The dynamic functional connectome: State-of-the-art and perspectives

Resting-state functional magnetic resonance imaging (fMRI) has highlighted the rich structure of brain activity in absence of a task or stimulus. A great effort has been dedicated in the last two decades to investigate functional connectivity (FC), i.e. the functional interplay between different reg...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 160; pp. 41 - 54
Main Authors Preti, Maria Giulia, Bolton, Thomas AW, Van De Ville, Dimitri
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.10.2017
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Resting-state functional magnetic resonance imaging (fMRI) has highlighted the rich structure of brain activity in absence of a task or stimulus. A great effort has been dedicated in the last two decades to investigate functional connectivity (FC), i.e. the functional interplay between different regions of the brain, which was for a long time assumed to have stationary nature. Only recently was the dynamic behaviour of FC revealed, showing that on top of correlational patterns of spontaneous fMRI signal fluctuations, connectivity between different brain regions exhibits meaningful variations within a typical resting-state fMRI experiment. As a consequence, a considerable amount of work has been directed to assessing and characterising dynamic FC (dFC), and several different approaches were explored to identify relevant FC fluctuations. At the same time, several questions were raised about the nature of dFC, which would be of interest only if brought back to a neural origin. In support of this, correlations with electroencephalography (EEG) recordings, demographic and behavioural data were established, and various clinical applications were explored, where the potential of dFC could be preliminarily demonstrated. In this review, we aim to provide a comprehensive description of the dFC approaches proposed so far, and point at the directions that we see as most promising for the future developments of the field. Advantages and pitfalls of dFC analyses are addressed, helping the readers to orient themselves through the complex web of available methodologies and tools. [Display omitted] •A great effort has been spent on dynamic functional connectivity characterization.•We exhaustively describe existing approaches, their advantages and pitfalls.•We discuss future analytical directions: frame-wise analysis and temporal modeling.•Frame-wise analysis extracts the meaningful functional networks from events.•Temporal modeling parameterizes brain dynamics in flexible and realistic manners.
AbstractList Resting-state functional magnetic resonance imaging (fMRI) has highlighted the rich structure of brain activity in absence of a task or stimulus. A great effort has been dedicated in the last two decades to investigate functional connectivity (FC), i.e. the functional interplay between different regions of the brain, which was for a long time assumed to have stationary nature. Only recently was the dynamic behaviour of FC revealed, showing that on top of correlational patterns of spontaneous fMRI signal fluctuations, connectivity between different brain regions exhibits meaningful variations within a typical resting-state fMRI experiment. As a consequence, a considerable amount of work has been directed to assessing and characterising dynamic FC (dFC), and several different approaches were explored to identify relevant FC fluctuations. At the same time, several questions were raised about the nature of dFC, which would be of interest only if brought back to a neural origin. In support of this, correlations with electroencephalography (EEG) recordings, demographic and behavioural data were established, and various clinical applications were explored, where the potential of dFC could be preliminarily demonstrated. In this review, we aim to provide a comprehensive description of the dFC approaches proposed so far, and point at the directions that we see as most promising for the future developments of the field. Advantages and pitfalls of dFC analyses are addressed, helping the readers to orient themselves through the complex web of available methodologies and tools. [Display omitted] •A great effort has been spent on dynamic functional connectivity characterization.•We exhaustively describe existing approaches, their advantages and pitfalls.•We discuss future analytical directions: frame-wise analysis and temporal modeling.•Frame-wise analysis extracts the meaningful functional networks from events.•Temporal modeling parameterizes brain dynamics in flexible and realistic manners.
Resting-state functional magnetic resonance imaging (fMRI) has highlighted the rich structure of brain activity in absence of a task or stimulus. A great effort has been dedicated in the last two decades to investigate functional connectivity (FC), i.e. the functional interplay between different regions of the brain, which was for a long time assumed to have stationary nature. Only recently was the dynamic behaviour of FC revealed, showing that on top of correlational patterns of spontaneous fMRI signal fluctuations, connectivity between different brain regions exhibits meaningful variations within a typical resting-state fMRI experiment. As a consequence, a considerable amount of work has been directed to assessing and characterising dynamic FC (dFC), and several different approaches were explored to identify relevant FC fluctuations. At the same time, several questions were raised about the nature of dFC, which would be of interest only if brought back to a neural origin. In support of this, correlations with electroencephalography (EEG) recordings, demographic and behavioural data were established, and various clinical applications were explored, where the potential of dFC could be preliminarily demonstrated. In this review, we aim to provide a comprehensive description of the dFC approaches proposed so far, and point at the directions that we see as most promising for the future developments of the field. Advantages and pitfalls of dFC analyses are addressed, helping the readers to orient themselves through the complex web of available methodologies and tools.
Author Bolton, Thomas AW
Van De Ville, Dimitri
Preti, Maria Giulia
Author_xml – sequence: 1
  givenname: Maria Giulia
  surname: Preti
  fullname: Preti, Maria Giulia
  email: maria.preti@epfl.ch
  organization: Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
– sequence: 2
  givenname: Thomas AW
  surname: Bolton
  fullname: Bolton, Thomas AW
  organization: Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
– sequence: 3
  givenname: Dimitri
  surname: Van De Ville
  fullname: Van De Ville, Dimitri
  organization: Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28034766$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAURi1URNuBV0CR2LBJ8I3_EhYIKC0gVWJBWVse54Z6SOzBdirN2-PRtEKa1axsWeeeK3_fJTnzwSMhFdAGKMh3m8bjEoObzW9s2vLSQNtQCc_IBdBe1L1Q7dn-LljdAfTn5DKlDaW0B969IOdtRxlXUl6QL3f3WA07b2Znq3HxNrvgzVTZ4D3aHGZ8X_3MJmMdxjrfY21irowfqi3GtC2Ee8D0kjwfzZTw1eO5Ir9uru-uvtW3P75-v_p0W1uhRK5h4K0EwwHWqh-5gHZNkTIFRinLhLSjwA74SJVkvFXIB9GtGeWAho-SjWxF3h682xj-Lpiynl2yOE3GY1iShk5wCUz2rKBvjtBNWGL5WaF6KTjnrGxZkdeP1LKecdDbWCKNO_2UTwE-HAAbQ0oRR21dSaNklKNxkwaq94Xojf5fiN4XoqHVpZAi6I4ETztOGP18GMUS6YPDqJN16C0OLpbg9RDcKZKPRxI7Oe-smf7g7jTFP1Z-v9Y
CitedBy_id crossref_primary_10_1002_hbm_24580
crossref_primary_10_1007_s11571_023_10054_0
crossref_primary_10_1016_j_neuroimage_2021_117738
crossref_primary_10_3389_fnhum_2022_980280
crossref_primary_10_1016_j_bbr_2024_115319
crossref_primary_10_1016_j_nic_2020_09_004
crossref_primary_10_1016_j_neuroimage_2020_117464
crossref_primary_10_1016_j_nicl_2020_102396
crossref_primary_10_1038_s41380_024_02708_0
crossref_primary_10_1097_j_pain_0000000000002281
crossref_primary_10_1002_hbm_24336
crossref_primary_10_1063_1_5043447
crossref_primary_10_1186_s10194_021_01354_z
crossref_primary_10_1016_j_jneumeth_2019_05_004
crossref_primary_10_1002_hbm_25663
crossref_primary_10_1038_s41598_019_42090_4
crossref_primary_10_1038_s42003_020_01331_3
crossref_primary_10_1111_epi_14646
crossref_primary_10_3389_fnins_2020_00327
crossref_primary_10_3390_brainsci11050582
crossref_primary_10_1016_j_bpsc_2017_09_010
crossref_primary_10_1016_j_jad_2021_04_005
crossref_primary_10_1016_j_media_2024_103290
crossref_primary_10_1038_s41593_024_01647_x
crossref_primary_10_1038_s41467_019_08934_3
crossref_primary_10_1093_schbul_sbz052
crossref_primary_10_1080_14656566_2019_1637419
crossref_primary_10_3389_fnins_2019_00685
crossref_primary_10_1016_j_bspc_2023_104892
crossref_primary_10_1016_j_nicl_2024_103583
crossref_primary_10_1016_j_nicl_2024_103585
crossref_primary_10_1016_j_wneu_2019_08_087
crossref_primary_10_3389_fnins_2021_700171
crossref_primary_10_3390_brainsci9060144
crossref_primary_10_1111_cns_14660
crossref_primary_10_3390_ma13030736
crossref_primary_10_1002_aur_3227
crossref_primary_10_1093_braincomms_fcae049
crossref_primary_10_1016_j_bpsc_2024_02_013
crossref_primary_10_1002_hbm_25201
crossref_primary_10_1002_hbm_25442
crossref_primary_10_1016_j_neurobiolaging_2020_05_017
crossref_primary_10_1227_neu_0000000000003124
crossref_primary_10_1002_hbm_24590
crossref_primary_10_3389_fnins_2020_550923
crossref_primary_10_1016_j_neuroimage_2019_06_041
crossref_primary_10_1016_j_nbd_2020_104808
crossref_primary_10_1016_j_neuroimage_2017_12_074
crossref_primary_10_1016_j_mex_2020_101168
crossref_primary_10_1016_j_neuroimage_2017_10_003
crossref_primary_10_1016_j_neuroimage_2024_120955
crossref_primary_10_1038_s41598_024_79052_4
crossref_primary_10_1016_j_pnpbp_2024_111169
crossref_primary_10_1016_j_neuroscience_2024_08_013
crossref_primary_10_1016_j_tine_2019_04_001
crossref_primary_10_3389_fnins_2019_00856
crossref_primary_10_3389_fnins_2019_00618
crossref_primary_10_3389_fnins_2024_1352409
crossref_primary_10_1016_j_neuroimage_2020_116571
crossref_primary_10_1016_j_neucom_2020_09_092
crossref_primary_10_3389_fneur_2020_602586
crossref_primary_10_1109_TBME_2022_3222072
crossref_primary_10_1002_brb3_2790
crossref_primary_10_1016_j_jneumeth_2019_108480
crossref_primary_10_1016_j_csbj_2022_11_060
crossref_primary_10_3389_fpsyt_2024_1165424
crossref_primary_10_3389_fpsyt_2022_963634
crossref_primary_10_3389_fpsyg_2022_1008407
crossref_primary_10_3389_fnrgo_2021_718176
crossref_primary_10_1016_j_neuroimage_2021_118801
crossref_primary_10_3389_fnagi_2022_806032
crossref_primary_10_1016_j_neuroimage_2020_117653
crossref_primary_10_1148_radiol_2019182623
crossref_primary_10_1002_hbm_24529
crossref_primary_10_1016_j_neuroimage_2022_119391
crossref_primary_10_1007_s11682_022_00651_8
crossref_primary_10_1089_brain_2020_0918
crossref_primary_10_1016_j_jpsychires_2018_09_015
crossref_primary_10_1016_j_neuroimage_2022_119188
crossref_primary_10_1007_s11682_021_00593_7
crossref_primary_10_1126_sciadv_abj0751
crossref_primary_10_1017_S0033291724000655
crossref_primary_10_1016_j_pnpbp_2024_111181
crossref_primary_10_1109_TNSRE_2023_3276896
crossref_primary_10_1002_brb3_1255
crossref_primary_10_3389_fnins_2022_861402
crossref_primary_10_1016_j_ynirp_2023_100186
crossref_primary_10_1002_hbm_25405
crossref_primary_10_1002_hbm_24559
crossref_primary_10_1002_hbm_25649
crossref_primary_10_3389_fnins_2023_1199150
crossref_primary_10_1002_hbm_25884
crossref_primary_10_3171_2019_2_JNS183454
crossref_primary_10_1073_pnas_1905534116
crossref_primary_10_3389_fnins_2019_00657
crossref_primary_10_1007_s12021_024_09686_2
crossref_primary_10_1016_j_schres_2024_05_003
crossref_primary_10_1097_PR9_0000000000000752
crossref_primary_10_3389_fnagi_2022_817137
crossref_primary_10_3389_fnins_2019_00648
crossref_primary_10_1016_j_nicl_2020_102163
crossref_primary_10_1016_j_neuroimage_2023_120459
crossref_primary_10_1109_TBME_2018_2875467
crossref_primary_10_1038_s42003_022_03330_y
crossref_primary_10_1002_hbm_23890
crossref_primary_10_3389_fnins_2023_934138
crossref_primary_10_3389_fneur_2021_735999
crossref_primary_10_3389_fnhum_2021_655576
crossref_primary_10_1162_netn_a_00325
crossref_primary_10_3389_fnins_2022_821179
crossref_primary_10_1016_j_neuroscience_2020_04_030
crossref_primary_10_1016_j_jad_2018_11_002
crossref_primary_10_1016_j_neuroimage_2021_118679
crossref_primary_10_1093_nsr_nwae124
crossref_primary_10_1098_rsta_2020_0424
crossref_primary_10_3389_fnhum_2019_00006
crossref_primary_10_1093_cercor_bhad546
crossref_primary_10_1093_cercor_bhac454
crossref_primary_10_1093_cercor_bhad542
crossref_primary_10_1093_cercor_bhac214
crossref_primary_10_3389_fneur_2022_928389
crossref_primary_10_1038_s41598_018_28237_9
crossref_primary_10_3390_app9204298
crossref_primary_10_1523_ENEURO_0531_19_2020
crossref_primary_10_3389_fpsyt_2023_1078779
crossref_primary_10_1016_j_neuroimage_2018_09_024
crossref_primary_10_3389_fnsys_2022_817962
crossref_primary_10_3389_fnhum_2018_00029
crossref_primary_10_1093_cercor_bhz219
crossref_primary_10_1089_brain_2016_0476
crossref_primary_10_1186_s40708_022_00178_0
crossref_primary_10_1093_braincomms_fcad143
crossref_primary_10_1073_pnas_2400082121
crossref_primary_10_1038_s41467_023_44050_z
crossref_primary_10_1162_netn_a_00307
crossref_primary_10_1162_netn_a_00301
crossref_primary_10_1016_j_arr_2020_101108
crossref_primary_10_1371_journal_pcbi_1011007
crossref_primary_10_1002_hbm_24519
crossref_primary_10_1016_j_neuroimage_2021_118657
crossref_primary_10_1016_j_neuroimage_2020_117047
crossref_primary_10_1016_j_neuroimage_2021_118413
crossref_primary_10_1016_j_neuroimage_2020_117046
crossref_primary_10_1007_s11682_024_00923_5
crossref_primary_10_1016_j_neuroimage_2021_118653
crossref_primary_10_1038_s41593_020_00726_z
crossref_primary_10_1016_j_neuroimage_2019_03_019
crossref_primary_10_1016_j_heliyon_2024_e41120
crossref_primary_10_1002_hbm_24991
crossref_primary_10_1186_s40359_024_02051_7
crossref_primary_10_3389_fnsys_2018_00068
crossref_primary_10_1016_j_jad_2022_02_052
crossref_primary_10_1002_alz_13411
crossref_primary_10_1002_hbm_24509
crossref_primary_10_1016_j_neuroimage_2021_118427
crossref_primary_10_1016_j_jad_2022_11_074
crossref_primary_10_1016_j_bpsc_2021_01_007
crossref_primary_10_3389_fnhum_2018_00041
crossref_primary_10_1093_gigascience_giae009
crossref_primary_10_1016_j_bpsgos_2024_100367
crossref_primary_10_1109_ACCESS_2023_3244066
crossref_primary_10_1002_hbm_24505
crossref_primary_10_1109_ACCESS_2020_3015292
crossref_primary_10_1016_j_neubiorev_2020_02_023
crossref_primary_10_1007_s00429_024_02796_2
crossref_primary_10_1016_j_neuroimage_2019_116276
crossref_primary_10_1093_cercor_bhz025
crossref_primary_10_1016_j_bpsc_2024_12_016
crossref_primary_10_1093_braincomms_fcac095
crossref_primary_10_1177_09544119221092503
crossref_primary_10_1162_netn_a_00114
crossref_primary_10_1007_s10586_020_03141_y
crossref_primary_10_1162_netn_a_00357
crossref_primary_10_1162_netn_a_00116
crossref_primary_10_1038_s41390_022_02342_y
crossref_primary_10_1162_netn_a_00117
crossref_primary_10_3389_fncir_2021_649417
crossref_primary_10_1007_s11571_022_09874_3
crossref_primary_10_1038_s41467_018_03664_4
crossref_primary_10_1109_ACCESS_2024_3445580
crossref_primary_10_3389_fnagi_2024_1497874
crossref_primary_10_1016_j_neuropsychologia_2023_108519
crossref_primary_10_1016_j_neuron_2020_07_024
crossref_primary_10_1038_s42003_021_02494_3
crossref_primary_10_1088_1741_2552_aba55e
crossref_primary_10_3389_fnins_2022_937145
crossref_primary_10_1016_j_neuroimage_2023_120050
crossref_primary_10_1016_j_neuroimage_2021_118615
crossref_primary_10_1038_s41598_017_05425_7
crossref_primary_10_3389_fnins_2021_731596
crossref_primary_10_1016_j_neuroimage_2022_118928
crossref_primary_10_3389_fnins_2021_627445
crossref_primary_10_1016_j_neuroimage_2021_117760
crossref_primary_10_1088_1741_2552_ac23bb
crossref_primary_10_3389_fpsyt_2020_00422
crossref_primary_10_3389_fnhum_2019_00062
crossref_primary_10_1073_pnas_2415102122
crossref_primary_10_3389_fninf_2018_00003
crossref_primary_10_1007_s00062_022_01173_y
crossref_primary_10_1038_s42003_020_0961_x
crossref_primary_10_1038_s41467_024_48302_4
crossref_primary_10_1109_TNNLS_2022_3225179
crossref_primary_10_3389_fnins_2019_00803
crossref_primary_10_1002_aur_3035
crossref_primary_10_1002_jnr_24915
crossref_primary_10_1038_s41398_023_02615_y
crossref_primary_10_1371_journal_pcbi_1012521
crossref_primary_10_1016_j_compbiomed_2022_106202
crossref_primary_10_1016_j_neuroimage_2021_118862
crossref_primary_10_1016_j_tins_2024_05_011
crossref_primary_10_1016_j_neuroimage_2020_117230
crossref_primary_10_1155_2021_6890024
crossref_primary_10_1093_brain_awaa101
crossref_primary_10_1109_TNSRE_2024_3450443
crossref_primary_10_1002_aur_3037
