Leaf temperatures mediate alpine plant communities’ response to a simulated extended summer
We use a quantitative model of photosynthesis to explore leaf‐level limitations to plant growth in an alpine tundra ecosystem that is expected to have longer, warmer, and drier growing seasons. The model is parameterized with abiotic and leaf trait data that is characteristic of two dominant plant c...
Saved in:
Published in | Ecology and evolution Vol. 9; no. 3; pp. 1227 - 1243 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.02.2019
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We use a quantitative model of photosynthesis to explore leaf‐level limitations to plant growth in an alpine tundra ecosystem that is expected to have longer, warmer, and drier growing seasons. The model is parameterized with abiotic and leaf trait data that is characteristic of two dominant plant communities in the alpine tundra and specifically at the Niwot Ridge Long Term Ecological Research Site: the dry and wet meadows. Model results produce realistic estimates of photosynthesis, nitrogen‐use efficiency, water‐use efficiency, and other gas exchange processes in the alpine tundra. Model simulations suggest that dry and wet meadow plant species do not significantly respond to changes in the volumetric soil moisture content but are sensitive to variation in foliar nitrogen content. In addition, model simulations indicate that dry and wet meadow species have different maximum rates of assimilation (normalized for leaf nitrogen content) because of differences in leaf temperature. These differences arise from the interaction of plant height and the abiotic environment characteristic of each plant community. The leaf temperature of dry meadow species is higher than wet meadow species and close to the optimal temperature for photosynthesis under current conditions. As a result, 2°C higher air temperatures in the future will likely lead to declines in dry meadow species’ carbon assimilation. On the other hand, a longer and warmer growing season could increase nitrogen availability and assimilation rates in both plant communities. Nonetheless, a temperature increase of 4°C may lower rates of assimilation in both dry and wet meadow plant communities because of higher, and suboptimal, leaf temperatures.
We use a quantitative model of photosynthesis to explore leaf‐level limitations to plant growth in an alpine tundra ecosystem that is expected to have longer, warmer, and drier growing seasons. Model simulations indicate that dry and wet meadow species have different rates of assimilation (normalized for leaf nitrogen content) in an extended summer because of differences in the leaf temperature. These differences arise from the interaction of plant height and the abiotic environment characteristic of each plant community. |
---|---|
AbstractList | Abstract We use a quantitative model of photosynthesis to explore leaf‐level limitations to plant growth in an alpine tundra ecosystem that is expected to have longer, warmer, and drier growing seasons. The model is parameterized with abiotic and leaf trait data that is characteristic of two dominant plant communities in the alpine tundra and specifically at the Niwot Ridge Long Term Ecological Research Site: the dry and wet meadows. Model results produce realistic estimates of photosynthesis, nitrogen‐use efficiency, water‐use efficiency, and other gas exchange processes in the alpine tundra. Model simulations suggest that dry and wet meadow plant species do not significantly respond to changes in the volumetric soil moisture content but are sensitive to variation in foliar nitrogen content. In addition, model simulations indicate that dry and wet meadow species have different maximum rates of assimilation (normalized for leaf nitrogen content) because of differences in leaf temperature. These differences arise from the interaction of plant height and the abiotic environment characteristic of each plant community. The leaf temperature of dry meadow species is higher than wet meadow species and close to the optimal temperature for photosynthesis under current conditions. As a result, 2°C higher air temperatures in the future will likely lead to declines in dry meadow species’ carbon assimilation. On the other hand, a longer and warmer growing season could increase nitrogen availability and assimilation rates in both plant communities. Nonetheless, a temperature increase of 4°C may lower rates of assimilation in both dry and wet meadow plant communities because of higher, and suboptimal, leaf temperatures. We use a quantitative model of photosynthesis to explore leaf‐level limitations to plant growth in an alpine tundra ecosystem that is expected to have longer, warmer, and drier growing seasons. The model is parameterized with abiotic and leaf trait data that is characteristic of two dominant plant communities in the alpine tundra and specifically at the Niwot Ridge Long Term Ecological Research Site: the dry and wet meadows. Model results produce realistic estimates of photosynthesis, nitrogen‐use efficiency, water‐use efficiency, and other gas exchange processes in the alpine tundra. Model simulations suggest that dry and wet meadow plant species do not significantly respond to changes in the volumetric soil moisture content but are sensitive to variation in foliar nitrogen content. In addition, model simulations indicate that dry and wet meadow species have different maximum rates of assimilation (normalized for leaf nitrogen content) because of differences in leaf temperature. These differences arise from the interaction of plant height and the abiotic environment characteristic of each plant community. The leaf temperature of dry meadow species is higher than wet meadow species and close to the optimal temperature for photosynthesis under current conditions. As a result, 2°C higher air temperatures in the future will likely lead to declines in dry meadow species’ carbon assimilation. On the other hand, a longer and warmer growing season could increase nitrogen availability and assimilation rates in both plant communities. Nonetheless, a temperature increase of 4°C may lower rates of assimilation in both dry and wet meadow plant communities because of higher, and suboptimal, leaf temperatures. We use a quantitative model of photosynthesis to explore leaf‐level limitations to plant growth in an alpine tundra ecosystem that is expected to have longer, warmer, and drier growing seasons. The model is parameterized with abiotic and leaf trait data that is characteristic of two dominant plant communities in the alpine tundra and specifically at the Niwot Ridge Long Term Ecological Research Site: the dry and wet meadows. Model results produce realistic estimates of photosynthesis, nitrogen‐use efficiency, water‐use efficiency, and other gas exchange processes in the alpine tundra. Model simulations suggest that dry and wet meadow plant species do not significantly respond to changes in the volumetric soil moisture content but are sensitive to variation in foliar nitrogen content. In addition, model simulations indicate that dry and wet meadow species have different maximum rates of assimilation (normalized for leaf nitrogen content) because of differences in leaf temperature. These differences arise from the interaction of plant height and the abiotic environment characteristic of each plant community. The leaf temperature of dry meadow species is higher than wet meadow species and close to the optimal temperature for photosynthesis under current conditions. As a result, 2°C higher air temperatures in the future will likely lead to declines in dry meadow species’ carbon assimilation. On the other hand, a longer and warmer growing season could increase nitrogen availability and assimilation rates in both plant communities. Nonetheless, a temperature increase of 4°C may lower rates of assimilation in both dry and wet meadow plant communities because of higher, and suboptimal, leaf temperatures. We use a quantitative model of photosynthesis to explore leaf‐level limitations to plant growth in an alpine tundra ecosystem that is expected to have longer, warmer, and drier growing seasons. Model simulations indicate that dry and wet meadow species have different rates of assimilation (normalized for leaf nitrogen content) in an extended summer because of differences in the leaf temperature. These differences arise from the interaction of plant height and the abiotic environment characteristic of each plant community. |
Author | Wentz, Katherine F. Suding, Katharine N. Neff, Jason C. |
AuthorAffiliation | 3 Institute of Arctic & Alpine Research, Ecology & Evolutionary Biology Department University of Colorado Boulder Colorado 1 Remote Sensing Systems Santa Rosa California 2 Environmental Studies Department University of Colorado Boulder Colorado |
AuthorAffiliation_xml | – name: 3 Institute of Arctic & Alpine Research, Ecology & Evolutionary Biology Department University of Colorado Boulder Colorado – name: 1 Remote Sensing Systems Santa Rosa California – name: 2 Environmental Studies Department University of Colorado Boulder Colorado |
Author_xml | – sequence: 1 givenname: Katherine F. orcidid: 0000-0002-2332-1400 surname: Wentz fullname: Wentz, Katherine F. email: katherinewentz10@gmail.com organization: Remote Sensing Systems – sequence: 2 givenname: Jason C. surname: Neff fullname: Neff, Jason C. organization: University of Colorado – sequence: 3 givenname: Katharine N. surname: Suding fullname: Suding, Katharine N. organization: University of Colorado |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30805155$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU9vFCEYh4mpsXXtwS9gJvHkYVv-DszFxGy22mQTL3o0hIWXymZmGIGp9ubX6Nfzk8h2a9Me5AKBh4f35fcSHY1xBIReE3xGMKbnYIGdcUXaZ-iEYi6WUgp19Gh9jE5z3uE6Wkw5li_QMcMKCyLECfq2AeObAsMEyZQ5QW4GcMEUaEw_hRGaqTdjaWwchnkMJUD-8_u2qdwUxwxNiY1pchjmvl5xDfwqMLq6yPMwQHqFnnvTZzi9nxfo68X6y-rTcvP54-Xqw2ZphRTtklNPjPTKcdcR5r0h1mPiPHFEdtJgwwEIEIldp7xgmNnWms5iq4SxRmzZAl0evC6anZ5SGEy60dEEfbcR05U2qQTbg2ZccmoFddx63iquHLG0Y3LLpaOdVNX1_uCa5m39CgtjSaZ_In16Mobv-ipe65ZJLmtxC_T2XpDijxly0bs4p7H2r2nth1IsFa_UuwNlU8w5gX94gWC9D1bvg9X7YCv75nFJD-S_GCtwfgB-hh5u_m_S69Wa3Sn_AgezsLU |
CitedBy_id | crossref_primary_10_1111_1365_2745_14197 crossref_primary_10_1029_2023JG007664 crossref_primary_10_1080_15230430_2021_2022995 |
Cites_doi | 10.1016/1352-2310(95)00463-7 10.1111/1365-2745.12363 10.2307/2423481 10.1046/j.1365-3040.1999.00479.x 10.1002/2016JG003704 10.1016/S0065-2504(08)60016-1 10.1371/journal.pone.0044370 10.1046/j.1365-3040.1997.d01-133.x 10.1016/B978-0-12-385874-0.00003-0 10.1890/0012-9658(2001)082[3295:FACOGI]2.0.CO;2 10.1086/285524 10.1146/annurev.pp.33.060182.001533 10.1111/j.1469-8137.2005.01349.x 10.1016/j.cub.2012.03.044 10.1093/oso/9780195117288.003.0012 10.1007/s004420050560 10.1111/j.1654-1103.2005.tb02379.x 10.1002/2016GB005392 10.1017/CBO9780511805530.017 10.1890/ES13-00133.1 10.1017/CBO9780511805530.018 10.1093/treephys/14.7-8-9.1069 10.1111/j.1365-2745.2011.01945.x 10.1111/j.1600-0587.2012.07438.x 10.2307/1550081 10.1007/s10533-015-0122-3 10.1093/aob/mcs268 10.2307/3546321 10.1146/annurev.pp.31.060180.002423 10.1016/j.jenvman.2012.03.002 10.1046/j.1365-3040.2002.00890.x 10.1111/j.1654-1103.2004.tb02266.x 10.1111/j.1365-2486.2009.02122.x 10.1029/2007JG000419 10.1007/BF00258285 10.2307/1551871 10.1016/j.envpol.2009.08.004 10.1126/science.201.4356.614 10.1007/BF00384257 10.1111/1365-3040.ep11587620 10.1890/0012-9658(1999)080[1883:SPONBP]2.0.CO;2 10.1029/2007GL031253 10.1086/283101 10.1006/anbo.1997.0512 10.1007/978-3-642-68090-8_4 10.1111/1365-2745.12211 10.1038/nclimate1465 10.2136/sssaj2005.0117 10.1016/B978-0-12-385874-0.00005-4 10.1046/j.1365-2435.1998.00274.x 10.1073/pnas.1100555108 10.1073/pnas.91.15.7217 10.1007/978-94-017-0519-6_48 10.1002/ece3.1173 10.1007/BF00386231 10.1016/j.plantsci.2012.05.009 10.1093/jxb/48.2.345 10.1657/1523-0430(2003)035[0144:ALVIFN]2.0.CO;2 10.1093/treephys/21.4.223 10.1007/BF00377192 10.2307/1551647 10.2307/1551216 10.1023/B:CLIM.0000013702.22656.e8 10.1093/treephys/tpv118 10.1046/j.0016-8025.2003.01123.x 10.1093/oso/9780195117288.003.0016 10.1890/0012-9658(1997)078[1861:NAPAAS]2.0.CO;2 10.1071/PP9890199 10.1890/0012-9658(1998)079[2253:TPOAAB]2.0.CO;2 10.1111/j.1365-3040.2011.02340.x 10.1890/04-1926 10.1002/j.1537-2197.1960.tb14911.x 10.1657/1938-4246-46.4.735 10.1016/S0168-1923(02)00128-4 10.1657/1523-0430(2005)037[0444:CSIAPT]2.0.CO;2 10.1007/BF00317912 10.1007/BF01894807 10.1007/s10584-009-9546-x 10.2307/1929755 10.1007/BF00376856 10.1016/j.agrformet.2013.07.005 10.1002/(SICI)1099-1085(199910)13:14/15<2315::AID-HYP888>3.0.CO;2-A 10.1080/17550874.2015.1123317 10.1111/j.1365-2486.2008.01557.x 10.1038/nclimate2563 10.1007/BF00317287 10.1007/s004420000544 10.1016/j.advwatres.2013.09.020 10.2136/sssaj1995.03615995005900040012x 10.14430/arctic3564 10.1080/17550874.2013.819533 10.1007/s10533-016-0193-9 10.1002/hyp.7128 10.1046/j.1365-3040.2002.00891.x 10.1038/nature16489 10.1023/A:1009853730949 10.1007/s00442-007-0865-1 10.2307/3545637 10.1111/j.1365-2745.2011.01925.x 10.1111/j.1365-2699.2010.02407.x 10.1890/1051-0761(2006)016[1183:NCLFAV]2.0.CO;2 10.2307/2265597 10.1073/pnas.1310700110 10.1007/978-3-642-87851-0 10.1111/j.1365-3040.2008.01918.x 10.1080/15230430.2001.12003410 10.2307/1940854 10.1007/s00442-013-2695-7 |
ContentType | Journal Article |
Copyright | 2018 The Authors. published by John Wiley & Sons Ltd. 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2018 The Authors. published by John Wiley & Sons Ltd. – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN NPM AAYXX CITATION 3V. 7SN 7SS 7ST 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PIMPY PQEST PQQKQ PQUKI PRINS RC3 SOI 5PM DOA |
DOI | 10.1002/ece3.4816 |
DatabaseName | Wiley Open Access Wiley Online Library Open Access PubMed CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agriculture Science Database Biological Science Database Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Open Access: Wiley-Blackwell Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
DocumentTitleAlternate | WENTZ et al |
EISSN | 2045-7758 |
EndPage | 1243 |
ExternalDocumentID | oai_doaj_org_article_34742c52d4cf46848d1c2937b47d2978 10_1002_ece3_4816 30805155 ECE34816 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: DEB 1637686 – fundername: National Science Foundation grantid: DEB 1637686 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 7X2 8-0 8-1 8FE 8FH AAFWJ AAHBH AAHHS AAZKR ACCFJ ACGFO ACPRK ACXQS ADBBV ADKYN ADRAZ ADZMN ADZOD AEEZP AENEX AEQDE AFKRA AFPKN AFRAH AIAGR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS ATCPS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI CCPQU D-8 D-9 DIK EBS ECGQY EJD GODZA GROUPED_DOAJ GX1 HCIFZ HYE IAO IEP KQ8 LK8 M0K M48 M7P M~E OK1 PIMPY PROAC RNS ROL RPM SUPJJ WIN ITC NPM AAYXX CITATION 3V. 7SN 7SS 7ST 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PQEST PQQKQ PQUKI PRINS RC3 SOI 5PM |
ID | FETCH-LOGICAL-c5756-42f1a7f8d4d913ffa1cf01df1d1797a0a4ee1e170d98f5303c6ca9c0c85aca5b3 |
IEDL.DBID | RPM |
ISSN | 2045-7758 |
IngestDate | Tue Oct 22 15:11:00 EDT 2024 Tue Sep 17 21:09:28 EDT 2024 Thu Oct 10 16:10:23 EDT 2024 Fri Dec 06 05:41:15 EST 2024 Wed Oct 16 00:48:44 EDT 2024 Sat Aug 24 00:51:14 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | alpine tundra dry and wet meadows photosynthesis model climate change limitations |
Language | English |
License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5756-42f1a7f8d4d913ffa1cf01df1d1797a0a4ee1e170d98f5303c6ca9c0c85aca5b3 |
ORCID | 0000-0002-2332-1400 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374730/ |
PMID | 30805155 |
PQID | 2179220784 |
PQPubID | 2034651 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_34742c52d4cf46848d1c2937b47d2978 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6374730 proquest_journals_2179220784 crossref_primary_10_1002_ece3_4816 pubmed_primary_30805155 wiley_primary_10_1002_ece3_4816_ECE34816 |
PublicationCentury | 2000 |
PublicationDate | February 2019 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bognor Regis – name: Hoboken |
PublicationTitle | Ecology and evolution |
PublicationTitleAlternate | Ecol Evol |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2010; 16 2013; 4 1983; 3 1997; 48 2013; 62 1983; 4 2016; 30 1974; 6 2013; 6 2016; 37 1996; 75 1987; 38 1996; 77 1980; 149 1976; 110 1980; 31 1960; 47 2009; 94 1981; 153 1986 2013; 111 1981 2013; 110 2008; 113 1994; 70 2012; 22 1998; 12 1959; 40 2012; 100 1995; 59 1997; 20 2015; 125 1982; 33 2003; 35 1986; 18 2005; 86 1999; 22 1962; 15 2014; 46 1995 2013b 2013a 2012; 103 2004; 428 2001; 21 2012; 193–194 1994; 14 2003; 27 1978; 201 2013; 173 2001; 33 1959; 59 1994; 91 2005; 16 1994; 97 1998; 79 1997; 80 2006; 70 2015; 35 1987; 1 2004; 62 2008b 2015; 103 1987; 4 2008a 2002; 114 1996; 30 1994; 26 1998; 116 1999; 80 2007; 34 1989; 78 2014; 4 2001 1982; 5 2010; 158 1993; 74 2013; 182–183 1999; 13 1983; 60 2005; 37 2017; 122 2008; 154 1998; 27 2009; 23 2015; 5 1989; 21 2012 2006; 16 2016; 529 2008; 14 2008 2016; 128 2011; 34 2011; 38 2015; 8 2001; 126 1993; 142 1964; 60 2001; 82 2002; 25 2012; 2 2013; 36 2011; 108 2009; 32 2000; 148 2004; 15 2000; 30 1997; 78 2015 2014 1995; 101 2013 1989; 16 2012; 7 2014; 102 e_1_2_10_21_1 e_1_2_10_44_1 Berendse F. (e_1_2_10_6_1) 1987; 1 e_1_2_10_40_1 e_1_2_10_109_1 Chapin F. S. (e_1_2_10_27_1) 1987; 38 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 Field C. B. (e_1_2_10_49_1) 1986 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_82_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 Korner C. (e_1_2_10_65_1) 1983; 4 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 Dingman L. (e_1_2_10_39_1) 2014 e_1_2_10_121_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 Bowman W. D. (e_1_2_10_23_1) 1998; 27 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 Gaastra P. (e_1_2_10_54_1) 1959; 59 Chapin F. S. (e_1_2_10_29_1) 2012 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 Zhao Y. (e_1_2_10_122_1) 2016; 37 Lambers H. (e_1_2_10_66_1) 2008 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_96_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 14 start-page: 1069 issue: 7_9 year: 1994 end-page: 1079 article-title: An analytical solution for coupled leaf photosynthesis and stomatal conductance models publication-title: Tree Physiology – start-page: 229 year: 2008a end-page: 236 – volume: 101 start-page: 217 year: 1995 end-page: 227 article-title: Physiological and production responses of plant growth forms to increases in limiting resources in alpine tundra: Implications for differential community response to environmental change publication-title: Oecologia – volume: 30 start-page: 2527 issue: 14 year: 1996 end-page: 2537 article-title: Nitric acid, particulate nitrate and ammonium in the continental free troposphere: Nitrogen deposition to an alpine tundra ecosystem publication-title: Atmospheric Environment – volume: 20 start-page: 845 year: 1997 end-page: 866 article-title: A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade‐tolerant species publication-title: Plant, Cell and Environment – volume: 108 start-page: 4041 issue: 10 year: 2011 end-page: 4046 article-title: Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 149 start-page: 78 year: 1980 end-page: 90 article-title: A biochemical model of photosynthetic CO assimilation in leaves of C3 species publication-title: Planta – volume: 37 start-page: 444 issue: 4 year: 2005 end-page: 453 article-title: Consistent shifts in alpine plant traits along a mesotopographical gradient publication-title: Arctic, Antarctic, and Alpine Research – volume: 125 start-page: 185 year: 2015 end-page: 202 article-title: Soil respiration variability across a soil moisture and vegetation community gradient within a snow‐scoured alpine meadow publication-title: Biogeochemistry – volume: 158 start-page: 1015 issue: 4 year: 2010 end-page: 1022 article-title: Analysis of a Farquhar‐von Caemmerer‐Berry leaf‐level photosynthetic rate model for in the context of modeling and measurement limitations publication-title: Environmental Pollution – volume: 60 start-page: 384 year: 1983 end-page: 389 article-title: Compromises between water‐use efficiency and nitrogen‐use efficiency in five species of California evergreens publication-title: Oecologia – year: 2014 – volume: 529 start-page: 167 year: 2016 end-page: 171 article-title: The global spectrum of plant form and function publication-title: Nature – volume: 18 start-page: 83 issue: 1 year: 1986 end-page: 96 article-title: Factors influencing soil moisture and plant community distribution on Niwot Ridge, Front Range, Colorado, U.S.A publication-title: Arctic and Alpine Research – volume: 113 start-page: 1 year: 2008 end-page: 10 article-title: Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation publication-title: Journal of Geophysical Research – volume: 30 start-page: 1 year: 2000 end-page: 67 article-title: The mineral nutrition of wild plants revisited: A re‐evaluation of processes and patterns publication-title: Advances in Ecological Research – volume: 110 start-page: 743 issue: 975 year: 1976 end-page: 778 article-title: Sizes and shapes of liane leaves publication-title: American Society of Naturalists – volume: 6 start-page: 303 issue: 3–4 year: 2013 end-page: 306 article-title: Climate change and extreme events—Their impacts on alpine and arctic ecosystem structure and function publication-title: Plant Ecology & Diversity – volume: 122 start-page: 825 year: 2017 end-page: 845 article-title: Ecosystem function in complex mountain terrain: Combining models and long‐term observations to advance process‐based understanding publication-title: Journal of Geophysical Research: Biogeosciences – volume: 35 start-page: 144 issue: 2 year: 2003 end-page: 149 article-title: Alpine landscape variation in foliar nitrogen and phosphorus concentrations and the relation to soil nitrogen and phosphorous availability publication-title: Arctic, Antarctic, and Alpine Research – start-page: 57 year: 1981 end-page: 107 – volume: 59 start-page: 1 issue: 13 year: 1959 end-page: 68 article-title: Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance publication-title: Mededelingen Van De Landbouwhogeschool Te Wageningen – start-page: 99 year: 2001 end-page: 127 – volume: 31 start-page: 491 year: 1980 end-page: 543 article-title: Photosynthetic response and adaptation to temperature in higher plants in higher plants publication-title: Annual Review of Plant Physiology – volume: 33 start-page: 100 issue: 1 year: 2001 end-page: 106 article-title: Plant species richness, productivity, and nitrogen and phosphorus limitations across a snowpack gradient in alpine tundra, Colorado, U.S.A publication-title: Arctic, Antarctic, and Alpine Research – start-page: 49 year: 2013a end-page: 91 – volume: 153 start-page: 376 year: 1981 end-page: 387 article-title: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves publication-title: Planta – volume: 25 start-page: 1155 year: 2002 end-page: 1165 article-title: Temperature response of parameters of a biochemically based model of photosynthesis. I. Seasonal changes in mature maritime pine ( Ait.) publication-title: Plant, Cell and Environment – volume: 75 start-page: 34 year: 1996 end-page: 44 article-title: Photosynthesis and respiration rates of Rocky Mountain alpine plants under field conditions publication-title: The American Midland Naturalist – volume: 47 start-page: 594 issue: 7 year: 1960 article-title: The Annual carbohydrate cycle of alpine plants as related to growth publication-title: American Journal of Botany – volume: 116 start-page: 26 year: 1998 end-page: 37 article-title: Photosynthetic nitrogen‐use efficiency of species that differ inherently in specific leaf area publication-title: Oecologia – volume: 103 start-page: 351 year: 2015 end-page: 360 article-title: Indirect effects of global change accumulate to alter plant diversity but not ecosystem function in alpine tundra publication-title: Journal of Ecology – volume: 193–194 start-page: 70 year: 2012 end-page: 84 article-title: Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis publication-title: Plant Science – volume: 16 start-page: 2602 year: 2010 end-page: 2613 article-title: Infra‐red thermometry of alpine landscapes challenges climatic warming projections publication-title: Global Change Biology – volume: 40 start-page: 388 issue: 3 year: 1959 end-page: 397 article-title: An alpine snowbank environment and its effects on vegetation, plant development and productivity publication-title: Ecology – volume: 428 start-page: 821 year: 2004 end-page: 827 article-title: The worldwide leaf economics spectrum publication-title: Nature – volume: 15 start-page: 117 year: 1962 end-page: 144 article-title: Adaptations of arctic and alpine plants to environmental conditions publication-title: Arctic – volume: 1 start-page: 293 issue: 1 year: 1987 end-page: 296 article-title: Nitrogen‐use‐efficiency: A biologically meaningful definition? publication-title: Functional Ecology – volume: 75 start-page: 59 year: 1996 end-page: 66 article-title: Uptake and allocation of 15N in alpine plants: Implications for the importance of competitive ability in predicting community structure in a stressful environment publication-title: Oikos – volume: 32 start-page: 259 year: 2009 end-page: 270 article-title: Nitrogen in cell walls of sclerophyllous leaves accounts for little of the variation in photosynthetic nitrogen‐use efficiency publication-title: Plant, Cell and Environment – volume: 79 start-page: 2253 issue: 7 year: 1998 end-page: 2266 article-title: Topographic patterns of above‐ and belowground production and nitrogen cycling in alpine tundra publication-title: Ecology – volume: 4 start-page: 1 issue: 9 year: 2013 end-page: 18 article-title: Changes in alpine vegetation over 21 years: Are patterns across a heterogeneous landscape consistent with predictions? publication-title: Ecosphere – volume: 22 start-page: 1281 year: 1999 end-page: 1296 article-title: Inter‐specific variation of the biochemical limitation to photosynthesis and related leaf traits of 30 species from mountain grassland ecosystems under different land use publication-title: Plant, Cell and Environment – volume: 82 start-page: 3295 issue: 12 year: 2001 end-page: 3308 article-title: Facilitation and competition on gradients in alpine plant communities publication-title: Ecology – volume: 111 start-page: 467 year: 2013 end-page: 477 article-title: On the complementary relationship between marginal nitrogen and water‐use efficiencies among leaves grown under ambient and CO ‐enriched environments publication-title: Annals of Botany – volume: 62 start-page: 217 year: 2004 end-page: 232 article-title: Changes in snowmelt runoff timing in Western North America under a “business as usual” climate change scenario publication-title: Climatic Change – volume: 13 start-page: 2315 year: 1999 end-page: 2330 article-title: Long‐term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra publication-title: Hydrological Processes – volume: 8 start-page: 739 issue: 5–6 year: 2015 end-page: 749 article-title: Plant community response to nitrogen and phosphorus enrichment varies across an alpine tundra moisture gradient publication-title: Plant Ecology & Diversity – start-page: 237 year: 2008b end-page: 252 – volume: 21 start-page: 223 year: 2001 end-page: 232 article-title: Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species publication-title: Tree Physiology – volume: 4 start-page: 221 issue: 5 year: 1987 end-page: 224 article-title: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions publication-title: Progress in Photosynthesis Research – start-page: 135 year: 2013b end-page: 172 – volume: 80 start-page: 1883 issue: 6 year: 1999 end-page: 1891 article-title: Seasonal partitioning of nitrogen by plants and soil microorganisms in an alpine ecosystem publication-title: Ecology – year: 1995 – volume: 74 start-page: 2085 issue: 7 year: 1993 end-page: 2097 article-title: Constraints of nutrient availability on primary production in two alpine tundra communities publication-title: Ecology – volume: 38 start-page: 69 year: 1987 end-page: 76 article-title: Environmental controls over growth of tundra plants publication-title: Ecological Bulletins – volume: 78 start-page: 1861 issue: 6 year: 1997 end-page: 1872 article-title: Nutrient availability, plant abundance, and species diversity in two alpine tundra communities publication-title: Ecology – volume: 78 start-page: 9 year: 1989 end-page: 19 article-title: Photosynthesis and nitrogen relationships in leaves of C₃ plants publication-title: Oecologia – volume: 126 start-page: 543 issue: 4 year: 2001 end-page: 562 article-title: A meta‐analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming publication-title: Oecologia – volume: 201 start-page: 614 issue: 4356 year: 1978 end-page: 616 article-title: Temperatures of desert plants: Another perspective on the adaptability of leaf size publication-title: Science – year: 2013 – volume: 62 start-page: 90 year: 2013 end-page: 105 article-title: Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture publication-title: Advances in Water Resources – volume: 103 start-page: 165 year: 2012 end-page: 171 article-title: Nitrogen critical loads for alpine vegetation and soils in Rocky Mountain National Park publication-title: Journal of Environmental Management – volume: 77 start-page: 1277 issue: 4 year: 1996 end-page: 1285 article-title: Luxury uptake and storage of nitrogen in the rhizomatous alpine herb, publication-title: Ecology – start-page: 25 year: 1986 end-page: 55 – volume: 27 start-page: 41 year: 2003 end-page: 50 article-title: Elevated CO effects on mesophyll conductance and its consequence for interpreting photosynthetic physiology publication-title: Plant Cell and Environment – volume: 14 start-page: 1125 year: 2008 end-page: 1140 article-title: Scaling environmental change through the community‐level: A trait‐based response‐and‐effect framework for plants publication-title: Global Change Biology – volume: 26 start-page: 14 issue: 1 year: 1994 end-page: 20 article-title: Short‐ and long‐term patterns of soil moisture in alpine tundra publication-title: Arctic and Alpine Research – volume: 23 start-page: 78 year: 2009 end-page: 94 article-title: Changes in snowpack and snowmelt runoff for key mountain regions publication-title: Hydrological Processes – volume: 60 start-page: 497 year: 1964 end-page: 505 article-title: Leaf temperatures of alpine plants in the field publication-title: Planta – volume: 154 start-page: 625 issue: 4 year: 2008 end-page: 635 article-title: Leaf shape linked to photosynthetic rates and temperature optima in South African species publication-title: Oecologia – volume: 37 start-page: 173 year: 2016 end-page: 185 article-title: The plant economics spectrum is structured by leaf habits and growth forms across subtropical species publication-title: Tree Physiology – volume: 148 start-page: 81 year: 2000 end-page: 103 article-title: Classification and ordination of plant communities along an altitudinal gradient on the Presidential Range, New Hampshire, USA publication-title: Plant Ecology – volume: 15 start-page: 295 issue: 3 year: 2004 end-page: 304 article-title: The plant traits that drive ecosystems: Evidence from three continents publication-title: Journal of Vegetation Science – volume: 12 start-page: 948 year: 1998 end-page: 958 article-title: Leaf structure (specific leaf area) modulates photosynthesis‐nitrogen relations: Evidence from within and across species and functional groups publication-title: Functional Ecology – volume: 35 start-page: 1303 year: 2015 end-page: 1313 article-title: Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway Spruce ( ) publication-title: Tree Physiology – start-page: 10 year: 2008 end-page: 153 – volume: 182–183 start-page: 191 year: 2013 end-page: 199 article-title: A perspective on optimal leaf stomatal conductance under CO2 and light co‐limitations publication-title: Agricultural and Forest Meteorology – volume: 91 start-page: 7217 year: 1994 end-page: 7221 article-title: Genetic variability for stomatal conductance in Pima cotton and its relation to improvements of heat adaptation publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 128 start-page: 35 year: 2016 end-page: 49 article-title: Model‐based analysis of environmental controls over ecosystem primary production in an alpine tundra dry meadow publication-title: Biogeochemistry – volume: 33 start-page: 317 year: 1982 end-page: 345 article-title: Stomatal conductance and photosynthesis publication-title: Annual Review of Plant Physiology – volume: 36 start-page: 393 year: 2013 end-page: 402 article-title: Hierarchical effects of environmental filters on the functional structure of plant communities: A case study in the French Alps publication-title: Ecography – year: 2015 – volume: 5 start-page: 85 issue: 1 year: 1982 end-page: 99 article-title: An analysis of photosynthetic response and adaptation to temperature in higher plants: Temperature acclimation in the desert evergreen publication-title: Plant, Cell and Environment – volume: 86 start-page: 1395 issue: 6 year: 2005 end-page: 1400 article-title: Linking patterns and processes in alpine plant communities: A global study publication-title: Ecology – volume: 48 start-page: 345 issue: 307 year: 1997 end-page: 347 article-title: Scaling to a common temperature improves the correlation between the photosynthesis parameters Jmax and Vcmax publication-title: Journal of Experimental Botany – volume: 110 start-page: 18180 issue: 45 year: 2013 end-page: 18184 article-title: Functional traits predict relationship between plant abundance dynamic and long‐term climate warming publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 97 start-page: 93 issue: 1 year: 1994 end-page: 99 article-title: Shoot growth dynamics and photosynthetic response to increased nitrogen availability in the alpine willow publication-title: Oecologia – volume: 142 start-page: S78 year: 1993 end-page: S92 article-title: Evolution of suites of traits in response to environmental stress publication-title: The American Naturalist – volume: 46 start-page: 735 issue: 4 year: 2014 end-page: 743 article-title: Climatic changes in mountain regions of the American Cordillera and the tropics: Historical changes and future outlook publication-title: Arctic, Antarctic, and Alpine Research – volume: 94 start-page: 105 year: 2009 end-page: 121 article-title: Winter climate change in alpine tundra: Plant responses to changes in snow depth and snowmelt timing publication-title: Climatic Change – volume: 38 start-page: 406 year: 2011 end-page: 416 article-title: Topographically controlled thermal‐habitat differentiation buffers alpine plant diversity against climate warming publication-title: Journal of Biogeography – start-page: 177 year: 2001 end-page: 197 – volume: 114 start-page: 103 year: 2002 end-page: 122 article-title: Impact of leaf physiological characteristics on seasonal variation in CO , latent and sensible heat exchanges over a tree plantation publication-title: Agricultural and Forest Meteorology – volume: 80 start-page: 721 year: 1997 end-page: 730 article-title: Modelling optimal temperature acclimation of the photosynthetic apparatus in C3 plants with respect to nitrogen use publication-title: Annals of Botany – volume: 59 start-page: 1036 year: 1995 end-page: 1043 article-title: Nitrogen mineralization and microbial biomass nitrogen dynamics in three alpine tundra communities publication-title: Social Science Society of America – volume: 102 start-page: 275 year: 2014 end-page: 301 article-title: The world‐wide “fast–slow” plant economics spectrum: A traits manifesto publication-title: Journal of Ecology – volume: 6 start-page: 129 issue: 2 year: 1974 end-page: 142 article-title: Adaptations and origins of alpine plants publication-title: Arctic and Alpine Research – volume: 5 start-page: 424 year: 2015 end-page: 430 article-title: Elevation‐dependent warming in mountain regions of the world publication-title: Nature Climate Change – volume: 4 start-page: 3218 issue: 16 year: 2014 end-page: 3235 article-title: The relationship of leaf photosynthetic traits—V and J —To leaf nitrogen, leaf phosphorus, and specific leaf area: A meta‐analysis and modeling study publication-title: Ecology and Evolution – volume: 100 start-page: 488 year: 2012 end-page: 498 article-title: Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost publication-title: Journal of Ecology – volume: 100 start-page: 652 year: 2012 end-page: 661 article-title: Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes publication-title: Journal of Ecology – volume: 21 start-page: 380 issue: 4 year: 1989 end-page: 391 article-title: The Climate of Niwot Ridge, Front Range, Colorado, U.S.A publication-title: Arctic and Alpine Research – volume: 70 start-page: 1569 issue: 5 year: 2006 end-page: 1578 article-title: Soil water characteristic estimates by texture and organic matter for hydrologic solutions publication-title: Soil Science Society of America Journal – volume: 4 start-page: 117 issue: 18 year: 1983 end-page: 124 article-title: Influence of plant physiognomy on leaf temperature on clear midsummer days in the snowy mountains south‐eastern Australia publication-title: Oecologica Plantarum – volume: 34 start-page: 1415 year: 2011 end-page: 1430 article-title: Water‐use efficiency and nitrogen‐use efficiency of C3–C4 intermediate species of . (Asteraceae) publication-title: Plant, Cell and Environment – volume: 30 start-page: 933 issue: 6 year: 2016 end-page: 951 article-title: Convergent approaches to determine an ecosystem’s transpiration fraction publication-title: Global Biogeochemical Cycles – start-page: 229 year: 2012 end-page: 258 – volume: 16 start-page: 199 year: 1989 end-page: 217 article-title: Photosynthetic temperature acclimation in eucalyptus species from diverse habitats, and a comparison with publication-title: Australian Journal of Plant Physiology – volume: 34 start-page: 1 year: 2007 end-page: 4 article-title: Disappearing “alpine tundra” Koppen climatic type in the western United States publication-title: Geophysical Research Letters – volume: 2 start-page: 453 year: 2012 end-page: 457 article-title: Plot‐scale evidence of tundra vegetation change and links to recent summer warming publication-title: Nature Climate Change – volume: 70 start-page: 261 year: 1994 end-page: 270 article-title: Accumulation and use of nitrogen and phosphorus following fertilization in two alpine tundra communities publication-title: Oikos – volume: 7 start-page: 1 issue: 9 year: 2012 end-page: 12 article-title: Elevation‐dependent temperature trends in the rocky mountain front range: Changes over a 56‐ and 20‐year record publication-title: PLoS ONE – volume: 16 start-page: 399 year: 2005 end-page: 406 article-title: Biomass production, N: P ratio and nutrient limitation in a caucasian alpine tundra plant community publication-title: Journal of Vegetation Science – volume: 3 start-page: 47 year: 1983 end-page: 52 article-title: Direct and indirect effects of temperature on arctic plants publication-title: Polar Biology – volume: 16 start-page: 1183 issue: 3 year: 2006 end-page: 1193 article-title: Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: Are we there yet? publication-title: Ecological Applications – volume: 25 start-page: 1167 year: 2002 end-page: 1179 article-title: Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data publication-title: Plant, Cell and Environment – volume: 173 start-page: 1551 year: 2013 end-page: 1561 article-title: What controls plant nutrient use in high elevation ecosystems? publication-title: Oecologia – volume: 22 start-page: R396 issue: 10 year: 2012 end-page: R397 article-title: High temperature exposure increases plant cooling capacity publication-title: Current Biology – volume: 27 start-page: 514 issue: 7 year: 1998 end-page: 517 article-title: Positive feedbacks to anthropogenic nitrogen deposition in Rocky Mountain alpine tundra publication-title: Ambio – ident: e_1_2_10_95_1 doi: 10.1016/1352-2310(95)00463-7 – ident: e_1_2_10_46_1 doi: 10.1111/1365-2745.12363 – volume: 4 start-page: 117 issue: 18 year: 1983 ident: e_1_2_10_65_1 article-title: Influence of plant physiognomy on leaf temperature on clear midsummer days in the snowy mountains south‐eastern Australia publication-title: Oecologica Plantarum contributor: fullname: Korner C. – ident: e_1_2_10_11_1 doi: 10.2307/2423481 – ident: e_1_2_10_120_1 doi: 10.1046/j.1365-3040.1999.00479.x – start-page: 25 volume-title: On the economy of plant form and function year: 1986 ident: e_1_2_10_49_1 contributor: fullname: Field C. B. – ident: e_1_2_10_117_1 doi: 10.1002/2016JG003704 – ident: e_1_2_10_2_1 doi: 10.1016/S0065-2504(08)60016-1 – ident: e_1_2_10_73_1 doi: 10.1371/journal.pone.0044370 – ident: e_1_2_10_79_1 doi: 10.1046/j.1365-3040.1997.d01-133.x – ident: e_1_2_10_92_1 doi: 10.1016/B978-0-12-385874-0.00003-0 – ident: e_1_2_10_31_1 doi: 10.1890/0012-9658(2001)082[3295:FACOGI]2.0.CO;2 – ident: e_1_2_10_28_1 doi: 10.1086/285524 – ident: e_1_2_10_44_1 doi: 10.1146/annurev.pp.33.060182.001533 – ident: e_1_2_10_121_1 doi: 10.1111/j.1469-8137.2005.01349.x – ident: e_1_2_10_32_1 doi: 10.1016/j.cub.2012.03.044 – ident: e_1_2_10_116_1 doi: 10.1093/oso/9780195117288.003.0012 – ident: e_1_2_10_82_1 doi: 10.1007/s004420050560 – ident: e_1_2_10_98_1 doi: 10.1111/j.1654-1103.2005.tb02379.x – ident: e_1_2_10_7_1 doi: 10.1002/2016GB005392 – ident: e_1_2_10_14_1 doi: 10.1017/CBO9780511805530.017 – ident: e_1_2_10_100_1 doi: 10.1890/ES13-00133.1 – ident: e_1_2_10_15_1 doi: 10.1017/CBO9780511805530.018 – ident: e_1_2_10_4_1 doi: 10.1093/treephys/14.7-8-9.1069 – ident: e_1_2_10_101_1 doi: 10.1111/j.1365-2745.2011.01945.x – ident: e_1_2_10_33_1 doi: 10.1111/j.1600-0587.2012.07438.x – ident: e_1_2_10_9_1 doi: 10.2307/1550081 – ident: e_1_2_10_64_1 doi: 10.1007/s10533-015-0122-3 – ident: e_1_2_10_80_1 doi: 10.1093/aob/mcs268 – ident: e_1_2_10_108_1 doi: 10.2307/3546321 – ident: e_1_2_10_8_1 doi: 10.1146/annurev.pp.31.060180.002423 – ident: e_1_2_10_19_1 doi: 10.1016/j.jenvman.2012.03.002 – ident: e_1_2_10_75_1 doi: 10.1046/j.1365-3040.2002.00890.x – ident: e_1_2_10_37_1 doi: 10.1111/j.1654-1103.2004.tb02266.x – ident: e_1_2_10_90_1 doi: 10.1111/j.1365-2486.2009.02122.x – ident: e_1_2_10_71_1 doi: 10.1029/2007JG000419 – ident: e_1_2_10_26_1 doi: 10.1007/BF00258285 – ident: e_1_2_10_107_1 doi: 10.2307/1551871 – ident: e_1_2_10_68_1 doi: 10.1016/j.envpol.2009.08.004 – ident: e_1_2_10_97_1 doi: 10.1126/science.201.4356.614 – ident: e_1_2_10_113_1 doi: 10.1007/BF00384257 – ident: e_1_2_10_3_1 doi: 10.1111/1365-3040.ep11587620 – ident: e_1_2_10_61_1 doi: 10.1890/0012-9658(1999)080[1883:SPONBP]2.0.CO;2 – ident: e_1_2_10_36_1 doi: 10.1029/2007GL031253 – start-page: 10 volume-title: Photosynthesis, respiration, and long‐distance transport. In Plant Physiological Ecology year: 2008 ident: e_1_2_10_66_1 contributor: fullname: Lambers H. – ident: e_1_2_10_56_1 doi: 10.1086/283101 – volume: 27 start-page: 514 issue: 7 year: 1998 ident: e_1_2_10_23_1 article-title: Positive feedbacks to anthropogenic nitrogen deposition in Rocky Mountain alpine tundra publication-title: Ambio contributor: fullname: Bowman W. D. – ident: e_1_2_10_59_1 doi: 10.1006/anbo.1997.0512 – volume: 1 start-page: 293 issue: 1 year: 1987 ident: e_1_2_10_6_1 article-title: Nitrogen‐use‐efficiency: A biologically meaningful definition? publication-title: Functional Ecology contributor: fullname: Berendse F. – ident: e_1_2_10_12_1 doi: 10.1007/978-3-642-68090-8_4 – ident: e_1_2_10_84_1 doi: 10.1111/1365-2745.12211 – ident: e_1_2_10_41_1 doi: 10.1038/nclimate1465 – ident: e_1_2_10_89_1 doi: 10.2136/sssaj2005.0117 – ident: e_1_2_10_93_1 doi: 10.1016/B978-0-12-385874-0.00005-4 – ident: e_1_2_10_85_1 doi: 10.1046/j.1365-2435.1998.00274.x – ident: e_1_2_10_34_1 doi: 10.1073/pnas.1100555108 – ident: e_1_2_10_83_1 doi: 10.1073/pnas.91.15.7217 – ident: e_1_2_10_5_1 doi: 10.1007/978-94-017-0519-6_48 – ident: e_1_2_10_114_1 doi: 10.1002/ece3.1173 – ident: e_1_2_10_45_1 doi: 10.1007/BF00386231 – ident: e_1_2_10_53_1 doi: 10.1016/j.plantsci.2012.05.009 – ident: e_1_2_10_69_1 doi: 10.1093/jxb/48.2.345 – ident: e_1_2_10_20_1 doi: 10.1657/1523-0430(2003)035[0144:ALVIFN]2.0.CO;2 – ident: e_1_2_10_40_1 doi: 10.1093/treephys/21.4.223 – ident: e_1_2_10_42_1 doi: 10.1007/BF00377192 – ident: e_1_2_10_57_1 doi: 10.2307/1551647 – ident: e_1_2_10_60_1 doi: 10.2307/1551216 – volume: 37 start-page: 173 year: 2016 ident: e_1_2_10_122_1 article-title: The plant economics spectrum is structured by leaf habits and growth forms across subtropical species publication-title: Tree Physiology contributor: fullname: Zhao Y. – ident: e_1_2_10_103_1 doi: 10.1023/B:CLIM.0000013702.22656.e8 – ident: e_1_2_10_104_1 doi: 10.1093/treephys/tpv118 – ident: e_1_2_10_96_1 doi: 10.1046/j.0016-8025.2003.01123.x – ident: e_1_2_10_22_1 doi: 10.1093/oso/9780195117288.003.0016 – ident: e_1_2_10_109_1 doi: 10.1890/0012-9658(1997)078[1861:NAPAAS]2.0.CO;2 – ident: e_1_2_10_47_1 doi: 10.1071/PP9890199 – ident: e_1_2_10_52_1 doi: 10.1890/0012-9658(1998)079[2253:TPOAAB]2.0.CO;2 – ident: e_1_2_10_112_1 doi: 10.1111/j.1365-3040.2011.02340.x – ident: e_1_2_10_62_1 doi: 10.1890/04-1926 – ident: e_1_2_10_76_1 doi: 10.1002/j.1537-2197.1960.tb14911.x – volume-title: Physical hydrology year: 2014 ident: e_1_2_10_39_1 contributor: fullname: Dingman L. – ident: e_1_2_10_35_1 doi: 10.1657/1938-4246-46.4.735 – ident: e_1_2_10_106_1 doi: 10.1016/S0168-1923(02)00128-4 – ident: e_1_2_10_30_1 doi: 10.1657/1523-0430(2005)037[0444:CSIAPT]2.0.CO;2 – ident: e_1_2_10_21_1 doi: 10.1007/BF00317912 – ident: e_1_2_10_87_1 doi: 10.1007/BF01894807 – ident: e_1_2_10_119_1 doi: 10.1007/s10584-009-9546-x – ident: e_1_2_10_10_1 doi: 10.2307/1929755 – ident: e_1_2_10_48_1 doi: 10.1007/BF00376856 – ident: e_1_2_10_111_1 doi: 10.1016/j.agrformet.2013.07.005 – ident: e_1_2_10_50_1 – ident: e_1_2_10_115_1 doi: 10.1002/(SICI)1099-1085(199910)13:14/15<2315::AID-HYP888>3.0.CO;2-A – ident: e_1_2_10_55_1 doi: 10.1080/17550874.2015.1123317 – ident: e_1_2_10_105_1 doi: 10.1111/j.1365-2486.2008.01557.x – ident: e_1_2_10_110_1 – ident: e_1_2_10_81_1 doi: 10.1038/nclimate2563 – ident: e_1_2_10_24_1 doi: 10.1007/BF00317287 – ident: e_1_2_10_86_1 doi: 10.1007/s004420000544 – ident: e_1_2_10_72_1 doi: 10.1016/j.advwatres.2013.09.020 – ident: e_1_2_10_51_1 doi: 10.2136/sssaj1995.03615995005900040012x – volume: 59 start-page: 1 issue: 13 year: 1959 ident: e_1_2_10_54_1 article-title: Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance publication-title: Mededelingen Van De Landbouwhogeschool Te Wageningen contributor: fullname: Gaastra P. – ident: e_1_2_10_63_1 – ident: e_1_2_10_13_1 doi: 10.14430/arctic3564 – ident: e_1_2_10_118_1 doi: 10.1080/17550874.2013.819533 – ident: e_1_2_10_43_1 doi: 10.1007/s10533-016-0193-9 – ident: e_1_2_10_102_1 doi: 10.1002/hyp.7128 – ident: e_1_2_10_74_1 doi: 10.1046/j.1365-3040.2002.00891.x – ident: e_1_2_10_38_1 doi: 10.1038/nature16489 – ident: e_1_2_10_88_1 doi: 10.1023/A:1009853730949 – ident: e_1_2_10_78_1 doi: 10.1007/s00442-007-0865-1 – ident: e_1_2_10_17_1 doi: 10.2307/3545637 – ident: e_1_2_10_77_1 doi: 10.1111/j.1365-2745.2011.01925.x – volume: 38 start-page: 69 year: 1987 ident: e_1_2_10_27_1 article-title: Environmental controls over growth of tundra plants publication-title: Ecological Bulletins contributor: fullname: Chapin F. S. – ident: e_1_2_10_91_1 doi: 10.1111/j.1365-2699.2010.02407.x – ident: e_1_2_10_18_1 doi: 10.1890/1051-0761(2006)016[1183:NCLFAV]2.0.CO;2 – ident: e_1_2_10_70_1 doi: 10.2307/2265597 – start-page: 229 volume-title: Principles of terrestrial ecosystem ecology year: 2012 ident: e_1_2_10_29_1 contributor: fullname: Chapin F. S. – ident: e_1_2_10_99_1 doi: 10.1073/pnas.1310700110 – ident: e_1_2_10_67_1 doi: 10.1007/978-3-642-87851-0 – ident: e_1_2_10_58_1 doi: 10.1111/j.1365-3040.2008.01918.x – ident: e_1_2_10_94_1 doi: 10.1080/15230430.2001.12003410 – ident: e_1_2_10_16_1 doi: 10.2307/1940854 – ident: e_1_2_10_25_1 doi: 10.1007/s00442-013-2695-7 |
SSID | ssj0000602407 |
Score | 2.2137733 |
Snippet | We use a quantitative model of photosynthesis to explore leaf‐level limitations to plant growth in an alpine tundra ecosystem that is expected to have longer,... We use a quantitative model of photosynthesis to explore leaf-level limitations to plant growth in an alpine tundra ecosystem that is expected to have longer,... Abstract We use a quantitative model of photosynthesis to explore leaf‐level limitations to plant growth in an alpine tundra ecosystem that is expected to have... |
SourceID | doaj pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1227 |
SubjectTerms | Air temperature Alpine environments alpine tundra Assimilation climate change Computer simulation dry and wet meadows Ecological effects Ecological research Ecosystems Environmental changes Gas exchange Leaves limitations Meadows Moisture content Nitrogen Original Research Photosynthesis photosynthesis model Plant communities Plant growth Plant populations Soil moisture Species Taiga & tundra Temperature effects Tundra Water content |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kQfAivu3dVYJ48NJuXt3pPuoyyyLqyYW9SMijggvr7DAzHrzt3_Dv-UusJD3LDCpevHY3JKkvSX3VVH0F8FJ0EbUzqjWex1ZjdO3Ik2kjj-TN0KdUBEw_fOxPz_S78-58q9VXzgmr8sDVcEdKU_AWOhl1SLof9BBFIBdlvDZRUghUbl8ut4Kpegdn7S6zkRLi8ggDqtd6yH3NtxxQ0en_E7n8PUdym7sW53NyD-5OrJG9qbO9D7dw_gBuz4ri9PeH8Pk9usSyytQkkbxipSJkjcxdLohHssUlWZCFWg2SNVR_Xv9gy5ofi2x9xRxbXXzNrbwwss2PcZZ3KS4fwdnJ7NPxaTv1TWgDka--1TIJZ9IQdRyFSsmJkLiISUQ6fcZxpxEFCsPjOBAUXIU-uDHwMHQuuM6rx7A3v5rjU2DGeRlHJXwyRF107ylgJiCwG_xAw6gGXmyMaRdVHsNWIWRps8VttngDb7OZbz7IitblAeFsJ5ztv3Bu4HADkp2O2cpSPDVKSSxHN_Ck4nUziiIunPvXNGB2kNyZxu6b-cWXIrDdKwqyFG_gVcH87yuzs-NZrmTu9__HEg_gDtGxseaEH8LeevkNnxHlWfvnZXf_Am5g_8M priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkhcUHmHFmQhDlxC_UrsnBCtUlUIKoSo1AuyHD9KpbK77C4HbvwN_l5_SceJs3TF45pEsT1je74Zj78BeMEqH6RVolQd9aUM3pYNjar01KM1C12MPYHp--P66ES-Pa1Oc8BtmdMqxz2x36j9zKUY-R5C54ZzNGjy9fxbmapGpdPVXELjJmxxJrSewNZ-e_zh4zrKQuvE4aVGSiHK94IL4pXUqb75NUPU8_X_DWT-mSt5HcP2RuhwG-5k9EjeDOq-CzfC9B7canvm6R_34fO7YCNJbFOZKnlJ-pshq0DsxRzxJJlfoCSJG26FJC7Vy5-_yGLIkw1kNSOWLM-_ppJewZMxQE7S8MPiAZwctp8OjspcP6F0CMLqUvLIrIraS98wEaNlLlLmI_MoS2WplSGwwBT1jUaVUOFqZxtHna6ss1UnHsJkOpuGx0CU7bhvBOuiQggj6w4dZ-liqHSnsRlRwPNRmGY-0GSYgRCZmyRxkyRewH4S8_qDxGzdP5gtzkxeKEZIdNZdxT3-XtZaas8cQhLVSeU5urwF7I5KMnm5Lc3vyVHAo0Ff61YEYuJUx6YAtaHJjW5svpmef-mJtmuBzpagBbzsdf7vkZn2oE03musn_-_dDtxGwNUMWd-7MFktvoenCGpW3bM8c68AJ7D58w priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIiQuqLxDC7IQBy4pduzEzgEhqLaqEOXESr0gy09aadldsotEb_yN_r3-EsZOUnVFkbjm5eQbO_ONNfMNwCtW-yCM5KW01JcieFO2NMrSU4_eLNgYs4Dp8efmaCo-ntQnWzD22BwAXN0Y2qV-UtNutv_rx_k7XPBvBwHRN8EFvi8Ua27B7QodYsrsOh5Yfv9DTkJeqXA6aa8jn6zVqDF0_e4Nz5QF_G9inX8nT14ntdkrHe7AvYFOkve9_e_DVpg_gDuTLEV9_hC-fgomkiQ_NWgnr0guFVkHYmZLJJhkOUNoievLRJK46uXvC9L1ibOBrBfEkNXZ99TjK3gy7piTNH1D9wimh5MvB0fl0FChdMjKmlJUkRkZlRe-ZTxGw1ykzEfmcVlKQ40IgQUmqW8V2ohy1zjTOupUbZypLX8M2_PFPDwFIo2tfMuZjRI5jWgsRtLCxVArq3AYXsDLEUy97HUzdK-QXOmEuE6IF_AhwXx1QZK6zgcW3Tc9rBzNBUbvrq48Pl40SijPHHIUaYX0FcbABeyNRtLj9NEYaLVVhfRHFPCkt9fVKBxJcmpsU4DcsOTGa2yemZ-dZuXthmP0xWkBr7PN__1lenIwSSXOzbP_wWEX7iIPa_tk8D3YXnc_w3PkOmv7Is_kPw_h_gk priority: 102 providerName: Scholars Portal – databaseName: Wiley Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Lb9QwEMdHpQiJCyrvQEEW4sAl1I4d21FPUG1VIUAcqNQLsvyESmV3tbscuPE1-vX6SRg7D1gBEtfEiZOZTPwfy_MzwHPWhiis4rVyNNQiBlt3NKk60ICjWXQpFYDpu_fy5FS8OWvPduBwrIXp-RDThFuOjPK_zgFu3frgFzQ0-shfCs3kNbiOskbm7Qsa8WGaYKEy47tyuXQmrqOKbPVIFqLNwXT11nhUsP1_05p_Lpn8XcqWseh4D24NIpK86r1-G3bi_A7cmBUA9fe78OlttIlk6NRATF6TUiCyicReLPHFyfICDUp8XxySkapXPy7Jql8uG8lmQSxZn3_NO3vFQMZ5cpI_2ri6B6fHs49HJ_WwjULtUYvJWjSJWZV0EKFjPCXLfKIsJBYwGJWlVsTIIlM0dBo9Q7mX3naeet1ab1vH78PufDGPD4Eo65rQceaSQiUjpMP8WfgUW-00dsMreDYa0yx7WobpuciNyRY32eIVvM5mnhpkwHU5sFh9NkO8GC4wZ_dtE_D2QmqhA_OoTJQTKjSY-VawPzrJDFG3NphedU2DokdU8KD319QLR2mct7OpQG15cusxts_Mz78U3rbkmHNxWsGL4vN_v5mZHc1yYbN89P9NH8NN1GBdvxB8H3Y3q2_xCeqcjXtavuef6c76TQ priority: 102 providerName: Wiley-Blackwell |
Title | Leaf temperatures mediate alpine plant communities’ response to a simulated extended summer |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fece3.4816 https://www.ncbi.nlm.nih.gov/pubmed/30805155 https://www.proquest.com/docview/2179220784 https://pubmed.ncbi.nlm.nih.gov/PMC6374730 https://doaj.org/article/34742c52d4cf46848d1c2937b47d2978 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwEB5tFyFxQfyTZaksxIFLWjt24uTIVl2tEF1ViJX2giL_QqU2rdpy2BuvwevxJIydZLUVcOGSQxLF9sw484018w3AW5ZbJ5TkqdTUpsJZlVbUy9RSi97Mae8jgenssri4Eh-u8-sjyPtamJi0b_Ri1CxXo2bxLeZWblZm3OeJjeezScERBHM6HsAA3e-dEL39_QbaLtmzCNFs7IzjI1Gy0K6II0IKXU0O3FBk6_8bxPwzU_Iugo0u6PwRPOywI3nfzvExHLnmCdyfRt7pm6fw5aNTngSuqY4oeUdiXcjeEbXcIJokmyXKkZi2JiQwqf768ZNs2yxZR_ZroshusQoNvZwl_fE4Cbbqts_g6nz6eXKRdt0TUoMQrEhF5pmSvrTCVox7r5jxlFnPLO5BqagSzjHHJLVViQqh3BRGVYaaMldG5Zo_h-Nm3biXQKTSma04014igBGFxrBZGO_yUpc4DE_gTS_MetOSZNQtHXJWB-HXQfgJnAUx374QeK3jjfX2a91pt-YCQ3WTZxY_L4pSlJYZBCRSC2kzDHgTOO2VVHebbVdjVFVlGWIdkcCLVl-3o_T6TkAeaPJgGodP0OoizXZnZQm8izr_98rq6WQa6pmLk_8e5BU8QCRWtengp3C83353rxHt7PUQBpmYD-He2fRy_mkYzwzwOhPlMNr9b_wIBck |
link.rule.ids | 230,314,727,780,784,864,885,2102,2221,11562,21388,24318,27924,27925,33744,43805,46052,46476,50814,50923,53791,53793,74302 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVgguiDeBAhbiwCXUjp04OSFapVpgu0KolXpBluMHVCq7y-5y4Mbf4O_xSxg7ztIVj2sSxfaM7flmPP4G4BkrrRNa8lx21ObCWZ031MvcUovWzHXeRwLTo2k1PhFvTsvTFHBbpbTKYU-MG7WdmxAj30Po3BQFGjTxcvElD1WjwulqKqFxGXYCc3o5gp39dvru_SbKQqvA4SUHSiFa7Dnj-AtRh_rmFwxR5Ov_G8j8M1fyIoaNRujwBlxP6JG86tV9Ey652S240kbm6W-34cPEaU8C21SiSl6ReDNk7Yg-XyCeJItzlCQx_a2QwKX68_sPsuzzZB1Zz4kmq7PPoaSXs2QIkJMwfLe8AyeH7fHBOE_1E3KDIKzKReGZlr62wjaMe6-Z8ZRZzyzKUmqqhXPMMUltU6NKKDeV0Y2hpi610WXH78JoNp-5-0Ck7grbcNZ5iRBGVB06zsJ4V9Zdjc3wDJ4OwlSLniZD9YTIhQoSV0HiGewHMW8-CMzW8cF8-VGlhaK4QGfdlIXF34uqFrVlBiGJ7IS0Bbq8GewOSlJpua3U78mRwb1eX5tWOGLiUMcmA7mlya1ubL-ZnX2KRNsVR2eL0wyeR53_e2SqPWjDjebqwf979wSujo-PJmryevr2IVxD8NX0GeC7MFovv7pHCHDW3eM0i38B-YH82w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB5BVyAuiDeBBSzEgUuoHTtxckLskmqBpVohVtoLsvyElZa2tOXAjb_B3-OXME6cshWPaxLF9ozt-WY8_gbgCSudF1ryXBrqcuGdzhsaZO6oQ2vmTQgdgenbaXVwLF6flCcp_2mV0iqHPbHbqN3cxhj5GKFzUxRo0MQ4pLSIo5eT54sveawgFU9aUzmNi7CDVpEWI9jZa6dH7zYRF1pFPi850AvRYuyt589EHWudnzNKHXf_3wDnn3mT5_FsZ5Am1-BqQpLkRa_663DBz27ApbZjof52Ez4ceh1IZJ5KtMkr0t0SWXuizxaILcniDKVKbH9DJPKq_vz-gyz7nFlP1nOiyer0cyzv5R0ZguUkDt8vb8HxpH2_f5CnWgq5RUBW5aIITMtQO-EaxkPQzAbKXGAO5So11cJ75pmkrqlRPZTbyurGUluX2urS8Nswms1n_i4QqU3hGs5MkAhnRGXQiRY2-LI2NTbDM3g8CFMtesoM1ZMjFypKXEWJZ7AXxbz5ILJcdw_my48qLRrFBTrutiwc_l5UtagdswhPpBHSFej-ZrA7KEmlpbdSvydKBnd6fW1a4YiPY02bDOSWJre6sf1mdvqpI92uODpenGbwtNP5v0em2v023m6u7v2_d4_gMk5gdfhq-uY-XEEc1vTJ4LswWi-_-geIddbmYZrEvwCVugEX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leaf+temperatures+mediate+alpine+plant+communities%E2%80%99+response+to+a+simulated+extended+summer&rft.jtitle=Ecology+and+evolution&rft.au=Wentz%2C+Katherine+F.&rft.au=Neff%2C+Jason+C.&rft.au=Suding%2C+Katharine+N.&rft.date=2019-02-01&rft.issn=2045-7758&rft.eissn=2045-7758&rft.volume=9&rft.issue=3&rft.spage=1227&rft.epage=1243&rft_id=info:doi/10.1002%2Fece3.4816&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ece3_4816 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-7758&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-7758&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-7758&client=summon |