Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity
. Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, Schlesinger SJ, Steinman RM (The Rockefeller University, New York, NY; and Celldex Therapeutics, Phillipsburg, NJ; USA). Dendritic cell‐targeted protein vaccines: a novel approach to induce T‐cell immunity (Review). J Intern Med...
Saved in:
Published in | Journal of internal medicine Vol. 271; no. 2; pp. 183 - 192 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.02.2012
Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | . Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, Schlesinger SJ, Steinman RM (The Rockefeller University, New York, NY; and Celldex Therapeutics, Phillipsburg, NJ; USA). Dendritic cell‐targeted protein vaccines: a novel approach to induce T‐cell immunity (Review). J Intern Med 2012; 271: 183–192.
Current vaccines primarily work by inducing protective antibodies. However, in many infections like HIV, malaria and tuberculosis as well as cancers, there remains a need for durable and protective T‐cell immunity. Here, we summarize our efforts to develop a safe T‐cell–based protein vaccine that exploits the pivotal role of dendritic cells (DC) in initiating adaptive immunity. Focusing on HIV, gag‐p24 protein antigen is introduced into a monoclonal antibody (mAb) that efficiently and specifically targets the DEC‐205 antigen uptake receptor on DC. When administered together with synthetic double‐stranded RNA, polyriboinosinic:polyribocytidylic acid (poly IC) or its analogue poly IC stabilized with carboxymethylcellulose and poly‐L‐lysine (poly ICLC), as adjuvant, HIV gag‐p24 within anti‐DEC‐205 mAb is highly immunogenic in mice, rhesus macaques, and in ongoing research, healthy human volunteers. Human subjects form both T‐ and B‐cell responses to DC‐targeted protein. Thus, DC‐targeted protein vaccines are a potential new vaccine platform, either alone or in combination with highly attenuated viral vectors, to induce integrated immune responses against microbial or cancer antigens, with improved ease of manufacturing and clinical use. |
---|---|
AbstractList | . Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, Schlesinger SJ, Steinman RM (The Rockefeller University, New York, NY; and Celldex Therapeutics, Phillipsburg, NJ; USA). Dendritic cell‐targeted protein vaccines: a novel approach to induce T‐cell immunity (Review). J Intern Med 2012; 271: 183–192.
Current vaccines primarily work by inducing protective antibodies. However, in many infections like HIV, malaria and tuberculosis as well as cancers, there remains a need for durable and protective T‐cell immunity. Here, we summarize our efforts to develop a safe T‐cell–based protein vaccine that exploits the pivotal role of dendritic cells (DC) in initiating adaptive immunity. Focusing on HIV, gag‐p24 protein antigen is introduced into a monoclonal antibody (mAb) that efficiently and specifically targets the DEC‐205 antigen uptake receptor on DC. When administered together with synthetic double‐stranded RNA, polyriboinosinic:polyribocytidylic acid (poly IC) or its analogue poly IC stabilized with carboxymethylcellulose and poly‐L‐lysine (poly ICLC), as adjuvant, HIV gag‐p24 within anti‐DEC‐205 mAb is highly immunogenic in mice, rhesus macaques, and in ongoing research, healthy human volunteers. Human subjects form both T‐ and B‐cell responses to DC‐targeted protein. Thus, DC‐targeted protein vaccines are a potential new vaccine platform, either alone or in combination with highly attenuated viral vectors, to induce integrated immune responses against microbial or cancer antigens, with improved ease of manufacturing and clinical use. Current vaccines primarily work by inducing protective antibodies. However, in many infections like HIV, malaria and tuberculosis as well as cancers, there remains a need for durable and protective T-cell immunity. Here, we summarize our efforts to develop a safe T-cell-based protein vaccine that exploits the pivotal role of dendritic cells (DC) in initiating adaptive immunity. Focusing on HIV, gag-p24 protein antigen is introduced into a monoclonal antibody (mAb) that efficiently and specifically targets the DEC-205 antigen uptake receptor on DC. When administered together with synthetic double-stranded RNA, polyriboinosinic:polyribocytidylic acid (poly IC) or its analogue poly IC stabilized with carboxymethylcellulose and poly-L-lysine (poly ICLC), as adjuvant, HIV gag-p24 within anti-DEC-205 mAb is highly immunogenic in mice, rhesus macaques, and in ongoing research, healthy human volunteers. Human subjects form both T- and B-cell responses to DC-targeted protein. Thus, DC-targeted protein vaccines are a potential new vaccine platform, either alone or in combination with highly attenuated viral vectors, to induce integrated immune responses against microbial or cancer antigens, with improved ease of manufacturing and clinical use.Current vaccines primarily work by inducing protective antibodies. However, in many infections like HIV, malaria and tuberculosis as well as cancers, there remains a need for durable and protective T-cell immunity. Here, we summarize our efforts to develop a safe T-cell-based protein vaccine that exploits the pivotal role of dendritic cells (DC) in initiating adaptive immunity. Focusing on HIV, gag-p24 protein antigen is introduced into a monoclonal antibody (mAb) that efficiently and specifically targets the DEC-205 antigen uptake receptor on DC. When administered together with synthetic double-stranded RNA, polyriboinosinic:polyribocytidylic acid (poly IC) or its analogue poly IC stabilized with carboxymethylcellulose and poly-L-lysine (poly ICLC), as adjuvant, HIV gag-p24 within anti-DEC-205 mAb is highly immunogenic in mice, rhesus macaques, and in ongoing research, healthy human volunteers. Human subjects form both T- and B-cell responses to DC-targeted protein. Thus, DC-targeted protein vaccines are a potential new vaccine platform, either alone or in combination with highly attenuated viral vectors, to induce integrated immune responses against microbial or cancer antigens, with improved ease of manufacturing and clinical use. Current vaccines primarily work by inducing protective antibodies. However, in many infections like HIV, malaria and tuberculosis as well as cancers there remains a need for durable and protective T-cell immunity. Here, we summarize our efforts to develop a safe T-cell based protein vaccine that exploits the pivotal role of dendritic cells (DC) in initiating adaptive immunity. Focusing on HIV, gag-p24 protein antigen is introduced into a monoclonal antibody (mAb) that efficiently and specifically targets the DEC-205 antigen uptake receptor on DC. When administered together with synthetic double stranded RNA, polyriboinosinic:polyribocytidylic acid (poly IC) or its analogue poly ICLC (poly IC stabilized with carboxymethylcellulose and poly-L-lysine), as adjuvant, HIV gag-p24 within anti-DEC-205 mAb is highly immunogenic in mice, rhesus macaques, and in ongoing research, healthy human volunteers. Human subjects form both T and B cell responses to DC-targeted protein. Thus, DC-targeted protein vaccines are a potential new vaccine platform, either alone or in combination with highly attenuated viral vectors, to induce integrated immune responses against microbial or cancer antigens, with improved ease of manufacturing and clinical use. Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, Schlesinger SJ, Steinman RM (The Rockefeller University, New York, NY; and Celldex Therapeutics, Phillipsburg, NJ; USA). Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity (Review). J Intern Med 2012; 271: 183-192. Current vaccines primarily work by inducing protective antibodies. However, in many infections like HIV, malaria and tuberculosis as well as cancers, there remains a need for durable and protective T-cell immunity. Here, we summarize our efforts to develop a safe T-cell-based protein vaccine that exploits the pivotal role of dendritic cells (DC) in initiating adaptive immunity. Focusing on HIV, gag-p24 protein antigen is introduced into a monoclonal antibody (mAb) that efficiently and specifically targets the DEC-205 antigen uptake receptor on DC. When administered together with synthetic double-stranded RNA, polyriboinosinic:polyribocytidylic acid (poly IC) or its analogue poly IC stabilized with carboxymethylcellulose and poly-L-lysine (poly ICLC), as adjuvant, HIV gag-p24 within anti-DEC-205 mAb is highly immunogenic in mice, rhesus macaques, and in ongoing research, healthy human volunteers. Human subjects form both T- and B-cell responses to DC-targeted protein. Thus, DC-targeted protein vaccines are a potential new vaccine platform, either alone or in combination with highly attenuated viral vectors, to induce integrated immune responses against microbial or cancer antigens, with improved ease of manufacturing and clinical use. Current vaccines primarily work by inducing protective antibodies. However, in many infections like HIV, malaria and tuberculosis as well as cancers, there remains a need for durable and protective T-cell immunity. Here, we summarize our efforts to develop a safe T-cell-based protein vaccine that exploits the pivotal role of dendritic cells (DC) in initiating adaptive immunity. Focusing on HIV, gag-p24 protein antigen is introduced into a monoclonal antibody (mAb) that efficiently and specifically targets the DEC-205 antigen uptake receptor on DC. When administered together with synthetic double-stranded RNA, polyriboinosinic:polyribocytidylic acid (poly IC) or its analogue poly IC stabilized with carboxymethylcellulose and poly-L-lysine (poly ICLC), as adjuvant, HIV gag-p24 within anti-DEC-205 mAb is highly immunogenic in mice, rhesus macaques, and in ongoing research, healthy human volunteers. Human subjects form both T- and B-cell responses to DC-targeted protein. Thus, DC-targeted protein vaccines are a potential new vaccine platform, either alone or in combination with highly attenuated viral vectors, to induce integrated immune responses against microbial or cancer antigens, with improved ease of manufacturing and clinical use. Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, Schlesinger SJ, Steinman RM (The Rockefeller University, New York, NY; and Celldex Therapeutics, Phillipsburg, NJ; USA). Dendritic cell‐targeted protein vaccines: a novel approach to induce T‐cell immunity (Review). J Intern Med 2012; 271 : 183–192. Current vaccines primarily work by inducing protective antibodies. However, in many infections like HIV, malaria and tuberculosis as well as cancers, there remains a need for durable and protective T‐cell immunity. Here, we summarize our efforts to develop a safe T‐cell–based protein vaccine that exploits the pivotal role of dendritic cells (DC) in initiating adaptive immunity. Focusing on HIV, gag‐p24 protein antigen is introduced into a monoclonal antibody (mAb) that efficiently and specifically targets the DEC‐205 antigen uptake receptor on DC. When administered together with synthetic double‐stranded RNA, polyriboinosinic:polyribocytidylic acid (poly IC) or its analogue poly IC stabilized with carboxymethylcellulose and poly‐L‐lysine (poly ICLC), as adjuvant, HIV gag‐p24 within anti‐DEC‐205 mAb is highly immunogenic in mice, rhesus macaques, and in ongoing research, healthy human volunteers. Human subjects form both T‐ and B‐cell responses to DC‐targeted protein. Thus, DC‐targeted protein vaccines are a potential new vaccine platform, either alone or in combination with highly attenuated viral vectors, to induce integrated immune responses against microbial or cancer antigens, with improved ease of manufacturing and clinical use. |
Author | Caskey, M. Steinman, R. M. Idoyaga, J. Keler, T. Longhi, M. P. Schlesinger, S. J. Trumpfheller, C. Bozzacco, L. |
AuthorAffiliation | 1 Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA 2 Celldex Therapeutics, Phillipsburg, NJ 08865, USA |
AuthorAffiliation_xml | – name: 2 Celldex Therapeutics, Phillipsburg, NJ 08865, USA – name: 1 Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA |
Author_xml | – sequence: 1 givenname: C. surname: Trumpfheller fullname: Trumpfheller, C. organization: From the Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY – sequence: 2 givenname: M. P. surname: Longhi fullname: Longhi, M. P. organization: From the Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY – sequence: 3 givenname: M. surname: Caskey fullname: Caskey, M. organization: From the Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY – sequence: 4 givenname: J. surname: Idoyaga fullname: Idoyaga, J. organization: From the Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY – sequence: 5 givenname: L. surname: Bozzacco fullname: Bozzacco, L. organization: From the Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY – sequence: 6 givenname: T. surname: Keler fullname: Keler, T. organization: Celldex Therapeutics, Phillipsburg, NJ; USA – sequence: 7 givenname: S. J. surname: Schlesinger fullname: Schlesinger, S. J. organization: From the Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY – sequence: 8 givenname: R. M. surname: Steinman fullname: Steinman, R. M. organization: From the Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25399904$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22126373$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1vEzEQhi1URNPCX0C-ILhs8Nd6vRyQqgClqLQgBSFxsRzb2zrseoPtDcm_x0vTFDig-mJL884z83rmCBz43lsAIEZTnM_L5RRTXhakqvmUIIyniLD83DwAk33gAExQXbKCC4IOwVGMS4QwRRw9AoeEYMJpRSdg_sZ6E1xyGmrbtkVS4coma-Aq9Mk6D9dKa-dtfAUV9P3atlCtckzpa5h66LwZtIXzYkyGrusG79L2MXjYqDbaJ7v7GHx593Y-e1-cX56ezU7OC11WJS-YqmxjFV5o09SmMpRQwRZ4bHIhDGOYG9bUiDEjEOWsIgaJxgi-MBazUjN6DF7fcFfDorNGW5-CauUquE6FreyVk39HvLuWV_1aUsIxxSQDnu8Aof8x2Jhk5-JoRXnbD1HWmIuSYVpn5Yv_KjEiSNCK1zxLn_7Z1b6d20_Pgmc7gYpatU1QXrt4pytpXWfbd_Z06GMMtpHaJZVcP5pxba4px22QSzkOXY5Dl-M2yN_bIDcZIP4B3Na4R-qu9k_X2u298-SHy7OP4zMDihuAi8lu9gAVvkte0aqUXy9OpSg_fbuoZp8lob8ANWfbZQ |
CitedBy_id | crossref_primary_10_1016_j_vaccine_2024_02_039 crossref_primary_10_1016_j_virusres_2016_10_007 crossref_primary_10_7774_cevr_2014_3_2_155 crossref_primary_10_1089_vim_2017_0146 crossref_primary_10_3389_fimmu_2015_00029 crossref_primary_10_1016_j_vaccine_2012_10_096 crossref_primary_10_1016_j_vaccine_2017_05_067 crossref_primary_10_1002_eji_201646523 crossref_primary_10_1016_j_immuni_2017_11_001 crossref_primary_10_1371_journal_pone_0200112 crossref_primary_10_1186_s12967_016_0905_x crossref_primary_10_36233_0372_9311_2016_5_23_28 crossref_primary_10_1016_j_vetmic_2013_11_023 crossref_primary_10_1371_journal_ppat_1002827 crossref_primary_10_4049_jimmunol_1200501 crossref_primary_10_1016_j_coviro_2013_02_001 crossref_primary_10_3389_fimmu_2014_00604 crossref_primary_10_1016_j_vaccine_2015_11_069 crossref_primary_10_1128_jvi_00294_24 crossref_primary_10_1016_j_jaci_2016_12_985 crossref_primary_10_1080_08820139_2022_2109486 crossref_primary_10_1038_nchembio_1186 crossref_primary_10_1002_eji_201445127 crossref_primary_10_1016_j_inmuno_2012_03_002 crossref_primary_10_3389_fimmu_2018_00317 crossref_primary_10_3390_v11060551 crossref_primary_10_1016_j_vaccine_2019_07_019 crossref_primary_10_1111_exd_14346 crossref_primary_10_1016_j_actbio_2021_06_020 crossref_primary_10_1371_journal_pone_0067453 crossref_primary_10_1080_21645515_2015_1066050 crossref_primary_10_1182_blood_2012_07_446054 crossref_primary_10_1016_j_ijbiomac_2024_137635 crossref_primary_10_1002_eji_202149670 crossref_primary_10_1016_j_theriogenology_2018_02_003 crossref_primary_10_1128_JVI_00803_15 crossref_primary_10_1111_j_1365_2796_2011_02495_x crossref_primary_10_1002_iid3_151 crossref_primary_10_1016_j_ejpb_2012_11_006 crossref_primary_10_1016_j_bbrc_2015_03_015 crossref_primary_10_1002_ijch_201300060 crossref_primary_10_7774_cevr_2014_3_2_149 crossref_primary_10_1586_1744666X_2014_907742 crossref_primary_10_1002_eji_201545465 crossref_primary_10_1042_CS20210577 crossref_primary_10_1038_emi_2014_77 crossref_primary_10_1007_s00262_020_02746_x crossref_primary_10_3390_ijms241813946 crossref_primary_10_1016_j_imbio_2015_11_006 crossref_primary_10_1016_j_isci_2022_105324 crossref_primary_10_1186_bcr3184 crossref_primary_10_1016_j_jim_2012_07_011 crossref_primary_10_1002_cmdc_201200487 crossref_primary_10_1002_eji_201445010 crossref_primary_10_1016_j_intimp_2019_05_037 crossref_primary_10_1038_s41467_021_24591_x crossref_primary_10_3389_fimmu_2014_00255 crossref_primary_10_4161_onci_20982 crossref_primary_10_1093_infdis_jiae613 crossref_primary_10_1093_infdis_jiw053 crossref_primary_10_1038_srep43985 crossref_primary_10_3389_fonc_2023_1301473 crossref_primary_10_1016_j_antiviral_2017_01_023 crossref_primary_10_1016_j_copbio_2013_02_015 crossref_primary_10_1155_2013_871936 crossref_primary_10_1189_jlb_0613330 crossref_primary_10_3390_vaccines7020043 crossref_primary_10_1016_j_vaccine_2012_09_036 crossref_primary_10_3390_vaccines8040706 crossref_primary_10_1016_j_vaccine_2014_12_072 crossref_primary_10_1016_j_brainresbull_2024_110936 crossref_primary_10_1016_j_jim_2011_12_009 crossref_primary_10_1016_j_antiviral_2012_11_009 crossref_primary_10_3389_fimmu_2021_593161 crossref_primary_10_1038_cr_2016_157 crossref_primary_10_1016_j_imlet_2017_08_004 crossref_primary_10_1016_S2055_6640_20_30695_6 crossref_primary_10_1007_s11060_015_1830_1 crossref_primary_10_1080_21645515_2021_1911204 crossref_primary_10_1089_jir_2014_0150 crossref_primary_10_1111_nyas_12125 crossref_primary_10_1097_COH_0b013e32835fd5cd crossref_primary_10_1111_imm_13394 crossref_primary_10_1038_srep27206 crossref_primary_10_1007_s00705_014_2024_4 crossref_primary_10_1007_s10522_014_9510_7 crossref_primary_10_1002_eji_202149515 crossref_primary_10_3390_v12010024 crossref_primary_10_1172_JCI65260 crossref_primary_10_3390_vaccines11040849 crossref_primary_10_1080_21655979_2016_1191707 crossref_primary_10_1371_journal_pone_0041897 crossref_primary_10_4161_hv_22487 crossref_primary_10_4049_jimmunol_1303278 crossref_primary_10_1111_jvh_12542 crossref_primary_10_3390_antib11010008 crossref_primary_10_2217_nnm_14_172 crossref_primary_10_1016_j_ijid_2016_03_024 crossref_primary_10_1111_imr_12082 crossref_primary_10_1016_j_imlet_2015_10_007 crossref_primary_10_1016_j_imlet_2016_01_009 crossref_primary_10_1016_j_tube_2019_04_009 crossref_primary_10_1242_jcs_228700 crossref_primary_10_2745_dds_37_402 crossref_primary_10_1016_j_vaccine_2012_04_030 crossref_primary_10_4049_jimmunol_1301947 crossref_primary_10_7774_cevr_2014_3_2_227 crossref_primary_10_1016_j_jim_2012_10_019 crossref_primary_10_1021_acs_nanolett_6b03329 crossref_primary_10_1098_rstb_2013_0436 crossref_primary_10_3389_fimmu_2018_02409 crossref_primary_10_1097_QAD_0000000000000308 crossref_primary_10_1586_egh_12_72 crossref_primary_10_3389_fimmu_2018_03059 crossref_primary_10_1155_2013_864720 crossref_primary_10_3389_fimmu_2019_00843 crossref_primary_10_1038_aps_2012_154 crossref_primary_10_2217_nnm_14_200 crossref_primary_10_1016_j_celrep_2015_05_042 crossref_primary_10_1099_vir_0_062570_0 crossref_primary_10_1371_journal_pntd_0002330 crossref_primary_10_1016_j_coi_2013_03_001 |
Cites_doi | 10.1073/pnas.96.3.1036 10.1128/JVI.80.6.3122-3125.2006 10.1016/S0092-8674(00)80172-5 10.1084/jem.20070176 10.1073/pnas.1019547108 10.1038/41131 10.1084/jem.20111171 10.1073/pnas.0610383104 10.1111/j.1462-5822.2006.00796.x 10.1038/375151a0 10.1073/pnas.0711976105 10.1084/jem.20040317 10.1038/nature07469 10.1073/pnas.1000621107 10.1084/jem.194.6.769 10.1111/j.1749-6632.2009.04933.x 10.1084/jem.20052005 10.4049/jimmunol.162.7.3749 10.1084/jem.189.4.615 10.1128/JVI.01847-06 10.1016/S1074-7613(00)80119-3 10.1128/JVI.77.2.882-890.2003 10.1038/35047123 10.1371/journal.ppat.1000373 10.1084/jem.20090247 10.1073/pnas.1103869108 10.1038/nm1520 10.1126/science.1136080 10.4049/jimmunol.175.7.4265 10.1086/496894 10.1227/00006123-199606000-00006 10.1084/jem.20110466 10.1084/jem.189.3.587 10.1084/jem.20092243 10.1128/jvi.76.5.2298-2305.2002 10.1182/blood-2010-06-288068 10.1084/jem.20032220 |
ContentType | Journal Article |
Copyright | 2011 The Association for the Publication of the Journal of Internal Medicine 2015 INIST-CNRS 2011 The Association for the Publication of the Journal of Internal Medicine. |
Copyright_xml | – notice: 2011 The Association for the Publication of the Journal of Internal Medicine – notice: 2015 INIST-CNRS – notice: 2011 The Association for the Publication of the Journal of Internal Medicine. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7T5 C1K F1W H94 H95 H97 L.G 7X8 5PM |
DOI | 10.1111/j.1365-2796.2011.02496.x |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1365-2796 |
EndPage | 192 |
ExternalDocumentID | PMC3261312 22126373 25399904 10_1111_j_1365_2796_2011_02496_x JOIM2496 ark_67375_WNG_85PZN7CQ_2 |
Genre | reviewArticle Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | USA, New York |
GeographicLocations_xml | – name: USA, New York |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: UL1RR024143 – fundername: NIAID NIH HHS grantid: AI081677 – fundername: NCRR NIH HHS grantid: UL1 RR024143 – fundername: NIAID NIH HHS grantid: K23 AI084855 – fundername: NIAID NIH HHS grantid: K23AI084855 – fundername: NIAID NIH HHS grantid: P01 AI081677 – fundername: National Center for Research Resources : NCRR grantid: UL1 RR024143-06 || RR |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29K 2WC 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F D-I DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TEORI TR2 UB1 V8K V9Y VH1 VVN W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 YFH YOC YUY ZCG ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7T5 C1K F1W H94 H95 H97 L.G 7X8 5PM |
ID | FETCH-LOGICAL-c5756-4a7efea1bcdf9d7d32384b11306b8d4416d4f9044d8036472d08fd86bde145c43 |
IEDL.DBID | DR2 |
ISSN | 0954-6820 1365-2796 |
IngestDate | Thu Aug 21 17:31:45 EDT 2025 Fri Jul 11 08:51:53 EDT 2025 Fri Jul 11 12:29:33 EDT 2025 Mon Jul 21 05:43:57 EDT 2025 Mon Jul 21 09:15:41 EDT 2025 Tue Jul 01 04:07:38 EDT 2025 Thu Apr 24 23:11:48 EDT 2025 Wed Jan 22 16:39:40 EST 2025 Wed Oct 30 09:58:16 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Dendritic cell Technical progress Targeting DEC-205 protein vaccine Antigen cross presentation Vaccine Protein A T cells Immunity Medicine Prevention Immunoprophylaxis Target dendritic cells cross-presentation Antigen presenting cell T-Lymphocyte Adjuvant |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 2011 The Association for the Publication of the Journal of Internal Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5756-4a7efea1bcdf9d7d32384b11306b8d4416d4f9044d8036472d08fd86bde145c43 |
Notes | ark:/67375/WNG-85PZN7CQ-2 istex:20CB81DD940A1A67C35260059A6B9E6103562D38 ArticleID:JOIM2496 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Review-3 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2796.2011.02496.x |
PMID | 22126373 |
PQID | 1020837696 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3261312 proquest_miscellaneous_916854139 proquest_miscellaneous_1020837696 pubmed_primary_22126373 pascalfrancis_primary_25399904 crossref_citationtrail_10_1111_j_1365_2796_2011_02496_x crossref_primary_10_1111_j_1365_2796_2011_02496_x wiley_primary_10_1111_j_1365_2796_2011_02496_x_JOIM2496 istex_primary_ark_67375_WNG_85PZN7CQ_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2012 |
PublicationDateYYYYMMDD | 2012-02-01 |
PublicationDate_xml | – month: 02 year: 2012 text: February 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | Journal of internal medicine |
PublicationTitleAlternate | J Intern Med |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | Qureshi ST, Lariviere L, Leveque G et al. Endotoxin-tolerant mice have mutations in toll-like receptor 4 (Tlr4). J Exp Med 1999; 189: 615-25. Pulendran B, Smith JL, Caspary G et al. Distinct dendritic cell subsets differentially regulate the class of immune responses in vivo. Proc Natl Acad Sci USA 1999; 96: 1036-41. Edwards BH, Bansal A, Sabbaj S, Bakari J, Mulligan MJ, Goepfert PA. Magnitude of functional CD8+ T-cell responses to the gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma. J Virol 2002; 76: 2298-22305. Geldmacher C, Currier JR, Herrmann E et al. CD8 T-cell recognition of multiple epitopes within specific Gag regions is associated with maintenance of a low steady-state viremia in human immunodeficiency virus type 1-seropositive patients. J Virol 2007; 81: 2440-8. Cheong C, Choi JH, Vitale L et al. Improved cellular and humoral immune responses in vivo following targeting of HIV Gag to dendritic cells within human anti-human DEC205 monoclonal antibody. Blood 2010; 116: 3828-38. Soares H, Waechter H, Glaichenhaus N et al. A subset of dendritic cells induces CD4+ T cells to produce IFN-g by an IL-12-independent but CD70-dependent mechanism in vivo. J Exp Med 2007; 204: 1095-106. Bozzacco L, Trumpfheller C, Siegal FP et al. DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc Natl Acad Sci USA 2007; 104: 1289-94. Stahl-Hennig C, Eisenblatter M, Jasny E et al. Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques. PLoS pathog 2009; 5: e1000373. Nchinda G, Amadu D, Trumpfheller C, Mizenina O, Uberla K, Steinman RM. Dendritic cell targeted HIV gag protein vaccine provides help to a DNA vaccine including mobilization of protective CD8+ T cells. Proc Natl Acad Sci USA 2010; 107: 4281-6. Longhi MP, Trumpfheller C, Idoyaga J et al. Dendritic cells require a systemic type I interferon response to induce CD4+ Th1 immunity with poly IC as adjuvant. J Exp Med 2009; 206: 1589-602. Maldonado-Lopez R, De Smedt T, Michel P et al. CD8a+ and CD8a- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 1999; 189: 587-92. Takeuchi O, Hoshino K, Kawai T et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999; 11: 443-51. Hawiger D, Inaba K, Dorsett Y et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 2001; 194: 769-80. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86: 973-83. Zuniga R, Lucchetti A, Galvan P et al. Relative dominance of Gag p24-specific cytotoxic T lymphocytes is associated with human immunodeficiency virus control. J Virol 2006; 80: 3122-5. Fujii S, Liu K, Smith C, Bonito AJ, Steinman RM. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 2004; 199: 1607-18. Bonifaz LC, Bonnyay DP, Charalambous A et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 2004; 199: 815-24. Kiepiela P, Ngumbela K, Thobakgale C et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat Med 2007; 13: 46-53. Liu J, O'Brien KL, Lynch DM et al. Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys. Nature 2009; 457: 87-91. Pantel A, Cheong C, Dandamudi D et al. A new synthetic TLR4 agonist, GLA, allows dendritic cells targeted with antigento elicit Th1 T-cell immunity in vivo. Eur J Immunol 2011; doi: 10.1002/eji.201141855. Hermansson A, Ketelhuth DF, Strodthoff D et al. Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J Exp Med 2010; 207: 1081-93. Hoshino K, Takeuchi O, Kawai T et al. Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999; 162: 3749-52. Sela U, Olds P, Park A, Schlesinger SJ, Steinman RM. Dendritic cells induce antigen-specific Treg that prevent graft vs. host disease and persist in mice. J Exp Med 2011; 208: 2489-96. Novitsky V, Gilbert P, Peter T et al. Association between virus-specific T-cell responses and plasma viral load in human immunodeficiency virus type 1 subtype C infection. J Virol 2003; 77: 882-90. Granelli-Piperno A, Pritsker A, Pack M et al. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction. J Immunol 2005; 175: 4265-73. Dudziak D, Kamphorst AO, Heidkamp GF et al. Differential antigen processing by dendritic cell subsets in vivo. Science 2007; 315: 107-11. Poltorak A, He X, Smirnova I et al. Defective LPS signaling in C3H/Hej and C57BL/10ScCr Mice: mutations in TLr4 gene. Science 1998; 282: 2085-8. Ramduth D, Chetty P, Mngquandaniso NC et al. Differential immunogenicity of HIV-1 clade C proteins in eliciting CD8+ and CD4+ cell responses. J Infect Dis 2005; 192: 1588-96. Trumpfheller C, Caskey M, Nchinda G et al. The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine. Proc Natl Acad Sci USA 2008; 105: 2574-9. Trumpfheller C, Finke JS, Lopez CB et al. Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. J Exp Med 2006; 203: 607-17. Idoyaga J, Lubkin A, Fiorese C et al. Comparable T helper 1 (Th1) and CD8 T-cell immnity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A. Proc Natl Acad Sci USA 2011; 108: 2384-9. Wang B, Kuroiwa JM, He LZ, Charalambous A, Keler T, Steinman RM. The human cancer antigen mesothelin is more efficiently presented to the mouse immune system when targeted to the DEC-205/CD205 receptor on dendritic cells. Ann N Y Acad Sci 2009; 1174: 6-17. Medzhitov R, Preston-Hurlburt P, Janeway Jr CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388: 394-7. Hemmi H, Takeuchi O, Kawai T et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 740-5. Caskey M, Lefebvre F, Filali-Mouhim A et al. Synthetic double stranded RNA reliably induces innate immunity similar to a live viral vaccine in humans. J Exp Med 2011; 208: 2357-66. Flynn BJ, Kastenmuller K, Wille-Reece U et al. Immunization with HIV Gag targeted to dendritic cells followed by recombinant NYVAC induces robust T cell immunity in non human primates. Proc Natl Acad Sci USA 2011; 108: 7131-6. Salazar AM, Levy HB, Ondra S et al. Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery 1996; 38: 1096-103. Jiang W, Swiggard WJ, Heufler C et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 1995; 375: 151-5. 2007; 104 2005; 192 2007; 204 2005; 175 2010; 107 2010; 207 2011 2002; 76 1999; 162 2008; 105 1995; 375 1999; 189 1996; 38 2007; 13 2003; 77 2009; 457 1997; 388 2000; 408 2004; 199 2006; 80 2011; 208 2011; 108 2001; 194 2007; 315 2010; 116 1999; 11 2007; 81 1999; 96 2009; 5 2009; 206 2006; 203 2009; 1174 1996; 86 1998; 282 e_1_2_8_27_2 e_1_2_8_28_2 Hoshino K (e_1_2_8_7_2) 1999; 162 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_25_2 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_2_2 e_1_2_8_4_2 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_20_2 e_1_2_8_21_2 e_1_2_8_22_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_13_2 e_1_2_8_34_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_15_2 e_1_2_8_36_2 e_1_2_8_31_2 e_1_2_8_30_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_11_2 e_1_2_8_32_2 Pantel A (e_1_2_8_24_2) 2011 |
References_xml | – reference: Trumpfheller C, Finke JS, Lopez CB et al. Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. J Exp Med 2006; 203: 607-17. – reference: Pulendran B, Smith JL, Caspary G et al. Distinct dendritic cell subsets differentially regulate the class of immune responses in vivo. Proc Natl Acad Sci USA 1999; 96: 1036-41. – reference: Maldonado-Lopez R, De Smedt T, Michel P et al. CD8a+ and CD8a- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 1999; 189: 587-92. – reference: Nchinda G, Amadu D, Trumpfheller C, Mizenina O, Uberla K, Steinman RM. Dendritic cell targeted HIV gag protein vaccine provides help to a DNA vaccine including mobilization of protective CD8+ T cells. Proc Natl Acad Sci USA 2010; 107: 4281-6. – reference: Wang B, Kuroiwa JM, He LZ, Charalambous A, Keler T, Steinman RM. The human cancer antigen mesothelin is more efficiently presented to the mouse immune system when targeted to the DEC-205/CD205 receptor on dendritic cells. Ann N Y Acad Sci 2009; 1174: 6-17. – reference: Salazar AM, Levy HB, Ondra S et al. Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery 1996; 38: 1096-103. – reference: Bozzacco L, Trumpfheller C, Siegal FP et al. DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc Natl Acad Sci USA 2007; 104: 1289-94. – reference: Novitsky V, Gilbert P, Peter T et al. Association between virus-specific T-cell responses and plasma viral load in human immunodeficiency virus type 1 subtype C infection. J Virol 2003; 77: 882-90. – reference: Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86: 973-83. – reference: Idoyaga J, Lubkin A, Fiorese C et al. Comparable T helper 1 (Th1) and CD8 T-cell immnity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A. Proc Natl Acad Sci USA 2011; 108: 2384-9. – reference: Flynn BJ, Kastenmuller K, Wille-Reece U et al. Immunization with HIV Gag targeted to dendritic cells followed by recombinant NYVAC induces robust T cell immunity in non human primates. Proc Natl Acad Sci USA 2011; 108: 7131-6. – reference: Hawiger D, Inaba K, Dorsett Y et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 2001; 194: 769-80. – reference: Longhi MP, Trumpfheller C, Idoyaga J et al. Dendritic cells require a systemic type I interferon response to induce CD4+ Th1 immunity with poly IC as adjuvant. J Exp Med 2009; 206: 1589-602. – reference: Cheong C, Choi JH, Vitale L et al. Improved cellular and humoral immune responses in vivo following targeting of HIV Gag to dendritic cells within human anti-human DEC205 monoclonal antibody. Blood 2010; 116: 3828-38. – reference: Liu J, O'Brien KL, Lynch DM et al. Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys. Nature 2009; 457: 87-91. – reference: Pantel A, Cheong C, Dandamudi D et al. A new synthetic TLR4 agonist, GLA, allows dendritic cells targeted with antigento elicit Th1 T-cell immunity in vivo. Eur J Immunol 2011; doi: 10.1002/eji.201141855. – reference: Zuniga R, Lucchetti A, Galvan P et al. Relative dominance of Gag p24-specific cytotoxic T lymphocytes is associated with human immunodeficiency virus control. J Virol 2006; 80: 3122-5. – reference: Caskey M, Lefebvre F, Filali-Mouhim A et al. Synthetic double stranded RNA reliably induces innate immunity similar to a live viral vaccine in humans. J Exp Med 2011; 208: 2357-66. – reference: Medzhitov R, Preston-Hurlburt P, Janeway Jr CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388: 394-7. – reference: Hermansson A, Ketelhuth DF, Strodthoff D et al. Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J Exp Med 2010; 207: 1081-93. – reference: Poltorak A, He X, Smirnova I et al. Defective LPS signaling in C3H/Hej and C57BL/10ScCr Mice: mutations in TLr4 gene. Science 1998; 282: 2085-8. – reference: Granelli-Piperno A, Pritsker A, Pack M et al. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction. J Immunol 2005; 175: 4265-73. – reference: Ramduth D, Chetty P, Mngquandaniso NC et al. Differential immunogenicity of HIV-1 clade C proteins in eliciting CD8+ and CD4+ cell responses. J Infect Dis 2005; 192: 1588-96. – reference: Kiepiela P, Ngumbela K, Thobakgale C et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat Med 2007; 13: 46-53. – reference: Geldmacher C, Currier JR, Herrmann E et al. CD8 T-cell recognition of multiple epitopes within specific Gag regions is associated with maintenance of a low steady-state viremia in human immunodeficiency virus type 1-seropositive patients. J Virol 2007; 81: 2440-8. – reference: Stahl-Hennig C, Eisenblatter M, Jasny E et al. Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques. PLoS pathog 2009; 5: e1000373. – reference: Qureshi ST, Lariviere L, Leveque G et al. Endotoxin-tolerant mice have mutations in toll-like receptor 4 (Tlr4). J Exp Med 1999; 189: 615-25. – reference: Jiang W, Swiggard WJ, Heufler C et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 1995; 375: 151-5. – reference: Sela U, Olds P, Park A, Schlesinger SJ, Steinman RM. Dendritic cells induce antigen-specific Treg that prevent graft vs. host disease and persist in mice. J Exp Med 2011; 208: 2489-96. – reference: Takeuchi O, Hoshino K, Kawai T et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999; 11: 443-51. – reference: Trumpfheller C, Caskey M, Nchinda G et al. The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine. Proc Natl Acad Sci USA 2008; 105: 2574-9. – reference: Hoshino K, Takeuchi O, Kawai T et al. Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999; 162: 3749-52. – reference: Hemmi H, Takeuchi O, Kawai T et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 740-5. – reference: Edwards BH, Bansal A, Sabbaj S, Bakari J, Mulligan MJ, Goepfert PA. Magnitude of functional CD8+ T-cell responses to the gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma. J Virol 2002; 76: 2298-22305. – reference: Fujii S, Liu K, Smith C, Bonito AJ, Steinman RM. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 2004; 199: 1607-18. – reference: Bonifaz LC, Bonnyay DP, Charalambous A et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 2004; 199: 815-24. – reference: Dudziak D, Kamphorst AO, Heidkamp GF et al. Differential antigen processing by dendritic cell subsets in vivo. Science 2007; 315: 107-11. – reference: Soares H, Waechter H, Glaichenhaus N et al. A subset of dendritic cells induces CD4+ T cells to produce IFN-g by an IL-12-independent but CD70-dependent mechanism in vivo. J Exp Med 2007; 204: 1095-106. – volume: 203 start-page: 607 year: 2006 end-page: 17 article-title: Intensified and protective CD4 T cell immunity in mice with anti‐dendritic cell HIV gag fusion antibody vaccine publication-title: J Exp Med – volume: 208 start-page: 2357 year: 2011 end-page: 66 article-title: Synthetic double stranded RNA reliably induces innate immunity similar to a live viral vaccine in humans publication-title: J Exp Med – volume: 375 start-page: 151 year: 1995 end-page: 5 article-title: The receptor DEC‐205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing publication-title: Nature – volume: 107 start-page: 4281 year: 2010 end-page: 6 article-title: Dendritic cell targeted HIV gag protein vaccine provides help to a DNA vaccine including mobilization of protective CD8 T cells publication-title: Proc Natl Acad Sci USA – volume: 81 start-page: 2440 year: 2007 end-page: 8 article-title: CD8 T‐cell recognition of multiple epitopes within specific Gag regions is associated with maintenance of a low steady‐state viremia in human immunodeficiency virus type 1‐seropositive patients publication-title: J Virol – volume: 194 start-page: 769 year: 2001 end-page: 80 article-title: Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo publication-title: J Exp Med – volume: 11 start-page: 443 year: 1999 end-page: 51 article-title: Differential roles of TLR2 and TLR4 in recognition of gram‐negative and gram‐positive bacterial cell wall components publication-title: Immunity – volume: 108 start-page: 7131 year: 2011 end-page: 6 article-title: Immunization with HIV Gag targeted to dendritic cells followed by recombinant NYVAC induces robust T cell immunity in non human primates publication-title: Proc Natl Acad Sci USA – volume: 108 start-page: 2384 year: 2011 end-page: 9 article-title: Comparable T helper 1 (Th1) and CD8 T‐cell immnity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A publication-title: Proc Natl Acad Sci USA – volume: 408 start-page: 740 year: 2000 end-page: 5 article-title: A Toll‐like receptor recognizes bacterial DNA publication-title: Nature – volume: 189 start-page: 587 year: 1999 end-page: 92 article-title: CD8a and CD8a subclasses of dendritic cells direct the development of distinct T helper cells in vivo publication-title: J Exp Med – volume: 162 start-page: 3749 year: 1999 end-page: 52 article-title: Toll‐like receptor 4 (TLR4)‐deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product publication-title: J Immunol – volume: 80 start-page: 3122 year: 2006 end-page: 5 article-title: Relative dominance of Gag p24‐specific cytotoxic T lymphocytes is associated with human immunodeficiency virus control publication-title: J Virol – volume: 199 start-page: 815 year: 2004 end-page: 24 article-title: In vivo targeting of antigens to maturing dendritic cells via the DEC‐205 receptor improves T cell vaccination publication-title: J Exp Med – volume: 104 start-page: 1289 year: 2007 end-page: 94 article-title: DEC‐205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8 T cells in a spectrum of human MHC I haplotypes publication-title: Proc Natl Acad Sci USA – volume: 96 start-page: 1036 year: 1999 end-page: 41 article-title: Distinct dendritic cell subsets differentially regulate the class of immune responses publication-title: Proc Natl Acad Sci USA – volume: 457 start-page: 87 year: 2009 end-page: 91 article-title: Immune control of an SIV challenge by a T‐cell‐based vaccine in rhesus monkeys publication-title: Nature – volume: 38 start-page: 1096 year: 1996 end-page: 103 article-title: Long‐term treatment of malignant gliomas with intramuscularly administered polyinosinic‐polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study publication-title: Neurosurgery – year: 2011 article-title: A new synthetic TLR4 agonist, GLA, allows dendritic cells targeted with antigento elicit Th1 T‐cell immunity in vivo publication-title: Eur J Immunol – volume: 388 start-page: 394 year: 1997 end-page: 7 article-title: A human homologue of the Drosophila Toll protein signals activation of adaptive immunity publication-title: Nature – volume: 5 start-page: e1000373 year: 2009 article-title: Synthetic double‐stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques publication-title: PLoS pathog – volume: 199 start-page: 1607 year: 2004 end-page: 18 article-title: The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation publication-title: J Exp Med – volume: 105 start-page: 2574 year: 2008 end-page: 9 article-title: The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine publication-title: Proc Natl Acad Sci USA – volume: 282 start-page: 2085 year: 1998 end-page: 8 article-title: Defective LPS signaling in C3H/Hej and C57BL/10ScCr Mice: mutations in gene publication-title: Science – volume: 116 start-page: 3828 year: 2010 end-page: 38 article-title: Improved cellular and humoral immune responses in vivo following targeting of HIV Gag to dendritic cells within human anti‐human DEC205 monoclonal antibody publication-title: Blood – volume: 13 start-page: 46 year: 2007 end-page: 53 article-title: CD8 T‐cell responses to different HIV proteins have discordant associations with viral load publication-title: Nat Med – volume: 207 start-page: 1081 year: 2010 end-page: 93 article-title: Inhibition of T cell response to native low‐density lipoprotein reduces atherosclerosis publication-title: J Exp Med – volume: 76 start-page: 2298 year: 2002 end-page: 22305 article-title: Magnitude of functional CD8+ T‐cell responses to the gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma publication-title: J Virol – volume: 204 start-page: 1095 year: 2007 end-page: 106 article-title: A subset of dendritic cells induces CD4 T cells to produce IFN‐g by an IL‐12‐independent but CD70‐dependent mechanism in vivo publication-title: J Exp Med – volume: 315 start-page: 107 year: 2007 end-page: 11 article-title: Differential antigen processing by dendritic cell subsets publication-title: Science – volume: 192 start-page: 1588 year: 2005 end-page: 96 article-title: Differential immunogenicity of HIV‐1 clade C proteins in eliciting CD8+ and CD4+ cell responses publication-title: J Infect Dis – volume: 206 start-page: 1589 year: 2009 end-page: 602 article-title: Dendritic cells require a systemic type I interferon response to induce CD4 Th1 immunity with poly IC as adjuvant publication-title: J Exp Med – volume: 189 start-page: 615 year: 1999 end-page: 25 article-title: Endotoxin‐tolerant mice have mutations in toll‐like receptor 4 (Tlr4) publication-title: J Exp Med – volume: 175 start-page: 4265 year: 2005 end-page: 73 article-title: Dendritic cell‐specific intercellular adhesion molecule 3‐grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction publication-title: J Immunol – volume: 86 start-page: 973 year: 1996 end-page: 83 article-title: The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults publication-title: Cell – volume: 1174 start-page: 6 year: 2009 end-page: 17 article-title: The human cancer antigen mesothelin is more efficiently presented to the mouse immune system when targeted to the DEC‐205/CD205 receptor on dendritic cells publication-title: Ann N Y Acad Sci – volume: 208 start-page: 2489 year: 2011 end-page: 96 article-title: Dendritic cells induce antigen‐specific Treg that prevent graft vs. host disease and persist in mice publication-title: J Exp Med – volume: 77 start-page: 882 year: 2003 end-page: 90 article-title: Association between virus‐specific T‐cell responses and plasma viral load in human immunodeficiency virus type 1 subtype C infection publication-title: J Virol – ident: e_1_2_8_30_2 doi: 10.1073/pnas.96.3.1036 – ident: e_1_2_8_11_2 doi: 10.1128/JVI.80.6.3122-3125.2006 – year: 2011 ident: e_1_2_8_24_2 article-title: A new synthetic TLR4 agonist, GLA, allows dendritic cells targeted with antigento elicit Th1 T‐cell immunity in vivo publication-title: Eur J Immunol – ident: e_1_2_8_4_2 doi: 10.1016/S0092-8674(00)80172-5 – ident: e_1_2_8_29_2 doi: 10.1084/jem.20070176 – ident: e_1_2_8_27_2 doi: 10.1073/pnas.1019547108 – ident: e_1_2_8_5_2 doi: 10.1038/41131 – ident: e_1_2_8_37_2 doi: 10.1084/jem.20111171 – ident: e_1_2_8_26_2 doi: 10.1073/pnas.0610383104 – ident: e_1_2_8_6_2 doi: 10.1111/j.1462-5822.2006.00796.x – ident: e_1_2_8_3_2 doi: 10.1038/375151a0 – ident: e_1_2_8_22_2 doi: 10.1073/pnas.0711976105 – ident: e_1_2_8_23_2 doi: 10.1084/jem.20040317 – ident: e_1_2_8_17_2 doi: 10.1038/nature07469 – ident: e_1_2_8_36_2 doi: 10.1073/pnas.1000621107 – ident: e_1_2_8_34_2 doi: 10.1084/jem.194.6.769 – ident: e_1_2_8_38_2 doi: 10.1111/j.1749-6632.2009.04933.x – ident: e_1_2_8_18_2 doi: 10.1084/jem.20052005 – volume: 162 start-page: 3749 year: 1999 ident: e_1_2_8_7_2 article-title: Toll‐like receptor 4 (TLR4)‐deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product publication-title: J Immunol doi: 10.4049/jimmunol.162.7.3749 – ident: e_1_2_8_8_2 doi: 10.1084/jem.189.4.615 – ident: e_1_2_8_16_2 doi: 10.1128/JVI.01847-06 – ident: e_1_2_8_9_2 doi: 10.1016/S1074-7613(00)80119-3 – ident: e_1_2_8_13_2 doi: 10.1128/JVI.77.2.882-890.2003 – ident: e_1_2_8_10_2 doi: 10.1038/35047123 – ident: e_1_2_8_20_2 doi: 10.1371/journal.ppat.1000373 – ident: e_1_2_8_21_2 doi: 10.1084/jem.20090247 – ident: e_1_2_8_35_2 doi: 10.1073/pnas.1103869108 – ident: e_1_2_8_15_2 doi: 10.1038/nm1520 – ident: e_1_2_8_28_2 doi: 10.1126/science.1136080 – ident: e_1_2_8_32_2 doi: 10.4049/jimmunol.175.7.4265 – ident: e_1_2_8_14_2 doi: 10.1086/496894 – ident: e_1_2_8_19_2 doi: 10.1227/00006123-199606000-00006 – ident: e_1_2_8_39_2 doi: 10.1084/jem.20110466 – ident: e_1_2_8_31_2 doi: 10.1084/jem.189.3.587 – ident: e_1_2_8_2_2 doi: 10.1084/jem.20092243 – ident: e_1_2_8_12_2 doi: 10.1128/jvi.76.5.2298-2305.2002 – ident: e_1_2_8_33_2 doi: 10.1182/blood-2010-06-288068 – ident: e_1_2_8_25_2 doi: 10.1084/jem.20032220 |
SSID | ssj0013060 |
Score | 2.4164977 |
SecondaryResourceType | review_article |
Snippet | . Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, Schlesinger SJ, Steinman RM (The Rockefeller University, New York, NY; and Celldex... Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, Schlesinger SJ, Steinman RM (The Rockefeller University, New York, NY; and Celldex... Current vaccines primarily work by inducing protective antibodies. However, in many infections like HIV, malaria and tuberculosis as well as cancers, there... Current vaccines primarily work by inducing protective antibodies. However, in many infections like HIV, malaria and tuberculosis as well as cancers there... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 183 |
SubjectTerms | adjuvant Adjuvants, Immunologic - pharmacology Animals Antigens, CD - immunology Biological and medical sciences Carboxymethylcellulose Sodium - analogs & derivatives Carboxymethylcellulose Sodium - pharmacology CD8-Positive T-Lymphocytes - immunology cross-presentation DEC-205 dendritic cells Dendritic Cells - immunology Gene Products, gag - immunology General aspects Human immunodeficiency virus Humans Immunity, Cellular - immunology Interferon Inducers - pharmacology Lectins, C-Type - immunology Macaca mulatta Medical sciences Mice Minor Histocompatibility Antigens Mycobacterium Poly I-C - pharmacology Polylysine - analogs & derivatives Polylysine - pharmacology Prevention and actions protein vaccine Public health. Hygiene Public health. Hygiene-occupational medicine Receptors, Cell Surface - immunology Signal Transduction - immunology T cells T-Lymphocytes - immunology Toll-Like Receptors - immunology Vaccines - immunology |
Title | Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity |
URI | https://api.istex.fr/ark:/67375/WNG-85PZN7CQ-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2796.2011.02496.x https://www.ncbi.nlm.nih.gov/pubmed/22126373 https://www.proquest.com/docview/1020837696 https://www.proquest.com/docview/916854139 https://pubmed.ncbi.nlm.nih.gov/PMC3261312 |
Volume | 271 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtQwELVQkRAv3C8pUBkJ8ZZVLo6T9A0VSqm0y0WtWPFi-SpWW2VRN1sVnvgEvpEvYcbOpg0UqUK8rRJPNj4Zx8fxzBlCnsGcWycSFjmV0ypmirtYOqXjtCgNs0wyWWKC83jC9w7Z_rSYdvFPmAsT9CH6D244Mvz7Gge4VMvhIA_5VDXvlDhhJcFHyCfxBPKjD9nZhkLiE4aBULCYw6w3DOq58EKDmeoqgn6KkZNyCeC5UPXiIlr6Z3Tledbrp63dm2S-7nCIVpmPVq0a6W-_aUH-H0RukRsdu6UvgjveJldsc4dcG3f793fJ9KVtjC-uQHHH4Of3HyES3RrqBSNmDT2RGtsut6mkzeLEHtG17DltF3TWGPBFegCWeAE68-kt7dd75HD31cHOXtzVdog1EEQegw9YZ2WqtHG1KU0O1IGpFJ-TqgxwNG6YqxPGTJV4iXuTVM5UXBmbskKz_D7ZaBaNfUioVtCsKjizyjAsnS6d5LrKjTUmy2QdkXL9HIXuhM-x_saROLcAAuAEAicQOOGBE6cRSXvLL0H84xI2z72r9AbyeI7Bc2UhPk5ei6p492lS7rwXWUS2Br7UG2QoFgxdj8jTtXMJGPOIqmzsYrWEe8iAOZe85hGhf2kDtL8qgKFA9x8Efzz7A6ArPC9zAGbgqX0DlBwfnmlmn730OJD9NE_h3kvviJdGRey_fTPGn5v_bPmIXIfjWYiYf0w22uOVfQKEsFVbfqj_ArpuU8k |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtNAEF2hVgJeoNxd2rJIiDdHvqzXNm-oF9LShItSEfGy2ptF1MipGqcqPPEJfCNfwszacWsoUoV4i5Qdx3s8kz3rnTlDyAtYc_NAwiYnK7TymeKFLwul_TBJDbNMMpligfNgyPtH7GCcjJt2QFgLU-tDtC_cMDLc_zUGOL6Q7kZ5XVCV80aKE7YSvAeEchUbfKOQ_s7H6OJIIXAlw0ApmM9h3eum9Vx5pc5atYqwn2PupJwDfEXd9-IqYvpnfuVl3usWrr27ZLqccp2vctxbVKqnv_2mBvmfMFkjdxqCS1_XHnmP3LDlfXJz0BzhPyDjHVsa11-B4qHBz-8_6mR0a6jTjJiU9ExqHDt_RSUtZ2d2SpfK57Sa0UlpwB3pCCzxAnTiKlyqrw_J0d7uaLvvN-0dfA0ckfvgBrawMlTaFLlJTQzsgakQH5TKDNA0bliRB4yZLHAq9ybICpNxZWzIEs3iR2SlnJX2CaFawbAs4cwqw7B7uiwk11lsrDFRJHOPpMsHKXSjfY4tOKbi0h4IgBMInEDghANOnHskbC1Pav2Pa9i8dL7SGsjTY8yfSxPxafhGZMn7z8N0-4OIPLLVcabWIEK9YJi6R54vvUtA2COqsrSzxRzuIQLynPKce4T-ZQww_ywBkgLTf1w75MUPAGPhcRoDMB1XbQeg6nj3m3LyxamPA98P4xDuPXWeeG1UxMG7_QF-XP9ny2fkVn80OBSH-8O3T8ltGBPVCfQbZKU6XdhN4IeV2nJx_wvbSFfl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtNAEF2hVqp44Q4Nl7JIiDdHvqzXNm-oIbSFhIJaEfGy2quIUjlV41SFJz6Bb-RLmFk7bg1FqhBvkTLjeI9nsme9s2cIeQ5zbhFKWOTkTquAKe4C6ZQOojQzzDLJZIYHnEdjvnPI9ibppKl_wrMwtT5E-8INM8P_X2OCHxvXTfL6PFXBGyVOWEnwPvDJdcbDAts4DD7G5zsKoT8xDIyCBRymvW5Vz6VX6kxV64j6GZZOygWg5-q2F5fx0j_LKy_SXj9vDW-S2WrEdbnKrL-sVF9_-00M8v9AcovcaOgtfVXH421yzZZ3yMao2cC_SyYDWxrfXYHilsHP7z_qUnRrqFeMmJb0VGq0XbykkpbzU3tEV7rntJrTaWkgGOkBeOIF6NSfb6m-3iOHw9cH2ztB09wh0MAQeQBBYJ2VkdLGFSYzCXAHpiJ8Tio3QNK4Ya4IGTN56DXuTZg7k3NlbMRSzZL7ZK2cl3aTUK3ALE85s8ow7J0uneQ6T4w1Jo5l0SPZ6jkK3SifYwOOI3FhBQTACQROIHDCAyfOeiRqPY9r9Y8r-LzwodI6yJMZVs9lqfg0fiPydP_zONv-IOIe2erEUusQo1owDL1Hnq2CS0DSI6qytPPlAu4hBuqc8YL3CP2LDfD-PAWKAsN_UMfj-Q8AX-FJlgAwnUhtDVBzvPtNOf3itceB7UdJBPee-UC8Mipi7_3uCD8-_GfPp2RjfzAU73bHbx-R62AS19Xzj8ladbK0T4AcVmrLZ_0vgv9WlA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dendritic+cell%E2%80%90targeted+protein+vaccines%3A+a+novel+approach+to+induce+T%E2%80%90cell+immunity&rft.jtitle=Journal+of+internal+medicine&rft.au=Trumpfheller%2C+C.&rft.au=Longhi%2C+M.+P.&rft.au=Caskey%2C+M.&rft.au=Idoyaga%2C+J.&rft.date=2012-02-01&rft.issn=0954-6820&rft.eissn=1365-2796&rft.volume=271&rft.issue=2&rft.spage=183&rft.epage=192&rft_id=info:doi/10.1111%2Fj.1365-2796.2011.02496.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2796_2011_02496_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-6820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-6820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-6820&client=summon |