Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity

.  Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, Schlesinger SJ, Steinman RM (The Rockefeller University, New York, NY; and Celldex Therapeutics, Phillipsburg, NJ; USA). Dendritic cell‐targeted protein vaccines: a novel approach to induce T‐cell immunity (Review). J Intern Med...

Full description

Saved in:
Bibliographic Details
Published inJournal of internal medicine Vol. 271; no. 2; pp. 183 - 192
Main Authors Trumpfheller, C., Longhi, M. P., Caskey, M., Idoyaga, J., Bozzacco, L., Keler, T., Schlesinger, S. J., Steinman, R. M.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.02.2012
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract .  Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, Schlesinger SJ, Steinman RM (The Rockefeller University, New York, NY; and Celldex Therapeutics, Phillipsburg, NJ; USA). Dendritic cell‐targeted protein vaccines: a novel approach to induce T‐cell immunity (Review). J Intern Med 2012; 271: 183–192. Current vaccines primarily work by inducing protective antibodies. However, in many infections like HIV, malaria and tuberculosis as well as cancers, there remains a need for durable and protective T‐cell immunity. Here, we summarize our efforts to develop a safe T‐cell–based protein vaccine that exploits the pivotal role of dendritic cells (DC) in initiating adaptive immunity. Focusing on HIV, gag‐p24 protein antigen is introduced into a monoclonal antibody (mAb) that efficiently and specifically targets the DEC‐205 antigen uptake receptor on DC. When administered together with synthetic double‐stranded RNA, polyriboinosinic:polyribocytidylic acid (poly IC) or its analogue poly IC stabilized with carboxymethylcellulose and poly‐L‐lysine (poly ICLC), as adjuvant, HIV gag‐p24 within anti‐DEC‐205 mAb is highly immunogenic in mice, rhesus macaques, and in ongoing research, healthy human volunteers. Human subjects form both T‐ and B‐cell responses to DC‐targeted protein. Thus, DC‐targeted protein vaccines are a potential new vaccine platform, either alone or in combination with highly attenuated viral vectors, to induce integrated immune responses against microbial or cancer antigens, with improved ease of manufacturing and clinical use.
AbstractList .  Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, Schlesinger SJ, Steinman RM (The Rockefeller University, New York, NY; and Celldex Therapeutics, Phillipsburg, NJ; USA). Dendritic cell‐targeted protein vaccines: a novel approach to induce T‐cell immunity (Review). J Intern Med 2012; 271: 183–192. Current vaccines primarily work by inducing protective antibodies. However, in many infections like HIV, malaria and tuberculosis as well as cancers, there remains a need for durable and protective T‐cell immunity. Here, we summarize our efforts to develop a safe T‐cell–based protein vaccine that exploits the pivotal role of dendritic cells (DC) in initiating adaptive immunity. Focusing on HIV, gag‐p24 protein antigen is introduced into a monoclonal antibody (mAb) that efficiently and specifically targets the DEC‐205 antigen uptake receptor on DC. When administered together with synthetic double‐stranded RNA, polyriboinosinic:polyribocytidylic acid (poly IC) or its analogue poly IC stabilized with carboxymethylcellulose and poly‐L‐lysine (poly ICLC), as adjuvant, HIV gag‐p24 within anti‐DEC‐205 mAb is highly immunogenic in mice, rhesus macaques, and in ongoing research, healthy human volunteers. Human subjects form both T‐ and B‐cell responses to DC‐targeted protein. Thus, DC‐targeted protein vaccines are a potential new vaccine platform, either alone or in combination with highly attenuated viral vectors, to induce integrated immune responses against microbial or cancer antigens, with improved ease of manufacturing and clinical use.
Current vaccines primarily work by inducing protective antibodies. However, in many infections like HIV, malaria and tuberculosis as well as cancers, there remains a need for durable and protective T-cell immunity. Here, we summarize our efforts to develop a safe T-cell-based protein vaccine that exploits the pivotal role of dendritic cells (DC) in initiating adaptive immunity. Focusing on HIV, gag-p24 protein antigen is introduced into a monoclonal antibody (mAb) that efficiently and specifically targets the DEC-205 antigen uptake receptor on DC. When administered together with synthetic double-stranded RNA, polyriboinosinic:polyribocytidylic acid (poly IC) or its analogue poly IC stabilized with carboxymethylcellulose and poly-L-lysine (poly ICLC), as adjuvant, HIV gag-p24 within anti-DEC-205 mAb is highly immunogenic in mice, rhesus macaques, and in ongoing research, healthy human volunteers. Human subjects form both T- and B-cell responses to DC-targeted protein. Thus, DC-targeted protein vaccines are a potential new vaccine platform, either alone or in combination with highly attenuated viral vectors, to induce integrated immune responses against microbial or cancer antigens, with improved ease of manufacturing and clinical use.Current vaccines primarily work by inducing protective antibodies. However, in many infections like HIV, malaria and tuberculosis as well as cancers, there remains a need for durable and protective T-cell immunity. Here, we summarize our efforts to develop a safe T-cell-based protein vaccine that exploits the pivotal role of dendritic cells (DC) in initiating adaptive immunity. Focusing on HIV, gag-p24 protein antigen is introduced into a monoclonal antibody (mAb) that efficiently and specifically targets the DEC-205 antigen uptake receptor on DC. When administered together with synthetic double-stranded RNA, polyriboinosinic:polyribocytidylic acid (poly IC) or its analogue poly IC stabilized with carboxymethylcellulose and poly-L-lysine (poly ICLC), as adjuvant, HIV gag-p24 within anti-DEC-205 mAb is highly immunogenic in mice, rhesus macaques, and in ongoing research, healthy human volunteers. Human subjects form both T- and B-cell responses to DC-targeted protein. Thus, DC-targeted protein vaccines are a potential new vaccine platform, either alone or in combination with highly attenuated viral vectors, to induce integrated immune responses against microbial or cancer antigens, with improved ease of manufacturing and clinical use.
Current vaccines primarily work by inducing protective antibodies. However, in many infections like HIV, malaria and tuberculosis as well as cancers there remains a need for durable and protective T-cell immunity. Here, we summarize our efforts to develop a safe T-cell based protein vaccine that exploits the pivotal role of dendritic cells (DC) in initiating adaptive immunity. Focusing on HIV, gag-p24 protein antigen is introduced into a monoclonal antibody (mAb) that efficiently and specifically targets the DEC-205 antigen uptake receptor on DC. When administered together with synthetic double stranded RNA, polyriboinosinic:polyribocytidylic acid (poly IC) or its analogue poly ICLC (poly IC stabilized with carboxymethylcellulose and poly-L-lysine), as adjuvant, HIV gag-p24 within anti-DEC-205 mAb is highly immunogenic in mice, rhesus macaques, and in ongoing research, healthy human volunteers. Human subjects form both T and B cell responses to DC-targeted protein. Thus, DC-targeted protein vaccines are a potential new vaccine platform, either alone or in combination with highly attenuated viral vectors, to induce integrated immune responses against microbial or cancer antigens, with improved ease of manufacturing and clinical use.
Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, Schlesinger SJ, Steinman RM (The Rockefeller University, New York, NY; and Celldex Therapeutics, Phillipsburg, NJ; USA). Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity (Review). J Intern Med 2012; 271: 183-192. Current vaccines primarily work by inducing protective antibodies. However, in many infections like HIV, malaria and tuberculosis as well as cancers, there remains a need for durable and protective T-cell immunity. Here, we summarize our efforts to develop a safe T-cell-based protein vaccine that exploits the pivotal role of dendritic cells (DC) in initiating adaptive immunity. Focusing on HIV, gag-p24 protein antigen is introduced into a monoclonal antibody (mAb) that efficiently and specifically targets the DEC-205 antigen uptake receptor on DC. When administered together with synthetic double-stranded RNA, polyriboinosinic:polyribocytidylic acid (poly IC) or its analogue poly IC stabilized with carboxymethylcellulose and poly-L-lysine (poly ICLC), as adjuvant, HIV gag-p24 within anti-DEC-205 mAb is highly immunogenic in mice, rhesus macaques, and in ongoing research, healthy human volunteers. Human subjects form both T- and B-cell responses to DC-targeted protein. Thus, DC-targeted protein vaccines are a potential new vaccine platform, either alone or in combination with highly attenuated viral vectors, to induce integrated immune responses against microbial or cancer antigens, with improved ease of manufacturing and clinical use.
Current vaccines primarily work by inducing protective antibodies. However, in many infections like HIV, malaria and tuberculosis as well as cancers, there remains a need for durable and protective T-cell immunity. Here, we summarize our efforts to develop a safe T-cell-based protein vaccine that exploits the pivotal role of dendritic cells (DC) in initiating adaptive immunity. Focusing on HIV, gag-p24 protein antigen is introduced into a monoclonal antibody (mAb) that efficiently and specifically targets the DEC-205 antigen uptake receptor on DC. When administered together with synthetic double-stranded RNA, polyriboinosinic:polyribocytidylic acid (poly IC) or its analogue poly IC stabilized with carboxymethylcellulose and poly-L-lysine (poly ICLC), as adjuvant, HIV gag-p24 within anti-DEC-205 mAb is highly immunogenic in mice, rhesus macaques, and in ongoing research, healthy human volunteers. Human subjects form both T- and B-cell responses to DC-targeted protein. Thus, DC-targeted protein vaccines are a potential new vaccine platform, either alone or in combination with highly attenuated viral vectors, to induce integrated immune responses against microbial or cancer antigens, with improved ease of manufacturing and clinical use.
Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, Schlesinger SJ, Steinman RM (The Rockefeller University, New York, NY; and Celldex Therapeutics, Phillipsburg, NJ; USA). Dendritic cell‐targeted protein vaccines: a novel approach to induce T‐cell immunity (Review). J Intern Med 2012; 271 : 183–192. Current vaccines primarily work by inducing protective antibodies. However, in many infections like HIV, malaria and tuberculosis as well as cancers, there remains a need for durable and protective T‐cell immunity. Here, we summarize our efforts to develop a safe T‐cell–based protein vaccine that exploits the pivotal role of dendritic cells (DC) in initiating adaptive immunity. Focusing on HIV, gag‐p24 protein antigen is introduced into a monoclonal antibody (mAb) that efficiently and specifically targets the DEC‐205 antigen uptake receptor on DC. When administered together with synthetic double‐stranded RNA, polyriboinosinic:polyribocytidylic acid (poly IC) or its analogue poly IC stabilized with carboxymethylcellulose and poly‐L‐lysine (poly ICLC), as adjuvant, HIV gag‐p24 within anti‐DEC‐205 mAb is highly immunogenic in mice, rhesus macaques, and in ongoing research, healthy human volunteers. Human subjects form both T‐ and B‐cell responses to DC‐targeted protein. Thus, DC‐targeted protein vaccines are a potential new vaccine platform, either alone or in combination with highly attenuated viral vectors, to induce integrated immune responses against microbial or cancer antigens, with improved ease of manufacturing and clinical use.
Author Caskey, M.
Steinman, R. M.
Idoyaga, J.
Keler, T.
Longhi, M. P.
Schlesinger, S. J.
Trumpfheller, C.
Bozzacco, L.
AuthorAffiliation 1 Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
2 Celldex Therapeutics, Phillipsburg, NJ 08865, USA
AuthorAffiliation_xml – name: 2 Celldex Therapeutics, Phillipsburg, NJ 08865, USA
– name: 1 Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
Author_xml – sequence: 1
  givenname: C.
  surname: Trumpfheller
  fullname: Trumpfheller, C.
  organization: From the Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY
– sequence: 2
  givenname: M. P.
  surname: Longhi
  fullname: Longhi, M. P.
  organization: From the Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY
– sequence: 3
  givenname: M.
  surname: Caskey
  fullname: Caskey, M.
  organization: From the Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY
– sequence: 4
  givenname: J.
  surname: Idoyaga
  fullname: Idoyaga, J.
  organization: From the Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY
– sequence: 5
  givenname: L.
  surname: Bozzacco
  fullname: Bozzacco, L.
  organization: From the Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY
– sequence: 6
  givenname: T.
  surname: Keler
  fullname: Keler, T.
  organization: Celldex Therapeutics, Phillipsburg, NJ; USA
– sequence: 7
  givenname: S. J.
  surname: Schlesinger
  fullname: Schlesinger, S. J.
  organization: From the Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY
– sequence: 8
  givenname: R. M.
  surname: Steinman
  fullname: Steinman, R. M.
  organization: From the Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25399904$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22126373$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1vEzEQhi1URNPCX0C-ILhs8Nd6vRyQqgClqLQgBSFxsRzb2zrseoPtDcm_x0vTFDig-mJL884z83rmCBz43lsAIEZTnM_L5RRTXhakqvmUIIyniLD83DwAk33gAExQXbKCC4IOwVGMS4QwRRw9AoeEYMJpRSdg_sZ6E1xyGmrbtkVS4coma-Aq9Mk6D9dKa-dtfAUV9P3atlCtckzpa5h66LwZtIXzYkyGrusG79L2MXjYqDbaJ7v7GHx593Y-e1-cX56ezU7OC11WJS-YqmxjFV5o09SmMpRQwRZ4bHIhDGOYG9bUiDEjEOWsIgaJxgi-MBazUjN6DF7fcFfDorNGW5-CauUquE6FreyVk39HvLuWV_1aUsIxxSQDnu8Aof8x2Jhk5-JoRXnbD1HWmIuSYVpn5Yv_KjEiSNCK1zxLn_7Z1b6d20_Pgmc7gYpatU1QXrt4pytpXWfbd_Z06GMMtpHaJZVcP5pxba4px22QSzkOXY5Dl-M2yN_bIDcZIP4B3Na4R-qu9k_X2u298-SHy7OP4zMDihuAi8lu9gAVvkte0aqUXy9OpSg_fbuoZp8lob8ANWfbZQ
CitedBy_id crossref_primary_10_1016_j_vaccine_2024_02_039
crossref_primary_10_1016_j_virusres_2016_10_007
crossref_primary_10_7774_cevr_2014_3_2_155
crossref_primary_10_1089_vim_2017_0146
crossref_primary_10_3389_fimmu_2015_00029
crossref_primary_10_1016_j_vaccine_2012_10_096
crossref_primary_10_1016_j_vaccine_2017_05_067
crossref_primary_10_1002_eji_201646523
crossref_primary_10_1016_j_immuni_2017_11_001
crossref_primary_10_1371_journal_pone_0200112
crossref_primary_10_1186_s12967_016_0905_x
crossref_primary_10_36233_0372_9311_2016_5_23_28
crossref_primary_10_1016_j_vetmic_2013_11_023
crossref_primary_10_1371_journal_ppat_1002827
crossref_primary_10_4049_jimmunol_1200501
crossref_primary_10_1016_j_coviro_2013_02_001
crossref_primary_10_3389_fimmu_2014_00604
crossref_primary_10_1016_j_vaccine_2015_11_069
crossref_primary_10_1128_jvi_00294_24
crossref_primary_10_1016_j_jaci_2016_12_985
crossref_primary_10_1080_08820139_2022_2109486
crossref_primary_10_1038_nchembio_1186
crossref_primary_10_1002_eji_201445127
crossref_primary_10_1016_j_inmuno_2012_03_002
crossref_primary_10_3389_fimmu_2018_00317
crossref_primary_10_3390_v11060551
crossref_primary_10_1016_j_vaccine_2019_07_019
crossref_primary_10_1111_exd_14346
crossref_primary_10_1016_j_actbio_2021_06_020
crossref_primary_10_1371_journal_pone_0067453
crossref_primary_10_1080_21645515_2015_1066050
crossref_primary_10_1182_blood_2012_07_446054
crossref_primary_10_1016_j_ijbiomac_2024_137635
crossref_primary_10_1002_eji_202149670
crossref_primary_10_1016_j_theriogenology_2018_02_003
crossref_primary_10_1128_JVI_00803_15
crossref_primary_10_1111_j_1365_2796_2011_02495_x
crossref_primary_10_1002_iid3_151
crossref_primary_10_1016_j_ejpb_2012_11_006
crossref_primary_10_1016_j_bbrc_2015_03_015
crossref_primary_10_1002_ijch_201300060
crossref_primary_10_7774_cevr_2014_3_2_149
crossref_primary_10_1586_1744666X_2014_907742
crossref_primary_10_1002_eji_201545465
crossref_primary_10_1042_CS20210577
crossref_primary_10_1038_emi_2014_77
crossref_primary_10_1007_s00262_020_02746_x
crossref_primary_10_3390_ijms241813946
crossref_primary_10_1016_j_imbio_2015_11_006
crossref_primary_10_1016_j_isci_2022_105324
crossref_primary_10_1186_bcr3184
crossref_primary_10_1016_j_jim_2012_07_011
crossref_primary_10_1002_cmdc_201200487
crossref_primary_10_1002_eji_201445010
crossref_primary_10_1016_j_intimp_2019_05_037
crossref_primary_10_1038_s41467_021_24591_x
crossref_primary_10_3389_fimmu_2014_00255
crossref_primary_10_4161_onci_20982
crossref_primary_10_1093_infdis_jiae613
crossref_primary_10_1093_infdis_jiw053
crossref_primary_10_1038_srep43985
crossref_primary_10_3389_fonc_2023_1301473
crossref_primary_10_1016_j_antiviral_2017_01_023
crossref_primary_10_1016_j_copbio_2013_02_015
crossref_primary_10_1155_2013_871936
crossref_primary_10_1189_jlb_0613330
crossref_primary_10_3390_vaccines7020043
crossref_primary_10_1016_j_vaccine_2012_09_036
crossref_primary_10_3390_vaccines8040706
crossref_primary_10_1016_j_vaccine_2014_12_072
crossref_primary_10_1016_j_brainresbull_2024_110936
crossref_primary_10_1016_j_jim_2011_12_009
crossref_primary_10_1016_j_antiviral_2012_11_009
crossref_primary_10_3389_fimmu_2021_593161
crossref_primary_10_1038_cr_2016_157
crossref_primary_10_1016_j_imlet_2017_08_004
crossref_primary_10_1016_S2055_6640_20_30695_6
crossref_primary_10_1007_s11060_015_1830_1
crossref_primary_10_1080_21645515_2021_1911204
crossref_primary_10_1089_jir_2014_0150
crossref_primary_10_1111_nyas_12125
crossref_primary_10_1097_COH_0b013e32835fd5cd
crossref_primary_10_1111_imm_13394
crossref_primary_10_1038_srep27206
crossref_primary_10_1007_s00705_014_2024_4
crossref_primary_10_1007_s10522_014_9510_7
crossref_primary_10_1002_eji_202149515
crossref_primary_10_3390_v12010024
crossref_primary_10_1172_JCI65260
crossref_primary_10_3390_vaccines11040849
crossref_primary_10_1080_21655979_2016_1191707
crossref_primary_10_1371_journal_pone_0041897
crossref_primary_10_4161_hv_22487
crossref_primary_10_4049_jimmunol_1303278
crossref_primary_10_1111_jvh_12542
crossref_primary_10_3390_antib11010008
crossref_primary_10_2217_nnm_14_172
crossref_primary_10_1016_j_ijid_2016_03_024
crossref_primary_10_1111_imr_12082
crossref_primary_10_1016_j_imlet_2015_10_007
crossref_primary_10_1016_j_imlet_2016_01_009
crossref_primary_10_1016_j_tube_2019_04_009
crossref_primary_10_1242_jcs_228700
crossref_primary_10_2745_dds_37_402
crossref_primary_10_1016_j_vaccine_2012_04_030
crossref_primary_10_4049_jimmunol_1301947
crossref_primary_10_7774_cevr_2014_3_2_227
crossref_primary_10_1016_j_jim_2012_10_019
crossref_primary_10_1021_acs_nanolett_6b03329
crossref_primary_10_1098_rstb_2013_0436
crossref_primary_10_3389_fimmu_2018_02409
crossref_primary_10_1097_QAD_0000000000000308
crossref_primary_10_1586_egh_12_72
crossref_primary_10_3389_fimmu_2018_03059
crossref_primary_10_1155_2013_864720
crossref_primary_10_3389_fimmu_2019_00843
crossref_primary_10_1038_aps_2012_154
crossref_primary_10_2217_nnm_14_200
crossref_primary_10_1016_j_celrep_2015_05_042
crossref_primary_10_1099_vir_0_062570_0
crossref_primary_10_1371_journal_pntd_0002330
crossref_primary_10_1016_j_coi_2013_03_001
Cites_doi 10.1073/pnas.96.3.1036
10.1128/JVI.80.6.3122-3125.2006
10.1016/S0092-8674(00)80172-5
10.1084/jem.20070176
10.1073/pnas.1019547108
10.1038/41131
10.1084/jem.20111171
10.1073/pnas.0610383104
10.1111/j.1462-5822.2006.00796.x
10.1038/375151a0
10.1073/pnas.0711976105
10.1084/jem.20040317
10.1038/nature07469
10.1073/pnas.1000621107
10.1084/jem.194.6.769
10.1111/j.1749-6632.2009.04933.x
10.1084/jem.20052005
10.4049/jimmunol.162.7.3749
10.1084/jem.189.4.615
10.1128/JVI.01847-06
10.1016/S1074-7613(00)80119-3
10.1128/JVI.77.2.882-890.2003
10.1038/35047123
10.1371/journal.ppat.1000373
10.1084/jem.20090247
10.1073/pnas.1103869108
10.1038/nm1520
10.1126/science.1136080
10.4049/jimmunol.175.7.4265
10.1086/496894
10.1227/00006123-199606000-00006
10.1084/jem.20110466
10.1084/jem.189.3.587
10.1084/jem.20092243
10.1128/jvi.76.5.2298-2305.2002
10.1182/blood-2010-06-288068
10.1084/jem.20032220
ContentType Journal Article
Copyright 2011 The Association for the Publication of the Journal of Internal Medicine
2015 INIST-CNRS
2011 The Association for the Publication of the Journal of Internal Medicine.
Copyright_xml – notice: 2011 The Association for the Publication of the Journal of Internal Medicine
– notice: 2015 INIST-CNRS
– notice: 2011 The Association for the Publication of the Journal of Internal Medicine.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T5
C1K
F1W
H94
H95
H97
L.G
7X8
5PM
DOI 10.1111/j.1365-2796.2011.02496.x
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Immunology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1365-2796
EndPage 192
ExternalDocumentID PMC3261312
22126373
25399904
10_1111_j_1365_2796_2011_02496_x
JOIM2496
ark_67375_WNG_85PZN7CQ_2
Genre reviewArticle
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations USA, New York
GeographicLocations_xml – name: USA, New York
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: UL1RR024143
– fundername: NIAID NIH HHS
  grantid: AI081677
– fundername: NCRR NIH HHS
  grantid: UL1 RR024143
– fundername: NIAID NIH HHS
  grantid: K23 AI084855
– fundername: NIAID NIH HHS
  grantid: K23AI084855
– fundername: NIAID NIH HHS
  grantid: P01 AI081677
– fundername: National Center for Research Resources : NCRR
  grantid: UL1 RR024143-06 || RR
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29K
2WC
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
D-I
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TEORI
TR2
UB1
V8K
V9Y
VH1
VVN
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YOC
YUY
ZCG
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T5
C1K
F1W
H94
H95
H97
L.G
7X8
5PM
ID FETCH-LOGICAL-c5756-4a7efea1bcdf9d7d32384b11306b8d4416d4f9044d8036472d08fd86bde145c43
IEDL.DBID DR2
ISSN 0954-6820
1365-2796
IngestDate Thu Aug 21 17:31:45 EDT 2025
Fri Jul 11 08:51:53 EDT 2025
Fri Jul 11 12:29:33 EDT 2025
Mon Jul 21 05:43:57 EDT 2025
Mon Jul 21 09:15:41 EDT 2025
Tue Jul 01 04:07:38 EDT 2025
Thu Apr 24 23:11:48 EDT 2025
Wed Jan 22 16:39:40 EST 2025
Wed Oct 30 09:58:16 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Dendritic cell
Technical progress
Targeting
DEC-205
protein vaccine
Antigen cross presentation
Vaccine
Protein A
T cells
Immunity
Medicine
Prevention
Immunoprophylaxis
Target
dendritic cells
cross-presentation
Antigen presenting cell
T-Lymphocyte
Adjuvant
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
2011 The Association for the Publication of the Journal of Internal Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5756-4a7efea1bcdf9d7d32384b11306b8d4416d4f9044d8036472d08fd86bde145c43
Notes ark:/67375/WNG-85PZN7CQ-2
istex:20CB81DD940A1A67C35260059A6B9E6103562D38
ArticleID:JOIM2496
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Review-3
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2796.2011.02496.x
PMID 22126373
PQID 1020837696
PQPubID 23462
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3261312
proquest_miscellaneous_916854139
proquest_miscellaneous_1020837696
pubmed_primary_22126373
pascalfrancis_primary_25399904
crossref_citationtrail_10_1111_j_1365_2796_2011_02496_x
crossref_primary_10_1111_j_1365_2796_2011_02496_x
wiley_primary_10_1111_j_1365_2796_2011_02496_x_JOIM2496
istex_primary_ark_67375_WNG_85PZN7CQ_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2012
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: February 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Journal of internal medicine
PublicationTitleAlternate J Intern Med
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Qureshi ST, Lariviere L, Leveque G et al. Endotoxin-tolerant mice have mutations in toll-like receptor 4 (Tlr4). J Exp Med 1999; 189: 615-25.
Pulendran B, Smith JL, Caspary G et al. Distinct dendritic cell subsets differentially regulate the class of immune responses in vivo. Proc Natl Acad Sci USA 1999; 96: 1036-41.
Edwards BH, Bansal A, Sabbaj S, Bakari J, Mulligan MJ, Goepfert PA. Magnitude of functional CD8+ T-cell responses to the gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma. J Virol 2002; 76: 2298-22305.
Geldmacher C, Currier JR, Herrmann E et al. CD8 T-cell recognition of multiple epitopes within specific Gag regions is associated with maintenance of a low steady-state viremia in human immunodeficiency virus type 1-seropositive patients. J Virol 2007; 81: 2440-8.
Cheong C, Choi JH, Vitale L et al. Improved cellular and humoral immune responses in vivo following targeting of HIV Gag to dendritic cells within human anti-human DEC205 monoclonal antibody. Blood 2010; 116: 3828-38.
Soares H, Waechter H, Glaichenhaus N et al. A subset of dendritic cells induces CD4+ T cells to produce IFN-g by an IL-12-independent but CD70-dependent mechanism in vivo. J Exp Med 2007; 204: 1095-106.
Bozzacco L, Trumpfheller C, Siegal FP et al. DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc Natl Acad Sci USA 2007; 104: 1289-94.
Stahl-Hennig C, Eisenblatter M, Jasny E et al. Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques. PLoS pathog 2009; 5: e1000373.
Nchinda G, Amadu D, Trumpfheller C, Mizenina O, Uberla K, Steinman RM. Dendritic cell targeted HIV gag protein vaccine provides help to a DNA vaccine including mobilization of protective CD8+ T cells. Proc Natl Acad Sci USA 2010; 107: 4281-6.
Longhi MP, Trumpfheller C, Idoyaga J et al. Dendritic cells require a systemic type I interferon response to induce CD4+ Th1 immunity with poly IC as adjuvant. J Exp Med 2009; 206: 1589-602.
Maldonado-Lopez R, De Smedt T, Michel P et al. CD8a+ and CD8a- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 1999; 189: 587-92.
Takeuchi O, Hoshino K, Kawai T et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999; 11: 443-51.
Hawiger D, Inaba K, Dorsett Y et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 2001; 194: 769-80.
Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86: 973-83.
Zuniga R, Lucchetti A, Galvan P et al. Relative dominance of Gag p24-specific cytotoxic T lymphocytes is associated with human immunodeficiency virus control. J Virol 2006; 80: 3122-5.
Fujii S, Liu K, Smith C, Bonito AJ, Steinman RM. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 2004; 199: 1607-18.
Bonifaz LC, Bonnyay DP, Charalambous A et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 2004; 199: 815-24.
Kiepiela P, Ngumbela K, Thobakgale C et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat Med 2007; 13: 46-53.
Liu J, O'Brien KL, Lynch DM et al. Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys. Nature 2009; 457: 87-91.
Pantel A, Cheong C, Dandamudi D et al. A new synthetic TLR4 agonist, GLA, allows dendritic cells targeted with antigento elicit Th1 T-cell immunity in vivo. Eur J Immunol 2011; doi: 10.1002/eji.201141855.
Hermansson A, Ketelhuth DF, Strodthoff D et al. Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J Exp Med 2010; 207: 1081-93.
Hoshino K, Takeuchi O, Kawai T et al. Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999; 162: 3749-52.
Sela U, Olds P, Park A, Schlesinger SJ, Steinman RM. Dendritic cells induce antigen-specific Treg that prevent graft vs. host disease and persist in mice. J Exp Med 2011; 208: 2489-96.
Novitsky V, Gilbert P, Peter T et al. Association between virus-specific T-cell responses and plasma viral load in human immunodeficiency virus type 1 subtype C infection. J Virol 2003; 77: 882-90.
Granelli-Piperno A, Pritsker A, Pack M et al. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction. J Immunol 2005; 175: 4265-73.
Dudziak D, Kamphorst AO, Heidkamp GF et al. Differential antigen processing by dendritic cell subsets in vivo. Science 2007; 315: 107-11.
Poltorak A, He X, Smirnova I et al. Defective LPS signaling in C3H/Hej and C57BL/10ScCr Mice: mutations in TLr4 gene. Science 1998; 282: 2085-8.
Ramduth D, Chetty P, Mngquandaniso NC et al. Differential immunogenicity of HIV-1 clade C proteins in eliciting CD8+ and CD4+ cell responses. J Infect Dis 2005; 192: 1588-96.
Trumpfheller C, Caskey M, Nchinda G et al. The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine. Proc Natl Acad Sci USA 2008; 105: 2574-9.
Trumpfheller C, Finke JS, Lopez CB et al. Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. J Exp Med 2006; 203: 607-17.
Idoyaga J, Lubkin A, Fiorese C et al. Comparable T helper 1 (Th1) and CD8 T-cell immnity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A. Proc Natl Acad Sci USA 2011; 108: 2384-9.
Wang B, Kuroiwa JM, He LZ, Charalambous A, Keler T, Steinman RM. The human cancer antigen mesothelin is more efficiently presented to the mouse immune system when targeted to the DEC-205/CD205 receptor on dendritic cells. Ann N Y Acad Sci 2009; 1174: 6-17.
Medzhitov R, Preston-Hurlburt P, Janeway Jr CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388: 394-7.
Hemmi H, Takeuchi O, Kawai T et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 740-5.
Caskey M, Lefebvre F, Filali-Mouhim A et al. Synthetic double stranded RNA reliably induces innate immunity similar to a live viral vaccine in humans. J Exp Med 2011; 208: 2357-66.
Flynn BJ, Kastenmuller K, Wille-Reece U et al. Immunization with HIV Gag targeted to dendritic cells followed by recombinant NYVAC induces robust T cell immunity in non human primates. Proc Natl Acad Sci USA 2011; 108: 7131-6.
Salazar AM, Levy HB, Ondra S et al. Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery 1996; 38: 1096-103.
Jiang W, Swiggard WJ, Heufler C et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 1995; 375: 151-5.
2007; 104
2005; 192
2007; 204
2005; 175
2010; 107
2010; 207
2011
2002; 76
1999; 162
2008; 105
1995; 375
1999; 189
1996; 38
2007; 13
2003; 77
2009; 457
1997; 388
2000; 408
2004; 199
2006; 80
2011; 208
2011; 108
2001; 194
2007; 315
2010; 116
1999; 11
2007; 81
1999; 96
2009; 5
2009; 206
2006; 203
2009; 1174
1996; 86
1998; 282
e_1_2_8_27_2
e_1_2_8_28_2
Hoshino K (e_1_2_8_7_2) 1999; 162
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_20_2
e_1_2_8_21_2
e_1_2_8_22_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_15_2
e_1_2_8_36_2
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_11_2
e_1_2_8_32_2
Pantel A (e_1_2_8_24_2) 2011
References_xml – reference: Trumpfheller C, Finke JS, Lopez CB et al. Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. J Exp Med 2006; 203: 607-17.
– reference: Pulendran B, Smith JL, Caspary G et al. Distinct dendritic cell subsets differentially regulate the class of immune responses in vivo. Proc Natl Acad Sci USA 1999; 96: 1036-41.
– reference: Maldonado-Lopez R, De Smedt T, Michel P et al. CD8a+ and CD8a- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 1999; 189: 587-92.
– reference: Nchinda G, Amadu D, Trumpfheller C, Mizenina O, Uberla K, Steinman RM. Dendritic cell targeted HIV gag protein vaccine provides help to a DNA vaccine including mobilization of protective CD8+ T cells. Proc Natl Acad Sci USA 2010; 107: 4281-6.
– reference: Wang B, Kuroiwa JM, He LZ, Charalambous A, Keler T, Steinman RM. The human cancer antigen mesothelin is more efficiently presented to the mouse immune system when targeted to the DEC-205/CD205 receptor on dendritic cells. Ann N Y Acad Sci 2009; 1174: 6-17.
– reference: Salazar AM, Levy HB, Ondra S et al. Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery 1996; 38: 1096-103.
– reference: Bozzacco L, Trumpfheller C, Siegal FP et al. DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc Natl Acad Sci USA 2007; 104: 1289-94.
– reference: Novitsky V, Gilbert P, Peter T et al. Association between virus-specific T-cell responses and plasma viral load in human immunodeficiency virus type 1 subtype C infection. J Virol 2003; 77: 882-90.
– reference: Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86: 973-83.
– reference: Idoyaga J, Lubkin A, Fiorese C et al. Comparable T helper 1 (Th1) and CD8 T-cell immnity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A. Proc Natl Acad Sci USA 2011; 108: 2384-9.
– reference: Flynn BJ, Kastenmuller K, Wille-Reece U et al. Immunization with HIV Gag targeted to dendritic cells followed by recombinant NYVAC induces robust T cell immunity in non human primates. Proc Natl Acad Sci USA 2011; 108: 7131-6.
– reference: Hawiger D, Inaba K, Dorsett Y et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 2001; 194: 769-80.
– reference: Longhi MP, Trumpfheller C, Idoyaga J et al. Dendritic cells require a systemic type I interferon response to induce CD4+ Th1 immunity with poly IC as adjuvant. J Exp Med 2009; 206: 1589-602.
– reference: Cheong C, Choi JH, Vitale L et al. Improved cellular and humoral immune responses in vivo following targeting of HIV Gag to dendritic cells within human anti-human DEC205 monoclonal antibody. Blood 2010; 116: 3828-38.
– reference: Liu J, O'Brien KL, Lynch DM et al. Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys. Nature 2009; 457: 87-91.
– reference: Pantel A, Cheong C, Dandamudi D et al. A new synthetic TLR4 agonist, GLA, allows dendritic cells targeted with antigento elicit Th1 T-cell immunity in vivo. Eur J Immunol 2011; doi: 10.1002/eji.201141855.
– reference: Zuniga R, Lucchetti A, Galvan P et al. Relative dominance of Gag p24-specific cytotoxic T lymphocytes is associated with human immunodeficiency virus control. J Virol 2006; 80: 3122-5.
– reference: Caskey M, Lefebvre F, Filali-Mouhim A et al. Synthetic double stranded RNA reliably induces innate immunity similar to a live viral vaccine in humans. J Exp Med 2011; 208: 2357-66.
– reference: Medzhitov R, Preston-Hurlburt P, Janeway Jr CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388: 394-7.
– reference: Hermansson A, Ketelhuth DF, Strodthoff D et al. Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J Exp Med 2010; 207: 1081-93.
– reference: Poltorak A, He X, Smirnova I et al. Defective LPS signaling in C3H/Hej and C57BL/10ScCr Mice: mutations in TLr4 gene. Science 1998; 282: 2085-8.
– reference: Granelli-Piperno A, Pritsker A, Pack M et al. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction. J Immunol 2005; 175: 4265-73.
– reference: Ramduth D, Chetty P, Mngquandaniso NC et al. Differential immunogenicity of HIV-1 clade C proteins in eliciting CD8+ and CD4+ cell responses. J Infect Dis 2005; 192: 1588-96.
– reference: Kiepiela P, Ngumbela K, Thobakgale C et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat Med 2007; 13: 46-53.
– reference: Geldmacher C, Currier JR, Herrmann E et al. CD8 T-cell recognition of multiple epitopes within specific Gag regions is associated with maintenance of a low steady-state viremia in human immunodeficiency virus type 1-seropositive patients. J Virol 2007; 81: 2440-8.
– reference: Stahl-Hennig C, Eisenblatter M, Jasny E et al. Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques. PLoS pathog 2009; 5: e1000373.
– reference: Qureshi ST, Lariviere L, Leveque G et al. Endotoxin-tolerant mice have mutations in toll-like receptor 4 (Tlr4). J Exp Med 1999; 189: 615-25.
– reference: Jiang W, Swiggard WJ, Heufler C et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 1995; 375: 151-5.
– reference: Sela U, Olds P, Park A, Schlesinger SJ, Steinman RM. Dendritic cells induce antigen-specific Treg that prevent graft vs. host disease and persist in mice. J Exp Med 2011; 208: 2489-96.
– reference: Takeuchi O, Hoshino K, Kawai T et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999; 11: 443-51.
– reference: Trumpfheller C, Caskey M, Nchinda G et al. The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine. Proc Natl Acad Sci USA 2008; 105: 2574-9.
– reference: Hoshino K, Takeuchi O, Kawai T et al. Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999; 162: 3749-52.
– reference: Hemmi H, Takeuchi O, Kawai T et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 740-5.
– reference: Edwards BH, Bansal A, Sabbaj S, Bakari J, Mulligan MJ, Goepfert PA. Magnitude of functional CD8+ T-cell responses to the gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma. J Virol 2002; 76: 2298-22305.
– reference: Fujii S, Liu K, Smith C, Bonito AJ, Steinman RM. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 2004; 199: 1607-18.
– reference: Bonifaz LC, Bonnyay DP, Charalambous A et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 2004; 199: 815-24.
– reference: Dudziak D, Kamphorst AO, Heidkamp GF et al. Differential antigen processing by dendritic cell subsets in vivo. Science 2007; 315: 107-11.
– reference: Soares H, Waechter H, Glaichenhaus N et al. A subset of dendritic cells induces CD4+ T cells to produce IFN-g by an IL-12-independent but CD70-dependent mechanism in vivo. J Exp Med 2007; 204: 1095-106.
– volume: 203
  start-page: 607
  year: 2006
  end-page: 17
  article-title: Intensified and protective CD4 T cell immunity in mice with anti‐dendritic cell HIV gag fusion antibody vaccine
  publication-title: J Exp Med
– volume: 208
  start-page: 2357
  year: 2011
  end-page: 66
  article-title: Synthetic double stranded RNA reliably induces innate immunity similar to a live viral vaccine in humans
  publication-title: J Exp Med
– volume: 375
  start-page: 151
  year: 1995
  end-page: 5
  article-title: The receptor DEC‐205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing
  publication-title: Nature
– volume: 107
  start-page: 4281
  year: 2010
  end-page: 6
  article-title: Dendritic cell targeted HIV gag protein vaccine provides help to a DNA vaccine including mobilization of protective CD8 T cells
  publication-title: Proc Natl Acad Sci USA
– volume: 81
  start-page: 2440
  year: 2007
  end-page: 8
  article-title: CD8 T‐cell recognition of multiple epitopes within specific Gag regions is associated with maintenance of a low steady‐state viremia in human immunodeficiency virus type 1‐seropositive patients
  publication-title: J Virol
– volume: 194
  start-page: 769
  year: 2001
  end-page: 80
  article-title: Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo
  publication-title: J Exp Med
– volume: 11
  start-page: 443
  year: 1999
  end-page: 51
  article-title: Differential roles of TLR2 and TLR4 in recognition of gram‐negative and gram‐positive bacterial cell wall components
  publication-title: Immunity
– volume: 108
  start-page: 7131
  year: 2011
  end-page: 6
  article-title: Immunization with HIV Gag targeted to dendritic cells followed by recombinant NYVAC induces robust T cell immunity in non human primates
  publication-title: Proc Natl Acad Sci USA
– volume: 108
  start-page: 2384
  year: 2011
  end-page: 9
  article-title: Comparable T helper 1 (Th1) and CD8 T‐cell immnity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A
  publication-title: Proc Natl Acad Sci USA
– volume: 408
  start-page: 740
  year: 2000
  end-page: 5
  article-title: A Toll‐like receptor recognizes bacterial DNA
  publication-title: Nature
– volume: 189
  start-page: 587
  year: 1999
  end-page: 92
  article-title: CD8a and CD8a subclasses of dendritic cells direct the development of distinct T helper cells in vivo
  publication-title: J Exp Med
– volume: 162
  start-page: 3749
  year: 1999
  end-page: 52
  article-title: Toll‐like receptor 4 (TLR4)‐deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product
  publication-title: J Immunol
– volume: 80
  start-page: 3122
  year: 2006
  end-page: 5
  article-title: Relative dominance of Gag p24‐specific cytotoxic T lymphocytes is associated with human immunodeficiency virus control
  publication-title: J Virol
– volume: 199
  start-page: 815
  year: 2004
  end-page: 24
  article-title: In vivo targeting of antigens to maturing dendritic cells via the DEC‐205 receptor improves T cell vaccination
  publication-title: J Exp Med
– volume: 104
  start-page: 1289
  year: 2007
  end-page: 94
  article-title: DEC‐205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8 T cells in a spectrum of human MHC I haplotypes
  publication-title: Proc Natl Acad Sci USA
– volume: 96
  start-page: 1036
  year: 1999
  end-page: 41
  article-title: Distinct dendritic cell subsets differentially regulate the class of immune responses
  publication-title: Proc Natl Acad Sci USA
– volume: 457
  start-page: 87
  year: 2009
  end-page: 91
  article-title: Immune control of an SIV challenge by a T‐cell‐based vaccine in rhesus monkeys
  publication-title: Nature
– volume: 38
  start-page: 1096
  year: 1996
  end-page: 103
  article-title: Long‐term treatment of malignant gliomas with intramuscularly administered polyinosinic‐polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study
  publication-title: Neurosurgery
– year: 2011
  article-title: A new synthetic TLR4 agonist, GLA, allows dendritic cells targeted with antigento elicit Th1 T‐cell immunity in vivo
  publication-title: Eur J Immunol
– volume: 388
  start-page: 394
  year: 1997
  end-page: 7
  article-title: A human homologue of the Drosophila Toll protein signals activation of adaptive immunity
  publication-title: Nature
– volume: 5
  start-page: e1000373
  year: 2009
  article-title: Synthetic double‐stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques
  publication-title: PLoS pathog
– volume: 199
  start-page: 1607
  year: 2004
  end-page: 18
  article-title: The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation
  publication-title: J Exp Med
– volume: 105
  start-page: 2574
  year: 2008
  end-page: 9
  article-title: The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine
  publication-title: Proc Natl Acad Sci USA
– volume: 282
  start-page: 2085
  year: 1998
  end-page: 8
  article-title: Defective LPS signaling in C3H/Hej and C57BL/10ScCr Mice: mutations in gene
  publication-title: Science
– volume: 116
  start-page: 3828
  year: 2010
  end-page: 38
  article-title: Improved cellular and humoral immune responses in vivo following targeting of HIV Gag to dendritic cells within human anti‐human DEC205 monoclonal antibody
  publication-title: Blood
– volume: 13
  start-page: 46
  year: 2007
  end-page: 53
  article-title: CD8 T‐cell responses to different HIV proteins have discordant associations with viral load
  publication-title: Nat Med
– volume: 207
  start-page: 1081
  year: 2010
  end-page: 93
  article-title: Inhibition of T cell response to native low‐density lipoprotein reduces atherosclerosis
  publication-title: J Exp Med
– volume: 76
  start-page: 2298
  year: 2002
  end-page: 22305
  article-title: Magnitude of functional CD8+ T‐cell responses to the gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma
  publication-title: J Virol
– volume: 204
  start-page: 1095
  year: 2007
  end-page: 106
  article-title: A subset of dendritic cells induces CD4 T cells to produce IFN‐g by an IL‐12‐independent but CD70‐dependent mechanism in vivo
  publication-title: J Exp Med
– volume: 315
  start-page: 107
  year: 2007
  end-page: 11
  article-title: Differential antigen processing by dendritic cell subsets
  publication-title: Science
– volume: 192
  start-page: 1588
  year: 2005
  end-page: 96
  article-title: Differential immunogenicity of HIV‐1 clade C proteins in eliciting CD8+ and CD4+ cell responses
  publication-title: J Infect Dis
– volume: 206
  start-page: 1589
  year: 2009
  end-page: 602
  article-title: Dendritic cells require a systemic type I interferon response to induce CD4 Th1 immunity with poly IC as adjuvant
  publication-title: J Exp Med
– volume: 189
  start-page: 615
  year: 1999
  end-page: 25
  article-title: Endotoxin‐tolerant mice have mutations in toll‐like receptor 4 (Tlr4)
  publication-title: J Exp Med
– volume: 175
  start-page: 4265
  year: 2005
  end-page: 73
  article-title: Dendritic cell‐specific intercellular adhesion molecule 3‐grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction
  publication-title: J Immunol
– volume: 86
  start-page: 973
  year: 1996
  end-page: 83
  article-title: The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults
  publication-title: Cell
– volume: 1174
  start-page: 6
  year: 2009
  end-page: 17
  article-title: The human cancer antigen mesothelin is more efficiently presented to the mouse immune system when targeted to the DEC‐205/CD205 receptor on dendritic cells
  publication-title: Ann N Y Acad Sci
– volume: 208
  start-page: 2489
  year: 2011
  end-page: 96
  article-title: Dendritic cells induce antigen‐specific Treg that prevent graft vs. host disease and persist in mice
  publication-title: J Exp Med
– volume: 77
  start-page: 882
  year: 2003
  end-page: 90
  article-title: Association between virus‐specific T‐cell responses and plasma viral load in human immunodeficiency virus type 1 subtype C infection
  publication-title: J Virol
– ident: e_1_2_8_30_2
  doi: 10.1073/pnas.96.3.1036
– ident: e_1_2_8_11_2
  doi: 10.1128/JVI.80.6.3122-3125.2006
– year: 2011
  ident: e_1_2_8_24_2
  article-title: A new synthetic TLR4 agonist, GLA, allows dendritic cells targeted with antigento elicit Th1 T‐cell immunity in vivo
  publication-title: Eur J Immunol
– ident: e_1_2_8_4_2
  doi: 10.1016/S0092-8674(00)80172-5
– ident: e_1_2_8_29_2
  doi: 10.1084/jem.20070176
– ident: e_1_2_8_27_2
  doi: 10.1073/pnas.1019547108
– ident: e_1_2_8_5_2
  doi: 10.1038/41131
– ident: e_1_2_8_37_2
  doi: 10.1084/jem.20111171
– ident: e_1_2_8_26_2
  doi: 10.1073/pnas.0610383104
– ident: e_1_2_8_6_2
  doi: 10.1111/j.1462-5822.2006.00796.x
– ident: e_1_2_8_3_2
  doi: 10.1038/375151a0
– ident: e_1_2_8_22_2
  doi: 10.1073/pnas.0711976105
– ident: e_1_2_8_23_2
  doi: 10.1084/jem.20040317
– ident: e_1_2_8_17_2
  doi: 10.1038/nature07469
– ident: e_1_2_8_36_2
  doi: 10.1073/pnas.1000621107
– ident: e_1_2_8_34_2
  doi: 10.1084/jem.194.6.769
– ident: e_1_2_8_38_2
  doi: 10.1111/j.1749-6632.2009.04933.x
– ident: e_1_2_8_18_2
  doi: 10.1084/jem.20052005
– volume: 162
  start-page: 3749
  year: 1999
  ident: e_1_2_8_7_2
  article-title: Toll‐like receptor 4 (TLR4)‐deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product
  publication-title: J Immunol
  doi: 10.4049/jimmunol.162.7.3749
– ident: e_1_2_8_8_2
  doi: 10.1084/jem.189.4.615
– ident: e_1_2_8_16_2
  doi: 10.1128/JVI.01847-06
– ident: e_1_2_8_9_2
  doi: 10.1016/S1074-7613(00)80119-3
– ident: e_1_2_8_13_2
  doi: 10.1128/JVI.77.2.882-890.2003
– ident: e_1_2_8_10_2
  doi: 10.1038/35047123
– ident: e_1_2_8_20_2
  doi: 10.1371/journal.ppat.1000373
– ident: e_1_2_8_21_2
  doi: 10.1084/jem.20090247
– ident: e_1_2_8_35_2
  doi: 10.1073/pnas.1103869108
– ident: e_1_2_8_15_2
  doi: 10.1038/nm1520
– ident: e_1_2_8_28_2
  doi: 10.1126/science.1136080
– ident: e_1_2_8_32_2
  doi: 10.4049/jimmunol.175.7.4265
– ident: e_1_2_8_14_2
  doi: 10.1086/496894
– ident: e_1_2_8_19_2
  doi: 10.1227/00006123-199606000-00006
– ident: e_1_2_8_39_2
  doi: 10.1084/jem.20110466
– ident: e_1_2_8_31_2
  doi: 10.1084/jem.189.3.587
– ident: e_1_2_8_2_2
  doi: 10.1084/jem.20092243
– ident: e_1_2_8_12_2
  doi: 10.1128/jvi.76.5.2298-2305.2002
– ident: e_1_2_8_33_2
  doi: 10.1182/blood-2010-06-288068
– ident: e_1_2_8_25_2
  doi: 10.1084/jem.20032220
SSID ssj0013060
Score 2.4164977
SecondaryResourceType review_article
Snippet .  Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, Schlesinger SJ, Steinman RM (The Rockefeller University, New York, NY; and Celldex...
Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, Schlesinger SJ, Steinman RM (The Rockefeller University, New York, NY; and Celldex...
Current vaccines primarily work by inducing protective antibodies. However, in many infections like HIV, malaria and tuberculosis as well as cancers, there...
Current vaccines primarily work by inducing protective antibodies. However, in many infections like HIV, malaria and tuberculosis as well as cancers there...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 183
SubjectTerms adjuvant
Adjuvants, Immunologic - pharmacology
Animals
Antigens, CD - immunology
Biological and medical sciences
Carboxymethylcellulose Sodium - analogs & derivatives
Carboxymethylcellulose Sodium - pharmacology
CD8-Positive T-Lymphocytes - immunology
cross-presentation
DEC-205
dendritic cells
Dendritic Cells - immunology
Gene Products, gag - immunology
General aspects
Human immunodeficiency virus
Humans
Immunity, Cellular - immunology
Interferon Inducers - pharmacology
Lectins, C-Type - immunology
Macaca mulatta
Medical sciences
Mice
Minor Histocompatibility Antigens
Mycobacterium
Poly I-C - pharmacology
Polylysine - analogs & derivatives
Polylysine - pharmacology
Prevention and actions
protein vaccine
Public health. Hygiene
Public health. Hygiene-occupational medicine
Receptors, Cell Surface - immunology
Signal Transduction - immunology
T cells
T-Lymphocytes - immunology
Toll-Like Receptors - immunology
Vaccines - immunology
Title Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity
URI https://api.istex.fr/ark:/67375/WNG-85PZN7CQ-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2796.2011.02496.x
https://www.ncbi.nlm.nih.gov/pubmed/22126373
https://www.proquest.com/docview/1020837696
https://www.proquest.com/docview/916854139
https://pubmed.ncbi.nlm.nih.gov/PMC3261312
Volume 271
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtQwELVQkRAv3C8pUBkJ8ZZVLo6T9A0VSqm0y0WtWPFi-SpWW2VRN1sVnvgEvpEvYcbOpg0UqUK8rRJPNj4Zx8fxzBlCnsGcWycSFjmV0ypmirtYOqXjtCgNs0wyWWKC83jC9w7Z_rSYdvFPmAsT9CH6D244Mvz7Gge4VMvhIA_5VDXvlDhhJcFHyCfxBPKjD9nZhkLiE4aBULCYw6w3DOq58EKDmeoqgn6KkZNyCeC5UPXiIlr6Z3Tledbrp63dm2S-7nCIVpmPVq0a6W-_aUH-H0RukRsdu6UvgjveJldsc4dcG3f793fJ9KVtjC-uQHHH4Of3HyES3RrqBSNmDT2RGtsut6mkzeLEHtG17DltF3TWGPBFegCWeAE68-kt7dd75HD31cHOXtzVdog1EEQegw9YZ2WqtHG1KU0O1IGpFJ-TqgxwNG6YqxPGTJV4iXuTVM5UXBmbskKz_D7ZaBaNfUioVtCsKjizyjAsnS6d5LrKjTUmy2QdkXL9HIXuhM-x_saROLcAAuAEAicQOOGBE6cRSXvLL0H84xI2z72r9AbyeI7Bc2UhPk5ei6p492lS7rwXWUS2Br7UG2QoFgxdj8jTtXMJGPOIqmzsYrWEe8iAOZe85hGhf2kDtL8qgKFA9x8Efzz7A6ArPC9zAGbgqX0DlBwfnmlmn730OJD9NE_h3kvviJdGRey_fTPGn5v_bPmIXIfjWYiYf0w22uOVfQKEsFVbfqj_ArpuU8k
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtNAEF2hVgJeoNxd2rJIiDdHvqzXNm-oF9LShItSEfGy2ptF1MipGqcqPPEJfCNfwszacWsoUoV4i5Qdx3s8kz3rnTlDyAtYc_NAwiYnK7TymeKFLwul_TBJDbNMMpligfNgyPtH7GCcjJt2QFgLU-tDtC_cMDLc_zUGOL6Q7kZ5XVCV80aKE7YSvAeEchUbfKOQ_s7H6OJIIXAlw0ApmM9h3eum9Vx5pc5atYqwn2PupJwDfEXd9-IqYvpnfuVl3usWrr27ZLqccp2vctxbVKqnv_2mBvmfMFkjdxqCS1_XHnmP3LDlfXJz0BzhPyDjHVsa11-B4qHBz-8_6mR0a6jTjJiU9ExqHDt_RSUtZ2d2SpfK57Sa0UlpwB3pCCzxAnTiKlyqrw_J0d7uaLvvN-0dfA0ckfvgBrawMlTaFLlJTQzsgakQH5TKDNA0bliRB4yZLHAq9ybICpNxZWzIEs3iR2SlnJX2CaFawbAs4cwqw7B7uiwk11lsrDFRJHOPpMsHKXSjfY4tOKbi0h4IgBMInEDghANOnHskbC1Pav2Pa9i8dL7SGsjTY8yfSxPxafhGZMn7z8N0-4OIPLLVcabWIEK9YJi6R54vvUtA2COqsrSzxRzuIQLynPKce4T-ZQww_ywBkgLTf1w75MUPAGPhcRoDMB1XbQeg6nj3m3LyxamPA98P4xDuPXWeeG1UxMG7_QF-XP9ny2fkVn80OBSH-8O3T8ltGBPVCfQbZKU6XdhN4IeV2nJx_wvbSFfl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtNAEF2hVqp44Q4Nl7JIiDdHvqzXNm-oIbSFhIJaEfGy2quIUjlV41SFJz6Bb-RLmFk7bg1FqhBvkTLjeI9nsme9s2cIeQ5zbhFKWOTkTquAKe4C6ZQOojQzzDLJZIYHnEdjvnPI9ibppKl_wrMwtT5E-8INM8P_X2OCHxvXTfL6PFXBGyVOWEnwPvDJdcbDAts4DD7G5zsKoT8xDIyCBRymvW5Vz6VX6kxV64j6GZZOygWg5-q2F5fx0j_LKy_SXj9vDW-S2WrEdbnKrL-sVF9_-00M8v9AcovcaOgtfVXH421yzZZ3yMao2cC_SyYDWxrfXYHilsHP7z_qUnRrqFeMmJb0VGq0XbykkpbzU3tEV7rntJrTaWkgGOkBeOIF6NSfb6m-3iOHw9cH2ztB09wh0MAQeQBBYJ2VkdLGFSYzCXAHpiJ8Tio3QNK4Ya4IGTN56DXuTZg7k3NlbMRSzZL7ZK2cl3aTUK3ALE85s8ow7J0uneQ6T4w1Jo5l0SPZ6jkK3SifYwOOI3FhBQTACQROIHDCAyfOeiRqPY9r9Y8r-LzwodI6yJMZVs9lqfg0fiPydP_zONv-IOIe2erEUusQo1owDL1Hnq2CS0DSI6qytPPlAu4hBuqc8YL3CP2LDfD-PAWKAsN_UMfj-Q8AX-FJlgAwnUhtDVBzvPtNOf3itceB7UdJBPee-UC8Mipi7_3uCD8-_GfPp2RjfzAU73bHbx-R62AS19Xzj8ladbK0T4AcVmrLZ_0vgv9WlA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dendritic+cell%E2%80%90targeted+protein+vaccines%3A+a+novel+approach+to+induce+T%E2%80%90cell+immunity&rft.jtitle=Journal+of+internal+medicine&rft.au=Trumpfheller%2C+C.&rft.au=Longhi%2C+M.+P.&rft.au=Caskey%2C+M.&rft.au=Idoyaga%2C+J.&rft.date=2012-02-01&rft.issn=0954-6820&rft.eissn=1365-2796&rft.volume=271&rft.issue=2&rft.spage=183&rft.epage=192&rft_id=info:doi/10.1111%2Fj.1365-2796.2011.02496.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2796_2011_02496_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-6820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-6820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-6820&client=summon