State-of-the-art applications of cyclodextrins as functional monomers in molecular imprinting techniques: a review

As a versatile tool in separation science, cyclodextrins and their derivatives, known as emerging functional monomers, have been used extensively in molecular imprinting techniques. The attributes of cyclodextrins and their derivatives are widely known to form host–guest inclusion complex processes...

Full description

Saved in:
Bibliographic Details
Published inJournal of separation science Vol. 39; no. 12; pp. 2321 - 2331
Main Authors Lay, Sovichea, Ni, Xiaofeng, Yu, Haining, Shen, Shengrong
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.06.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a versatile tool in separation science, cyclodextrins and their derivatives, known as emerging functional monomers, have been used extensively in molecular imprinting techniques. The attributes of cyclodextrins and their derivatives are widely known to form host–guest inclusion complex processes between the polymer and template. The exploitation of the imprinting technique could produce a product of molecularly imprinted polymers, which are very robust with long‐term stability, reliability, cost‐efficiency, and selectivity. Hence, molecularly imprinted polymers have gained popularity in chemical separation and analysis. Molecularly imprinted polymers containing either cyclodextrin or its derivatives demonstrate superior binding effects for a target molecule. As noted in the previous studies, the functional monomers of cyclodextrins and their derivatives have been used in molecular imprinting for selective separation with a wide range of chemical compounds, including steroidals, amino acids, polysaccharides, drugs, plant hormones, proteins, pesticides, and plastic additives. Therefore, the main goal of this review is to illustrate the exotic applications of imprinting techniques employing cyclodextrins and their derivatives as single or binary functional monomers in synthesizing molecularly imprinted polymers in areas of separation science by reviewing some of the latest studies reported in the literature.
AbstractList As a versatile tool in separation science, cyclodextrins and their derivatives, known as emerging functional monomers, have been used extensively in molecular imprinting techniques. The attributes of cyclodextrins and their derivatives are widely known to form host–guest inclusion complex processes between the polymer and template. The exploitation of the imprinting technique could produce a product of molecularly imprinted polymers, which are very robust with long‐term stability, reliability, cost‐efficiency, and selectivity. Hence, molecularly imprinted polymers have gained popularity in chemical separation and analysis. Molecularly imprinted polymers containing either cyclodextrin or its derivatives demonstrate superior binding effects for a target molecule. As noted in the previous studies, the functional monomers of cyclodextrins and their derivatives have been used in molecular imprinting for selective separation with a wide range of chemical compounds, including steroidals, amino acids, polysaccharides, drugs, plant hormones, proteins, pesticides, and plastic additives. Therefore, the main goal of this review is to illustrate the exotic applications of imprinting techniques employing cyclodextrins and their derivatives as single or binary functional monomers in synthesizing molecularly imprinted polymers in areas of separation science by reviewing some of the latest studies reported in the literature.
Author Yu, Haining
Lay, Sovichea
Shen, Shengrong
Ni, Xiaofeng
Author_xml – sequence: 1
  givenname: Sovichea
  surname: Lay
  fullname: Lay, Sovichea
  organization: Department of Food Science & Nutrition, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Xiaofeng
  surname: Ni
  fullname: Ni, Xiaofeng
  organization: Department of Food Science & Nutrition, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Haining
  surname: Yu
  fullname: Yu, Haining
  organization: College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
– sequence: 4
  givenname: Shengrong
  surname: Shen
  fullname: Shen, Shengrong
  email: shrshen@zju.edu.cn
  organization: Department of Food Science & Nutrition, Zhejiang University, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27324352$$D View this record in MEDLINE/PubMed
BookMark eNqNks9vFCEUxyemxv7Qq0dD4sXLrDDAMHgzG23VTT2stokXwjJvLCszbIGx3f--jFv30EvLhRf4fB-P977HxcHgByiK1wTPCMbV-3WMZlZhUuO86LPiiNSEl5ISdrCPcX1YHMe4xpiIRuIXxWElaMUor46KsEw6Qem7Ml1BqUNCerNx1uhk_RCR75DZGudbuE3B5gMdUTcOZrrVDvV-8D2EiOyQYwdmdDog228ym-zwGyUwV4O9HiF-QBoF-Gvh5mXxvNMuwqv7_aT4-fnTj_lZufh--mX-cVEaLjgrGYEVCCZoy2jdNh3XBniLpaENxgJwRRhjlexqDkw2K9wwzDqqqcwfA9FKelK82-XdBD9VkFRvowHn9AB-jIo0tK45rzB9AlpxTnItT0CFbKTkspnQtw_QtR9D7tuOIpLWmGTqzT01rnpoVe5dr8NW_Z9RBmY7wAQfY4BujxCsJhOoyQRqb4IsYA8ExqZ_A01BW_eo7MY62D7yiPq6XM5Zw1iWlTuZjQlu9zId_qhaUMHV5fmp-ra45L8uzi8UpXe0FdQA
CitedBy_id crossref_primary_10_3390_polym13172841
crossref_primary_10_4155_fmc_2017_0249
crossref_primary_10_1002_jssc_201600699
crossref_primary_10_1002_jssc_201600850
crossref_primary_10_1016_j_jhazmat_2020_123643
crossref_primary_10_1002_jssc_201701273
crossref_primary_10_1016_j_dyepig_2017_11_032
crossref_primary_10_1007_s10847_017_0779_4
crossref_primary_10_3390_polym13152430
crossref_primary_10_1016_j_chroma_2020_461514
crossref_primary_10_1039_D2RA02357A
crossref_primary_10_1016_j_archoralbio_2018_04_008
crossref_primary_10_1002_jssc_201600892
crossref_primary_10_1016_j_eurpolymj_2019_02_044
crossref_primary_10_1016_j_mtchem_2024_101899
crossref_primary_10_1016_j_eurpolymj_2019_04_012
crossref_primary_10_1007_s00216_017_0716_9
crossref_primary_10_1016_j_cclet_2018_10_022
crossref_primary_10_1016_j_chemosphere_2020_126376
crossref_primary_10_1016_j_cej_2017_02_138
crossref_primary_10_1016_j_carbpol_2020_116321
crossref_primary_10_1016_j_reactfunctpolym_2017_04_001
crossref_primary_10_1021_acs_iecr_9b02281
crossref_primary_10_3390_membranes12050472
crossref_primary_10_1016_j_tifs_2023_05_009
crossref_primary_10_1080_10826076_2017_1402186
crossref_primary_10_3390_s20040996
crossref_primary_10_1016_j_aca_2022_340319
crossref_primary_10_1002_jssc_201600834
crossref_primary_10_1016_S1872_2040_21_60118_4
crossref_primary_10_1016_j_foodchem_2023_136822
crossref_primary_10_2174_1386207322666190325115526
crossref_primary_10_1002_jssc_201901029
crossref_primary_10_1246_bcsj_20180084
crossref_primary_10_1007_s10311_018_0763_2
crossref_primary_10_1016_j_trac_2019_02_028
crossref_primary_10_1016_j_eurpolymj_2017_11_021
crossref_primary_10_1002_jsfa_8690
crossref_primary_10_5812_jssc_102561
crossref_primary_10_1016_j_microc_2019_02_064
crossref_primary_10_1007_s10847_019_00896_9
crossref_primary_10_3390_bios12070441
crossref_primary_10_1002_marc_202100004
crossref_primary_10_1016_j_ccr_2022_214580
crossref_primary_10_1016_j_msec_2020_111076
crossref_primary_10_1080_15422119_2017_1315823
crossref_primary_10_1007_s10311_020_01156_w
crossref_primary_10_1039_D4TB02475C
crossref_primary_10_1002_jssc_201900221
crossref_primary_10_3390_polym14204441
crossref_primary_10_1016_j_colsurfa_2023_130957
Cites_doi 10.1016/j.bbagen.2007.02.007
10.3390/nano5020981
10.1002/1521-4109(200203)14:5<317::AID-ELAN317>3.0.CO;2-5
10.1016/j.biomaterials.2004.07.037
10.1016/j.jpba.2007.05.024
10.1016/j.bios.2014.02.041
10.1016/S0165-9936(04)00102-5
10.1016/j.biomaterials.2007.04.036
10.1016/j.chroma.2010.09.059
10.1093/humrep/deh656
10.1016/S0734-9750(02)00020-4
10.2116/analsci.19.709
10.1208/pt060243
10.1016/S0003-2670(99)00743-6
10.1021/ar0502275
10.1016/j.toxlet.2009.04.001
10.1016/S0278-6915(96)00064-6
10.1016/j.msec.2008.04.007
10.2174/1385272024605041
10.1007/128_2010_92
10.1007/s10847-005-0248-3
10.1016/S0045-6535(97)00195-1
10.1021/ma9816012
10.1016/j.aca.2007.10.044
10.1016/S0968-5677(98)00042-X
10.1016/j.bios.2006.06.023
10.1016/j.carbpol.2011.12.027
10.1016/j.snb.2008.10.035
10.1016/S0169-409X(98)00055-6
10.1039/C5RA11061K
10.1016/j.aca.2009.12.029
10.1002/pi.3101
10.1016/j.yrtph.2008.11.005
10.1002/1521-4095(200007)12:14<1019::AID-ADMA1019>3.0.CO;2-K
10.1016/j.chroma.2009.03.056
10.1016/j.snb.2008.07.029
10.1016/j.snb.2013.12.039
10.3390/ijms16023656
10.1109/JSEN.2011.2158537
10.1631/jzus.B1500225
10.1007/s10847-003-8838-4
10.1016/j.talanta.2013.05.003
10.1016/S0378-4347(00)00057-8
10.1016/S0003-2670(99)00645-5
10.1016/j.apsusc.2009.11.064
10.1016/S0149-2918(00)88266-1
10.1016/S0040-4039(01)00045-4
10.1039/a704176d
10.1021/cr050576c
10.1016/j.chroma.2008.02.004
10.1016/S0003-2670(00)01303-9
10.1002/1615-9314(20020901)25:13<789::AID-JSSC789>3.0.CO;2-J
10.1016/j.carbpol.2009.09.010
10.1002/(SICI)1097-4628(19980620)68:12<1973::AID-APP11>3.0.CO;2-T
10.1016/S0925-4005(03)00260-0
10.3390/ijms15046111
10.1016/j.biortech.2006.09.009
10.1016/j.trac.2010.07.020
10.1007/s00216-012-6299-6
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7U5
8FD
L7M
7X8
7S9
L.6
DOI 10.1002/jssc.201600003
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
MEDLINE
MEDLINE - Academic
Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1615-9314
EndPage 2331
ExternalDocumentID 4094953931
27324352
10_1002_jssc_201600003
JSSC4844
ark_67375_WNG_KLW5ZVNV_3
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
UPT
VH1
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XG1
XPP
XV2
YQT
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c5754-41ebe7473d436d8f5ace5d09c38007e02144429f65e498b08404f3a39435e7d93
IEDL.DBID DR2
ISSN 1615-9306
IngestDate Fri Jul 11 18:27:30 EDT 2025
Fri Jul 11 00:34:36 EDT 2025
Fri Jul 11 04:41:38 EDT 2025
Wed Aug 13 09:46:00 EDT 2025
Wed Feb 19 02:43:40 EST 2025
Tue Jul 01 01:26:36 EDT 2025
Thu Apr 24 23:08:28 EDT 2025
Wed Jan 22 16:23:16 EST 2025
Wed Oct 30 10:00:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Molecularly imprinted polymers
Cyclodextrin
Functional monomers
Inclusion complexes
Sensors
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5754-41ebe7473d436d8f5ace5d09c38007e02144429f65e498b08404f3a39435e7d93
Notes istex:E2D2CD4C2C0DD759C983F903B9EF011B6564A333
ark:/67375/WNG-KLW5ZVNV-3
ArticleID:JSSC4844
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
PMID 27324352
PQID 1798193601
PQPubID 105495
PageCount 11
ParticipantIDs proquest_miscellaneous_1836655203
proquest_miscellaneous_1825514733
proquest_miscellaneous_1798995983
proquest_journals_1798193601
pubmed_primary_27324352
crossref_primary_10_1002_jssc_201600003
crossref_citationtrail_10_1002_jssc_201600003
wiley_primary_10_1002_jssc_201600003_JSSC4844
istex_primary_ark_67375_WNG_KLW5ZVNV_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2016
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: June 2016
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Journal of separation science
PublicationTitleAlternate J. Sep. Science
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Asanuma, H., Kakazu, M., Shibata, M., Hishiya, T., & Komiyama, M., Synthesis of molecularly imprinted polymer of β-cyclodextrin for the efficient recognition of cholesterol. Supramol. Sci. 1998, 5, 417-421.
Beltran, A., Borrull, F., Cormack, P. A. G., Marce, R. M., Molecularly-imprinted polymers: useful sorbents for selective extractions. Trends Anal. Chem. 2010, 29, 1363-1375.
Staples, C. A., Peterson, D. R., Parkerton, T. F., The environmental fate of phthalate esters: a literature review. Chemosphere 1997a, 35, 667-749.
Esmaeili, M. A., Yazdanparast, R., Molecularly imprinted poly-β-cyclodextrin polymer: application in protein refolding. Biochim. Biophys. Acta 2007, 1770, 943-950.
Zhang, W., Qin, L., Chen, R. R., He, X. W., Li, W. Y., Zhang, Y. K., Protein imprinted polymer using acryloyl-b-cyclodextrin and acrylamide as monomers. Applied Surface Science 2010, 256, 3000-3005
Asanuma, H., Kakazu, M., Shibata, M., Hishiya, T., Molecularly imprinted polymer of β-cyclodextrin for the efficient recognition of cholesterol. Chem. Commun. 1997, 1971-1972.
Nguyen, T. H., Hardwick, S. A., Sun, T., Grattan, K. T. V., Intrinsic fluorescence-based optical fiber sensor for cocaine using a molecularly imprinted polymer as the recognition element. IEEE Sens. J. 2012, 12, 255-260.
Loftssona, T., Jarvinen, T., Cyclodextrins in ophthalmic drug delivery. Adv. Drug Deliver. Rev. 1999, 36, 59-79.
Xu, Z. F., Xu, L., Kuang, D. Z., Zhang, F. X., Wang, J. Q., Exploiting b-cyclodextrin as functional monomer in molecular imprinting for achieving recognition in aqueous media. Mater. Sci. Eng. C 2008, 28, 1516-1521.
Challa, R., Ahuja, A., Ali, J., Khar, R. K., Cyclodextrins in drug delivery: an updated review. AAPS J. Pharm. Sci. Technol. 2005, 6, 329-357.
Fan, Y., Feng, Y. Q., Da, S. L., Feng, P. Y., Evaluation of β-cyclodextrin bonded silica as a selective sorbent for the solid-phase extraction of 4-nitrophenol and 2,4-dinitrophenol. Anal. Sci. 2003, 29, 709-714.
He, J., Lv, R., Zhu, J., Lu, K., Selective solid-phase extraction of dibuty phthalate from soybean milk using molecular imprinted polymers. Anal. Chim. Acta 2010, 661, 215-221.
Piletsky, S. A., Turner, A.P .F., Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis 2002, 14, 317-323.
Kang, Y. F., Duan, W. P., Li, Y., Kang, J. X., Xie, J., Molecularly imprinted polymers of allyl-β-cyclodextrin and methacrylic acid for the solid-phase extraction of phthalate. Carbohydr. Polym. 2012, 88, 459-464.
Xu, Z. F., Kuang, D. Z., Liu, L., Deng, Q. Y., Selective adsorption of norfloxacin in aqueous media by an imprinted polymer based on hydrophobic and electrostatic interaction. J. Pharm. Biomed. Anal. 2007, 45, 54-61.
Connors, K. A., The stability of cyclodextrin complexes in solution. Chem. Rev. 1998, 98, 1743-1753.
Liu, X. Y., Fang, H. X., Yu, L. P., Molecularly imprinted photonic polymer based on β-cyclodextrin for amino acid sensing. Talanta 2013, 116, 283-289.
Chen, C. Y., Chen, C. C., Chung, Y. C., Removal of phthalate esters by β-cyclodextrin-linked chitosan bead. J. Bioresource Techno. 2007, 98, 2578-2583.
Duan, H., Li, L. L., Wang, X. J., Wang, Y. H., Li, J. B., Luo, C. N., β-Cyclodextrin/chitosan - magnetic graphene oxide - surface molecularly imprinted polymer nanocomplex coupled with chemiluminescence biosensing of bovine serum albumin. RSC Adv. 2015, 5 , 68397-68403.
Karoyo, A. H., Wilson, L. D., Nano-sized cyclodextrin-based molecularly imprinted polymer adsorbents for perfluorinated compounds-A mini-review. Nanomaterials 2015, 5, 981-1003.
Davidson, L., & Hayes, W., Molecular imprinting of biologically active steroidal systems. Curr. Org. Chem. 2002, 6, 265-281.
Bossi, A., Bonini, F., Turner, A., Piletsky, S., Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens. Bioelectron. 2007, 22, 1131-1137.
Schneiderman, E., Stalcup, A. M., Cyclodextrins: a versatile tool in separation science. J. Chromatogr. B 2000, 745, 83-102.
Rachkov, A., McNiven, S., El'skaya, A., Yano, K., Karube, l., Fluorescence detection of β-estradiol using a molecularly imprinted polymer. Anal. Chim. Acta 2000, 23-29.
Ma, X. L., Chen, Z., Chen, R. Y., Zheng, X., Chen, X., Lan, R. F., Imprinted β-cyclodextrin polymers using naringin as template. Polym. Int. 2011; 60, 1455-1460.
Blandeau, J., Expanded activity and utility of the new fluoroquinolones: a review. Clin. Ther. 1999, 21, 3-40.
Zhong, N., Byun, H. S., Bittman, R., Hydrophilic cholesterol-binding molecular imprinted polymers. Tetrahedron Lett. 2001, 42, 1839-1841.
Asanuma, H., Akiyama, T., Kajiya, K., Hishiya, T., Komiyama, M., Molecular imprinting of cyclodextrin in water for the recognition of nanometer-scaled guests. Anal. Chim. Acta 2001, 435, 25-33.
Naarala, J., Korpi, A., Cell death and production of reactive oxygen species by murine macrophages after short term exposure to phthalates. Toxicol. Lett. 2009, 188, 157-160.
Cheng, Y., Jiang, P., Lin, S., Li, Y. N., Dong, X. C., An imprinted fluorescent chemosensor prepared using dansyl-modified β-cyclodextrin as the functional monomer for sensing of cholesterol with tailor-made selectivity. Sens. Actuators B 2014, 193, 838-843.
Zhang, W., Qin, L., He, X. W., Li, W. Y., Zhang, Y. K., Novel surface modified molecularly imprinted polymer using acryloyl-β-cyclodextrin and acrylamide as monomers for selective recognition of lysozyme in aqueous solution. J. Chromatogr. A 2009, 1216, 4560-4567.
Zhang, Y., Li, Y., Hu, Y., Li, G., Chen, Y., Preparation of magnetic indole-3-acetic acid imprinted polymer beads with 4-vinylpyridine and β-cyclodextrin as binary monomer via microwave heating initiated polymerization and their application to trace analysis of auxins in plant tissues. J. Chromatogr. A 2010, 1217, 7337-7344.
Xu, Z. F., Kuang, D. Z., Feng, Y., Zhang, F., Combination of hydrophobic effect and electrostatic interaction in imprinting for achieving efficient recognition in aqueous media. Carbohydr. Polym. 2010, 79, 642-647.
Poon, R., Lecavallier, P., Mueller, P., Valli, V. E., Procter, B. G., Chu, I., Subchronic oral toxicity of di-noctylphthalate and di (2-ethylhexyl) phthalate in the rat. Food Chem. Toxicol. 1997, 35, 225-239.
Blanco-López, M. C., Lobo-Castañón, M. J., Miranda-Ordieres, A. J., Tuñón-Blanco, P., Electrochemical sensors based on molecularly imprinted polymers. TrAC, Trends Anal. Chem. 2004, 23, 36-48.
Crini, G., Morcellet, M., Synthesis and applications of adsorbents containing cyclodextrins. J. Sep. Sci. 2002, 25, 789-813.
Culha, M., Lavrik, N. V., Schell, F. M., Tipple, C. A., Sepaniak, M. J., Characterization of volatile, hydrophobic cyclodextrin derivatives as thin films for sensor applications. Sens. Actuators B 2003, 92, 171-180.
Yang, Y., Long, Y. Y., Cao, Q., Li, K., Liu, F., Molecularly imprinted polymer using β-cyclodextrin as functional monomer for the efficient recognition of bilirubin. Anal. Chim. Acta 2008, 606, 92-97.
Hapiot, F., Tilloy, S., Monflier, E., Cyclodextrins as supramolecular hosts for organometallic complexes. Chem. Rev. 2006, 106, 767-781.
Liu, Y., Chen, Y., Cooperative binding and multiple recognition by bridged bis (β-cyclodextrin)s with functional linkers. Acc. Chem. Res. 2006, 39, 681-691.
Suriyanarayanan, S., Cywinski, P. J., Moro, A. J., Mohr, G. J., Kutner, W., Chemosensors based on molecularly imprinted polymers. Top. Curr. Chem. 2012, 325, 165-266.
Tsai, H. A., Syu, M. J., Synthesis of creatinine-imprinted poly (β-cyclodextrin) for the specific binding of creatinine. Biomaterials 2005, 226, 2759-2766.
Wang, H. F., Zhang, L., Molecularly imprinted functional materials based on polysaccharides. Prog. Chem. 2010, 22, 2165-2172.
Qin, L., He, X. W., Li, W. Y., Zhang, Y. K., Molecularly imprinted polymer prepared with bonded β-cyclodextrin and acrylamide on functionalized silica gel for selective recognition of tryptophan in aqueous media. J. Chromatogr. A 1187, 94-102.
Ng, S. M., Narayanaswamy, R., Molecularly imprinted β-cyclodextrin polymer as potential optical receptor for the detection of organic compound. Sens. Actuators, B: Chemical 2009, 139, 156-165.
Shi, X. Z., Wu, A. B., Qu, G. R., Li, R. X., Zhang, D. B., Development and characterisation of molecularly imprinted polymers based on methacrylic acid for selective recognition of drugs. Biomaterials 2007, 28, 3741-3749.
Jian, M. Y., Kuo, W. T., Insoluble β-cyclodextrin polymer for capillary gas chromatographic separation of enantiomers and isomers. J. Chromatogr. A 2002, 883, 137-159.
Singh, M., Sharma, R., Ranerjee, U. C., Biotechnological applications of cyclodextrins. Biotechnol. Adv. 2002, 20, 341-359.
Surikumaran, H., Mohamad, S., Sarih, N. M., Molecular imprinted polymer of methacrylic acid functionalised β-Cyclodextrin for selective removal of 2,4-dichlorophenol. Int. J. Mol. Sci. 2014, 15, 6111-6136.
Liu, S. Q., Zheng, Z. Z., Li, X. Y., Advances in pesticide biosensors: current status, challenges, and future perspectives. Anal. Bioanal. Chem. 2013, 405, 63-90.
Hishiya, T., Shibata, M., Kakazu, M., Asanuma, H., Komiyama, M., Hishiya, T., Shibata, M., Kakazu, M., Asanuma, H., Komiyama, M. (1999). Molecularly imprinted cyclodextrins as selective receptors for steroids. Macromolecules 1999, 32, 2265-2269.
Feng, Y. Q., Xie, M. J., Da, S. L., Preparation and characterization of an L-tyrosine-derivatized β-cyclodextrin-bonded silica stationary phase for liquid chromatography. Anal. Chim. Acta 2000, 403, 187-195.
Huy, B. T., Seo, M. H., Zhang, X. F., Lee, Y. I., Selective optosensing of clenbuterol and melamine using molecularly imprinted polymer-capped CdTe quantum dots. Biosens. Bioelectron. 2014, 57, 310-316.
Asman, S., Mohamad, S., Sarih, N. M., Exploiting β-Cyclodextrin in molecular imprinting for achieving recognition of benzylparaben in aqueous media. Int. J. Mol. Sci. 2015, 16, 3656-3676.
Asanuma, H., Hishiya, T., Komiyama, M., Tailor-made receptors by molecular imprinting. Adv. Mater. 2000, 12, 1019-1030.
Shahgaldian, P., Hegner, M., Pieles, U., A cyclodextrin self-assembled m
2002; 14
1187
2013; 405
2011; 60
2006; 39
2004; 23
1997a; 35
2010; 1217
2010; 661
2005; 20
2012; 12
2012; 325
2001; 42
2007; 28
2010; 22
2003; 92
2009; 53
2000
2010; 29
2000; 12
2000; 403
2013; 116
2007; 1770
2005; 226
2008; 28
2014; 15
2014; 57
1998; 98
2007; 22
2015; 16
2015; 5
2010; 79
2002; 6
2008; 606
1997
1999; 21
2014; 193
2007; 98
2009; 139
1998; 68
2009; 1216
2002; 25
2004; 50
2001; 7
2002; 20
2002; 883
2000; 745
1997; 35
1999; 36
2010; 256
2009; 188
2005; 53
2005; 6
1999; 32
2016
2015
2003; 29
1998; 5
2006; 106
2007; 45
2012; 88
2001; 435
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_49_1
e_1_2_7_28_1
Jian M. Y. (e_1_2_7_30_1) 2002; 883
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
Wang H. F. (e_1_2_7_40_1) 2010; 22
e_1_2_7_48_1
e_1_2_7_27_1
Foster P. M. D. (e_1_2_7_62_1) 2001; 7
e_1_2_7_29_1
Connors K. A. (e_1_2_7_6_1) 1998; 98
e_1_2_7_51_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Qin L. (e_1_2_7_26_1); 1187
References_xml – reference: Nguyen, T. H., Hardwick, S. A., Sun, T., Grattan, K. T. V., Intrinsic fluorescence-based optical fiber sensor for cocaine using a molecularly imprinted polymer as the recognition element. IEEE Sens. J. 2012, 12, 255-260.
– reference: Xu, Z. F., Kuang, D. Z., Liu, L., Deng, Q. Y., Selective adsorption of norfloxacin in aqueous media by an imprinted polymer based on hydrophobic and electrostatic interaction. J. Pharm. Biomed. Anal. 2007, 45, 54-61.
– reference: Blanco-López, M. C., Lobo-Castañón, M. J., Miranda-Ordieres, A. J., Tuñón-Blanco, P., Electrochemical sensors based on molecularly imprinted polymers. TrAC, Trends Anal. Chem. 2004, 23, 36-48.
– reference: Cheng, Y., Jiang, P., Lin, S., Li, Y. N., Dong, X. C., An imprinted fluorescent chemosensor prepared using dansyl-modified β-cyclodextrin as the functional monomer for sensing of cholesterol with tailor-made selectivity. Sens. Actuators B 2014, 193, 838-843.
– reference: Blandeau, J., Expanded activity and utility of the new fluoroquinolones: a review. Clin. Ther. 1999, 21, 3-40.
– reference: Asanuma, H., Hishiya, T., Komiyama, M., Tailor-made receptors by molecular imprinting. Adv. Mater. 2000, 12, 1019-1030.
– reference: Asanuma, H., Akiyama, T., Kajiya, K., Hishiya, T., Komiyama, M., Molecular imprinting of cyclodextrin in water for the recognition of nanometer-scaled guests. Anal. Chim. Acta 2001, 435, 25-33.
– reference: Ma, X. L., Chen, Z., Chen, R. Y., Zheng, X., Chen, X., Lan, R. F., Imprinted β-cyclodextrin polymers using naringin as template. Polym. Int. 2011; 60, 1455-1460.
– reference: Asanuma, H., Hishiya, T., Komiyama, M., Efficient separation of hydrophobic molecules by molecularly imprinted cyclodextrin polymers. J. Inclusion Phenom. Macrocyclic Chem. 2004, 50, 51-55.
– reference: Crini, G., Morcellet, M., Synthesis and applications of adsorbents containing cyclodextrins. J. Sep. Sci. 2002, 25, 789-813.
– reference: Jian, M. Y., Kuo, W. T., Insoluble β-cyclodextrin polymer for capillary gas chromatographic separation of enantiomers and isomers. J. Chromatogr. A 2002, 883, 137-159.
– reference: Duan, H., Li, L. L., Wang, X. J., Wang, Y. H., Li, J. B., Luo, C. N., β-Cyclodextrin/chitosan - magnetic graphene oxide - surface molecularly imprinted polymer nanocomplex coupled with chemiluminescence biosensing of bovine serum albumin. RSC Adv. 2015, 5 , 68397-68403.
– reference: Challa, R., Ahuja, A., Ali, J., Khar, R. K., Cyclodextrins in drug delivery: an updated review. AAPS J. Pharm. Sci. Technol. 2005, 6, 329-357.
– reference: Ng, S. M., Narayanaswamy, R., Molecularly imprinted β-cyclodextrin polymer as potential optical receptor for the detection of organic compound. Sens. Actuators, B: Chemical 2009, 139, 156-165.
– reference: Shi, X. Z., Wu, A. B., Qu, G. R., Li, R. X., Zhang, D. B., Development and characterisation of molecularly imprinted polymers based on methacrylic acid for selective recognition of drugs. Biomaterials 2007, 28, 3741-3749.
– reference: Xu, Z. F., Kuang, D. Z., Feng, Y., Zhang, F., Combination of hydrophobic effect and electrostatic interaction in imprinting for achieving efficient recognition in aqueous media. Carbohydr. Polym. 2010, 79, 642-647.
– reference: Zhang, W., Qin, L., Chen, R. R., He, X. W., Li, W. Y., Zhang, Y. K., Protein imprinted polymer using acryloyl-b-cyclodextrin and acrylamide as monomers. Applied Surface Science 2010, 256, 3000-3005
– reference: Crini, G., Bertini, S., Torri, G., Naggi, A., Sforzini, D., Vecchi, C., Janus, L., Lekchiri, Y., Morcellet, M., Sorption of aromatic compounds in water using insoluble cyclodextrin polymers. J. Appl. Polym. Sci. 1998, 68, 1973-1978.
– reference: Connors, K. A., The stability of cyclodextrin complexes in solution. Chem. Rev. 1998, 98, 1743-1753.
– reference: Naarala, J., Korpi, A., Cell death and production of reactive oxygen species by murine macrophages after short term exposure to phthalates. Toxicol. Lett. 2009, 188, 157-160.
– reference: Staples, C. A., Peterson, D. R., Parkerton, T. F., The environmental fate of phthalate esters: a literature review. Chemosphere 1997a, 35, 667-749.
– reference: Zhong, N., Byun, H. S., Bittman, R., Hydrophilic cholesterol-binding molecular imprinted polymers. Tetrahedron Lett. 2001, 42, 1839-1841.
– reference: Hishiya, T., Shibata, M., Kakazu, M., Asanuma, H., Komiyama, M., Hishiya, T., Shibata, M., Kakazu, M., Asanuma, H., Komiyama, M. (1999). Molecularly imprinted cyclodextrins as selective receptors for steroids. Macromolecules 1999, 32, 2265-2269.
– reference: Liu, Y., Chen, Y., Cooperative binding and multiple recognition by bridged bis (β-cyclodextrin)s with functional linkers. Acc. Chem. Res. 2006, 39, 681-691.
– reference: Yang, Y., Long, Y. Y., Cao, Q., Li, K., Liu, F., Molecularly imprinted polymer using β-cyclodextrin as functional monomer for the efficient recognition of bilirubin. Anal. Chim. Acta 2008, 606, 92-97.
– reference: Loftssona, T., Jarvinen, T., Cyclodextrins in ophthalmic drug delivery. Adv. Drug Deliver. Rev. 1999, 36, 59-79.
– reference: Poon, R., Lecavallier, P., Mueller, P., Valli, V. E., Procter, B. G., Chu, I., Subchronic oral toxicity of di-noctylphthalate and di (2-ethylhexyl) phthalate in the rat. Food Chem. Toxicol. 1997, 35, 225-239.
– reference: Benson, R., Hazard to the developing male reproductive system from cumulative exposure to phthalate esters-dibutyl phthalate, diisobutyl phthalate, butylbenzyl phthalate, diethylhexyl phthalate, dipentyl phthalate, and diisononyl phthalate. Regul.Toxicol. Pharmacol. 2009, 53, 90-101.
– reference: Wang, H. F., Zhang, L., Molecularly imprinted functional materials based on polysaccharides. Prog. Chem. 2010, 22, 2165-2172.
– reference: Esmaeili, M. A., Yazdanparast, R., Molecularly imprinted poly-β-cyclodextrin polymer: application in protein refolding. Biochim. Biophys. Acta 2007, 1770, 943-950.
– reference: Asanuma, H., Kakazu, M., Shibata, M., Hishiya, T., Molecularly imprinted polymer of β-cyclodextrin for the efficient recognition of cholesterol. Chem. Commun. 1997, 1971-1972.
– reference: Asman, S., Mohamad, S., Sarih, N. M., Exploiting β-Cyclodextrin in molecular imprinting for achieving recognition of benzylparaben in aqueous media. Int. J. Mol. Sci. 2015, 16, 3656-3676.
– reference: Beltran, A., Borrull, F., Cormack, P. A. G., Marce, R. M., Molecularly-imprinted polymers: useful sorbents for selective extractions. Trends Anal. Chem. 2010, 29, 1363-1375.
– reference: Kang, Y. F., Duan, W. P., Li, Y., Kang, J. X., Xie, J., Molecularly imprinted polymers of allyl-β-cyclodextrin and methacrylic acid for the solid-phase extraction of phthalate. Carbohydr. Polym. 2012, 88, 459-464.
– reference: Liu, X. Y., Fang, H. X., Yu, L. P., Molecularly imprinted photonic polymer based on β-cyclodextrin for amino acid sensing. Talanta 2013, 116, 283-289.
– reference: Foster, P. M. D., Mylchreest, E., Gaido, K. W., Sar, M., Effect of phthalate esters on developing reproductive tract of male rats. Hum. Reprod. 2001, update 7, 23l-235.
– reference: Singh, M., Sharma, R., Ranerjee, U. C., Biotechnological applications of cyclodextrins. Biotechnol. Adv. 2002, 20, 341-359.
– reference: Zhang, Y., Li, Y., Hu, Y., Li, G., Chen, Y., Preparation of magnetic indole-3-acetic acid imprinted polymer beads with 4-vinylpyridine and β-cyclodextrin as binary monomer via microwave heating initiated polymerization and their application to trace analysis of auxins in plant tissues. J. Chromatogr. A 2010, 1217, 7337-7344.
– reference: Surikumaran, H., Mohamad, S., Sarih, N. M., Molecular imprinted polymer of methacrylic acid functionalised β-Cyclodextrin for selective removal of 2,4-dichlorophenol. Int. J. Mol. Sci. 2014, 15, 6111-6136.
– reference: Liu, S. Q., Zheng, Z. Z., Li, X. Y., Advances in pesticide biosensors: current status, challenges, and future perspectives. Anal. Bioanal. Chem. 2013, 405, 63-90.
– reference: Shahgaldian, P., Hegner, M., Pieles, U., A cyclodextrin self-assembled monolayer (SAM) based surface plasmon resonance (SPR) sensor for enantioselective analysis of thyroxine. J. Inclusion Phenom. Macrocyclic Chem. 2005, 53, 35-39.
– reference: Lay, S., Yu, H. N., Hu, B. X., Shen, S. R., Using molecularly-imprinted polymers as the extracted sorbents of clenbuterol ahead of liquid chromatographic determination. J Zhejiang Univ-Sci B (Biomed & Biotechnol) in press 2016.
– reference: Fan, Y., Feng, Y. Q., Da, S. L., Feng, P. Y., Evaluation of β-cyclodextrin bonded silica as a selective sorbent for the solid-phase extraction of 4-nitrophenol and 2,4-dinitrophenol. Anal. Sci. 2003, 29, 709-714.
– reference: Chen, C. Y., Chen, C. C., Chung, Y. C., Removal of phthalate esters by β-cyclodextrin-linked chitosan bead. J. Bioresource Techno. 2007, 98, 2578-2583.
– reference: Asanuma, H., Kakazu, M., Shibata, M., Hishiya, T., & Komiyama, M., Synthesis of molecularly imprinted polymer of β-cyclodextrin for the efficient recognition of cholesterol. Supramol. Sci. 1998, 5, 417-421.
– reference: Culha, M., Lavrik, N. V., Schell, F. M., Tipple, C. A., Sepaniak, M. J., Characterization of volatile, hydrophobic cyclodextrin derivatives as thin films for sensor applications. Sens. Actuators B 2003, 92, 171-180.
– reference: Zhang, W., Qin, L., He, X. W., Li, W. Y., Zhang, Y. K., Novel surface modified molecularly imprinted polymer using acryloyl-β-cyclodextrin and acrylamide as monomers for selective recognition of lysozyme in aqueous solution. J. Chromatogr. A 2009, 1216, 4560-4567.
– reference: Bossi, A., Bonini, F., Turner, A., Piletsky, S., Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens. Bioelectron. 2007, 22, 1131-1137.
– reference: Feng, Y. Q., Xie, M. J., Da, S. L., Preparation and characterization of an L-tyrosine-derivatized β-cyclodextrin-bonded silica stationary phase for liquid chromatography. Anal. Chim. Acta 2000, 403, 187-195.
– reference: Tsai, H. A., Syu, M. J., Synthesis of creatinine-imprinted poly (β-cyclodextrin) for the specific binding of creatinine. Biomaterials 2005, 226, 2759-2766.
– reference: Hapiot, F., Tilloy, S., Monflier, E., Cyclodextrins as supramolecular hosts for organometallic complexes. Chem. Rev. 2006, 106, 767-781.
– reference: Xu, Z. F., Xu, L., Kuang, D. Z., Zhang, F. X., Wang, J. Q., Exploiting b-cyclodextrin as functional monomer in molecular imprinting for achieving recognition in aqueous media. Mater. Sci. Eng. C 2008, 28, 1516-1521.
– reference: Karoyo, A. H., Wilson, L. D., Nano-sized cyclodextrin-based molecularly imprinted polymer adsorbents for perfluorinated compounds-A mini-review. Nanomaterials 2015, 5, 981-1003.
– reference: Schneiderman, E., Stalcup, A. M., Cyclodextrins: a versatile tool in separation science. J. Chromatogr. B 2000, 745, 83-102.
– reference: Roche, P. J. R., Ng, S. M., Narayanaswamy, R., Goddard, N., Page, K. M., Multiple surface plasmon resonance quantification of dextromethorphan using a molecularly imprinted β-cyclodextrin polymer: a potential probe for drug-drug interactions. Sens. Actuators B 2009, 139, 22-29.
– reference: Suriyanarayanan, S., Cywinski, P. J., Moro, A. J., Mohr, G. J., Kutner, W., Chemosensors based on molecularly imprinted polymers. Top. Curr. Chem. 2012, 325, 165-266.
– reference: Qin, L., He, X. W., Li, W. Y., Zhang, Y. K., Molecularly imprinted polymer prepared with bonded β-cyclodextrin and acrylamide on functionalized silica gel for selective recognition of tryptophan in aqueous media. J. Chromatogr. A 1187, 94-102.
– reference: Davidson, L., & Hayes, W., Molecular imprinting of biologically active steroidal systems. Curr. Org. Chem. 2002, 6, 265-281.
– reference: Piletsky, S. A., Turner, A.P .F., Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis 2002, 14, 317-323.
– reference: Huy, B. T., Seo, M. H., Zhang, X. F., Lee, Y. I., Selective optosensing of clenbuterol and melamine using molecularly imprinted polymer-capped CdTe quantum dots. Biosens. Bioelectron. 2014, 57, 310-316.
– reference: He, J., Lv, R., Zhu, J., Lu, K., Selective solid-phase extraction of dibuty phthalate from soybean milk using molecular imprinted polymers. Anal. Chim. Acta 2010, 661, 215-221.
– reference: Rachkov, A., McNiven, S., El'skaya, A., Yano, K., Karube, l., Fluorescence detection of β-estradiol using a molecularly imprinted polymer. Anal. Chim. Acta 2000, 23-29.
– reference: Duty, S. M., Calafat, A. M., Silva, M. J., Ryan, L., Hauser, R., Phthalate exposure and reproductive hormones in adult men. Hum. Reprod. 2005, 20, 604-610.
– volume: 92
  start-page: 171
  year: 2003
  end-page: 180
  article-title: Characterization of volatile, hydrophobic cyclodextrin derivatives as thin films for sensor applications
  publication-title: Sens. Actuators B
– volume: 12
  start-page: 1019
  year: 2000
  end-page: 1030
  article-title: Tailor‐made receptors by molecular imprinting
  publication-title: Adv. Mater
– volume: 193
  start-page: 838
  year: 2014
  end-page: 843
  article-title: An imprinted fluorescent chemosensor prepared using dansyl‐modified β‐cyclodextrin as the functional monomer for sensing of cholesterol with tailor‐made selectivity
  publication-title: Sens. Actuators B
– volume: 6
  start-page: 265
  year: 2002
  end-page: 281
  article-title: Molecular imprinting of biologically active steroidal systems
  publication-title: Curr. Org. Chem
– volume: 35
  start-page: 225
  year: 1997
  end-page: 239
  article-title: Subchronic oral toxicity of di‐noctylphthalate and di (2‐ethylhexyl) phthalate in the rat
  publication-title: Food Chem. Toxicol
– volume: 1216
  start-page: 4560
  year: 2009
  end-page: 4567
  article-title: Novel surface modified molecularly imprinted polymer using acryloyl‐β‐cyclodextrin and acrylamide as monomers for selective recognition of lysozyme in aqueous solution
  publication-title: J. Chromatogr. A
– volume: 606
  start-page: 92
  year: 2008
  end-page: 97
  article-title: Molecularly imprinted polymer using β‐cyclodextrin as functional monomer for the efficient recognition of bilirubin
  publication-title: Anal. Chim. Acta
– volume: 36
  start-page: 59
  year: 1999
  end-page: 79
  article-title: Cyclodextrins in ophthalmic drug delivery
  publication-title: Adv. Drug Deliver. Rev
– volume: 22
  start-page: 2165
  year: 2010
  end-page: 2172
  article-title: Molecularly imprinted functional materials based on polysaccharides
  publication-title: Prog. Chem
– volume: 20
  start-page: 341
  year: 2002
  end-page: 359
  article-title: Biotechnological applications of cyclodextrins
  publication-title: Biotechnol. Adv
– volume: 53
  start-page: 35
  year: 2005
  end-page: 39
  article-title: A cyclodextrin self‐assembled monolayer (SAM) based surface plasmon resonance (SPR) sensor for enantioselective analysis of thyroxine
  publication-title: J. Inclusion Phenom. Macrocyclic Chem
– volume: 403
  start-page: 187
  year: 2000
  end-page: 195
  article-title: Preparation and characterization of an L‐tyrosine‐derivatized β‐cyclodextrin‐bonded silica stationary phase for liquid chromatography
  publication-title: Anal. Chim. Acta
– volume: 98
  start-page: 1743
  year: 1998
  end-page: 1753
  article-title: The stability of cyclodextrin complexes in solution
  publication-title: Chem. Rev
– volume: 139
  start-page: 22
  year: 2009
  end-page: 29
  article-title: Multiple surface plasmon resonance quantification of dextromethorphan using a molecularly imprinted β‐cyclodextrin polymer: a potential probe for drug–drug interactions
  publication-title: Sens. Actuators B
– volume: 57
  start-page: 310
  year: 2014
  end-page: 316
  article-title: Selective optosensing of clenbuterol and melamine using molecularly imprinted polymer‐capped CdTe quantum dots
  publication-title: Biosens. Bioelectron
– volume: 15
  start-page: 6111
  year: 2014
  end-page: 6136
  article-title: Molecular imprinted polymer of methacrylic acid functionalised β‐Cyclodextrin for selective removal of 2,4‐dichlorophenol
  publication-title: Int. J. Mol. Sci
– volume: 256
  start-page: 3000
  year: 2010
  end-page: 3005
  article-title: Protein imprinted polymer using acryloyl‐b‐cyclodextrin and acrylamide as monomers
  publication-title: Applied Surface Science
– volume: 6
  start-page: 329
  year: 2005
  end-page: 357
  article-title: Cyclodextrins in drug delivery: an updated review
  publication-title: AAPS J. Pharm. Sci. Technol
– volume: 79
  start-page: 642
  year: 2010
  end-page: 647
  article-title: Combination of hydrophobic effect and electrostatic interaction in imprinting for achieving efficient recognition in aqueous media
  publication-title: Carbohydr. Polym
– volume: 12
  start-page: 255
  year: 2012
  end-page: 260
  article-title: Intrinsic fluorescence‐based optical fiber sensor for cocaine using a molecularly imprinted polymer as the recognition element
  publication-title: IEEE Sens. J
– volume: 53
  start-page: 90
  year: 2009
  end-page: 101
  article-title: Hazard to the developing male reproductive system from cumulative exposure to phthalate esters—dibutyl phthalate, diisobutyl phthalate, butylbenzyl phthalate, diethylhexyl phthalate, dipentyl phthalate, and diisononyl phthalate
  publication-title: Regul.Toxicol. Pharmacol
– volume: 5
  start-page: 417
  year: 1998
  end-page: 421
  article-title: Synthesis of molecularly imprinted polymer of β‐cyclodextrin for the efficient recognition of cholesterol
  publication-title: Supramol. Sci
– volume: 45
  start-page: 54
  year: 2007
  end-page: 61
  article-title: Selective adsorption of norfloxacin in aqueous media by an imprinted polymer based on hydrophobic and electrostatic interaction
  publication-title: J. Pharm. Biomed. Anal
– volume: 29
  start-page: 709
  year: 2003
  end-page: 714
  article-title: Evaluation of β‐cyclodextrin bonded silica as a selective sorbent for the solid‐phase extraction of 4‐nitrophenol and 2,4‐dinitrophenol
  publication-title: Anal. Sci
– volume: 1187
  start-page: 94
  end-page: 102
  article-title: Molecularly imprinted polymer prepared with bonded β‐cyclodextrin and acrylamide on functionalized silica gel for selective recognition of tryptophan in aqueous media
  publication-title: J. Chromatogr. A
– volume: 68
  start-page: 1973
  year: 1998
  end-page: 1978
  article-title: Sorption of aromatic compounds in water using insoluble cyclodextrin polymers
  publication-title: J. Appl. Polym. Sci
– volume: 35
  start-page: 667
  year: 1997a
  end-page: 749
  article-title: The environmental fate of phthalate esters: a literature review
  publication-title: Chemosphere
– year: 2015
– volume: 16
  start-page: 3656
  year: 2015
  end-page: 3676
  article-title: Exploiting β‐Cyclodextrin in molecular imprinting for achieving recognition of benzylparaben in aqueous media
  publication-title: Int. J. Mol. Sci
– volume: 106
  start-page: 767
  year: 2006
  end-page: 781
  article-title: Cyclodextrins as supramolecular hosts for organometallic complexes
  publication-title: Chem. Rev
– volume: 21
  start-page: 3
  year: 1999
  end-page: 40
  article-title: Expanded activity and utility of the new fluoroquinolones: a review
  publication-title: Clin. Ther
– volume: 42
  start-page: 1839
  year: 2001
  end-page: 1841
  article-title: Hydrophilic cholesterol‐binding molecular imprinted polymers
  publication-title: Tetrahedron Lett
– volume: 32
  start-page: 2265
  year: 1999
  end-page: 2269
  article-title: Molecularly imprinted cyclodextrins as selective receptors for steroids
  publication-title: Macromolecules
– volume: 325
  start-page: 165
  year: 2012
  end-page: 266
  article-title: Chemosensors based on molecularly imprinted polymers
  publication-title: Top. Curr. Chem
– volume: 226
  start-page: 2759
  year: 2005
  end-page: 2766
  article-title: Synthesis of creatinine‐imprinted poly (β‐cyclodextrin) for the specific binding of creatinine
  publication-title: Biomaterials
– volume: 5
  start-page: 981
  year: 2015
  end-page: 1003
  article-title: Nano‐sized cyclodextrin‐based molecularly imprinted polymer adsorbents for perfluorinated compounds—A mini‐review
  publication-title: Nanomaterials
– volume: 23
  start-page: 36
  year: 2004
  end-page: 48
  article-title: Electrochemical sensors based on molecularly imprinted polymers
  publication-title: TrAC, Trends Anal. Chem
– volume: 29
  start-page: 1363
  year: 2010
  end-page: 1375
  article-title: Molecularly‐imprinted polymers: useful sorbents for selective extractions
  publication-title: Trends Anal. Chem
– volume: 14
  start-page: 317
  year: 2002
  end-page: 323
  article-title: Electrochemical sensors based on molecularly imprinted polymers
  publication-title: Electroanalysis
– volume: 435
  start-page: 25
  year: 2001
  end-page: 33
  article-title: Molecular imprinting of cyclodextrin in water for the recognition of nanometer‐scaled guests
  publication-title: Anal. Chim. Acta
– volume: 22
  start-page: 1131
  year: 2007
  end-page: 1137
  article-title: Molecularly imprinted polymers for the recognition of proteins: the state of the art
  publication-title: Biosens. Bioelectron
– volume: 60
  start-page: 1455
  year: 2011
  end-page: 1460
  article-title: Imprinted β‐cyclodextrin polymers using naringin as template
  publication-title: Polym. Int
– volume: 98
  start-page: 2578
  year: 2007
  end-page: 2583
  article-title: Removal of phthalate esters by β‐cyclodextrin‐linked chitosan bead
  publication-title: J. Bioresource Techno
– volume: 88
  start-page: 459
  year: 2012
  end-page: 464
  article-title: Molecularly imprinted polymers of allyl‐β‐cyclodextrin and methacrylic acid for the solid‐phase extraction of phthalate
  publication-title: Carbohydr. Polym
– start-page: 1971
  year: 1997
  end-page: 1972
  article-title: Molecularly imprinted polymer of β‐cyclodextrin for the efficient recognition of cholesterol
  publication-title: Chem. Commun
– volume: 745
  start-page: 83
  year: 2000
  end-page: 102
  article-title: Cyclodextrins: a versatile tool in separation science
  publication-title: J. Chromatogr. B
– volume: 28
  start-page: 3741
  year: 2007
  end-page: 3749
  article-title: Development and characterisation of molecularly imprinted polymers based on methacrylic acid for selective recognition of drugs
  publication-title: Biomaterials
– volume: 116
  start-page: 283
  year: 2013
  end-page: 289
  article-title: Molecularly imprinted photonic polymer based on β‐cyclodextrin for amino acid sensing
  publication-title: Talanta
– start-page: 23
  year: 2000
  end-page: 29
  article-title: Fluorescence detection of β‐estradiol using a molecularly imprinted polymer
  publication-title: Anal. Chim. Acta
– volume: 1770
  start-page: 943
  year: 2007
  end-page: 950
  article-title: Molecularly imprinted poly‐β‐cyclodextrin polymer: application in protein refolding
  publication-title: Biochim. Biophys. Acta
– volume: 39
  start-page: 681
  year: 2006
  end-page: 691
  article-title: Cooperative binding and multiple recognition by bridged bis (β‐cyclodextrin)s with functional linkers
  publication-title: Acc. Chem. Res
– volume: 5
  start-page: 68397
  year: 2015
  end-page: 68403
  article-title: β‐Cyclodextrin/chitosan – magnetic graphene oxide – surface molecularly imprinted polymer nanocomplex coupled with chemiluminescence biosensing of bovine serum albumin
  publication-title: RSC Adv
– volume: 25
  start-page: 789
  year: 2002
  end-page: 813
  article-title: Synthesis and applications of adsorbents containing cyclodextrins
  publication-title: J. Sep. Sci
– volume: 405
  start-page: 63
  year: 2013
  end-page: 90
  article-title: Advances in pesticide biosensors: current status, challenges, and future perspectives
  publication-title: Anal. Bioanal. Chem
– volume: 7
  start-page: 23l
  year: 2001
  end-page: 235
  article-title: Effect of phthalate esters on developing reproductive tract of male rats
  publication-title: Hum. Reprod
– volume: 20
  start-page: 604
  year: 2005
  end-page: 610
  article-title: Phthalate exposure and reproductive hormones in adult men
  publication-title: Hum. Reprod
– volume: 1217
  start-page: 7337
  year: 2010
  end-page: 7344
  article-title: Preparation of magnetic indole‐3‐acetic acid imprinted polymer beads with 4‐vinylpyridine and β‐cyclodextrin as binary monomer via microwave heating initiated polymerization and their application to trace analysis of auxins in plant tissues
  publication-title: J. Chromatogr. A
– volume: 28
  start-page: 1516
  year: 2008
  end-page: 1521
  article-title: Exploiting b‐cyclodextrin as functional monomer in molecular imprinting for achieving recognition in aqueous media
  publication-title: Mater. Sci. Eng. C
– volume: 50
  start-page: 51
  year: 2004
  end-page: 55
  article-title: Efficient separation of hydrophobic molecules by molecularly imprinted cyclodextrin polymers
  publication-title: J. Inclusion Phenom. Macrocyclic Chem
– volume: 188
  start-page: 157
  year: 2009
  end-page: 160
  article-title: Cell death and production of reactive oxygen species by murine macrophages after short term exposure to phthalates
  publication-title: Toxicol. Lett
– year: 2016
  article-title: Using molecularly‐imprinted polymers as the extracted sorbents of clenbuterol ahead of liquid chromatographic determination
  publication-title: J Zhejiang Univ‐Sci B (Biomed & Biotechnol) in press
– volume: 883
  start-page: 137
  year: 2002
  end-page: 159
  article-title: Insoluble β‐cyclodextrin polymer for capillary gas chromatographic separation of enantiomers and isomers
  publication-title: J. Chromatogr. A
– volume: 139
  start-page: 156
  year: 2009
  end-page: 165
  article-title: Molecularly imprinted β‐cyclodextrin polymer as potential optical receptor for the detection of organic compound
  publication-title: Sens. Actuators, B: Chemical
– volume: 661
  start-page: 215
  year: 2010
  end-page: 221
  article-title: Selective solid‐phase extraction of dibuty phthalate from soybean milk using molecular imprinted polymers
  publication-title: Anal. Chim. Acta
– volume: 98
  start-page: 1743
  year: 1998
  ident: e_1_2_7_6_1
  article-title: The stability of cyclodextrin complexes in solution
  publication-title: Chem. Rev
– ident: e_1_2_7_43_1
  doi: 10.1016/j.bbagen.2007.02.007
– ident: e_1_2_7_34_1
  doi: 10.3390/nano5020981
– ident: e_1_2_7_52_1
  doi: 10.1002/1521-4109(200203)14:5<317::AID-ELAN317>3.0.CO;2-5
– ident: e_1_2_7_4_1
  doi: 10.1016/j.biomaterials.2004.07.037
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jpba.2007.05.024
– ident: e_1_2_7_47_1
  doi: 10.1016/j.bios.2014.02.041
– ident: e_1_2_7_51_1
  doi: 10.1016/S0165-9936(04)00102-5
– ident: e_1_2_7_12_1
  doi: 10.1016/j.biomaterials.2007.04.036
– volume: 883
  start-page: 137
  year: 2002
  ident: e_1_2_7_30_1
  article-title: Insoluble β‐cyclodextrin polymer for capillary gas chromatographic separation of enantiomers and isomers
  publication-title: J. Chromatogr. A
– ident: e_1_2_7_28_1
  doi: 10.1016/j.chroma.2010.09.059
– ident: e_1_2_7_63_1
  doi: 10.1093/humrep/deh656
– ident: e_1_2_7_9_1
  doi: 10.1016/S0734-9750(02)00020-4
– ident: e_1_2_7_17_1
  doi: 10.2116/analsci.19.709
– ident: e_1_2_7_5_1
  doi: 10.1208/pt060243
– ident: e_1_2_7_8_1
– ident: e_1_2_7_50_1
  doi: 10.1016/S0003-2670(99)00743-6
– ident: e_1_2_7_38_1
  doi: 10.1021/ar0502275
– ident: e_1_2_7_58_1
  doi: 10.1016/j.toxlet.2009.04.001
– ident: e_1_2_7_61_1
  doi: 10.1016/S0278-6915(96)00064-6
– ident: e_1_2_7_13_1
  doi: 10.1016/j.msec.2008.04.007
– ident: e_1_2_7_18_1
  doi: 10.2174/1385272024605041
– ident: e_1_2_7_49_1
  doi: 10.1007/128_2010_92
– ident: e_1_2_7_55_1
  doi: 10.1007/s10847-005-0248-3
– ident: e_1_2_7_57_1
  doi: 10.1016/S0045-6535(97)00195-1
– ident: e_1_2_7_14_1
  doi: 10.1021/ma9816012
– volume: 7
  start-page: 23l
  year: 2001
  ident: e_1_2_7_62_1
  article-title: Effect of phthalate esters on developing reproductive tract of male rats
  publication-title: Hum. Reprod
– ident: e_1_2_7_23_1
  doi: 10.1016/j.aca.2007.10.044
– ident: e_1_2_7_36_1
  doi: 10.1016/S0968-5677(98)00042-X
– ident: e_1_2_7_41_1
  doi: 10.1016/j.bios.2006.06.023
– ident: e_1_2_7_25_1
  doi: 10.1016/j.carbpol.2011.12.027
– ident: e_1_2_7_11_1
  doi: 10.1016/j.snb.2008.10.035
– ident: e_1_2_7_10_1
  doi: 10.1016/S0169-409X(98)00055-6
– ident: e_1_2_7_56_1
  doi: 10.1039/C5RA11061K
– ident: e_1_2_7_64_1
  doi: 10.1016/j.aca.2009.12.029
– ident: e_1_2_7_20_1
  doi: 10.1002/pi.3101
– ident: e_1_2_7_59_1
  doi: 10.1016/j.yrtph.2008.11.005
– ident: e_1_2_7_37_1
  doi: 10.1002/1521-4095(200007)12:14<1019::AID-ADMA1019>3.0.CO;2-K
– ident: e_1_2_7_27_1
  doi: 10.1016/j.chroma.2009.03.056
– ident: e_1_2_7_53_1
  doi: 10.1016/j.snb.2008.07.029
– ident: e_1_2_7_19_1
  doi: 10.1016/j.snb.2013.12.039
– ident: e_1_2_7_21_1
  doi: 10.3390/ijms16023656
– volume: 22
  start-page: 2165
  year: 2010
  ident: e_1_2_7_40_1
  article-title: Molecularly imprinted functional materials based on polysaccharides
  publication-title: Prog. Chem
– ident: e_1_2_7_46_1
  doi: 10.1109/JSEN.2011.2158537
– ident: e_1_2_7_65_1
  doi: 10.1631/jzus.B1500225
– ident: e_1_2_7_15_1
  doi: 10.1007/s10847-003-8838-4
– ident: e_1_2_7_39_1
  doi: 10.1016/j.talanta.2013.05.003
– ident: e_1_2_7_33_1
  doi: 10.1016/S0378-4347(00)00057-8
– ident: e_1_2_7_29_1
  doi: 10.1016/S0003-2670(99)00645-5
– ident: e_1_2_7_42_1
  doi: 10.1016/j.apsusc.2009.11.064
– ident: e_1_2_7_60_1
  doi: 10.1016/S0149-2918(00)88266-1
– ident: e_1_2_7_35_1
  doi: 10.1016/S0040-4039(01)00045-4
– ident: e_1_2_7_44_1
  doi: 10.1039/a704176d
– ident: e_1_2_7_7_1
  doi: 10.1021/cr050576c
– volume: 1187
  start-page: 94
  ident: e_1_2_7_26_1
  article-title: Molecularly imprinted polymer prepared with bonded β‐cyclodextrin and acrylamide on functionalized silica gel for selective recognition of tryptophan in aqueous media
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2008.02.004
– ident: e_1_2_7_16_1
  doi: 10.1016/S0003-2670(00)01303-9
– ident: e_1_2_7_32_1
  doi: 10.1002/1615-9314(20020901)25:13<789::AID-JSSC789>3.0.CO;2-J
– ident: e_1_2_7_3_1
  doi: 10.1016/j.carbpol.2009.09.010
– ident: e_1_2_7_45_1
  doi: 10.1002/(SICI)1097-4628(19980620)68:12<1973::AID-APP11>3.0.CO;2-T
– ident: e_1_2_7_54_1
  doi: 10.1016/S0925-4005(03)00260-0
– ident: e_1_2_7_22_1
  doi: 10.3390/ijms15046111
– ident: e_1_2_7_31_1
  doi: 10.1016/j.biortech.2006.09.009
– ident: e_1_2_7_2_1
  doi: 10.1016/j.trac.2010.07.020
– ident: e_1_2_7_48_1
  doi: 10.1007/s00216-012-6299-6
SSID ssj0017890
Score 2.3898864
SecondaryResourceType review_article
Snippet As a versatile tool in separation science, cyclodextrins and their derivatives, known as emerging functional monomers, have been used extensively in molecular...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2321
SubjectTerms additives
Amino acids
Binding
Copolymers
cost effectiveness
Cyclodextrin
Cyclodextrins
Cyclodextrins - chemistry
Derivatives
drugs
Functional monomers
Imprinted polymers
Inclusion complexes
Molecular Imprinting
Molecularly imprinted polymers
Monomers
pesticides
Pharmacology
plant hormones
Polymers
Polymers - chemistry
proteins
Sensors
Separation
Title State-of-the-art applications of cyclodextrins as functional monomers in molecular imprinting techniques: a review
URI https://api.istex.fr/ark:/67375/WNG-KLW5ZVNV-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjssc.201600003
https://www.ncbi.nlm.nih.gov/pubmed/27324352
https://www.proquest.com/docview/1798193601
https://www.proquest.com/docview/1798995983
https://www.proquest.com/docview/1825514733
https://www.proquest.com/docview/1836655203
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcigceBQoCwUZCcEp7a5fcbhVK0pVYA-UPsTFchxbKm2zqNmVCqf-hP5Gfkln4iTsVqUIcYmiZCJNJmPPN87MZ0JeMa9Tq7xKMi7SBEKAS6wseBIyG0Q-4IIF7Hf-NFJbu2L7QB7MdPFHfohuwQ1HRj1f4wC3ebX-mzT0W1UhBeFA4ZSLdJ9YsIWo6HPHHzXALk_MuCBsgzJ91bI29tn6_ONzUekWGvjsOsg5j2DrELR5j9hW-Vh5crQ2neRr7ucVXsf_ebv75G6DT-lGdKgHZMGXy2Rp2G4Lt0zuzDAYPiRnNVj9dX4xDnAAMAlHcEY6-1-cjgN1P9wxNs9P4LGK2opiPI3LkPQE-yoAhdLDEs6b3Xrp4QkuOWJRNu14Zqu31NLYbPOI7G6--zLcSprNHBIHiFAkYgDuArkLLwRXhQ7SOi-LfuY4QNbU19RtEBuDkl5kOu9D4ikCtzwDPOfTIuOPyWI5Lv0TQtMUUGcuAIkxLqSXWgfLhWPB5dqFXPdI0n5M4xqmc9xw49hEjmZm0Lqms26PvOnkv0eOjz9Kvq59oxOzp0dYGZdKsz96bz583Jdf90Z7BgRXW-cxzaRQGeSGA80hBe6Rl91t-Hz4j8aWfjyNMkgBp_kNMpDVA85N-Y0yXCkpGeq8Ep23UxoQKwOrMrBT7YJ_eWmzvbMzFFqIp_8o_4zcxouxsG6VLE5Op_45QLhJ_qIeppfeMEGl
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPRQOLZRHtxQwEoJT2l0_EocbWlGWdrsH-kK9WI5jS6Vttmp2pcKJn9DfyC9hJk5CF0ER4hKttBNpMhl7vnFmviHkJXMqMbGLo5SLJIIQYCMjcx751HiR9bhgHvudd0bxYF9sfZJNNSH2wgR-iPbADVdGtV_jAscD6Y2frKGfyxI5CHsx7rn8NpnHsd5VVvWxZZDqYZ8n5lwQuEGdbtzwNnbZxuz9M3FpHk18-TvQOYthqyC0uUSyRv1Qe3KyPp1k6_brL8yO__V898hiDVHp2-BT98ktVyyThX4zGW6Z3L1GYviAXFZ49fu3q7GHC-BJuII_0uufxunYU_vFnmL__ARuK6kpKYbUcBJJz7C1AoAoPS7gdz2wlx6f4akj1mXTlmq2fEMNDf02D8n-5ru9_iCq5zlEFkChiEQPPAbSF54LHufKS2OdzLup5YBaE1ext0F49LF0IlVZF3JP4bnhKUA6l-Qpf0TminHhVghNEgCemQAwxriQTirlDReWeZsp6zPVIVHzNrWtyc5x5sapDjTNTKN1dWvdDnndyp8Hmo8_Sr6qnKMVMxcnWByXSH04eq-3h4fy6GB0oEFwrfEeXe8LpUZ6ONAcsuAOedH-Da8PP9OYwo2nQQZZ4BS_QQYSe4C6Cb9RhsexlAx1fhy8t1UaQCsDqzKwU-WDf3lovbW72xdKiNV_lH9OFgZ7O0M9_DDafkLuoECos1sjc5OLqXsKiG6SPavW7A_OJkXA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglXgceJTXQgEjITilzcaPONzQlqW0ZYUofYiL5Ti2VNpmq2ZXKpz4CfxGfgkzcRJ2ERQhLlakTKTxZOz5xvZ8JuRp4lRqpJNRxngaQQiwkREFi3xmPM_7jCce653fjuT6Dt_YF_szVfyBH6JbcMORUc_XOMBPCr_6kzT0U1UhBWFf4pTLLpJFLmOFfr32viOQ6mOZJ6ZcELdBm1i2tI1xsjr__VxYWkQLn_0Oc85D2DoGDa8T02ofjp4crkwn-Yr98gux4_907wa51gBU-jJ41E1ywZVL5PKgvRduiVydoTC8Rc5qtPr967exhwbQJLTgjXR2Y5yOPbWf7RFWz0_gs4qaimJADeuQ9BgLKwCG0oMSnpvreunBMa454qls2hHNVi-ooaHa5jbZGb76MFiPmtscIguQkEe8D_4CyQsrOJOF8sJYJ4o4swwwa-pq7jYIjl4KxzOVx5B5cs8MywDQubTI2B2yUI5Ld4_QNAXYmXOAYgnjwgmlvGHcJt7myvpc9UjU_kxtG6pzvHHjSAeS5kSjdXVn3R553smfBJKPP0o-q32jEzOnh3g0LhV6b_Rab27tiY-7o10Ngsut8-hmVqg0ksOB5pAD98iT7jX8PtykMaUbT4MMcsApdo4MpPUAdFN2rgyTUogEdb4bnLdTGiBrAlZNwE61C_6l03pje3vAFef3_1H-Mbn0bm2ot96MNh-QK_g-HLJbJguT06l7CHBukj-qR-wP6rNEeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State%E2%80%90of%E2%80%90the%E2%80%90art+applications+of+cyclodextrins+as+functional+monomers+in+molecular+imprinting+techniques%3A+a+review&rft.jtitle=Journal+of+separation+science&rft.au=%E1%B8%B6ay%2C+Suvijj%C4%81&rft.au=Ni%2C+Xiaofeng&rft.au=Yu%2C+Haining&rft.au=Shen%2C+Shengrong&rft.date=2016-06-01&rft.issn=1615-9306&rft.volume=39&rft.issue=12+p.2321-2331&rft.spage=2321&rft.epage=2331&rft_id=info:doi/10.1002%2Fjssc.201600003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-9306&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-9306&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-9306&client=summon