crossref_primary_10_1016_j_csda_2020_107006
crossref_primary_10_1038_s41386_021_01038_x
crossref_primary_10_1016_j_neuroimage_2019_116116
crossref_primary_10_1038_s41598_018_26730_9
crossref_primary_10_1027_1864_1105_a000271
crossref_primary_10_1038_s41598_022_21376_0
crossref_primary_10_1038_s41467_019_08840_8
crossref_primary_10_1093_cercor_bhab080
crossref_primary_10_1371_journal_pone_0231767
crossref_primary_10_1038_s41398_024_02779_1
crossref_primary_10_1109_ACCESS_2023_3277731
crossref_primary_10_1038_s42003_024_06858_3
crossref_primary_10_1109_JPROC_2018_2798928
crossref_primary_10_1162_netn_a_00163
crossref_primary_10_1016_j_jneumeth_2024_110275
crossref_primary_10_7554_eLife_33562
crossref_primary_10_1016_j_eplepsyres_2022_106969
crossref_primary_10_1038_s41598_024_72945_4
crossref_primary_10_1016_j_tins_2023_11_011
crossref_primary_10_3389_fnins_2019_01190
crossref_primary_10_1523_ENEURO_0111_17_2017
crossref_primary_10_1016_j_biopsych_2023_12_002
crossref_primary_10_1016_j_neuroimage_2019_116129
crossref_primary_10_1109_JBHI_2023_3327023
crossref_primary_10_1007_s10072_020_04759_x
crossref_primary_10_1162_netn_a_00390
crossref_primary_10_1016_j_brainres_2023_148634
crossref_primary_10_1162_netn_a_00391
crossref_primary_10_1109_TAFFC_2021_3126263
crossref_primary_10_3390_brainsci14050507
crossref_primary_10_3389_fnins_2022_911034
crossref_primary_10_1016_j_jad_2019_04_030
crossref_primary_10_1162_netn_a_00148
crossref_primary_10_1016_j_nbd_2024_106425
crossref_primary_10_1109_TETCI_2024_3386612
crossref_primary_10_1007_s12559_021_09931_9
crossref_primary_10_1016_j_trci_2018_04_009
crossref_primary_10_1109_TBME_2024_3377109
crossref_primary_10_1016_j_neuroimage_2021_118377
crossref_primary_10_1109_TAC_2018_2879597
crossref_primary_10_3389_fnhum_2022_774921
crossref_primary_10_1016_j_jneumeth_2022_109629
crossref_primary_10_1016_j_neuron_2020_01_039
crossref_primary_10_1186_s12916_023_03208_8
crossref_primary_10_1038_s42003_024_07274_3
crossref_primary_10_1002_jmri_27521
crossref_primary_10_1016_j_mri_2019_05_031
crossref_primary_10_1073_pnas_1912226117
crossref_primary_10_1142_S0129065722500022
crossref_primary_10_1111_ejn_15663
crossref_primary_10_1016_j_clinph_2020_07_018
crossref_primary_10_1162_netn_a_00130
crossref_primary_10_1016_j_neuroimage_2021_118148
crossref_primary_10_3389_fnins_2022_855582
crossref_primary_10_1212_WNL_0000000000209952
crossref_primary_10_1111_adb_13395
crossref_primary_10_1038_s41598_024_83542_w
crossref_primary_10_1152_jn_00027_2024
crossref_primary_10_1093_cercor_bhac133
crossref_primary_10_1080_23273798_2022_2129084
crossref_primary_10_3389_fnagi_2022_873605
crossref_primary_10_1038_s41598_023_49746_2
crossref_primary_10_3389_fneur_2021_675728
crossref_primary_10_1016_j_neuroimage_2018_09_054
crossref_primary_10_1016_j_patrec_2020_07_005
crossref_primary_10_1016_j_celrep_2020_108128
crossref_primary_10_1016_j_bspc_2020_102056
crossref_primary_10_1093_cercor_bhad228
crossref_primary_10_2139_ssrn_4003229
crossref_primary_10_1016_j_jneumeth_2019_01_019
crossref_primary_10_1016_j_neuroimage_2021_118590
crossref_primary_10_1016_j_neuroimage_2018_09_063
crossref_primary_10_1016_j_neuroimage_2022_119716
crossref_primary_10_3389_fncom_2022_866517
crossref_primary_10_1126_sciadv_aat7854
crossref_primary_10_3390_app112311392
crossref_primary_10_1016_j_jad_2025_01_066
crossref_primary_10_1214_22_AOS2205
crossref_primary_10_1016_j_neuroimage_2018_06_003
crossref_primary_10_1016_j_clinimag_2020_04_004
crossref_primary_10_1016_j_neuroimage_2025_121009
crossref_primary_10_1038_s41467_022_32304_1
crossref_primary_10_1017_S0033291723003719
crossref_primary_10_1038_s43856_025_00736_7
crossref_primary_10_31887_DCNS_2018_20_2_vcalhoun
crossref_primary_10_3758_s13415_021_00892_y
crossref_primary_10_1162_netn_a_00183
crossref_primary_10_1162_netn_a_00181
crossref_primary_10_1016_j_ynirp_2021_100022
crossref_primary_10_1162_netn_a_00182
crossref_primary_10_1162_imag_a_00267
crossref_primary_10_3389_fnins_2019_00080
crossref_primary_10_1080_15622975_2020_1785006
crossref_primary_10_1016_j_nicl_2019_102071
crossref_primary_10_1016_j_bspc_2024_106364
crossref_primary_10_3389_fnhum_2024_1482353
crossref_primary_10_1038_s44220_024_00377_0
crossref_primary_10_1177_02841851221127271
crossref_primary_10_1007_s12539_023_00592_w
crossref_primary_10_1063_1_5115267
crossref_primary_10_1371_journal_pcbi_1006497
crossref_primary_10_1016_j_neuroimage_2021_118100
crossref_primary_10_1016_j_jad_2024_10_066
crossref_primary_10_3389_fpsyt_2020_608197
crossref_primary_10_1002_hbm_25036
crossref_primary_10_1002_hbm_25277
crossref_primary_10_1016_j_neuroimage_2022_119128
crossref_primary_10_1038_s42003_024_06335_x
crossref_primary_10_3390_brainsci13040554
crossref_primary_10_1038_s41467_022_33578_1
crossref_primary_10_1088_1741_2552_ac16b3
crossref_primary_10_3389_fnins_2024_1477181
crossref_primary_10_1088_1741_2552_ad27ee
crossref_primary_10_1016_j_brainres_2023_148469
crossref_primary_10_1007_s11682_024_00907_5
crossref_primary_10_3389_fnagi_2022_788571
crossref_primary_10_1016_j_jad_2024_10_055
crossref_primary_10_1016_j_neuroimage_2023_119890
crossref_primary_10_1111_pcn_13675
crossref_primary_10_1016_j_appet_2024_107210
crossref_primary_10_1016_j_neuroimage_2022_119595
crossref_primary_10_3389_fnsys_2022_885304
crossref_primary_10_1016_j_brs_2019_10_017
crossref_primary_10_1016_j_ynstr_2021_100377
crossref_primary_10_1109_JBHI_2022_3166826
crossref_primary_10_1016_j_jad_2020_06_062
crossref_primary_10_1038_s41598_019_44103_8
crossref_primary_10_1016_j_plrev_2018_10_001
crossref_primary_10_3389_fnins_2018_00287
crossref_primary_10_1038_s41467_022_32381_2
crossref_primary_10_1016_j_dadr_2022_100065
crossref_primary_10_1007_s00787_025_02651_7
crossref_primary_10_1016_j_neuroimage_2020_116989
crossref_primary_10_1186_s40035_018_0122_z
crossref_primary_10_1016_j_media_2020_101709
crossref_primary_10_1016_j_bbr_2024_115255
crossref_primary_10_3389_fnins_2021_749887
crossref_primary_10_1038_s41598_022_25016_5
crossref_primary_10_1098_rsta_2021_0247
crossref_primary_10_1007_s00429_017_1539_3
crossref_primary_10_7868_S0869813918070110
crossref_primary_10_1002_jmri_29306
crossref_primary_10_1016_j_jad_2021_11_050
crossref_primary_10_3389_fneur_2022_910054
crossref_primary_10_1016_j_cmpb_2024_108479
crossref_primary_10_1002_hbm_70049
crossref_primary_10_1016_j_cub_2020_04_090
crossref_primary_10_1162_imag_a_00234
crossref_primary_10_1016_j_neuroimage_2018_06_020
crossref_primary_10_1038_s41467_021_25876_x
crossref_primary_10_1016_j_neuroimage_2021_118193
crossref_primary_10_3389_fnins_2024_1363255
crossref_primary_10_1002_hbm_26561
crossref_primary_10_1016_j_neuroimage_2021_118190
crossref_primary_10_1016_j_neuroimage_2022_119321
crossref_primary_10_1016_j_nicl_2020_102467
crossref_primary_10_1093_cercor_bhae391
crossref_primary_10_1038_s41598_021_81884_3
crossref_primary_10_3390_e21100995
crossref_primary_10_3389_fnins_2021_799916
crossref_primary_10_1177_13524585211018116
crossref_primary_10_1007_s10548_020_00809_x
crossref_primary_10_1016_j_biopsych_2020_05_010
crossref_primary_10_1097_j_pain_0000000000001676
crossref_primary_10_1109_JBHI_2024_3371097
crossref_primary_10_1038_s41598_024_52410_y
crossref_primary_10_1162_imag_a_00443
crossref_primary_10_1038_s41537_022_00299_9
crossref_primary_10_1038_s41598_018_36976_y
crossref_primary_10_1523_ENEURO_0341_20_2021
crossref_primary_10_1016_j_neuroimage_2018_05_040
crossref_primary_10_1002_hbm_25225
crossref_primary_10_1002_jnr_25230
crossref_primary_10_1002_hbm_26554
crossref_primary_10_1186_s12888_024_06096_1
crossref_primary_10_1016_j_eng_2021_11_013
crossref_primary_10_1016_j_neuroimage_2020_116718
crossref_primary_10_1016_j_nicl_2021_102758
crossref_primary_10_1159_000534033
crossref_primary_10_1002_hbm_70029
crossref_primary_10_1016_j_media_2021_102063
crossref_primary_10_3389_fpsyt_2023_1152332
crossref_primary_10_1371_journal_pone_0319346
crossref_primary_10_1016_j_neuroimage_2022_119585
crossref_primary_10_1073_pnas_2011796118
crossref_primary_10_3389_fphys_2020_00066
crossref_primary_10_1016_j_nicl_2021_102721
crossref_primary_10_1007_s11682_018_9869_1
crossref_primary_10_3389_fcogn_2024_1433234
crossref_primary_10_1016_j_neuroimage_2021_118177
crossref_primary_10_1002_hbm_26331
crossref_primary_10_1126_sciadv_adm8430
crossref_primary_10_1111_cns_13387
crossref_primary_10_3389_fncir_2025_1500227
crossref_primary_10_1016_j_pnpbp_2024_111110
crossref_primary_10_1038_s41598_017_12993_1
crossref_primary_10_1109_TNSRE_2023_3242263
crossref_primary_10_1038_s41398_019_0560_0
crossref_primary_10_1016_j_neuroimage_2021_118188
crossref_primary_10_1016_j_neuroimage_2024_120911
crossref_primary_10_1007_s00787_025_02679_9
crossref_primary_10_3389_fnagi_2022_912895
crossref_primary_10_31887_DCNS_2018_20_2_agriffa
crossref_primary_10_3389_fnimg_2022_815423
crossref_primary_10_1109_TNSE_2021_3138436
crossref_primary_10_1016_j_pnpbp_2021_110396
crossref_primary_10_3389_fnins_2024_1373264
crossref_primary_10_3390_e21070661
crossref_primary_10_1007_s11571_022_09868_1
crossref_primary_10_3390_brainsci14121209
crossref_primary_10_3390_nu16203525
crossref_primary_10_3389_fnins_2021_794151
crossref_primary_10_1109_MSP_2023_3262906
crossref_primary_10_1002_hbm_25308
crossref_primary_10_1016_j_gpb_2018_11_005
crossref_primary_10_3389_fnins_2020_00446
crossref_primary_10_1017_S0033291718001502
crossref_primary_10_1016_j_nicl_2021_102797
crossref_primary_10_1186_s40673_021_00132_6
crossref_primary_10_3389_fnins_2019_00309
crossref_primary_10_3389_fnagi_2021_710735
crossref_primary_10_1080_10618600_2023_2250411
crossref_primary_10_1016_j_neuroimage_2021_118722
crossref_primary_10_1002_hbm_24447
crossref_primary_10_1016_j_neuroimage_2018_12_037
crossref_primary_10_1089_brain_2022_0044
crossref_primary_10_1016_j_isci_2024_109206
crossref_primary_10_1002_hbm_25575
crossref_primary_10_1016_j_eswa_2022_118121
crossref_primary_10_1016_j_neuroimage_2021_117840
crossref_primary_10_1016_j_dcn_2025_101528
crossref_primary_10_1093_cercor_bhac512
crossref_primary_10_1017_S0033291722000484
crossref_primary_10_1038_s41467_024_48781_5
crossref_primary_10_1089_brain_2020_0847
crossref_primary_10_1038_s41598_021_00508_y
crossref_primary_10_3280_rpc2_2022oa14002
crossref_primary_10_1002_hbm_25561
crossref_primary_10_1093_nc_niaa008
crossref_primary_10_1155_2022_9958525
crossref_primary_10_3389_fnins_2023_1077808
crossref_primary_10_1002_hbm_24235
crossref_primary_10_1016_j_bpsc_2020_10_004
crossref_primary_10_1016_j_neuroimage_2023_120386
crossref_primary_10_1016_j_sleep_2025_02_009
crossref_primary_10_1111_psyp_13786
crossref_primary_10_1016_j_nicl_2019_101753
crossref_primary_10_1080_17588928_2020_1793752
crossref_primary_10_1016_j_neuroimage_2017_09_036
crossref_primary_10_1016_j_nicl_2020_102237
crossref_primary_10_1177_13524585221101470
crossref_primary_10_3389_fnins_2022_770468
crossref_primary_10_3390_brainsci12070937
crossref_primary_10_1016_j_pnpbp_2021_110369
crossref_primary_10_1002_aur_3117
crossref_primary_10_1016_j_artmed_2019_03_007
crossref_primary_10_1523_ENEURO_0283_21_2021
crossref_primary_10_1093_braincomms_fcad088
crossref_primary_10_1093_texcom_tgaa004
crossref_primary_10_3389_fnins_2022_816331
crossref_primary_10_1002_hbm_26649
crossref_primary_10_3389_fneur_2024_1489822
crossref_primary_10_1016_j_neuroimage_2022_119288
crossref_primary_10_3389_fnins_2022_830808
crossref_primary_10_1088_1741_2552_ab20bc
crossref_primary_10_1016_j_nicl_2021_102593
crossref_primary_10_1109_TBME_2020_3011363
crossref_primary_10_1007_s11682_020_00266_x
crossref_primary_10_3389_fpsyt_2019_00234
crossref_primary_10_1002_hbm_25986
crossref_primary_10_3389_fnins_2023_1126262
crossref_primary_10_1016_j_neuroimage_2022_119037
crossref_primary_10_1038_s42003_024_06531_9
crossref_primary_10_1093_braincomms_fcaf083
crossref_primary_10_1002_jnr_24421
crossref_primary_10_1016_j_jneumeth_2020_108651
crossref_primary_10_1016_j_pnpbp_2022_110644
crossref_primary_10_1371_journal_pone_0238994
crossref_primary_10_1016_j_nicl_2019_101776
crossref_primary_10_1016_j_neuroimage_2021_117827
crossref_primary_10_1016_j_nicl_2025_103731
crossref_primary_10_1109_ACCESS_2024_3354711
crossref_primary_10_1038_s41598_019_49726_5
crossref_primary_10_1016_j_cobeha_2020_12_007
crossref_primary_10_1002_hbm_25732
crossref_primary_10_3389_fneur_2019_00420
crossref_primary_10_3389_fnins_2017_00696
crossref_primary_10_1002_hbm_25736
crossref_primary_10_1093_scan_nsad063
crossref_primary_10_1109_TMI_2017_2755369
crossref_primary_10_1002_hbm_24202
crossref_primary_10_3389_fnins_2020_00214
crossref_primary_10_3389_fnins_2022_953356
crossref_primary_10_1016_j_jneumeth_2019_108356
crossref_primary_10_1016_j_neuroimage_2019_01_080
crossref_primary_10_1016_j_compbiomed_2022_105643
crossref_primary_10_1007_s00429_024_02847_8
crossref_primary_10_1371_journal_pone_0222161
crossref_primary_10_1089_brain_2023_0092
crossref_primary_10_1002_aur_2212
crossref_primary_10_1038_s42003_022_04109_x
crossref_primary_10_1016_j_bpsc_2019_04_004
crossref_primary_10_3389_fphys_2020_615961
crossref_primary_10_3389_fnsys_2021_642225
crossref_primary_10_1126_sciadv_abq7547
crossref_primary_10_1016_j_neuroimage_2022_119057
crossref_primary_10_3390_philosophies3040036
crossref_primary_10_1126_sciadv_abf2709
crossref_primary_10_3389_fnins_2022_852822
crossref_primary_10_1016_j_neuroimage_2023_120342
crossref_primary_10_1016_j_pnpbp_2024_111076
crossref_primary_10_1016_j_brainresbull_2025_111313
crossref_primary_10_1016_j_bbr_2021_113618
crossref_primary_10_1016_j_nicl_2020_102284
crossref_primary_10_3389_fnins_2017_00439
crossref_primary_10_1002_hbm_25754
crossref_primary_10_1016_j_neuroimage_2018_04_070
crossref_primary_10_1016_j_neuroimage_2022_119291
crossref_primary_10_1016_j_cub_2019_06_006
crossref_primary_10_1002_hbm_26606
crossref_primary_10_1093_cercor_bhaa393
crossref_primary_10_3389_fnins_2017_00639
crossref_primary_10_1073_pnas_1814785115
crossref_primary_10_1371_journal_pcbi_1011350
crossref_primary_10_3390_app11136216
crossref_primary_10_1016_j_conb_2018_12_010
crossref_primary_10_1109_ACCESS_2020_2974997
crossref_primary_10_1002_hbm_24855
crossref_primary_10_1016_j_knosys_2023_110661
crossref_primary_10_1016_j_neuroimage_2017_08_044
crossref_primary_10_1016_j_pnpbp_2019_109833
crossref_primary_10_1038_s41597_020_00680_2
crossref_primary_10_3390_brainsci13111601
crossref_primary_10_1371_journal_pone_0267456
crossref_primary_10_1109_TMI_2019_2928790
crossref_primary_10_3389_fncir_2021_719364
crossref_primary_10_1088_1741_2552_ac20e7
crossref_primary_10_1111_jon_13011
crossref_primary_10_1038_s41598_020_66967_x
crossref_primary_10_1162_netn_a_00432
crossref_primary_10_1038_s42003_022_03466_x
crossref_primary_10_1016_j_bpsc_2024_07_021
crossref_primary_10_1016_j_neuroimage_2018_02_029
crossref_primary_10_1007_s11571_022_09899_8
crossref_primary_10_1038_s41380_021_01298_5
crossref_primary_10_1002_hbm_24600
crossref_primary_10_3389_fnagi_2024_1375091
crossref_primary_10_1146_annurev_statistics_040522_100329
crossref_primary_10_3390_brainsci12111527
crossref_primary_10_1002_brx2_41
crossref_primary_10_3389_fnhum_2023_1295326
crossref_primary_10_1002_brb3_3511
crossref_primary_10_1111_adb_13329
crossref_primary_10_1038_s41598_024_76695_1
crossref_primary_10_3389_fnins_2017_00624
crossref_primary_10_1016_j_neucom_2020_01_071
crossref_primary_10_1186_s13634_024_01128_0
crossref_primary_10_1093_cercor_bhac115
crossref_primary_10_1093_cercor_bhad204
crossref_primary_10_1016_j_neuroimage_2024_120684
crossref_primary_10_1016_j_bandl_2022_105149
crossref_primary_10_3389_fncir_2022_681544
crossref_primary_10_1002_hbm_25720
crossref_primary_10_1038_s41598_022_20979_x
crossref_primary_10_1142_S0129065721500313
crossref_primary_10_1016_j_neuroimage_2018_03_074
crossref_primary_10_1186_s13195_022_01006_7
crossref_primary_10_1016_j_tins_2020_06_005
crossref_primary_10_1016_j_neuroimage_2020_117156
crossref_primary_10_3390_electronics12245040
crossref_primary_10_3389_fnins_2022_975305
crossref_primary_10_1017_S0033291723000089
crossref_primary_10_1016_j_neuroimage_2020_117155
crossref_primary_10_1016_j_neuroimage_2018_01_019
crossref_primary_10_1109_TPAMI_2021_3081744
crossref_primary_10_1016_j_brainresbull_2021_04_025
crossref_primary_10_1016_j_pneurobio_2021_102171
crossref_primary_10_3389_fnins_2022_1008652
crossref_primary_10_1002_hbm_25905
crossref_primary_10_3389_fnsys_2020_00049
crossref_primary_10_1016_j_neuroimage_2019_116150
crossref_primary_10_1002_hbm_24812
crossref_primary_10_1073_pnas_1921475117
crossref_primary_10_2139_ssrn_3862788
crossref_primary_10_1016_j_neuroimage_2023_120162
crossref_primary_10_1162_netn_a_00238
