavitz, Li (bib103) 2012; 6 Biswal, Zerrin Yetkin, Haughton, Hyde (bib11) 1995; 34 Hudetz, Liu, Pillay (bib53) 2015; 5 Power, Schlaggar, Petersen (bib108) 2015; 105 Tagliazucchi, Balenzuela, Fraiman, Chialvo (bib138) 2012; 3 Tagliazucchi, Carhart-Harris, Leech, Nutt, Chialvo (bib140) 2014; 35 Siegel, Mitra, Laumann, Seitzman, Raichle, Corbetta, Snyder (bib128) 2016 Zalesky, Breakspear (bib159) 2015; 114 Meskaldji, Preti, Bolton, Montandon, Rodriguez, Morgenthaler, Giannakopoulos, Haller, Van De Ville (bib94) 2016; 12 Schaefer, Margulies, Lohmann, Gorgolewski, Smallwood, Kiebel, Villringer (bib119) 2014; 8 Ma, Calhoun, Phlypo, Adal (bib87) 2014; 90 Chen, Chang, Greicius, Glover (bib21) 2015; 111 Ou, Xie, Jin, Li, Zhu, Jiang, Chen, Zhang, Li, Liu (bib104) 2015; 28 Van Dijk, Hedden, Venkataraman, Evans, Lazar, Buckner (bib148) 2010; 103 Zuo, Di Martino, Kelly, Shehzad, Gee, Klein, Castellanos, Biswal, Milham (bib162) 2010; 49 Elton, Gao (bib38) 2015; 36 Falahpour, Thompson, Abbott, Jahedi, Mulvey, Datko, Liu, Müller (bib39) 2016; 6 Kucyi, Salomons, Davis (bib69) 2013; 110 Staresina, Alink, Kriegeskorte, Henson (bib134) 2013; 110 Cordes, Haughton, Arfanakis, Carew, Turski, Moritz, Quigley, Meyerand (bib28) 2001; 22 Thompson, Fransson (bib146) 2015; 121 Liégeois, Ziegler, Phillips, Geurts, Gómez, Bahri, Yeo, Soddu, Vanhaudenhuyse, Laureys, Sepulchre (bib83) 2016; 221 Tagliazucchi, Balenzuela, Fraiman, Chialvo (bib137) 2010; 485 Xu, Lindquist (bib154) 2015; 9 Deng, Sun, Cheng, Tong (bib34) 2016; 6 Laumann, Snyder, Mitra, Gordon, Gratton, Adeyemo, Gilmore, Nelson, Berg, Greene (bib74) 2016 Karahanoğlu, Van De Ville (bib63) 2015; 6 Braun, Schäfer, Walter, Erk, Romanczuk-Seiferth, Haddad, Schweiger, Grimm, Heinz, Tost, Meyer-Lindenberg, Bassett (bib12) 2015; 112 Demirtas, Tornador, Falcón, López-Solà, Hernández-Ribas, Pujol, Menchón, Ritter, Cardoner, Soriano-Mas, Deco (bib33) 2016; 37 Zalesky, Fornito, Cocchi, Gollo, Breakspear (bib160) 2014; 111 Koush, Rosa, Robineau, Heinen, Rieger, Weiskopf, Vuilleumier, Van De Ville, Scharnowski (bib66) 2013; 81 Kucyi, Davis (bib67) 2014; 100 Eavani, Satterthwaite, Gur, Gur, Davatzikos (bib37) 2013; 23 Goutte, Toft, Rostrup, Nielsen, Hansen (bib45) 1999; 9 Golay, Kollias, Stoll, Meier, Valavanis, Boesiger (bib41) 1998; 40 Murphy, Birn, Handwerker, Jones, Bandettini (bib102) 2009; 44 Beckmann, DeLuca, Devlin, Smith (bib9) 2005; 360 Jones, Vemuri, Murphy, Gunter, Senjem, Machulda, Przybelski, Gregg, Kantarci, Knopman, Boeve, Petersen, Jack (bib59) 2012; 7 Yu, Erhardt, Sui, Du, He, Hjelm, Cetin, Rachakonda, Miller, Pearlson, Calhoun (bib158) 2015; 107 Hutchison, Morton (bib55) 2015; 35 Hindriks, Adhikari, Murayama, Ganzetti, Mantini, Logothetis, Deco (bib51) 2016; 127 Majeed, Magnuson, Hasenkamp, Schwarb, Schumacher, Barsalou, Keilholz (bib90) 2011; 54 Morgan, Abou-Khalil, Rogers (bib98) 2014; 5 Monti, Hellyer, Sharp, Leech, Anagnostopoulos, Montana (bib97) 2014; 103 Zalesky, Fornito, Harding, Cocchi, Yücel, Pantelis, Bullmore (bib161) 2010; 50 Yaesoubi, Allen, Miller, Calhoun (bib155) 2015; 120 Bullmore, Sporns (bib13) 2009; 10 Bassett, Wymbs, Porter, Mucha, Carlson, Grafton (bib5) 2011; 108 Liu, Chang, Duyn (bib85) 2013; 7 Hutchison, Hutchison, Manning, Menon, Everling (bib54) 2014; 35 Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta, Della Penna, Duyn, Glover, Gonzalez-Castillo, Handwerker, Keilholz, Kiviniemi, Leopold, de Pasquale, Sporns, Walter, Chang (bib56) 2013; 80 Cribben, Wager, Lindquist (bib30) 2013; 7 Fox, Snyder, Vincent, Corbetta, VanEssen, Raichle (bib40) 2005; 102 Tagliazucchi, Siniatchkin, Laufs, Chialvo (bib142) 2016; 10 Mucha, Richardson, Macon, Porter, Onnela (bib101) 2010; 328 Yang, Craddock, Margulies, Yan, Milham (bib157) 2014; 93 Chiang, Cassese, Guindani, Vannucci, Yeh, Haneef, Stern (bib24) 2016; 125 Clauset, Newman, Moore (bib27) 2004; 70 Laufs, Krakow, Sterzer, Eger, Beyerle, Salek-Haddadi, Kleinschmidt (bib71) 2003; 100 Handwerker, Roopchansingh, Gonzalez-Castillo, Bandettini (bib50) 2012; 63 Su, Shen, Zeng, Qin, Liu, Hu (bib136) 2016; 27 Chang, Liu, Chen, Liu, Duyn (bib20) 2013; 72 Lee, Zahneisen, Hugger, LeVan, Hennig (bib75) 2013; 65 Van De Ville, D., Karahanoğlu, F.I., 2016. Resting-state neuroimaging unravels functional organization in the brain. SPIE Newsroom, pp. 2–4. Barttfeld, Uhrig, Sitt, Sigman, Jarraya, Dehaene (bib4) 2015; 112 Preti, M.G., Haller, S., Giannakopoulos, P., Van De Ville, D., 2015. Decomposing dynamic functional connectivity onto phase-dependent eigenconnectivities using the Hilbert transform. In: 2015 IEEE Proceedings of the 12th International Symposium on Biomedical Imaging (ISBI). IEEE, pp. 38–41. Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann (bib32) 2006; 103 Mantini, Perrucci, Del Gratta, Romani, Corbetta (bib91) 2007; 104 Miller, R.L., Yaesoubi, M., Calhoun, V.D., 2014. Higher dimensional analysis shows reduced dynamism of time-varying network connectivity in schizophrenia patients. In: 2014 Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp. 3837–3840. Liao, Zhang, Mantini, Xu, Ji, Zhang, Wang, Wang, Chen, Tian, Jiao, Zang, Lu (bib82) 2014; 219 Chen, Cai, Ryali, Supekar, Menon (bib22) 2016; 14 Kaiser, Whitfield-Gabrieli, Dillon, Goer, Beltzer, Minkel, Smoski, Dichter, Pizzagalli (bib60) 2016; 41 Lindquist, Xu, Nebel, Caffo (bib84) 2014; 101 Leonardi, Van De Ville (bib78) 2015; 104 Patel, Bullmore (bib106) 2016; 142 Sami, Robertson, Miall (bib118) 2014; 34 Allan, Francis, Caballero-Gaudes, Morris, Liddle, Liddle, Brookes, Gowland (bib1) 2015; 10 Wee, C.-Y., Yang, S., Yap, P.-T., Shen, D., 2013. Temporally dynamic resting-state functional connectivity networks for early mci identification. In: Proceedings of the International Workshop on Machine Learning in Medical Imaging. Springer, pp. 139–146. Chang, Glover (bib18) 2010; 50 Gonzalez-Castillo, Handwerker, Robinson, Hoy, Buchanan, Saad, Bandettini (bib42) 2014; 8 Tagliazucchi, Balenzuela, Fraiman, Montoya, Chialvo (bib139) 2011; 488 Kang, Wang, Yan, Wa Liu (10.1016/j.neuroimage.2016.12.061_bib85) 2013; 7 Hindriks (10.1016/j.neuroimage.2016.12.061_bib51) 2016; 127 Jones (10.1016/j.neuroimage.2016.12.061_bib59) 2012; 7 Lee (10.1016/j.neuroimage.2016.12.061_bib75) 2013; 65 Goutte (10.1016/j.neuroimage.2016.12.061_bib45) 1999; 9 Koush (10.1016/j.neuroimage.2016.12.061_bib66) 2013; 81 Meskaldji (10.1016/j.neuroimage.2016.12.061_bib94) 2016; 12 Leonardi (10.1016/j.neuroimage.2016.12.061_bib77) 2014; 35 Shine (10.1016/j.neuroimage.2016.12.061_bib125) 2015; 122 Jia (10.1016/j.neuroimage.2016.12.061_bib58) 2014; 4 Betzel (10.1016/j.neuroimage.2016.12.061_bib10) 2016; 127 Tagliazucchi (10.1016/j.neuroimage.2016.12.061_bib142) 2016; 10 Stoeckel (10.1016/j.neuroimage.2016.12.061_bib135) 2014; 5 Xu (10.1016/j.neuroimage.2016.12.061_bib154) 2015; 9 Gu (10.1016/j.neuroimage.2016.12.061_bib47) 2015; 6 Siegel (10.1016/j.neuroimage.2016.12.061_bib128) 2016 Barttfeld (10.1016/j.neuroimage.2016.12.061_bib4) 2015; 112 Calhoun (10.1016/j.neuroimage.2016.12.061_bib17) 2014; 84 10.1016/j.neuroimage.2016.12.061_bib147 Yaesoubi (10.1016/j.neuroimage.2016.12.061_bib155) 2015; 120 10.1016/j.neuroimage.2016.12.061_bib149 Tagliazucchi (10.1016/j.neuroimage.2016.12.061_bib137) 2010; 485 Han (10.1016/j.neuroimage.2016.12.061_bib49) 2011; 55 Di (10.1016/j.neuroimage.2016.12.061_bib35) 2015; 220 Elton (10.1016/j.neuroimage.2016.12.061_bib38) 2015; 36 Shen (10.1016/j.neuroimage.2016.12.061_bib123) 2014; 25 Moser (10.1016/j.neuroimage.2016.12.061_bib99) 1999; 10 Power (10.1016/j.neuroimage.2016.12.061_bib108) 2015; 105 Bassett (10.1016/j.neuroimage.2016.12.061_bib6) 2015; 18 Zuo (10.1016/j.neuroimage.2016.12.061_bib162) 2010; 49 10.1016/j.neuroimage.2016.12.061_bib132 Madhyastha (10.1016/j.neuroimage.2016.12.061_bib89) 2014; 4 Braun (10.1016/j.neuroimage.2016.12.061_bib12) 2015; 112 Nooner (10.1016/j.neuroimage.2016.12.061_bib103) 2012; 6 Mantini (10.1016/j.neuroimage.2016.12.061_bib91) 2007; 104 Choe (10.1016/j.neuroimage.2016.12.061_bib25) 2015; 10 Cordes (10.1016/j.neuroimage.2016.12.061_bib28) 2001; 22 Miller (10.1016/j.neuroimage.2016.12.061_bib96) 2016; 11 Sakoglu (10.1016/j.neuroimage.2016.12.061_bib117) 2010; 23 Chen (10.1016/j.neuroimage.2016.12.061_bib22) 2016; 14 Zalesky (10.1016/j.neuroimage.2016.12.061_bib160) 2014; 111 Rubinov (10.1016/j.neuroimage.2016.12.061_bib115) 2010; 52 Tagliazucchi (10.1016/j.neuroimage.2016.12.061_bib143) 2012; 6 Liu (10.1016/j.neuroimage.2016.12.061_bib86) 2013; 110 Kucyi (10.1016/j.neuroimage.2016.12.061_bib68) 2016 Handwerker (10.1016/j.neuroimage.2016.12.061_bib50) 2012; 63 Rashid (10.1016/j.neuroimage.2016.12.061_bib113) 2016; 134 Li (10.1016/j.neuroimage.2016.12.061_bib79) 2014; 35 Deng (10.1016/j.neuroimage.2016.12.061_bib34) 2016; 6 Golay (10.1016/j.neuroimage.2016.12.061_bib41) 1998; 40 Hudetz (10.1016/j.neuroimage.2016.12.061_bib53) 2015; 5 Guidotti (10.1016/j.neuroimage.2016.12.061_bib48) 2015; 35 Demirtas (10.1016/j.neuroimage.2016.12.061_bib33) 2016; 37 Rashid (10.1016/j.neuroimage.2016.12.061_bib114) 2014; 8 Cribben (10.1016/j.neuroimage.2016.12.061_bib30) 2013; 7 Gonzalez-Castillo (10.1016/j.neuroimage.2016.12.061_bib42) 2014; 8 Kuhn (10.1016/j.neuroimage.2016.12.061_bib70) 1955; 2 Schaefer (10.1016/j.neuroimage.2016.12.061_bib119) 2014; 8 10.1016/j.neuroimage.2016.12.061_bib150 Du (10.1016/j.neuroimage.2016.12.061_bib36) 2016; 170 Liao (10.1016/j.neuroimage.2016.12.061_bib82) 2014; 219 Sadaghiani (10.1016/j.neuroimage.2016.12.061_bib116) 2015; 112 Kang (10.1016/j.neuroimage.2016.12.061_bib61) 2011; 56 Qin (10.1016/j.neuroimage.2016.12.061_bib111) 2015; 9 Zalesky (10.1016/j.neuroimage.2016.12.061_bib159) 2015; 114 Li (10.1016/j.neuroimage.2016.12.061_bib80) 2014; 145 Liégeois (10.1016/j.neuroimage.2016.12.061_bib83) 2016; 221 Allan (10.1016/j.neuroimage.2016.12.061_bib1) 2015; 10 Chen (10.1016/j.neuroimage.2016.12.061_bib23) 2016; 37 Hutchison (10.1016/j.neuroimage.2016.12.061_bib54) 2014; 35 Madhyastha (10.1016/j.neuroimage.2016.12.061_bib88) 2015; 5 Moser (10.1016/j.neuroimage.2016.12.061_bib100) 1997; 7 Morgan (10.1016/j.neuroimage.2016.12.061_bib98) 2014; 5 Yu (10.1016/j.neuroimage.2016.12.061_bib158) 2015; 107 Kiviniemi (10.1016/j.neuroimage.2016.12.061_bib65) 2011; 1 Gonzalez-Castillo (10.1016/j.neuroimage.2016.12.061_bib43) 2015; 112 Holmes (10.1016/j.neuroimage.2016.12.061_bib52) 2015; 2 Karahanoğlu (10.1016/j.neuroimage.2016.12.061_bib62) 2013; 73 Murphy (10.1016/j.neuroimage.2016.12.061_bib102) 2009; 44 Majeed (10.1016/j.neuroimage.2016.12.061_bib90) 2011; 54 Buzsaki (10.1016/j.neuroimage.2016.12.061_bib14) 2004; 304 Laufs (10.1016/j.neuroimage.2016.12.061_bib71) 2003; 100 Patel (10.1016/j.neuroimage.2016.12.061_bib106) 2016; 142 Damoiseaux (10.1016/j.neuroimage.2016.12.061_bib32) 2006; 103 Cribben (10.1016/j.neuroimage.2016.12.061_bib29) 2012; 61 Smith (10.1016/j.neuroimage.2016.12.061_bib130) 2013; 80 Bassett (10.1016/j.neuroimage.2016.12.061_bib5) 2011; 108 Poldrack (10.1016/j.neuroimage.2016.12.061_bib107) 2015; 6 Smith (10.1016/j.neuroimage.2016.12.061_bib131) 2012; 109 Bullmore (10.1016/j.neuroimage.2016.12.061_bib13) 2009; 10 Wee (10.1016/j.neuroimage.2016.12.061_bib153) 2016; 22 Hutchison (10.1016/j.neuroimage.2016.12.061_bib57) 2013; 34 10.1016/j.neuroimage.2016.12.061_bib105 Falahpour (10.1016/j.neuroimage.2016.12.061_bib39) 2016; 6 Thompson (10.1016/j.neuroimage.2016.12.061_bib146) 2015; 121 Eavani (10.1016/j.neuroimage.2016.12.061_bib37) 2013; 23 Chen (10.1016/j.neuroimage.2016.12.061_bib21) 2015; 111 Shakil (10.1016/j.neuroimage.2016.12.061_bib120) 2016; 133 Kaiser (10.1016/j.neuroimage.2016.12.061_bib60) 2016; 41 Tagliazucchi (10.1016/j.neuroimage.2016.12.061_bib139) 2011; 488 Keilholz (10.1016/j.neuroimage.2016.12.061_bib64) 2013; 3 Mucha (10.1016/j.neuroimage.2016.12.061_bib101) 2010; 328 Shirer (10.1016/j.neuroimage.2016.12.061_bib127) 2015; 117 Chang (10.1016/j.neuroimage.2016.12.061_bib18) 2010; 50 10.1016/j.neuroimage.2016.12.061_bib19 Baumgartner (10.1016/j.neuroimage.2016.12.061_bib7) 1997; 7 Tagliazucchi (10.1016/j.neuroimage.2016.12.061_bib140) 2014; 35 Karahanoğlu (10.1016/j.neuroimage.2016.12.061_bib63) 2015; 6 Hutchison (10.1016/j.neuroimage.2016.12.061_bib55) 2015; 35 Caballero Gaudes (10.1016/j.neuroimage.2016.12.061_bib15) 2013; 34 Sami (10.1016/j.neuroimage.2016.12.061_bib118) 2014; 34 Laufs (10.1016/j.neuroimage.2016.12.061_bib72) 2014; 5 Wee (10.1016/j.neuroimage.2016.12.061_bib152) 2012; 7 Simony (10.1016/j.neuroimage.2016.12.061_bib129) 2016; 7 Yaesoubi (10.1016/j.neuroimage.2016.12.061_bib156) 2015; 107 10.1016/j.neuroimage.2016.12.061_bib93 Thompson (10.1016/j.neuroimage.2016.12.061_bib145) 2013; 83 10.1016/j.neuroimage.2016.12.061_bib95 Rack-Gomer (10.1016/j.neuroimage.2016.12.061_bib112) 2012; 59 Hutchison (10.1016/j.neuroimage.2016.12.061_bib56) 2013; 80 Laumann (10.1016/j.neuroimage.2016.12.061_bib73) 2015; 87 Damaraju (10.1016/j.neuroimage.2016.12.061_bib31) 2014; 5 Laumann (10.1016/j.neuroimage.2016.12.061_bib74) 2016 Lindquist (10.1016/j.neuroimage.2016.12.061_bib84) 2014; 101 Sourty (10.1016/j.neuroimage.2016.12.061_bib133) 2016; 10 Baumgartner (10.1016/j.neuroimage.2016.12.061_bib8) 1998; 16 Wee (10.1016/j.neuroimage.2016.12.061_bib151) 2016; 10 Allen (10.1016/j.neuroimage.2016.12.061_bib2) 2014; 24 Shen (10.1016/j.neuroimage.2016.12.061_bib122) 2016; 124 10.1016/j.neuroimage.2016.12.061_bib121 Van Dijk (10.1016/j.neuroimage.2016.12.061_bib148) 2010; 103 Tagliazucchi (10.1016/j.neuroimage.2016.12.061_bib141) 2015; 6 Chiang (10.1016/j.neuroimage.2016.12.061_bib24) 2016; 125 Ou (10.1016/j.neuroimage.2016.12.061_bib104) 2015; 28 Chang (10.1016/j.neuroimage.2016.12.061_bib20) 2013; 72 Leonardi (10.1016/j.neuroimage.2016.12.061_bib78) 2015; 104 10.1016/j.neuroimage.2016.12.061_bib124 Beckmann (10.1016/j.neuroimage.2016.12.061_bib9) 2005; 360 10.1016/j.neuroimage.2016.12.061_bib126 10.1016/j.neuroimage.2016.12.061_bib109 Monti (10.1016/j.neuroimage.2016.12.061_bib97) 2014; 103 Ma (10.1016/j.neuroimage.2016.12.061_bib87) 2014; 90 Gonzalez-Castillo (10.1016/j.neuroimage.2016.12.061_bib44) 2012; 109 Zalesky (10.1016/j.neuroimage.2016.12.061_bib161) 2010; 50 Su (10.1016/j.neuroimage.2016.12.061_bib136) 2016; 27 Yang (10.1016/j.neuroimage.2016.12.061_bib157) 2014; 93 Kucyi (10.1016/j.neuroimage.2016.12.061_bib69) 2013; 110 Biswal (10.1016/j.neuroimage.2016.12.061_bib11) 1995; 34 Christoff (10.1016/j.neuroimage.2016.12.061_bib26) 2016; 17 Staresina (10.1016/j.neuroimage.2016.12.061_bib134) 2013; 110 Liao (10.1016/j.neuroimage.2016.12.061_bib81) 2014; 4 Marusak (10.1016/j.neuroimage.2016.12.061_bib92) 2016; 00 Clauset (10.1016/j.neuroimage.2016.12.061_bib27) 2004; 70 Amico (10.1016/j.neuroimage.2016.12.061_bib3) 2014; 9 Leonardi (10.1016/j.neuroimage.2016.12.061_bib76) 2013; 83 Grigg (10.1016/j.neuroimage.2016.12.061_bib46) 2010; 5 Tagliazucchi (10.1016/j.neuroimage.2016.12.061_bib138) 2012; 3 10.1016/j.neuroimage.2016.12.061_bib110 Fox (10.1016/j.neuroimage.2016.12.061_bib40) 2005; 102 Kucyi (10.1016/j.neuroimage.2016.12.061_bib67) 2014; 100 Thompson (10.1016/j.neuroimage.2016.12.061_bib144) 2013; 34 Calhoun (10.1016/j.neuroimage.2016.12.061_bib16) 2016; 33 |
References_xml | – volume: 34 start-page: 501 year: 2013 end-page: 518 ident: bib15 article-title: Paradigm free mapping with sparse regression automatically detects single-trial functional magnetic resonance imaging blood oxygenation level dependent responses publication-title: Hum. Brain Mapp. – volume: 50 start-page: 81 year: 2010 end-page: 98 ident: bib18 article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI publication-title: NeuroImage – volume: 100 start-page: 11053 year: 2003 end-page: 11058 ident: bib71 article-title: Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest publication-title: Proc. Natl. Acad. Sci. – volume: 7 start-page: 1 year: 2013 end-page: 11 ident: bib85 article-title: Decomposition of spontaneous brain activity into distinct fMRI co-activation patterns publication-title: Front. Syst. Neurosci. – volume: 10 start-page: 60 year: 2016 ident: bib133 article-title: Identifying dynamic functional connectivity changes in dementia with lewy bodies based on product hidden Markov models publication-title: Front. Comput. Neurosci. – volume: 37 start-page: 2918 year: 2016 end-page: 2930 ident: bib33 article-title: Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder publication-title: Hum. Brain Mapp. – volume: 5 start-page: 245 year: 2014 end-page: 255 ident: bib135 article-title: Optimizing real time fmri neurofeedback for therapeutic discovery and development publication-title: NeuroImage: Clin. – volume: 17 start-page: 718 year: 2016 end-page: 731 ident: bib26 article-title: Mind-wandering as spontaneous thought: a dynamic framework publication-title: Nat. Rev. Neurosci. – volume: 65 start-page: 216 year: 2013 end-page: 222 ident: bib75 article-title: Tracking dynamic resting-state networks at higher frequencies using MR-encephalography publication-title: NeuroImage – reference: Ou, J., Xie, L., Wang, P., Li, X., Zhu, D., Jiang, R., Wang, Y., Chen, Y., Zhang, J., Liu, T., 2013. Modeling brain functional dynamics via hidden Markov models. In: 2013 Proceedings of the 6th International IEEE/EMBS Conference on Neural Engineering (NER). No. c. IEEE, pp. 569–572. – volume: 6 start-page: 10 year: 2015 ident: bib141 article-title: Multimodal imaging of dynamic functional connectivity publication-title: Front. Neurol. – volume: 5 start-page: 10 year: 2015 end-page: 22 ident: bib53 article-title: Dynamic repertoire of intrinsic brain states is reduced in propofol-induced unconsciousness publication-title: Brain Connect. – volume: 6 start-page: 8414 year: 2015 ident: bib47 article-title: Controllability of structural brain networks publication-title: Nat. Commun. – volume: 109 start-page: 3131 year: 2012 end-page: 3136 ident: bib131 article-title: Temporally-independent functional modes of spontaneous brain activity publication-title: Proc. Natl. Acad. Sci. – volume: 121 start-page: 227 year: 2015 end-page: 242 ident: bib146 article-title: The frequency dimension of fMRI dynamic connectivity: network connectivity, functional hubs and integration in the resting brain publication-title: NeuroImage – volume: 170 start-page: 55 year: 2016 end-page: 65 ident: bib36 article-title: Interaction among subsystems within default mode network diminished in schizophrenia patients: a dynamic connectivity approach publication-title: Schizophr. Res. – volume: 110 start-page: 18692 year: 2013 end-page: 18697 ident: bib69 article-title: Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks publication-title: Proc. Natl. Acad. Sci. – volume: 112 start-page: 887 year: 2015 end-page: 892 ident: bib4 article-title: Signature of consciousness in the dynamics of resting-state brain activity publication-title: Proc. Natl. Acad. Sci. – volume: 80 start-page: 144 year: 2013 end-page: 168 ident: bib130 article-title: Resting-state fmri in the human connectome project publication-title: Neuroimage – volume: 27 start-page: 843 year: 2016 end-page: 848 ident: bib136 article-title: Heredity characteristics of schizophrenia shown by dynamic functional connectivity analysis of resting-state functional MRI scans of unaffected siblings publication-title: NeuroReport – volume: 7 start-page: 143 year: 2013 ident: bib30 article-title: Detecting functional connectivity change points for single-subject fMRI data publication-title: Front. Comput. Neurosci. – volume: 117 start-page: 67 year: 2015 end-page: 79 ident: bib127 article-title: Optimization of rs-fmri pre-processing for enhanced signal-noise separation, test-retest reliability, and group discrimination publication-title: Neuroimage – reference: Shine, J.M., Koyejo, O., Poldrack, R.A., 2016. Temporal metastates are associated with differential patterns of time-resolved connectivity, network topology, and attention. Proceedings of the National Academy of Sciences (August (10)), 201604898. – volume: 2 year: 2015 ident: bib52 article-title: Brain genomics superstruct project initial data release with structural, functional, and behavioral measures publication-title: Sci. Data – volume: 145 start-page: 182 year: 2014 end-page: 189 ident: bib80 article-title: Point process analysis in brain networks of patients with diabetes publication-title: Neurocomputing – volume: 18 start-page: 744 year: 2015 end-page: 751 ident: bib6 article-title: Learning-induced autonomy of sensorimotor systems publication-title: Nat. Neurosci. – volume: 49 start-page: 1432 year: 2010 end-page: 1445 ident: bib162 article-title: The oscillating brain: complex and reliable publication-title: Neuroimage – volume: 34 start-page: 3280 year: 2013 end-page: 3298 ident: bib144 article-title: Short-time windows of correlation between large-scale functional brain networks predict vigilance intraindividually and interindividually publication-title: Hum. Brain Mapp. – volume: 360 start-page: 1001 year: 2005 end-page: 1013 ident: bib9 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. R. Soc. B: Biol. Sci. – volume: 35 start-page: 5754 year: 2014 end-page: 5775 ident: bib54 article-title: Isoflurane induces dose-dependent alterations in the cortical connectivity profiles and dynamic properties of the brain's functional architecture publication-title: Hum. Brain Mapp. – volume: 2 start-page: 83 year: 1955 end-page: 97 ident: bib70 article-title: The hungarian method for the assignment problem publication-title: Nav. Res. Logist. Q. – volume: 110 start-page: 21159 year: 2013 end-page: 21164 ident: bib134 article-title: Awake reactivation predicts memory in humans publication-title: Proc. Natl. Acad. Sci. – volume: 104 start-page: 13170 year: 2007 end-page: 13175 ident: bib91 article-title: Electrophysiological signatures of resting state networks in the human brain publication-title: Proc. Natl. Acad. Sci. – volume: 33 start-page: 52 year: 2016 end-page: 66 ident: bib16 article-title: Time-varying brain connectivity in fMRI data: whole-brain data-driven approaches for capturing and characterizing dynamic states publication-title: IEEE Signal Process. Mag. – volume: 40 start-page: 249 year: 1998 end-page: 260 ident: bib41 article-title: A new correlation-based fuzzy logic clustering algorithm for fMRI publication-title: Magn. Reson. Med. – volume: 10 start-page: 342 year: 2016 end-page: 356 ident: bib151 article-title: Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification publication-title: Brain Imaging Behav. – volume: 93 start-page: 124 year: 2014 end-page: 137 ident: bib157 article-title: Common intrinsic connectivity states among posteromedial cortex subdivisions: insights from analysis of temporal dynamics publication-title: NeuroImage – volume: 328 start-page: 876 year: 2010 end-page: 878 ident: bib101 article-title: Community structure in time-dependent, multiscale, and multiplex networks publication-title: Science – year: 2016 ident: bib68 article-title: Dynamic brain network correlates of spontaneous fluctuations in attention publication-title: Cereb. Cortex – volume: 28 start-page: 666 year: 2015 end-page: 679 ident: bib104 article-title: Characterizing and differentiating brain state dynamics via hidden Markov Models publication-title: Brain Topogr. – volume: 84 start-page: 262 year: 2014 end-page: 274 ident: bib17 article-title: The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery publication-title: Neuron – volume: 35 start-page: 5442 year: 2014 end-page: 5456 ident: bib140 article-title: Enhanced repertoire of brain dynamical states during the psychedelic experience publication-title: Hum. Brain Mapp. – volume: 133 start-page: 111 year: 2016 end-page: 128 ident: bib120 article-title: Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states publication-title: NeuroImage – volume: 103 start-page: 13848 year: 2006 end-page: 13853 ident: bib32 article-title: Consistent resting-state networks across healthy subjects publication-title: Proc. Natl. Acad. Sci. U. S. Am. – reference: Wang, C., Ong, J.L., Patanaik, A., Zhou, J., Chee, M.W., 2016. Spontaneous eyelid closures link vigilance fluctuation with fmri dynamic connectivity states. Proceedings of the National Academy of Sciences, 201523980. – volume: 7 start-page: 1 year: 2016 end-page: 13 ident: bib129 article-title: Dynamical reconfiguration of the default mode network during narrative comprehension publication-title: Nat. Commun. – volume: 24 start-page: 663 year: 2014 end-page: 676 ident: bib2 article-title: Tracking whole-brain connectivity dynamics in the resting state publication-title: Cereb. Cortex – volume: 127 start-page: 287 year: 2016 end-page: 297 ident: bib10 article-title: Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks publication-title: NeuroImage – volume: 107 start-page: 345 year: 2015 end-page: 355 ident: bib158 article-title: Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia publication-title: NeuroImage – volume: 83 start-page: 937 year: 2013 end-page: 950 ident: bib76 article-title: Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest publication-title: NeuroImage – volume: 22 start-page: 212 year: 2016 end-page: 219 ident: bib153 article-title: Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks publication-title: CNS Neurosci. Ther. – volume: 304 start-page: 1926 year: 2004 end-page: 1929 ident: bib14 article-title: Neuronal oscillations in cortical networks publication-title: Science – volume: 8 start-page: 1 year: 2014 end-page: 19 ident: bib42 article-title: The spatial structure of resting state connectivity stability on the scale of minutes publication-title: Front. Neurosci. – reference: Shakil, S., Magnuson, M.E., Keilholz, S.D., Chin-Hui Lee, 2014. Cluster-based analysis for characterizing dynamic functional connectivity. In: 2014 Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp. 982–985. – volume: 63 start-page: 1712 year: 2012 end-page: 1719 ident: bib50 article-title: Periodic changes in fMRI connectivity publication-title: NeuroImage – volume: 134 start-page: 645 year: 2016 end-page: 657 ident: bib113 article-title: Classification of schizophrenia and bipolar patients using static and dynamic resting-state fmri brain connectivity publication-title: NeuroImage – volume: 90 start-page: 196 year: 2014 end-page: 206 ident: bib87 article-title: Dynamic changes of spatial functional network connectivity in healthy individuals and schizophrenia patients using independent vector analysis publication-title: NeuroImage – volume: 6 start-page: 152 year: 2012 ident: bib103 article-title: The nki-rockland sample: a model for accelerating the pace of discovery science in psychiatry publication-title: Front. Neurosci. – volume: 103 start-page: 297 year: 2010 end-page: 321 ident: bib148 article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization publication-title: J. Neurophysiol. – volume: 5 start-page: 298 year: 2014 end-page: 308 ident: bib31 article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia publication-title: NeuroImage: Clin. – volume: 122 start-page: 399 year: 2015 end-page: 407 ident: bib125 article-title: Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives publication-title: NeuroImage – volume: 12 start-page: 785 year: 2016 end-page: 795 ident: bib94 article-title: Prediction of long-term memory scores in mci based on resting-state fmri publication-title: NeuroImage: Clin. – volume: 9 start-page: 298 year: 1999 end-page: 310 ident: bib45 article-title: On clustering fMRI time series publication-title: NeuroImage – volume: 34 start-page: 2154 year: 2013 end-page: 2177 ident: bib57 article-title: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques publication-title: Hum. Brain Mapp. – volume: 120 start-page: 133 year: 2015 end-page: 142 ident: bib155 article-title: Dynamic coherence analysis of resting fMRI data to jointly capture state-based phase, frequency, and time-domain information publication-title: NeuroImage – volume: 114 start-page: 466 year: 2015 end-page: 470 ident: bib159 article-title: Towards a statistical test for functional connectivity dynamics publication-title: NeuroImage – volume: 488 start-page: 158 year: 2011 end-page: 163 ident: bib139 article-title: Spontaneous BOLD event triggered averages for estimating functional connectivity at resting state publication-title: Neurosci. Lett. – volume: 25 start-page: 1344 year: 2014 end-page: 1349 ident: bib123 article-title: Internetwork dynamic connectivity effectively differentiates schizophrenic patients from healthy controls publication-title: NeuroReport – volume: 8 start-page: 897 year: 2014 ident: bib114 article-title: Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects publication-title: Front. Hum. Neurosci. – reference: Chang, C., Leopold, D.A., Schölvinck, M.L., Mandelkow, H., Picchioni, D., Liu, X., Frank, Q.Y., Turchi, J.N., Duyn, J.H., 2016. Tracking brain arousal fluctuations with fmri. In: Proceedings of the National Academy of Sciences, 201520613. – volume: 5 start-page: 45 year: 2015 end-page: 59 ident: bib88 article-title: Dynamic connectivity at rest predicts attention task performance publication-title: Brain Connect. – volume: 3 start-page: 1 year: 2012 end-page: 12 ident: bib138 article-title: Criticality in large-scale Brain fMRI dynamics unveiled by a novel point process analysis publication-title: Front. Physiol. – volume: 5 start-page: 1 year: 2014 end-page: 13 ident: bib72 article-title: Altered fMRI connectivity dynamics in temporal lobe epilepsy might explain seizure semiology publication-title: Front. Neurol. – volume: 6 start-page: 1 year: 2012 end-page: 22 ident: bib143 article-title: Dynamic BOLD functional connectivity in humans and its electrophysiological correlates publication-title: Front. Hum. Neurosci. – volume: 6 year: 2015 ident: bib107 article-title: Long-term neural and physiological phenotyping of a single human publication-title: Nat. Commun. – volume: 7 start-page: 1094 year: 1997 end-page: 1101 ident: bib7 article-title: Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part I: reproducibility publication-title: J. Magn. Reson. Imaging – volume: 87 start-page: 657 year: 2015 end-page: 670 ident: bib73 article-title: Functional system and areal organization of a highly sampled individual human brain publication-title: Neuron – reference: Meskaldji, D.E., Morgenthaler, S., Ville, D.V.D., 2015. New measures of brain functional connectivity by temporal analysis of extreme events. In: Proceedings of the Twelfth IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI'15). pp. 26–29. – volume: 8 start-page: 1 year: 2014 end-page: 13 ident: bib119 article-title: Dynamic network participation of functional connectivity hubs assessed by resting-state fMRI publication-title: Front. Hum. Neurosci. – volume: 102 start-page: 9673 year: 2005 end-page: 9678 ident: bib40 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. U. S. Am. – volume: 109 start-page: 5487 year: 2012 end-page: 5492 ident: bib44 article-title: Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis publication-title: Proc. Natl. Acad. Sci. – volume: 104 start-page: 430 year: 2015 end-page: 436 ident: bib78 article-title: On spurious and real fluctuations of dynamic functional connectivity during rest publication-title: NeuroImage – volume: 112 start-page: 8762 year: 2015 end-page: 8767 ident: bib43 article-title: Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns publication-title: Proc. Natl. Acad. Sci. – volume: 54 start-page: 1140 year: 2011 end-page: 1150 ident: bib90 article-title: Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans publication-title: NeuroImage – volume: 6 start-page: 7751 year: 2015 ident: bib63 article-title: Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks publication-title: Nat. Commun. – volume: 23 start-page: 351 year: 2010 end-page: 366 ident: bib117 article-title: A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia publication-title: Magn. Reson. Mater. Phys. Biol. Med. – volume: 5 start-page: e13311 year: 2010 ident: bib46 article-title: Task-related effects on the temporal and spatial dynamics of resting-state functional connectivity in the default network publication-title: PLoS One – volume: 4 start-page: 231 year: 2014 end-page: 241 ident: bib89 article-title: Age-related differences in the dynamic architecture of intrinsic networks publication-title: Brain Connect. – volume: 4 start-page: 780 year: 2014 end-page: 790 ident: bib81 article-title: DynamicBC: a MATLAB toolbox for dynamic brain connectome analysis publication-title: Brain Connect. – volume: 22 start-page: 1326 year: 2001 end-page: 1333 ident: bib28 article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data publication-title: Am. J. Neuroradiol. – volume: 23 start-page: 426 year: 2013 end-page: 437 ident: bib37 article-title: Unsupervised learning of functional network dynamics in resting state fMRI publication-title: Brain – volume: 36 start-page: 3260 year: 2015 end-page: 3272 ident: bib38 article-title: Task-related modulation of functional connectivity variability and its behavioral correlations publication-title: Hum. Brain Mapp. – volume: 105 start-page: 536 year: 2015 end-page: 551 ident: bib108 article-title: Recent progress and outstanding issues in motion correction in resting state fmri publication-title: Neuroimage – volume: 16 start-page: 115 year: 1998 end-page: 125 ident: bib8 article-title: Quantification in functional magnetic resonance imaging: fuzzy clustering vs. correlation analysis publication-title: Magn. Reson. Imaging – reference: Shine, J.M., Bell, P.T., Koyejo, O., Gorgolewski, K.J., Moodie, C.A., Poldrack, R.A., 2015a. Dynamic fluctuations in integration and segregation within the human functional connectome. arXiv preprint – volume: 10 start-page: 381 year: 2016 ident: bib142 article-title: The voxel-wise functional connectome can be efficiently derived from co-activations in a sparse spatio-temporal point-process publication-title: Front. Neurosci. – volume: 34 start-page: 3982 year: 2014 end-page: 3992 ident: bib118 article-title: The time course of task-specific memory consolidation effects in resting state networks publication-title: J. Neurosci. – volume: 219 start-page: 2001 year: 2014 end-page: 2015 ident: bib82 article-title: Dynamical intrinsic functional architecture of the brain during absence seizures publication-title: Brain Struct. Funct. – volume: 9 year: 2015 ident: bib111 article-title: Predicting individual brain maturity using dynamic functional connectivity publication-title: Front. Hum. Neurosci. – volume: 35 start-page: 9786 year: 2015 end-page: 9798 ident: bib48 article-title: Visual learning induces changes in resting-state fmri multivariate pattern of information publication-title: J. Neurosci. – reference: Sourty, M., Thoraval, L., Armspach, J.-p., Foucher, J., 2016a. Product Hidden Markov Models for subject-based dynamic functional connectivity analysis of the resting state brain. In: 2016 IEEE Proceedings of the 13th International Symposium on Biomedical Imaging (ISBI). IEEE, pp. 1291–1294. – volume: 9 start-page: e100012 year: 2014 ident: bib3 article-title: Posterior cingulate cortex-related co-activation patterns: a resting state fMRI study in propofol-induced loss of consciousness publication-title: PLoS One – volume: 72 start-page: 227 year: 2013 end-page: 236 ident: bib20 article-title: EEG correlates of time-varying BOLD functional connectivity publication-title: NeuroImage – volume: 6 start-page: 26976 year: 2016 ident: bib34 article-title: Characterizing dynamic local functional connectivity in the human brain publication-title: Sci. Rep. – volume: 10 start-page: 166 year: 1999 end-page: 176 ident: bib99 article-title: Explorative signal processing in functional MR imaging publication-title: Int. J. Imaging Syst. Technol. – reference: Van De Ville, D., Karahanoğlu, F.I., 2016. Resting-state neuroimaging unravels functional organization in the brain. SPIE Newsroom, pp. 2–4. – volume: 7 start-page: 1102 year: 1997 end-page: 1108 ident: bib100 article-title: Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part II: quantification publication-title: J. Magn. Reson. Imaging – volume: 10 start-page: 186 year: 2009 end-page: 198 ident: bib13 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat. Rev. Neurosci. – volume: 37 start-page: 3282 year: 2016 end-page: 3296 ident: bib23 article-title: High-order resting-state functional connectivity network for MCI classification publication-title: Hum. Brain Mapp. – reference: Miller, R.L., Yaesoubi, M., Calhoun, V.D., 2014. Higher dimensional analysis shows reduced dynamism of time-varying network connectivity in schizophrenia patients. In: 2014 Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp. 3837–3840. – volume: 56 start-page: 1222 year: 2011 end-page: 1234 ident: bib61 article-title: Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches publication-title: NeuroImage – year: 2016 ident: bib74 article-title: On the stability of bold fmri correlations publication-title: Cereb. Cortex – reference: Preti, M.G., Haller, S., Giannakopoulos, P., Van De Ville, D., 2015. Decomposing dynamic functional connectivity onto phase-dependent eigenconnectivities using the Hilbert transform. In: 2015 IEEE Proceedings of the 12th International Symposium on Biomedical Imaging (ISBI). IEEE, pp. 38–41. – volume: 34 start-page: 537 year: 1995 end-page: 541 ident: bib11 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar mri publication-title: Magn. Reson. Med. – volume: 14 start-page: e1002469 year: 2016 ident: bib22 article-title: Distinct global brain dynamics and spatiotemporal organization of the salience network publication-title: PLoS Biol. – volume: 55 start-page: 287 year: 2011 end-page: 295 ident: bib49 article-title: Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fmri study publication-title: Neuroimage – volume: 112 start-page: 11678 year: 2015 end-page: 11683 ident: bib12 article-title: Dynamic reconfiguration of frontal brain networks during executive cognition in humans publication-title: Proc. Natl. Acad. Sci. U. S. Am. – volume: 35 start-page: 6849 year: 2015 end-page: 6859 ident: bib55 article-title: Tracking the Brain's functional coupling dynamics over development publication-title: J. Neurosci. – volume: 111 start-page: 10341 year: 2014 end-page: 10346 ident: bib160 article-title: Time-resolved resting-state brain networks publication-title: Proc. Natl. Acad. Sci. – volume: 83 start-page: 826 year: 2013 end-page: 836 ident: bib145 article-title: Neural correlates of time-varying functional connectivity in the rat publication-title: NeuroImage – volume: 110 start-page: 4392 year: 2013 end-page: 4397 ident: bib86 article-title: Time-varying functional network information extracted from brief instances of spontaneous brain activity publication-title: Proc. Natl. Acad. Sci. U. S. Am. – volume: 1 start-page: 339 year: 2011 end-page: 347 ident: bib65 article-title: A sliding time-window ICA reveals spatial variability of the default mode network in time publication-title: Brain Connect. – volume: 107 start-page: 85 year: 2015 end-page: 94 ident: bib156 article-title: Mutually temporally independent connectivity patterns: a new framework to study the dynamics of brain connectivity at rest with application to explain group difference based on gender publication-title: NeuroImage – volume: 485 start-page: 26 year: 2010 end-page: 31 ident: bib137 article-title: Brain resting state is disrupted in chronic back pain patients publication-title: Neurosci. Lett. – volume: 108 start-page: 7641 year: 2011 end-page: 7646 ident: bib5 article-title: Dynamic reconfiguration of human brain networks during learning publication-title: Proc. Natl. Acad. Sci. – volume: 112 start-page: 8463 year: 2015 end-page: 8468 ident: bib116 article-title: Ongoing dynamics in large-scale functional connectivity predict perception publication-title: Proc. Natl. Acad. Sci. – volume: 50 start-page: 970 year: 2010 end-page: 983 ident: bib161 article-title: Whole-brain anatomical networks: does the choice of nodes matter? publication-title: Neuroimage – volume: 7 start-page: e39731 year: 2012 ident: bib59 article-title: Non-stationarity in the resting brain's modular architecture publication-title: PLoS One – volume: 6 start-page: 403 year: 2016 end-page: 414 ident: bib39 article-title: Underconnected, but not broken? Dynamic functional connectivity MRI shows underconnectivity in autism is linked to increased intra-individual variability across time publication-title: Brain Connect. – volume: 220 start-page: 37 year: 2015 end-page: 46 ident: bib35 article-title: Dynamic brain functional connectivity modulated by resting-state networks publication-title: Brain Struct. Funct. – year: 2016 ident: bib128 article-title: Data quality influences observed links between functional connectivity and behavior publication-title: Cereb. Cortex – reference: Wee, C.-Y., Yang, S., Yap, P.-T., Shen, D., 2013. Temporally dynamic resting-state functional connectivity networks for early mci identification. In: Proceedings of the International Workshop on Machine Learning in Medical Imaging. Springer, pp. 139–146. – volume: 111 start-page: 476 year: 2015 end-page: 488 ident: bib21 article-title: Introducing co-activation pattern metrics to quantify spontaneous brain network dynamics publication-title: NeuroImage – volume: 124 start-page: 367 year: 2016 end-page: 378 ident: bib122 article-title: Changes in functional connectivity dynamics associated with vigilance network in taxi drivers publication-title: NeuroImage – volume: 73 start-page: 121 year: 2013 end-page: 134 ident: bib62 article-title: Total activation: fmri deconvolution through spatio-temporal regularization publication-title: Neuroimage – volume: 9 year: 2015 ident: bib154 article-title: Dynamic connectivity detection: an algorithm for determining functional connectivity change points in fMRI data publication-title: Front. Neurosci. – volume: 5 start-page: 35 year: 2014 end-page: 44 ident: bib98 article-title: Evolution of functional connectivity of brain networks and their dynamic interaction in temporal Lobe Epilepsy publication-title: Brain Connect. – volume: 3 start-page: 31 year: 2013 end-page: 40 ident: bib64 article-title: Dynamic properties of functional connectivity in the rodent publication-title: Brain Connect. – volume: 44 start-page: 893 year: 2009 end-page: 905 ident: bib102 article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? publication-title: Neuroimage – volume: 61 start-page: 907 year: 2012 end-page: 920 ident: bib29 article-title: Dynamic connectivity regression: determining state-related changes in brain connectivity publication-title: NeuroImage – volume: 101 start-page: 531 year: 2014 end-page: 546 ident: bib84 article-title: Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach publication-title: NeuroImage – volume: 142 start-page: 14 year: 2016 end-page: 26 ident: bib106 article-title: A wavelet-based estimator of the degrees of freedom in denoised fmri time series for probabilistic testing of functional connectivity and brain graphs publication-title: NeuroImage – volume: 00 start-page: 1 year: 2016 end-page: 12 ident: bib92 article-title: Dynamic functional connectivity of neurocognitive networks in children publication-title: Hum. Brain Mapp. – reference: . – volume: 7 start-page: e37828 year: 2012 ident: bib152 article-title: Resting-state multi-spectrum functional connectivity networks for identification of mci patients publication-title: PloS One – volume: 41 start-page: 1822 year: 2016 end-page: 1830 ident: bib60 article-title: Dynamic resting-state functional connectivity in major depression publication-title: Neuropsychopharmacology – volume: 100 start-page: 471 year: 2014 end-page: 480 ident: bib67 article-title: Dynamic functional connectivity of the default mode network tracks daydreaming publication-title: NeuroImage – volume: 103 start-page: 427 year: 2014 end-page: 443 ident: bib97 article-title: Estimating time-varying brain connectivity networks from functional MRI time series publication-title: NeuroImage – volume: 127 start-page: 242 year: 2016 end-page: 256 ident: bib51 article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? publication-title: NeuroImage – volume: 80 start-page: 360 year: 2013 end-page: 378 ident: bib56 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: NeuroImage – volume: 221 start-page: 2985 year: 2016 end-page: 2997 ident: bib83 article-title: Cerebral functional connectivity periodically (de)synchronizes with anatomical constraints publication-title: Brain Struct. Funct. – volume: 59 start-page: 2994 year: 2012 end-page: 3002 ident: bib112 article-title: Caffeine increases the temporal variability of resting-state BOLD connectivity in the motor cortex publication-title: NeuroImage – volume: 70 start-page: 066111 year: 2004 ident: bib27 article-title: Finding community structure in very large networks publication-title: Phys. Rev. E – volume: 4 start-page: 741 year: 2014 end-page: 759 ident: bib58 article-title: Behavioral relevance of the dynamics of the functional brain connectome publication-title: Brain Connect. – reference: Price, T., Wee, C.-Y., Gao, W., Shen, D., 2014. Multiple-network classification of childhood autism using functional connectivity dynamics. In: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 177–184. – volume: 10 start-page: e0140134 year: 2015 ident: bib25 article-title: Reproducibility and temporal structure in weekly resting-state fmri over a period of 3.5 years publication-title: PloS One – volume: 81 start-page: 422 year: 2013 end-page: 430 ident: bib66 article-title: Connectivity-based neurofeedback: dynamic causal modeling for real-time fmri publication-title: Neuroimage – volume: 52 start-page: 1059 year: 2010 end-page: 1069 ident: bib115 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage – volume: 35 start-page: 5984 year: 2014 end-page: 5995 ident: bib77 article-title: Disentangling dynamic networks: separated and joint expressions of functional connectivity patterns in time publication-title: Hum. Brain Mapp. – volume: 125 start-page: 601 year: 2016 end-page: 615 ident: bib24 article-title: Time-dependence of graph theory metrics in functional connectivity analysis publication-title: NeuroImage – volume: 11 start-page: e0149849 year: 2016 ident: bib96 article-title: Higher dimensional meta-state analysis reveals reduced resting fmri connectivity dynamism in schizophrenia patients publication-title: PloS One – volume: 10 start-page: e0124577 year: 2015 ident: bib1 article-title: Functional connectivity in MRI is driven by spontaneous BOLD events publication-title: PLoS One – volume: 35 start-page: 1761 year: 2014 end-page: 1778 ident: bib79 article-title: Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients publication-title: Hum. Brain Mapp. – volume: 110 start-page: 18692 issue: November (46) year: 2013 ident: 10.1016/j.neuroimage.2016.12.061_bib69 article-title: Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1312902110 – volume: 11 start-page: e0149849 issue: 3 year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib96 article-title: Higher dimensional meta-state analysis reveals reduced resting fmri connectivity dynamism in schizophrenia patients publication-title: PloS One doi: 10.1371/journal.pone.0149849 – volume: 8 start-page: 897 issue: November year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib114 article-title: Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects publication-title: Front. Hum. Neurosci. – volume: 7 start-page: 1102 issue: 6 year: 1997 ident: 10.1016/j.neuroimage.2016.12.061_bib100 article-title: Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part II: quantification publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.1880070624 – volume: 8 start-page: 1 issue: May (195) year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib119 article-title: Dynamic network participation of functional connectivity hubs assessed by resting-state fMRI publication-title: Front. Hum. Neurosci. – volume: 52 start-page: 1059 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2016.12.061_bib115 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 6 year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib107 article-title: Long-term neural and physiological phenotyping of a single human publication-title: Nat. Commun. doi: 10.1038/ncomms9885 – volume: 80 start-page: 360 issue: October (4) year: 2013 ident: 10.1016/j.neuroimage.2016.12.061_bib56 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.079 – volume: 44 start-page: 893 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2016.12.061_bib102 article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.09.036 – volume: 6 start-page: 10 year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib141 article-title: Multimodal imaging of dynamic functional connectivity publication-title: Front. Neurol. doi: 10.3389/fneur.2015.00010 – volume: 117 start-page: 67 year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib127 article-title: Optimization of rs-fmri pre-processing for enhanced signal-noise separation, test-retest reliability, and group discrimination publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.05.015 – ident: 10.1016/j.neuroimage.2016.12.061_bib93 doi: 10.1109/ISBI.2015.7163808 – volume: 50 start-page: 970 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2016.12.061_bib161 article-title: Whole-brain anatomical networks: does the choice of nodes matter? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.027 – volume: 111 start-page: 476 issue: May year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib21 article-title: Introducing co-activation pattern metrics to quantify spontaneous brain network dynamics publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.01.057 – volume: 100 start-page: 471 issue: October year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib67 article-title: Dynamic functional connectivity of the default mode network tracks daydreaming publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.06.044 – volume: 109 start-page: 5487 issue: 14 year: 2012 ident: 10.1016/j.neuroimage.2016.12.061_bib44 article-title: Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1121049109 – volume: 103 start-page: 297 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2016.12.061_bib148 article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization publication-title: J. Neurophysiol. doi: 10.1152/jn.00783.2009 – volume: 102 start-page: 9673 issue: 27 year: 2005 ident: 10.1016/j.neuroimage.2016.12.061_bib40 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. U. S. Am. doi: 10.1073/pnas.0504136102 – volume: 145 start-page: 182 year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib80 article-title: Point process analysis in brain networks of patients with diabetes publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.05.045 – volume: 221 start-page: 2985 issue: July (6) year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib83 article-title: Cerebral functional connectivity periodically (de)synchronizes with anatomical constraints publication-title: Brain Struct. Funct. doi: 10.1007/s00429-015-1083-y – volume: 360 start-page: 1001 issue: May (1457) year: 2005 ident: 10.1016/j.neuroimage.2016.12.061_bib9 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. R. Soc. B: Biol. Sci. doi: 10.1098/rstb.2005.1634 – volume: 127 start-page: 287 issue: February year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib10 article-title: Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.12.001 – volume: 72 start-page: 227 issue: May year: 2013 ident: 10.1016/j.neuroimage.2016.12.061_bib20 article-title: EEG correlates of time-varying BOLD functional connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.01.049 – volume: 17 start-page: 718 issue: 11 year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib26 article-title: Mind-wandering as spontaneous thought: a dynamic framework publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2016.113 – volume: 14 start-page: e1002469 issue: June (6) year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib22 article-title: Distinct global brain dynamics and spatiotemporal organization of the salience network publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1002469 – volume: 6 start-page: 8414 year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib47 article-title: Controllability of structural brain networks publication-title: Nat. Commun. doi: 10.1038/ncomms9414 – volume: 84 start-page: 262 issue: October (2) year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib17 article-title: The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery publication-title: Neuron doi: 10.1016/j.neuron.2014.10.015 – volume: 10 start-page: 60 issue: June year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib133 article-title: Identifying dynamic functional connectivity changes in dementia with lewy bodies based on product hidden Markov models publication-title: Front. Comput. Neurosci. – volume: 50 start-page: 81 issue: March (1) year: 2010 ident: 10.1016/j.neuroimage.2016.12.061_bib18 article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.011 – volume: 5 start-page: 1 issue: September year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib72 article-title: Altered fMRI connectivity dynamics in temporal lobe epilepsy might explain seizure semiology publication-title: Front. Neurol. – volume: 37 start-page: 2918 issue: August (8) year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib33 article-title: Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23215 – volume: 87 start-page: 657 issue: 3 year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib73 article-title: Functional system and areal organization of a highly sampled individual human brain publication-title: Neuron doi: 10.1016/j.neuron.2015.06.037 – volume: 40 start-page: 249 issue: 2 year: 1998 ident: 10.1016/j.neuroimage.2016.12.061_bib41 article-title: A new correlation-based fuzzy logic clustering algorithm for fMRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910400211 – volume: 90 start-page: 196 issue: April year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib87 article-title: Dynamic changes of spatial functional network connectivity in healthy individuals and schizophrenia patients using independent vector analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.12.063 – volume: 35 start-page: 5754 issue: December (12) year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib54 article-title: Isoflurane induces dose-dependent alterations in the cortical connectivity profiles and dynamic properties of the brain's functional architecture publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22583 – volume: 110 start-page: 4392 issue: 11 year: 2013 ident: 10.1016/j.neuroimage.2016.12.061_bib86 article-title: Time-varying functional network information extracted from brief instances of spontaneous brain activity publication-title: Proc. Natl. Acad. Sci. U. S. Am. doi: 10.1073/pnas.1216856110 – volume: 100 start-page: 11053 issue: 19 year: 2003 ident: 10.1016/j.neuroimage.2016.12.061_bib71 article-title: Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1831638100 – volume: 24 start-page: 663 issue: March (3) year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib2 article-title: Tracking whole-brain connectivity dynamics in the resting state publication-title: Cereb. Cortex doi: 10.1093/cercor/bhs352 – volume: 28 start-page: 666 issue: September (5) year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib104 article-title: Characterizing and differentiating brain state dynamics via hidden Markov Models publication-title: Brain Topogr. doi: 10.1007/s10548-014-0406-2 – volume: 35 start-page: 5442 issue: November (11) year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib140 article-title: Enhanced repertoire of brain dynamical states during the psychedelic experience publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22562 – volume: 7 start-page: e39731 issue: June (6) year: 2012 ident: 10.1016/j.neuroimage.2016.12.061_bib59 article-title: Non-stationarity in the resting brain's modular architecture publication-title: PLoS One doi: 10.1371/journal.pone.0039731 – volume: 35 start-page: 5984 issue: December (12) year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib77 article-title: Disentangling dynamic networks: separated and joint expressions of functional connectivity patterns in time publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22599 – volume: 103 start-page: 13848 issue: 37 year: 2006 ident: 10.1016/j.neuroimage.2016.12.061_bib32 article-title: Consistent resting-state networks across healthy subjects publication-title: Proc. Natl. Acad. Sci. U. S. Am. doi: 10.1073/pnas.0601417103 – volume: 36 start-page: 3260 issue: August (8) year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib38 article-title: Task-related modulation of functional connectivity variability and its behavioral correlations publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22847 – volume: 127 start-page: 242 issue: February year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib51 article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.11.055 – volume: 5 start-page: 298 issue: July year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib31 article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2014.07.003 – volume: 6 start-page: 1 issue: 339 year: 2012 ident: 10.1016/j.neuroimage.2016.12.061_bib143 article-title: Dynamic BOLD functional connectivity in humans and its electrophysiological correlates publication-title: Front. Hum. Neurosci. – volume: 114 start-page: 466 issue: July year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib159 article-title: Towards a statistical test for functional connectivity dynamics publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.03.047 – volume: 33 start-page: 52 issue: May (3) year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib16 article-title: Time-varying brain connectivity in fMRI data: whole-brain data-driven approaches for capturing and characterizing dynamic states publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2015.2478915 – volume: 5 start-page: 45 issue: February (1) year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib88 article-title: Dynamic connectivity at rest predicts attention task performance publication-title: Brain Connect. doi: 10.1089/brain.2014.0248 – volume: 7 start-page: 1094 issue: 6 year: 1997 ident: 10.1016/j.neuroimage.2016.12.061_bib7 article-title: Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part I: reproducibility publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.1880070623 – volume: 63 start-page: 1712 issue: November (3) year: 2012 ident: 10.1016/j.neuroimage.2016.12.061_bib50 article-title: Periodic changes in fMRI connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.06.078 – volume: 125 start-page: 601 issue: January year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib24 article-title: Time-dependence of graph theory metrics in functional connectivity analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.10.070 – volume: 2 start-page: 83 issue: 1–2 year: 1955 ident: 10.1016/j.neuroimage.2016.12.061_bib70 article-title: The hungarian method for the assignment problem publication-title: Nav. Res. Logist. Q. doi: 10.1002/nav.3800020109 – volume: 23 start-page: 426 year: 2013 ident: 10.1016/j.neuroimage.2016.12.061_bib37 article-title: Unsupervised learning of functional network dynamics in resting state fMRI publication-title: Brain – year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib128 article-title: Data quality influences observed links between functional connectivity and behavior publication-title: Cereb. Cortex doi: 10.1093/cercor/bhw253 – volume: 70 start-page: 066111 issue: 6 year: 2004 ident: 10.1016/j.neuroimage.2016.12.061_bib27 article-title: Finding community structure in very large networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.70.066111 – volume: 56 start-page: 1222 issue: June (3) year: 2011 ident: 10.1016/j.neuroimage.2016.12.061_bib61 article-title: Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.03.033 – volume: 16 start-page: 115 issue: 2 year: 1998 ident: 10.1016/j.neuroimage.2016.12.061_bib8 article-title: Quantification in functional magnetic resonance imaging: fuzzy clustering vs. correlation analysis publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(97)00277-4 – volume: 9 issue: September year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib154 article-title: Dynamic connectivity detection: an algorithm for determining functional connectivity change points in fMRI data publication-title: Front. Neurosci. – ident: 10.1016/j.neuroimage.2016.12.061_bib132 doi: 10.1109/ISBI.2016.7493503 – volume: 5 start-page: e13311 issue: 10 year: 2010 ident: 10.1016/j.neuroimage.2016.12.061_bib46 article-title: Task-related effects on the temporal and spatial dynamics of resting-state functional connectivity in the default network publication-title: PLoS One doi: 10.1371/journal.pone.0013311 – ident: 10.1016/j.neuroimage.2016.12.061_bib105 doi: 10.1109/NER.2013.6695998 – volume: 10 start-page: e0140134 issue: 10 year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib25 article-title: Reproducibility and temporal structure in weekly resting-state fmri over a period of 3.5 years publication-title: PloS One doi: 10.1371/journal.pone.0140134 – volume: 9 issue: July year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib111 article-title: Predicting individual brain maturity using dynamic functional connectivity publication-title: Front. Hum. Neurosci. – volume: 22 start-page: 1326 issue: 7 year: 2001 ident: 10.1016/j.neuroimage.2016.12.061_bib28 article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data publication-title: Am. J. Neuroradiol. – year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib74 article-title: On the stability of bold fmri correlations publication-title: Cereb. Cortex doi: 10.1093/cercor/bhw265 – volume: 121 start-page: 227 issue: November year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib146 article-title: The frequency dimension of fMRI dynamic connectivity: network connectivity, functional hubs and integration in the resting brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.07.022 – ident: 10.1016/j.neuroimage.2016.12.061_bib19 doi: 10.1073/pnas.1520613113 – volume: 61 start-page: 907 issue: July (4) year: 2012 ident: 10.1016/j.neuroimage.2016.12.061_bib29 article-title: Dynamic connectivity regression: determining state-related changes in brain connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.03.070 – ident: 10.1016/j.neuroimage.2016.12.061_bib150 doi: 10.1007/978-3-319-02267-3_18 – volume: 304 start-page: 1926 issue: June (5679) year: 2004 ident: 10.1016/j.neuroimage.2016.12.061_bib14 article-title: Neuronal oscillations in cortical networks publication-title: Science doi: 10.1126/science.1099745 – volume: 488 start-page: 158 issue: January (2) year: 2011 ident: 10.1016/j.neuroimage.2016.12.061_bib139 article-title: Spontaneous BOLD event triggered averages for estimating functional connectivity at resting state publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2010.11.020 – volume: 65 start-page: 216 issue: January year: 2013 ident: 10.1016/j.neuroimage.2016.12.061_bib75 article-title: Tracking dynamic resting-state networks at higher frequencies using MR-encephalography publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.10.015 – volume: 170 start-page: 55 issue: 1 year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib36 article-title: Interaction among subsystems within default mode network diminished in schizophrenia patients: a dynamic connectivity approach publication-title: Schizophr. Res. doi: 10.1016/j.schres.2015.11.021 – volume: 2 year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib52 article-title: Brain genomics superstruct project initial data release with structural, functional, and behavioral measures publication-title: Sci. Data doi: 10.1038/sdata.2015.31 – volume: 93 start-page: 124 issue: June year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib157 article-title: Common intrinsic connectivity states among posteromedial cortex subdivisions: insights from analysis of temporal dynamics publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.02.014 – volume: 485 start-page: 26 issue: November (1) year: 2010 ident: 10.1016/j.neuroimage.2016.12.061_bib137 article-title: Brain resting state is disrupted in chronic back pain patients publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2010.08.053 – volume: 54 start-page: 1140 issue: January (2) year: 2011 ident: 10.1016/j.neuroimage.2016.12.061_bib90 article-title: Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.08.030 – volume: 105 start-page: 536 year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib108 article-title: Recent progress and outstanding issues in motion correction in resting state fmri publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.044 – volume: 27 start-page: 843 issue: August (11) year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib136 article-title: Heredity characteristics of schizophrenia shown by dynamic functional connectivity analysis of resting-state functional MRI scans of unaffected siblings publication-title: NeuroReport doi: 10.1097/WNR.0000000000000622 – volume: 35 start-page: 9786 issue: 27 year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib48 article-title: Visual learning induces changes in resting-state fmri multivariate pattern of information publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3920-14.2015 – volume: 6 start-page: 7751 year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib63 article-title: Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks publication-title: Nat. Commun. doi: 10.1038/ncomms8751 – volume: 112 start-page: 887 issue: January (3) year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib4 article-title: Signature of consciousness in the dynamics of resting-state brain activity publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1418031112 – volume: 12 start-page: 785 year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib94 article-title: Prediction of long-term memory scores in mci based on resting-state fmri publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2016.10.004 – year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib68 article-title: Dynamic brain network correlates of spontaneous fluctuations in attention publication-title: Cereb. Cortex doi: 10.1093/cercor/bhw029 – volume: 108 start-page: 7641 issue: May (18) year: 2011 ident: 10.1016/j.neuroimage.2016.12.061_bib5 article-title: Dynamic reconfiguration of human brain networks during learning publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1018985108 – volume: 34 start-page: 537 issue: 4 year: 1995 ident: 10.1016/j.neuroimage.2016.12.061_bib11 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar mri publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910340409 – ident: 10.1016/j.neuroimage.2016.12.061_bib124 – ident: 10.1016/j.neuroimage.2016.12.061_bib109 doi: 10.1109/ISBI.2015.7163811 – volume: 7 start-page: 143 issue: October year: 2013 ident: 10.1016/j.neuroimage.2016.12.061_bib30 article-title: Detecting functional connectivity change points for single-subject fMRI data publication-title: Front. Comput. Neurosci. – volume: 6 start-page: 403 issue: June (5) year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib39 article-title: Underconnected, but not broken? Dynamic functional connectivity MRI shows underconnectivity in autism is linked to increased intra-individual variability across time publication-title: Brain Connect. doi: 10.1089/brain.2015.0389 – volume: 219 start-page: 2001 issue: November (6) year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib82 article-title: Dynamical intrinsic functional architecture of the brain during absence seizures publication-title: Brain Struct. Funct. doi: 10.1007/s00429-013-0619-2 – volume: 5 start-page: 10 issue: February (1) year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib53 article-title: Dynamic repertoire of intrinsic brain states is reduced in propofol-induced unconsciousness publication-title: Brain Connect. doi: 10.1089/brain.2014.0230 – volume: 101 start-page: 531 issue: November year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib84 article-title: Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.06.052 – ident: 10.1016/j.neuroimage.2016.12.061_bib149 doi: 10.1073/pnas.1523980113 – volume: 122 start-page: 399 issue: November year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib125 article-title: Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.07.064 – volume: 142 start-page: 14 issue: November (15) year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib106 article-title: A wavelet-based estimator of the degrees of freedom in denoised fmri time series for probabilistic testing of functional connectivity and brain graphs publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.04.052 – volume: 109 start-page: 3131 issue: 8 year: 2012 ident: 10.1016/j.neuroimage.2016.12.061_bib131 article-title: Temporally-independent functional modes of spontaneous brain activity publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1121329109 – volume: 5 start-page: 35 issue: 1 year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib98 article-title: Evolution of functional connectivity of brain networks and their dynamic interaction in temporal Lobe Epilepsy publication-title: Brain Connect. doi: 10.1089/brain.2014.0251 – volume: 10 start-page: 381 year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib142 article-title: The voxel-wise functional connectome can be efficiently derived from co-activations in a sparse spatio-temporal point-process publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00381 – volume: 103 start-page: 427 issue: December year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib97 article-title: Estimating time-varying brain connectivity networks from functional MRI time series publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.07.033 – volume: 9 start-page: 298 issue: 3 year: 1999 ident: 10.1016/j.neuroimage.2016.12.061_bib45 article-title: On clustering fMRI time series publication-title: NeuroImage doi: 10.1006/nimg.1998.0391 – volume: 34 start-page: 2154 issue: September (9) year: 2013 ident: 10.1016/j.neuroimage.2016.12.061_bib57 article-title: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22058 – volume: 83 start-page: 937 issue: December year: 2013 ident: 10.1016/j.neuroimage.2016.12.061_bib76 article-title: Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.07.019 – volume: 104 start-page: 430 issue: January year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib78 article-title: On spurious and real fluctuations of dynamic functional connectivity during rest publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.09.007 – volume: 18 start-page: 744 issue: 5 year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib6 article-title: Learning-induced autonomy of sensorimotor systems publication-title: Nat. Neurosci. doi: 10.1038/nn.3993 – volume: 9 start-page: e100012 issue: June (6) year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib3 article-title: Posterior cingulate cortex-related co-activation patterns: a resting state fMRI study in propofol-induced loss of consciousness publication-title: PLoS One doi: 10.1371/journal.pone.0100012 – volume: 10 start-page: e0124577 issue: April (4) year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib1 article-title: Functional connectivity in MRI is driven by spontaneous BOLD events publication-title: PLoS One doi: 10.1371/journal.pone.0124577 – volume: 23 start-page: 351 issue: December (5–6) year: 2010 ident: 10.1016/j.neuroimage.2016.12.061_bib117 article-title: A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia publication-title: Magn. Reson. Mater. Phys. Biol. Med. doi: 10.1007/s10334-010-0197-8 – volume: 83 start-page: 826 issue: December year: 2013 ident: 10.1016/j.neuroimage.2016.12.061_bib145 article-title: Neural correlates of time-varying functional connectivity in the rat publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.07.036 – volume: 4 start-page: 231 issue: May (4) year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib89 article-title: Age-related differences in the dynamic architecture of intrinsic networks publication-title: Brain Connect. doi: 10.1089/brain.2013.0205 – volume: 00 start-page: 1 issue: August year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib92 article-title: Dynamic functional connectivity of neurocognitive networks in children publication-title: Hum. Brain Mapp. – volume: 111 start-page: 10341 issue: July (28) year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib160 article-title: Time-resolved resting-state brain networks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1400181111 – volume: 4 start-page: 780 issue: December (10) year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib81 article-title: DynamicBC: a MATLAB toolbox for dynamic brain connectome analysis publication-title: Brain Connect. doi: 10.1089/brain.2014.0253 – volume: 3 start-page: 1 issue: February year: 2012 ident: 10.1016/j.neuroimage.2016.12.061_bib138 article-title: Criticality in large-scale Brain fMRI dynamics unveiled by a novel point process analysis publication-title: Front. Physiol. – volume: 112 start-page: 11678 issue: 37 year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib12 article-title: Dynamic reconfiguration of frontal brain networks during executive cognition in humans publication-title: Proc. Natl. Acad. Sci. U. S. Am. doi: 10.1073/pnas.1422487112 – ident: 10.1016/j.neuroimage.2016.12.061_bib95 doi: 10.1109/EMBC.2014.6944460 – ident: 10.1016/j.neuroimage.2016.12.061_bib121 doi: 10.1109/EMBC.2014.6943757 – ident: 10.1016/j.neuroimage.2016.12.061_bib147 doi: 10.1117/2.1201607.006521 – volume: 220 start-page: 37 issue: January (1) year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib35 article-title: Dynamic brain functional connectivity modulated by resting-state networks publication-title: Brain Struct. Funct. doi: 10.1007/s00429-013-0634-3 – volume: 35 start-page: 1761 issue: April (4) year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib79 article-title: Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22290 – volume: 104 start-page: 13170 issue: 32 year: 2007 ident: 10.1016/j.neuroimage.2016.12.061_bib91 article-title: Electrophysiological signatures of resting state networks in the human brain publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0700668104 – volume: 10 start-page: 166 issue: 2 year: 1999 ident: 10.1016/j.neuroimage.2016.12.061_bib99 article-title: Explorative signal processing in functional MR imaging publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/(SICI)1098-1098(1999)10:2<166::AID-IMA7>3.0.CO;2-F – volume: 34 start-page: 3280 issue: December (12) year: 2013 ident: 10.1016/j.neuroimage.2016.12.061_bib144 article-title: Short-time windows of correlation between large-scale functional brain networks predict vigilance intraindividually and interindividually publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22140 – volume: 5 start-page: 245 year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib135 article-title: Optimizing real time fmri neurofeedback for therapeutic discovery and development publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2014.07.002 – volume: 107 start-page: 345 issue: February year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib158 article-title: Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.12.020 – volume: 7 start-page: 1 issue: December year: 2013 ident: 10.1016/j.neuroimage.2016.12.061_bib85 article-title: Decomposition of spontaneous brain activity into distinct fMRI co-activation patterns publication-title: Front. Syst. Neurosci. – volume: 110 start-page: 21159 issue: 52 year: 2013 ident: 10.1016/j.neuroimage.2016.12.061_bib134 article-title: Awake reactivation predicts memory in humans publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1311989110 – volume: 25 start-page: 1344 issue: December (17) year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib123 article-title: Internetwork dynamic connectivity effectively differentiates schizophrenic patients from healthy controls publication-title: NeuroReport doi: 10.1097/WNR.0000000000000267 – volume: 34 start-page: 501 issue: 3 year: 2013 ident: 10.1016/j.neuroimage.2016.12.061_bib15 article-title: Paradigm free mapping with sparse regression automatically detects single-trial functional magnetic resonance imaging blood oxygenation level dependent responses publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21452 – volume: 133 start-page: 111 issue: June year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib120 article-title: Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.02.074 – volume: 134 start-page: 645 year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib113 article-title: Classification of schizophrenia and bipolar patients using static and dynamic resting-state fmri brain connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.04.051 – volume: 3 start-page: 31 issue: February (1) year: 2013 ident: 10.1016/j.neuroimage.2016.12.061_bib64 article-title: Dynamic properties of functional connectivity in the rodent publication-title: Brain Connect. doi: 10.1089/brain.2012.0115 – volume: 112 start-page: 8463 issue: 27 year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib116 article-title: Ongoing dynamics in large-scale functional connectivity predict perception publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1420687112 – volume: 80 start-page: 144 year: 2013 ident: 10.1016/j.neuroimage.2016.12.061_bib130 article-title: Resting-state fmri in the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.039 – volume: 81 start-page: 422 year: 2013 ident: 10.1016/j.neuroimage.2016.12.061_bib66 article-title: Connectivity-based neurofeedback: dynamic causal modeling for real-time fmri publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.010 – volume: 10 start-page: 186 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2016.12.061_bib13 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2575 – volume: 7 start-page: 1 issue: May 2015 year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib129 article-title: Dynamical reconfiguration of the default mode network during narrative comprehension publication-title: Nat. Commun. – volume: 6 start-page: 152 year: 2012 ident: 10.1016/j.neuroimage.2016.12.061_bib103 article-title: The nki-rockland sample: a model for accelerating the pace of discovery science in psychiatry publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00152 – volume: 10 start-page: 342 issue: June (2) year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib151 article-title: Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification publication-title: Brain Imaging Behav. doi: 10.1007/s11682-015-9408-2 – volume: 35 start-page: 6849 issue: April (17) year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib55 article-title: Tracking the Brain's functional coupling dynamics over development publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4638-14.2015 – volume: 41 start-page: 1822 issue: 7 year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib60 article-title: Dynamic resting-state functional connectivity in major depression publication-title: Neuropsychopharmacology doi: 10.1038/npp.2015.352 – volume: 124 start-page: 367 issue: January year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib122 article-title: Changes in functional connectivity dynamics associated with vigilance network in taxi drivers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.09.010 – volume: 49 start-page: 1432 issue: 2 year: 2010 ident: 10.1016/j.neuroimage.2016.12.061_bib162 article-title: The oscillating brain: complex and reliable publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.09.037 – volume: 7 start-page: e37828 issue: 5 year: 2012 ident: 10.1016/j.neuroimage.2016.12.061_bib152 article-title: Resting-state multi-spectrum functional connectivity networks for identification of mci patients publication-title: PloS One doi: 10.1371/journal.pone.0037828 – volume: 120 start-page: 133 issue: October year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib155 article-title: Dynamic coherence analysis of resting fMRI data to jointly capture state-based phase, frequency, and time-domain information publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.07.002 – volume: 1 start-page: 339 issue: October (4) year: 2011 ident: 10.1016/j.neuroimage.2016.12.061_bib65 article-title: A sliding time-window ICA reveals spatial variability of the default mode network in time publication-title: Brain Connect. doi: 10.1089/brain.2011.0036 – volume: 22 start-page: 212 issue: March (3) year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib153 article-title: Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks publication-title: CNS Neurosci. Ther. doi: 10.1111/cns.12499 – ident: 10.1016/j.neuroimage.2016.12.061_bib126 doi: 10.1073/pnas.1604898113 – volume: 73 start-page: 121 year: 2013 ident: 10.1016/j.neuroimage.2016.12.061_bib62 article-title: Total activation: fmri deconvolution through spatio-temporal regularization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.01.067 – volume: 34 start-page: 3982 issue: 11 year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib118 article-title: The time course of task-specific memory consolidation effects in resting state networks publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4341-13.2014 – volume: 55 start-page: 287 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2016.12.061_bib49 article-title: Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fmri study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.11.059 – volume: 112 start-page: 8762 issue: July (28) year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib43 article-title: Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1501242112 – volume: 59 start-page: 2994 issue: February (3) year: 2012 ident: 10.1016/j.neuroimage.2016.12.061_bib112 article-title: Caffeine increases the temporal variability of resting-state BOLD connectivity in the motor cortex publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.001 – volume: 6 start-page: 26976 issue: May (February) year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib34 article-title: Characterizing dynamic local functional connectivity in the human brain publication-title: Sci. Rep. doi: 10.1038/srep26976 – ident: 10.1016/j.neuroimage.2016.12.061_bib110 doi: 10.1007/978-3-319-10443-0_23 – volume: 8 start-page: 1 issue: June (8) year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib42 article-title: The spatial structure of resting state connectivity stability on the scale of minutes publication-title: Front. Neurosci. – volume: 107 start-page: 85 issue: February year: 2015 ident: 10.1016/j.neuroimage.2016.12.061_bib156 article-title: Mutually temporally independent connectivity patterns: a new framework to study the dynamics of brain connectivity at rest with application to explain group difference based on gender publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.11.054 – volume: 4 start-page: 741 issue: November (9) year: 2014 ident: 10.1016/j.neuroimage.2016.12.061_bib58 article-title: Behavioral relevance of the dynamics of the functional brain connectome publication-title: Brain Connect. doi: 10.1089/brain.2014.0300 – volume: 328 start-page: 876 issue: 5980 year: 2010 ident: 10.1016/j.neuroimage.2016.12.061_bib101 article-title: Community structure in time-dependent, multiscale, and multiplex networks publication-title: Science doi: 10.1126/science.1184819 – volume: 37 start-page: 3282 issue: September (9) year: 2016 ident: 10.1016/j.neuroimage.2016.12.061_bib23 article-title: High-order resting-state functional connectivity network for MCI classification publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23240 |
SSID | ssj0009148 |
Score | 2.694905 |
SecondaryResourceType | review_article |
Snippet | Resting-state functional magnetic resonance imaging (fMRI) has highlighted the rich structure of brain activity in absence of a task or stimulus. A great... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 41 |
SubjectTerms | Brain Brain - anatomy & histology Brain - physiology Brain mapping Connectome - methods Dynamic functional connectivity Dynamic graph analysis EEG Frame-wise description Functional magnetic resonance imaging Gene expression Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Neural networks Neural Pathways - anatomy & histology Neural Pathways - physiology Neuroimaging Sliding window analysis State characterization Studies Temporal modeling Therapeutic applications Time/frequency analysis |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwEA5jD-KL-NvqlAq-1jVr0qb6JNMxhPmig72FNElh4trhtlf_du_adMOHwcDXNgfp5XL3pfnujpA7ALlY1okFtkrJyXIbpBrJNIkINVcpNwYPiqO3eDhmrxM-aZF-kwuDtErn-2ufXnlr96TrtNmdT6fdd0AGEG7gvBGDnYoq_ZqxBK38_mdD80gpq9PheBTgaMfmqTleVc3I6Qx2LpK84urHYEy3hahtELQKRYNDcuAwpP9UT_OItGxxTPZG7pb8hDzD2vumbjXvY-Cq__f5GkktelnO7INfgcygzAMAgMiO81Vh_Pkm83JxSsaDl4_-MHDdEgINkGsZUIOnIcUozZI0ZxDIs9BiQT6VJDrisc65FZTlIXgU1kssM1xkUcioVSyPozw6I-2iLOwFKsiGwkQiwb7pmVaw65UR3Fo4jBmhlUeSRkFSu1Li2NHiSzacsU-5Ua1E1Urak6Baj9C15Lwup7GDTNqsgWzSRcHBSfD5O8g-rmX_mNWO0p1myaXb2guJJRgZY-CYPXK7fg2bEm9aVGHLFYwRnAFOitPII-e1qaw_F9uBgZnGl_-a2hXZ7yHAQG4N75D28ntlrwEeLbObyv5_AaeVDJ4 priority: 102 providerName: Elsevier |
Title | The dynamic functional connectome: State-of-the-art and perspectives |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811916307881 https://dx.doi.org/10.1016/j.neuroimage.2016.12.061 https://www.ncbi.nlm.nih.gov/pubmed/28034766 https://www.proquest.com/docview/1965444376 https://www.proquest.com/docview/1854613693 |
Volume | 160 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCb6AIpehq2vZesCF-hVrRVLlrwdhm5rkW5oMAwtkJsgSzLQYbGzJb3ut4-05eTUIScfLBowJZKfqE8kwDmCXCrrJFhor-SUVWCFIzKN0qmTtpDe00bxbpKPH8TXqZzGhNsi0ip7n9g6at84ypFfUuU7IQTaw8f5b0Zdo-h0NbbQ2IZdKl1Gq1pN1broLhfdVTiZMY0DIpOn43e19SIfZ2i1RPDK26Rgzp8LT8_BzzYM3byEFxE_JlfdhL-CrVAfwN5dPCE_hC8474nv2swnFLS6XF_iiNDils0svE9agMmaiiH4I2ZcYmufzNe3LhdH8HBzff95zGKnBOYQbi0Z97QTsoLzUhWVwCBepoGK8VmlXCZzV8mguahS9CZipILwUpdZKniwosqzKjuGnbqpw2tSUEi1z7Sinumls2jx1msZAm7EvHZ2AKpXkHGxjDh1s_hler7YT7NWrSHVGj4yqNoB8JXkvCulsYFM0c-B6a-KonMz6O83kP2wko1wooMJG0qf9lNuolkvzHoRDuBs9RoNkk5ZbB2aJxyjpUCMlBfZAE66pbL6XWoFJlSev_n_x9_C_ojQAxFn5CnsLP88hXeIfZblELYv_vJhu8yHsHt1-208ween68n3H_8AYZEFbg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkNpeKvreQttUao9W14kdOyCEKh5aCssJpL25ju1IRZBsu4uq_qn-xs7Eye4JtBfOyUTKeDzzjf3NDMBnBLnU1kmw0JbklFVghSMyjdJDJ20hvadEcXyejy7F94mcrMG_vhaGaJW9T2wdtW8cnZF_pc53QgjcD_vTX4ymRtHtaj9CI5rFafj7B1O22d7JIa7vlzQ9Pro4GLFuqgBzCE3mjHvKGqzgvFRFJTDglcNAjeusUi6Tuatk0FxUmOBnIlVBeKlLTPp5sKLKsyrD7z6CDQy8Q0r21EQtm_xyEUvvZMY050XHHIp8srY_5c8b9BJEKMvbQ8ic3xUO74K7bdg73oRnHV5NvkUDew5roX4Bj8fdjfxLOEQ7S3wca59QkIxni4kjAo2bNzdhJ2kBLWsqhmCTmHiJrX0yXVZ5zl7B5YPo8DWs100d3pKCwlD7TCua0V46ix7Gei1DwMTPa2cHoHoFGde1LafpGdem56ddmaVqDanW8NSgagfAF5LT2LpjBZmiXwPTl6aiMzUYX1aQ3V3IdvAlwpIVpbf7JTedG5mZpdEP4NPiMToAutWxdWhu8R0tBWKyvMgG8CaayuJ3afSYUHn-7v6Pf4Qno4vxmTk7OT_dgqcpIRci7chtWJ__vg3vEXfNyw-tsSfw46F3139QHTvx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTpp4QfxeYUCQ4DFandixw4QQ0FUbY9WEmLQ349iOBGJJoZ2m_Wv767iLnfZpqC97Ti5Szue77-zv7gDeIMiltk489V1JTlX7tLREppFqZIUphXOUKB5Pi4NT_uVMnG3AdV8LQ7TK3id2jtq1ls7Id6nzHecc98NuHWkRJ-PJh9mflCZI0U1rP04jmMiRv7rE9G3-_nCMa_02yyb73z8fpHHCQGoRpixS5iiDMJyxSpY1x-BXjTw1sTNS2lwUthZeMV5jsp_zTHruhKryEWfe8LrI6xy_ewc2JWVFA9j8tD89-bZq-ct4KMQTeaoYKyOPKLDLum6VP8_RZxC9rOiOJAt2U3C8Cfx2QXByH-5F9Jp8DOb2ADZ88xC2juP9_CMYo9UlLgy5TyhkhpPGxBKdxi7ac_8u6eBt2tYpQk_i5SWmcclsVfM5fwynt6LFJzBo2sZvk4L8SLlcSZrYXlmD_sY4JbzHNNApa4YgewVpG5uY0yyN37pnq_3SK9VqUq1mmUbVDoEtJWehkccaMmW_BrovVEXXqjHarCG7t5SNYCaAlDWld_ol19GpzPVqCwzh9fIxugO64zGNby_wHSU4IrSizIfwNJjK8ndpEBmXRfHs_x9_BVu4s_TXw-nRc7ibEYwhBo_YgcHi74V_gSBsUb2M1p7Aj9veYP8AlKBBjA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+dynamic+functional+connectome%3A+State-of-the-art+and+perspectives&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Preti%2C+Maria+Giulia&rft.au=Thomas+AW+Bolton&rft.au=Van+De+Ville%2C+Dimitri&rft.date=2017-10-15&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=160&rft.spage=41&rft_id=info:doi/10.1016%2Fj.neuroimage.2016.12.061&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |