Leaf temperatures mediate alpine plant communities’ response to a simulated extended summer

We use a quantitative model of photosynthesis to explore leaf‐level limitations to plant growth in an alpine tundra ecosystem that is expected to have longer, warmer, and drier growing seasons. The model is parameterized with abiotic and leaf trait data that is characteristic of two dominant plant c...

Full description

Saved in:
Bibliographic Details
Published inEcology and evolution Vol. 9; no. 3; pp. 1227 - 1243
Main Authors Wentz, Katherine F., Neff, Jason C., Suding, Katharine N.
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.02.2019
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We use a quantitative model of photosynthesis to explore leaf‐level limitations to plant growth in an alpine tundra ecosystem that is expected to have longer, warmer, and drier growing seasons. The model is parameterized with abiotic and leaf trait data that is characteristic of two dominant plant communities in the alpine tundra and specifically at the Niwot Ridge Long Term Ecological Research Site: the dry and wet meadows. Model results produce realistic estimates of photosynthesis, nitrogen‐use efficiency, water‐use efficiency, and other gas exchange processes in the alpine tundra. Model simulations suggest that dry and wet meadow plant species do not significantly respond to changes in the volumetric soil moisture content but are sensitive to variation in foliar nitrogen content. In addition, model simulations indicate that dry and wet meadow species have different maximum rates of assimilation (normalized for leaf nitrogen content) because of differences in leaf temperature. These differences arise from the interaction of plant height and the abiotic environment characteristic of each plant community. The leaf temperature of dry meadow species is higher than wet meadow species and close to the optimal temperature for photosynthesis under current conditions. As a result, 2°C higher air temperatures in the future will likely lead to declines in dry meadow species’ carbon assimilation. On the other hand, a longer and warmer growing season could increase nitrogen availability and assimilation rates in both plant communities. Nonetheless, a temperature increase of 4°C may lower rates of assimilation in both dry and wet meadow plant communities because of higher, and suboptimal, leaf temperatures. We use a quantitative model of photosynthesis to explore leaf‐level limitations to plant growth in an alpine tundra ecosystem that is expected to have longer, warmer, and drier growing seasons. Model simulations indicate that dry and wet meadow species have different rates of assimilation (normalized for leaf nitrogen content) in an extended summer because of differences in the leaf temperature. These differences arise from the interaction of plant height and the abiotic environment characteristic of each plant community.
AbstractList Abstract We use a quantitative model of photosynthesis to explore leaf‐level limitations to plant growth in an alpine tundra ecosystem that is expected to have longer, warmer, and drier growing seasons. The model is parameterized with abiotic and leaf trait data that is characteristic of two dominant plant communities in the alpine tundra and specifically at the Niwot Ridge Long Term Ecological Research Site: the dry and wet meadows. Model results produce realistic estimates of photosynthesis, nitrogen‐use efficiency, water‐use efficiency, and other gas exchange processes in the alpine tundra. Model simulations suggest that dry and wet meadow plant species do not significantly respond to changes in the volumetric soil moisture content but are sensitive to variation in foliar nitrogen content. In addition, model simulations indicate that dry and wet meadow species have different maximum rates of assimilation (normalized for leaf nitrogen content) because of differences in leaf temperature. These differences arise from the interaction of plant height and the abiotic environment characteristic of each plant community. The leaf temperature of dry meadow species is higher than wet meadow species and close to the optimal temperature for photosynthesis under current conditions. As a result, 2°C higher air temperatures in the future will likely lead to declines in dry meadow species’ carbon assimilation. On the other hand, a longer and warmer growing season could increase nitrogen availability and assimilation rates in both plant communities. Nonetheless, a temperature increase of 4°C may lower rates of assimilation in both dry and wet meadow plant communities because of higher, and suboptimal, leaf temperatures.
We use a quantitative model of photosynthesis to explore leaf‐level limitations to plant growth in an alpine tundra ecosystem that is expected to have longer, warmer, and drier growing seasons. The model is parameterized with abiotic and leaf trait data that is characteristic of two dominant plant communities in the alpine tundra and specifically at the Niwot Ridge Long Term Ecological Research Site: the dry and wet meadows. Model results produce realistic estimates of photosynthesis, nitrogen‐use efficiency, water‐use efficiency, and other gas exchange processes in the alpine tundra. Model simulations suggest that dry and wet meadow plant species do not significantly respond to changes in the volumetric soil moisture content but are sensitive to variation in foliar nitrogen content. In addition, model simulations indicate that dry and wet meadow species have different maximum rates of assimilation (normalized for leaf nitrogen content) because of differences in leaf temperature. These differences arise from the interaction of plant height and the abiotic environment characteristic of each plant community. The leaf temperature of dry meadow species is higher than wet meadow species and close to the optimal temperature for photosynthesis under current conditions. As a result, 2°C higher air temperatures in the future will likely lead to declines in dry meadow species’ carbon assimilation. On the other hand, a longer and warmer growing season could increase nitrogen availability and assimilation rates in both plant communities. Nonetheless, a temperature increase of 4°C may lower rates of assimilation in both dry and wet meadow plant communities because of higher, and suboptimal, leaf temperatures.
We use a quantitative model of photosynthesis to explore leaf‐level limitations to plant growth in an alpine tundra ecosystem that is expected to have longer, warmer, and drier growing seasons. The model is parameterized with abiotic and leaf trait data that is characteristic of two dominant plant communities in the alpine tundra and specifically at the Niwot Ridge Long Term Ecological Research Site: the dry and wet meadows. Model results produce realistic estimates of photosynthesis, nitrogen‐use efficiency, water‐use efficiency, and other gas exchange processes in the alpine tundra. Model simulations suggest that dry and wet meadow plant species do not significantly respond to changes in the volumetric soil moisture content but are sensitive to variation in foliar nitrogen content. In addition, model simulations indicate that dry and wet meadow species have different maximum rates of assimilation (normalized for leaf nitrogen content) because of differences in leaf temperature. These differences arise from the interaction of plant height and the abiotic environment characteristic of each plant community. The leaf temperature of dry meadow species is higher than wet meadow species and close to the optimal temperature for photosynthesis under current conditions. As a result, 2°C higher air temperatures in the future will likely lead to declines in dry meadow species’ carbon assimilation. On the other hand, a longer and warmer growing season could increase nitrogen availability and assimilation rates in both plant communities. Nonetheless, a temperature increase of 4°C may lower rates of assimilation in both dry and wet meadow plant communities because of higher, and suboptimal, leaf temperatures. We use a quantitative model of photosynthesis to explore leaf‐level limitations to plant growth in an alpine tundra ecosystem that is expected to have longer, warmer, and drier growing seasons. Model simulations indicate that dry and wet meadow species have different rates of assimilation (normalized for leaf nitrogen content) in an extended summer because of differences in the leaf temperature. These differences arise from the interaction of plant height and the abiotic environment characteristic of each plant community.
Author Wentz, Katherine F.
Suding, Katharine N.
Neff, Jason C.
AuthorAffiliation 3 Institute of Arctic & Alpine Research, Ecology & Evolutionary Biology Department University of Colorado Boulder Colorado
1 Remote Sensing Systems Santa Rosa California
2 Environmental Studies Department University of Colorado Boulder Colorado
AuthorAffiliation_xml – name: 3 Institute of Arctic & Alpine Research, Ecology & Evolutionary Biology Department University of Colorado Boulder Colorado
– name: 1 Remote Sensing Systems Santa Rosa California
– name: 2 Environmental Studies Department University of Colorado Boulder Colorado
Author_xml – sequence: 1
  givenname: Katherine F.
  orcidid: 0000-0002-2332-1400
  surname: Wentz
  fullname: Wentz, Katherine F.
  email: katherinewentz10@gmail.com
  organization: Remote Sensing Systems
– sequence: 2
  givenname: Jason C.
  surname: Neff
  fullname: Neff, Jason C.
  organization: University of Colorado
– sequence: 3
  givenname: Katharine N.
  surname: Suding
  fullname: Suding, Katharine N.
  organization: University of Colorado
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30805155$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9vFCEYh4mpsXXtwS9gJvHkYVv-DszFxGy22mQTL3o0hIWXymZmGIGp9ubX6Nfzk8h2a9Me5AKBh4f35fcSHY1xBIReE3xGMKbnYIGdcUXaZ-iEYi6WUgp19Gh9jE5z3uE6Wkw5li_QMcMKCyLECfq2AeObAsMEyZQ5QW4GcMEUaEw_hRGaqTdjaWwchnkMJUD-8_u2qdwUxwxNiY1pchjmvl5xDfwqMLq6yPMwQHqFnnvTZzi9nxfo68X6y-rTcvP54-Xqw2ZphRTtklNPjPTKcdcR5r0h1mPiPHFEdtJgwwEIEIldp7xgmNnWms5iq4SxRmzZAl0evC6anZ5SGEy60dEEfbcR05U2qQTbg2ZccmoFddx63iquHLG0Y3LLpaOdVNX1_uCa5m39CgtjSaZ_In16Mobv-ipe65ZJLmtxC_T2XpDijxly0bs4p7H2r2nth1IsFa_UuwNlU8w5gX94gWC9D1bvg9X7YCv75nFJD-S_GCtwfgB-hh5u_m_S69Wa3Sn_AgezsLU
CitedBy_id crossref_primary_10_1111_1365_2745_14197
crossref_primary_10_1029_2023JG007664
crossref_primary_10_1080_15230430_2021_2022995
Cites_doi 10.1016/1352-2310(95)00463-7
10.1111/1365-2745.12363
10.2307/2423481
10.1046/j.1365-3040.1999.00479.x
10.1002/2016JG003704
10.1016/S0065-2504(08)60016-1
10.1371/journal.pone.0044370
10.1046/j.1365-3040.1997.d01-133.x
10.1016/B978-0-12-385874-0.00003-0
10.1890/0012-9658(2001)082[3295:FACOGI]2.0.CO;2
10.1086/285524
10.1146/annurev.pp.33.060182.001533
10.1111/j.1469-8137.2005.01349.x
10.1016/j.cub.2012.03.044
10.1093/oso/9780195117288.003.0012
10.1007/s004420050560
10.1111/j.1654-1103.2005.tb02379.x
10.1002/2016GB005392
10.1017/CBO9780511805530.017
10.1890/ES13-00133.1
10.1017/CBO9780511805530.018
10.1093/treephys/14.7-8-9.1069
10.1111/j.1365-2745.2011.01945.x
10.1111/j.1600-0587.2012.07438.x
10.2307/1550081
10.1007/s10533-015-0122-3
10.1093/aob/mcs268
10.2307/3546321
10.1146/annurev.pp.31.060180.002423
10.1016/j.jenvman.2012.03.002
10.1046/j.1365-3040.2002.00890.x
10.1111/j.1654-1103.2004.tb02266.x
10.1111/j.1365-2486.2009.02122.x
10.1029/2007JG000419
10.1007/BF00258285
10.2307/1551871
10.1016/j.envpol.2009.08.004
10.1126/science.201.4356.614
10.1007/BF00384257
10.1111/1365-3040.ep11587620
10.1890/0012-9658(1999)080[1883:SPONBP]2.0.CO;2
10.1029/2007GL031253
10.1086/283101
10.1006/anbo.1997.0512
10.1007/978-3-642-68090-8_4
10.1111/1365-2745.12211
10.1038/nclimate1465
10.2136/sssaj2005.0117
10.1016/B978-0-12-385874-0.00005-4
10.1046/j.1365-2435.1998.00274.x
10.1073/pnas.1100555108
10.1073/pnas.91.15.7217
10.1007/978-94-017-0519-6_48
10.1002/ece3.1173
10.1007/BF00386231
10.1016/j.plantsci.2012.05.009
10.1093/jxb/48.2.345
10.1657/1523-0430(2003)035[0144:ALVIFN]2.0.CO;2
10.1093/treephys/21.4.223
10.1007/BF00377192
10.2307/1551647
10.2307/1551216
10.1023/B:CLIM.0000013702.22656.e8
10.1093/treephys/tpv118
10.1046/j.0016-8025.2003.01123.x
10.1093/oso/9780195117288.003.0016
10.1890/0012-9658(1997)078[1861:NAPAAS]2.0.CO;2
10.1071/PP9890199
10.1890/0012-9658(1998)079[2253:TPOAAB]2.0.CO;2
10.1111/j.1365-3040.2011.02340.x
10.1890/04-1926
10.1002/j.1537-2197.1960.tb14911.x
10.1657/1938-4246-46.4.735
10.1016/S0168-1923(02)00128-4
10.1657/1523-0430(2005)037[0444:CSIAPT]2.0.CO;2
10.1007/BF00317912
10.1007/BF01894807
10.1007/s10584-009-9546-x
10.2307/1929755
10.1007/BF00376856
10.1016/j.agrformet.2013.07.005
10.1002/(SICI)1099-1085(199910)13:14/15<2315::AID-HYP888>3.0.CO;2-A
10.1080/17550874.2015.1123317
10.1111/j.1365-2486.2008.01557.x
10.1038/nclimate2563
10.1007/BF00317287
10.1007/s004420000544
10.1016/j.advwatres.2013.09.020
10.2136/sssaj1995.03615995005900040012x
10.14430/arctic3564
10.1080/17550874.2013.819533
10.1007/s10533-016-0193-9
10.1002/hyp.7128
10.1046/j.1365-3040.2002.00891.x
10.1038/nature16489
10.1023/A:1009853730949
10.1007/s00442-007-0865-1
10.2307/3545637
10.1111/j.1365-2745.2011.01925.x
10.1111/j.1365-2699.2010.02407.x
10.1890/1051-0761(2006)016[1183:NCLFAV]2.0.CO;2
10.2307/2265597
10.1073/pnas.1310700110
10.1007/978-3-642-87851-0
10.1111/j.1365-3040.2008.01918.x
10.1080/15230430.2001.12003410
10.2307/1940854
10.1007/s00442-013-2695-7
ContentType Journal Article
Copyright 2018 The Authors. published by John Wiley & Sons Ltd.
2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018 The Authors. published by John Wiley & Sons Ltd.
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
3V.
7SN
7SS
7ST
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
RC3
SOI
5PM
DOA
DOI 10.1002/ece3.4816
DatabaseName Wiley Open Access
Wiley Online Library Open Access
PubMed
CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agriculture Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
DatabaseTitleList
Agricultural Science Database

PubMed

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
DocumentTitleAlternate WENTZ et al
EISSN 2045-7758
EndPage 1243
ExternalDocumentID oai_doaj_org_article_34742c52d4cf46848d1c2937b47d2978
10_1002_ece3_4816
30805155
ECE34816
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DEB 1637686
– fundername: National Science Foundation
  grantid: DEB 1637686
GroupedDBID 0R~
1OC
24P
53G
5VS
7X2
8-0
8-1
8FE
8FH
AAFWJ
AAHBH
AAHHS
AAZKR
ACCFJ
ACGFO
ACPRK
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFKRA
AFPKN
AFRAH
AIAGR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
ATCPS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
D-8
D-9
DIK
EBS
ECGQY
EJD
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IEP
KQ8
LK8
M0K
M48
M7P
M~E
OK1
PIMPY
PROAC
RNS
ROL
RPM
SUPJJ
WIN
ITC
NPM
AAYXX
CITATION
3V.
7SN
7SS
7ST
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PQEST
PQQKQ
PQUKI
PRINS
RC3
SOI
5PM
ID FETCH-LOGICAL-c5756-42f1a7f8d4d913ffa1cf01df1d1797a0a4ee1e170d98f5303c6ca9c0c85aca5b3
IEDL.DBID RPM
ISSN 2045-7758
IngestDate Tue Oct 22 15:11:00 EDT 2024
Tue Sep 17 21:09:28 EDT 2024
Thu Oct 10 16:10:23 EDT 2024
Fri Dec 06 05:41:15 EST 2024
Wed Oct 16 00:48:44 EDT 2024
Sat Aug 24 00:51:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords alpine tundra
dry and wet meadows
photosynthesis model
climate change
limitations
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5756-42f1a7f8d4d913ffa1cf01df1d1797a0a4ee1e170d98f5303c6ca9c0c85aca5b3
ORCID 0000-0002-2332-1400
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374730/
PMID 30805155
PQID 2179220784
PQPubID 2034651
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_34742c52d4cf46848d1c2937b47d2978
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6374730
proquest_journals_2179220784
crossref_primary_10_1002_ece3_4816
pubmed_primary_30805155
wiley_primary_10_1002_ece3_4816_ECE34816
PublicationCentury 2000
PublicationDate February 2019
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
– name: Hoboken
PublicationTitle Ecology and evolution
PublicationTitleAlternate Ecol Evol
PublicationYear 2019
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2010; 16
2013; 4
1983; 3
1997; 48
2013; 62
1983; 4
2016; 30
1974; 6
2013; 6
2016; 37
1996; 75
1987; 38
1996; 77
1980; 149
1976; 110
1980; 31
1960; 47
2009; 94
1981; 153
1986
2013; 111
1981
2013; 110
2008; 113
1994; 70
2012; 22
1998; 12
1959; 40
2012; 100
1995; 59
1997; 20
2015; 125
1982; 33
2003; 35
1986; 18
2005; 86
1999; 22
1962; 15
2014; 46
1995
2013b
2013a
2012; 103
2004; 428
2001; 21
2012; 193–194
1994; 14
2003; 27
1978; 201
2013; 173
2001; 33
1959; 59
1994; 91
2005; 16
1994; 97
1998; 79
1997; 80
2006; 70
2015; 35
1987; 1
2004; 62
2008b
2015; 103
1987; 4
2008a
2002; 114
1996; 30
1994; 26
1998; 116
1999; 80
2007; 34
1989; 78
2014; 4
2001
1982; 5
2010; 158
1993; 74
2013; 182–183
1999; 13
1983; 60
2005; 37
2017; 122
2008; 154
1998; 27
2009; 23
2015; 5
1989; 21
2012
2006; 16
2016; 529
2008; 14
2008
2016; 128
2011; 34
2011; 38
2015; 8
2001; 126
1993; 142
1964; 60
2001; 82
2002; 25
2012; 2
2013; 36
2011; 108
2009; 32
2000; 148
2004; 15
2000; 30
1997; 78
2015
2014
1995; 101
2013
1989; 16
2012; 7
2014; 102
e_1_2_10_21_1
e_1_2_10_44_1
Berendse F. (e_1_2_10_6_1) 1987; 1
e_1_2_10_40_1
e_1_2_10_109_1
Chapin F. S. (e_1_2_10_27_1) 1987; 38
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
Field C. B. (e_1_2_10_49_1) 1986
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_120_1
e_1_2_10_82_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
Korner C. (e_1_2_10_65_1) 1983; 4
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
Dingman L. (e_1_2_10_39_1) 2014
e_1_2_10_121_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
Bowman W. D. (e_1_2_10_23_1) 1998; 27
e_1_2_10_110_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
Gaastra P. (e_1_2_10_54_1) 1959; 59
Chapin F. S. (e_1_2_10_29_1) 2012
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
Zhao Y. (e_1_2_10_122_1) 2016; 37
Lambers H. (e_1_2_10_66_1) 2008
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_96_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 14
  start-page: 1069
  issue: 7_9
  year: 1994
  end-page: 1079
  article-title: An analytical solution for coupled leaf photosynthesis and stomatal conductance models
  publication-title: Tree Physiology
– start-page: 229
  year: 2008a
  end-page: 236
– volume: 101
  start-page: 217
  year: 1995
  end-page: 227
  article-title: Physiological and production responses of plant growth forms to increases in limiting resources in alpine tundra: Implications for differential community response to environmental change
  publication-title: Oecologia
– volume: 30
  start-page: 2527
  issue: 14
  year: 1996
  end-page: 2537
  article-title: Nitric acid, particulate nitrate and ammonium in the continental free troposphere: Nitrogen deposition to an alpine tundra ecosystem
  publication-title: Atmospheric Environment
– volume: 20
  start-page: 845
  year: 1997
  end-page: 866
  article-title: A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade‐tolerant species
  publication-title: Plant, Cell and Environment
– volume: 108
  start-page: 4041
  issue: 10
  year: 2011
  end-page: 4046
  article-title: Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 149
  start-page: 78
  year: 1980
  end-page: 90
  article-title: A biochemical model of photosynthetic CO assimilation in leaves of C3 species
  publication-title: Planta
– volume: 37
  start-page: 444
  issue: 4
  year: 2005
  end-page: 453
  article-title: Consistent shifts in alpine plant traits along a mesotopographical gradient
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 125
  start-page: 185
  year: 2015
  end-page: 202
  article-title: Soil respiration variability across a soil moisture and vegetation community gradient within a snow‐scoured alpine meadow
  publication-title: Biogeochemistry
– volume: 158
  start-page: 1015
  issue: 4
  year: 2010
  end-page: 1022
  article-title: Analysis of a Farquhar‐von Caemmerer‐Berry leaf‐level photosynthetic rate model for in the context of modeling and measurement limitations
  publication-title: Environmental Pollution
– volume: 60
  start-page: 384
  year: 1983
  end-page: 389
  article-title: Compromises between water‐use efficiency and nitrogen‐use efficiency in five species of California evergreens
  publication-title: Oecologia
– year: 2014
– volume: 529
  start-page: 167
  year: 2016
  end-page: 171
  article-title: The global spectrum of plant form and function
  publication-title: Nature
– volume: 18
  start-page: 83
  issue: 1
  year: 1986
  end-page: 96
  article-title: Factors influencing soil moisture and plant community distribution on Niwot Ridge, Front Range, Colorado, U.S.A
  publication-title: Arctic and Alpine Research
– volume: 113
  start-page: 1
  year: 2008
  end-page: 10
  article-title: Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation
  publication-title: Journal of Geophysical Research
– volume: 30
  start-page: 1
  year: 2000
  end-page: 67
  article-title: The mineral nutrition of wild plants revisited: A re‐evaluation of processes and patterns
  publication-title: Advances in Ecological Research
– volume: 110
  start-page: 743
  issue: 975
  year: 1976
  end-page: 778
  article-title: Sizes and shapes of liane leaves
  publication-title: American Society of Naturalists
– volume: 6
  start-page: 303
  issue: 3–4
  year: 2013
  end-page: 306
  article-title: Climate change and extreme events—Their impacts on alpine and arctic ecosystem structure and function
  publication-title: Plant Ecology & Diversity
– volume: 122
  start-page: 825
  year: 2017
  end-page: 845
  article-title: Ecosystem function in complex mountain terrain: Combining models and long‐term observations to advance process‐based understanding
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 35
  start-page: 144
  issue: 2
  year: 2003
  end-page: 149
  article-title: Alpine landscape variation in foliar nitrogen and phosphorus concentrations and the relation to soil nitrogen and phosphorous availability
  publication-title: Arctic, Antarctic, and Alpine Research
– start-page: 57
  year: 1981
  end-page: 107
– volume: 59
  start-page: 1
  issue: 13
  year: 1959
  end-page: 68
  article-title: Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance
  publication-title: Mededelingen Van De Landbouwhogeschool Te Wageningen
– start-page: 99
  year: 2001
  end-page: 127
– volume: 31
  start-page: 491
  year: 1980
  end-page: 543
  article-title: Photosynthetic response and adaptation to temperature in higher plants in higher plants
  publication-title: Annual Review of Plant Physiology
– volume: 33
  start-page: 100
  issue: 1
  year: 2001
  end-page: 106
  article-title: Plant species richness, productivity, and nitrogen and phosphorus limitations across a snowpack gradient in alpine tundra, Colorado, U.S.A
  publication-title: Arctic, Antarctic, and Alpine Research
– start-page: 49
  year: 2013a
  end-page: 91
– volume: 153
  start-page: 376
  year: 1981
  end-page: 387
  article-title: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves
  publication-title: Planta
– volume: 25
  start-page: 1155
  year: 2002
  end-page: 1165
  article-title: Temperature response of parameters of a biochemically based model of photosynthesis. I. Seasonal changes in mature maritime pine ( Ait.)
  publication-title: Plant, Cell and Environment
– volume: 75
  start-page: 34
  year: 1996
  end-page: 44
  article-title: Photosynthesis and respiration rates of Rocky Mountain alpine plants under field conditions
  publication-title: The American Midland Naturalist
– volume: 47
  start-page: 594
  issue: 7
  year: 1960
  article-title: The Annual carbohydrate cycle of alpine plants as related to growth
  publication-title: American Journal of Botany
– volume: 116
  start-page: 26
  year: 1998
  end-page: 37
  article-title: Photosynthetic nitrogen‐use efficiency of species that differ inherently in specific leaf area
  publication-title: Oecologia
– volume: 103
  start-page: 351
  year: 2015
  end-page: 360
  article-title: Indirect effects of global change accumulate to alter plant diversity but not ecosystem function in alpine tundra
  publication-title: Journal of Ecology
– volume: 193–194
  start-page: 70
  year: 2012
  end-page: 84
  article-title: Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis
  publication-title: Plant Science
– volume: 16
  start-page: 2602
  year: 2010
  end-page: 2613
  article-title: Infra‐red thermometry of alpine landscapes challenges climatic warming projections
  publication-title: Global Change Biology
– volume: 40
  start-page: 388
  issue: 3
  year: 1959
  end-page: 397
  article-title: An alpine snowbank environment and its effects on vegetation, plant development and productivity
  publication-title: Ecology
– volume: 428
  start-page: 821
  year: 2004
  end-page: 827
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
– volume: 15
  start-page: 117
  year: 1962
  end-page: 144
  article-title: Adaptations of arctic and alpine plants to environmental conditions
  publication-title: Arctic
– volume: 1
  start-page: 293
  issue: 1
  year: 1987
  end-page: 296
  article-title: Nitrogen‐use‐efficiency: A biologically meaningful definition?
  publication-title: Functional Ecology
– volume: 75
  start-page: 59
  year: 1996
  end-page: 66
  article-title: Uptake and allocation of 15N in alpine plants: Implications for the importance of competitive ability in predicting community structure in a stressful environment
  publication-title: Oikos
– volume: 32
  start-page: 259
  year: 2009
  end-page: 270
  article-title: Nitrogen in cell walls of sclerophyllous leaves accounts for little of the variation in photosynthetic nitrogen‐use efficiency
  publication-title: Plant, Cell and Environment
– volume: 79
  start-page: 2253
  issue: 7
  year: 1998
  end-page: 2266
  article-title: Topographic patterns of above‐ and belowground production and nitrogen cycling in alpine tundra
  publication-title: Ecology
– volume: 4
  start-page: 1
  issue: 9
  year: 2013
  end-page: 18
  article-title: Changes in alpine vegetation over 21 years: Are patterns across a heterogeneous landscape consistent with predictions?
  publication-title: Ecosphere
– volume: 22
  start-page: 1281
  year: 1999
  end-page: 1296
  article-title: Inter‐specific variation of the biochemical limitation to photosynthesis and related leaf traits of 30 species from mountain grassland ecosystems under different land use
  publication-title: Plant, Cell and Environment
– volume: 82
  start-page: 3295
  issue: 12
  year: 2001
  end-page: 3308
  article-title: Facilitation and competition on gradients in alpine plant communities
  publication-title: Ecology
– volume: 111
  start-page: 467
  year: 2013
  end-page: 477
  article-title: On the complementary relationship between marginal nitrogen and water‐use efficiencies among leaves grown under ambient and CO ‐enriched environments
  publication-title: Annals of Botany
– volume: 62
  start-page: 217
  year: 2004
  end-page: 232
  article-title: Changes in snowmelt runoff timing in Western North America under a “business as usual” climate change scenario
  publication-title: Climatic Change
– volume: 13
  start-page: 2315
  year: 1999
  end-page: 2330
  article-title: Long‐term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra
  publication-title: Hydrological Processes
– volume: 8
  start-page: 739
  issue: 5–6
  year: 2015
  end-page: 749
  article-title: Plant community response to nitrogen and phosphorus enrichment varies across an alpine tundra moisture gradient
  publication-title: Plant Ecology & Diversity
– start-page: 237
  year: 2008b
  end-page: 252
– volume: 21
  start-page: 223
  year: 2001
  end-page: 232
  article-title: Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species
  publication-title: Tree Physiology
– volume: 4
  start-page: 221
  issue: 5
  year: 1987
  end-page: 224
  article-title: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions
  publication-title: Progress in Photosynthesis Research
– start-page: 135
  year: 2013b
  end-page: 172
– volume: 80
  start-page: 1883
  issue: 6
  year: 1999
  end-page: 1891
  article-title: Seasonal partitioning of nitrogen by plants and soil microorganisms in an alpine ecosystem
  publication-title: Ecology
– year: 1995
– volume: 74
  start-page: 2085
  issue: 7
  year: 1993
  end-page: 2097
  article-title: Constraints of nutrient availability on primary production in two alpine tundra communities
  publication-title: Ecology
– volume: 38
  start-page: 69
  year: 1987
  end-page: 76
  article-title: Environmental controls over growth of tundra plants
  publication-title: Ecological Bulletins
– volume: 78
  start-page: 1861
  issue: 6
  year: 1997
  end-page: 1872
  article-title: Nutrient availability, plant abundance, and species diversity in two alpine tundra communities
  publication-title: Ecology
– volume: 78
  start-page: 9
  year: 1989
  end-page: 19
  article-title: Photosynthesis and nitrogen relationships in leaves of C₃ plants
  publication-title: Oecologia
– volume: 126
  start-page: 543
  issue: 4
  year: 2001
  end-page: 562
  article-title: A meta‐analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming
  publication-title: Oecologia
– volume: 201
  start-page: 614
  issue: 4356
  year: 1978
  end-page: 616
  article-title: Temperatures of desert plants: Another perspective on the adaptability of leaf size
  publication-title: Science
– year: 2013
– volume: 62
  start-page: 90
  year: 2013
  end-page: 105
  article-title: Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture
  publication-title: Advances in Water Resources
– volume: 103
  start-page: 165
  year: 2012
  end-page: 171
  article-title: Nitrogen critical loads for alpine vegetation and soils in Rocky Mountain National Park
  publication-title: Journal of Environmental Management
– volume: 77
  start-page: 1277
  issue: 4
  year: 1996
  end-page: 1285
  article-title: Luxury uptake and storage of nitrogen in the rhizomatous alpine herb,
  publication-title: Ecology
– start-page: 25
  year: 1986
  end-page: 55
– volume: 27
  start-page: 41
  year: 2003
  end-page: 50
  article-title: Elevated CO effects on mesophyll conductance and its consequence for interpreting photosynthetic physiology
  publication-title: Plant Cell and Environment
– volume: 14
  start-page: 1125
  year: 2008
  end-page: 1140
  article-title: Scaling environmental change through the community‐level: A trait‐based response‐and‐effect framework for plants
  publication-title: Global Change Biology
– volume: 26
  start-page: 14
  issue: 1
  year: 1994
  end-page: 20
  article-title: Short‐ and long‐term patterns of soil moisture in alpine tundra
  publication-title: Arctic and Alpine Research
– volume: 23
  start-page: 78
  year: 2009
  end-page: 94
  article-title: Changes in snowpack and snowmelt runoff for key mountain regions
  publication-title: Hydrological Processes
– volume: 60
  start-page: 497
  year: 1964
  end-page: 505
  article-title: Leaf temperatures of alpine plants in the field
  publication-title: Planta
– volume: 154
  start-page: 625
  issue: 4
  year: 2008
  end-page: 635
  article-title: Leaf shape linked to photosynthetic rates and temperature optima in South African species
  publication-title: Oecologia
– volume: 37
  start-page: 173
  year: 2016
  end-page: 185
  article-title: The plant economics spectrum is structured by leaf habits and growth forms across subtropical species
  publication-title: Tree Physiology
– volume: 148
  start-page: 81
  year: 2000
  end-page: 103
  article-title: Classification and ordination of plant communities along an altitudinal gradient on the Presidential Range, New Hampshire, USA
  publication-title: Plant Ecology
– volume: 15
  start-page: 295
  issue: 3
  year: 2004
  end-page: 304
  article-title: The plant traits that drive ecosystems: Evidence from three continents
  publication-title: Journal of Vegetation Science
– volume: 12
  start-page: 948
  year: 1998
  end-page: 958
  article-title: Leaf structure (specific leaf area) modulates photosynthesis‐nitrogen relations: Evidence from within and across species and functional groups
  publication-title: Functional Ecology
– volume: 35
  start-page: 1303
  year: 2015
  end-page: 1313
  article-title: Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway Spruce ( )
  publication-title: Tree Physiology
– start-page: 10
  year: 2008
  end-page: 153
– volume: 182–183
  start-page: 191
  year: 2013
  end-page: 199
  article-title: A perspective on optimal leaf stomatal conductance under CO2 and light co‐limitations
  publication-title: Agricultural and Forest Meteorology
– volume: 91
  start-page: 7217
  year: 1994
  end-page: 7221
  article-title: Genetic variability for stomatal conductance in Pima cotton and its relation to improvements of heat adaptation
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 128
  start-page: 35
  year: 2016
  end-page: 49
  article-title: Model‐based analysis of environmental controls over ecosystem primary production in an alpine tundra dry meadow
  publication-title: Biogeochemistry
– volume: 33
  start-page: 317
  year: 1982
  end-page: 345
  article-title: Stomatal conductance and photosynthesis
  publication-title: Annual Review of Plant Physiology
– volume: 36
  start-page: 393
  year: 2013
  end-page: 402
  article-title: Hierarchical effects of environmental filters on the functional structure of plant communities: A case study in the French Alps
  publication-title: Ecography
– year: 2015
– volume: 5
  start-page: 85
  issue: 1
  year: 1982
  end-page: 99
  article-title: An analysis of photosynthetic response and adaptation to temperature in higher plants: Temperature acclimation in the desert evergreen
  publication-title: Plant, Cell and Environment
– volume: 86
  start-page: 1395
  issue: 6
  year: 2005
  end-page: 1400
  article-title: Linking patterns and processes in alpine plant communities: A global study
  publication-title: Ecology
– volume: 48
  start-page: 345
  issue: 307
  year: 1997
  end-page: 347
  article-title: Scaling to a common temperature improves the correlation between the photosynthesis parameters Jmax and Vcmax
  publication-title: Journal of Experimental Botany
– volume: 110
  start-page: 18180
  issue: 45
  year: 2013
  end-page: 18184
  article-title: Functional traits predict relationship between plant abundance dynamic and long‐term climate warming
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 97
  start-page: 93
  issue: 1
  year: 1994
  end-page: 99
  article-title: Shoot growth dynamics and photosynthetic response to increased nitrogen availability in the alpine willow
  publication-title: Oecologia
– volume: 142
  start-page: S78
  year: 1993
  end-page: S92
  article-title: Evolution of suites of traits in response to environmental stress
  publication-title: The American Naturalist
– volume: 46
  start-page: 735
  issue: 4
  year: 2014
  end-page: 743
  article-title: Climatic changes in mountain regions of the American Cordillera and the tropics: Historical changes and future outlook
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 94
  start-page: 105
  year: 2009
  end-page: 121
  article-title: Winter climate change in alpine tundra: Plant responses to changes in snow depth and snowmelt timing
  publication-title: Climatic Change
– volume: 38
  start-page: 406
  year: 2011
  end-page: 416
  article-title: Topographically controlled thermal‐habitat differentiation buffers alpine plant diversity against climate warming
  publication-title: Journal of Biogeography
– start-page: 177
  year: 2001
  end-page: 197
– volume: 114
  start-page: 103
  year: 2002
  end-page: 122
  article-title: Impact of leaf physiological characteristics on seasonal variation in CO , latent and sensible heat exchanges over a tree plantation
  publication-title: Agricultural and Forest Meteorology
– volume: 80
  start-page: 721
  year: 1997
  end-page: 730
  article-title: Modelling optimal temperature acclimation of the photosynthetic apparatus in C3 plants with respect to nitrogen use
  publication-title: Annals of Botany
– volume: 59
  start-page: 1036
  year: 1995
  end-page: 1043
  article-title: Nitrogen mineralization and microbial biomass nitrogen dynamics in three alpine tundra communities
  publication-title: Social Science Society of America
– volume: 102
  start-page: 275
  year: 2014
  end-page: 301
  article-title: The world‐wide “fast–slow” plant economics spectrum: A traits manifesto
  publication-title: Journal of Ecology
– volume: 6
  start-page: 129
  issue: 2
  year: 1974
  end-page: 142
  article-title: Adaptations and origins of alpine plants
  publication-title: Arctic and Alpine Research
– volume: 5
  start-page: 424
  year: 2015
  end-page: 430
  article-title: Elevation‐dependent warming in mountain regions of the world
  publication-title: Nature Climate Change
– volume: 4
  start-page: 3218
  issue: 16
  year: 2014
  end-page: 3235
  article-title: The relationship of leaf photosynthetic traits—V and J —To leaf nitrogen, leaf phosphorus, and specific leaf area: A meta‐analysis and modeling study
  publication-title: Ecology and Evolution
– volume: 100
  start-page: 488
  year: 2012
  end-page: 498
  article-title: Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost
  publication-title: Journal of Ecology
– volume: 100
  start-page: 652
  year: 2012
  end-page: 661
  article-title: Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes
  publication-title: Journal of Ecology
– volume: 21
  start-page: 380
  issue: 4
  year: 1989
  end-page: 391
  article-title: The Climate of Niwot Ridge, Front Range, Colorado, U.S.A
  publication-title: Arctic and Alpine Research
– volume: 70
  start-page: 1569
  issue: 5
  year: 2006
  end-page: 1578
  article-title: Soil water characteristic estimates by texture and organic matter for hydrologic solutions
  publication-title: Soil Science Society of America Journal
– volume: 4
  start-page: 117
  issue: 18
  year: 1983
  end-page: 124
  article-title: Influence of plant physiognomy on leaf temperature on clear midsummer days in the snowy mountains south‐eastern Australia
  publication-title: Oecologica Plantarum
– volume: 34
  start-page: 1415
  year: 2011
  end-page: 1430
  article-title: Water‐use efficiency and nitrogen‐use efficiency of C3–C4 intermediate species of . (Asteraceae)
  publication-title: Plant, Cell and Environment
– volume: 30
  start-page: 933
  issue: 6
  year: 2016
  end-page: 951
  article-title: Convergent approaches to determine an ecosystem’s transpiration fraction
  publication-title: Global Biogeochemical Cycles
– start-page: 229
  year: 2012
  end-page: 258
– volume: 16
  start-page: 199
  year: 1989
  end-page: 217
  article-title: Photosynthetic temperature acclimation in eucalyptus species from diverse habitats, and a comparison with
  publication-title: Australian Journal of Plant Physiology
– volume: 34
  start-page: 1
  year: 2007
  end-page: 4
  article-title: Disappearing “alpine tundra” Koppen climatic type in the western United States
  publication-title: Geophysical Research Letters
– volume: 2
  start-page: 453
  year: 2012
  end-page: 457
  article-title: Plot‐scale evidence of tundra vegetation change and links to recent summer warming
  publication-title: Nature Climate Change
– volume: 70
  start-page: 261
  year: 1994
  end-page: 270
  article-title: Accumulation and use of nitrogen and phosphorus following fertilization in two alpine tundra communities
  publication-title: Oikos
– volume: 7
  start-page: 1
  issue: 9
  year: 2012
  end-page: 12
  article-title: Elevation‐dependent temperature trends in the rocky mountain front range: Changes over a 56‐ and 20‐year record
  publication-title: PLoS ONE
– volume: 16
  start-page: 399
  year: 2005
  end-page: 406
  article-title: Biomass production, N: P ratio and nutrient limitation in a caucasian alpine tundra plant community
  publication-title: Journal of Vegetation Science
– volume: 3
  start-page: 47
  year: 1983
  end-page: 52
  article-title: Direct and indirect effects of temperature on arctic plants
  publication-title: Polar Biology
– volume: 16
  start-page: 1183
  issue: 3
  year: 2006
  end-page: 1193
  article-title: Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: Are we there yet?
  publication-title: Ecological Applications
– volume: 25
  start-page: 1167
  year: 2002
  end-page: 1179
  article-title: Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data
  publication-title: Plant, Cell and Environment
– volume: 173
  start-page: 1551
  year: 2013
  end-page: 1561
  article-title: What controls plant nutrient use in high elevation ecosystems?
  publication-title: Oecologia
– volume: 22
  start-page: R396
  issue: 10
  year: 2012
  end-page: R397
  article-title: High temperature exposure increases plant cooling capacity
  publication-title: Current Biology
– volume: 27
  start-page: 514
  issue: 7
  year: 1998
  end-page: 517
  article-title: Positive feedbacks to anthropogenic nitrogen deposition in Rocky Mountain alpine tundra
  publication-title: Ambio
– ident: e_1_2_10_95_1
  doi: 10.1016/1352-2310(95)00463-7
– ident: e_1_2_10_46_1
  doi: 10.1111/1365-2745.12363
– volume: 4
  start-page: 117
  issue: 18
  year: 1983
  ident: e_1_2_10_65_1
  article-title: Influence of plant physiognomy on leaf temperature on clear midsummer days in the snowy mountains south‐eastern Australia
  publication-title: Oecologica Plantarum
  contributor:
    fullname: Korner C.
– ident: e_1_2_10_11_1
  doi: 10.2307/2423481
– ident: e_1_2_10_120_1
  doi: 10.1046/j.1365-3040.1999.00479.x
– start-page: 25
  volume-title: On the economy of plant form and function
  year: 1986
  ident: e_1_2_10_49_1
  contributor:
    fullname: Field C. B.
– ident: e_1_2_10_117_1
  doi: 10.1002/2016JG003704
– ident: e_1_2_10_2_1
  doi: 10.1016/S0065-2504(08)60016-1
– ident: e_1_2_10_73_1
  doi: 10.1371/journal.pone.0044370
– ident: e_1_2_10_79_1
  doi: 10.1046/j.1365-3040.1997.d01-133.x
– ident: e_1_2_10_92_1
  doi: 10.1016/B978-0-12-385874-0.00003-0
– ident: e_1_2_10_31_1
  doi: 10.1890/0012-9658(2001)082[3295:FACOGI]2.0.CO;2
– ident: e_1_2_10_28_1
  doi: 10.1086/285524
– ident: e_1_2_10_44_1
  doi: 10.1146/annurev.pp.33.060182.001533
– ident: e_1_2_10_121_1
  doi: 10.1111/j.1469-8137.2005.01349.x
– ident: e_1_2_10_32_1
  doi: 10.1016/j.cub.2012.03.044
– ident: e_1_2_10_116_1
  doi: 10.1093/oso/9780195117288.003.0012
– ident: e_1_2_10_82_1
  doi: 10.1007/s004420050560
– ident: e_1_2_10_98_1
  doi: 10.1111/j.1654-1103.2005.tb02379.x
– ident: e_1_2_10_7_1
  doi: 10.1002/2016GB005392
– ident: e_1_2_10_14_1
  doi: 10.1017/CBO9780511805530.017
– ident: e_1_2_10_100_1
  doi: 10.1890/ES13-00133.1
– ident: e_1_2_10_15_1
  doi: 10.1017/CBO9780511805530.018
– ident: e_1_2_10_4_1
  doi: 10.1093/treephys/14.7-8-9.1069
– ident: e_1_2_10_101_1
  doi: 10.1111/j.1365-2745.2011.01945.x
– ident: e_1_2_10_33_1
  doi: 10.1111/j.1600-0587.2012.07438.x
– ident: e_1_2_10_9_1
  doi: 10.2307/1550081
– ident: e_1_2_10_64_1
  doi: 10.1007/s10533-015-0122-3
– ident: e_1_2_10_80_1
  doi: 10.1093/aob/mcs268
– ident: e_1_2_10_108_1
  doi: 10.2307/3546321
– ident: e_1_2_10_8_1
  doi: 10.1146/annurev.pp.31.060180.002423
– ident: e_1_2_10_19_1
  doi: 10.1016/j.jenvman.2012.03.002
– ident: e_1_2_10_75_1
  doi: 10.1046/j.1365-3040.2002.00890.x
– ident: e_1_2_10_37_1
  doi: 10.1111/j.1654-1103.2004.tb02266.x
– ident: e_1_2_10_90_1
  doi: 10.1111/j.1365-2486.2009.02122.x
– ident: e_1_2_10_71_1
  doi: 10.1029/2007JG000419
– ident: e_1_2_10_26_1
  doi: 10.1007/BF00258285
– ident: e_1_2_10_107_1
  doi: 10.2307/1551871
– ident: e_1_2_10_68_1
  doi: 10.1016/j.envpol.2009.08.004
– ident: e_1_2_10_97_1
  doi: 10.1126/science.201.4356.614
– ident: e_1_2_10_113_1
  doi: 10.1007/BF00384257
– ident: e_1_2_10_3_1
  doi: 10.1111/1365-3040.ep11587620
– ident: e_1_2_10_61_1
  doi: 10.1890/0012-9658(1999)080[1883:SPONBP]2.0.CO;2
– ident: e_1_2_10_36_1
  doi: 10.1029/2007GL031253
– start-page: 10
  volume-title: Photosynthesis, respiration, and long‐distance transport. In Plant Physiological Ecology
  year: 2008
  ident: e_1_2_10_66_1
  contributor:
    fullname: Lambers H.
– ident: e_1_2_10_56_1
  doi: 10.1086/283101
– volume: 27
  start-page: 514
  issue: 7
  year: 1998
  ident: e_1_2_10_23_1
  article-title: Positive feedbacks to anthropogenic nitrogen deposition in Rocky Mountain alpine tundra
  publication-title: Ambio
  contributor:
    fullname: Bowman W. D.
– ident: e_1_2_10_59_1
  doi: 10.1006/anbo.1997.0512
– volume: 1
  start-page: 293
  issue: 1
  year: 1987
  ident: e_1_2_10_6_1
  article-title: Nitrogen‐use‐efficiency: A biologically meaningful definition?
  publication-title: Functional Ecology
  contributor:
    fullname: Berendse F.
– ident: e_1_2_10_12_1
  doi: 10.1007/978-3-642-68090-8_4
– ident: e_1_2_10_84_1
  doi: 10.1111/1365-2745.12211
– ident: e_1_2_10_41_1
  doi: 10.1038/nclimate1465
– ident: e_1_2_10_89_1
  doi: 10.2136/sssaj2005.0117
– ident: e_1_2_10_93_1
  doi: 10.1016/B978-0-12-385874-0.00005-4
– ident: e_1_2_10_85_1
  doi: 10.1046/j.1365-2435.1998.00274.x
– ident: e_1_2_10_34_1
  doi: 10.1073/pnas.1100555108
– ident: e_1_2_10_83_1
  doi: 10.1073/pnas.91.15.7217
– ident: e_1_2_10_5_1
  doi: 10.1007/978-94-017-0519-6_48
– ident: e_1_2_10_114_1
  doi: 10.1002/ece3.1173
– ident: e_1_2_10_45_1
  doi: 10.1007/BF00386231
– ident: e_1_2_10_53_1
  doi: 10.1016/j.plantsci.2012.05.009
– ident: e_1_2_10_69_1
  doi: 10.1093/jxb/48.2.345
– ident: e_1_2_10_20_1
  doi: 10.1657/1523-0430(2003)035[0144:ALVIFN]2.0.CO;2
– ident: e_1_2_10_40_1
  doi: 10.1093/treephys/21.4.223
– ident: e_1_2_10_42_1
  doi: 10.1007/BF00377192
– ident: e_1_2_10_57_1
  doi: 10.2307/1551647
– ident: e_1_2_10_60_1
  doi: 10.2307/1551216
– volume: 37
  start-page: 173
  year: 2016
  ident: e_1_2_10_122_1
  article-title: The plant economics spectrum is structured by leaf habits and growth forms across subtropical species
  publication-title: Tree Physiology
  contributor:
    fullname: Zhao Y.
– ident: e_1_2_10_103_1
  doi: 10.1023/B:CLIM.0000013702.22656.e8
– ident: e_1_2_10_104_1
  doi: 10.1093/treephys/tpv118
– ident: e_1_2_10_96_1
  doi: 10.1046/j.0016-8025.2003.01123.x
– ident: e_1_2_10_22_1
  doi: 10.1093/oso/9780195117288.003.0016
– ident: e_1_2_10_109_1
  doi: 10.1890/0012-9658(1997)078[1861:NAPAAS]2.0.CO;2
– ident: e_1_2_10_47_1
  doi: 10.1071/PP9890199
– ident: e_1_2_10_52_1
  doi: 10.1890/0012-9658(1998)079[2253:TPOAAB]2.0.CO;2
– ident: e_1_2_10_112_1
  doi: 10.1111/j.1365-3040.2011.02340.x
– ident: e_1_2_10_62_1
  doi: 10.1890/04-1926
– ident: e_1_2_10_76_1
  doi: 10.1002/j.1537-2197.1960.tb14911.x
– volume-title: Physical hydrology
  year: 2014
  ident: e_1_2_10_39_1
  contributor:
    fullname: Dingman L.
– ident: e_1_2_10_35_1
  doi: 10.1657/1938-4246-46.4.735
– ident: e_1_2_10_106_1
  doi: 10.1016/S0168-1923(02)00128-4
– ident: e_1_2_10_30_1
  doi: 10.1657/1523-0430(2005)037[0444:CSIAPT]2.0.CO;2
– ident: e_1_2_10_21_1
  doi: 10.1007/BF00317912
– ident: e_1_2_10_87_1
  doi: 10.1007/BF01894807
– ident: e_1_2_10_119_1
  doi: 10.1007/s10584-009-9546-x
– ident: e_1_2_10_10_1
  doi: 10.2307/1929755
– ident: e_1_2_10_48_1
  doi: 10.1007/BF00376856
– ident: e_1_2_10_111_1
  doi: 10.1016/j.agrformet.2013.07.005
– ident: e_1_2_10_50_1
– ident: e_1_2_10_115_1
  doi: 10.1002/(SICI)1099-1085(199910)13:14/15<2315::AID-HYP888>3.0.CO;2-A
– ident: e_1_2_10_55_1
  doi: 10.1080/17550874.2015.1123317
– ident: e_1_2_10_105_1
  doi: 10.1111/j.1365-2486.2008.01557.x
– ident: e_1_2_10_110_1
– ident: e_1_2_10_81_1
  doi: 10.1038/nclimate2563
– ident: e_1_2_10_24_1
  doi: 10.1007/BF00317287
– ident: e_1_2_10_86_1
  doi: 10.1007/s004420000544
– ident: e_1_2_10_72_1
  doi: 10.1016/j.advwatres.2013.09.020
– ident: e_1_2_10_51_1
  doi: 10.2136/sssaj1995.03615995005900040012x
– volume: 59
  start-page: 1
  issue: 13
  year: 1959
  ident: e_1_2_10_54_1
  article-title: Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance
  publication-title: Mededelingen Van De Landbouwhogeschool Te Wageningen
  contributor:
    fullname: Gaastra P.
– ident: e_1_2_10_63_1
– ident: e_1_2_10_13_1
  doi: 10.14430/arctic3564
– ident: e_1_2_10_118_1
  doi: 10.1080/17550874.2013.819533
– ident: e_1_2_10_43_1
  doi: 10.1007/s10533-016-0193-9
– ident: e_1_2_10_102_1
  doi: 10.1002/hyp.7128
– ident: e_1_2_10_74_1
  doi: 10.1046/j.1365-3040.2002.00891.x
– ident: e_1_2_10_38_1
  doi: 10.1038/nature16489
– ident: e_1_2_10_88_1
  doi: 10.1023/A:1009853730949
– ident: e_1_2_10_78_1
  doi: 10.1007/s00442-007-0865-1
– ident: e_1_2_10_17_1
  doi: 10.2307/3545637
– ident: e_1_2_10_77_1
  doi: 10.1111/j.1365-2745.2011.01925.x
– volume: 38
  start-page: 69
  year: 1987
  ident: e_1_2_10_27_1
  article-title: Environmental controls over growth of tundra plants
  publication-title: Ecological Bulletins
  contributor:
    fullname: Chapin F. S.
– ident: e_1_2_10_91_1
  doi: 10.1111/j.1365-2699.2010.02407.x
– ident: e_1_2_10_18_1
  doi: 10.1890/1051-0761(2006)016[1183:NCLFAV]2.0.CO;2
– ident: e_1_2_10_70_1
  doi: 10.2307/2265597
– start-page: 229
  volume-title: Principles of terrestrial ecosystem ecology
  year: 2012
  ident: e_1_2_10_29_1
  contributor:
    fullname: Chapin F. S.
– ident: e_1_2_10_99_1
  doi: 10.1073/pnas.1310700110
– ident: e_1_2_10_67_1
  doi: 10.1007/978-3-642-87851-0
– ident: e_1_2_10_58_1
  doi: 10.1111/j.1365-3040.2008.01918.x
– ident: e_1_2_10_94_1
  doi: 10.1080/15230430.2001.12003410
– ident: e_1_2_10_16_1
  doi: 10.2307/1940854
– ident: e_1_2_10_25_1
  doi: 10.1007/s00442-013-2695-7
SSID ssj0000602407
Score 2.2137733
Snippet We use a quantitative model of photosynthesis to explore leaf‐level limitations to plant growth in an alpine tundra ecosystem that is expected to have longer,...
We use a quantitative model of photosynthesis to explore leaf-level limitations to plant growth in an alpine tundra ecosystem that is expected to have longer,...
Abstract We use a quantitative model of photosynthesis to explore leaf‐level limitations to plant growth in an alpine tundra ecosystem that is expected to have...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1227
SubjectTerms Air temperature
Alpine environments
alpine tundra
Assimilation
climate change
Computer simulation
dry and wet meadows
Ecological effects
Ecological research
Ecosystems
Environmental changes
Gas exchange
Leaves
limitations
Meadows
Moisture content
Nitrogen
Original Research
Photosynthesis
photosynthesis model
Plant communities
Plant growth
Plant populations
Soil moisture
Species
Taiga & tundra
Temperature effects
Tundra
Water content
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kQfAivu3dVYJ48NJuXt3pPuoyyyLqyYW9SMijggvr7DAzHrzt3_Dv-UusJD3LDCpevHY3JKkvSX3VVH0F8FJ0EbUzqjWex1ZjdO3Ik2kjj-TN0KdUBEw_fOxPz_S78-58q9VXzgmr8sDVcEdKU_AWOhl1SLof9BBFIBdlvDZRUghUbl8ut4Kpegdn7S6zkRLi8ggDqtd6yH3NtxxQ0en_E7n8PUdym7sW53NyD-5OrJG9qbO9D7dw_gBuz4ri9PeH8Pk9usSyytQkkbxipSJkjcxdLohHssUlWZCFWg2SNVR_Xv9gy5ofi2x9xRxbXXzNrbwwss2PcZZ3KS4fwdnJ7NPxaTv1TWgDka--1TIJZ9IQdRyFSsmJkLiISUQ6fcZxpxEFCsPjOBAUXIU-uDHwMHQuuM6rx7A3v5rjU2DGeRlHJXwyRF107ylgJiCwG_xAw6gGXmyMaRdVHsNWIWRps8VttngDb7OZbz7IitblAeFsJ5ztv3Bu4HADkp2O2cpSPDVKSSxHN_Ck4nUziiIunPvXNGB2kNyZxu6b-cWXIrDdKwqyFG_gVcH87yuzs-NZrmTu9__HEg_gDtGxseaEH8LeevkNnxHlWfvnZXf_Am5g_8M
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkhcUHmHFmQhDlxC_UrsnBCtUlUIKoSo1AuyHD9KpbK77C4HbvwN_l5_SceJs3TF45pEsT1je74Zj78BeMEqH6RVolQd9aUM3pYNjar01KM1C12MPYHp--P66ES-Pa1Oc8BtmdMqxz2x36j9zKUY-R5C54ZzNGjy9fxbmapGpdPVXELjJmxxJrSewNZ-e_zh4zrKQuvE4aVGSiHK94IL4pXUqb75NUPU8_X_DWT-mSt5HcP2RuhwG-5k9EjeDOq-CzfC9B7canvm6R_34fO7YCNJbFOZKnlJ-pshq0DsxRzxJJlfoCSJG26FJC7Vy5-_yGLIkw1kNSOWLM-_ppJewZMxQE7S8MPiAZwctp8OjspcP6F0CMLqUvLIrIraS98wEaNlLlLmI_MoS2WplSGwwBT1jUaVUOFqZxtHna6ss1UnHsJkOpuGx0CU7bhvBOuiQggj6w4dZ-liqHSnsRlRwPNRmGY-0GSYgRCZmyRxkyRewH4S8_qDxGzdP5gtzkxeKEZIdNZdxT3-XtZaas8cQhLVSeU5urwF7I5KMnm5Lc3vyVHAo0Ff61YEYuJUx6YAtaHJjW5svpmef-mJtmuBzpagBbzsdf7vkZn2oE03musn_-_dDtxGwNUMWd-7MFktvoenCGpW3bM8c68AJ7D58w
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIiQuqLxDC7IQBy4pduzEzgEhqLaqEOXESr0gy09aadldsotEb_yN_r3-EsZOUnVFkbjm5eQbO_ONNfMNwCtW-yCM5KW01JcieFO2NMrSU4_eLNgYs4Dp8efmaCo-ntQnWzD22BwAXN0Y2qV-UtNutv_rx_k7XPBvBwHRN8EFvi8Ua27B7QodYsrsOh5Yfv9DTkJeqXA6aa8jn6zVqDF0_e4Nz5QF_G9inX8nT14ntdkrHe7AvYFOkve9_e_DVpg_gDuTLEV9_hC-fgomkiQ_NWgnr0guFVkHYmZLJJhkOUNoievLRJK46uXvC9L1ibOBrBfEkNXZ99TjK3gy7piTNH1D9wimh5MvB0fl0FChdMjKmlJUkRkZlRe-ZTxGw1ykzEfmcVlKQ40IgQUmqW8V2ohy1zjTOupUbZypLX8M2_PFPDwFIo2tfMuZjRI5jWgsRtLCxVArq3AYXsDLEUy97HUzdK-QXOmEuE6IF_AhwXx1QZK6zgcW3Tc9rBzNBUbvrq48Pl40SijPHHIUaYX0FcbABeyNRtLj9NEYaLVVhfRHFPCkt9fVKBxJcmpsU4DcsOTGa2yemZ-dZuXthmP0xWkBr7PN__1lenIwSSXOzbP_wWEX7iIPa_tk8D3YXnc_w3PkOmv7Is_kPw_h_gk
  priority: 102
  providerName: Scholars Portal
– databaseName: Wiley Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Lb9QwEMdHpQiJCyrvQEEW4sAl1I4d21FPUG1VIUAcqNQLsvyESmV3tbscuPE1-vX6SRg7D1gBEtfEiZOZTPwfy_MzwHPWhiis4rVyNNQiBlt3NKk60ICjWXQpFYDpu_fy5FS8OWvPduBwrIXp-RDThFuOjPK_zgFu3frgFzQ0-shfCs3kNbiOskbm7Qsa8WGaYKEy47tyuXQmrqOKbPVIFqLNwXT11nhUsP1_05p_Lpn8XcqWseh4D24NIpK86r1-G3bi_A7cmBUA9fe78OlttIlk6NRATF6TUiCyicReLPHFyfICDUp8XxySkapXPy7Jql8uG8lmQSxZn3_NO3vFQMZ5cpI_2ri6B6fHs49HJ_WwjULtUYvJWjSJWZV0EKFjPCXLfKIsJBYwGJWlVsTIIlM0dBo9Q7mX3naeet1ab1vH78PufDGPD4Eo65rQceaSQiUjpMP8WfgUW-00dsMreDYa0yx7WobpuciNyRY32eIVvM5mnhpkwHU5sFh9NkO8GC4wZ_dtE_D2QmqhA_OoTJQTKjSY-VawPzrJDFG3NphedU2DokdU8KD319QLR2mct7OpQG15cusxts_Mz78U3rbkmHNxWsGL4vN_v5mZHc1yYbN89P9NH8NN1GBdvxB8H3Y3q2_xCeqcjXtavuef6c76TQ
  priority: 102
  providerName: Wiley-Blackwell
Title Leaf temperatures mediate alpine plant communities’ response to a simulated extended summer
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fece3.4816
https://www.ncbi.nlm.nih.gov/pubmed/30805155
https://www.proquest.com/docview/2179220784
https://pubmed.ncbi.nlm.nih.gov/PMC6374730
https://doaj.org/article/34742c52d4cf46848d1c2937b47d2978
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwEB5tFyFxQfyTZaksxIFLWjt24uTIVl2tEF1ViJX2giL_QqU2rdpy2BuvwevxJIydZLUVcOGSQxLF9sw484018w3AW5ZbJ5TkqdTUpsJZlVbUy9RSi97Mae8jgenssri4Eh-u8-sjyPtamJi0b_Ri1CxXo2bxLeZWblZm3OeJjeezScERBHM6HsAA3e-dEL39_QbaLtmzCNFs7IzjI1Gy0K6II0IKXU0O3FBk6_8bxPwzU_Iugo0u6PwRPOywI3nfzvExHLnmCdyfRt7pm6fw5aNTngSuqY4oeUdiXcjeEbXcIJokmyXKkZi2JiQwqf768ZNs2yxZR_ZroshusQoNvZwl_fE4Cbbqts_g6nz6eXKRdt0TUoMQrEhF5pmSvrTCVox7r5jxlFnPLO5BqagSzjHHJLVViQqh3BRGVYaaMldG5Zo_h-Nm3biXQKTSma04014igBGFxrBZGO_yUpc4DE_gTS_MetOSZNQtHXJWB-HXQfgJnAUx374QeK3jjfX2a91pt-YCQ3WTZxY_L4pSlJYZBCRSC2kzDHgTOO2VVHebbVdjVFVlGWIdkcCLVl-3o_T6TkAeaPJgGodP0OoizXZnZQm8izr_98rq6WQa6pmLk_8e5BU8QCRWtengp3C83353rxHt7PUQBpmYD-He2fRy_mkYzwzwOhPlMNr9b_wIBck
link.rule.ids 230,314,727,780,784,864,885,2102,2221,11562,21388,24318,27924,27925,33744,43805,46052,46476,50814,50923,53791,53793,74302
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVgguiDeBAhbiwCXUjp04OSFapVpgu0KolXpBluMHVCq7y-5y4Mbf4O_xSxg7ztIVj2sSxfaM7flmPP4G4BkrrRNa8lx21ObCWZ031MvcUovWzHXeRwLTo2k1PhFvTsvTFHBbpbTKYU-MG7WdmxAj30Po3BQFGjTxcvElD1WjwulqKqFxGXYCc3o5gp39dvru_SbKQqvA4SUHSiFa7Dnj-AtRh_rmFwxR5Ov_G8j8M1fyIoaNRujwBlxP6JG86tV9Ey652S240kbm6W-34cPEaU8C21SiSl6ReDNk7Yg-XyCeJItzlCQx_a2QwKX68_sPsuzzZB1Zz4kmq7PPoaSXs2QIkJMwfLe8AyeH7fHBOE_1E3KDIKzKReGZlr62wjaMe6-Z8ZRZzyzKUmqqhXPMMUltU6NKKDeV0Y2hpi610WXH78JoNp-5-0Ck7grbcNZ5iRBGVB06zsJ4V9Zdjc3wDJ4OwlSLniZD9YTIhQoSV0HiGewHMW8-CMzW8cF8-VGlhaK4QGfdlIXF34uqFrVlBiGJ7IS0Bbq8GewOSlJpua3U78mRwb1eX5tWOGLiUMcmA7mlya1ubL-ZnX2KRNsVR2eL0wyeR53_e2SqPWjDjebqwf979wSujo-PJmryevr2IVxD8NX0GeC7MFovv7pHCHDW3eM0i38B-YH82w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB5BVyAuiDeBBSzEgUuoHTtxckLskmqBpVohVtoLsvyElZa2tOXAjb_B3-OXME6cshWPaxLF9ozt-WY8_gbgCSudF1ryXBrqcuGdzhsaZO6oQ2vmTQgdgenbaXVwLF6flCcp_2mV0iqHPbHbqN3cxhj5GKFzUxRo0MQ4pLSIo5eT54sveawgFU9aUzmNi7CDVpEWI9jZa6dH7zYRF1pFPi850AvRYuyt589EHWudnzNKHXf_3wDnn3mT5_FsZ5Am1-BqQpLkRa_663DBz27ApbZjof52Ez4ceh1IZJ5KtMkr0t0SWXuizxaILcniDKVKbH9DJPKq_vz-gyz7nFlP1nOiyer0cyzv5R0ZguUkDt8vb8HxpH2_f5CnWgq5RUBW5aIITMtQO-EaxkPQzAbKXGAO5So11cJ75pmkrqlRPZTbyurGUluX2urS8Nswms1n_i4QqU3hGs5MkAhnRGXQiRY2-LI2NTbDM3g8CFMtesoM1ZMjFypKXEWJZ7AXxbz5ILJcdw_my48qLRrFBTrutiwc_l5UtagdswhPpBHSFej-ZrA7KEmlpbdSvydKBnd6fW1a4YiPY02bDOSWJre6sf1mdvqpI92uODpenGbwtNP5v0em2v023m6u7v2_d4_gMk5gdfhq-uY-XEEc1vTJ4LswWi-_-geIddbmYZrEvwCVugEX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leaf+temperatures+mediate+alpine+plant+communities%E2%80%99+response+to+a+simulated+extended+summer&rft.jtitle=Ecology+and+evolution&rft.au=Wentz%2C+Katherine+F.&rft.au=Neff%2C+Jason+C.&rft.au=Suding%2C+Katharine+N.&rft.date=2019-02-01&rft.issn=2045-7758&rft.eissn=2045-7758&rft.volume=9&rft.issue=3&rft.spage=1227&rft.epage=1243&rft_id=info:doi/10.1002%2Fece3.4816&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ece3_4816
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-7758&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-7758&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-7758&client=summon