State-of-the-art applications of cyclodextrins as functional monomers in molecular imprinting techniques: a review
As a versatile tool in separation science, cyclodextrins and their derivatives, known as emerging functional monomers, have been used extensively in molecular imprinting techniques. The attributes of cyclodextrins and their derivatives are widely known to form host–guest inclusion complex processes...
Saved in:
Published in | Journal of separation science Vol. 39; no. 12; pp. 2321 - 2331 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
01.06.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a versatile tool in separation science, cyclodextrins and their derivatives, known as emerging functional monomers, have been used extensively in molecular imprinting techniques. The attributes of cyclodextrins and their derivatives are widely known to form host–guest inclusion complex processes between the polymer and template. The exploitation of the imprinting technique could produce a product of molecularly imprinted polymers, which are very robust with long‐term stability, reliability, cost‐efficiency, and selectivity. Hence, molecularly imprinted polymers have gained popularity in chemical separation and analysis. Molecularly imprinted polymers containing either cyclodextrin or its derivatives demonstrate superior binding effects for a target molecule. As noted in the previous studies, the functional monomers of cyclodextrins and their derivatives have been used in molecular imprinting for selective separation with a wide range of chemical compounds, including steroidals, amino acids, polysaccharides, drugs, plant hormones, proteins, pesticides, and plastic additives. Therefore, the main goal of this review is to illustrate the exotic applications of imprinting techniques employing cyclodextrins and their derivatives as single or binary functional monomers in synthesizing molecularly imprinted polymers in areas of separation science by reviewing some of the latest studies reported in the literature. |
---|---|
AbstractList | As a versatile tool in separation science, cyclodextrins and their derivatives, known as emerging functional monomers, have been used extensively in molecular imprinting techniques. The attributes of cyclodextrins and their derivatives are widely known to form host–guest inclusion complex processes between the polymer and template. The exploitation of the imprinting technique could produce a product of molecularly imprinted polymers, which are very robust with long‐term stability, reliability, cost‐efficiency, and selectivity. Hence, molecularly imprinted polymers have gained popularity in chemical separation and analysis. Molecularly imprinted polymers containing either cyclodextrin or its derivatives demonstrate superior binding effects for a target molecule. As noted in the previous studies, the functional monomers of cyclodextrins and their derivatives have been used in molecular imprinting for selective separation with a wide range of chemical compounds, including steroidals, amino acids, polysaccharides, drugs, plant hormones, proteins, pesticides, and plastic additives. Therefore, the main goal of this review is to illustrate the exotic applications of imprinting techniques employing cyclodextrins and their derivatives as single or binary functional monomers in synthesizing molecularly imprinted polymers in areas of separation science by reviewing some of the latest studies reported in the literature. |
Author | Yu, Haining Lay, Sovichea Shen, Shengrong Ni, Xiaofeng |
Author_xml | – sequence: 1 givenname: Sovichea surname: Lay fullname: Lay, Sovichea organization: Department of Food Science & Nutrition, Zhejiang University, Hangzhou, China – sequence: 2 givenname: Xiaofeng surname: Ni fullname: Ni, Xiaofeng organization: Department of Food Science & Nutrition, Zhejiang University, Hangzhou, China – sequence: 3 givenname: Haining surname: Yu fullname: Yu, Haining organization: College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China – sequence: 4 givenname: Shengrong surname: Shen fullname: Shen, Shengrong email: shrshen@zju.edu.cn organization: Department of Food Science & Nutrition, Zhejiang University, Hangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27324352$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9vFCEUxyemxv7Qq0dD4sXLrDDAMHgzG23VTT2stokXwjJvLCszbIGx3f--jFv30EvLhRf4fB-P977HxcHgByiK1wTPCMbV-3WMZlZhUuO86LPiiNSEl5ISdrCPcX1YHMe4xpiIRuIXxWElaMUor46KsEw6Qem7Ml1BqUNCerNx1uhk_RCR75DZGudbuE3B5gMdUTcOZrrVDvV-8D2EiOyQYwdmdDog228ym-zwGyUwV4O9HiF-QBoF-Gvh5mXxvNMuwqv7_aT4-fnTj_lZufh--mX-cVEaLjgrGYEVCCZoy2jdNh3XBniLpaENxgJwRRhjlexqDkw2K9wwzDqqqcwfA9FKelK82-XdBD9VkFRvowHn9AB-jIo0tK45rzB9AlpxTnItT0CFbKTkspnQtw_QtR9D7tuOIpLWmGTqzT01rnpoVe5dr8NW_Z9RBmY7wAQfY4BujxCsJhOoyQRqb4IsYA8ExqZ_A01BW_eo7MY62D7yiPq6XM5Zw1iWlTuZjQlu9zId_qhaUMHV5fmp-ra45L8uzi8UpXe0FdQA |
CitedBy_id | crossref_primary_10_3390_polym13172841 crossref_primary_10_4155_fmc_2017_0249 crossref_primary_10_1002_jssc_201600699 crossref_primary_10_1002_jssc_201600850 crossref_primary_10_1016_j_jhazmat_2020_123643 crossref_primary_10_1002_jssc_201701273 crossref_primary_10_1016_j_dyepig_2017_11_032 crossref_primary_10_1007_s10847_017_0779_4 crossref_primary_10_3390_polym13152430 crossref_primary_10_1016_j_chroma_2020_461514 crossref_primary_10_1039_D2RA02357A crossref_primary_10_1016_j_archoralbio_2018_04_008 crossref_primary_10_1002_jssc_201600892 crossref_primary_10_1016_j_eurpolymj_2019_02_044 crossref_primary_10_1016_j_mtchem_2024_101899 crossref_primary_10_1016_j_eurpolymj_2019_04_012 crossref_primary_10_1007_s00216_017_0716_9 crossref_primary_10_1016_j_cclet_2018_10_022 crossref_primary_10_1016_j_chemosphere_2020_126376 crossref_primary_10_1016_j_cej_2017_02_138 crossref_primary_10_1016_j_carbpol_2020_116321 crossref_primary_10_1016_j_reactfunctpolym_2017_04_001 crossref_primary_10_1021_acs_iecr_9b02281 crossref_primary_10_3390_membranes12050472 crossref_primary_10_1016_j_tifs_2023_05_009 crossref_primary_10_1080_10826076_2017_1402186 crossref_primary_10_3390_s20040996 crossref_primary_10_1016_j_aca_2022_340319 crossref_primary_10_1002_jssc_201600834 crossref_primary_10_1016_S1872_2040_21_60118_4 crossref_primary_10_1016_j_foodchem_2023_136822 crossref_primary_10_2174_1386207322666190325115526 crossref_primary_10_1002_jssc_201901029 crossref_primary_10_1246_bcsj_20180084 crossref_primary_10_1007_s10311_018_0763_2 crossref_primary_10_1016_j_trac_2019_02_028 crossref_primary_10_1016_j_eurpolymj_2017_11_021 crossref_primary_10_1002_jsfa_8690 crossref_primary_10_5812_jssc_102561 crossref_primary_10_1016_j_microc_2019_02_064 crossref_primary_10_1007_s10847_019_00896_9 crossref_primary_10_3390_bios12070441 crossref_primary_10_1002_marc_202100004 crossref_primary_10_1016_j_ccr_2022_214580 crossref_primary_10_1016_j_msec_2020_111076 crossref_primary_10_1080_15422119_2017_1315823 crossref_primary_10_1007_s10311_020_01156_w crossref_primary_10_1039_D4TB02475C crossref_primary_10_1002_jssc_201900221 crossref_primary_10_3390_polym14204441 crossref_primary_10_1016_j_colsurfa_2023_130957 |
Cites_doi | 10.1016/j.bbagen.2007.02.007 10.3390/nano5020981 10.1002/1521-4109(200203)14:5<317::AID-ELAN317>3.0.CO;2-5 10.1016/j.biomaterials.2004.07.037 10.1016/j.jpba.2007.05.024 10.1016/j.bios.2014.02.041 10.1016/S0165-9936(04)00102-5 10.1016/j.biomaterials.2007.04.036 10.1016/j.chroma.2010.09.059 10.1093/humrep/deh656 10.1016/S0734-9750(02)00020-4 10.2116/analsci.19.709 10.1208/pt060243 10.1016/S0003-2670(99)00743-6 10.1021/ar0502275 10.1016/j.toxlet.2009.04.001 10.1016/S0278-6915(96)00064-6 10.1016/j.msec.2008.04.007 10.2174/1385272024605041 10.1007/128_2010_92 10.1007/s10847-005-0248-3 10.1016/S0045-6535(97)00195-1 10.1021/ma9816012 10.1016/j.aca.2007.10.044 10.1016/S0968-5677(98)00042-X 10.1016/j.bios.2006.06.023 10.1016/j.carbpol.2011.12.027 10.1016/j.snb.2008.10.035 10.1016/S0169-409X(98)00055-6 10.1039/C5RA11061K 10.1016/j.aca.2009.12.029 10.1002/pi.3101 10.1016/j.yrtph.2008.11.005 10.1002/1521-4095(200007)12:14<1019::AID-ADMA1019>3.0.CO;2-K 10.1016/j.chroma.2009.03.056 10.1016/j.snb.2008.07.029 10.1016/j.snb.2013.12.039 10.3390/ijms16023656 10.1109/JSEN.2011.2158537 10.1631/jzus.B1500225 10.1007/s10847-003-8838-4 10.1016/j.talanta.2013.05.003 10.1016/S0378-4347(00)00057-8 10.1016/S0003-2670(99)00645-5 10.1016/j.apsusc.2009.11.064 10.1016/S0149-2918(00)88266-1 10.1016/S0040-4039(01)00045-4 10.1039/a704176d 10.1021/cr050576c 10.1016/j.chroma.2008.02.004 10.1016/S0003-2670(00)01303-9 10.1002/1615-9314(20020901)25:13<789::AID-JSSC789>3.0.CO;2-J 10.1016/j.carbpol.2009.09.010 10.1002/(SICI)1097-4628(19980620)68:12<1973::AID-APP11>3.0.CO;2-T 10.1016/S0925-4005(03)00260-0 10.3390/ijms15046111 10.1016/j.biortech.2006.09.009 10.1016/j.trac.2010.07.020 10.1007/s00216-012-6299-6 |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7U5 8FD L7M 7X8 7S9 L.6 |
DOI | 10.1002/jssc.201600003 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA MEDLINE MEDLINE - Academic Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1615-9314 |
EndPage | 2331 |
ExternalDocumentID | 4094953931 27324352 10_1002_jssc_201600003 JSSC4844 ark_67375_WNG_KLW5ZVNV_3 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABDBF ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TUS UB1 UPT VH1 W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WXSBR WYISQ XG1 XPP XV2 YQT ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 1OB 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c5754-41ebe7473d436d8f5ace5d09c38007e02144429f65e498b08404f3a39435e7d93 |
IEDL.DBID | DR2 |
ISSN | 1615-9306 |
IngestDate | Fri Jul 11 18:27:30 EDT 2025 Fri Jul 11 00:34:36 EDT 2025 Fri Jul 11 04:41:38 EDT 2025 Wed Aug 13 09:46:00 EDT 2025 Wed Feb 19 02:43:40 EST 2025 Tue Jul 01 01:26:36 EDT 2025 Thu Apr 24 23:08:28 EDT 2025 Wed Jan 22 16:23:16 EST 2025 Wed Oct 30 10:00:16 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Molecularly imprinted polymers Cyclodextrin Functional monomers Inclusion complexes Sensors |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5754-41ebe7473d436d8f5ace5d09c38007e02144429f65e498b08404f3a39435e7d93 |
Notes | istex:E2D2CD4C2C0DD759C983F903B9EF011B6564A333 ark:/67375/WNG-KLW5ZVNV-3 ArticleID:JSSC4844 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
PMID | 27324352 |
PQID | 1798193601 |
PQPubID | 105495 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1836655203 proquest_miscellaneous_1825514733 proquest_miscellaneous_1798995983 proquest_journals_1798193601 pubmed_primary_27324352 crossref_primary_10_1002_jssc_201600003 crossref_citationtrail_10_1002_jssc_201600003 wiley_primary_10_1002_jssc_201600003_JSSC4844 istex_primary_ark_67375_WNG_KLW5ZVNV_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2016 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: June 2016 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Journal of separation science |
PublicationTitleAlternate | J. Sep. Science |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Asanuma, H., Kakazu, M., Shibata, M., Hishiya, T., & Komiyama, M., Synthesis of molecularly imprinted polymer of β-cyclodextrin for the efficient recognition of cholesterol. Supramol. Sci. 1998, 5, 417-421. Beltran, A., Borrull, F., Cormack, P. A. G., Marce, R. M., Molecularly-imprinted polymers: useful sorbents for selective extractions. Trends Anal. Chem. 2010, 29, 1363-1375. Staples, C. A., Peterson, D. R., Parkerton, T. F., The environmental fate of phthalate esters: a literature review. Chemosphere 1997a, 35, 667-749. Esmaeili, M. A., Yazdanparast, R., Molecularly imprinted poly-β-cyclodextrin polymer: application in protein refolding. Biochim. Biophys. Acta 2007, 1770, 943-950. Zhang, W., Qin, L., Chen, R. R., He, X. W., Li, W. Y., Zhang, Y. K., Protein imprinted polymer using acryloyl-b-cyclodextrin and acrylamide as monomers. Applied Surface Science 2010, 256, 3000-3005 Asanuma, H., Kakazu, M., Shibata, M., Hishiya, T., Molecularly imprinted polymer of β-cyclodextrin for the efficient recognition of cholesterol. Chem. Commun. 1997, 1971-1972. Nguyen, T. H., Hardwick, S. A., Sun, T., Grattan, K. T. V., Intrinsic fluorescence-based optical fiber sensor for cocaine using a molecularly imprinted polymer as the recognition element. IEEE Sens. J. 2012, 12, 255-260. Loftssona, T., Jarvinen, T., Cyclodextrins in ophthalmic drug delivery. Adv. Drug Deliver. Rev. 1999, 36, 59-79. Xu, Z. F., Xu, L., Kuang, D. Z., Zhang, F. X., Wang, J. Q., Exploiting b-cyclodextrin as functional monomer in molecular imprinting for achieving recognition in aqueous media. Mater. Sci. Eng. C 2008, 28, 1516-1521. Challa, R., Ahuja, A., Ali, J., Khar, R. K., Cyclodextrins in drug delivery: an updated review. AAPS J. Pharm. Sci. Technol. 2005, 6, 329-357. Fan, Y., Feng, Y. Q., Da, S. L., Feng, P. Y., Evaluation of β-cyclodextrin bonded silica as a selective sorbent for the solid-phase extraction of 4-nitrophenol and 2,4-dinitrophenol. Anal. Sci. 2003, 29, 709-714. He, J., Lv, R., Zhu, J., Lu, K., Selective solid-phase extraction of dibuty phthalate from soybean milk using molecular imprinted polymers. Anal. Chim. Acta 2010, 661, 215-221. Piletsky, S. A., Turner, A.P .F., Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis 2002, 14, 317-323. Kang, Y. F., Duan, W. P., Li, Y., Kang, J. X., Xie, J., Molecularly imprinted polymers of allyl-β-cyclodextrin and methacrylic acid for the solid-phase extraction of phthalate. Carbohydr. Polym. 2012, 88, 459-464. Xu, Z. F., Kuang, D. Z., Liu, L., Deng, Q. Y., Selective adsorption of norfloxacin in aqueous media by an imprinted polymer based on hydrophobic and electrostatic interaction. J. Pharm. Biomed. Anal. 2007, 45, 54-61. Connors, K. A., The stability of cyclodextrin complexes in solution. Chem. Rev. 1998, 98, 1743-1753. Liu, X. Y., Fang, H. X., Yu, L. P., Molecularly imprinted photonic polymer based on β-cyclodextrin for amino acid sensing. Talanta 2013, 116, 283-289. Chen, C. Y., Chen, C. C., Chung, Y. C., Removal of phthalate esters by β-cyclodextrin-linked chitosan bead. J. Bioresource Techno. 2007, 98, 2578-2583. Duan, H., Li, L. L., Wang, X. J., Wang, Y. H., Li, J. B., Luo, C. N., β-Cyclodextrin/chitosan - magnetic graphene oxide - surface molecularly imprinted polymer nanocomplex coupled with chemiluminescence biosensing of bovine serum albumin. RSC Adv. 2015, 5 , 68397-68403. Karoyo, A. H., Wilson, L. D., Nano-sized cyclodextrin-based molecularly imprinted polymer adsorbents for perfluorinated compounds-A mini-review. Nanomaterials 2015, 5, 981-1003. Davidson, L., & Hayes, W., Molecular imprinting of biologically active steroidal systems. Curr. Org. Chem. 2002, 6, 265-281. Bossi, A., Bonini, F., Turner, A., Piletsky, S., Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens. Bioelectron. 2007, 22, 1131-1137. Schneiderman, E., Stalcup, A. M., Cyclodextrins: a versatile tool in separation science. J. Chromatogr. B 2000, 745, 83-102. Rachkov, A., McNiven, S., El'skaya, A., Yano, K., Karube, l., Fluorescence detection of β-estradiol using a molecularly imprinted polymer. Anal. Chim. Acta 2000, 23-29. Ma, X. L., Chen, Z., Chen, R. Y., Zheng, X., Chen, X., Lan, R. F., Imprinted β-cyclodextrin polymers using naringin as template. Polym. Int. 2011; 60, 1455-1460. Blandeau, J., Expanded activity and utility of the new fluoroquinolones: a review. Clin. Ther. 1999, 21, 3-40. Zhong, N., Byun, H. S., Bittman, R., Hydrophilic cholesterol-binding molecular imprinted polymers. Tetrahedron Lett. 2001, 42, 1839-1841. Asanuma, H., Akiyama, T., Kajiya, K., Hishiya, T., Komiyama, M., Molecular imprinting of cyclodextrin in water for the recognition of nanometer-scaled guests. Anal. Chim. Acta 2001, 435, 25-33. Naarala, J., Korpi, A., Cell death and production of reactive oxygen species by murine macrophages after short term exposure to phthalates. Toxicol. Lett. 2009, 188, 157-160. Cheng, Y., Jiang, P., Lin, S., Li, Y. N., Dong, X. C., An imprinted fluorescent chemosensor prepared using dansyl-modified β-cyclodextrin as the functional monomer for sensing of cholesterol with tailor-made selectivity. Sens. Actuators B 2014, 193, 838-843. Zhang, W., Qin, L., He, X. W., Li, W. Y., Zhang, Y. K., Novel surface modified molecularly imprinted polymer using acryloyl-β-cyclodextrin and acrylamide as monomers for selective recognition of lysozyme in aqueous solution. J. Chromatogr. A 2009, 1216, 4560-4567. Zhang, Y., Li, Y., Hu, Y., Li, G., Chen, Y., Preparation of magnetic indole-3-acetic acid imprinted polymer beads with 4-vinylpyridine and β-cyclodextrin as binary monomer via microwave heating initiated polymerization and their application to trace analysis of auxins in plant tissues. J. Chromatogr. A 2010, 1217, 7337-7344. Xu, Z. F., Kuang, D. Z., Feng, Y., Zhang, F., Combination of hydrophobic effect and electrostatic interaction in imprinting for achieving efficient recognition in aqueous media. Carbohydr. Polym. 2010, 79, 642-647. Poon, R., Lecavallier, P., Mueller, P., Valli, V. E., Procter, B. G., Chu, I., Subchronic oral toxicity of di-noctylphthalate and di (2-ethylhexyl) phthalate in the rat. Food Chem. Toxicol. 1997, 35, 225-239. Blanco-López, M. C., Lobo-Castañón, M. J., Miranda-Ordieres, A. J., Tuñón-Blanco, P., Electrochemical sensors based on molecularly imprinted polymers. TrAC, Trends Anal. Chem. 2004, 23, 36-48. Crini, G., Morcellet, M., Synthesis and applications of adsorbents containing cyclodextrins. J. Sep. Sci. 2002, 25, 789-813. Culha, M., Lavrik, N. V., Schell, F. M., Tipple, C. A., Sepaniak, M. J., Characterization of volatile, hydrophobic cyclodextrin derivatives as thin films for sensor applications. Sens. Actuators B 2003, 92, 171-180. Yang, Y., Long, Y. Y., Cao, Q., Li, K., Liu, F., Molecularly imprinted polymer using β-cyclodextrin as functional monomer for the efficient recognition of bilirubin. Anal. Chim. Acta 2008, 606, 92-97. Hapiot, F., Tilloy, S., Monflier, E., Cyclodextrins as supramolecular hosts for organometallic complexes. Chem. Rev. 2006, 106, 767-781. Liu, Y., Chen, Y., Cooperative binding and multiple recognition by bridged bis (β-cyclodextrin)s with functional linkers. Acc. Chem. Res. 2006, 39, 681-691. Suriyanarayanan, S., Cywinski, P. J., Moro, A. J., Mohr, G. J., Kutner, W., Chemosensors based on molecularly imprinted polymers. Top. Curr. Chem. 2012, 325, 165-266. Tsai, H. A., Syu, M. J., Synthesis