Comparison of RT-PCR, RT-LAMP, and Antigen Quantification Assays for the Detection of SARS-CoV-2

A rapid and simple alternative test to real-time reverse transcription-polymerase chain reaction (RT-PCR) is required for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to help curb the spread of coronavirus disease (COVID-19). In the present study, we compared the RT-PCR method with c...

Full description

Saved in:
Bibliographic Details
Published inJapanese Journal of Infectious Diseases Vol. 75; no. 3; pp. 249 - 253
Main Authors Tanimoto, Yoshihiko, Mori, Ai, Miyamoto, Sonoko, Ito, Erika, Arikawa, Kentaro, Iwamoto, Tomotada
Format Journal Article
LanguageEnglish
Published Japan National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee 31.05.2022
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A rapid and simple alternative test to real-time reverse transcription-polymerase chain reaction (RT-PCR) is required for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to help curb the spread of coronavirus disease (COVID-19). In the present study, we compared the RT-PCR method with chemiluminescent enzyme immunoassay (CLEIA) and reverse transcription loop-mediated isothermal amplification (RT-LAMP). We observed that the number of SARS-CoV-2 RNA copies and the CLEIA antigen quantification values were highly correlated. The detection limit for antigen quantification was 42.8 RNA copies for saliva samples and 23.4 copies for nasopharyngeal swab samples. For both purified RNA and purification-free crude RNA, the number of RNA copies and RT-LAMP threshold time (Tt) values were inversely correlated. RT-LAMP with purified RNA detected low copy numbers of RNA (5–50 copies), whereas fewer than 250 RNA copies could not be detected using crude RNA. CLEIA antigen quantification is potentially useful for large-scale screening, as it is compatible with high-throughput testing. RT-LAMP with crude RNA samples is applicable for rapid point-of-care testing because it can directly use patient specimens. It is important to select a diagnostic method that is simple and rapid when compared with RT-PCR, depending on the situation.
AbstractList A rapid and simple alternative test to real-time reverse transcription-polymerase chain reaction (RT-PCR) is required for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to help curb the spread of coronavirus disease (COVID-19). In the present study, we compared the RT-PCR method with chemiluminescent enzyme immunoassay (CLEIA) and reverse transcription loop-mediated isothermal amplification (RT-LAMP). We observed that the number of SARS-CoV-2 RNA copies and the CLEIA antigen quantification values were highly correlated. The detection limit for antigen quantification was 42.8 RNA copies for saliva samples and 23.4 copies for nasopharyngeal swab samples. For both purified RNA and purification-free crude RNA, the number of RNA copies and RT-LAMP threshold time (Tt) values were inversely correlated. RT-LAMP with purified RNA detected low copy numbers of RNA (5-50 copies), whereas fewer than 250 RNA copies could not be detected using crude RNA. CLEIA antigen quantification is potentially useful for large-scale screening, as it is compatible with high-throughput testing. RT-LAMP with crude RNA samples is applicable for rapid point-of-care testing because it can directly use patient specimens. It is important to select a diagnostic method that is simple and rapid when compared with RT-PCR, depending on the situation.
A rapid and simple alternative test to real-time reverse transcription-polymerase chain reaction (RT-PCR) is required for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to help curb the spread of coronavirus disease (COVID-19). In the present study, we compared the RT-PCR method with chemiluminescent enzyme immunoassay (CLEIA) and reverse transcription loop-mediated isothermal amplification (RT-LAMP). We observed that the number of SARS-CoV-2 RNA copies and the CLEIA antigen quantification values were highly correlated. The detection limit for antigen quantification was 42.8 RNA copies for saliva samples and 23.4 copies for nasopharyngeal swab samples. For both purified RNA and purification-free crude RNA, the number of RNA copies and RT-LAMP threshold time (Tt) values were inversely correlated. RT-LAMP with purified RNA detected low copy numbers of RNA (5-50 copies), whereas fewer than 250 RNA copies could not be detected using crude RNA. CLEIA antigen quantification is potentially useful for large-scale screening, as it is compatible with high-throughput testing. RT-LAMP with crude RNA samples is applicable for rapid point-of-care testing because it can directly use patient specimens. It is important to select a diagnostic method that is simple and rapid when compared with RT-PCR, depending on the situation.A rapid and simple alternative test to real-time reverse transcription-polymerase chain reaction (RT-PCR) is required for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to help curb the spread of coronavirus disease (COVID-19). In the present study, we compared the RT-PCR method with chemiluminescent enzyme immunoassay (CLEIA) and reverse transcription loop-mediated isothermal amplification (RT-LAMP). We observed that the number of SARS-CoV-2 RNA copies and the CLEIA antigen quantification values were highly correlated. The detection limit for antigen quantification was 42.8 RNA copies for saliva samples and 23.4 copies for nasopharyngeal swab samples. For both purified RNA and purification-free crude RNA, the number of RNA copies and RT-LAMP threshold time (Tt) values were inversely correlated. RT-LAMP with purified RNA detected low copy numbers of RNA (5-50 copies), whereas fewer than 250 RNA copies could not be detected using crude RNA. CLEIA antigen quantification is potentially useful for large-scale screening, as it is compatible with high-throughput testing. RT-LAMP with crude RNA samples is applicable for rapid point-of-care testing because it can directly use patient specimens. It is important to select a diagnostic method that is simple and rapid when compared with RT-PCR, depending on the situation.
ArticleNumber JJID.2021.476
Author Tanimoto, Yoshihiko
Miyamoto, Sonoko
Arikawa, Kentaro
Iwamoto, Tomotada
Mori, Ai
Ito, Erika
Author_xml – sequence: 1
  fullname: Tanimoto, Yoshihiko
  organization: Department of Infectious Diseases, Kobe Institute of Health, Japan
– sequence: 2
  fullname: Mori, Ai
  organization: Department of Infectious Diseases, Kobe Institute of Health, Japan
– sequence: 3
  fullname: Miyamoto, Sonoko
  organization: Department of Infectious Diseases, Kobe Institute of Health, Japan
– sequence: 4
  fullname: Ito, Erika
  organization: Department of Infectious Diseases, Kobe Institute of Health, Japan
– sequence: 5
  fullname: Arikawa, Kentaro
  organization: Department of Infectious Diseases, Kobe Institute of Health, Japan
– sequence: 6
  fullname: Iwamoto, Tomotada
  organization: Department of Infectious Diseases, Kobe Institute of Health, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34588370$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URB_wC5BQJDYsmsHPxFlGKZSpBlGmha1xHLvNkLEH21nMv68zM4xEN2x8r-TvnGvfcw5OrLMagLcIzkrOycet-63t7OZmfjXDEKMZLYsX4AxxTnPMSXGSekJpXhBIT8F5CCsIMWMIvgKnhLLkUMIz8Ktx6430fXA2cyZb3ue3zfJyqov66-1lJm2X1Tb2D9pm30eZOtMrGfuE1yHIbciM81l81NmVjlrtLpLPXb28yxv3M8evwUsjh6DfHOoF-PH5033zJV98u5439SJXrGRF3hnJMMIdUxWGbVWpttDKGM0poa2kHCuIeaUo6QyqWqnSN1tW8QIaA5mpCLkAH_a-G-_-jDpEse6D0sMgrXZjEJiVHFFOIU_o-2foyo3eptcJXJSYlAUiRaLeHaixXetObHy_ln4r_u4uAWQPKO9C8NocEQTFlJDYJSSmhMSUkEgJJVX1TKX6uFto9LIf_qOd77WrEOWDPs6TPvZq0AdNyQSZjn-0R0Y9Si-0JU_bLa9C
CitedBy_id crossref_primary_10_1080_00332747_2024_2379750
crossref_primary_10_1016_j_talanta_2024_125986
crossref_primary_10_1186_s12985_024_02371_5
crossref_primary_10_1038_s41598_023_48892_x
crossref_primary_10_1146_annurev_phyto_021621_115027
crossref_primary_10_3390_ijms241310698
crossref_primary_10_1002_14651858_CD015618
crossref_primary_10_1039_D3LC00096F
crossref_primary_10_1007_s13365_023_01164_w
crossref_primary_10_1016_j_aca_2023_341590
crossref_primary_10_3390_diagnostics13132245
crossref_primary_10_3390_v14092062
crossref_primary_10_7705_biomedica_6997
crossref_primary_10_3390_pathogens11030368
crossref_primary_10_1002_jmv_28776
crossref_primary_10_1038_s41598_025_93086_2
crossref_primary_10_3390_bioengineering10080923
crossref_primary_10_3390_medicina58091224
crossref_primary_10_3389_finsc_2023_1015695
crossref_primary_10_1002_jcla_24867
crossref_primary_10_3390_ijms252111506
Cites_doi 10.1093/cid/ciaa1388
10.1016/j.cca.2021.02.014
10.1093/nar/28.12.e63
10.1136/bmj.m3862
10.1016/j.jcv.2021.104764
10.1016/j.ijid.2020.08.029
10.1128/JCM.00726-13
10.1136/bmjresp-2020-000830
10.1038/s41586-020-2196-x
10.20965/jdr.2021.p0084
10.1016/j.jinf.2021.04.007
10.1016/S0140-6736(20)30183-5
10.1016/j.jviromet.2006.11.031
10.7883/yoken.JJID.2020.061
ContentType Journal Article
Copyright 2022 Authors
Copyright Japan Science and Technology Agency 2022
Copyright_xml – notice: 2022 Authors
– notice: Copyright Japan Science and Technology Agency 2022
DBID AAYXX
CITATION
NPM
7QL
7T5
7T7
7TK
7U9
8FD
C1K
FR3
H94
M7N
P64
7X8
DOI 10.7883/yoken.JJID.2021.476
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList PubMed
Virology and AIDS Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1884-2836
EndPage 253
ExternalDocumentID 34588370
10_7883_yoken_JJID_2021_476
article_yoken_75_3_75_JJID_2021_476_article_char_en
Genre Journal Article
GroupedDBID ---
.55
29J
2WC
53G
5GY
ACPRK
ADBBV
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
JSF
JSH
KQ8
OK1
RJT
RNS
RZJ
TR2
W2D
X7M
XSB
AAYXX
CITATION
OVT
NPM
7QL
7T5
7T7
7TK
7U9
8FD
C1K
FR3
H94
M7N
P64
7X8
ID FETCH-LOGICAL-c5756-dfa5212d5c920b99cb6ecffe8434ba482c0289c43df19bac188b59860ff05f933
ISSN 1344-6304
1884-2836
IngestDate Fri Jul 11 10:26:15 EDT 2025
Mon Jun 30 12:02:55 EDT 2025
Wed Feb 19 02:25:30 EST 2025
Tue Jul 01 03:55:17 EDT 2025
Thu Apr 24 22:58:35 EDT 2025
Thu Aug 17 20:32:29 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords RT-LAMP
SARS-CoV-2
RT-PCR
CLEIA
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5756-dfa5212d5c920b99cb6ecffe8434ba482c0289c43df19bac188b59860ff05f933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/yoken/75/3/75_JJID.2021.476/_article/-char/en
PMID 34588370
PQID 2672376136
PQPubID 2048383
PageCount 5
ParticipantIDs proquest_miscellaneous_2578148408
proquest_journals_2672376136
pubmed_primary_34588370
crossref_primary_10_7883_yoken_JJID_2021_476
crossref_citationtrail_10_7883_yoken_JJID_2021_476
jstage_primary_article_yoken_75_3_75_JJID_2021_476_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022/05/31
PublicationDateYYYYMMDD 2022-05-31
PublicationDate_xml – month: 05
  year: 2022
  text: 2022/05/31
  day: 31
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Japanese Journal of Infectious Diseases
PublicationTitleAlternate Jpn J Infect Dis
PublicationYear 2022
Publisher National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee
Japan Science and Technology Agency
Publisher_xml – name: National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee
– name: Japan Science and Technology Agency
References 6. Kurosaki Y, Takada A, Ebihara H, et al. Rapid and simple detection of Ebola virus by reverse transcription-loop-mediated isothermal amplification. J Virol Methods. 2007;141:78-83.
12. Kodana M, Kitagawa Y, Takahashi R, et al. Concerns about the clinical usefulness of saliva specimens for the diagnosis of COVID-19. J Infect. 2021;83:119-145.
10. Schellenberg JJ, Ormond M, Keynan Y. Extraction-free RT-LAMP to detect SARS-CoV-2 is less sensitive but highly specific compared to standard RT-PCR in 101 samples. J Clin Virol. 2021;136:104764.
11. Cevik M, Kuppalli K, Kindrachuk J, et al. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ. 2020;371:m3862.
5. Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28:e63.
4. Shinkai N, Matsuura K, Sugauchi F, et al. Application of a newly developed high-sensitivity HBsAg chemiluminescent enzyme immunoassay for hepatitis B patients with HBsAg seroclearance. J Clin Microbiol. 2013;51:3484-3491.
13. Yokota I, Shane PY, Okada K, et al. Mass screening of asymptomatic persons for severe acute respiratory syndrome coronavirus 2 using saliva. Clin Infect Dis. 2021;73:e559-e565.
1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395:497-506.
3. Shirato K, Nao N, Katano H, et al. Development of genetic diagnostic methods for detection for novel coronavirus 2019(nCoV-2019) in Japan. Jpn J Infect Dis. 2020;73:304-307.
7. Basso D, Aita A, Padoan A, et al. Salivary SARS-CoV-2 antigen rapid detection: A prospective cohort study. Clin Chim Acta. 2021;517:54-59.
8. Florkowski CM. Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests. Clin Biochem Rev. 2008;29(Suppl 1):S83-S87.
14. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465-469.
9. Hirotsu Y, Maejima M, Shibusawa M, et al. Comparison of automated SARS-CoV-2 antigen test for COVID-19 infection with quantitative RT-PCR using 313 nasopharyngeal swabs, including from seven serially followed patients. Int J Infect Dis. 2020;99:397-402.
2. Nakanishi N, Iijima Y. The novel coronavirus pandemic and the state of the epidemic in Kobe, Japan. J Disaster Res. 2021;16:84-87.
15. Yamada S, Fukushi S, Kinoshita H, et al. Assessment of SARS-CoV-2 infectivity of upper respiratory specimens from COVID-19 patients by virus isolation using VeroE6/TMPRSS2 cells. BMJ Open Respir Res. 2021;8:e000830.
11
12
13
14
15
1
2
3
4
5
6
7
8
9
10
References_xml – reference: 1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395:497-506.
– reference: 3. Shirato K, Nao N, Katano H, et al. Development of genetic diagnostic methods for detection for novel coronavirus 2019(nCoV-2019) in Japan. Jpn J Infect Dis. 2020;73:304-307.
– reference: 4. Shinkai N, Matsuura K, Sugauchi F, et al. Application of a newly developed high-sensitivity HBsAg chemiluminescent enzyme immunoassay for hepatitis B patients with HBsAg seroclearance. J Clin Microbiol. 2013;51:3484-3491.
– reference: 9. Hirotsu Y, Maejima M, Shibusawa M, et al. Comparison of automated SARS-CoV-2 antigen test for COVID-19 infection with quantitative RT-PCR using 313 nasopharyngeal swabs, including from seven serially followed patients. Int J Infect Dis. 2020;99:397-402.
– reference: 8. Florkowski CM. Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests. Clin Biochem Rev. 2008;29(Suppl 1):S83-S87.
– reference: 5. Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28:e63.
– reference: 7. Basso D, Aita A, Padoan A, et al. Salivary SARS-CoV-2 antigen rapid detection: A prospective cohort study. Clin Chim Acta. 2021;517:54-59.
– reference: 6. Kurosaki Y, Takada A, Ebihara H, et al. Rapid and simple detection of Ebola virus by reverse transcription-loop-mediated isothermal amplification. J Virol Methods. 2007;141:78-83.
– reference: 2. Nakanishi N, Iijima Y. The novel coronavirus pandemic and the state of the epidemic in Kobe, Japan. J Disaster Res. 2021;16:84-87.
– reference: 13. Yokota I, Shane PY, Okada K, et al. Mass screening of asymptomatic persons for severe acute respiratory syndrome coronavirus 2 using saliva. Clin Infect Dis. 2021;73:e559-e565.
– reference: 12. Kodana M, Kitagawa Y, Takahashi R, et al. Concerns about the clinical usefulness of saliva specimens for the diagnosis of COVID-19. J Infect. 2021;83:119-145.
– reference: 11. Cevik M, Kuppalli K, Kindrachuk J, et al. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ. 2020;371:m3862.
– reference: 14. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465-469.
– reference: 10. Schellenberg JJ, Ormond M, Keynan Y. Extraction-free RT-LAMP to detect SARS-CoV-2 is less sensitive but highly specific compared to standard RT-PCR in 101 samples. J Clin Virol. 2021;136:104764.
– reference: 15. Yamada S, Fukushi S, Kinoshita H, et al. Assessment of SARS-CoV-2 infectivity of upper respiratory specimens from COVID-19 patients by virus isolation using VeroE6/TMPRSS2 cells. BMJ Open Respir Res. 2021;8:e000830.
– ident: 13
  doi: 10.1093/cid/ciaa1388
– ident: 7
  doi: 10.1016/j.cca.2021.02.014
– ident: 5
  doi: 10.1093/nar/28.12.e63
– ident: 11
  doi: 10.1136/bmj.m3862
– ident: 10
  doi: 10.1016/j.jcv.2021.104764
– ident: 9
  doi: 10.1016/j.ijid.2020.08.029
– ident: 4
  doi: 10.1128/JCM.00726-13
– ident: 15
  doi: 10.1136/bmjresp-2020-000830
– ident: 14
  doi: 10.1038/s41586-020-2196-x
– ident: 2
  doi: 10.20965/jdr.2021.p0084
– ident: 12
  doi: 10.1016/j.jinf.2021.04.007
– ident: 1
  doi: 10.1016/S0140-6736(20)30183-5
– ident: 8
– ident: 6
  doi: 10.1016/j.jviromet.2006.11.031
– ident: 3
  doi: 10.7883/yoken.JJID.2020.061
SSID ssj0025510
Score 2.3903322
Snippet A rapid and simple alternative test to real-time reverse transcription-polymerase chain reaction (RT-PCR) is required for severe acute respiratory syndrome...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 249
SubjectTerms Antigens
Chemiluminescence
CLEIA
Coronaviruses
COVID-19
Enzyme immunoassay
Gene amplification
Immunoassay
Polymerase chain reaction
Reverse transcription
Ribonucleic acid
RNA
RT-LAMP
RT-PCR
Saliva
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
Viral diseases
Title Comparison of RT-PCR, RT-LAMP, and Antigen Quantification Assays for the Detection of SARS-CoV-2
URI https://www.jstage.jst.go.jp/article/yoken/75/3/75_JJID.2021.476/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/34588370
https://www.proquest.com/docview/2672376136
https://www.proquest.com/docview/2578148408
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Japanese Journal of Infectious Diseases, 2022/05/31, Vol.75(3), pp.249-253
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKQNMuiG8KAxmJG01JbCdNjqUDbRVF09qhcgq2m7BSSCbaHbq_nvdix02nDQGXqHKcuPLv9-z34vdByOsMtggZaeXN8pB5AlR-T3HFQOJ9yROdRKFCQ3H0KTo8FcNpOG21LpvRJSvV1ZfXxpX8D6rQBrhilOw_IOteCg3wG_CFKyAM17_CeNAsIvjmZOIdD4xfw8T72B8d156Z_WKFOTfRgdO4BhnQARm5Xjo_w4Nslelafxz3T8beoPxsgwZr7RV2VqxYuZ1vwnhzXSzrwx6npU9kgUyoPsZ-KZdn87P5onQIlybGvT93LfO1rLuPy6Lc9D0yjbBmL2TzMwVYuPaEHXcZs7TGsfBAmYmaa6-pmmI5xpsLqUlkenWBB4MdE02sy0VWdIfDowOw8FnQFaaGTAPy858V5hwDcbkpTXIlr3Z96xa5zcDEqALFp849CCytwDdZqnDMt9eMuEd263dsKTV3voNe_y272WSpVJfJPXLX2hy0bwh0n7Sy4gHZHVmviofk64ZHtMyp4VGHWhZ1KHCIWg7RbQ5RwyEKHKLAIeo4hO_ZcOgROf3wfjI49GzlDU-D-h6B4EqM6Z6FOmG-ShKtokzneRYLLpQUMdN4QK0Fn-VBoqQGbBUm-vfz3A_zhPPHZKcoi-wpoTJQgdIs0NFMizABdVyEiscsV5zJuKfahNVTl2qblh6ro_xIwTzFqU-rqU9x6lOc-hSmvk067qFzk5Xlz93fGUxcZyuytnMvTDleth5yfTD8EVabNtmv8UytlC1TFvXQrSzgMMYrdxtWaDx2A4kE4UtxUwxELPy4TZ4YHrj_URPo2Y13npO9jTjtk53Vr4vsBejBK_WyIuxvdY2vqw
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+RT-PCR%2C+RT-LAMP%2C+and+Antigen+Quantification+Assays+for+the+Detection+of+SARS-CoV-2&rft.jtitle=Japanese+journal+of+infectious+diseases&rft.au=Tanimoto%2C+Yoshihiko&rft.au=Mori%2C+Ai&rft.au=Miyamoto%2C+Sonoko&rft.au=Ito%2C+Erika&rft.date=2022-05-31&rft.eissn=1884-2836&rft.volume=75&rft.issue=3&rft.spage=249&rft_id=info:doi/10.7883%2Fyoken.JJID.2021.476&rft_id=info%3Apmid%2F34588370&rft.externalDocID=34588370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-6304&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-6304&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-6304&client=summon