crossref_primary_10_1016_j_neuroimage_2021_118518
crossref_primary_10_1093_cercor_bhy296
crossref_primary_10_1002_hbm_24808
crossref_primary_10_1016_j_neuroimage_2020_117137
crossref_primary_10_1016_j_neuroimage_2021_118763
crossref_primary_10_1038_s41567_022_01852_0
crossref_primary_10_1259_bjr_20180910
crossref_primary_10_1093_braincomms_fcae154
crossref_primary_10_1007_s11571_023_10039_z
crossref_primary_10_1111_cns_14904
crossref_primary_10_3389_fnins_2023_1146264
crossref_primary_10_1016_j_neuroimage_2017_08_029
crossref_primary_10_1371_journal_pone_0268752
crossref_primary_10_1016_j_neuropsychologia_2022_108350
crossref_primary_10_1016_j_ynirp_2022_100144
crossref_primary_10_1089_brain_2018_0605
crossref_primary_10_1089_brain_2018_0608
crossref_primary_10_1002_wics_1467
crossref_primary_10_3390_s22072553
crossref_primary_10_1007_s00429_023_02689_w
crossref_primary_10_3390_brainsci12091263
crossref_primary_10_1007_s12035_020_01995_2
crossref_primary_10_1162_netn_a_00216
crossref_primary_10_3389_fninf_2020_575999
crossref_primary_10_1016_j_neuroimage_2018_01_041
crossref_primary_10_1186_s12877_022_03678_0
crossref_primary_10_7717_peerj_10751
crossref_primary_10_1109_TAC_2019_2926854
crossref_primary_10_1016_j_dcn_2024_101496
crossref_primary_10_1007_s11517_020_02244_3
crossref_primary_10_1016_j_neuroscience_2023_08_020
crossref_primary_10_1063_1_5025242
crossref_primary_10_1016_j_neuroimage_2020_117111
crossref_primary_10_1016_j_neulet_2018_09_008
crossref_primary_10_1093_cercor_bhad143
crossref_primary_10_3389_fncom_2022_885126
crossref_primary_10_1016_j_biopsych_2022_02_005
crossref_primary_10_1016_j_neuroimage_2018_01_056
crossref_primary_10_3389_fphys_2018_01704
crossref_primary_10_1016_j_neuroimage_2018_01_053
crossref_primary_10_1162_netn_a_00047
crossref_primary_10_3389_fnsys_2020_00008
crossref_primary_10_1088_1361_6633_ace6bc
crossref_primary_10_1162_netn_a_00280
crossref_primary_10_1016_j_nic_2017_06_009
crossref_primary_10_1016_j_bbr_2019_112142
crossref_primary_10_3390_s23052383
crossref_primary_10_1007_s11571_022_09807_0
crossref_primary_10_1016_j_nicl_2022_103108
crossref_primary_10_1016_j_bpsc_2021_07_004
crossref_primary_10_1523_JNEUROSCI_1786_20_2020
crossref_primary_10_3389_fnins_2018_00327
crossref_primary_10_3390_diagnostics12112720
crossref_primary_10_1016_j_neuroimage_2019_02_001
crossref_primary_10_1038_s41598_018_34841_6
crossref_primary_10_1109_TMI_2024_3502545
crossref_primary_10_1523_ENEURO_0449_24_2025
crossref_primary_10_1016_j_neuroimage_2021_118287
crossref_primary_10_1016_j_neuroimage_2019_116017
crossref_primary_10_1109_ACCESS_2019_2946322
crossref_primary_10_1016_j_jpsychires_2021_05_010
crossref_primary_10_1016_j_nbd_2025_106866
crossref_primary_10_3389_fnsys_2020_00020
crossref_primary_10_1016_j_neuroimage_2018_01_075
crossref_primary_10_1016_j_jneumeth_2024_110138
crossref_primary_10_1016_j_neuroimage_2021_118497
crossref_primary_10_1002_hbm_23821
crossref_primary_10_1016_j_jpain_2020_08_002
crossref_primary_10_3389_fnhum_2025_1515902
crossref_primary_10_1088_1741_2552_ad33b1
crossref_primary_10_1016_j_bbr_2022_114121
crossref_primary_10_1109_TMI_2018_2863944
crossref_primary_10_1016_j_media_2020_101899
crossref_primary_10_2147_JPR_S242807
crossref_primary_10_1109_TNSRE_2019_2953315
crossref_primary_10_1038_s41467_023_36025_x
crossref_primary_10_1002_hbm_26096
crossref_primary_10_3389_fnagi_2021_711009
crossref_primary_10_1016_j_media_2023_103010
crossref_primary_10_1093_braincomms_fcab227
crossref_primary_10_1111_head_14900
crossref_primary_10_1089_brain_2018_0636
crossref_primary_10_3389_fnagi_2021_758137
crossref_primary_10_1016_j_neuroimage_2019_116433
crossref_primary_10_1016_j_neuroimage_2022_118993
crossref_primary_10_1186_s12888_024_06356_0
crossref_primary_10_1016_j_seizure_2024_02_021
crossref_primary_10_1371_journal_pcbi_1006359
crossref_primary_10_3389_fnhum_2022_875201
crossref_primary_10_1016_j_dcn_2020_100850
crossref_primary_10_1016_j_neuroimage_2021_118471
crossref_primary_10_1093_brain_awad004
crossref_primary_10_1142_S0129065724500588
crossref_primary_10_1088_1741_2552_abffe6
crossref_primary_10_3390_land11030338
crossref_primary_10_1007_s10072_024_07506_8
crossref_primary_10_1038_s41562_024_02017_0
crossref_primary_10_1109_TNSRE_2021_3078460
crossref_primary_10_1523_JNEUROSCI_1939_24_2025
crossref_primary_10_3389_fnins_2018_00525
crossref_primary_10_1162_netn_a_00071
crossref_primary_10_1073_pnas_1903403116
crossref_primary_10_1093_cercor_bhae204
crossref_primary_10_1007_s00429_022_02467_0
crossref_primary_10_1093_cercor_bhad120
crossref_primary_10_3389_fnhum_2023_1229618
crossref_primary_10_1016_j_schres_2024_06_019
crossref_primary_10_3389_fnins_2024_1530967
crossref_primary_10_1088_1741_2552_ac542d
crossref_primary_10_3389_fneur_2021_744688
crossref_primary_10_1002_brb3_1932
crossref_primary_10_1093_scan_nsaa114
crossref_primary_10_1038_s41598_019_55452_9
crossref_primary_10_3389_fnint_2022_922577
crossref_primary_10_1162_imag_a_00381
crossref_primary_10_1007_s00787_023_02242_4
crossref_primary_10_1155_2021_6614520
crossref_primary_10_3389_fnins_2018_00551
crossref_primary_10_1016_j_neuroimage_2019_116453
crossref_primary_10_3389_fnins_2023_1220848
crossref_primary_10_1113_JP286639
crossref_primary_10_3389_fneur_2021_651663
crossref_primary_10_1093_cercor_bhae461
crossref_primary_10_1002_hbm_26291
crossref_primary_10_1016_j_neucom_2021_02_096
crossref_primary_10_1016_j_neuroimage_2022_119618
crossref_primary_10_1016_j_neuroimage_2023_119915
crossref_primary_10_1088_1741_2552_ab7ad3
crossref_primary_10_1016_j_brainres_2019_03_023
crossref_primary_10_1016_j_pscychresns_2024_111943
crossref_primary_10_1109_TMI_2019_2953584
crossref_primary_10_3389_fneur_2020_606592
crossref_primary_10_1002_int_22737
crossref_primary_10_1016_j_biopsych_2024_05_025
crossref_primary_10_1038_s41467_024_52721_8
crossref_primary_10_1016_j_neuroimage_2022_119489
crossref_primary_10_1038_s41398_024_02929_5
crossref_primary_10_1016_j_neulet_2023_137097
crossref_primary_10_1038_s41467_019_10317_7
crossref_primary_10_1016_j_jad_2021_10_109
crossref_primary_10_1088_1741_2552_ab0169
crossref_primary_10_1111_biom_13362
crossref_primary_10_1155_2021_5573740
crossref_primary_10_1162_imag_a_00366
crossref_primary_10_1162_imag_a_00364
crossref_primary_10_1016_j_jad_2020_05_148
crossref_primary_10_3389_fncir_2020_570583
crossref_primary_10_1002_hbm_26477
crossref_primary_10_3390_brainsci15030263
crossref_primary_10_1016_j_tics_2019_12_004
crossref_primary_10_3389_fnins_2019_01006
crossref_primary_10_1093_schbul_sbad042
crossref_primary_10_1073_pnas_2209953120
crossref_primary_10_1016_j_neuroimage_2019_07_018
crossref_primary_10_1523_JNEUROSCI_0037_21_2021
crossref_primary_10_1109_TFUZZ_2024_3363623
crossref_primary_10_1016_j_neuroimage_2018_10_004
crossref_primary_10_1093_cercor_bhae098
crossref_primary_10_3389_fnhum_2024_1412572
crossref_primary_10_1016_j_conb_2022_102606
crossref_primary_10_17116_jnevro202012010222
crossref_primary_10_1016_j_neuroimage_2020_116631
crossref_primary_10_1109_TMI_2021_3131142
crossref_primary_10_1089_brain_2021_0015
crossref_primary_10_7717_peerj_15721
crossref_primary_10_1089_brain_2017_0543
crossref_primary_10_1016_j_tins_2018_01_003
crossref_primary_10_1016_j_neuroimage_2019_116425
crossref_primary_10_1002_hbm_26498
crossref_primary_10_3389_fnins_2019_00174
crossref_primary_10_1016_j_clineuro_2022_107481
crossref_primary_10_1109_JBHI_2018_2875456
crossref_primary_10_1016_j_neuroimage_2020_116621
crossref_primary_10_1038_s41598_024_83696_7
crossref_primary_10_1038_s41598_025_87248_5
crossref_primary_10_1007_s41133_021_00046_2
crossref_primary_10_1089_brain_2020_0794
crossref_primary_10_1016_j_jneumeth_2021_109299
crossref_primary_10_1016_j_neuroimage_2017_04_015
crossref_primary_10_3389_fnhum_2020_00003
crossref_primary_10_3390_app13127130
crossref_primary_10_1016_j_neucli_2018_10_004
crossref_primary_10_3389_fnimg_2022_924811
crossref_primary_10_1016_j_pscychresns_2024_111906
crossref_primary_10_1038_s41597_020_00699_5
crossref_primary_10_1002_mds_29898
crossref_primary_10_1016_j_neuroimage_2022_119250
crossref_primary_10_1002_hbm_26200
crossref_primary_10_1016_j_yebeh_2024_109751
crossref_primary_10_3390_brainsci13030429
crossref_primary_10_1002_hbm_25357
crossref_primary_10_1016_j_neuroimage_2022_119201
crossref_primary_10_3389_fnins_2019_00583
crossref_primary_10_1002_hbm_26202
crossref_primary_10_1093_cercor_bhad185
crossref_primary_10_3174_ajnr_A5527
crossref_primary_10_3897_rio_3_e12641
crossref_primary_10_3389_fpsyt_2024_1353103
crossref_primary_10_1016_j_nicl_2020_102352
crossref_primary_10_1002_hbm_70157
crossref_primary_10_1186_s13195_023_01349_9
crossref_primary_10_1002_hbm_25589
crossref_primary_10_1002_hbm_70150
crossref_primary_10_1007_s00429_021_02248_1
crossref_primary_10_1080_15374416_2018_1443461
crossref_primary_10_1371_journal_pcbi_1008929
crossref_primary_10_1002_hbm_25345
crossref_primary_10_1007_s11682_023_00835_w
crossref_primary_10_1002_brb3_2157
crossref_primary_10_1002_jnr_25357
crossref_primary_10_7554_eLife_62116
crossref_primary_10_1016_j_psychres_2024_115774
crossref_primary_10_1002_hbm_70145
crossref_primary_10_3389_fnetp_2021_755016
crossref_primary_10_3390_brainsci9110309
crossref_primary_10_1016_j_neures_2020_06_006
crossref_primary_10_1038_s42003_023_05262_7
crossref_primary_10_1016_j_neuroimage_2022_119460
crossref_primary_10_1038_s42003_024_06210_9
crossref_primary_10_1002_hbm_25379
crossref_primary_10_1007_s00723_019_01117_9
crossref_primary_10_1073_pnas_2005531117
crossref_primary_10_1016_j_jneumeth_2019_108519
crossref_primary_10_3389_fnhum_2021_679086
crossref_primary_10_1007_s11357_023_01022_x
crossref_primary_10_1093_ijnp_pyy100
crossref_primary_10_3389_fpsyt_2022_973921
crossref_primary_10_3389_fncir_2020_593263
crossref_primary_10_1016_j_media_2022_102471
crossref_primary_10_1002_brb3_2174
crossref_primary_10_1186_s12916_021_01962_1
crossref_primary_10_1002_hbm_26215
crossref_primary_10_1002_hbm_25124
crossref_primary_10_1016_j_neuroimage_2019_06_006
crossref_primary_10_1080_19312458_2020_1860206
crossref_primary_10_1089_neu_2022_0257
crossref_primary_10_1038_s41398_017_0074_6
crossref_primary_10_1038_s41587_022_01397_w
crossref_primary_10_1371_journal_pcbi_1008943
crossref_primary_10_3390_e26070545
crossref_primary_10_1186_s12877_020_01761_y
crossref_primary_10_3389_fimmu_2023_1216310
crossref_primary_10_1016_j_nicl_2020_102556
crossref_primary_10_1111_rssc_12463
crossref_primary_10_1016_j_pscychresns_2020_111149
crossref_primary_10_1002_hbm_70125
crossref_primary_10_1002_hbm_25358
crossref_primary_10_1007_s10548_024_01082_y
crossref_primary_10_3389_fnins_2023_1196290
Cites_doi 10.1073/pnas.1312902110
10.1371/journal.pone.0149849
10.1002/jmri.1880070624
10.1016/j.neuroimage.2009.10.003
10.1038/ncomms9885
10.1016/j.neuroimage.2013.05.079
10.1016/j.neuroimage.2008.09.036
10.3389/fneur.2015.00010
10.1016/j.neuroimage.2015.05.015
10.1109/ISBI.2015.7163808
10.1016/j.neuroimage.2009.12.027
10.1016/j.neuroimage.2015.01.057
10.1016/j.neuroimage.2014.06.044
10.1073/pnas.1121049109
10.1152/jn.00783.2009
10.1073/pnas.0504136102
10.1016/j.neucom.2014.05.045
10.1007/s00429-015-1083-y
10.1098/rstb.2005.1634
10.1016/j.neuroimage.2015.12.001
10.1016/j.neuroimage.2013.01.049
10.1038/nrn.2016.113
10.1371/journal.pbio.1002469
10.1038/ncomms9414
10.1016/j.neuron.2014.10.015
10.1016/j.neuroimage.2009.12.011
10.1002/hbm.23215
10.1016/j.neuron.2015.06.037
10.1002/mrm.1910400211
10.1016/j.neuroimage.2013.12.063
10.1002/hbm.22583
10.1073/pnas.1216856110
10.1073/pnas.1831638100
10.1093/cercor/bhs352
10.1007/s10548-014-0406-2
10.1002/hbm.22562
10.1371/journal.pone.0039731
10.1002/hbm.22599
10.1073/pnas.0601417103
10.1002/hbm.22847
10.1016/j.neuroimage.2015.11.055
10.1016/j.nicl.2014.07.003
10.1016/j.neuroimage.2015.03.047
10.1109/MSP.2015.2478915
10.1089/brain.2014.0248
10.1002/jmri.1880070623
10.1016/j.neuroimage.2012.06.078
10.1016/j.neuroimage.2015.10.070
10.1002/nav.3800020109
10.1093/cercor/bhw253
10.1103/PhysRevE.70.066111
10.1016/j.neuroimage.2011.03.033
10.1016/S0730-725X(97)00277-4
10.1109/ISBI.2016.7493503
10.1371/journal.pone.0013311
10.1109/NER.2013.6695998
10.1371/journal.pone.0140134
10.1093/cercor/bhw265
10.1016/j.neuroimage.2015.07.022
10.1073/pnas.1520613113
10.1016/j.neuroimage.2012.03.070
10.1007/978-3-319-02267-3_18
10.1126/science.1099745
10.1016/j.neulet.2010.11.020
10.1016/j.neuroimage.2012.10.015
10.1016/j.schres.2015.11.021
10.1038/sdata.2015.31
10.1016/j.neuroimage.2014.02.014
10.1016/j.neulet.2010.08.053
10.1016/j.neuroimage.2010.08.030
10.1016/j.neuroimage.2014.10.044
10.1097/WNR.0000000000000622
10.1523/JNEUROSCI.3920-14.2015
10.1038/ncomms8751
10.1073/pnas.1418031112
10.1016/j.nicl.2016.10.004
10.1093/cercor/bhw029
10.1073/pnas.1018985108
10.1002/mrm.1910340409
10.1109/ISBI.2015.7163811
10.1089/brain.2015.0389
10.1007/s00429-013-0619-2
10.1089/brain.2014.0230
10.1016/j.neuroimage.2014.06.052
10.1073/pnas.1523980113
10.1016/j.neuroimage.2015.07.064
10.1016/j.neuroimage.2015.04.052
10.1073/pnas.1121329109
10.1089/brain.2014.0251
10.3389/fnins.2016.00381
10.1016/j.neuroimage.2014.07.033
10.1006/nimg.1998.0391
10.1002/hbm.22058
10.1016/j.neuroimage.2013.07.019
10.1016/j.neuroimage.2014.09.007
10.1038/nn.3993
10.1371/journal.pone.0100012
10.1371/journal.pone.0124577
10.1007/s10334-010-0197-8
10.1016/j.neuroimage.2013.07.036
10.1089/brain.2013.0205
10.1073/pnas.1400181111
10.1089/brain.2014.0253
10.1073/pnas.1422487112
10.1109/EMBC.2014.6944460
10.1109/EMBC.2014.6943757
10.1117/2.1201607.006521
10.1007/s00429-013-0634-3
10.1002/hbm.22290
10.1073/pnas.0700668104
10.1002/(SICI)1098-1098(1999)10:2<166::AID-IMA7>3.0.CO;2-F
10.1002/hbm.22140
10.1016/j.nicl.2014.07.002
10.1016/j.neuroimage.2014.12.020
10.1073/pnas.1311989110
10.1097/WNR.0000000000000267
10.1002/hbm.21452
10.1016/j.neuroimage.2016.02.074
10.1016/j.neuroimage.2016.04.051
10.1089/brain.2012.0115
10.1073/pnas.1420687112
10.1016/j.neuroimage.2013.05.039
10.1016/j.neuroimage.2013.05.010
10.1038/nrn2575
10.3389/fnins.2012.00152
10.1007/s11682-015-9408-2
10.1523/JNEUROSCI.4638-14.2015
10.1038/npp.2015.352
10.1016/j.neuroimage.2015.09.010
10.1016/j.neuroimage.2009.09.037
10.1371/journal.pone.0037828
10.1016/j.neuroimage.2015.07.002
10.1089/brain.2011.0036
10.1111/cns.12499
10.1073/pnas.1604898113
10.1016/j.neuroimage.2013.01.067
10.1523/JNEUROSCI.4341-13.2014
10.1016/j.neuroimage.2010.11.059
10.1073/pnas.1501242112
10.1016/j.neuroimage.2011.10.001
10.1038/srep26976
10.1007/978-3-319-10443-0_23
10.1016/j.neuroimage.2014.11.054
10.1089/brain.2014.0300
10.1126/science.1184819
10.1002/hbm.23240
ContentType Journal Article
Copyright 2017 The Authors
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Oct 15, 2017
Copyright_xml – notice: 2017 The Authors
– notice: Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Oct 15, 2017
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1016/j.neuroimage.2016.12.061
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 54
ExternalDocumentID 28034766
10_1016_j_neuroimage_2016_12_061
S1053811916307881
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c575t-1d4261a411b79f4512b0e0371a77c356cf5e814f0763427e4d58b3041ea4f63f3
IEDL.DBID 7X7
ISSN 1053-8119
IngestDate Mon Jul 21 11:34:13 EDT 2025
Wed Aug 13 04:58:59 EDT 2025
Wed Feb 19 02:40:48 EST 2025
Thu Apr 24 23:07:37 EDT 2025
Tue Jul 01 03:01:50 EDT 2025
Fri Feb 23 02:25:05 EST 2024
Tue Aug 26 20:08:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Frame-wise description
Sliding window analysis
Temporal modeling
Time/frequency analysis
State characterization
Dynamic functional connectivity
Dynamic graph analysis
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-1d4261a411b79f4512b0e0371a77c356cf5e814f0763427e4d58b3041ea4f63f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811916307881
PMID 28034766
PQID 1965444376
PQPubID 2031077
PageCount 14
ParticipantIDs proquest_miscellaneous_1854613693
proquest_journals_1965444376
pubmed_primary_28034766
crossref_citationtrail_10_1016_j_neuroimage_2016_12_061
crossref_primary_10_1016_j_neuroimage_2016_12_061
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2016_12_061
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2016_12_061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-15
PublicationDateYYYYMMDD 2017-10-15
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2017
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Chang, C., Leopold, D.A., Schölvinck, M.L., Mandelkow, H., Picchioni, D., Liu, X., Frank, Q.Y., Turchi, J.N., Duyn, J.H., 2016. Tracking brain arousal fluctuations with fmri. In: Proceedings of the National Academy of Sciences, 201520613.
Li, Li, Hu, Chen, Dai (bib80) 2014; 145
Sadaghiani, Poline, Kleinschmidt, D'Esposito (bib116) 2015; 112
Shakil, S., Magnuson, M.E., Keilholz, S.D., Chin-Hui Lee, 2014. Cluster-based analysis for characterizing dynamic functional connectivity. In: 2014 Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp. 982–985.
Baumgartner, Windischberger, Moser (bib8) 1998; 16
Cribben, Haraldsdottir, Atlas, Wager, Lindquist (bib29) 2012; 61
Rack-Gomer, Liu (bib112) 2012; 59
Shakil, Lee, Keilholz (bib120) 2016; 133
Yaesoubi, Miller, Calhoun (bib156) 2015; 107
Calhoun, Miller, Pearlson, Adal (bib17) 2014; 84
Guidotti, Del Gratta, Baldassarre, Romani, Corbetta (bib48) 2015; 35
Jia, Hu, Deshpande (bib58) 2014; 4
Christoff, Irving, Fox, Spreng, Andrews-Hanna (bib26) 2016; 17
Ou, J., Xie, L., Wang, P., Li, X., Zhu, D., Jiang, R., Wang, Y., Chen, Y., Zhang, J., Liu, T., 2013. Modeling brain functional dynamics via hidden Markov models. In: 2013 Proceedings of the 6th International IEEE/EMBS Conference on Neural Engineering (NER). No. c. IEEE, pp. 569–572.
Li, Zhu, Jiang, Jin, Zhang, Guo, Zhang, Hu, Li, Liu (bib79) 2014; 35
Marusak, Calhoun, Brown, Crespo, Sala-Hamrick, Gotlib, Thomason (bib92) 2016; 00
Betzel, Fukushima, He, Zuo, Sporns (bib10) 2016; 127
Miller, Yaesoubi, Turner, Mathalon, Preda, Pearlson, Adali, Calhoun (bib96) 2016; 11
Poldrack, Laumann, Koyejo, Gregory, Hover, Chen, Gorgolewski, Luci, Joo, Boyd (bib107) 2015; 6
Price, T., Wee, C.-Y., Gao, W., Shen, D., 2014. Multiple-network classification of childhood autism using functional connectivity dynamics. In: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 177–184.
Rashid, Arbabshirani, Damaraju, Cetin, Miller, Pearlson, Calhoun (bib113) 2016; 134
Du, Pearlson, Yu, He, Lin, Sui, Wu, Calhoun (bib36) 2016; 170
Shen, Li, Zeng, Yuan, Chen, Liu, Hu (bib123) 2014; 25
Leonardi, Shirer, Greicius, Van De Ville (bib77) 2014; 35
Thompson, Magnuson, Merritt, Schwarb, Pan, McKinley, Tripp, Schumacher, Keilholz (bib144) 2013; 34
Wee, Yang, Yap, Shen (bib151) 2016; 10
Keilholz, Magnuson, Pan, Willis, Thompson (bib64) 2013; 3
Rubinov, Sporns (bib115) 2010; 52
.
Di, Biswal (bib35) 2015; 220
Sourty, Thoraval, Roquet, Armspach, Foucher, Blanc (bib133) 2016; 10
Damaraju, Allen, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda, Turner, Vaidya, van Erp, Calhoun (bib31) 2014; 5
Qin, Chen, Hu, Zeng, Fan, Chen, Shen (bib111) 2015; 9
Thompson, Merritt, Pan, Magnuson, Grooms, Jaeger, Keilholz (bib145) 2013; 83
Wang, C., Ong, J.L., Patanaik, A., Zhou, J., Chee, M.W., 2016. Spontaneous eyelid closures link vigilance fluctuation with fmri dynamic connectivity states. Proceedings of the National Academy of Sciences, 201523980.
Chen, Zhang, Gao, Wee, Li, Shen (bib23) 2016; 37
Wee, Yap, Shen (bib153) 2016; 22
Gonzalez-Castillo, Saad, Handwerker, Inati, Brenowitz, Bandettini (bib44) 2012; 109
Grigg, Grady (bib46) 2010; 5
Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (bib2) 2014; 24
Gu, Pasqualetti, Cieslak, Telesford, Yu, Kahn, Medaglia, Vettel, Miller, Grafton, Bassett (bib47) 2015; 6
Kucyi, Hove, Esterman, Hutchison, Valera (bib68) 2016
Shen, Li, Qin, Liu, Wang, Zeng, Li, Hu (bib122) 2016; 124
Kuhn (bib70) 1955; 2
Stoeckel, Garrison, Ghosh, Wighton, Hanlon, Gilman, Greer, Turk-Browne, Scheinost, Craddock (bib135) 2014; 5
Han, Wang, Zhao, Min, Lu, Li, He, Jia (bib49) 2011; 55
Caballero Gaudes, Petridou, Francis, Dryden, Gowland (bib15) 2013; 34
Buzsaki, Draguhn (bib14) 2004; 304
Baumgartner, Scarth, Teichtmeiste, Somorjai, Moser (bib7) 1997; 7
Bassett, Yang, Wymbs, Grafton (bib6) 2015; 18
Nooner, Colcombe, Tobe, Mennes, Benedict, Moreno, Panek, Brown, Zavitz, Li (bib103) 2012; 6
Biswal, Zerrin Yetkin, Haughton, Hyde (bib11) 1995; 34
Hudetz, Liu, Pillay (bib53) 2015; 5
Power, Schlaggar, Petersen (bib108) 2015; 105
Tagliazucchi, Balenzuela, Fraiman, Chialvo (bib138) 2012; 3
Tagliazucchi, Carhart-Harris, Leech, Nutt, Chialvo (bib140) 2014; 35
Siegel, Mitra, Laumann, Seitzman, Raichle, Corbetta, Snyder (bib128) 2016
Zalesky, Breakspear (bib159) 2015; 114
Meskaldji, Preti, Bolton, Montandon, Rodriguez, Morgenthaler, Giannakopoulos, Haller, Van De Ville (bib94) 2016; 12
Schaefer, Margulies, Lohmann, Gorgolewski, Smallwood, Kiebel, Villringer (bib119) 2014; 8
Ma, Calhoun, Phlypo, Adal (bib87) 2014; 90
Chen, Chang, Greicius, Glover (bib21) 2015; 111
Ou, Xie, Jin, Li, Zhu, Jiang, Chen, Zhang, Li, Liu (bib104) 2015; 28
Van Dijk, Hedden, Venkataraman, Evans, Lazar, Buckner (bib148) 2010; 103
Zuo, Di Martino, Kelly, Shehzad, Gee, Klein, Castellanos, Biswal, Milham (bib162) 2010; 49
Elton, Gao (bib38) 2015; 36
Falahpour, Thompson, Abbott, Jahedi, Mulvey, Datko, Liu, Müller (bib39) 2016; 6
Kucyi, Salomons, Davis (bib69) 2013; 110
Staresina, Alink, Kriegeskorte, Henson (bib134) 2013; 110
Cordes, Haughton, Arfanakis, Carew, Turski, Moritz, Quigley, Meyerand (bib28) 2001; 22
Thompson, Fransson (bib146) 2015; 121
Liégeois, Ziegler, Phillips, Geurts, Gómez, Bahri, Yeo, Soddu, Vanhaudenhuyse, Laureys, Sepulchre (bib83) 2016; 221
Tagliazucchi, Balenzuela, Fraiman, Chialvo (bib137) 2010; 485
Xu, Lindquist (bib154) 2015; 9
Deng, Sun, Cheng, Tong (bib34) 2016; 6
Laumann, Snyder, Mitra, Gordon, Gratton, Adeyemo, Gilmore, Nelson, Berg, Greene (bib74) 2016
Karahanoğlu, Van De Ville (bib63) 2015; 6
Braun, Schäfer, Walter, Erk, Romanczuk-Seiferth, Haddad, Schweiger, Grimm, Heinz, Tost, Meyer-Lindenberg, Bassett (bib12) 2015; 112
Demirtas, Tornador, Falcón, López-Solà, Hernández-Ribas, Pujol, Menchón, Ritter, Cardoner, Soriano-Mas, Deco (bib33) 2016; 37
Zalesky, Fornito, Cocchi, Gollo, Breakspear (bib160) 2014; 111
Koush, Rosa, Robineau, Heinen, Rieger, Weiskopf, Vuilleumier, Van De Ville, Scharnowski (bib66) 2013; 81
Kucyi, Davis (bib67) 2014; 100
Eavani, Satterthwaite, Gur, Gur, Davatzikos (bib37) 2013; 23
Goutte, Toft, Rostrup, Nielsen, Hansen (bib45) 1999; 9
Golay, Kollias, Stoll, Meier, Valavanis, Boesiger (bib41) 1998; 40
Murphy, Birn, Handwerker, Jones, Bandettini (bib102) 2009; 44
Beckmann, DeLuca, Devlin, Smith (bib9) 2005; 360
Jones, Vemuri, Murphy, Gunter, Senjem, Machulda, Przybelski, Gregg, Kantarci, Knopman, Boeve, Petersen, Jack (bib59) 2012; 7
Yu, Erhardt, Sui, Du, He, Hjelm, Cetin, Rachakonda, Miller, Pearlson, Calhoun (bib158) 2015; 107
Hutchison, Morton (bib55) 2015; 35
Hindriks, Adhikari, Murayama, Ganzetti, Mantini, Logothetis, Deco (bib51) 2016; 127
Majeed, Magnuson, Hasenkamp, Schwarb, Schumacher, Barsalou, Keilholz (bib90) 2011; 54
Morgan, Abou-Khalil, Rogers (bib98) 2014; 5
Monti, Hellyer, Sharp, Leech, Anagnostopoulos, Montana (bib97) 2014; 103
Zalesky, Fornito, Harding, Cocchi, Yücel, Pantelis, Bullmore (bib161) 2010; 50
Yaesoubi, Allen, Miller, Calhoun (bib155) 2015; 120
Bullmore, Sporns (bib13) 2009; 10
Bassett, Wymbs, Porter, Mucha, Carlson, Grafton (bib5) 2011; 108
Liu, Chang, Duyn (bib85) 2013; 7
Hutchison, Hutchison, Manning, Menon, Everling (bib54) 2014; 35
Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta, Della Penna, Duyn, Glover, Gonzalez-Castillo, Handwerker, Keilholz, Kiviniemi, Leopold, de Pasquale, Sporns, Walter, Chang (bib56) 2013; 80
Cribben, Wager, Lindquist (bib30) 2013; 7
Fox, Snyder, Vincent, Corbetta, VanEssen, Raichle (bib40) 2005; 102
Tagliazucchi, Siniatchkin, Laufs, Chialvo (bib142) 2016; 10
Mucha, Richardson, Macon, Porter, Onnela (bib101) 2010; 328
Yang, Craddock, Margulies, Yan, Milham (bib157) 2014; 93
Chiang, Cassese, Guindani, Vannucci, Yeh, Haneef, Stern (bib24) 2016; 125
Clauset, Newman, Moore (bib27) 2004; 70
Laufs, Krakow, Sterzer, Eger, Beyerle, Salek-Haddadi, Kleinschmidt (bib71) 2003; 100
Handwerker, Roopchansingh, Gonzalez-Castillo, Bandettini (bib50) 2012; 63
Su, Shen, Zeng, Qin, Liu, Hu (bib136) 2016; 27
Chang, Liu, Chen, Liu, Duyn (bib20) 2013; 72
Lee, Zahneisen, Hugger, LeVan, Hennig (bib75) 2013; 65
Van De Ville, D., Karahanoğlu, F.I., 2016. Resting-state neuroimaging unravels functional organization in the brain. SPIE Newsroom, pp. 2–4.
Barttfeld, Uhrig, Sitt, Sigman, Jarraya, Dehaene (bib4) 2015; 112
Preti, M.G., Haller, S., Giannakopoulos, P., Van De Ville, D., 2015. Decomposing dynamic functional connectivity onto phase-dependent eigenconnectivities using the Hilbert transform. In: 2015 IEEE Proceedings of the 12th International Symposium on Biomedical Imaging (ISBI). IEEE, pp. 38–41.
Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann (bib32) 2006; 103
Mantini, Perrucci, Del Gratta, Romani, Corbetta (bib91) 2007; 104
Miller, R.L., Yaesoubi, M., Calhoun, V.D., 2014. Higher dimensional analysis shows reduced dynamism of time-varying network connectivity in schizophrenia patients. In: 2014 Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp. 3837–3840.
Liao, Zhang, Mantini, Xu, Ji, Zhang, Wang, Wang, Chen, Tian, Jiao, Zang, Lu (bib82) 2014; 219
Chen, Cai, Ryali, Supekar, Menon (bib22) 2016; 14
Kaiser, Whitfield-Gabrieli, Dillon, Goer, Beltzer, Minkel, Smoski, Dichter, Pizzagalli (bib60) 2016; 41
Lindquist, Xu, Nebel, Caffo (bib84) 2014; 101
Leonardi, Van De Ville (bib78) 2015; 104
Patel, Bullmore (bib106) 2016; 142
Sami, Robertson, Miall (bib118) 2014; 34
Allan, Francis, Caballero-Gaudes, Morris, Liddle, Liddle, Brookes, Gowland (bib1) 2015; 10
Wee, C.-Y., Yang, S., Yap, P.-T., Shen, D., 2013. Temporally dynamic resting-state functional connectivity networks for early mci identification. In: Proceedings of the International Workshop on Machine Learning in Medical Imaging. Springer, pp. 139–146.
Chang, Glover (bib18) 2010; 50
Gonzalez-Castillo, Handwerker, Robinson, Hoy, Buchanan, Saad, Bandettini (bib42) 2014; 8
Tagliazucchi, Balenzuela, Fraiman, Montoya, Chialvo (bib139) 2011; 488
Kang, Wang, Yan, Wa
Liu (10.1016/j.neuroimage.2016.12.061_bib85) 2013; 7
Hindriks (10.1016/j.neuroimage.2016.12.061_bib51) 2016; 127
Jones (10.1016/j.neuroimage.2016.12.061_bib59) 2012; 7
Lee (10.1016/j.neuroimage.2016.12.061_bib75) 2013; 65
Goutte (10.1016/j.neuroimage.2016.12.061_bib45) 1999; 9
Koush (10.1016/j.neuroimage.2016.12.061_bib66) 2013; 81
Meskaldji (10.1016/j.neuroimage.2016.12.061_bib94) 2016; 12
Leonardi (10.1016/j.neuroimage.2016.12.061_bib77) 2014; 35
Shine (10.1016/j.neuroimage.2016.12.061_bib125) 2015; 122
Jia (10.1016/j.neuroimage.2016.12.061_bib58) 2014; 4
Betzel (10.1016/j.neuroimage.2016.12.061_bib10) 2016; 127
Tagliazucchi (10.1016/j.neuroimage.2016.12.061_bib142) 2016; 10
Stoeckel (10.1016/j.neuroimage.2016.12.061_bib135) 2014; 5
Xu (10.1016/j.neuroimage.2016.12.061_bib154) 2015; 9
Gu (10.1016/j.neuroimage.2016.12.061_bib47) 2015; 6
Siegel (10.1016/j.neuroimage.2016.12.061_bib128) 2016
Barttfeld (10.1016/j.neuroimage.2016.12.061_bib4) 2015; 112
Calhoun (10.1016/j.neuroimage.2016.12.061_bib17) 2014; 84
10.1016/j.neuroimage.2016.12.061_bib147
Yaesoubi (10.1016/j.neuroimage.2016.12.061_bib155) 2015; 120
10.1016/j.neuroimage.2016.12.061_bib149
Tagliazucchi (10.1016/j.neuroimage.2016.12.061_bib137) 2010; 485
Han (10.1016/j.neuroimage.2016.12.061_bib49) 2011; 55
Di (10.1016/j.neuroimage.2016.12.061_bib35) 2015; 220
Elton (10.1016/j.neuroimage.2016.12.061_bib38) 2015; 36
Shen (10.1016/j.neuroimage.2016.12.061_bib123) 2014; 25
Moser (10.1016/j.neuroimage.2016.12.061_bib99) 1999; 10
Power (10.1016/j.neuroimage.2016.12.061_bib108) 2015; 105
Bassett (10.1016/j.neuroimage.2016.12.061_bib6) 2015; 18
Zuo (10.1016/j.neuroimage.2016.12.061_bib162) 2010; 49
10.1016/j.neuroimage.2016.12.061_bib132
Madhyastha (10.1016/j.neuroimage.2016.12.061_bib89) 2014; 4
Braun (10.1016/j.neuroimage.2016.12.061_bib12) 2015; 112
Nooner (10.1016/j.neuroimage.2016.12.061_bib103) 2012; 6
Mantini (10.1016/j.neuroimage.2016.12.061_bib91) 2007; 104
Choe (10.1016/j.neuroimage.2016.12.061_bib25) 2015; 10
Cordes (10.1016/j.neuroimage.2016.12.061_bib28) 2001; 22
Miller (10.1016/j.neuroimage.2016.12.061_bib96) 2016; 11
Sakoglu (10.1016/j.neuroimage.2016.12.061_bib117) 2010; 23
Chen (10.1016/j.neuroimage.2016.12.061_bib22) 2016; 14
Zalesky (10.1016/j.neuroimage.2016.12.061_bib160) 2014; 111
Rubinov (10.1016/j.neuroimage.2016.12.061_bib115) 2010; 52
Tagliazucchi (10.1016/j.neuroimage.2016.12.061_bib143) 2012; 6
Liu (10.1016/j.neuroimage.2016.12.061_bib86) 2013; 110
Kucyi (10.1016/j.neuroimage.2016.12.061_bib68) 2016
Handwerker (10.1016/j.neuroimage.2016.12.061_bib50) 2012; 63
Rashid (10.1016/j.neuroimage.2016.12.061_bib113) 2016; 134
Li (10.1016/j.neuroimage.2016.12.061_bib79) 2014; 35
Deng (10.1016/j.neuroimage.2016.12.061_bib34) 2016; 6
Golay (10.1016/j.neuroimage.2016.12.061_bib41) 1998; 40
Hudetz (10.1016/j.neuroimage.2016.12.061_bib53) 2015; 5
Guidotti (10.1016/j.neuroimage.2016.12.061_bib48) 2015; 35
Demirtas (10.1016/j.neuroimage.2016.12.061_bib33) 2016; 37
Rashid (10.1016/j.neuroimage.2016.12.061_bib114) 2014; 8
Cribben (10.1016/j.neuroimage.2016.12.061_bib30) 2013; 7
Gonzalez-Castillo (10.1016/j.neuroimage.2016.12.061_bib42) 2014; 8
Kuhn (10.1016/j.neuroimage.2016.12.061_bib70) 1955; 2
Schaefer (10.1016/j.neuroimage.2016.12.061_bib119) 2014; 8
10.1016/j.neuroimage.2016.12.061_bib150
Du (10.1016/j.neuroimage.2016.12.061_bib36) 2016; 170
Liao (10.1016/j.neuroimage.2016.12.061_bib82) 2014; 219
Sadaghiani (10.1016/j.neuroimage.2016.12.061_bib116) 2015; 112
Kang (10.1016/j.neuroimage.2016.12.061_bib61) 2011; 56
Qin (10.1016/j.neuroimage.2016.12.061_bib111) 2015; 9
Zalesky (10.1016/j.neuroimage.2016.12.061_bib159) 2015; 114
Li (10.1016/j.neuroimage.2016.12.061_bib80) 2014; 145
Liégeois (10.1016/j.neuroimage.2016.12.061_bib83) 2016; 221
Allan (10.1016/j.neuroimage.2016.12.061_bib1) 2015; 10
Chen (10.1016/j.neuroimage.2016.12.061_bib23) 2016; 37
Hutchison (10.1016/j.neuroimage.2016.12.061_bib54) 2014; 35
Madhyastha (10.1016/j.neuroimage.2016.12.061_bib88) 2015; 5
Moser (10.1016/j.neuroimage.2016.12.061_bib100) 1997; 7
Morgan (10.1016/j.neuroimage.2016.12.061_bib98) 2014; 5
Yu (10.1016/j.neuroimage.2016.12.061_bib158) 2015; 107
Kiviniemi (10.1016/j.neuroimage.2016.12.061_bib65) 2011; 1
Gonzalez-Castillo (10.1016/j.neuroimage.2016.12.061_bib43) 2015; 112
Holmes (10.1016/j.neuroimage.2016.12.061_bib52) 2015; 2
Karahanoğlu (10.1016/j.neuroimage.2016.12.061_bib62) 2013; 73
Murphy (10.1016/j.neuroimage.2016.12.061_bib102) 2009; 44
Majeed (10.1016/j.neuroimage.2016.12.061_bib90) 2011; 54
Buzsaki (10.1016/j.neuroimage.2016.12.061_bib14) 2004; 304
Laufs (10.1016/j.neuroimage.2016.12.061_bib71) 2003; 100
Patel (10.1016/j.neuroimage.2016.12.061_bib106) 2016; 142
Damoiseaux (10.1016/j.neuroimage.2016.12.061_bib32) 2006; 103
Cribben (10.1016/j.neuroimage.2016.12.061_bib29) 2012; 61
Smith (10.1016/j.neuroimage.2016.12.061_bib130) 2013; 80
Bassett (10.1016/j.neuroimage.2016.12.061_bib5) 2011; 108
Poldrack (10.1016/j.neuroimage.2016.12.061_bib107) 2015; 6
Smith (10.1016/j.neuroimage.2016.12.061_bib131) 2012; 109
Bullmore (10.1016/j.neuroimage.2016.12.061_bib13) 2009; 10
Wee (10.1016/j.neuroimage.2016.12.061_bib153) 2016; 22
Hutchison (10.1016/j.neuroimage.2016.12.061_bib57) 2013; 34
10.1016/j.neuroimage.2016.12.061_bib105
Falahpour (10.1016/j.neuroimage.2016.12.061_bib39) 2016; 6
Thompson (10.1016/j.neuroimage.2016.12.061_bib146) 2015; 121
Eavani (10.1016/j.neuroimage.2016.12.061_bib37) 2013; 23
Chen (10.1016/j.neuroimage.2016.12.061_bib21) 2015; 111
Shakil (10.1016/j.neuroimage.2016.12.061_bib120) 2016; 133
Kaiser (10.1016/j.neuroimage.2016.12.061_bib60) 2016; 41
Tagliazucchi (10.1016/j.neuroimage.2016.12.061_bib139) 2011; 488
Keilholz (10.1016/j.neuroimage.2016.12.061_bib64) 2013; 3
Mucha (10.1016/j.neuroimage.2016.12.061_bib101) 2010; 328
Shirer (10.1016/j.neuroimage.2016.12.061_bib127) 2015; 117
Chang (10.1016/j.neuroimage.2016.12.061_bib18) 2010; 50
10.1016/j.neuroimage.2016.12.061_bib19
Baumgartner (10.1016/j.neuroimage.2016.12.061_bib7) 1997; 7
Tagliazucchi (10.1016/j.neuroimage.2016.12.061_bib140) 2014; 35
Karahanoğlu (10.1016/j.neuroimage.2016.12.061_bib63) 2015; 6
Hutchison (10.1016/j.neuroimage.2016.12.061_bib55) 2015; 35
Caballero Gaudes (10.1016/j.neuroimage.2016.12.061_bib15) 2013; 34
Sami (10.1016/j.neuroimage.2016.12.061_bib118) 2014; 34
Laufs (10.1016/j.neuroimage.2016.12.061_bib72) 2014; 5
Wee (10.1016/j.neuroimage.2016.12.061_bib152) 2012; 7
Simony (10.1016/j.neuroimage.2016.12.061_bib129) 2016; 7
Yaesoubi (10.1016/j.neuroimage.2016.12.061_bib156) 2015; 107
10.1016/j.neuroimage.2016.12.061_bib93
Thompson (10.1016/j.neuroimage.2016.12.061_bib145) 2013; 83
10.1016/j.neuroimage.2016.12.061_bib95
Rack-Gomer (10.1016/j.neuroimage.2016.12.061_bib112) 2012; 59
Hutchison (10.1016/j.neuroimage.2016.12.061_bib56) 2013; 80
Laumann (10.1016/j.neuroimage.2016.12.061_bib73) 2015; 87
Damaraju (10.1016/j.neuroimage.2016.12.061_bib31) 2014; 5
Laumann (10.1016/j.neuroimage.2016.12.061_bib74) 2016
Lindquist (10.1016/j.neuroimage.2016.12.061_bib84) 2014; 101
Sourty (10.1016/j.neuroimage.2016.12.061_bib133) 2016; 10
Baumgartner (10.1016/j.neuroimage.2016.12.061_bib8) 1998; 16
Wee (10.1016/j.neuroimage.2016.12.061_bib151) 2016; 10
Allen (10.1016/j.neuroimage.2016.12.061_bib2) 2014; 24
Shen (10.1016/j.neuroimage.2016.12.061_bib122) 2016; 124
10.1016/j.neuroimage.2016.12.061_bib121
Van Dijk (10.1016/j.neuroimage.2016.12.061_bib148) 2010; 103
Tagliazucchi (10.1016/j.neuroimage.2016.12.061_bib141) 2015; 6
Chiang (10.1016/j.neuroimage.2016.12.061_bib24) 2016; 125
Ou (10.1016/j.neuroimage.2016.12.061_bib104) 2015; 28
Chang (10.1016/j.neuroimage.2016.12.061_bib20) 2013; 72
Leonardi (10.1016/j.neuroimage.2016.12.061_bib78) 2015; 104
10.1016/j.neuroimage.2016.12.061_bib124
Beckmann (10.1016/j.neuroimage.2016.12.061_bib9) 2005; 360
10.1016/j.neuroimage.2016.12.061_bib126
10.1016/j.neuroimage.2016.12.061_bib109
Monti (10.1016/j.neuroimage.2016.12.061_bib97) 2014; 103
Ma (10.1016/j.neuroimage.2016.12.061_bib87) 2014; 90
Gonzalez-Castillo (10.1016/j.neuroimage.2016.12.061_bib44) 2012; 109
Zalesky (10.1016/j.neuroimage.2016.12.061_bib161) 2010; 50
Su (10.1016/j.neuroimage.2016.12.061_bib136) 2016; 27
Yang (10.1016/j.neuroimage.2016.12.061_bib157) 2014; 93
Kucyi (10.1016/j.neuroimage.2016.12.061_bib69) 2013; 110
Biswal (10.1016/j.neuroimage.2016.12.061_bib11) 1995; 34
Christoff (10.1016/j.neuroimage.2016.12.061_bib26) 2016; 17
Staresina (10.1016/j.neuroimage.2016.12.061_bib134) 2013; 110
Liao (10.1016/j.neuroimage.2016.12.061_bib81) 2014; 4
Marusak (10.1016/j.neuroimage.2016.12.061_bib92) 2016; 00
Clauset (10.1016/j.neuroimage.2016.12.061_bib27) 2004; 70
Amico (10.1016/j.neuroimage.2016.12.061_bib3) 2014; 9
Leonardi (10.1016/j.neuroimage.2016.12.061_bib76) 2013; 83
Grigg (10.1016/j.neuroimage.2016.12.061_bib46) 2010; 5
Tagliazucchi (10.1016/j.neuroimage.2016.12.061_bib138) 2012; 3
10.1016/j.neuroimage.2016.12.061_bib110
Fox (10.1016/j.neuroimage.2016.12.061_bib40) 2005; 102
Kucyi (10.1016/j.neuroimage.2016.12.061_bib67) 2014; 100
Thompson (10.1016/j.neuroimage.2016.12.061_bib144) 2013; 34
Calhoun (10.1016/j.neuroimage.2016.12.061_bib16) 2016; 33
References_xml – volume: 34
  start-page: 501
  year: 2013
  end-page: 518
  ident: bib15
  article-title: Paradigm free mapping with sparse regression automatically detects single-trial functional magnetic resonance imaging blood oxygenation level dependent responses
  publication-title: Hum. Brain Mapp.
– volume: 50
  start-page: 81
  year: 2010
  end-page: 98
  ident: bib18
  article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI
  publication-title: NeuroImage
– volume: 100
  start-page: 11053
  year: 2003
  end-page: 11058
  ident: bib71
  article-title: Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest
  publication-title: Proc. Natl. Acad. Sci.
– volume: 7
  start-page: 1
  year: 2013
  end-page: 11
  ident: bib85
  article-title: Decomposition of spontaneous brain activity into distinct fMRI co-activation patterns
  publication-title: Front. Syst. Neurosci.
– volume: 10
  start-page: 60
  year: 2016
  ident: bib133
  article-title: Identifying dynamic functional connectivity changes in dementia with lewy bodies based on product hidden Markov models
  publication-title: Front. Comput. Neurosci.
– volume: 37
  start-page: 2918
  year: 2016
  end-page: 2930
  ident: bib33
  article-title: Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder
  publication-title: Hum. Brain Mapp.
– volume: 5
  start-page: 245
  year: 2014
  end-page: 255
  ident: bib135
  article-title: Optimizing real time fmri neurofeedback for therapeutic discovery and development
  publication-title: NeuroImage: Clin.
– volume: 17
  start-page: 718
  year: 2016
  end-page: 731
  ident: bib26
  article-title: Mind-wandering as spontaneous thought: a dynamic framework
  publication-title: Nat. Rev. Neurosci.
– volume: 65
  start-page: 216
  year: 2013
  end-page: 222
  ident: bib75
  article-title: Tracking dynamic resting-state networks at higher frequencies using MR-encephalography
  publication-title: NeuroImage
– reference: Ou, J., Xie, L., Wang, P., Li, X., Zhu, D., Jiang, R., Wang, Y., Chen, Y., Zhang, J., Liu, T., 2013. Modeling brain functional dynamics via hidden Markov models. In: 2013 Proceedings of the 6th International IEEE/EMBS Conference on Neural Engineering (NER). No. c. IEEE, pp. 569–572.
– volume: 6
  start-page: 10
  year: 2015
  ident: bib141
  article-title: Multimodal imaging of dynamic functional connectivity
  publication-title: Front. Neurol.
– volume: 5
  start-page: 10
  year: 2015
  end-page: 22
  ident: bib53
  article-title: Dynamic repertoire of intrinsic brain states is reduced in propofol-induced unconsciousness
  publication-title: Brain Connect.
– volume: 6
  start-page: 8414
  year: 2015
  ident: bib47
  article-title: Controllability of structural brain networks
  publication-title: Nat. Commun.
– volume: 109
  start-page: 3131
  year: 2012
  end-page: 3136
  ident: bib131
  article-title: Temporally-independent functional modes of spontaneous brain activity
  publication-title: Proc. Natl. Acad. Sci.
– volume: 121
  start-page: 227
  year: 2015
  end-page: 242
  ident: bib146
  article-title: The frequency dimension of fMRI dynamic connectivity: network connectivity, functional hubs and integration in the resting brain
  publication-title: NeuroImage
– volume: 170
  start-page: 55
  year: 2016
  end-page: 65
  ident: bib36
  article-title: Interaction among subsystems within default mode network diminished in schizophrenia patients: a dynamic connectivity approach
  publication-title: Schizophr. Res.
– volume: 110
  start-page: 18692
  year: 2013
  end-page: 18697
  ident: bib69
  article-title: Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks
  publication-title: Proc. Natl. Acad. Sci.
– volume: 112
  start-page: 887
  year: 2015
  end-page: 892
  ident: bib4
  article-title: Signature of consciousness in the dynamics of resting-state brain activity
  publication-title: Proc. Natl. Acad. Sci.
– volume: 80
  start-page: 144
  year: 2013
  end-page: 168
  ident: bib130
  article-title: Resting-state fmri in the human connectome project
  publication-title: Neuroimage
– volume: 27
  start-page: 843
  year: 2016
  end-page: 848
  ident: bib136
  article-title: Heredity characteristics of schizophrenia shown by dynamic functional connectivity analysis of resting-state functional MRI scans of unaffected siblings
  publication-title: NeuroReport
– volume: 7
  start-page: 143
  year: 2013
  ident: bib30
  article-title: Detecting functional connectivity change points for single-subject fMRI data
  publication-title: Front. Comput. Neurosci.
– volume: 117
  start-page: 67
  year: 2015
  end-page: 79
  ident: bib127
  article-title: Optimization of rs-fmri pre-processing for enhanced signal-noise separation, test-retest reliability, and group discrimination
  publication-title: Neuroimage
– reference: Shine, J.M., Koyejo, O., Poldrack, R.A., 2016. Temporal metastates are associated with differential patterns of time-resolved connectivity, network topology, and attention. Proceedings of the National Academy of Sciences (August (10)), 201604898.
– volume: 2
  year: 2015
  ident: bib52
  article-title: Brain genomics superstruct project initial data release with structural, functional, and behavioral measures
  publication-title: Sci. Data
– volume: 145
  start-page: 182
  year: 2014
  end-page: 189
  ident: bib80
  article-title: Point process analysis in brain networks of patients with diabetes
  publication-title: Neurocomputing
– volume: 18
  start-page: 744
  year: 2015
  end-page: 751
  ident: bib6
  article-title: Learning-induced autonomy of sensorimotor systems
  publication-title: Nat. Neurosci.
– volume: 49
  start-page: 1432
  year: 2010
  end-page: 1445
  ident: bib162
  article-title: The oscillating brain: complex and reliable
  publication-title: Neuroimage
– volume: 34
  start-page: 3280
  year: 2013
  end-page: 3298
  ident: bib144
  article-title: Short-time windows of correlation between large-scale functional brain networks predict vigilance intraindividually and interindividually
  publication-title: Hum. Brain Mapp.
– volume: 360
  start-page: 1001
  year: 2005
  end-page: 1013
  ident: bib9
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. R. Soc. B: Biol. Sci.
– volume: 35
  start-page: 5754
  year: 2014
  end-page: 5775
  ident: bib54
  article-title: Isoflurane induces dose-dependent alterations in the cortical connectivity profiles and dynamic properties of the brain's functional architecture
  publication-title: Hum. Brain Mapp.
– volume: 2
  start-page: 83
  year: 1955
  end-page: 97
  ident: bib70
  article-title: The hungarian method for the assignment problem
  publication-title: Nav. Res. Logist. Q.
– volume: 110
  start-page: 21159
  year: 2013
  end-page: 21164
  ident: bib134
  article-title: Awake reactivation predicts memory in humans
  publication-title: Proc. Natl. Acad. Sci.
– volume: 104
  start-page: 13170
  year: 2007
  end-page: 13175
  ident: bib91
  article-title: Electrophysiological signatures of resting state networks in the human brain
  publication-title: Proc. Natl. Acad. Sci.
– volume: 33
  start-page: 52
  year: 2016
  end-page: 66
  ident: bib16
  article-title: Time-varying brain connectivity in fMRI data: whole-brain data-driven approaches for capturing and characterizing dynamic states
  publication-title: IEEE Signal Process. Mag.
– volume: 40
  start-page: 249
  year: 1998
  end-page: 260
  ident: bib41
  article-title: A new correlation-based fuzzy logic clustering algorithm for fMRI
  publication-title: Magn. Reson. Med.
– volume: 10
  start-page: 342
  year: 2016
  end-page: 356
  ident: bib151
  article-title: Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification
  publication-title: Brain Imaging Behav.
– volume: 93
  start-page: 124
  year: 2014
  end-page: 137
  ident: bib157
  article-title: Common intrinsic connectivity states among posteromedial cortex subdivisions: insights from analysis of temporal dynamics
  publication-title: NeuroImage
– volume: 328
  start-page: 876
  year: 2010
  end-page: 878
  ident: bib101
  article-title: Community structure in time-dependent, multiscale, and multiplex networks
  publication-title: Science
– year: 2016
  ident: bib68
  article-title: Dynamic brain network correlates of spontaneous fluctuations in attention
  publication-title: Cereb. Cortex
– volume: 28
  start-page: 666
  year: 2015
  end-page: 679
  ident: bib104
  article-title: Characterizing and differentiating brain state dynamics via hidden Markov Models
  publication-title: Brain Topogr.
– volume: 84
  start-page: 262
  year: 2014
  end-page: 274
  ident: bib17
  article-title: The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery
  publication-title: Neuron
– volume: 35
  start-page: 5442
  year: 2014
  end-page: 5456
  ident: bib140
  article-title: Enhanced repertoire of brain dynamical states during the psychedelic experience
  publication-title: Hum. Brain Mapp.
– volume: 133
  start-page: 111
  year: 2016
  end-page: 128
  ident: bib120
  article-title: Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states
  publication-title: NeuroImage
– volume: 103
  start-page: 13848
  year: 2006
  end-page: 13853
  ident: bib32
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc. Natl. Acad. Sci. U. S. Am.
– reference: Wang, C., Ong, J.L., Patanaik, A., Zhou, J., Chee, M.W., 2016. Spontaneous eyelid closures link vigilance fluctuation with fmri dynamic connectivity states. Proceedings of the National Academy of Sciences, 201523980.
– volume: 7
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib129
  article-title: Dynamical reconfiguration of the default mode network during narrative comprehension
  publication-title: Nat. Commun.
– volume: 24
  start-page: 663
  year: 2014
  end-page: 676
  ident: bib2
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cereb. Cortex
– volume: 127
  start-page: 287
  year: 2016
  end-page: 297
  ident: bib10
  article-title: Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks
  publication-title: NeuroImage
– volume: 107
  start-page: 345
  year: 2015
  end-page: 355
  ident: bib158
  article-title: Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia
  publication-title: NeuroImage
– volume: 83
  start-page: 937
  year: 2013
  end-page: 950
  ident: bib76
  article-title: Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest
  publication-title: NeuroImage
– volume: 22
  start-page: 212
  year: 2016
  end-page: 219
  ident: bib153
  article-title: Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks
  publication-title: CNS Neurosci. Ther.
– volume: 304
  start-page: 1926
  year: 2004
  end-page: 1929
  ident: bib14
  article-title: Neuronal oscillations in cortical networks
  publication-title: Science
– volume: 8
  start-page: 1
  year: 2014
  end-page: 19
  ident: bib42
  article-title: The spatial structure of resting state connectivity stability on the scale of minutes
  publication-title: Front. Neurosci.
– reference: Shakil, S., Magnuson, M.E., Keilholz, S.D., Chin-Hui Lee, 2014. Cluster-based analysis for characterizing dynamic functional connectivity. In: 2014 Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp. 982–985.
– volume: 63
  start-page: 1712
  year: 2012
  end-page: 1719
  ident: bib50
  article-title: Periodic changes in fMRI connectivity
  publication-title: NeuroImage
– volume: 134
  start-page: 645
  year: 2016
  end-page: 657
  ident: bib113
  article-title: Classification of schizophrenia and bipolar patients using static and dynamic resting-state fmri brain connectivity
  publication-title: NeuroImage
– volume: 90
  start-page: 196
  year: 2014
  end-page: 206
  ident: bib87
  article-title: Dynamic changes of spatial functional network connectivity in healthy individuals and schizophrenia patients using independent vector analysis
  publication-title: NeuroImage
– volume: 6
  start-page: 152
  year: 2012
  ident: bib103
  article-title: The nki-rockland sample: a model for accelerating the pace of discovery science in psychiatry
  publication-title: Front. Neurosci.
– volume: 103
  start-page: 297
  year: 2010
  end-page: 321
  ident: bib148
  article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization
  publication-title: J. Neurophysiol.
– volume: 5
  start-page: 298
  year: 2014
  end-page: 308
  ident: bib31
  article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia
  publication-title: NeuroImage: Clin.
– volume: 122
  start-page: 399
  year: 2015
  end-page: 407
  ident: bib125
  article-title: Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives
  publication-title: NeuroImage
– volume: 12
  start-page: 785
  year: 2016
  end-page: 795
  ident: bib94
  article-title: Prediction of long-term memory scores in mci based on resting-state fmri
  publication-title: NeuroImage: Clin.
– volume: 9
  start-page: 298
  year: 1999
  end-page: 310
  ident: bib45
  article-title: On clustering fMRI time series
  publication-title: NeuroImage
– volume: 34
  start-page: 2154
  year: 2013
  end-page: 2177
  ident: bib57
  article-title: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques
  publication-title: Hum. Brain Mapp.
– volume: 120
  start-page: 133
  year: 2015
  end-page: 142
  ident: bib155
  article-title: Dynamic coherence analysis of resting fMRI data to jointly capture state-based phase, frequency, and time-domain information
  publication-title: NeuroImage
– volume: 114
  start-page: 466
  year: 2015
  end-page: 470
  ident: bib159
  article-title: Towards a statistical test for functional connectivity dynamics
  publication-title: NeuroImage
– volume: 488
  start-page: 158
  year: 2011
  end-page: 163
  ident: bib139
  article-title: Spontaneous BOLD event triggered averages for estimating functional connectivity at resting state
  publication-title: Neurosci. Lett.
– volume: 25
  start-page: 1344
  year: 2014
  end-page: 1349
  ident: bib123
  article-title: Internetwork dynamic connectivity effectively differentiates schizophrenic patients from healthy controls
  publication-title: NeuroReport
– volume: 8
  start-page: 897
  year: 2014
  ident: bib114
  article-title: Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects
  publication-title: Front. Hum. Neurosci.
– reference: Chang, C., Leopold, D.A., Schölvinck, M.L., Mandelkow, H., Picchioni, D., Liu, X., Frank, Q.Y., Turchi, J.N., Duyn, J.H., 2016. Tracking brain arousal fluctuations with fmri. In: Proceedings of the National Academy of Sciences, 201520613.
– volume: 5
  start-page: 45
  year: 2015
  end-page: 59
  ident: bib88
  article-title: Dynamic connectivity at rest predicts attention task performance
  publication-title: Brain Connect.
– volume: 3
  start-page: 1
  year: 2012
  end-page: 12
  ident: bib138
  article-title: Criticality in large-scale Brain fMRI dynamics unveiled by a novel point process analysis
  publication-title: Front. Physiol.
– volume: 5
  start-page: 1
  year: 2014
  end-page: 13
  ident: bib72
  article-title: Altered fMRI connectivity dynamics in temporal lobe epilepsy might explain seizure semiology
  publication-title: Front. Neurol.
– volume: 6
  start-page: 1
  year: 2012
  end-page: 22
  ident: bib143
  article-title: Dynamic BOLD functional connectivity in humans and its electrophysiological correlates
  publication-title: Front. Hum. Neurosci.
– volume: 6
  year: 2015
  ident: bib107
  article-title: Long-term neural and physiological phenotyping of a single human
  publication-title: Nat. Commun.
– volume: 7
  start-page: 1094
  year: 1997
  end-page: 1101
  ident: bib7
  article-title: Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part I: reproducibility
  publication-title: J. Magn. Reson. Imaging
– volume: 87
  start-page: 657
  year: 2015
  end-page: 670
  ident: bib73
  article-title: Functional system and areal organization of a highly sampled individual human brain
  publication-title: Neuron
– reference: Meskaldji, D.E., Morgenthaler, S., Ville, D.V.D., 2015. New measures of brain functional connectivity by temporal analysis of extreme events. In: Proceedings of the Twelfth IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI'15). pp. 26–29.
– volume: 8
  start-page: 1
  year: 2014
  end-page: 13
  ident: bib119
  article-title: Dynamic network participation of functional connectivity hubs assessed by resting-state fMRI
  publication-title: Front. Hum. Neurosci.
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  ident: bib40
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci. U. S. Am.
– volume: 109
  start-page: 5487
  year: 2012
  end-page: 5492
  ident: bib44
  article-title: Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis
  publication-title: Proc. Natl. Acad. Sci.
– volume: 104
  start-page: 430
  year: 2015
  end-page: 436
  ident: bib78
  article-title: On spurious and real fluctuations of dynamic functional connectivity during rest
  publication-title: NeuroImage
– volume: 112
  start-page: 8762
  year: 2015
  end-page: 8767
  ident: bib43
  article-title: Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns
  publication-title: Proc. Natl. Acad. Sci.
– volume: 54
  start-page: 1140
  year: 2011
  end-page: 1150
  ident: bib90
  article-title: Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans
  publication-title: NeuroImage
– volume: 6
  start-page: 7751
  year: 2015
  ident: bib63
  article-title: Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks
  publication-title: Nat. Commun.
– volume: 23
  start-page: 351
  year: 2010
  end-page: 366
  ident: bib117
  article-title: A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia
  publication-title: Magn. Reson. Mater. Phys. Biol. Med.
– volume: 5
  start-page: e13311
  year: 2010
  ident: bib46
  article-title: Task-related effects on the temporal and spatial dynamics of resting-state functional connectivity in the default network
  publication-title: PLoS One
– volume: 4
  start-page: 231
  year: 2014
  end-page: 241
  ident: bib89
  article-title: Age-related differences in the dynamic architecture of intrinsic networks
  publication-title: Brain Connect.
– volume: 4
  start-page: 780
  year: 2014
  end-page: 790
  ident: bib81
  article-title: DynamicBC: a MATLAB toolbox for dynamic brain connectome analysis
  publication-title: Brain Connect.
– volume: 22
  start-page: 1326
  year: 2001
  end-page: 1333
  ident: bib28
  article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data
  publication-title: Am. J. Neuroradiol.
– volume: 23
  start-page: 426
  year: 2013
  end-page: 437
  ident: bib37
  article-title: Unsupervised learning of functional network dynamics in resting state fMRI
  publication-title: Brain
– volume: 36
  start-page: 3260
  year: 2015
  end-page: 3272
  ident: bib38
  article-title: Task-related modulation of functional connectivity variability and its behavioral correlations
  publication-title: Hum. Brain Mapp.
– volume: 105
  start-page: 536
  year: 2015
  end-page: 551
  ident: bib108
  article-title: Recent progress and outstanding issues in motion correction in resting state fmri
  publication-title: Neuroimage
– volume: 16
  start-page: 115
  year: 1998
  end-page: 125
  ident: bib8
  article-title: Quantification in functional magnetic resonance imaging: fuzzy clustering vs. correlation analysis
  publication-title: Magn. Reson. Imaging
– reference: Shine, J.M., Bell, P.T., Koyejo, O., Gorgolewski, K.J., Moodie, C.A., Poldrack, R.A., 2015a. Dynamic fluctuations in integration and segregation within the human functional connectome. arXiv preprint
– volume: 10
  start-page: 381
  year: 2016
  ident: bib142
  article-title: The voxel-wise functional connectome can be efficiently derived from co-activations in a sparse spatio-temporal point-process
  publication-title: Front. Neurosci.
– volume: 34
  start-page: 3982
  year: 2014
  end-page: 3992
  ident: bib118
  article-title: The time course of task-specific memory consolidation effects in resting state networks
  publication-title: J. Neurosci.
– volume: 219
  start-page: 2001
  year: 2014
  end-page: 2015
  ident: bib82
  article-title: Dynamical intrinsic functional architecture of the brain during absence seizures
  publication-title: Brain Struct. Funct.
– volume: 9
  year: 2015
  ident: bib111
  article-title: Predicting individual brain maturity using dynamic functional connectivity
  publication-title: Front. Hum. Neurosci.
– volume: 35
  start-page: 9786
  year: 2015
  end-page: 9798
  ident: bib48
  article-title: Visual learning induces changes in resting-state fmri multivariate pattern of information
  publication-title: J. Neurosci.
– reference: Sourty, M., Thoraval, L., Armspach, J.-p., Foucher, J., 2016a. Product Hidden Markov Models for subject-based dynamic functional connectivity analysis of the resting state brain. In: 2016 IEEE Proceedings of the 13th International Symposium on Biomedical Imaging (ISBI). IEEE, pp. 1291–1294.
– volume: 9
  start-page: e100012
  year: 2014
  ident: bib3
  article-title: Posterior cingulate cortex-related co-activation patterns: a resting state fMRI study in propofol-induced loss of consciousness
  publication-title: PLoS One
– volume: 72
  start-page: 227
  year: 2013
  end-page: 236
  ident: bib20
  article-title: EEG correlates of time-varying BOLD functional connectivity
  publication-title: NeuroImage
– volume: 6
  start-page: 26976
  year: 2016
  ident: bib34
  article-title: Characterizing dynamic local functional connectivity in the human brain
  publication-title: Sci. Rep.
– volume: 10
  start-page: 166
  year: 1999
  end-page: 176
  ident: bib99
  article-title: Explorative signal processing in functional MR imaging
  publication-title: Int. J. Imaging Syst. Technol.
– reference: Van De Ville, D., Karahanoğlu, F.I., 2016. Resting-state neuroimaging unravels functional organization in the brain. SPIE Newsroom, pp. 2–4.
– volume: 7
  start-page: 1102
  year: 1997
  end-page: 1108
  ident: bib100
  article-title: Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part II: quantification
  publication-title: J. Magn. Reson. Imaging
– volume: 10
  start-page: 186
  year: 2009
  end-page: 198
  ident: bib13
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat. Rev. Neurosci.
– volume: 37
  start-page: 3282
  year: 2016
  end-page: 3296
  ident: bib23
  article-title: High-order resting-state functional connectivity network for MCI classification
  publication-title: Hum. Brain Mapp.
– reference: Miller, R.L., Yaesoubi, M., Calhoun, V.D., 2014. Higher dimensional analysis shows reduced dynamism of time-varying network connectivity in schizophrenia patients. In: 2014 Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp. 3837–3840.
– volume: 56
  start-page: 1222
  year: 2011
  end-page: 1234
  ident: bib61
  article-title: Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches
  publication-title: NeuroImage
– year: 2016
  ident: bib74
  article-title: On the stability of bold fmri correlations
  publication-title: Cereb. Cortex
– reference: Preti, M.G., Haller, S., Giannakopoulos, P., Van De Ville, D., 2015. Decomposing dynamic functional connectivity onto phase-dependent eigenconnectivities using the Hilbert transform. In: 2015 IEEE Proceedings of the 12th International Symposium on Biomedical Imaging (ISBI). IEEE, pp. 38–41.
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  ident: bib11
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar mri
  publication-title: Magn. Reson. Med.
– volume: 14
  start-page: e1002469
  year: 2016
  ident: bib22
  article-title: Distinct global brain dynamics and spatiotemporal organization of the salience network
  publication-title: PLoS Biol.
– volume: 55
  start-page: 287
  year: 2011
  end-page: 295
  ident: bib49
  article-title: Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fmri study
  publication-title: Neuroimage
– volume: 112
  start-page: 11678
  year: 2015
  end-page: 11683
  ident: bib12
  article-title: Dynamic reconfiguration of frontal brain networks during executive cognition in humans
  publication-title: Proc. Natl. Acad. Sci. U. S. Am.
– volume: 35
  start-page: 6849
  year: 2015
  end-page: 6859
  ident: bib55
  article-title: Tracking the Brain's functional coupling dynamics over development
  publication-title: J. Neurosci.
– volume: 111
  start-page: 10341
  year: 2014
  end-page: 10346
  ident: bib160
  article-title: Time-resolved resting-state brain networks
  publication-title: Proc. Natl. Acad. Sci.
– volume: 83
  start-page: 826
  year: 2013
  end-page: 836
  ident: bib145
  article-title: Neural correlates of time-varying functional connectivity in the rat
  publication-title: NeuroImage
– volume: 110
  start-page: 4392
  year: 2013
  end-page: 4397
  ident: bib86
  article-title: Time-varying functional network information extracted from brief instances of spontaneous brain activity
  publication-title: Proc. Natl. Acad. Sci. U. S. Am.
– volume: 1
  start-page: 339
  year: 2011
  end-page: 347
  ident: bib65
  article-title: A sliding time-window ICA reveals spatial variability of the default mode network in time
  publication-title: Brain Connect.
– volume: 107
  start-page: 85
  year: 2015
  end-page: 94
  ident: bib156
  article-title: Mutually temporally independent connectivity patterns: a new framework to study the dynamics of brain connectivity at rest with application to explain group difference based on gender
  publication-title: NeuroImage
– volume: 485
  start-page: 26
  year: 2010
  end-page: 31
  ident: bib137
  article-title: Brain resting state is disrupted in chronic back pain patients
  publication-title: Neurosci. Lett.
– volume: 108
  start-page: 7641
  year: 2011
  end-page: 7646
  ident: bib5
  article-title: Dynamic reconfiguration of human brain networks during learning
  publication-title: Proc. Natl. Acad. Sci.
– volume: 112
  start-page: 8463
  year: 2015
  end-page: 8468
  ident: bib116
  article-title: Ongoing dynamics in large-scale functional connectivity predict perception
  publication-title: Proc. Natl. Acad. Sci.
– volume: 50
  start-page: 970
  year: 2010
  end-page: 983
  ident: bib161
  article-title: Whole-brain anatomical networks: does the choice of nodes matter?
  publication-title: Neuroimage
– volume: 7
  start-page: e39731
  year: 2012
  ident: bib59
  article-title: Non-stationarity in the resting brain's modular architecture
  publication-title: PLoS One
– volume: 6
  start-page: 403
  year: 2016
  end-page: 414
  ident: bib39
  article-title: Underconnected, but not broken? Dynamic functional connectivity MRI shows underconnectivity in autism is linked to increased intra-individual variability across time
  publication-title: Brain Connect.
– volume: 220
  start-page: 37
  year: 2015
  end-page: 46
  ident: bib35
  article-title: Dynamic brain functional connectivity modulated by resting-state networks
  publication-title: Brain Struct. Funct.
– year: 2016
  ident: bib128
  article-title: Data quality influences observed links between functional connectivity and behavior
  publication-title: Cereb. Cortex
– reference: Wee, C.-Y., Yang, S., Yap, P.-T., Shen, D., 2013. Temporally dynamic resting-state functional connectivity networks for early mci identification. In: Proceedings of the International Workshop on Machine Learning in Medical Imaging. Springer, pp. 139–146.
– volume: 111
  start-page: 476
  year: 2015
  end-page: 488
  ident: bib21
  article-title: Introducing co-activation pattern metrics to quantify spontaneous brain network dynamics
  publication-title: NeuroImage
– volume: 124
  start-page: 367
  year: 2016
  end-page: 378
  ident: bib122
  article-title: Changes in functional connectivity dynamics associated with vigilance network in taxi drivers
  publication-title: NeuroImage
– volume: 73
  start-page: 121
  year: 2013
  end-page: 134
  ident: bib62
  article-title: Total activation: fmri deconvolution through spatio-temporal regularization
  publication-title: Neuroimage
– volume: 9
  year: 2015
  ident: bib154
  article-title: Dynamic connectivity detection: an algorithm for determining functional connectivity change points in fMRI data
  publication-title: Front. Neurosci.
– volume: 5
  start-page: 35
  year: 2014
  end-page: 44
  ident: bib98
  article-title: Evolution of functional connectivity of brain networks and their dynamic interaction in temporal Lobe Epilepsy
  publication-title: Brain Connect.
– volume: 3
  start-page: 31
  year: 2013
  end-page: 40
  ident: bib64
  article-title: Dynamic properties of functional connectivity in the rodent
  publication-title: Brain Connect.
– volume: 44
  start-page: 893
  year: 2009
  end-page: 905
  ident: bib102
  article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?
  publication-title: Neuroimage
– volume: 61
  start-page: 907
  year: 2012
  end-page: 920
  ident: bib29
  article-title: Dynamic connectivity regression: determining state-related changes in brain connectivity
  publication-title: NeuroImage
– volume: 101
  start-page: 531
  year: 2014
  end-page: 546
  ident: bib84
  article-title: Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach
  publication-title: NeuroImage
– volume: 142
  start-page: 14
  year: 2016
  end-page: 26
  ident: bib106
  article-title: A wavelet-based estimator of the degrees of freedom in denoised fmri time series for probabilistic testing of functional connectivity and brain graphs
  publication-title: NeuroImage
– volume: 00
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib92
  article-title: Dynamic functional connectivity of neurocognitive networks in children
  publication-title: Hum. Brain Mapp.
– reference: .
– volume: 7
  start-page: e37828
  year: 2012
  ident: bib152
  article-title: Resting-state multi-spectrum functional connectivity networks for identification of mci patients
  publication-title: PloS One
– volume: 41
  start-page: 1822
  year: 2016
  end-page: 1830
  ident: bib60
  article-title: Dynamic resting-state functional connectivity in major depression
  publication-title: Neuropsychopharmacology
– volume: 100
  start-page: 471
  year: 2014
  end-page: 480
  ident: bib67
  article-title: Dynamic functional connectivity of the default mode network tracks daydreaming
  publication-title: NeuroImage
– volume: 103
  start-page: 427
  year: 2014
  end-page: 443
  ident: bib97
  article-title: Estimating time-varying brain connectivity networks from functional MRI time series
  publication-title: NeuroImage
– volume: 127
  start-page: 242
  year: 2016
  end-page: 256
  ident: bib51
  article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?
  publication-title: NeuroImage
– volume: 80
  start-page: 360
  year: 2013
  end-page: 378
  ident: bib56
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: NeuroImage
– volume: 221
  start-page: 2985
  year: 2016
  end-page: 2997
  ident: bib83
  article-title: Cerebral functional connectivity periodically (de)synchronizes with anatomical constraints
  publication-title: Brain Struct. Funct.
– volume: 59
  start-page: 2994
  year: 2012
  end-page: 3002
  ident: bib112
  article-title: Caffeine increases the temporal variability of resting-state BOLD connectivity in the motor cortex
  publication-title: NeuroImage
– volume: 70
  start-page: 066111
  year: 2004
  ident: bib27
  article-title: Finding community structure in very large networks
  publication-title: Phys. Rev. E
– volume: 4
  start-page: 741
  year: 2014
  end-page: 759
  ident: bib58
  article-title: Behavioral relevance of the dynamics of the functional brain connectome
  publication-title: Brain Connect.
– reference: Price, T., Wee, C.-Y., Gao, W., Shen, D., 2014. Multiple-network classification of childhood autism using functional connectivity dynamics. In: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 177–184.
– volume: 10
  start-page: e0140134
  year: 2015
  ident: bib25
  article-title: Reproducibility and temporal structure in weekly resting-state fmri over a period of 3.5 years
  publication-title: PloS One
– volume: 81
  start-page: 422
  year: 2013
  end-page: 430
  ident: bib66
  article-title: Connectivity-based neurofeedback: dynamic causal modeling for real-time fmri
  publication-title: Neuroimage
– volume: 52
  start-page: 1059
  year: 2010
  end-page: 1069
  ident: bib115
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
– volume: 35
  start-page: 5984
  year: 2014
  end-page: 5995
  ident: bib77
  article-title: Disentangling dynamic networks: separated and joint expressions of functional connectivity patterns in time
  publication-title: Hum. Brain Mapp.
– volume: 125
  start-page: 601
  year: 2016
  end-page: 615
  ident: bib24
  article-title: Time-dependence of graph theory metrics in functional connectivity analysis
  publication-title: NeuroImage
– volume: 11
  start-page: e0149849
  year: 2016
  ident: bib96
  article-title: Higher dimensional meta-state analysis reveals reduced resting fmri connectivity dynamism in schizophrenia patients
  publication-title: PloS One
– volume: 10
  start-page: e0124577
  year: 2015
  ident: bib1
  article-title: Functional connectivity in MRI is driven by spontaneous BOLD events
  publication-title: PLoS One
– volume: 35
  start-page: 1761
  year: 2014
  end-page: 1778
  ident: bib79
  article-title: Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients
  publication-title: Hum. Brain Mapp.
– volume: 110
  start-page: 18692
  issue: November (46)
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.061_bib69
  article-title: Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1312902110
– volume: 11
  start-page: e0149849
  issue: 3
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib96
  article-title: Higher dimensional meta-state analysis reveals reduced resting fmri connectivity dynamism in schizophrenia patients
  publication-title: PloS One
  doi: 10.1371/journal.pone.0149849
– volume: 8
  start-page: 897
  issue: November
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib114
  article-title: Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects
  publication-title: Front. Hum. Neurosci.
– volume: 7
  start-page: 1102
  issue: 6
  year: 1997
  ident: 10.1016/j.neuroimage.2016.12.061_bib100
  article-title: Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part II: quantification
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.1880070624
– volume: 8
  start-page: 1
  issue: May (195)
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib119
  article-title: Dynamic network participation of functional connectivity hubs assessed by resting-state fMRI
  publication-title: Front. Hum. Neurosci.
– volume: 52
  start-page: 1059
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2016.12.061_bib115
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 6
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib107
  article-title: Long-term neural and physiological phenotyping of a single human
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9885
– volume: 80
  start-page: 360
  issue: October (4)
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.061_bib56
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.079
– volume: 44
  start-page: 893
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2016.12.061_bib102
  article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.09.036
– volume: 6
  start-page: 10
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib141
  article-title: Multimodal imaging of dynamic functional connectivity
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2015.00010
– volume: 117
  start-page: 67
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib127
  article-title: Optimization of rs-fmri pre-processing for enhanced signal-noise separation, test-retest reliability, and group discrimination
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.05.015
– ident: 10.1016/j.neuroimage.2016.12.061_bib93
  doi: 10.1109/ISBI.2015.7163808
– volume: 50
  start-page: 970
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2016.12.061_bib161
  article-title: Whole-brain anatomical networks: does the choice of nodes matter?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.027
– volume: 111
  start-page: 476
  issue: May
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib21
  article-title: Introducing co-activation pattern metrics to quantify spontaneous brain network dynamics
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.01.057
– volume: 100
  start-page: 471
  issue: October
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib67
  article-title: Dynamic functional connectivity of the default mode network tracks daydreaming
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.044
– volume: 109
  start-page: 5487
  issue: 14
  year: 2012
  ident: 10.1016/j.neuroimage.2016.12.061_bib44
  article-title: Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1121049109
– volume: 103
  start-page: 297
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2016.12.061_bib148
  article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00783.2009
– volume: 102
  start-page: 9673
  issue: 27
  year: 2005
  ident: 10.1016/j.neuroimage.2016.12.061_bib40
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci. U. S. Am.
  doi: 10.1073/pnas.0504136102
– volume: 145
  start-page: 182
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib80
  article-title: Point process analysis in brain networks of patients with diabetes
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.05.045
– volume: 221
  start-page: 2985
  issue: July (6)
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib83
  article-title: Cerebral functional connectivity periodically (de)synchronizes with anatomical constraints
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-015-1083-y
– volume: 360
  start-page: 1001
  issue: May (1457)
  year: 2005
  ident: 10.1016/j.neuroimage.2016.12.061_bib9
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. R. Soc. B: Biol. Sci.
  doi: 10.1098/rstb.2005.1634
– volume: 127
  start-page: 287
  issue: February
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib10
  article-title: Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.12.001
– volume: 72
  start-page: 227
  issue: May
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.061_bib20
  article-title: EEG correlates of time-varying BOLD functional connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.01.049
– volume: 17
  start-page: 718
  issue: 11
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib26
  article-title: Mind-wandering as spontaneous thought: a dynamic framework
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2016.113
– volume: 14
  start-page: e1002469
  issue: June (6)
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib22
  article-title: Distinct global brain dynamics and spatiotemporal organization of the salience network
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1002469
– volume: 6
  start-page: 8414
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib47
  article-title: Controllability of structural brain networks
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9414
– volume: 84
  start-page: 262
  issue: October (2)
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib17
  article-title: The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.10.015
– volume: 10
  start-page: 60
  issue: June
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib133
  article-title: Identifying dynamic functional connectivity changes in dementia with lewy bodies based on product hidden Markov models
  publication-title: Front. Comput. Neurosci.
– volume: 50
  start-page: 81
  issue: March (1)
  year: 2010
  ident: 10.1016/j.neuroimage.2016.12.061_bib18
  article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.011
– volume: 5
  start-page: 1
  issue: September
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib72
  article-title: Altered fMRI connectivity dynamics in temporal lobe epilepsy might explain seizure semiology
  publication-title: Front. Neurol.
– volume: 37
  start-page: 2918
  issue: August (8)
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib33
  article-title: Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23215
– volume: 87
  start-page: 657
  issue: 3
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib73
  article-title: Functional system and areal organization of a highly sampled individual human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.06.037
– volume: 40
  start-page: 249
  issue: 2
  year: 1998
  ident: 10.1016/j.neuroimage.2016.12.061_bib41
  article-title: A new correlation-based fuzzy logic clustering algorithm for fMRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910400211
– volume: 90
  start-page: 196
  issue: April
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib87
  article-title: Dynamic changes of spatial functional network connectivity in healthy individuals and schizophrenia patients using independent vector analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.12.063
– volume: 35
  start-page: 5754
  issue: December (12)
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib54
  article-title: Isoflurane induces dose-dependent alterations in the cortical connectivity profiles and dynamic properties of the brain's functional architecture
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22583
– volume: 110
  start-page: 4392
  issue: 11
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.061_bib86
  article-title: Time-varying functional network information extracted from brief instances of spontaneous brain activity
  publication-title: Proc. Natl. Acad. Sci. U. S. Am.
  doi: 10.1073/pnas.1216856110
– volume: 100
  start-page: 11053
  issue: 19
  year: 2003
  ident: 10.1016/j.neuroimage.2016.12.061_bib71
  article-title: Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1831638100
– volume: 24
  start-page: 663
  issue: March (3)
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib2
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhs352
– volume: 28
  start-page: 666
  issue: September (5)
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib104
  article-title: Characterizing and differentiating brain state dynamics via hidden Markov Models
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-014-0406-2
– volume: 35
  start-page: 5442
  issue: November (11)
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib140
  article-title: Enhanced repertoire of brain dynamical states during the psychedelic experience
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22562
– volume: 7
  start-page: e39731
  issue: June (6)
  year: 2012
  ident: 10.1016/j.neuroimage.2016.12.061_bib59
  article-title: Non-stationarity in the resting brain's modular architecture
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0039731
– volume: 35
  start-page: 5984
  issue: December (12)
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib77
  article-title: Disentangling dynamic networks: separated and joint expressions of functional connectivity patterns in time
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22599
– volume: 103
  start-page: 13848
  issue: 37
  year: 2006
  ident: 10.1016/j.neuroimage.2016.12.061_bib32
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc. Natl. Acad. Sci. U. S. Am.
  doi: 10.1073/pnas.0601417103
– volume: 36
  start-page: 3260
  issue: August (8)
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib38
  article-title: Task-related modulation of functional connectivity variability and its behavioral correlations
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22847
– volume: 127
  start-page: 242
  issue: February
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib51
  article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.11.055
– volume: 5
  start-page: 298
  issue: July
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib31
  article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2014.07.003
– volume: 6
  start-page: 1
  issue: 339
  year: 2012
  ident: 10.1016/j.neuroimage.2016.12.061_bib143
  article-title: Dynamic BOLD functional connectivity in humans and its electrophysiological correlates
  publication-title: Front. Hum. Neurosci.
– volume: 114
  start-page: 466
  issue: July
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib159
  article-title: Towards a statistical test for functional connectivity dynamics
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.03.047
– volume: 33
  start-page: 52
  issue: May (3)
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib16
  article-title: Time-varying brain connectivity in fMRI data: whole-brain data-driven approaches for capturing and characterizing dynamic states
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2015.2478915
– volume: 5
  start-page: 45
  issue: February (1)
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib88
  article-title: Dynamic connectivity at rest predicts attention task performance
  publication-title: Brain Connect.
  doi: 10.1089/brain.2014.0248
– volume: 7
  start-page: 1094
  issue: 6
  year: 1997
  ident: 10.1016/j.neuroimage.2016.12.061_bib7
  article-title: Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part I: reproducibility
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.1880070623
– volume: 63
  start-page: 1712
  issue: November (3)
  year: 2012
  ident: 10.1016/j.neuroimage.2016.12.061_bib50
  article-title: Periodic changes in fMRI connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.06.078
– volume: 125
  start-page: 601
  issue: January
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib24
  article-title: Time-dependence of graph theory metrics in functional connectivity analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.10.070
– volume: 2
  start-page: 83
  issue: 1–2
  year: 1955
  ident: 10.1016/j.neuroimage.2016.12.061_bib70
  article-title: The hungarian method for the assignment problem
  publication-title: Nav. Res. Logist. Q.
  doi: 10.1002/nav.3800020109
– volume: 23
  start-page: 426
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.061_bib37
  article-title: Unsupervised learning of functional network dynamics in resting state fMRI
  publication-title: Brain
– year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib128
  article-title: Data quality influences observed links between functional connectivity and behavior
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhw253
– volume: 70
  start-page: 066111
  issue: 6
  year: 2004
  ident: 10.1016/j.neuroimage.2016.12.061_bib27
  article-title: Finding community structure in very large networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.066111
– volume: 56
  start-page: 1222
  issue: June (3)
  year: 2011
  ident: 10.1016/j.neuroimage.2016.12.061_bib61
  article-title: Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.03.033
– volume: 16
  start-page: 115
  issue: 2
  year: 1998
  ident: 10.1016/j.neuroimage.2016.12.061_bib8
  article-title: Quantification in functional magnetic resonance imaging: fuzzy clustering vs. correlation analysis
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(97)00277-4
– volume: 9
  issue: September
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib154
  article-title: Dynamic connectivity detection: an algorithm for determining functional connectivity change points in fMRI data
  publication-title: Front. Neurosci.
– ident: 10.1016/j.neuroimage.2016.12.061_bib132
  doi: 10.1109/ISBI.2016.7493503
– volume: 5
  start-page: e13311
  issue: 10
  year: 2010
  ident: 10.1016/j.neuroimage.2016.12.061_bib46
  article-title: Task-related effects on the temporal and spatial dynamics of resting-state functional connectivity in the default network
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0013311
– ident: 10.1016/j.neuroimage.2016.12.061_bib105
  doi: 10.1109/NER.2013.6695998
– volume: 10
  start-page: e0140134
  issue: 10
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib25
  article-title: Reproducibility and temporal structure in weekly resting-state fmri over a period of 3.5 years
  publication-title: PloS One
  doi: 10.1371/journal.pone.0140134
– volume: 9
  issue: July
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib111
  article-title: Predicting individual brain maturity using dynamic functional connectivity
  publication-title: Front. Hum. Neurosci.
– volume: 22
  start-page: 1326
  issue: 7
  year: 2001
  ident: 10.1016/j.neuroimage.2016.12.061_bib28
  article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data
  publication-title: Am. J. Neuroradiol.
– year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib74
  article-title: On the stability of bold fmri correlations
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhw265
– volume: 121
  start-page: 227
  issue: November
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib146
  article-title: The frequency dimension of fMRI dynamic connectivity: network connectivity, functional hubs and integration in the resting brain
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.07.022
– ident: 10.1016/j.neuroimage.2016.12.061_bib19
  doi: 10.1073/pnas.1520613113
– volume: 61
  start-page: 907
  issue: July (4)
  year: 2012
  ident: 10.1016/j.neuroimage.2016.12.061_bib29
  article-title: Dynamic connectivity regression: determining state-related changes in brain connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.03.070
– ident: 10.1016/j.neuroimage.2016.12.061_bib150
  doi: 10.1007/978-3-319-02267-3_18
– volume: 304
  start-page: 1926
  issue: June (5679)
  year: 2004
  ident: 10.1016/j.neuroimage.2016.12.061_bib14
  article-title: Neuronal oscillations in cortical networks
  publication-title: Science
  doi: 10.1126/science.1099745
– volume: 488
  start-page: 158
  issue: January (2)
  year: 2011
  ident: 10.1016/j.neuroimage.2016.12.061_bib139
  article-title: Spontaneous BOLD event triggered averages for estimating functional connectivity at resting state
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2010.11.020
– volume: 65
  start-page: 216
  issue: January
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.061_bib75
  article-title: Tracking dynamic resting-state networks at higher frequencies using MR-encephalography
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.10.015
– volume: 170
  start-page: 55
  issue: 1
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib36
  article-title: Interaction among subsystems within default mode network diminished in schizophrenia patients: a dynamic connectivity approach
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2015.11.021
– volume: 2
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib52
  article-title: Brain genomics superstruct project initial data release with structural, functional, and behavioral measures
  publication-title: Sci. Data
  doi: 10.1038/sdata.2015.31
– volume: 93
  start-page: 124
  issue: June
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib157
  article-title: Common intrinsic connectivity states among posteromedial cortex subdivisions: insights from analysis of temporal dynamics
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.02.014
– volume: 485
  start-page: 26
  issue: November (1)
  year: 2010
  ident: 10.1016/j.neuroimage.2016.12.061_bib137
  article-title: Brain resting state is disrupted in chronic back pain patients
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2010.08.053
– volume: 54
  start-page: 1140
  issue: January (2)
  year: 2011
  ident: 10.1016/j.neuroimage.2016.12.061_bib90
  article-title: Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.08.030
– volume: 105
  start-page: 536
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib108
  article-title: Recent progress and outstanding issues in motion correction in resting state fmri
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.044
– volume: 27
  start-page: 843
  issue: August (11)
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib136
  article-title: Heredity characteristics of schizophrenia shown by dynamic functional connectivity analysis of resting-state functional MRI scans of unaffected siblings
  publication-title: NeuroReport
  doi: 10.1097/WNR.0000000000000622
– volume: 35
  start-page: 9786
  issue: 27
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib48
  article-title: Visual learning induces changes in resting-state fmri multivariate pattern of information
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3920-14.2015
– volume: 6
  start-page: 7751
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib63
  article-title: Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8751
– volume: 112
  start-page: 887
  issue: January (3)
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib4
  article-title: Signature of consciousness in the dynamics of resting-state brain activity
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1418031112
– volume: 12
  start-page: 785
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib94
  article-title: Prediction of long-term memory scores in mci based on resting-state fmri
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2016.10.004
– year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib68
  article-title: Dynamic brain network correlates of spontaneous fluctuations in attention
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhw029
– volume: 108
  start-page: 7641
  issue: May (18)
  year: 2011
  ident: 10.1016/j.neuroimage.2016.12.061_bib5
  article-title: Dynamic reconfiguration of human brain networks during learning
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1018985108
– volume: 34
  start-page: 537
  issue: 4
  year: 1995
  ident: 10.1016/j.neuroimage.2016.12.061_bib11
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar mri
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910340409
– ident: 10.1016/j.neuroimage.2016.12.061_bib124
– ident: 10.1016/j.neuroimage.2016.12.061_bib109
  doi: 10.1109/ISBI.2015.7163811
– volume: 7
  start-page: 143
  issue: October
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.061_bib30
  article-title: Detecting functional connectivity change points for single-subject fMRI data
  publication-title: Front. Comput. Neurosci.
– volume: 6
  start-page: 403
  issue: June (5)
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib39
  article-title: Underconnected, but not broken? Dynamic functional connectivity MRI shows underconnectivity in autism is linked to increased intra-individual variability across time
  publication-title: Brain Connect.
  doi: 10.1089/brain.2015.0389
– volume: 219
  start-page: 2001
  issue: November (6)
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib82
  article-title: Dynamical intrinsic functional architecture of the brain during absence seizures
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-013-0619-2
– volume: 5
  start-page: 10
  issue: February (1)
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib53
  article-title: Dynamic repertoire of intrinsic brain states is reduced in propofol-induced unconsciousness
  publication-title: Brain Connect.
  doi: 10.1089/brain.2014.0230
– volume: 101
  start-page: 531
  issue: November
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib84
  article-title: Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.052
– ident: 10.1016/j.neuroimage.2016.12.061_bib149
  doi: 10.1073/pnas.1523980113
– volume: 122
  start-page: 399
  issue: November
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib125
  article-title: Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.07.064
– volume: 142
  start-page: 14
  issue: November (15)
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib106
  article-title: A wavelet-based estimator of the degrees of freedom in denoised fmri time series for probabilistic testing of functional connectivity and brain graphs
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.04.052
– volume: 109
  start-page: 3131
  issue: 8
  year: 2012
  ident: 10.1016/j.neuroimage.2016.12.061_bib131
  article-title: Temporally-independent functional modes of spontaneous brain activity
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1121329109
– volume: 5
  start-page: 35
  issue: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib98
  article-title: Evolution of functional connectivity of brain networks and their dynamic interaction in temporal Lobe Epilepsy
  publication-title: Brain Connect.
  doi: 10.1089/brain.2014.0251
– volume: 10
  start-page: 381
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib142
  article-title: The voxel-wise functional connectome can be efficiently derived from co-activations in a sparse spatio-temporal point-process
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00381
– volume: 103
  start-page: 427
  issue: December
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib97
  article-title: Estimating time-varying brain connectivity networks from functional MRI time series
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.07.033
– volume: 9
  start-page: 298
  issue: 3
  year: 1999
  ident: 10.1016/j.neuroimage.2016.12.061_bib45
  article-title: On clustering fMRI time series
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0391
– volume: 34
  start-page: 2154
  issue: September (9)
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.061_bib57
  article-title: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22058
– volume: 83
  start-page: 937
  issue: December
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.061_bib76
  article-title: Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.07.019
– volume: 104
  start-page: 430
  issue: January
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib78
  article-title: On spurious and real fluctuations of dynamic functional connectivity during rest
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.09.007
– volume: 18
  start-page: 744
  issue: 5
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib6
  article-title: Learning-induced autonomy of sensorimotor systems
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3993
– volume: 9
  start-page: e100012
  issue: June (6)
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib3
  article-title: Posterior cingulate cortex-related co-activation patterns: a resting state fMRI study in propofol-induced loss of consciousness
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0100012
– volume: 10
  start-page: e0124577
  issue: April (4)
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib1
  article-title: Functional connectivity in MRI is driven by spontaneous BOLD events
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0124577
– volume: 23
  start-page: 351
  issue: December (5–6)
  year: 2010
  ident: 10.1016/j.neuroimage.2016.12.061_bib117
  article-title: A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia
  publication-title: Magn. Reson. Mater. Phys. Biol. Med.
  doi: 10.1007/s10334-010-0197-8
– volume: 83
  start-page: 826
  issue: December
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.061_bib145
  article-title: Neural correlates of time-varying functional connectivity in the rat
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.07.036
– volume: 4
  start-page: 231
  issue: May (4)
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib89
  article-title: Age-related differences in the dynamic architecture of intrinsic networks
  publication-title: Brain Connect.
  doi: 10.1089/brain.2013.0205
– volume: 00
  start-page: 1
  issue: August
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib92
  article-title: Dynamic functional connectivity of neurocognitive networks in children
  publication-title: Hum. Brain Mapp.
– volume: 111
  start-page: 10341
  issue: July (28)
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib160
  article-title: Time-resolved resting-state brain networks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1400181111
– volume: 4
  start-page: 780
  issue: December (10)
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib81
  article-title: DynamicBC: a MATLAB toolbox for dynamic brain connectome analysis
  publication-title: Brain Connect.
  doi: 10.1089/brain.2014.0253
– volume: 3
  start-page: 1
  issue: February
  year: 2012
  ident: 10.1016/j.neuroimage.2016.12.061_bib138
  article-title: Criticality in large-scale Brain fMRI dynamics unveiled by a novel point process analysis
  publication-title: Front. Physiol.
– volume: 112
  start-page: 11678
  issue: 37
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib12
  article-title: Dynamic reconfiguration of frontal brain networks during executive cognition in humans
  publication-title: Proc. Natl. Acad. Sci. U. S. Am.
  doi: 10.1073/pnas.1422487112
– ident: 10.1016/j.neuroimage.2016.12.061_bib95
  doi: 10.1109/EMBC.2014.6944460
– ident: 10.1016/j.neuroimage.2016.12.061_bib121
  doi: 10.1109/EMBC.2014.6943757
– ident: 10.1016/j.neuroimage.2016.12.061_bib147
  doi: 10.1117/2.1201607.006521
– volume: 220
  start-page: 37
  issue: January (1)
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib35
  article-title: Dynamic brain functional connectivity modulated by resting-state networks
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-013-0634-3
– volume: 35
  start-page: 1761
  issue: April (4)
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib79
  article-title: Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22290
– volume: 104
  start-page: 13170
  issue: 32
  year: 2007
  ident: 10.1016/j.neuroimage.2016.12.061_bib91
  article-title: Electrophysiological signatures of resting state networks in the human brain
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0700668104
– volume: 10
  start-page: 166
  issue: 2
  year: 1999
  ident: 10.1016/j.neuroimage.2016.12.061_bib99
  article-title: Explorative signal processing in functional MR imaging
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/(SICI)1098-1098(1999)10:2<166::AID-IMA7>3.0.CO;2-F
– volume: 34
  start-page: 3280
  issue: December (12)
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.061_bib144
  article-title: Short-time windows of correlation between large-scale functional brain networks predict vigilance intraindividually and interindividually
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22140
– volume: 5
  start-page: 245
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib135
  article-title: Optimizing real time fmri neurofeedback for therapeutic discovery and development
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2014.07.002
– volume: 107
  start-page: 345
  issue: February
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib158
  article-title: Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.12.020
– volume: 7
  start-page: 1
  issue: December
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.061_bib85
  article-title: Decomposition of spontaneous brain activity into distinct fMRI co-activation patterns
  publication-title: Front. Syst. Neurosci.
– volume: 110
  start-page: 21159
  issue: 52
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.061_bib134
  article-title: Awake reactivation predicts memory in humans
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1311989110
– volume: 25
  start-page: 1344
  issue: December (17)
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib123
  article-title: Internetwork dynamic connectivity effectively differentiates schizophrenic patients from healthy controls
  publication-title: NeuroReport
  doi: 10.1097/WNR.0000000000000267
– volume: 34
  start-page: 501
  issue: 3
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.061_bib15
  article-title: Paradigm free mapping with sparse regression automatically detects single-trial functional magnetic resonance imaging blood oxygenation level dependent responses
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21452
– volume: 133
  start-page: 111
  issue: June
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib120
  article-title: Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.02.074
– volume: 134
  start-page: 645
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib113
  article-title: Classification of schizophrenia and bipolar patients using static and dynamic resting-state fmri brain connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.04.051
– volume: 3
  start-page: 31
  issue: February (1)
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.061_bib64
  article-title: Dynamic properties of functional connectivity in the rodent
  publication-title: Brain Connect.
  doi: 10.1089/brain.2012.0115
– volume: 112
  start-page: 8463
  issue: 27
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib116
  article-title: Ongoing dynamics in large-scale functional connectivity predict perception
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1420687112
– volume: 80
  start-page: 144
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.061_bib130
  article-title: Resting-state fmri in the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.039
– volume: 81
  start-page: 422
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.061_bib66
  article-title: Connectivity-based neurofeedback: dynamic causal modeling for real-time fmri
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.010
– volume: 10
  start-page: 186
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2016.12.061_bib13
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2575
– volume: 7
  start-page: 1
  issue: May 2015
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib129
  article-title: Dynamical reconfiguration of the default mode network during narrative comprehension
  publication-title: Nat. Commun.
– volume: 6
  start-page: 152
  year: 2012
  ident: 10.1016/j.neuroimage.2016.12.061_bib103
  article-title: The nki-rockland sample: a model for accelerating the pace of discovery science in psychiatry
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00152
– volume: 10
  start-page: 342
  issue: June (2)
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib151
  article-title: Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-015-9408-2
– volume: 35
  start-page: 6849
  issue: April (17)
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib55
  article-title: Tracking the Brain's functional coupling dynamics over development
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4638-14.2015
– volume: 41
  start-page: 1822
  issue: 7
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib60
  article-title: Dynamic resting-state functional connectivity in major depression
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2015.352
– volume: 124
  start-page: 367
  issue: January
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib122
  article-title: Changes in functional connectivity dynamics associated with vigilance network in taxi drivers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.09.010
– volume: 49
  start-page: 1432
  issue: 2
  year: 2010
  ident: 10.1016/j.neuroimage.2016.12.061_bib162
  article-title: The oscillating brain: complex and reliable
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.09.037
– volume: 7
  start-page: e37828
  issue: 5
  year: 2012
  ident: 10.1016/j.neuroimage.2016.12.061_bib152
  article-title: Resting-state multi-spectrum functional connectivity networks for identification of mci patients
  publication-title: PloS One
  doi: 10.1371/journal.pone.0037828
– volume: 120
  start-page: 133
  issue: October
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib155
  article-title: Dynamic coherence analysis of resting fMRI data to jointly capture state-based phase, frequency, and time-domain information
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.07.002
– volume: 1
  start-page: 339
  issue: October (4)
  year: 2011
  ident: 10.1016/j.neuroimage.2016.12.061_bib65
  article-title: A sliding time-window ICA reveals spatial variability of the default mode network in time
  publication-title: Brain Connect.
  doi: 10.1089/brain.2011.0036
– volume: 22
  start-page: 212
  issue: March (3)
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib153
  article-title: Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks
  publication-title: CNS Neurosci. Ther.
  doi: 10.1111/cns.12499
– ident: 10.1016/j.neuroimage.2016.12.061_bib126
  doi: 10.1073/pnas.1604898113
– volume: 73
  start-page: 121
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.061_bib62
  article-title: Total activation: fmri deconvolution through spatio-temporal regularization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.01.067
– volume: 34
  start-page: 3982
  issue: 11
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib118
  article-title: The time course of task-specific memory consolidation effects in resting state networks
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4341-13.2014
– volume: 55
  start-page: 287
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2016.12.061_bib49
  article-title: Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fmri study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.11.059
– volume: 112
  start-page: 8762
  issue: July (28)
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib43
  article-title: Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1501242112
– volume: 59
  start-page: 2994
  issue: February (3)
  year: 2012
  ident: 10.1016/j.neuroimage.2016.12.061_bib112
  article-title: Caffeine increases the temporal variability of resting-state BOLD connectivity in the motor cortex
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.001
– volume: 6
  start-page: 26976
  issue: May (February)
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib34
  article-title: Characterizing dynamic local functional connectivity in the human brain
  publication-title: Sci. Rep.
  doi: 10.1038/srep26976
– ident: 10.1016/j.neuroimage.2016.12.061_bib110
  doi: 10.1007/978-3-319-10443-0_23
– volume: 8
  start-page: 1
  issue: June (8)
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib42
  article-title: The spatial structure of resting state connectivity stability on the scale of minutes
  publication-title: Front. Neurosci.
– volume: 107
  start-page: 85
  issue: February
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.061_bib156
  article-title: Mutually temporally independent connectivity patterns: a new framework to study the dynamics of brain connectivity at rest with application to explain group difference based on gender
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.11.054
– volume: 4
  start-page: 741
  issue: November (9)
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.061_bib58
  article-title: Behavioral relevance of the dynamics of the functional brain connectome
  publication-title: Brain Connect.
  doi: 10.1089/brain.2014.0300
– volume: 328
  start-page: 876
  issue: 5980
  year: 2010
  ident: 10.1016/j.neuroimage.2016.12.061_bib101
  article-title: Community structure in time-dependent, multiscale, and multiplex networks
  publication-title: Science
  doi: 10.1126/science.1184819
– volume: 37
  start-page: 3282
  issue: September (9)
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.061_bib23
  article-title: High-order resting-state functional connectivity network for MCI classification
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23240
SSID ssj0009148
Score 2.694905
SecondaryResourceType review_article
Snippet Resting-state functional magnetic resonance imaging (fMRI) has highlighted the rich structure of brain activity in absence of a task or stimulus. A great...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 41
SubjectTerms Brain
Brain - anatomy & histology
Brain - physiology
Brain mapping
Connectome - methods
Dynamic functional connectivity
Dynamic graph analysis
EEG
Frame-wise description
Functional magnetic resonance imaging
Gene expression
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Neural networks
Neural Pathways - anatomy & histology
Neural Pathways - physiology
Neuroimaging
Sliding window analysis
State characterization
Studies
Temporal modeling
Therapeutic applications
Time/frequency analysis
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwEA5jD-KL-NvqlAq-1jVr0qb6JNMxhPmig72FNElh4trhtlf_du_adMOHwcDXNgfp5XL3pfnujpA7ALlY1okFtkrJyXIbpBrJNIkINVcpNwYPiqO3eDhmrxM-aZF-kwuDtErn-2ufXnlr96TrtNmdT6fdd0AGEG7gvBGDnYoq_ZqxBK38_mdD80gpq9PheBTgaMfmqTleVc3I6Qx2LpK84urHYEy3hahtELQKRYNDcuAwpP9UT_OItGxxTPZG7pb8hDzD2vumbjXvY-Cq__f5GkktelnO7INfgcygzAMAgMiO81Vh_Pkm83JxSsaDl4_-MHDdEgINkGsZUIOnIcUozZI0ZxDIs9BiQT6VJDrisc65FZTlIXgU1kssM1xkUcioVSyPozw6I-2iLOwFKsiGwkQiwb7pmVaw65UR3Fo4jBmhlUeSRkFSu1Li2NHiSzacsU-5Ua1E1Urak6Baj9C15Lwup7GDTNqsgWzSRcHBSfD5O8g-rmX_mNWO0p1myaXb2guJJRgZY-CYPXK7fg2bEm9aVGHLFYwRnAFOitPII-e1qaw_F9uBgZnGl_-a2hXZ7yHAQG4N75D28ntlrwEeLbObyv5_AaeVDJ4
  priority: 102
  providerName: Elsevier
Title The dynamic functional connectome: State-of-the-art and perspectives
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811916307881
https://dx.doi.org/10.1016/j.neuroimage.2016.12.061
https://www.ncbi.nlm.nih.gov/pubmed/28034766
https://www.proquest.com/docview/1965444376
https://www.proquest.com/docview/1854613693
Volume 160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCb6AIpehq2vZesCF-hVrRVLlrwdhm5rkW5oMAwtkJsgSzLQYbGzJb3ut4-05eTUIScfLBowJZKfqE8kwDmCXCrrJFhor-SUVWCFIzKN0qmTtpDe00bxbpKPH8TXqZzGhNsi0ip7n9g6at84ypFfUuU7IQTaw8f5b0Zdo-h0NbbQ2IZdKl1Gq1pN1broLhfdVTiZMY0DIpOn43e19SIfZ2i1RPDK26Rgzp8LT8_BzzYM3byEFxE_JlfdhL-CrVAfwN5dPCE_hC8474nv2swnFLS6XF_iiNDils0svE9agMmaiiH4I2ZcYmufzNe3LhdH8HBzff95zGKnBOYQbi0Z97QTsoLzUhWVwCBepoGK8VmlXCZzV8mguahS9CZipILwUpdZKniwosqzKjuGnbqpw2tSUEi1z7Sinumls2jx1msZAm7EvHZ2AKpXkHGxjDh1s_hler7YT7NWrSHVGj4yqNoB8JXkvCulsYFM0c-B6a-KonMz6O83kP2wko1wooMJG0qf9lNuolkvzHoRDuBs9RoNkk5ZbB2aJxyjpUCMlBfZAE66pbL6XWoFJlSev_n_x9_C_ojQAxFn5CnsLP88hXeIfZblELYv_vJhu8yHsHt1-208ween68n3H_8AYZEFbg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkNpeKvreQttUao9W14kdOyCEKh5aCssJpL25ju1IRZBsu4uq_qn-xs7Eye4JtBfOyUTKeDzzjf3NDMBnBLnU1kmw0JbklFVghSMyjdJDJ20hvadEcXyejy7F94mcrMG_vhaGaJW9T2wdtW8cnZF_pc53QgjcD_vTX4ymRtHtaj9CI5rFafj7B1O22d7JIa7vlzQ9Pro4GLFuqgBzCE3mjHvKGqzgvFRFJTDglcNAjeusUi6Tuatk0FxUmOBnIlVBeKlLTPp5sKLKsyrD7z6CDQy8Q0r21EQtm_xyEUvvZMY050XHHIp8srY_5c8b9BJEKMvbQ8ic3xUO74K7bdg73oRnHV5NvkUDew5roX4Bj8fdjfxLOEQ7S3wca59QkIxni4kjAo2bNzdhJ2kBLWsqhmCTmHiJrX0yXVZ5zl7B5YPo8DWs100d3pKCwlD7TCua0V46ix7Gei1DwMTPa2cHoHoFGde1LafpGdem56ddmaVqDanW8NSgagfAF5LT2LpjBZmiXwPTl6aiMzUYX1aQ3V3IdvAlwpIVpbf7JTedG5mZpdEP4NPiMToAutWxdWhu8R0tBWKyvMgG8CaayuJ3afSYUHn-7v6Pf4Qno4vxmTk7OT_dgqcpIRci7chtWJ__vg3vEXfNyw-tsSfw46F3139QHTvx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTpp4QfxeYUCQ4DFandixw4QQ0FUbY9WEmLQ349iOBGJJoZ2m_Wv767iLnfZpqC97Ti5Szue77-zv7gDeIMiltk489V1JTlX7tLREppFqZIUphXOUKB5Pi4NT_uVMnG3AdV8LQ7TK3id2jtq1ls7Id6nzHecc98NuHWkRJ-PJh9mflCZI0U1rP04jmMiRv7rE9G3-_nCMa_02yyb73z8fpHHCQGoRpixS5iiDMJyxSpY1x-BXjTw1sTNS2lwUthZeMV5jsp_zTHruhKryEWfe8LrI6xy_ewc2JWVFA9j8tD89-bZq-ct4KMQTeaoYKyOPKLDLum6VP8_RZxC9rOiOJAt2U3C8Cfx2QXByH-5F9Jp8DOb2ADZ88xC2juP9_CMYo9UlLgy5TyhkhpPGxBKdxi7ac_8u6eBt2tYpQk_i5SWmcclsVfM5fwynt6LFJzBo2sZvk4L8SLlcSZrYXlmD_sY4JbzHNNApa4YgewVpG5uY0yyN37pnq_3SK9VqUq1mmUbVDoEtJWehkccaMmW_BrovVEXXqjHarCG7t5SNYCaAlDWld_ol19GpzPVqCwzh9fIxugO64zGNby_wHSU4IrSizIfwNJjK8ndpEBmXRfHs_x9_BVu4s_TXw-nRc7ibEYwhBo_YgcHi74V_gSBsUb2M1p7Aj9veYP8AlKBBjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+dynamic+functional+connectome%3A+State-of-the-art+and+perspectives&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Preti%2C+Maria+Giulia&rft.au=Thomas+AW+Bolton&rft.au=Van+De+Ville%2C+Dimitri&rft.date=2017-10-15&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=160&rft.spage=41&rft_id=info:doi/10.1016%2Fj.neuroimage.2016.12.061&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon