Density functional theory in materials science

Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering application...

Full description

Saved in:
Bibliographic Details
Published inWiley interdisciplinary reviews. Computational molecular science Vol. 3; no. 5; pp. 438 - 448
Main Authors Neugebauer, Jörg, Hickel, Tilmann
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.09.2013
Online AccessGet full text
ISSN1759-0876
1759-0884
DOI10.1002/wcms.1125

Cover

Abstract Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition–structure–property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form. © 2013 John Wiley & Sons, Ltd. This article is categorized under: Structure and Mechanism > Computational Materials Science
AbstractList Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition-structure-property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form.
Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition–structure–property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form. © 2013 John Wiley & Sons, Ltd. This article is categorized under: Structure and Mechanism > Computational Materials Science
Author Hickel, Tilmann
Neugebauer, Jörg
Author_xml – sequence: 1
  givenname: Jörg
  surname: Neugebauer
  fullname: Neugebauer, Jörg
  email: neugebauer@mpie.de
– sequence: 2
  givenname: Tilmann
  surname: Hickel
  fullname: Hickel, Tilmann
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24563665$$D View this record in MEDLINE/PubMed
BookMark eNo9kN1Kw0AQhRep2Fp74QtIXiDp_m9yKdWqUPHCgpfLZncWV5JNSVJK3t6EaudmzjBnDsN3i2axiYDQPcEZwZiuT7buMkKouEILokSR4jzns4tWco5WXfeDx-IFoYzcoDnlQjIpxQJlTxC70A-JP0bbhyaaKum_oWmHJMSkNj20wVRd0tkA0cIduvbjCKu_vkT77fN-85ruPl7eNo-71AolRGod5eCAYucUEaosiBel8NwR63EuiffSCqMKCqW0vCip8YKOB4w5AEXZEj2cYw_HsganD22oTTvo_79Hw_psOIUKhsueYD0x0RMTPTHRX5v3z0mwX473ViA
CitedBy_id crossref_primary_10_1063_5_0226435
crossref_primary_10_1002_jcc_26493
crossref_primary_10_1021_acs_chemmater_5b04896
crossref_primary_10_1088_0253_6102_66_5_571
crossref_primary_10_1021_acsmaterialslett_9b00523
crossref_primary_10_1063_5_0096645
crossref_primary_10_1016_j_physb_2024_416346
crossref_primary_10_1016_j_jeurceramsoc_2021_03_031
crossref_primary_10_1016_S1872_2067_24_60006_9
crossref_primary_10_1080_23746149_2019_1710252
crossref_primary_10_1016_j_mssp_2024_108566
crossref_primary_10_3390_membranes12040360
crossref_primary_10_1021_acs_jctc_3c00932
crossref_primary_10_1088_2632_2153_ad6831
crossref_primary_10_1021_acs_jctc_9b00939
crossref_primary_10_1103_PhysRevB_101_205113
crossref_primary_10_1103_PhysRevB_92_245202
crossref_primary_10_1016_j_jmmm_2014_11_004
crossref_primary_10_1016_j_jmrt_2020_10_073
crossref_primary_10_1063_5_0150702
crossref_primary_10_1557_s43577_022_00383_6
crossref_primary_10_1016_j_pcrysgrow_2015_10_002
crossref_primary_10_1002_jcc_25837
crossref_primary_10_1039_D4MA00231H
crossref_primary_10_1103_PhysRevLett_115_033006
crossref_primary_10_1016_j_crci_2018_03_007
crossref_primary_10_1021_acs_jctc_3c00769
crossref_primary_10_1063_1_5099479
crossref_primary_10_1021_acsomega_2c04856
crossref_primary_10_1021_acs_jctc_4c00694
crossref_primary_10_1016_j_jma_2022_05_006
crossref_primary_10_1021_acsapm_4c00002
crossref_primary_10_1103_PhysRevB_102_174102
crossref_primary_10_1021_acs_jctc_2c00240
crossref_primary_10_1016_j_enmf_2023_09_001
crossref_primary_10_1140_epjp_s13360_021_02218_w
crossref_primary_10_1016_j_egyai_2021_100049
crossref_primary_10_1038_s41598_021_94550_5
crossref_primary_10_1021_acs_jpcc_6b10908
crossref_primary_10_1016_j_cis_2024_103360
crossref_primary_10_1080_14786435_2020_1781277
crossref_primary_10_1103_PhysRevLett_116_217202
crossref_primary_10_1021_acs_jctc_6b00469
crossref_primary_10_1038_s41534_024_00896_9
crossref_primary_10_1103_PhysRevB_93_241118
crossref_primary_10_1007_s12648_016_0923_9
crossref_primary_10_1016_j_physb_2022_414550
crossref_primary_10_1063_5_0126169
crossref_primary_10_1016_j_molstruc_2023_137393
crossref_primary_10_1002_jcc_27477
crossref_primary_10_1103_PhysRevB_87_235305
crossref_primary_10_1016_j_calphad_2016_05_001
crossref_primary_10_3390_jcs8060204
crossref_primary_10_1007_s10948_022_06468_2
crossref_primary_10_1021_acs_jpcc_7b09000
crossref_primary_10_1016_j_jmgm_2024_108780
crossref_primary_10_1088_2053_1591_ac565c
crossref_primary_10_1021_acsami_4c15835
crossref_primary_10_3390_en17195002
crossref_primary_10_3390_cryst15010061
crossref_primary_10_1016_j_cpc_2015_05_016
crossref_primary_10_24012_dumf_506155
crossref_primary_10_1103_PhysRevApplied_7_024004
crossref_primary_10_1016_j_commatsci_2020_109619
crossref_primary_10_1088_0953_8984_27_12_125006
crossref_primary_10_1103_PhysRevB_99_081201
crossref_primary_10_1103_PhysRevMaterials_2_023804
crossref_primary_10_1016_j_est_2024_113734
crossref_primary_10_1021_acs_langmuir_7b04399
crossref_primary_10_1103_PhysRevMaterials_3_084407
crossref_primary_10_1016_j_commatsci_2022_111924
crossref_primary_10_1007_s40192_022_00258_3
crossref_primary_10_1016_j_ijhydene_2016_04_025
crossref_primary_10_1080_02670836_2020_1839206
crossref_primary_10_1021_acs_jctc_4c00843
crossref_primary_10_13005_msri_17_special_issue1_03
crossref_primary_10_1002_pssb_201350155
crossref_primary_10_1016_j_matchemphys_2024_129710
crossref_primary_10_1021_acs_jctc_2c00958
crossref_primary_10_3389_fmats_2021_673574
crossref_primary_10_1007_s11831_024_10201_8
crossref_primary_10_1016_j_matt_2020_11_010
crossref_primary_10_1016_j_cpc_2022_108636
crossref_primary_10_1016_j_cjph_2016_09_011
crossref_primary_10_1103_PhysRevB_98_094426
crossref_primary_10_1063_5_0235572
crossref_primary_10_1002_adma_201500143
crossref_primary_10_1088_1361_648X_ab6046
crossref_primary_10_1016_j_jcrysgro_2024_127727
crossref_primary_10_3390_molecules26133953
crossref_primary_10_1002_qua_26332
crossref_primary_10_1016_j_jssc_2021_122336
crossref_primary_10_1016_j_coche_2013_08_012
crossref_primary_10_3390_ijms25115586
crossref_primary_10_1016_j_ijhydene_2015_06_096
crossref_primary_10_1016_j_ijhydene_2025_03_201
crossref_primary_10_15251_DJNB_2024_193_1243
crossref_primary_10_1002_qua_24836
crossref_primary_10_1007_s13738_021_02194_z
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
DBID 24P
NPM
DOI 10.1002/wcms.1125
DatabaseName Wiley Online Library Open Access
PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1759-0884
EndPage 448
ExternalDocumentID 24563665
WCMS1125
Genre article
Journal Article
GroupedDBID 05W
0R~
1OC
1VH
24P
31~
33P
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-A
DCZOG
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
P2W
ROL
SUPJJ
WBKPD
WHWMO
WIH
WIK
WOHZO
WVDHM
WXSBR
WYJ
ZZTAW
~S-
AEYWJ
AGHNM
AGQPQ
AGYGG
NPM
ID FETCH-LOGICAL-c5755-cd24ede20dd7157b91f5b5f4d1cf0861ff6c5a792eb6c49b2af52ede33dee723
IEDL.DBID 24P
ISSN 1759-0876
IngestDate Mon Jul 21 05:49:09 EDT 2025
Wed Jan 22 16:24:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5755-cd24ede20dd7157b91f5b5f4d1cf0861ff6c5a792eb6c49b2af52ede33dee723
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1125
PMID 24563665
PageCount 11
ParticipantIDs pubmed_primary_24563665
wiley_primary_10_1002_wcms_1125_WCMS1125
PublicationCentury 2000
PublicationDate September/October 2013
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: September/October 2013
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
PublicationTitle Wiley interdisciplinary reviews. Computational molecular science
PublicationTitleAlternate Wiley Interdiscip Rev Comput Mol Sci
PublicationYear 2013
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 1995; 72
2003; 118
1990; 59
1965; 140
1980; 45
1984; 128
1995; 32
2008; 20:290301
1967; 156
2008; 78
2007; 76:024309
2008; 77:245202
1999; 83
1964; 136
2002; 88:036102
1996; 77
2011; 248
2010; 81:224202
1984; 14
1991; 43
2007; 6
1984
1992; 46
1982
2004; 93:196401
2012; 24
1983; 27
1996; 6
2009; 102:026402
1993; 47
1995; 51
2011
2011; 84
1980; 21
2009
2008
2001; 64:014107
2009; 102:016402
1992; 36
2012; 75
1981; 23
1999
2002; 25
1990; 65
2004; 95
1965; 137
2008; 20:064208
2008; 100:136406
2005; 169
2008; 78:235104
2005; 72:085108
1994; 50
2006; 74:121102
2012; 85
References_xml – volume: 43
  start-page: 7231
  year: 1991
  end-page: 7242
  article-title: Ab initio calculation of phonon dispersions in semiconductors
  publication-title: Phys Rev B
– volume: 20:290301
  year: 2008
  article-title: Introductory remarks: linear scaling methods ‐ Preface
  publication-title: J Phys: Condens Matter
– volume: 72:085108
  year: 2005
  article-title: Functional designed to include surface effects in self‐consistent density functional theory
  publication-title: Phys Rev B
– volume: 6
  start-page: 876
  year: 2007
  end-page: 881
  article-title: Rate dependence of crack‐tip processes predicts twinning trends in f.c.c. metals
  publication-title: Nat Mater
– volume: 27
  start-page: 5169
  year: 1983
  end-page: 5172
  article-title: Density‐functional theory applied to phase transformations in transition‐metal alloys
  publication-title: Phys Rev B
– start-page: 78:033102
  year: 2008
  article-title: Free energy of bcc iron: Integrated ab initio derivation of vibrational, electronic, and magnetic contributions
  publication-title: Phys Rev B
– volume: 248
  start-page: 1295
  year: 2011
  end-page: 1308
  article-title: Formation energies of point defects at finite temperatures
  publication-title: Phys Status Solidi B
– volume: 23
  start-page: 5048
  year: 1981
  end-page: 5079
  article-title: Self‐interaction correction to density‐functional approximations for many‐electron systems
  publication-title: Phys Rev B
– volume: 78:235104
  year: 2008
  article-title: Assessment of correction methods for the band‐gap problem and for finite‐size effects in supercell defect calculations: case studies for ZnO and GaAs
  publication-title: Phys Rev B
– volume: 50
  start-page: 196
  year: 1994
  end-page: 204
  article-title: Exact Kohn–Sham scheme based on perturbation theory
  publication-title: Phys Rev A
– volume: 46
  start-page: 6671
  year: 1992
  end-page: 6687
  article-title: Atoms, molecules, solids, and surfaces—applications of the generalized gradient approximation for exchange and correlation
  publication-title: Phys Rev B
– volume: 51
  start-page: 4014
  year: 1995
  end-page: 4022
  article-title: Periodic boundary‐conditions in ab‐initio calculations
  publication-title: Phys Rev B
– volume: 72
  start-page: 453
  year: 1995
  end-page: 496
  article-title: Atomic modes of dislocation mobility in silicon
  publication-title: Philos Mag A
– volume: 169
  start-page: 370
  year: 2005
  end-page: 373
  article-title: A cluster algorithm for lattice gauge theories
  publication-title: Comput Phys Commun
– volume: 20:064208
  year: 2008
  article-title: The SIESTA method; developments and applicability
  publication-title: J Phys: Condens Matter
– volume: 95
  start-page: 3851
  year: 2004
  end-page: 3879
  article-title: First‐principles calculations for defects and impurities: applications to III‐nitrides
  publication-title: J Appl Phys
– volume: 36
  start-page: 1
  year: 1992
  end-page: 27
  article-title: Structure of dislocation cores in metallic materials and its impact on their plastic behaviour
  publication-title: Prog Mater Sci
– volume: 85
  start-page: 144118
  year: 2012
  article-title: Vacancy formation energies in fcc metals: influence of exchange‐correlation functionals and correction schemes
  publication-title: Phys. Rev. B
– volume: 47
  start-page: 16532
  year: 1993
  end-page: 16541
  article-title: Self‐consistent linear‐muffin‐tin‐orbitals coherent‐potential technique for bulk and surface calculations—Cu‐Ni, Ag‐Pd, and Au‐Pt random alloys
  publication-title: Phys Rev B
– volume: 248
  start-page: 1837
  year: 2011
  end-page: 1852
  article-title: Theoretical modeling of growth processes, extended defects, and electronic properties of III‐nitride semiconductor nanostructures
  publication-title: Phys Status Solid B
– volume: 136
  start-page: B864–B871
  year: 1964
  article-title: Inhomogeneous electron gas
  publication-title: Phys Rev
– volume: 64:014107
  year: 2001
  article-title: Total‐energy method based on the exact muffin‐tin orbitals theory
  publication-title: Phys Rev B
– year: 1982
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  article-title: Generalized gradient approximation made simple
  publication-title: Phys Rev Lett
– volume: 100:136406
  year: 2008
  article-title: Restoring the density‐gradient expansion for exchange in solids and surfaces
  publication-title: Phys Rev Lett
– volume: 24
  start-page: 053202
  year: 2012
  article-title: Advancing density functional theory to finite temperatures: methods and applications in steel design
  publication-title: J Phys: Condens Matter
– volume: 88:036102
  year: 2002
  article-title: Reaction‐limited island nucleation in molecular beam epitaxy of compound semiconductors
  publication-title: Phys Rev Lett
– volume: 75
  start-page: 036503
  year: 2012
  article-title: O( ) methods in electronic structure calculations
  publication-title: Rep Prog Phys
– volume: 32
  start-page: 729
  year: 1995
  end-page: 734
  article-title: Ab initio force constant approach to phonon dispersion relations of diamond and graphite
  publication-title: Europhys Lett
– volume: 83
  start-page: 2351
  year: 1999
  end-page: 2354
  article-title: Calculations of silicon self‐interstitial defects
  publication-title: Phys Rev Lett
– volume: 128
  start-page: 334
  year: 1984
  end-page: 350
  article-title: Generalized cluster description of multicomponent systems
  publication-title: Physica A
– volume: 140
  start-page: A1133–A1138
  year: 1965
  article-title: Self‐consistent equations including exchange and correlation effects
  publication-title: Phys Rev
– volume: 21
  start-page: 3222
  year: 1980
  end-page: 3244
  article-title: Calculating properties with the coherent‐potential approximation
  publication-title: Phys Rev B
– volume: 59
  start-page: 399
  year: 1990
  end-page: 415
  article-title: Full‐potential, linearized augmented plane‐wave programs for crystalline systems
  publication-title: Comput Phys Commun
– volume: 25
  start-page: 478
  year: 2002
  end-page: 492
  article-title: First‐principles computation of material properties: the ABINIT software project
  publication-title: Comput Mater Sci
– volume: 78
  start-page: 014110
  year: 2008
  article-title: Lattice Green function for extended defect calculations: computation and error estimation with long‐range forces
  publication-title: Phys Rev B
– volume: 46
  start-page: 12947
  year: 1992
  end-page: 12954
  article-title: Pair‐distribution function and its coupling‐constant average for the spin‐polarized electron‐gas
  publication-title: Phys Rev B
– volume: 14
  start-page: L125
  year: 1984
  end-page: L128
  article-title: Exchange Interactions and Spin‐Wave Stiffness in Ferromagnetic Metals
  publication-title: J Phys F Metal Phys
– start-page: 83:165114
  year: 2011
  article-title: Role of spin quantization in determining the thermodynamic properties of magnetic transition metals
  publication-title: Phys Rev B
– volume: 156
  start-page: 809
  year: 1967
  end-page: 813
  article-title: Coherent‐Potential model of substitutional disordered alloys
  publication-title: Phys Rev
– start-page: 84:125101
  year: 2011
  article-title: Ab initio based determination of thermodynamic properties of cementite including vibronic, magnetic, and electronic excitations
  publication-title: Phys Rev B
– volume: 74:121102
  year: 2006
  article-title: Comparison of screened hybrid density functional theory to diffusion Monte Carlo in calculations of total energies of silicon phases and defects
  publication-title: Phys Rev B
– volume: 45
  start-page: 1004
  year: 1980
  end-page: 1007
  article-title: Microscopic theory of the phase‐transformation and lattice‐dynamics of SI
  publication-title: Phys Rev Lett
– volume: 65
  start-page: 353
  year: 1990
  end-page: 356
  article-title: Special quasirandom structures.
  publication-title: Phys Rev Lett
– volume: 81:224202
  year: 2010
  article-title: Cluster expansion and the configurational theory of alloys
  publication-title: Phys Rev B
– volume: 118
  start-page: 8207
  year: 2003
  end-page: 8215
  article-title: Hybrid functionals based on a screened Coulomb potential
  publication-title: J Chem Phys
– start-page: 79:134106
  year: 2009
  article-title: Ab initio up to the melting point: anharmonicity and vacancies in aluminum
  publication-title: Phys Rev B
– year: 1984
– volume: 137
  start-page: A1441–A1443
  year: 1965
  article-title: Thermal properties of inhomogeneous electron gas
  publication-title: Phys Rev
– volume: 102:026402
  year: 2009
  article-title: Defect formation energies without the band‐gap problem: combining density‐functional theory and the GW approach for the silicon self‐interstitial
  publication-title: Phys Rev Lett
– volume: 93:196401
  year: 2004
  article-title: Strain induced deep electronic states around threading dislocations in GaN
  publication-title: Phys Rev Lett
– volume: 84
  start-page: 214107
  year: 2011
  article-title: Temperature‐driven phase transitions from first principles including all relevant excitations: the fcc‐to‐bcc transition in Ca
  publication-title: Phys Rev B
– volume: 77:245202
  year: 2008
  article-title: Defect energetics in ZnO: a hybrid Hartree–Fock density functional study
  publication-title: Phys Rev B
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  article-title: Efficiency of ab‐initio total energy calculations for metals and semiconductors using a plane‐wave basis set
  publication-title: Comput Mater Sci
– volume: 45
  start-page: 566
  year: 1980
  end-page: 569
  article-title: Ground‐state of the electron‐gas by a stochastic method
  publication-title: Phys Rev Lett
– volume: 102:016402
  year: 2009
  article-title: Fully ab initio finite‐size corrections for charged‐defect supercell calculations
  publication-title: Phys Rev Lett
– volume: 76:024309
  year: 2007
  article-title: Ab initio study of the thermodynamic properties of nonmagnetic elementary fcc metals: exchange‐correlation‐related error bars and chemical trends
  publication-title: Phys Rev B
– volume: 27
  start-page: 7144
  year: 1983
  end-page: 7168
  article-title: Self‐consistent impurity calculations in the atomic‐spheres approximation
  publication-title: Phys Rev B
– year: 1999
SSID ssj0000491231
Score 2.4048703
Snippet Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical...
SourceID pubmed
wiley
SourceType Index Database
Publisher
StartPage 438
Title Density functional theory in materials science
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1125
https://www.ncbi.nlm.nih.gov/pubmed/24563665
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsCCeFNeysDAYho_k4gJFaoKqVUliugWxY4tMZAiWoT67_HFbejIEkVKPOQu5-989vcdwA1LrYyLRHsPCEsEj1OSMqqI0TSzZaHSQiN3eDhSg1fxPJXTFtyvuTBBH6IpuGFk1PM1Bnih590_0dAf8zFHAozcgm2k1mLfBibGTYHFp75-Vq4XXInMCEqvrZWFYtZtRm8gz2Z2WsNLfx_2Vnlh9BAceQAtWx3CTm_dju0I7h7xqPliGSEShQJeVLMQl9F7Ffm8M_xK0QrSjmHSf5r0BmTV7IAYnzFJYkombGlZXJYJlYnOqJNaOlFS4_yygzqnjCySjFmtjMg0K5xkfgDnpbUJ4yfQrmaVPYPIxyhP04J5cHfCh6imhjvlMHxZ6mjWgdPwxflnELTIcfOTKyU7cFuboHkQNI1ZjtbK0Vr5W2_4gjfn_3_1AnZZ3UMCD2ZdQnvx9W2vPJIv9HXtMX8djYe_tVaZxA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMpQF8U359MDAEho7tpNILKhQFWgrJIroFsWOLXUgIChC_ff44jZ0ZIuUeMhdzu_5cvcO4IIlRoR5rJwHuAl4FCZBwqgMtKKpKXKZ5Ap7h4cj2X_hDxMxacD1shfG60PUCTeMjGq_xgDHhHTnTzX0R799YQeMWIN17ng5FvQx_lRnWBz3ddtydeKKRRqg9tpSWihknXr1CvSs0tMKX3pbsLkghuTGe3IbGqbcgVZ3OY9tF65usdZ8NicIRT6DR6o2xDmZlsQRT_8tkQWm7cG4dzfu9oPFtINAO8okAl0wbgrDwqKIqYhVSq1QwvKCauvOHdRaqUUep8woqXmqWG4FcwuiqDAmZtE-NMv30hwCcUEaJUnOHLpb7mJUUR1ZaTF-WWJp2oYD_8bZh1e0yPDvZySlaMNlZYL6hhc1ZhlaK0NrZa_d4TNeHP3_0XNo9cfDQTa4Hz0ewwarBkpgldYJNGef3-bUwfpMnVXe-wWGFpwr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VIgEL4k15emBgCcSO7SRiQi1VebSqRBHdovglMRAqKEL99_iSNnRki5R4yJ0_f-ez7zuAC5ZYEeax8h7gNuBRmAQJozLQiqbW5DLJFdYO9wey98IfxmLcgJtFLUylD1En3BAZ5XqNAJ8Yd_0nGvqj37-wAEaswCoe9iEqGR_WCRYf-vpVudxwxSINUHptoSwUsut69BLzLEenJb10t2BzHheS28qR29CwxQ6stxft2HbhqoNXzaczgkxUJfBIWYU4I28F8XFnNZXInNL2YNS9G7V7wbzZQaB9xCQCbRi3xrLQmJiKWKXUCSUcN1Q7v-2gzkkt8jhlVknNU8VyJ5gfEEXG2phF-9AsPgp7CMRjNEqSnHlyd9xDVFEdOekQvixxNG3BQfXH2aQStMjw8DOSUrTgsjRB_aLSNGYZWitDa2Wv7f4zPhz9_9NzWBt2utnT_eDxGDZY2U4C72idQHP6-W1PPalP1VnpvF_h-ZtU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Density+functional+theory+in+materials+science&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Neugebauer%2C+J%C3%B6rg&rft.au=Hickel%2C+Tilmann&rft.date=2013-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=3&rft.issue=5&rft.spage=438&rft.epage=448&rft_id=info:doi/10.1002%2Fwcms.1125&rft.externalDBID=10.1002%252Fwcms.1125&rft.externalDocID=WCMS1125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon