The complex interplay between endoplasmic reticulum stress and the NLRP3 inflammasome: a potential therapeutic target for inflammatory disorders
Inflammation is the result of a complex network of cellular and molecular interactions and mechanisms that facilitate immune protection against intrinsic and extrinsic stimuli, particularly pathogens, to maintain homeostasis and promote tissue healing. However, dysregulation in the immune system eli...
Saved in:
Published in | Clinical & translational immunology Vol. 10; no. 2; pp. e1247 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Australia
John Wiley & Sons, Inc
2021
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inflammation is the result of a complex network of cellular and molecular interactions and mechanisms that facilitate immune protection against intrinsic and extrinsic stimuli, particularly pathogens, to maintain homeostasis and promote tissue healing. However, dysregulation in the immune system elicits excess/abnormal inflammation resulting in unintended tissue damage and causes major inflammatory diseases including asthma, chronic obstructive pulmonary disease, atherosclerosis, inflammatory bowel diseases, sarcoidosis and rheumatoid arthritis. It is now widely accepted that both endoplasmic reticulum (ER) stress and inflammasomes play critical roles in activating inflammatory signalling cascades. Notably, evidence is mounting for the involvement of ER stress in exacerbating inflammasome‐induced inflammatory cascades, which may provide a new axis for therapeutic targeting in a range of inflammatory disorders. Here, we comprehensively review the roles, mechanisms and interactions of both ER stress and inflammasomes, as well as their interconnected relationships in inflammatory signalling cascades. We also discuss novel therapeutic strategies that are being developed to treat ER stress‐ and inflammasome‐related inflammatory disorders.
In this Review, we discuss the state‐of‐the‐art understanding of the pathways and factors involved in ER stress and inflammasome activation. We describe how these pathways induce inflammatory responses and are involved in chronic inflammatory diseases. We discuss new links between ER stress inflammasome activity and inflammation, and potential new therapeutic approaches to suppress ER stress and inflammasome‐induced inflammation. |
---|---|
AbstractList | Inflammation is the result of a complex network of cellular and molecular interactions and mechanisms that facilitate immune protection against intrinsic and extrinsic stimuli, particularly pathogens, to maintain homeostasis and promote tissue healing. However, dysregulation in the immune system elicits excess/abnormal inflammation resulting in unintended tissue damage and causes major inflammatory diseases including asthma, chronic obstructive pulmonary disease, atherosclerosis, inflammatory bowel diseases, sarcoidosis and rheumatoid arthritis. It is now widely accepted that both endoplasmic reticulum (ER) stress and inflammasomes play critical roles in activating inflammatory signalling cascades. Notably, evidence is mounting for the involvement of ER stress in exacerbating inflammasome‐induced inflammatory cascades, which may provide a new axis for therapeutic targeting in a range of inflammatory disorders. Here, we comprehensively review the roles, mechanisms and interactions of both ER stress and inflammasomes, as well as their interconnected relationships in inflammatory signalling cascades. We also discuss novel therapeutic strategies that are being developed to treat ER stress‐ and inflammasome‐related inflammatory disorders.
In this Review, we discuss the state‐of‐the‐art understanding of the pathways and factors involved in ER stress and inflammasome activation. We describe how these pathways induce inflammatory responses and are involved in chronic inflammatory diseases. We discuss new links between ER stress inflammasome activity and inflammation, and potential new therapeutic approaches to suppress ER stress and inflammasome‐induced inflammation. Inflammation is the result of a complex network of cellular and molecular interactions and mechanisms that facilitate immune protection against intrinsic and extrinsic stimuli, particularly pathogens, to maintain homeostasis and promote tissue healing. However, dysregulation in the immune system elicits excess/abnormal inflammation resulting in unintended tissue damage and causes major inflammatory diseases including asthma, chronic obstructive pulmonary disease, atherosclerosis, inflammatory bowel diseases, sarcoidosis and rheumatoid arthritis. It is now widely accepted that both endoplasmic reticulum (ER) stress and inflammasomes play critical roles in activating inflammatory signalling cascades. Notably, evidence is mounting for the involvement of ER stress in exacerbating inflammasome‐induced inflammatory cascades, which may provide a new axis for therapeutic targeting in a range of inflammatory disorders. Here, we comprehensively review the roles, mechanisms and interactions of both ER stress and inflammasomes, as well as their interconnected relationships in inflammatory signalling cascades. We also discuss novel therapeutic strategies that are being developed to treat ER stress‐ and inflammasome‐related inflammatory disorders. Abstract Inflammation is the result of a complex network of cellular and molecular interactions and mechanisms that facilitate immune protection against intrinsic and extrinsic stimuli, particularly pathogens, to maintain homeostasis and promote tissue healing. However, dysregulation in the immune system elicits excess/abnormal inflammation resulting in unintended tissue damage and causes major inflammatory diseases including asthma, chronic obstructive pulmonary disease, atherosclerosis, inflammatory bowel diseases, sarcoidosis and rheumatoid arthritis. It is now widely accepted that both endoplasmic reticulum (ER) stress and inflammasomes play critical roles in activating inflammatory signalling cascades. Notably, evidence is mounting for the involvement of ER stress in exacerbating inflammasome‐induced inflammatory cascades, which may provide a new axis for therapeutic targeting in a range of inflammatory disorders. Here, we comprehensively review the roles, mechanisms and interactions of both ER stress and inflammasomes, as well as their interconnected relationships in inflammatory signalling cascades. We also discuss novel therapeutic strategies that are being developed to treat ER stress‐ and inflammasome‐related inflammatory disorders. |
Author | Hansbro, Philip M Hansbro, Nicole G Patel, Rahul P Hsu, Alan C Dua, Kamal Peterson, Gregory M Shastri, Madhur D Pathinayake, Prabuddha S Chong, Wai Chin Wark, Peter A Johansen, Matt D Schroder, Kate Shukla, Shakti Dhar |
AuthorAffiliation | 3 School of Pharmacy and Pharmacology University of Tasmania Hobart TAS Australia 5 Discipline of Pharmacy Graduate School of Health University of Technology Sydney Ultimo NSW Australia 7 Institute for Molecular Bioscience University of Queensland St Lucia QLD Australia 2 Centre for Cancer Research Hudson Institute of Medical Research Clayton VIC Australia 4 Priority Research Centre for Healthy Lungs Hunter Medical Research Institute The University of Newcastle Callaghan NSW Australia 1 Department of Molecular and Translational Science Monash University Clayton VIC Australia 6 Centre for Inflammation Centenary Institute Faculty of Science School of Life Sciences University of Technology Sydney NSW Australia |
AuthorAffiliation_xml | – name: 4 Priority Research Centre for Healthy Lungs Hunter Medical Research Institute The University of Newcastle Callaghan NSW Australia – name: 3 School of Pharmacy and Pharmacology University of Tasmania Hobart TAS Australia – name: 5 Discipline of Pharmacy Graduate School of Health University of Technology Sydney Ultimo NSW Australia – name: 6 Centre for Inflammation Centenary Institute Faculty of Science School of Life Sciences University of Technology Sydney NSW Australia – name: 7 Institute for Molecular Bioscience University of Queensland St Lucia QLD Australia – name: 1 Department of Molecular and Translational Science Monash University Clayton VIC Australia – name: 2 Centre for Cancer Research Hudson Institute of Medical Research Clayton VIC Australia |
Author_xml | – sequence: 1 givenname: Wai Chin surname: Chong fullname: Chong, Wai Chin organization: Hudson Institute of Medical Research – sequence: 2 givenname: Madhur D surname: Shastri fullname: Shastri, Madhur D organization: University of Tasmania – sequence: 3 givenname: Gregory M surname: Peterson fullname: Peterson, Gregory M organization: University of Tasmania – sequence: 4 givenname: Rahul P surname: Patel fullname: Patel, Rahul P organization: University of Tasmania – sequence: 5 givenname: Prabuddha S surname: Pathinayake fullname: Pathinayake, Prabuddha S organization: The University of Newcastle – sequence: 6 givenname: Kamal surname: Dua fullname: Dua, Kamal organization: University of Technology Sydney – sequence: 7 givenname: Nicole G surname: Hansbro fullname: Hansbro, Nicole G organization: University of Technology – sequence: 8 givenname: Alan C surname: Hsu fullname: Hsu, Alan C organization: The University of Newcastle – sequence: 9 givenname: Peter A surname: Wark fullname: Wark, Peter A organization: The University of Newcastle – sequence: 10 givenname: Shakti Dhar surname: Shukla fullname: Shukla, Shakti Dhar organization: The University of Newcastle – sequence: 11 givenname: Matt D surname: Johansen fullname: Johansen, Matt D organization: University of Technology – sequence: 12 givenname: Kate surname: Schroder fullname: Schroder, Kate organization: University of Queensland – sequence: 13 givenname: Philip M surname: Hansbro fullname: Hansbro, Philip M email: Philip.Hansbro@newcastle.edu.au organization: University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33614031$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kstuEzEUhkeoiJbQBS-ALLGBRVpfZzwskFDEJVIECIW15cuZdKKZ8WB7KHkLHhknKVGLxMrW8ff_Ouf4f1qcDX6AonhO8BXBmF7b1NIrQnn1qLigWOA5xqU8u3c_Ly5j3GKMCeNYkPJJcc5YSThm5KL4vb4BZH0_dvALtUOCMHZ6hwykW4ABweB8LsS-tShAau3UTT2KKUCMSA8OpSz_vPr2lWVx0-m-19H38AZpNPoEQ2p1t2eCHmHKcpR02EBCjQ8nQfJhh1wbfXAQ4rPicaO7CJd356z4_uH9evFpvvrycbl4t5pbUYlqXouGNbomjmEgTFhcYsu4tJYbbAWTFZZV1WBHRa45zJkVWHJjTeUIlIyxWbE8-jqvt2oMba_DTnndqkPBh43SIXfcgTLOcC2wJQZKTg01RGjJndTEuBryWmfF26PXOJkenM1zB909MH34MrQ3auN_qkpWkhCZDV7dGQT_Y4KYVN9GC12nB_BTVJTXlFYyf2ZGX_6Dbv0UhryqAyUqLmueqddHygYfY4Dm1AzBah8btY-N2scmsy_ud38i_4YkA9dH4LbtYPd_J7VYL-nB8g_kJtDA |
CitedBy_id | crossref_primary_10_3390_ijms221910447 crossref_primary_10_3390_ijms242216276 crossref_primary_10_1042_CS20211075 crossref_primary_10_1016_j_fbio_2021_101075 crossref_primary_10_1097_HEP_0000000000000012 crossref_primary_10_1007_s10787_024_01493_0 crossref_primary_10_1016_j_coi_2021_08_004 crossref_primary_10_1016_j_intimp_2024_112342 crossref_primary_10_3389_fimmu_2022_859703 crossref_primary_10_1002_cti2_1303 crossref_primary_10_1007_s10787_023_01389_5 crossref_primary_10_1111_imcb_12499 crossref_primary_10_3389_fonc_2022_1029491 crossref_primary_10_1016_j_psj_2024_103466 crossref_primary_10_1248_bpb_b23_00137 crossref_primary_10_1111_pai_14184 crossref_primary_10_1007_s10565_021_09689_8 crossref_primary_10_1097_MD_0000000000035958 crossref_primary_10_21926_obm_genet_2302181 crossref_primary_10_3390_cells10081995 crossref_primary_10_1016_j_intimp_2023_110178 crossref_primary_10_1186_s12967_022_03229_6 crossref_primary_10_3389_fimmu_2022_995974 crossref_primary_10_1016_j_cjca_2023_04_002 crossref_primary_10_3390_cells11010104 crossref_primary_10_1183_16000617_0028_2022 crossref_primary_10_3390_nu14091835 crossref_primary_10_1016_j_ajpath_2022_03_003 crossref_primary_10_3390_antiox11020246 crossref_primary_10_1111_1440_1681_13645 crossref_primary_10_1016_j_prp_2023_154706 crossref_primary_10_1002_biof_2058 crossref_primary_10_3389_fimmu_2023_1175926 |
Cites_doi | 10.1007/s12079-017-0386-6 10.18632/oncotarget.12119 10.1002/eji.201343953 10.1016/j.clim.2013.12.003 10.1002/jcp.25852 10.1074/jbc.M112.407130 10.1016/j.cell.2006.05.043 10.1056/NEJMcp2009575 10.4049/jimmunol.0901363 10.1038/nm.3893 10.1074/jbc.M110636200 10.1038/s41589-019-0277-7 10.1038/s41420-019-0230-2 10.1038/nature07641 10.1073/pnas.0611496104 10.1093/brain/awu388 10.4049/jimmunol.0900173 10.1083/jcb.200508099 10.1016/j.chom.2009.05.002 10.1007/s00535-016-1238-5 10.1016/j.cell.2014.04.007 10.1038/35085509 10.1038/emboj.2011.18 10.1093/jb/mvp166 10.1016/j.tips.2018.07.002 10.1016/j.immuni.2012.06.013 10.1083/jcb.201003138 10.1371/journal.pone.0010008 10.1016/j.jhep.2018.06.008 10.1038/nature07965 10.1016/j.febslet.2008.01.038 10.1152/ajplung.00396.2015 10.1073/pnas.1320294111 10.4049/jimmunol.1601745 10.4049/jimmunol.1400368 10.1089/ars.2014.5851 10.3389/fmicb.2019.02543 10.1016/j.tcb.2014.12.009 10.1038/s41564-017-0015-4 10.1164/rccm.201609-1830OC 10.1371/journal.ppat.1000510 10.3389/fimmu.2014.00461 10.1177/1753425913508593 10.1038/nature22967 10.4172/2155-9899.1000457 10.1038/ni.2231 10.1128/JVI.00022-18 10.1194/jlr.M077537 10.1016/j.yexcr.2017.05.030 10.1038/cmi.2016.11 10.1084/jem.20070525 10.1074/jbc.M116.738021 10.1126/science.1209126 10.1038/s41531-017-0032-2 10.2174/1381612824666180711122753 10.1038/nrd.2018.97 10.1038/nrm2838 10.1016/j.molcel.2012.11.009 10.1038/nm.3806 10.3390/cells7100171 10.1016/j.devcel.2007.07.018 10.4049/jimmunol.0902477 10.1073/pnas.1010580107 10.2174/1381612823666170124141104 10.4049/jimmunol.2000513 10.4049/jimmunol.1301490 10.1016/j.immuni.2017.11.013 10.1016/j.cell.2014.02.008 10.1186/s12906-016-1522-1 10.1038/ncomms12504 10.1016/j.jaci.2016.07.033 10.1073/pnas.1111101108 10.1074/jbc.RA120.014077 10.3389/fcell.2017.00048 10.1038/nrm2199 10.1016/j.jhep.2017.01.022 10.1038/s41467-017-00227-x 10.1016/j.cell.2014.01.063 10.1038/nature11429 10.1016/j.celrep.2018.07.027 10.4049/jimmunol.0901323 10.1038/sj.emboj.7601350 10.1038/ni.2237 10.1038/aps.2015.21 10.4049/jimmunol.1200312 10.2147/JIR.S141220 10.1126/science.1146361 10.1016/S1097-2765(02)00599-3 10.1016/j.cmet.2017.06.018 10.1371/journal.pbio.1000415 10.1016/S0140-6736(20)30628-0 10.3389/fphar.2018.01346 10.3389/fimmu.2019.00268 10.1126/science.287.5453.664 10.1016/j.cell.2005.06.041 10.3390/ijms18040771 10.1093/infdis/jiy433 10.1038/sj.cdd.4402195 10.1016/j.cell.2013.02.054 10.1038/ni.2913 10.1096/fasebj.31.1_supplement.915.3 10.4168/aair.2015.7.2.106 10.7150/ijms.29134 10.1128/JVI.00842-18 10.1016/j.molimm.2017.01.014 10.1038/cr.2013.6 10.1016/S0140-6736(20)30183-5 10.1016/j.immuni.2016.08.010 10.1007/s12185-018-2458-7 10.1038/cddis.2011.132 10.1038/s41419-018-1236-z 10.1016/j.immuni.2015.08.008 10.1038/ni.2474 10.1038/ncb2738 10.3390/ijms20133328 10.1183/09031936.00105013 10.1371/journal.ppat.1003793 10.1038/nri.2016.151 10.1084/jem.20172222 10.1038/s41419-018-0694-7 10.1126/science.1209038 10.1007/s10787-017-0401-9 10.2337/db12-0420 10.1074/jbc.M117.797126 10.3389/fimmu.2018.00175 10.1007/s10620-017-4609-8 10.1016/j.cell.2010.01.040 10.1111/imr.12286 10.1111/nyas.12458 10.1016/j.jaci.2015.08.018 10.1038/s41385-020-00340-z 10.1016/bs.ai.2017.06.001 10.1016/j.bbi.2016.12.014 10.1016/j.ejphar.2015.12.006 10.4049/jimmunol.0903019 10.2174/156652412801318764 10.1038/srep27912 10.1002/eji.201747404 10.1073/pnas.1412487111 10.3389/fimmu.2015.00570 10.1371/journal.pone.0214622 10.1038/s41564-019-0371-3 10.1164/rccm.201604-0892OC 10.1016/S0140-6736(20)30251-8 10.1038/cddis.2015.248 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc. 2021 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc. 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc. – notice: 2021 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc. – notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN NPM AAYXX CITATION 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1002/cti2.1247 |
DatabaseName | Wiley Online Library Open Access Wiley Online Library Open Access PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals at publisher websites url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | ER stress and NLRP3 inflammasomes |
EISSN | 2050-0068 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_bdb4a50c1be642b2b15a84d8a1bd9e01 10_1002_cti2_1247 33614031 CTI21247 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Health and Medical Research Council (NHMRC) funderid: 1079187; 1175134; 1141131; 1163924 – fundername: National Health and Medical Research Council (NHMRC) grantid: 1079187; 1175134; 1141131; 1163924 |
GroupedDBID | 0R~ 1OC 24P 3V. 53G 5VS 7X7 8FE 8FH 8FI 8FJ AAHHS ABDBF ABUWG ACCFJ ACGFS ACXQS ADBBV ADKYN ADPDF ADRAZ ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU DIK EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE IAO IHR INH KQ8 LK8 M48 M7P M~E NAO O9- OK1 OVD OVEED PIMPY PQQKQ PROAC RNTTT RPM TEORI UKHRP WIN ITC NPM AAYXX CITATION 7XB 8FK AZQEC COVID DWQXO GNUQQ K9. PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c5757-95f3fa91d30e135c060c348cc4b0c53870877f0d258ccd043c5084bcb7d1e6333 |
IEDL.DBID | RPM |
ISSN | 2050-0068 |
IngestDate | Tue Oct 22 15:08:57 EDT 2024 Tue Sep 17 21:23:06 EDT 2024 Thu Oct 24 23:28:23 EDT 2024 Tue Nov 05 15:52:08 EST 2024 Fri Dec 06 09:19:58 EST 2024 Sat Sep 28 08:30:21 EDT 2024 Sat Aug 24 01:04:46 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | NLRP3 inflammatory disorder inflammasome endoplasmic reticulum stress |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2021 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5757-95f3fa91d30e135c060c348cc4b0c53870877f0d258ccd043c5084bcb7d1e6333 |
Notes | Equal Contributors. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7878118/ |
PMID | 33614031 |
PQID | 2492574894 |
PQPubID | 2041959 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bdb4a50c1be642b2b15a84d8a1bd9e01 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7878118 proquest_miscellaneous_2492278068 proquest_journals_2492574894 crossref_primary_10_1002_cti2_1247 pubmed_primary_33614031 wiley_primary_10_1002_cti2_1247_CTI21247 |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationPlace | Australia |
PublicationPlace_xml | – name: Australia – name: Milton, Queensland – name: Hoboken |
PublicationTitle | Clinical & translational immunology |
PublicationTitleAlternate | Clin Transl Immunology |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2010; 11 2007; 104 2017; 86 2010; 107 2019; 11 2019; 10 2013; 62 2015; 265 2010; 189 2002; 10 2019; 15 2019; 14 2002; 277 2019; 16 2020; 205 2020; 13 2010; 184 2006; 172 2012; 13 2016; 38 2012; 12 2008; 582 2018; 48 2014; 21 2013; 9 2014; 20 2018; 7 2018; 9 2014; 1319 2018; 39 2019; 20 2020; 295 2015; 138 2018; 215 2018; 218 2006; 25 2012; 490 2007; 8 2014; 15 2016; 310 2013; 191 2010; 5 2001; 412 2016; 45 2010; 8 2017; 62 2017; 61 2019; 4 2007; 204 2012; 189 2019; 5 2020; 383 2018; 107 2017; 66 2014; 151 2012; 37 2009; 459 2017; 135 2007; 13 2016; 13 2014; 44 2007; 14 2018; 26 2017; 414 2017; 139 2009; 457 2014; 43 2014; 156 2018; 24 2014; 157 2016; 6 2016; 7 2018; 17 2017; 52 2020; 2020 2005; 122 2017; 58 2020; 395 2018; 233 2018; 92 2009; 183 2018; 11 2016; 291 2007; 318 2017; 546 2017; 5 2017; 8 2015; 36 2012; 287 2017; 2 2017; 3 2013; 23 2017; 196 2010; 140 2017; 198 2017; 357 2020; 8 2017; 31 2013; 15 2014; 5 2013; 14 2015; 43 2000; 287 2013; 153 2006; 126 2011; 334 2011; 333 2015; 6 2013; 49 2017; 26 2017; 23 2011; 30 2017; 292 2014; 192 2014; 111 2015; 8 2015; 7 2018; 69 2015; 25 2011; 108 2012; 3 2017; 14 2017; 17 2017; 11 2015; 21 2009; 146 2016; 770 2017; 18 2009; 5 2016; 137 Marciniak SJ (e_1_2_10_40_1) 2017; 26 e_1_2_10_44_1 e_1_2_10_109_1 e_1_2_10_131_1 Ramanathan K (e_1_2_10_149_1) 2020; 8 e_1_2_10_93_1 e_1_2_10_2_1 Ling L (e_1_2_10_156_1) 2019; 11 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_135_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_154_1 e_1_2_10_13_1 e_1_2_10_32_1 Kelsen SG (e_1_2_10_24_1) 2016; 13 e_1_2_10_51_1 Yang W (e_1_2_10_70_1) 2015; 8 e_1_2_10_120_1 e_1_2_10_147_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_124_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_132_1 e_1_2_10_155_1 Arrieta A (e_1_2_10_21_1) 2017; 414 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_148_1 e_1_2_10_60_1 Li W (e_1_2_10_140_1) 2020; 2020 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 Buchanan BW (e_1_2_10_20_1) 2017; 31 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_145_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_122_1 e_1_2_10_43_1 e_1_2_10_108_1 e_1_2_10_130_1 e_1_2_10_157_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_138_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_153_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_146_1 Van Hout GP (e_1_2_10_115_1) 2016; 38 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_142_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 92 start-page: 1 year: 2018 end-page: 16 article-title: NS1 protein of 2009 pandemic influenza A virus inhibits porcine NLRP3 inflammasome‐mediated interleukin‐1 beta production by suppressing ASC ubiquitination publication-title: J Virol – volume: 58 start-page: 1855 year: 2017 end-page: 1868 article-title: Chemical chaperone 4‐phenyl butyric acid (4‐PBA) reduces hepatocellular lipid accumulation and lipotoxicity through induction of autophagy publication-title: J Lipid Res – volume: 62 start-page: 2348 year: 2017 end-page: 2356 article-title: Activation of NLRP3 inflammasome in inflammatory bowel disease: differences between Crohn’s disease and ulcerative colitis publication-title: Dig Dis Sci – volume: 7 start-page: 106 year: 2015 end-page: 117 article-title: Endoplasmic reticulum stress and the related signaling networks in severe asthma publication-title: Allergy Asthma Immunol Res – volume: 12 start-page: 883 year: 2012 end-page: 898 article-title: Unfolded protein response in chronic obstructive pulmonary disease: smoking, aging and disease: a SAD trifecta publication-title: Curr Mol Med – volume: 196 start-page: 283 year: 2017 end-page: 297 article-title: Role for NLRP3 inflammasome–mediated, IL‐1β–dependent responses in severe, steroid‐resistant asthma publication-title: Am J Respir Crit Care Med – volume: 546 start-page: 667 year: 2017 end-page: 670 article-title: Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells publication-title: Nature – volume: 7 start-page: 66444 year: 2016 end-page: 66454 article-title: β‐Hydroxybutyrate suppresses inflammasome formation by ameliorating endoplasmic reticulum stress via AMPK activation publication-title: Oncotarget – volume: 21 start-page: 677 year: 2015 end-page: 687 article-title: Inflammasomes: mechanism of action, role in disease, and therapeutics publication-title: Nat Med – volume: 62 start-page: 194 year: 2013 end-page: 204 article-title: Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes publication-title: Diabetes – volume: 184 start-page: 6335 year: 2010 end-page: 6342 article-title: (1, 3)‐β‐Glucans activate both dectin‐1 and NLRP3 inflammasome in human macrophages publication-title: J Immunol – volume: 1319 start-page: 82 year: 2014 end-page: 95 article-title: Mechanism of NLRP3 inflammasome activation publication-title: Ann N Y Acad Sci – volume: 45 start-page: 761 year: 2016 end-page: 773 article-title: K+ efflux‐independent NLRP3 inflammasome activation by small molecules targeting mitochondria publication-title: Immunity – volume: 7 start-page: 1 year: 2016 end-page: 10 article-title: Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models publication-title: Nat Commun – volume: 38 start-page: 828 year: 2016 end-page: 836 article-title: The selective NLRP3‐inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction publication-title: Eur Heart J – volume: 9 start-page: 1 year: 2018 end-page: 13 article-title: Understanding the unfolded protein response in the pathogenesis of asthma publication-title: Front Immunol – volume: 26 start-page: 1 year: 2017 end-page: 7 article-title: Endoplasmic reticulum stress in lung disease publication-title: Eur Respir J – volume: 6 start-page: 27912 year: 2016 end-page: 27920 article-title: Reassessing the role of the NLRP3 inflammasome during pathogenic influenza A virus infection via temporal inhibition publication-title: Sci Rep – volume: 6 start-page: 1 year: 2015 end-page: 10 article-title: Bacterial exotoxins and the inflammasome publication-title: Front Immunol – volume: 10 start-page: 1 year: 2019 end-page: 11 article-title: Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors publication-title: Cell Death Dis – volume: 13 start-page: 325 year: 2012 end-page: 332 article-title: Sensing and reacting to microbes through the inflammasomes publication-title: Nat Immunol – volume: 107 start-page: 16113 year: 2010 end-page: 16118 article-title: Mammalian endoplasmic reticulum stress sensor IRE1 signals by dynamic clustering publication-title: Proc Natl Acad Sci USA – volume: 215 start-page: 827 year: 2018 end-page: 840 article-title: Caspase‐1 self‐cleavage is an intrinsic mechanism to terminate inflammasome activity publication-title: J Exp Med – volume: 395 start-page: 1033 year: 2020 end-page: 1034 article-title: COVID‐19: consider cytokine storm syndromes and immunosuppression publication-title: Lancet – volume: 25 start-page: 308 year: 2015 end-page: 315 article-title: Mechanisms of inflammasome activation: recent advances and novel insights publication-title: Trends Cell Biol – volume: 86 start-page: 44 year: 2017 end-page: 55 article-title: Inflammasomes in the lung publication-title: Mol Immunol – volume: 39 start-page: 798 year: 2018 end-page: 811 article-title: GPCRs in NLRP3 inflammasome activation, regulation, and therapeutics publication-title: Trends Pharmacol Sci – volume: 196 start-page: 713 year: 2017 end-page: 726 article-title: NLRP3 inflammasome deficiency protects against microbial sepsis via increased lipoxin B4 synthesis publication-title: Am J Respir Crit Care Med – volume: 3 start-page: 1 year: 2012 end-page: 10 article-title: ER stress activates the NLRP3 inflammasome via an UPR‐independent pathway publication-title: Cell Death Dis – volume: 23 start-page: 2333 year: 2017 end-page: 2343 article-title: Momordicacharantia: a new strategic vision to improve the therapy of endoplasmic reticulum stress publication-title: Curr Pharm Des – volume: 111 start-page: 16059 year: 2014 end-page: 16064 article-title: Human NLRP3 inflammasome senses multiple types of bacterial RNAs publication-title: Proc Natl Acad Sci USA – volume: 156 start-page: 1193 year: 2014 end-page: 1206 article-title: Unified polymerization mechanism for the assembly of ASC‐dependent inflammasomes publication-title: Cell – volume: 8 start-page: 1 year: 2010 end-page: 14 article-title: BiP binding to the ER‐stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response publication-title: PLoS Biol – volume: 26 start-page: 77 year: 2018 end-page: 86 article-title: Pharmacological inhibition of the NLRP3 inflammasome as a potential target for multiple sclerosis induced central neuropathic pain publication-title: Inflammopharmacology – volume: 412 start-page: 300 year: 2001 end-page: 307 article-title: Plasma cell differentiation requires the transcription factor XBP‐1 publication-title: Nature – volume: 5 start-page: 487 year: 2009 end-page: 497 article-title: An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen publication-title: Cell Host Microbe – volume: 395 start-page: 565 year: 2020 end-page: 574 article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding publication-title: Lancet – volume: 4 start-page: 789 year: 2019 end-page: 799 article-title: Dampened NLRP3‐mediated inflammation in bats and implications for a special viral reservoir host publication-title: Nat Rev Microbiol – volume: 14 start-page: 1583 year: 2007 end-page: 1589 article-title: Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration publication-title: Cell Death Differ – volume: 108 start-page: 14867 year: 2011 end-page: 14872 article-title: NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite‐associated arthropathy publication-title: Proc Natl Acad Sci USA – volume: 5 start-page: 1 year: 2010 end-page: 10 article-title: Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase publication-title: PLoS One – volume: 16 start-page: 135 year: 2019 end-page: 144 article-title: Bilirubin attenuates ER stress‐mediated inflammation, escalates apoptosis and reduces proliferation in the LS174T colonic epithelial cell line publication-title: Int J Med Sci – volume: 3 start-page: 1 year: 2017 end-page: 15 article-title: Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson’s disease publication-title: NPJ Parkinsons Dis – volume: 61 start-page: 306 year: 2017 end-page: 316 article-title: Inhibiting the NLRP3 inflammasome with MCC950 promotes non‐phlogistic clearance of amyloid‐β and cognitive function in APP/PS1 mice publication-title: Brain Behav Immun – volume: 15 start-page: 556 year: 2019 end-page: 559 article-title: MCC950 directly targets the NLRP3 ATP‐hydrolysis motif for inflammasome inhibition publication-title: Nat Chem Biol – volume: 139 start-page: 1496 year: 2017 end-page: 1507 article-title: Pulmonary ORMDL3 is critical for induction of Alternaria‐induced allergic airways disease publication-title: J Allergy Clin Immunol – volume: 9 start-page: 1 year: 2018 end-page: 14 article-title: The kinase receptor‐interacting protein 1 is required for inflammasome activation induced by endoplasmic reticulum stress publication-title: Cell Death Dis – volume: 291 start-page: 15830 year: 2016 end-page: 15840 article-title: Attenuation of PKR‐like ER kinase (PERK) signaling selectively controls endoplasmic reticulum stress‐induced inflammation without compromising immunological responses publication-title: J Biol Chem – volume: 104 start-page: 8041 year: 2007 end-page: 8046 article-title: Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling publication-title: Proc Natl Acad Sci USA – volume: 5 start-page: 461 year: 2014 end-page: 472 article-title: Toll‐like receptor signaling pathways publication-title: Front Immunol – volume: 21 start-page: 396 year: 2014 end-page: 413 article-title: Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease publication-title: Antioxid Redox Signal – volume: 14 start-page: 52 year: 2013 end-page: 60 article-title: Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome–dependent processing of IL‐1β publication-title: Nat Immunol – volume: 13 start-page: S138 year: 2016 end-page: S145 article-title: The unfolded protein response in chronic obstructive pulmonary disease publication-title: Ann Am Thorac Soc – volume: 31 start-page: 915 year: 2017 end-page: 923 article-title: Effects of endoplasmic reticulum stress on protein quality control publication-title: FASEB J – volume: 191 start-page: 5230 year: 2013 end-page: 5238 article-title: Mitochondrial reactive oxygen species induces NLRP3‐dependent lysosomal damage and inflammasome activation publication-title: J Immunol – volume: 10 start-page: 1 year: 2019 end-page: 9 article-title: Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome publication-title: Front Microbiol – volume: 48 start-page: 35 year: 2018 end-page: 44 article-title: The pore‐forming protein gasdermin D regulates interleukin‐1 secretion from living macrophages publication-title: Immunity – volume: 17 start-page: 588 year: 2018 end-page: 606 article-title: Targeting the NLRP3 inflammasome in inflammatory diseases publication-title: Nat Rev Drug Discov – volume: 395 start-page: 497 year: 2020 end-page: 506 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet – volume: 11 start-page: 265 year: 2017 end-page: 273 article-title: The role of ubiquitin‐conjugating enzyme Ube2j1 phosphorylation and its degradation by proteasome during endoplasmic stress recovery publication-title: Cell Commun Signal – volume: 15 start-page: 481 year: 2013 end-page: 490 article-title: ER‐stress‐induced transcriptional regulation increases protein synthesis leading to cell death publication-title: Nat Cell Biol – volume: 43 start-page: 1067 year: 2014 end-page: 1076 article-title: Elevated expression of the NLRP3 inflammasome in neutrophilic asthma publication-title: Eur Respir J – volume: 137 start-page: 822 year: 2016 end-page: 832 article-title: Protein disulfide isomerase‐endoplasmic reticulum resident protein 57 regulates allergen‐induced airways inflammation, fibrosis, and hyperresponsiveness publication-title: J Allergy Clin Immunol – volume: 318 start-page: 944 year: 2007 end-page: 949 article-title: IRE1 signaling affects cell fate during the unfolded protein response publication-title: Science – volume: 265 start-page: 35 year: 2015 end-page: 52 article-title: Initiation and perpetuation of NLRP3 inflammasome activation and assembly publication-title: Immunol Rev – volume: 18 start-page: 771 year: 2017 end-page: 780 article-title: Endoplasmic reticulum stress and oxidative stress: a vicious nexus implicated in bowel disease pathophysiology publication-title: Int J Mol Sci – volume: 189 start-page: 783 year: 2010 end-page: 794 article-title: Regulation of basal cellular physiology by the homeostatic unfolded protein response publication-title: J Cell Biol – volume: 414 start-page: 193 year: 2017 end-page: 213 article-title: ER protein quality control and the unfolded protein response in the heart publication-title: Curr Top Microbiol Immunol – volume: 17 start-page: 208 year: 2017 end-page: 214 article-title: Homeostasis‐altering molecular processes as mechanisms of inflammasome activation publication-title: Nat Immunol – volume: 107 start-page: 627 year: 2018 end-page: 633 article-title: Regulation of unfolded protein response in hematopoietic stem cells publication-title: Int J Hematol – volume: 582 start-page: 656 year: 2008 end-page: 660 article-title: RNase domains determine the functional difference between IRE1α and IRE1β publication-title: FEBS Lett – volume: 49 start-page: 331 year: 2013 end-page: 338 article-title: Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity publication-title: Mol Cell – volume: 287 start-page: 664 year: 2000 end-page: 666 article-title: Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1 publication-title: Science – volume: 26 start-page: 71 year: 2017 end-page: 93 article-title: Inflammasomes on the crossroads of innate immune recognition and metabolic control publication-title: Cell Metab – volume: 14 start-page: 118 year: 2017 end-page: 126 article-title: Sterile signals generate weaker and delayed macrophage NLRP3 inflammasome responses relative to microbial signals publication-title: Cell Mol Immunol – volume: 69 start-page: 927 year: 2018 end-page: 947 article-title: Endoplasmic reticulum stress signalling and the pathogenesis of non‐alcoholic fatty liver disease publication-title: J Hepatol – volume: 183 start-page: 792 year: 2009 end-page: 796 article-title: Cutting edge: TNF‐α mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation publication-title: J Immunol – volume: 333 start-page: 1891 year: 2011 end-page: 1894 article-title: Unfolded proteins are Ire1‐activating ligands that directly induce the unfolded protein response publication-title: Science – volume: 135 start-page: 1 year: 2017 end-page: 52 article-title: Chromosome 17q21 genes ORMDL3 and GSDMB in asthma and immune diseases publication-title: Adv Immunol – volume: 292 start-page: 12077 year: 2017 end-page: 12087 article-title: The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL‐1β transcription and activate the NLRP3 inflammasome publication-title: J Biol Chem – volume: 13 start-page: 333 year: 2012 end-page: 342 article-title: Regulation of inflammasome signaling publication-title: Nat Immunol – volume: 233 start-page: 67 year: 2018 end-page: 78 article-title: Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease publication-title: J Cell Physiol – volume: 20 start-page: 1 year: 2019 end-page: 24 article-title: The NLRP3 inflammasome: an overview of mechanisms of activation and regulation publication-title: Int J Mol Sci – volume: 66 start-page: 1037 year: 2017 end-page: 1046 article-title: NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice publication-title: J Hepatol – volume: 23 start-page: 201 year: 2013 end-page: 212 article-title: Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS‐induced septic shock publication-title: Cell Res – volume: 138 start-page: 644 year: 2015 end-page: 652 article-title: NLRP3 inflammasome is associated with the response to IFN‐β in patients with multiple sclerosis publication-title: Brain – volume: 24 start-page: 1425 year: 2018 end-page: 1433 article-title: Interleukin‐1β maturation triggers its relocation to the plasma membrane for gasdermin‐D‐dependent and‐independent secretion publication-title: Cell Rep – volume: 459 start-page: 433 year: 2009 end-page: 436 article-title: Syk kinase signalling couples to the Nlrp3 inflammasome for anti‐fungal host defence publication-title: Nature – volume: 156 start-page: 1207 year: 2014 end-page: 1222 article-title: Prion‐like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation publication-title: Cell – volume: 357 start-page: 335 year: 2017 end-page: 340 article-title: Puerarin inhibits amyloid β‐induced NLRP3 inflammasome activation in retinal pigment epithelial cells via suppressing ROS‐dependent oxidative and endoplasmic reticulum stresses publication-title: Exp Cell Res – volume: 44 start-page: 867 year: 2014 end-page: 876 article-title: Regulated IRE1‐dependent decay participates in curtailing immunoglobulin secretion from plasma cells publication-title: Eur J Immunol – volume: 2020 start-page: 1 year: 2020 end-page: 14 article-title: Recombinant protein Tp0768 promotes proinflammatory cytokine secretion of macrophages through ER stress and ROS/NF‐κB pathway publication-title: Appl Microbiol Biotechnol – volume: 153 start-page: 348 year: 2013 end-page: 361 article-title: The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation publication-title: Cell – volume: 9 start-page: 1346 year: 2018 end-page: 1357 article-title: Gastrodin ameliorates cognitive dysfunction in diabetes rat model via the suppression of endoplasmic reticulum stress and NLRP3 inflammasome activation publication-title: Front Pharmacol – volume: 198 start-page: 1253 year: 2017 end-page: 1262 article-title: Deletion of Nlrp3 augments survival during polymicrobial sepsis by decreasing autophagy and enhancing phagocytosis publication-title: J Immunol – volume: 8 start-page: 519 year: 2007 end-page: 529 article-title: Signal integration in the endoplasmic reticulum unfolded protein response publication-title: Nat Rev Mol Cell Biol – volume: 25 start-page: 4717 year: 2006 end-page: 4727 article-title: Retrotranslocation of a viral A/B toxin from the yeast endoplasmic reticulum is independent of ubiquitination and ERAD publication-title: EMBO – volume: 183 start-page: 8061 year: 2009 end-page: 8067 article-title: Involvement of the NLRP3 inflammasome in innate and humoral adaptive immune responses to fungal β‐glucan publication-title: J Immunol – volume: 183 start-page: 787 year: 2009 end-page: 791 article-title: Cutting edge: NF‐κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression publication-title: J Immunol – volume: 146 start-page: 743 year: 2009 end-page: 750 article-title: Signalling pathways in the unfolded protein response: development from yeast to mammals publication-title: J Biochem – volume: 490 start-page: 539 year: 2012 end-page: 542 article-title: Phosphorylation of NLRC4 is critical for inflammasome activation publication-title: Nature – volume: 287 start-page: 36617 year: 2012 end-page: 36622 article-title: Non‐transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation publication-title: J Biol Chem – volume: 37 start-page: 487 year: 2012 end-page: 500 article-title: Cell volume regulation modulates NLRP3 inflammasome activation publication-title: Immunity – volume: 8 start-page: 518 year: 2020 end-page: 526 article-title: Planning and provision of ECMO services for severe ARDS during the COVID‐19 pandemic and other outbreaks of emerging infectious diseases publication-title: Lancet – volume: 11 start-page: 113 year: 2010 end-page: 127 article-title: The mechanism of eukaryotic translation initiation and principles of its regulation publication-title: Nat Rev Mol Cell Biol – volume: 172 start-page: 201 year: 2006 end-page: 209 article-title: Activation‐dependent substrate recruitment by the eukaryotic translation initiation factor 2 kinase PERK publication-title: J Cell Biol – volume: 13 start-page: 365 year: 2007 end-page: 376 article-title: Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1 publication-title: Dev Cell – volume: 14 start-page: 1 year: 2019 end-page: 10 article-title: NLRP3 inflammasome activity is upregulated in an in‐vitro model of COPD exacerbation publication-title: PLoS One – volume: 183 start-page: 3578 year: 2009 end-page: 3581 article-title: Cutting edge: hyphae formation triggers activation of the Nlrp3 inflammasome publication-title: J Immunol – volume: 7 start-page: 1 year: 2018 end-page: 21 article-title: Interplay between endoplasmic reticular stress and survivin in colonic epithelial cells publication-title: Cells – volume: 43 start-page: 451 year: 2015 end-page: 462 article-title: Endoplasmic reticulum stress activates the inflammasome via NLRP3‐and caspase‐2‐driven mitochondrial damage publication-title: Immunity – volume: 295 start-page: 17684 year: 2020 end-page: 17697 article-title: infection upregulates MFN2 expression to promote NLRP3 inflammasome formation publication-title: J Biol Chem – volume: 13 start-page: 877 year: 2020 end-page: 891 article-title: Animal and translational models of SARS‐CoV‐2 infection and COVID‐19 publication-title: Mucosal Immunol – volume: 126 start-page: 361 year: 2006 end-page: 373 article-title: Distinct ubiquitin‐ligase complexes define convergent pathways for the degradation of ER proteins publication-title: Cell – volume: 15 start-page: 727 year: 2014 end-page: 737 article-title: The adaptor ASC has extracellular and'prionoid'activities that propagate inflammation publication-title: Nat Immunol – volume: 8 start-page: 1 year: 2017 end-page: 12 article-title: CLICs‐dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation publication-title: Nat Commun – volume: 52 start-page: 352 year: 2017 end-page: 365 article-title: A small molecule inhibitor of NFkappaB blocks ER stress and the NLRP3 inflammasome and prevents progression of pancreatitis publication-title: J Gastroenterol – volume: 21 start-page: 248 year: 2015 end-page: 255 article-title: A small‐molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases publication-title: Nat Med – volume: 36 start-page: 821 year: 2015 end-page: 830 article-title: Involvement of endoplasmic reticulum stress in angiotensin II‐induced NLRP3 inflammasome activation in human renal proximal tubular cells publication-title: Acta Pharmacol Sin – volume: 457 start-page: 736 year: 2009 end-page: 740 article-title: Messenger RNA targeting to endoplasmic reticulum stress signalling sites publication-title: Nature – volume: 2 start-page: 1435 year: 2017 end-page: 1445 article-title: Specific inhibition of NLRP3 in chikungunya disease reveals a role for inflammasomes in alphavirus‐induced inflammation publication-title: Nat Rev Microbiol – volume: 5 start-page: 1 year: 2009 end-page: 10 article-title: The inflammasomes publication-title: PLoS Pathog – volume: 7 start-page: 457 year: 2016 end-page: 476 article-title: ER stress‐induced inflammasome activation contributes to hepatic inflammation and steatosis publication-title: Clin Cell Immun – volume: 770 start-page: 85 year: 2016 end-page: 91 article-title: Mangiferin alleviates lipopolysaccharide and D‐galactosamine‐induced acute liver injury by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation publication-title: Eur J Pharmacol – volume: 17 start-page: 1 year: 2017 end-page: 10 article-title: Bitter melon protects against ER stress in LS174T colonic epithelial cells publication-title: BMC Complement Altern Med – volume: 9 start-page: 1 year: 2013 end-page: 3 article-title: Burning down the house: cellular actions during pyroptosis publication-title: PLoS Pathog – volume: 157 start-page: 1013 year: 2014 end-page: 1022 article-title: Mechanisms and functions of inflammasomes publication-title: Cell – volume: 11 start-page: 359 year: 2018 end-page: 374 article-title: Spotlight on the NLRP3 inflammasome pathway publication-title: J Inflamm Res – volume: 20 start-page: 799 year: 2014 end-page: 815 article-title: Endoplasmic reticulum stress is sufficient for the induction of IL‐1β production via activation of the NF‐κB and inflammasome pathways publication-title: Innate Immun – volume: 334 start-page: 1081 year: 2011 end-page: 1086 article-title: The unfolded protein response: from stress pathway to homeostatic regulation publication-title: Science – volume: 277 start-page: 13045 year: 2002 end-page: 13052 article-title: The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi publication-title: J Biol Chem – volume: 48 start-page: 584 year: 2018 end-page: 592 article-title: The Gasdermin‐D pore acts as a conduit for IL‐1β secretion in mice publication-title: Eur J Immunol – volume: 8 start-page: 13209 year: 2015 end-page: 13216 article-title: NLRP3 inflammasome is essential for the development of chronic obstructive pulmonary disease publication-title: Int J Clin Exp Pathol – volume: 310 start-page: 1243 year: 2016 end-page: 1259 article-title: Effect of a chemical chaperone, tauroursodeoxycholic acid, on HDM‐induced allergic airway disease publication-title: Am J Physiol – volume: 10 start-page: 417 year: 2002 end-page: 426 article-title: The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL‐β publication-title: Mol Cell – volume: 92 start-page: 1 year: 2018 end-page: 15 article-title: Sendai virus V protein inhibits the secretion of interleukin‐1β by preventing NLRP3 inflammasome assembly publication-title: J Virol – volume: 6 start-page: 1 year: 2015 end-page: 12 article-title: ER stress induces NLRP3 inflammasome activation and hepatocyte death publication-title: Cell Death Dis – volume: 151 start-page: 1 year: 2014 end-page: 15 article-title: Airway epithelial regulation of pulmonary immune homeostasis and inflammation publication-title: Clin Immunol – volume: 30 start-page: 894 year: 2011 end-page: 905 article-title: Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response publication-title: EMBO – volume: 383 start-page: 2451 year: 2020 end-page: 2460 article-title: Severe Covid‐19 publication-title: N Engl J Med – volume: 11 start-page: 131 year: 2019 end-page: 141 article-title: Ghrelin attenuates UUO‐induced renal fibrosis via attenuation of Nlrp3 inflammasome and endoplasmic reticulum stress publication-title: Am J Transl – volume: 189 start-page: 3795 year: 2012 end-page: 3799 article-title: Cutting edge: miR‐223 and EBV miR‐BART15 regulate the NLRP3 inflammasome and IL‐1β production publication-title: J Immunol – volume: 204 start-page: 2267 year: 2007 end-page: 2275 article-title: The transcription factor XBP‐1 is essential for the development and survival of dendritic cells publication-title: J Exp Med – volume: 5 start-page: 1 year: 2019 end-page: 12 article-title: SARS‐Coronavirus Open Reading Frame‐8b triggers intracellular stress pathways and activates NLRP3 inflammasomes publication-title: Cell Death Discov – volume: 218 start-page: S504 year: 2018 end-page: S507 article-title: The induction of IL‐1β secretion through the NLRP3 inflammasome during Ebola virus infection publication-title: J Infect Dis – volume: 24 start-page: 3176 year: 2018 end-page: 3183 article-title: Cell stress signaling cascades regulating cell fate publication-title: Curr Pharm Des – volume: 122 start-page: 901 year: 2005 end-page: 913 article-title: Mechanistic link between PKR dimerization, autophosphorylation, and eIF2α substrate recognition publication-title: Cell – volume: 192 start-page: 5974 year: 2014 end-page: 5983 article-title: Critical role for the NLRP3 inflammasome during acute lung injury publication-title: J Immunol – volume: 5 start-page: 1 year: 2017 end-page: 16 article-title: Recent insights into the role of unfolded protein response in ER stress in health and disease publication-title: Front Cell Dev Biol – volume: 10 start-page: 268 year: 2019 end-page: 277 article-title: ERS licenses macrophages to produce IL‐1β during infection via positive feedback loop between mitochondrial damage and inflammasome activation publication-title: Front Immunol – volume: 140 start-page: 821 year: 2010 end-page: 832 article-title: The inflammasomes publication-title: Cell – volume: 111 start-page: 775 year: 2014 end-page: 780 article-title: IRAK‐1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation publication-title: Proc Natl Acad Sci USA – volume: 205 start-page: 1 year: 2020 end-page: 7 article-title: Inflammasomes and pyroptosis as therapeutic targets for COVID‐19 publication-title: J Immunol – ident: e_1_2_10_16_1 doi: 10.1007/s12079-017-0386-6 – ident: e_1_2_10_155_1 doi: 10.18632/oncotarget.12119 – ident: e_1_2_10_35_1 doi: 10.1002/eji.201343953 – ident: e_1_2_10_3_1 doi: 10.1016/j.clim.2013.12.003 – ident: e_1_2_10_28_1 doi: 10.1002/jcp.25852 – volume: 8 start-page: 518 year: 2020 ident: e_1_2_10_149_1 article-title: Planning and provision of ECMO services for severe ARDS during the COVID‐19 pandemic and other outbreaks of emerging infectious diseases publication-title: Lancet contributor: fullname: Ramanathan K – ident: e_1_2_10_100_1 doi: 10.1074/jbc.M112.407130 – ident: e_1_2_10_18_1 doi: 10.1016/j.cell.2006.05.043 – ident: e_1_2_10_150_1 doi: 10.1056/NEJMcp2009575 – ident: e_1_2_10_94_1 doi: 10.4049/jimmunol.0901363 – volume: 38 start-page: 828 year: 2016 ident: e_1_2_10_115_1 article-title: The selective NLRP3‐inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction publication-title: Eur Heart J contributor: fullname: Van Hout GP – ident: e_1_2_10_2_1 doi: 10.1038/nm.3893 – ident: e_1_2_10_47_1 doi: 10.1074/jbc.M110636200 – ident: e_1_2_10_114_1 doi: 10.1038/s41589-019-0277-7 – ident: e_1_2_10_143_1 doi: 10.1038/s41420-019-0230-2 – ident: e_1_2_10_42_1 doi: 10.1038/nature07641 – ident: e_1_2_10_71_1 doi: 10.1073/pnas.0611496104 – ident: e_1_2_10_7_1 doi: 10.1093/brain/awu388 – ident: e_1_2_10_95_1 doi: 10.4049/jimmunol.0900173 – ident: e_1_2_10_44_1 doi: 10.1083/jcb.200508099 – volume: 414 start-page: 193 year: 2017 ident: e_1_2_10_21_1 article-title: ER protein quality control and the unfolded protein response in the heart publication-title: Curr Top Microbiol Immunol contributor: fullname: Arrieta A – ident: e_1_2_10_79_1 doi: 10.1016/j.chom.2009.05.002 – ident: e_1_2_10_134_1 doi: 10.1007/s00535-016-1238-5 – ident: e_1_2_10_52_1 doi: 10.1016/j.cell.2014.04.007 – ident: e_1_2_10_34_1 doi: 10.1038/35085509 – ident: e_1_2_10_38_1 doi: 10.1038/emboj.2011.18 – ident: e_1_2_10_37_1 doi: 10.1093/jb/mvp166 – ident: e_1_2_10_97_1 doi: 10.1016/j.tips.2018.07.002 – ident: e_1_2_10_105_1 doi: 10.1016/j.immuni.2012.06.013 – ident: e_1_2_10_33_1 doi: 10.1083/jcb.201003138 – ident: e_1_2_10_122_1 – ident: e_1_2_10_82_1 doi: 10.1371/journal.pone.0010008 – ident: e_1_2_10_132_1 doi: 10.1016/j.jhep.2018.06.008 – ident: e_1_2_10_78_1 doi: 10.1038/nature07965 – ident: e_1_2_10_39_1 doi: 10.1016/j.febslet.2008.01.038 – ident: e_1_2_10_27_1 doi: 10.1152/ajplung.00396.2015 – volume: 8 start-page: 13209 year: 2015 ident: e_1_2_10_70_1 article-title: NLRP3 inflammasome is essential for the development of chronic obstructive pulmonary disease publication-title: Int J Clin Exp Pathol contributor: fullname: Yang W – ident: e_1_2_10_92_1 doi: 10.1073/pnas.1320294111 – ident: e_1_2_10_89_1 doi: 10.4049/jimmunol.1601745 – ident: e_1_2_10_151_1 doi: 10.4049/jimmunol.1400368 – ident: e_1_2_10_51_1 doi: 10.1089/ars.2014.5851 – ident: e_1_2_10_144_1 doi: 10.3389/fmicb.2019.02543 – ident: e_1_2_10_75_1 doi: 10.1016/j.tcb.2014.12.009 – ident: e_1_2_10_118_1 doi: 10.1038/s41564-017-0015-4 – ident: e_1_2_10_6_1 doi: 10.1164/rccm.201609-1830OC – ident: e_1_2_10_84_1 doi: 10.1371/journal.ppat.1000510 – ident: e_1_2_10_93_1 doi: 10.3389/fimmu.2014.00461 – ident: e_1_2_10_135_1 doi: 10.1177/1753425913508593 – ident: e_1_2_10_66_1 doi: 10.1038/nature22967 – ident: e_1_2_10_126_1 doi: 10.4172/2155-9899.1000457 – ident: e_1_2_10_56_1 doi: 10.1038/ni.2231 – ident: e_1_2_10_87_1 doi: 10.1128/JVI.00022-18 – ident: e_1_2_10_157_1 doi: 10.1194/jlr.M077537 – ident: e_1_2_10_50_1 doi: 10.1016/j.yexcr.2017.05.030 – ident: e_1_2_10_57_1 doi: 10.1038/cmi.2016.11 – ident: e_1_2_10_36_1 doi: 10.1084/jem.20070525 – ident: e_1_2_10_128_1 doi: 10.1074/jbc.M116.738021 – ident: e_1_2_10_30_1 doi: 10.1126/science.1209126 – ident: e_1_2_10_68_1 doi: 10.1038/s41531-017-0032-2 – ident: e_1_2_10_23_1 doi: 10.2174/1381612824666180711122753 – ident: e_1_2_10_54_1 doi: 10.1038/nrd.2018.97 – ident: e_1_2_10_124_1 – ident: e_1_2_10_45_1 doi: 10.1038/nrm2838 – ident: e_1_2_10_101_1 doi: 10.1016/j.molcel.2012.11.009 – ident: e_1_2_10_113_1 doi: 10.1038/nm.3806 – ident: e_1_2_10_127_1 doi: 10.3390/cells7100171 – ident: e_1_2_10_48_1 doi: 10.1016/j.devcel.2007.07.018 – ident: e_1_2_10_81_1 doi: 10.4049/jimmunol.0902477 – ident: e_1_2_10_41_1 doi: 10.1073/pnas.1010580107 – ident: e_1_2_10_152_1 doi: 10.2174/1381612823666170124141104 – ident: e_1_2_10_146_1 doi: 10.4049/jimmunol.2000513 – ident: e_1_2_10_112_1 doi: 10.4049/jimmunol.1301490 – ident: e_1_2_10_59_1 doi: 10.1016/j.immuni.2017.11.013 – ident: e_1_2_10_104_1 doi: 10.1016/j.cell.2014.02.008 – ident: e_1_2_10_15_1 doi: 10.1186/s12906-016-1522-1 – ident: e_1_2_10_8_1 doi: 10.1038/ncomms12504 – ident: e_1_2_10_26_1 doi: 10.1016/j.jaci.2016.07.033 – ident: e_1_2_10_67_1 doi: 10.1073/pnas.1111101108 – ident: e_1_2_10_142_1 doi: 10.1074/jbc.RA120.014077 – ident: e_1_2_10_13_1 doi: 10.3389/fcell.2017.00048 – ident: e_1_2_10_31_1 doi: 10.1038/nrm2199 – ident: e_1_2_10_117_1 doi: 10.1016/j.jhep.2017.01.022 – ident: e_1_2_10_108_1 doi: 10.1038/s41467-017-00227-x – ident: e_1_2_10_103_1 doi: 10.1016/j.cell.2014.01.063 – ident: e_1_2_10_58_1 doi: 10.1038/nature11429 – ident: e_1_2_10_61_1 doi: 10.1016/j.celrep.2018.07.027 – ident: e_1_2_10_80_1 doi: 10.4049/jimmunol.0901323 – ident: e_1_2_10_17_1 doi: 10.1038/sj.emboj.7601350 – ident: e_1_2_10_62_1 doi: 10.1038/ni.2237 – ident: e_1_2_10_139_1 doi: 10.1038/aps.2015.21 – ident: e_1_2_10_96_1 doi: 10.4049/jimmunol.1200312 – ident: e_1_2_10_63_1 doi: 10.2147/JIR.S141220 – ident: e_1_2_10_32_1 doi: 10.1126/science.1146361 – ident: e_1_2_10_53_1 doi: 10.1016/S1097-2765(02)00599-3 – ident: e_1_2_10_76_1 doi: 10.1016/j.cmet.2017.06.018 – ident: e_1_2_10_19_1 doi: 10.1371/journal.pbio.1000415 – ident: e_1_2_10_147_1 doi: 10.1016/S0140-6736(20)30628-0 – ident: e_1_2_10_154_1 doi: 10.3389/fphar.2018.01346 – ident: e_1_2_10_141_1 doi: 10.3389/fimmu.2019.00268 – ident: e_1_2_10_49_1 doi: 10.1126/science.287.5453.664 – ident: e_1_2_10_43_1 doi: 10.1016/j.cell.2005.06.041 – ident: e_1_2_10_12_1 doi: 10.3390/ijms18040771 – volume: 11 start-page: 131 year: 2019 ident: e_1_2_10_156_1 article-title: Ghrelin attenuates UUO‐induced renal fibrosis via attenuation of Nlrp3 inflammasome and endoplasmic reticulum stress publication-title: Am J Transl contributor: fullname: Ling L – ident: e_1_2_10_85_1 doi: 10.1093/infdis/jiy433 – ident: e_1_2_10_106_1 doi: 10.1038/sj.cdd.4402195 – ident: e_1_2_10_110_1 doi: 10.1016/j.cell.2013.02.054 – ident: e_1_2_10_5_1 doi: 10.1038/ni.2913 – volume: 31 start-page: 915 year: 2017 ident: e_1_2_10_20_1 article-title: Effects of endoplasmic reticulum stress on protein quality control publication-title: FASEB J doi: 10.1096/fasebj.31.1_supplement.915.3 contributor: fullname: Buchanan BW – ident: e_1_2_10_129_1 doi: 10.4168/aair.2015.7.2.106 – ident: e_1_2_10_125_1 doi: 10.7150/ijms.29134 – volume: 26 start-page: 1 year: 2017 ident: e_1_2_10_40_1 article-title: Endoplasmic reticulum stress in lung disease publication-title: Eur Respir J contributor: fullname: Marciniak SJ – ident: e_1_2_10_86_1 doi: 10.1128/JVI.00842-18 – ident: e_1_2_10_4_1 doi: 10.1016/j.molimm.2017.01.014 – ident: e_1_2_10_121_1 doi: 10.1038/cr.2013.6 – ident: e_1_2_10_148_1 doi: 10.1016/S0140-6736(20)30183-5 – ident: e_1_2_10_111_1 doi: 10.1016/j.immuni.2016.08.010 – ident: e_1_2_10_29_1 doi: 10.1007/s12185-018-2458-7 – ident: e_1_2_10_137_1 doi: 10.1038/cddis.2011.132 – ident: e_1_2_10_99_1 doi: 10.1038/s41419-018-1236-z – ident: e_1_2_10_136_1 doi: 10.1016/j.immuni.2015.08.008 – ident: e_1_2_10_120_1 doi: 10.1038/ni.2474 – ident: e_1_2_10_22_1 doi: 10.1038/ncb2738 – ident: e_1_2_10_98_1 doi: 10.3390/ijms20133328 – ident: e_1_2_10_69_1 doi: 10.1183/09031936.00105013 – ident: e_1_2_10_65_1 doi: 10.1371/journal.ppat.1003793 – ident: e_1_2_10_91_1 doi: 10.1038/nri.2016.151 – ident: e_1_2_10_55_1 doi: 10.1084/jem.20172222 – volume: 13 start-page: S138 year: 2016 ident: e_1_2_10_24_1 article-title: The unfolded protein response in chronic obstructive pulmonary disease publication-title: Ann Am Thorac Soc contributor: fullname: Kelsen SG – ident: e_1_2_10_138_1 doi: 10.1038/s41419-018-0694-7 – ident: e_1_2_10_46_1 doi: 10.1126/science.1209038 – ident: e_1_2_10_119_1 doi: 10.1007/s10787-017-0401-9 – ident: e_1_2_10_9_1 doi: 10.2337/db12-0420 – ident: e_1_2_10_109_1 doi: 10.1074/jbc.M117.797126 – ident: e_1_2_10_14_1 doi: 10.3389/fimmu.2018.00175 – ident: e_1_2_10_10_1 doi: 10.1007/s10620-017-4609-8 – volume: 2020 start-page: 1 year: 2020 ident: e_1_2_10_140_1 article-title: Recombinant Treponema pallidum protein Tp0768 promotes proinflammatory cytokine secretion of macrophages through ER stress and ROS/NF‐κB pathway publication-title: Appl Microbiol Biotechnol contributor: fullname: Li W – ident: e_1_2_10_64_1 doi: 10.1016/j.cell.2010.01.040 – ident: e_1_2_10_72_1 doi: 10.1111/imr.12286 – ident: e_1_2_10_102_1 doi: 10.1111/nyas.12458 – ident: e_1_2_10_130_1 doi: 10.1016/j.jaci.2015.08.018 – ident: e_1_2_10_74_1 doi: 10.1038/s41385-020-00340-z – ident: e_1_2_10_123_1 – ident: e_1_2_10_25_1 doi: 10.1016/bs.ai.2017.06.001 – ident: e_1_2_10_116_1 doi: 10.1016/j.bbi.2016.12.014 – ident: e_1_2_10_153_1 doi: 10.1016/j.ejphar.2015.12.006 – ident: e_1_2_10_83_1 doi: 10.4049/jimmunol.0903019 – ident: e_1_2_10_131_1 doi: 10.2174/156652412801318764 – ident: e_1_2_10_88_1 doi: 10.1038/srep27912 – ident: e_1_2_10_60_1 doi: 10.1002/eji.201747404 – ident: e_1_2_10_77_1 doi: 10.1073/pnas.1412487111 – ident: e_1_2_10_107_1 doi: 10.3389/fimmu.2015.00570 – ident: e_1_2_10_11_1 doi: 10.1371/journal.pone.0214622 – ident: e_1_2_10_73_1 doi: 10.1038/s41564-019-0371-3 – ident: e_1_2_10_90_1 doi: 10.1164/rccm.201604-0892OC – ident: e_1_2_10_145_1 doi: 10.1016/S0140-6736(20)30251-8 – ident: e_1_2_10_133_1 doi: 10.1038/cddis.2015.248 |
SSID | ssj0001340516 |
Score | 2.3842044 |
SecondaryResourceType | review_article |
Snippet | Inflammation is the result of a complex network of cellular and molecular interactions and mechanisms that facilitate immune protection against intrinsic and... Abstract Inflammation is the result of a complex network of cellular and molecular interactions and mechanisms that facilitate immune protection against... |
SourceID | doaj pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e1247 |
SubjectTerms | Allergens Alzheimer's disease Arteriosclerosis Asthma Atherosclerosis Binding sites Biosynthesis Chronic obstructive pulmonary disease Diabetes Endoplasmic reticulum endoplasmic reticulum stress Homeostasis Immune system Infections inflammasome Inflammasomes Inflammation Inflammatory bowel disease Inflammatory bowel diseases Inflammatory diseases inflammatory disorder Intestine Kinases Lung diseases Metabolism NLRP3 Obstructive lung disease Pathogenesis Pathogens Physiology Protein folding Protein synthesis Quality control Review Rheumatoid arthritis Sarcoidosis Therapeutic targets Transcription factors |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqHlAvCEqBQItM1QOXUD_z6A0qqrZqK4RaqTfLr4iV2KRitxL8C35yZ-zsaleAuHCL_Egcz9j-7Jn5TMgB47Htuq4qbd3oUjntS-e9KvGUIcQqaCUw3vnyqjq9Uee3-nblqi_0Ccv0wLnjDl1wymrmuYsAlZ1wXNtGhcZyF9o4Rm4xsbKZSqcrEoAIrxZUQkwcwuwh3sNiVq8tQImn_0_g8ncfyVXsmhafkyfk8Yga6Yfc2qdkI_bb5NHlaBd_Rn6BtGnyDo8_6CT5EX6zP-nohEVjHwZImE0nnqaoRTzyozlMhNo-UECB9Oriy2cJlTvQkamdDdN4RC29G-boTwQfX4nUotl_nALgXVZAYz0NI5fnbIfcnHy6Pj4tx7sWSg-ADa24nexsy4NkkUvtWcW8VA2IzTEPk2KNxIEdC0JDWmBKekB2ynlXBx4rKeVzstkPfXxJqBTQ-YCzAClhOdZEjpz3yrdtx3UtC7K_EIC5y5QaJpMnC4NSMiilgnxE0SwLIAt2SgDdMKNumH_pRkF2F4I149CcGaRI1Mi5owrydpkNgwotJbaPw30uI-qGVU1BXmQ9WLZEygo5DuHl9ZqGrDV1PaeffE3E3TA5NrChK8i7pEt__3tzfH0m8OHV_-iG12RLoCdOOjjaJZvz7_dxD6DU3L1Jo-YBZrQfPg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELZgKyFeEDeBggzigZdQn4nDC6JVq4LoqqpaqW9RfARWYpOl2UrwL_jJzDjebVccb5GPXDMef54ZfybkNeOhatu2yJvS6FxZ7XLrnMrRy-BD4bUSuN_5aFocnqlP5_o8OdyGlFa5sonRUPveoY98B5ntNFKlqPeL7zmeGoXR1XSExk2yJbg0ZkK2dvenxydXXhYJgIQXK0ohJnbAioi3MKmVGxNR5Ov_G8j8M1fyOoaNk9DBXXInoUf6YRT3PXIjdPfJraMUH39AfoHUacwSDz_oLOYTfmt-0pSMRUPneygY5jNH4-5FdP3RcbsIbTpPAQ3S6eeTYwmdW9CVeTP08_CONnTRLzGvCB5-bccWHfPIKQDfdQcM2lOfOD2Hh-TsYP907zBPZy7kDoAbRnNb2TYV95IFLrVjBXNSGRCfZQ6MY4kEgi3zQkOZZ0o6QHjKOlt6Hgop5SMy6fouPCFUCvj5gLcAMWE7ZgJH7nvlqqrlupQZebUSQL0YqTXqkURZ1CilGqWUkV0UzboBsmHHgv7iS50GV229VY1mjtsAyykrLNeNUd403PoqMJ6R7ZVg6zREh_pKoTLycl0NgwsjJk0X-suxjSgNK0xGHo96sH4TKQvkOoSblxsasvGqmzXd7Gsk8AYjaWBhl5E3UZf-_fX13ulHgRdP__8Fz8htgbk20TW0TSbLi8vwHMDS0r5II-I3OJIXRg priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFB5qBfFF6rVpq4zigy-pc81FENFiqeIWkS70Lcwt7UI3qbtbaP9Ff7LnTJJlFyv4FiYzySTnnJlvZs75DiFvGQ9lXddZavJCp8pql1rnVIq7DD5kXiuB8c6j4-xorL6f6tMNMuTY7H_g_M6lHeaTGs8u9q9_33wCg__YE4i-h4FB7MM8ld8j9wVMiOjZNepRftxqkYBKYhJUwTTGUWfFwDG02nptZooE_nehzr-dJ1dBbZyVDrfIox5O0s-d_B-TjdA8IQ9G_YH5U3ILakCj23i4ppPoYHhhbmjvnUVD41somE8njsZwRtwLpF38CDWNpwAP6fGPXz8lNK5BeaZm3k7DB2roZbtARyN4-UoIF-0cyykg4WUDPMWnvif5nD8j48OvJwdHaZ-EIXWA5PB4t5a1KbmXLHCpHcuYk6oAeVrmYLTMkVGwZl5oKPNMSQeQT1lnc89DJqV8TjabtgnbhEoBggAABhAK67EicCTDV64sa65zmZA3gwCqy45ro-pYlUWFUqpQSgn5gqJZVkB67FjQzs6q3toq660ymjluA6yvrLBcm0L5wnDry8B4QvYGwVaDylXInaiRjEcl5PXyNlgbHqGYJrRXXR2RF6BBCXnR6cGyJ1JmSH4ID8_XNGStq-t3msl5ZPSGUbOAlV5C3kVd-vfXVwcn3wRe7Px_1V3yUKAjTtw32iObi9lVeAlIamFfRTv5AwD0HFU priority: 102 providerName: Scholars Portal – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD7UCuKLeDdaZRQffImda5LVJy2WKrYUaaFvYW7RBTcpzRbaf-FP9pxJNu2igm9hMrPJ8p0z8-XMOd8AvOYizpqmKXJbVibXzvjcea9zijKEWASjJdU77x8Ue8f6y4k52YD3q1qYQR9iCriRZ6T5mhzcun77SjQUpwP5Flen8gbcRFpT0PEFUh9eBVgUcpF09Knkhqqni2qlLMTl9jR6bT1Ksv1_45p_pkxep7JpLdq9C3dGEsk-DKjfg43Y3odb--M2-QP4heCzlCweL9g8pRX-tJdszMlisQ0dNvSLuWepiJEigGyoGmG2DQxJITv4-u1Q4eAGTWZh-24R3zHLTrslpRfhw68VbrEhnZwh_50G0N49C6O0Z_8Qjnc_He3s5ePRC7lH_kabuo1q7EwExaNQxvOCe6UrRNFxj3NkSTqCDQ_SYFvgWnkketp5VwYRC6XUI9hsuzY-AaYkAoG0C4kT9eNVFCSBr_1s1ghTqgxerQCoTweFjXrQUpY1oVQTShl8JGimDiSKnRq6s-_16GO1C05bw71wEb-qnHTC2EqHygoXZpGLDLZWwNajp_Y1KSYakuDRGbycbqOP0caJbWN3PvSRZYUWlMHjwQ6mN1GqIMlD_PFyzULWXnX9Tjv_kXS8ca6s8PsugzfJlv797-udo8-SLp7-f9dncFtS-k2KFm3B5vLsPD5H_rR0L5Kf_AZTmhee priority: 102 providerName: Wiley-Blackwell |
Title | The complex interplay between endoplasmic reticulum stress and the NLRP3 inflammasome: a potential therapeutic target for inflammatory disorders |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcti2.1247 https://www.ncbi.nlm.nih.gov/pubmed/33614031 https://www.proquest.com/docview/2492574894 https://search.proquest.com/docview/2492278068 https://pubmed.ncbi.nlm.nih.gov/PMC7878118 https://doaj.org/article/bdb4a50c1be642b2b15a84d8a1bd9e01 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB41RUJcEG8MJVoQBy5O9mk73Gho1SISoqpFuVnehyFSY0dNKsG_4Cczu7ajRMCFi22t19q1Ztb77ew3nwHeUuZGZVkmcZFmKpZamVgbI2MfZbAusUpyn-88mSZnV_LTXM0PQHW5MIG0b_RiUF0vB9Xie-BWrpZm2PHEhrPJGJ0sQ2A87EEPp9-dJXoIrAjEICzpVIQoH-KHgw9wHvM_3BMi8Qp1bG8aCmr9f4OYfzIldxFsmIJOH8D9FjuSD00fH8KBqx7B3Um7O_4YfqHNSeCIux9kEdiE18VP0lKxiKtsjQXr5cKQkLvoA3-kSRYhRWUJYkEy_XwxE_hwiZ6yLNb10r0nBVnVG88qwsZ38rVIwyInCHu3D_gte2JbRc_1E7g6Pbkcn8XtHxdig7DN7-WWoixGzArqmFCGJtQImaHxNDX4aUy9fGBJLVdYZqkUBvGd1EanlrlECPEUDqu6cs-BCI52QLSFeMnXo5ljXvlemtGoZCoVEbzpDJCvGmGNvJFQ5rk3WO4NFsGxN822gtfCDgX1zbe89YhcWy0LRQ3TDhdTmmumikzarGDajhxlERx1hs3bAbrOvVCi8so7MoLX29s4tPx-SVG5-rapw9OMJlkEzxo_2Pak86MI0j0P2evq_h305iDf3XpvBO-CL_377fPx5Tn3Fy_-u5GXcI97Ek6IGR3B4ebm1r1CFLXRfehxOcNjOk_7cOf4ZDq7wPP4y9fzj_0QmcDjRGb9MLp-A4qfJYI |
link.rule.ids | 230,314,727,780,784,864,885,2102,2221,4024,11562,12056,21388,24318,27923,27924,27925,31719,31720,33744,33745,38516,43310,43805,43895,46052,46476,50814,50923,53791,53793,73745,74302,74412 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9NAEF5BKkFfEGdrKLAgHngx3dMHL4hWrVJIoqpKpb5Z3sMQidihTiX4F_xkZuxN2ojjzdrD18zOfjsz-y0hbxj3eVVVSVymmY6V0TY21qoYvQzOJ04rgfudx5NkeK4-XeiL4HBrQ1rlyiZ2hto1Fn3k-8hsp5EqRX1YfI_x1CiMroYjNG6TLWRO1wOydXA0OT279rJIACQ8WVEKMbEPVkS8g0kt3ZiIOr7-v4HMP3Mlb2LYbhI6vk_uBfRIP_bifkBu-fohuTMO8fFH5BdInXZZ4v4HnXX5hN_KnzQkY1FfuwYK2vnM0m73Irr-aL9dhJa1o4AG6WR0diqhcwW6Mi_bZu7f05IumiXmFcHDb-zYon0eOQXgu-6AQXvqAqdn-5icHx9ND4dxOHMhtgDcMJpbyarMuZPMc6ktS5iVKgPxGWbBOKZIIFgxJzSUOaakBYSnjDWp4z6RUj4hg7qp_S6hUsDPB7wFiAnbscxz5L5XNs8rrlMZkdcrARSLnlqj6EmURYFSKlBKETlA0awbIBt2V9BcfinC4CqMM6rUzHLjYTllhOG6zJTLSm5c7hmPyN5KsEUYom1xrVARebWuhsGFEZOy9s1V30akGUuyiOz0erB-EykT5DqEm6cbGrLxqps19exrR-ANRjKDhV1E3na69O-vLw6nJwIvnv7_C16Su8PpeFSMTiafn5FtgXk3nZtojwyWl1f-OQCnpXkRRsdvaWEaLg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BKlVcEG8MBRbEgYvJPv3ggmhp1EIbRVUr9bbyPgyRiB2aVIJ_wU9mxt6kjXjcrPU6tjMzu59nvv2WkNeMh7Ku6yyt8kKnymqXWudUilkGHzKvlcD1zsfj7OBMfTrX55H_tIi0ytWY2A3UvnWYIx-isp1GqRQ1rCMtYvJx9H7-PcUdpLDSGrfTuEm2YFZkYkC2dvfHk5OrjIsEcMKzlbwQE0MYUcRbmODyjUmp0-7_G-D8kzd5Hc92E9LoDrkdkST90Jv-LrkRmntk-zjWyu-TX-ABtGOMhx902nELv1U_aSRm0dD4FhoWs6mj3UpGTAPSfukIrRpPARnS8dHJRMLFNfjNrFq0s_COVnTeLpFjBDe_tnqL9pxyCiB4fQEW8KmP-p6LB-RstH-6d5DG_RdSByAOK7u1rKuSe8kCl9qxjDmpCjClZQ4GyhzFBGvmhYY2z5R0gPaUdTb3PGRSyodk0LRNeEyoFPDnA_YC9IT9WBE46uArV5Y117lMyKuVAcy8l9kwvaCyMGglg1ZKyC6aZt0BlbG7hvbii4mBZqy3qtLMcRvg08oKy3VVKF9U3PoyMJ6QnZVhTQzXhblyroS8XJ-GQMPqSdWE9rLvI_KCZUVCHvV-sH4SKTPUPYQfzzc8ZONRN88006-dmDcMmAV85CXkTedL_357s3d6KPDgyf_f4AXZhsAwR4fjz0_JLYEUnC5jtEMGy4vL8Aww1NI-j8HxG3bZHls |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+complex+interplay+between+endoplasmic+reticulum+stress+and+the+NLRP3+inflammasome%3A+a+potential+therapeutic+target+for+inflammatory+disorders&rft.jtitle=Clinical+%26+translational+immunology&rft.au=Chong%2C+Wai+Chin&rft.au=Shastri%2C+Madhur+D&rft.au=Peterson%2C+Gregory+M&rft.au=Patel%2C+Rahul+P&rft.date=2021&rft.issn=2050-0068&rft.eissn=2050-0068&rft.volume=10&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcti2.1247&rft.externalDBID=10.1002%252Fcti2.1247&rft.externalDocID=CTI21247 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-0068&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-0068&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-0068&client=summon |