of creatinine-imprinted poly (β-cyclodextrin) for the specific binding of creatinine. Biomaterials 2005, 226, 2759-2766. Wang, H. F., Zhang, L., Molecularly imprinted functional materials based on polysaccharides. Prog. Chem. 2010, 22, 2165-2172. Qin, L., He, X. W., Li, W. Y., Zhang, Y. K., Molecularly imprinted polymer prepared with bonded β-cyclodextrin and acrylamide on functionalized silica gel for selective recognition of tryptophan in aqueous media. J. Chromatogr. A 1187, 94-102. Ng, S. M., Narayanaswamy, R., Molecularly imprinted β-cyclodextrin polymer as potential optical receptor for the detection of organic compound. Sens. Actuators, B: Chemical 2009, 139, 156-165. Shi, X. Z., Wu, A. B., Qu, G. R., Li, R. X., Zhang, D. B., Development and characterisation of molecularly imprinted polymers based on methacrylic acid for selective recognition of drugs. Biomaterials 2007, 28, 3741-3749. Jian, M. Y., Kuo, W. T., Insoluble β-cyclodextrin polymer for capillary gas chromatographic separation of enantiomers and isomers. J. Chromatogr. A 2002, 883, 137-159. Singh, M., Sharma, R., Ranerjee, U. C., Biotechnological applications of cyclodextrins. Biotechnol. Adv. 2002, 20, 341-359. Surikumaran, H., Mohamad, S., Sarih, N. M., Molecular imprinted polymer of methacrylic acid functionalised β-Cyclodextrin for selective removal of 2,4-dichlorophenol. Int. J. Mol. Sci. 2014, 15, 6111-6136. Liu, S. Q., Zheng, Z. Z., Li, X. Y., Advances in pesticide biosensors: current status, challenges, and future perspectives. Anal. Bioanal. Chem. 2013, 405, 63-90. Hishiya, T., Shibata, M., Kakazu, M., Asanuma, H., Komiyama, M., Hishiya, T., Shibata, M., Kakazu, M., Asanuma, H., Komiyama, M. (1999). Molecularly imprinted cyclodextrins as selective receptors for steroids. Macromolecules 1999, 32, 2265-2269. Feng, Y. Q., Xie, M. J., Da, S. L., Preparation and characterization of an L-tyrosine-derivatized β-cyclodextrin-bonded silica stationary phase for liquid chromatography. Anal. Chim. Acta 2000, 403, 187-195. Huy, B. T., Seo, M. H., Zhang, X. F., Lee, Y. I., Selective optosensing of clenbuterol and melamine using molecularly imprinted polymer-capped CdTe quantum dots. Biosens. Bioelectron. 2014, 57, 310-316. Asman, S., Mohamad, S., Sarih, N. M., Exploiting β-Cyclodextrin in molecular imprinting for achieving recognition of benzylparaben in aqueous media. Int. J. Mol. Sci. 2015, 16, 3656-3676. Asanuma, H., Hishiya, T., Komiyama, M., Tailor-made receptors by molecular imprinting. Adv. Mater. 2000, 12, 1019-1030. Shahgaldian, P., Hegner, M., Pieles, U., A cyclodextrin self-assembled m 2002; 14 1187 2013; 405 2011; 60 2006; 39 2004; 23 1997a; 35 2010; 1217 2010; 661 2005; 20 2012; 12 2012; 325 2001; 42 2007; 28 2010; 22 2003; 92 2009; 53 2000 2010; 29 2000; 12 2000; 403 2013; 116 2007; 1770 2005; 226 2008; 28 2014; 15 2014; 57 1998; 98 2007; 22 2015; 16 2015; 5 2010; 79 2002; 6 2008; 606 1997 1999; 21 2014; 193 2007; 98 2009; 139 1998; 68 2009; 1216 2002; 25 2004; 50 2001; 7 2002; 20 2002; 883 2000; 745 1997; 35 1999; 36 2010; 256 2009; 188 2005; 53 2005; 6 1999; 32 2016 2015 2003; 29 1998; 5 2006; 106 2007; 45 2012; 88 2001; 435 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_49_1 e_1_2_7_28_1 Jian M. Y. (e_1_2_7_30_1) 2002; 883 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 Wang H. F. (e_1_2_7_40_1) 2010; 22 e_1_2_7_48_1 e_1_2_7_27_1 Foster P. M. D. (e_1_2_7_62_1) 2001; 7 e_1_2_7_29_1 Connors K. A. (e_1_2_7_6_1) 1998; 98 e_1_2_7_51_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Qin L. (e_1_2_7_26_1); 1187 |
References_xml | – reference: Nguyen, T. H., Hardwick, S. A., Sun, T., Grattan, K. T. V., Intrinsic fluorescence-based optical fiber sensor for cocaine using a molecularly imprinted polymer as the recognition element. IEEE Sens. J. 2012, 12, 255-260. – reference: Xu, Z. F., Kuang, D. Z., Liu, L., Deng, Q. Y., Selective adsorption of norfloxacin in aqueous media by an imprinted polymer based on hydrophobic and electrostatic interaction. J. Pharm. Biomed. Anal. 2007, 45, 54-61. – reference: Blanco-López, M. C., Lobo-Castañón, M. J., Miranda-Ordieres, A. J., Tuñón-Blanco, P., Electrochemical sensors based on molecularly imprinted polymers. TrAC, Trends Anal. Chem. 2004, 23, 36-48. – reference: Cheng, Y., Jiang, P., Lin, S., Li, Y. N., Dong, X. C., An imprinted fluorescent chemosensor prepared using dansyl-modified β-cyclodextrin as the functional monomer for sensing of cholesterol with tailor-made selectivity. Sens. Actuators B 2014, 193, 838-843. – reference: Blandeau, J., Expanded activity and utility of the new fluoroquinolones: a review. Clin. Ther. 1999, 21, 3-40. – reference: Asanuma, H., Hishiya, T., Komiyama, M., Tailor-made receptors by molecular imprinting. Adv. Mater. 2000, 12, 1019-1030. – reference: Asanuma, H., Akiyama, T., Kajiya, K., Hishiya, T., Komiyama, M., Molecular imprinting of cyclodextrin in water for the recognition of nanometer-scaled guests. Anal. Chim. Acta 2001, 435, 25-33. – reference: Ma, X. L., Chen, Z., Chen, R. Y., Zheng, X., Chen, X., Lan, R. F., Imprinted β-cyclodextrin polymers using naringin as template. Polym. Int. 2011; 60, 1455-1460. – reference: Asanuma, H., Hishiya, T., Komiyama, M., Efficient separation of hydrophobic molecules by molecularly imprinted cyclodextrin polymers. J. Inclusion Phenom. Macrocyclic Chem. 2004, 50, 51-55. – reference: Crini, G., Morcellet, M., Synthesis and applications of adsorbents containing cyclodextrins. J. Sep. Sci. 2002, 25, 789-813. – reference: Jian, M. Y., Kuo, W. T., Insoluble β-cyclodextrin polymer for capillary gas chromatographic separation of enantiomers and isomers. J. Chromatogr. A 2002, 883, 137-159. – reference: Duan, H., Li, L. L., Wang, X. J., Wang, Y. H., Li, J. B., Luo, C. N., β-Cyclodextrin/chitosan - magnetic graphene oxide - surface molecularly imprinted polymer nanocomplex coupled with chemiluminescence biosensing of bovine serum albumin. RSC Adv. 2015, 5 , 68397-68403. – reference: Challa, R., Ahuja, A., Ali, J., Khar, R. K., Cyclodextrins in drug delivery: an updated review. AAPS J. Pharm. Sci. Technol. 2005, 6, 329-357. – reference: Ng, S. M., Narayanaswamy, R., Molecularly imprinted β-cyclodextrin polymer as potential optical receptor for the detection of organic compound. Sens. Actuators, B: Chemical 2009, 139, 156-165. – reference: Shi, X. Z., Wu, A. B., Qu, G. R., Li, R. X., Zhang, D. B., Development and characterisation of molecularly imprinted polymers based on methacrylic acid for selective recognition of drugs. Biomaterials 2007, 28, 3741-3749. – reference: Xu, Z. F., Kuang, D. Z., Feng, Y., Zhang, F., Combination of hydrophobic effect and electrostatic interaction in imprinting for achieving efficient recognition in aqueous media. Carbohydr. Polym. 2010, 79, 642-647. – reference: Zhang, W., Qin, L., Chen, R. R., He, X. W., Li, W. Y., Zhang, Y. K., Protein imprinted polymer using acryloyl-b-cyclodextrin and acrylamide as monomers. Applied Surface Science 2010, 256, 3000-3005 – reference: Crini, G., Bertini, S., Torri, G., Naggi, A., Sforzini, D., Vecchi, C., Janus, L., Lekchiri, Y., Morcellet, M., Sorption of aromatic compounds in water using insoluble cyclodextrin polymers. J. Appl. Polym. Sci. 1998, 68, 1973-1978. – reference: Connors, K. A., The stability of cyclodextrin complexes in solution. Chem. Rev. 1998, 98, 1743-1753. – reference: Naarala, J., Korpi, A., Cell death and production of reactive oxygen species by murine macrophages after short term exposure to phthalates. Toxicol. Lett. 2009, 188, 157-160. – reference: Staples, C. A., Peterson, D. R., Parkerton, T. F., The environmental fate of phthalate esters: a literature review. Chemosphere 1997a, 35, 667-749. – reference: Zhong, N., Byun, H. S., Bittman, R., Hydrophilic cholesterol-binding molecular imprinted polymers. Tetrahedron Lett. 2001, 42, 1839-1841. – reference: Hishiya, T., Shibata, M., Kakazu, M., Asanuma, H., Komiyama, M., Hishiya, T., Shibata, M., Kakazu, M., Asanuma, H., Komiyama, M. (1999). Molecularly imprinted cyclodextrins as selective receptors for steroids. Macromolecules 1999, 32, 2265-2269. – reference: Liu, Y., Chen, Y., Cooperative binding and multiple recognition by bridged bis (β-cyclodextrin)s with functional linkers. Acc. Chem. Res. 2006, 39, 681-691. – reference: Yang, Y., Long, Y. Y., Cao, Q., Li, K., Liu, F., Molecularly imprinted polymer using β-cyclodextrin as functional monomer for the efficient recognition of bilirubin. Anal. Chim. Acta 2008, 606, 92-97. – reference: Loftssona, T., Jarvinen, T., Cyclodextrins in ophthalmic drug delivery. Adv. Drug Deliver. Rev. 1999, 36, 59-79. – reference: Poon, R., Lecavallier, P., Mueller, P., Valli, V. E., Procter, B. G., Chu, I., Subchronic oral toxicity of di-noctylphthalate and di (2-ethylhexyl) phthalate in the rat. Food Chem. Toxicol. 1997, 35, 225-239. – reference: Benson, R., Hazard to the developing male reproductive system from cumulative exposure to phthalate esters-dibutyl phthalate, diisobutyl phthalate, butylbenzyl phthalate, diethylhexyl phthalate, dipentyl phthalate, and diisononyl phthalate. Regul.Toxicol. Pharmacol. 2009, 53, 90-101. – reference: Wang, H. F., Zhang, L., Molecularly imprinted functional materials based on polysaccharides. Prog. Chem. 2010, 22, 2165-2172. – reference: Esmaeili, M. A., Yazdanparast, R., Molecularly imprinted poly-β-cyclodextrin polymer: application in protein refolding. Biochim. Biophys. Acta 2007, 1770, 943-950. – reference: Asanuma, H., Kakazu, M., Shibata, M., Hishiya, T., Molecularly imprinted polymer of β-cyclodextrin for the efficient recognition of cholesterol. Chem. Commun. 1997, 1971-1972. – reference: Asman, S., Mohamad, S., Sarih, N. M., Exploiting β-Cyclodextrin in molecular imprinting for achieving recognition of benzylparaben in aqueous media. Int. J. Mol. Sci. 2015, 16, 3656-3676. – reference: Beltran, A., Borrull, F., Cormack, P. A. G., Marce, R. M., Molecularly-imprinted polymers: useful sorbents for selective extractions. Trends Anal. Chem. 2010, 29, 1363-1375. – reference: Kang, Y. F., Duan, W. P., Li, Y., Kang, J. X., Xie, J., Molecularly imprinted polymers of allyl-β-cyclodextrin and methacrylic acid for the solid-phase extraction of phthalate. Carbohydr. Polym. 2012, 88, 459-464. – reference: Liu, X. Y., Fang, H. X., Yu, L. P., Molecularly imprinted photonic polymer based on β-cyclodextrin for amino acid sensing. Talanta 2013, 116, 283-289. – reference: Foster, P. M. D., Mylchreest, E., Gaido, K. W., Sar, M., Effect of phthalate esters on developing reproductive tract of male rats. Hum. Reprod. 2001, update 7, 23l-235. – reference: Singh, M., Sharma, R., Ranerjee, U. C., Biotechnological applications of cyclodextrins. Biotechnol. Adv. 2002, 20, 341-359. – reference: Zhang, Y., Li, Y., Hu, Y., Li, G., Chen, Y., Preparation of magnetic indole-3-acetic acid imprinted polymer beads with 4-vinylpyridine and β-cyclodextrin as binary monomer via microwave heating initiated polymerization and their application to trace analysis of auxins in plant tissues. J. Chromatogr. A 2010, 1217, 7337-7344. – reference: Surikumaran, H., Mohamad, S., Sarih, N. M., Molecular imprinted polymer of methacrylic acid functionalised β-Cyclodextrin for selective removal of 2,4-dichlorophenol. Int. J. Mol. Sci. 2014, 15, 6111-6136. – reference: Liu, S. Q., Zheng, Z. Z., Li, X. Y., Advances in pesticide biosensors: current status, challenges, and future perspectives. Anal. Bioanal. Chem. 2013, 405, 63-90. – reference: Shahgaldian, P., Hegner, M., Pieles, U., A cyclodextrin self-assembled monolayer (SAM) based surface plasmon resonance (SPR) sensor for enantioselective analysis of thyroxine. J. Inclusion Phenom. Macrocyclic Chem. 2005, 53, 35-39. – reference: Lay, S., Yu, H. N., Hu, B. X., Shen, S. R., Using molecularly-imprinted polymers as the extracted sorbents of clenbuterol ahead of liquid chromatographic determination. J Zhejiang Univ-Sci B (Biomed & Biotechnol) in press 2016. – reference: Fan, Y., Feng, Y. Q., Da, S. L., Feng, P. Y., Evaluation of β-cyclodextrin bonded silica as a selective sorbent for the solid-phase extraction of 4-nitrophenol and 2,4-dinitrophenol. Anal. Sci. 2003, 29, 709-714. – reference: Chen, C. Y., Chen, C. C., Chung, Y. C., Removal of phthalate esters by β-cyclodextrin-linked chitosan bead. J. Bioresource Techno. 2007, 98, 2578-2583. – reference: Asanuma, H., Kakazu, M., Shibata, M., Hishiya, T., & Komiyama, M., Synthesis of molecularly imprinted polymer of β-cyclodextrin for the efficient recognition of cholesterol. Supramol. Sci. 1998, 5, 417-421. – reference: Culha, M., Lavrik, N. V., Schell, F. M., Tipple, C. A., Sepaniak, M. J., Characterization of volatile, hydrophobic cyclodextrin derivatives as thin films for sensor applications. Sens. Actuators B 2003, 92, 171-180. – reference: Zhang, W., Qin, L., He, X. W., Li, W. Y., Zhang, Y. K., Novel surface modified molecularly imprinted polymer using acryloyl-β-cyclodextrin and acrylamide as monomers for selective recognition of lysozyme in aqueous solution. J. Chromatogr. A 2009, 1216, 4560-4567. – reference: Bossi, A., Bonini, F., Turner, A., Piletsky, S., Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens. Bioelectron. 2007, 22, 1131-1137. – reference: Feng, Y. Q., Xie, M. J., Da, S. L., Preparation and characterization of an L-tyrosine-derivatized β-cyclodextrin-bonded silica stationary phase for liquid chromatography. Anal. Chim. Acta 2000, 403, 187-195. – reference: Tsai, H. A., Syu, M. J., Synthesis of creatinine-imprinted poly (β-cyclodextrin) for the specific binding of creatinine. Biomaterials 2005, 226, 2759-2766. – reference: Hapiot, F., Tilloy, S., Monflier, E., Cyclodextrins as supramolecular hosts for organometallic complexes. Chem. Rev. 2006, 106, 767-781. – reference: Xu, Z. F., Xu, L., Kuang, D. Z., Zhang, F. X., Wang, J. Q., Exploiting b-cyclodextrin as functional monomer in molecular imprinting for achieving recognition in aqueous media. Mater. Sci. Eng. C 2008, 28, 1516-1521. – reference: Karoyo, A. H., Wilson, L. D., Nano-sized cyclodextrin-based molecularly imprinted polymer adsorbents for perfluorinated compounds-A mini-review. Nanomaterials 2015, 5, 981-1003. – reference: Schneiderman, E., Stalcup, A. M., Cyclodextrins: a versatile tool in separation science. J. Chromatogr. B 2000, 745, 83-102. – reference: Roche, P. J. R., Ng, S. M., Narayanaswamy, R., Goddard, N., Page, K. M., Multiple surface plasmon resonance quantification of dextromethorphan using a molecularly imprinted β-cyclodextrin polymer: a potential probe for drug-drug interactions. Sens. Actuators B 2009, 139, 22-29. – reference: Suriyanarayanan, S., Cywinski, P. J., Moro, A. J., Mohr, G. J., Kutner, W., Chemosensors based on molecularly imprinted polymers. Top. Curr. Chem. 2012, 325, 165-266. – reference: Qin, L., He, X. W., Li, W. Y., Zhang, Y. K., Molecularly imprinted polymer prepared with bonded β-cyclodextrin and acrylamide on functionalized silica gel for selective recognition of tryptophan in aqueous media. J. Chromatogr. A 1187, 94-102. – reference: Davidson, L., & Hayes, W., Molecular imprinting of biologically active steroidal systems. Curr. Org. Chem. 2002, 6, 265-281. – reference: Piletsky, S. A., Turner, A.P .F., Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis 2002, 14, 317-323. – reference: Huy, B. T., Seo, M. H., Zhang, X. F., Lee, Y. I., Selective optosensing of clenbuterol and melamine using molecularly imprinted polymer-capped CdTe quantum dots. Biosens. Bioelectron. 2014, 57, 310-316. – reference: He, J., Lv, R., Zhu, J., Lu, K., Selective solid-phase extraction of dibuty phthalate from soybean milk using molecular imprinted polymers. Anal. Chim. Acta 2010, 661, 215-221. – reference: Rachkov, A., McNiven, S., El'skaya, A., Yano, K., Karube, l., Fluorescence detection of β-estradiol using a molecularly imprinted polymer. Anal. Chim. Acta 2000, 23-29. – reference: Duty, S. M., Calafat, A. M., Silva, M. J., Ryan, L., Hauser, R., Phthalate exposure and reproductive hormones in adult men. Hum. Reprod. 2005, 20, 604-610. – volume: 92 start-page: 171 year: 2003 end-page: 180 article-title: Characterization of volatile, hydrophobic cyclodextrin derivatives as thin films for sensor applications publication-title: Sens. Actuators B – volume: 12 start-page: 1019 year: 2000 end-page: 1030 article-title: Tailor‐made receptors by molecular imprinting publication-title: Adv. Mater – volume: 193 start-page: 838 year: 2014 end-page: 843 article-title: An imprinted fluorescent chemosensor prepared using dansyl‐modified β‐cyclodextrin as the functional monomer for sensing of cholesterol with tailor‐made selectivity publication-title: Sens. Actuators B – volume: 6 start-page: 265 year: 2002 end-page: 281 article-title: Molecular imprinting of biologically active steroidal systems publication-title: Curr. Org. Chem – volume: 35 start-page: 225 year: 1997 end-page: 239 article-title: Subchronic oral toxicity of di‐noctylphthalate and di (2‐ethylhexyl) phthalate in the rat publication-title: Food Chem. Toxicol – volume: 1216 start-page: 4560 year: 2009 end-page: 4567 article-title: Novel surface modified molecularly imprinted polymer using acryloyl‐β‐cyclodextrin and acrylamide as monomers for selective recognition of lysozyme in aqueous solution publication-title: J. Chromatogr. A – volume: 606 start-page: 92 year: 2008 end-page: 97 article-title: Molecularly imprinted polymer using β‐cyclodextrin as functional monomer for the efficient recognition of bilirubin publication-title: Anal. Chim. Acta – volume: 36 start-page: 59 year: 1999 end-page: 79 article-title: Cyclodextrins in ophthalmic drug delivery publication-title: Adv. Drug Deliver. Rev – volume: 22 start-page: 2165 year: 2010 end-page: 2172 article-title: Molecularly imprinted functional materials based on polysaccharides publication-title: Prog. Chem – volume: 20 start-page: 341 year: 2002 end-page: 359 article-title: Biotechnological applications of cyclodextrins publication-title: Biotechnol. Adv – volume: 53 start-page: 35 year: 2005 end-page: 39 article-title: A cyclodextrin self‐assembled monolayer (SAM) based surface plasmon resonance (SPR) sensor for enantioselective analysis of thyroxine publication-title: J. Inclusion Phenom. Macrocyclic Chem – volume: 403 start-page: 187 year: 2000 end-page: 195 article-title: Preparation and characterization of an L‐tyrosine‐derivatized β‐cyclodextrin‐bonded silica stationary phase for liquid chromatography publication-title: Anal. Chim. Acta – volume: 98 start-page: 1743 year: 1998 end-page: 1753 article-title: The stability of cyclodextrin complexes in solution publication-title: Chem. Rev – volume: 139 start-page: 22 year: 2009 end-page: 29 article-title: Multiple surface plasmon resonance quantification of dextromethorphan using a molecularly imprinted β‐cyclodextrin polymer: a potential probe for drug–drug interactions publication-title: Sens. Actuators B – volume: 57 start-page: 310 year: 2014 end-page: 316 article-title: Selective optosensing of clenbuterol and melamine using molecularly imprinted polymer‐capped CdTe quantum dots publication-title: Biosens. Bioelectron – volume: 15 start-page: 6111 year: 2014 end-page: 6136 article-title: Molecular imprinted polymer of methacrylic acid functionalised β‐Cyclodextrin for selective removal of 2,4‐dichlorophenol publication-title: Int. J. Mol. Sci – volume: 256 start-page: 3000 year: 2010 end-page: 3005 article-title: Protein imprinted polymer using acryloyl‐b‐cyclodextrin and acrylamide as monomers publication-title: Applied Surface Science – volume: 6 start-page: 329 year: 2005 end-page: 357 article-title: Cyclodextrins in drug delivery: an updated review publication-title: AAPS J. Pharm. Sci. Technol – volume: 79 start-page: 642 year: 2010 end-page: 647 article-title: Combination of hydrophobic effect and electrostatic interaction in imprinting for achieving efficient recognition in aqueous media publication-title: Carbohydr. Polym – volume: 12 start-page: 255 year: 2012 end-page: 260 article-title: Intrinsic fluorescence‐based optical fiber sensor for cocaine using a molecularly imprinted polymer as the recognition element publication-title: IEEE Sens. J – volume: 53 start-page: 90 year: 2009 end-page: 101 article-title: Hazard to the developing male reproductive system from cumulative exposure to phthalate esters—dibutyl phthalate, diisobutyl phthalate, butylbenzyl phthalate, diethylhexyl phthalate, dipentyl phthalate, and diisononyl phthalate publication-title: Regul.Toxicol. Pharmacol – volume: 5 start-page: 417 year: 1998 end-page: 421 article-title: Synthesis of molecularly imprinted polymer of β‐cyclodextrin for the efficient recognition of cholesterol publication-title: Supramol. Sci – volume: 45 start-page: 54 year: 2007 end-page: 61 article-title: Selective adsorption of norfloxacin in aqueous media by an imprinted polymer based on hydrophobic and electrostatic interaction publication-title: J. Pharm. Biomed. Anal – volume: 29 start-page: 709 year: 2003 end-page: 714 article-title: Evaluation of β‐cyclodextrin bonded silica as a selective sorbent for the solid‐phase extraction of 4‐nitrophenol and 2,4‐dinitrophenol publication-title: Anal. Sci – volume: 1187 start-page: 94 end-page: 102 article-title: Molecularly imprinted polymer prepared with bonded β‐cyclodextrin and acrylamide on functionalized silica gel for selective recognition of tryptophan in aqueous media publication-title: J. Chromatogr. A – volume: 68 start-page: 1973 year: 1998 end-page: 1978 article-title: Sorption of aromatic compounds in water using insoluble cyclodextrin polymers publication-title: J. Appl. Polym. Sci – volume: 35 start-page: 667 year: 1997a end-page: 749 article-title: The environmental fate of phthalate esters: a literature review publication-title: Chemosphere – year: 2015 – volume: 16 start-page: 3656 year: 2015 end-page: 3676 article-title: Exploiting β‐Cyclodextrin in molecular imprinting for achieving recognition of benzylparaben in aqueous media publication-title: Int. J. Mol. Sci – volume: 106 start-page: 767 year: 2006 end-page: 781 article-title: Cyclodextrins as supramolecular hosts for organometallic complexes publication-title: Chem. Rev – volume: 21 start-page: 3 year: 1999 end-page: 40 article-title: Expanded activity and utility of the new fluoroquinolones: a review publication-title: Clin. Ther – volume: 42 start-page: 1839 year: 2001 end-page: 1841 article-title: Hydrophilic cholesterol‐binding molecular imprinted polymers publication-title: Tetrahedron Lett – volume: 32 start-page: 2265 year: 1999 end-page: 2269 article-title: Molecularly imprinted cyclodextrins as selective receptors for steroids publication-title: Macromolecules – volume: 325 start-page: 165 year: 2012 end-page: 266 article-title: Chemosensors based on molecularly imprinted polymers publication-title: Top. Curr. Chem – volume: 226 start-page: 2759 year: 2005 end-page: 2766 article-title: Synthesis of creatinine‐imprinted poly (β‐cyclodextrin) for the specific binding of creatinine publication-title: Biomaterials – volume: 5 start-page: 981 year: 2015 end-page: 1003 article-title: Nano‐sized cyclodextrin‐based molecularly imprinted polymer adsorbents for perfluorinated compounds—A mini‐review publication-title: Nanomaterials – volume: 23 start-page: 36 year: 2004 end-page: 48 article-title: Electrochemical sensors based on molecularly imprinted polymers publication-title: TrAC, Trends Anal. Chem – volume: 29 start-page: 1363 year: 2010 end-page: 1375 article-title: Molecularly‐imprinted polymers: useful sorbents for selective extractions publication-title: Trends Anal. Chem – volume: 14 start-page: 317 year: 2002 end-page: 323 article-title: Electrochemical sensors based on molecularly imprinted polymers publication-title: Electroanalysis – volume: 435 start-page: 25 year: 2001 end-page: 33 article-title: Molecular imprinting of cyclodextrin in water for the recognition of nanometer‐scaled guests publication-title: Anal. Chim. Acta – volume: 22 start-page: 1131 year: 2007 end-page: 1137 article-title: Molecularly imprinted polymers for the recognition of proteins: the state of the art publication-title: Biosens. Bioelectron – volume: 60 start-page: 1455 year: 2011 end-page: 1460 article-title: Imprinted β‐cyclodextrin polymers using naringin as template publication-title: Polym. Int – volume: 98 start-page: 2578 year: 2007 end-page: 2583 article-title: Removal of phthalate esters by β‐cyclodextrin‐linked chitosan bead publication-title: J. Bioresource Techno – volume: 88 start-page: 459 year: 2012 end-page: 464 article-title: Molecularly imprinted polymers of allyl‐β‐cyclodextrin and methacrylic acid for the solid‐phase extraction of phthalate publication-title: Carbohydr. Polym – start-page: 1971 year: 1997 end-page: 1972 article-title: Molecularly imprinted polymer of β‐cyclodextrin for the efficient recognition of cholesterol publication-title: Chem. Commun – volume: 745 start-page: 83 year: 2000 end-page: 102 article-title: Cyclodextrins: a versatile tool in separation science publication-title: J. Chromatogr. B – volume: 28 start-page: 3741 year: 2007 end-page: 3749 article-title: Development and characterisation of molecularly imprinted polymers based on methacrylic acid for selective recognition of drugs publication-title: Biomaterials – volume: 116 start-page: 283 year: 2013 end-page: 289 article-title: Molecularly imprinted photonic polymer based on β‐cyclodextrin for amino acid sensing publication-title: Talanta – start-page: 23 year: 2000 end-page: 29 article-title: Fluorescence detection of β‐estradiol using a molecularly imprinted polymer publication-title: Anal. Chim. Acta – volume: 1770 start-page: 943 year: 2007 end-page: 950 article-title: Molecularly imprinted poly‐β‐cyclodextrin polymer: application in protein refolding publication-title: Biochim. Biophys. Acta – volume: 39 start-page: 681 year: 2006 end-page: 691 article-title: Cooperative binding and multiple recognition by bridged bis (β‐cyclodextrin)s with functional linkers publication-title: Acc. Chem. Res – volume: 5 start-page: 68397 year: 2015 end-page: 68403 article-title: β‐Cyclodextrin/chitosan – magnetic graphene oxide – surface molecularly imprinted polymer nanocomplex coupled with chemiluminescence biosensing of bovine serum albumin publication-title: RSC Adv – volume: 25 start-page: 789 year: 2002 end-page: 813 article-title: Synthesis and applications of adsorbents containing cyclodextrins publication-title: J. Sep. Sci – volume: 405 start-page: 63 year: 2013 end-page: 90 article-title: Advances in pesticide biosensors: current status, challenges, and future perspectives publication-title: Anal. Bioanal. Chem – volume: 7 start-page: 23l year: 2001 end-page: 235 article-title: Effect of phthalate esters on developing reproductive tract of male rats publication-title: Hum. Reprod – volume: 20 start-page: 604 year: 2005 end-page: 610 article-title: Phthalate exposure and reproductive hormones in adult men publication-title: Hum. Reprod – volume: 1217 start-page: 7337 year: 2010 end-page: 7344 article-title: Preparation of magnetic indole‐3‐acetic acid imprinted polymer beads with 4‐vinylpyridine and β‐cyclodextrin as binary monomer via microwave heating initiated polymerization and their application to trace analysis of auxins in plant tissues publication-title: J. Chromatogr. A – volume: 28 start-page: 1516 year: 2008 end-page: 1521 article-title: Exploiting b‐cyclodextrin as functional monomer in molecular imprinting for achieving recognition in aqueous media publication-title: Mater. Sci. Eng. C – volume: 50 start-page: 51 year: 2004 end-page: 55 article-title: Efficient separation of hydrophobic molecules by molecularly imprinted cyclodextrin polymers publication-title: J. Inclusion Phenom. Macrocyclic Chem – volume: 188 start-page: 157 year: 2009 end-page: 160 article-title: Cell death and production of reactive oxygen species by murine macrophages after short term exposure to phthalates publication-title: Toxicol. Lett – year: 2016 article-title: Using molecularly‐imprinted polymers as the extracted sorbents of clenbuterol ahead of liquid chromatographic determination publication-title: J Zhejiang Univ‐Sci B (Biomed & Biotechnol) in press – volume: 883 start-page: 137 year: 2002 end-page: 159 article-title: Insoluble β‐cyclodextrin polymer for capillary gas chromatographic separation of enantiomers and isomers publication-title: J. Chromatogr. A – volume: 139 start-page: 156 year: 2009 end-page: 165 article-title: Molecularly imprinted β‐cyclodextrin polymer as potential optical receptor for the detection of organic compound publication-title: Sens. Actuators, B: Chemical – volume: 661 start-page: 215 year: 2010 end-page: 221 article-title: Selective solid‐phase extraction of dibuty phthalate from soybean milk using molecular imprinted polymers publication-title: Anal. Chim. Acta – volume: 98 start-page: 1743 year: 1998 ident: e_1_2_7_6_1 article-title: The stability of cyclodextrin complexes in solution publication-title: Chem. Rev – ident: e_1_2_7_43_1 doi: 10.1016/j.bbagen.2007.02.007 – ident: e_1_2_7_34_1 doi: 10.3390/nano5020981 – ident: e_1_2_7_52_1 doi: 10.1002/1521-4109(200203)14:5<317::AID-ELAN317>3.0.CO;2-5 – ident: e_1_2_7_4_1 doi: 10.1016/j.biomaterials.2004.07.037 – ident: e_1_2_7_24_1 doi: 10.1016/j.jpba.2007.05.024 – ident: e_1_2_7_47_1 doi: 10.1016/j.bios.2014.02.041 – ident: e_1_2_7_51_1 doi: 10.1016/S0165-9936(04)00102-5 – ident: e_1_2_7_12_1 doi: 10.1016/j.biomaterials.2007.04.036 – volume: 883 start-page: 137 year: 2002 ident: e_1_2_7_30_1 article-title: Insoluble β‐cyclodextrin polymer for capillary gas chromatographic separation of enantiomers and isomers publication-title: J. Chromatogr. A – ident: e_1_2_7_28_1 doi: 10.1016/j.chroma.2010.09.059 – ident: e_1_2_7_63_1 doi: 10.1093/humrep/deh656 – ident: e_1_2_7_9_1 doi: 10.1016/S0734-9750(02)00020-4 – ident: e_1_2_7_17_1 doi: 10.2116/analsci.19.709 – ident: e_1_2_7_5_1 doi: 10.1208/pt060243 – ident: e_1_2_7_8_1 – ident: e_1_2_7_50_1 doi: 10.1016/S0003-2670(99)00743-6 – ident: e_1_2_7_38_1 doi: 10.1021/ar0502275 – ident: e_1_2_7_58_1 doi: 10.1016/j.toxlet.2009.04.001 – ident: e_1_2_7_61_1 doi: 10.1016/S0278-6915(96)00064-6 – ident: e_1_2_7_13_1 doi: 10.1016/j.msec.2008.04.007 – ident: e_1_2_7_18_1 doi: 10.2174/1385272024605041 – ident: e_1_2_7_49_1 doi: 10.1007/128_2010_92 – ident: e_1_2_7_55_1 doi: 10.1007/s10847-005-0248-3 – ident: e_1_2_7_57_1 doi: 10.1016/S0045-6535(97)00195-1 – ident: e_1_2_7_14_1 doi: 10.1021/ma9816012 – volume: 7 start-page: 23l year: 2001 ident: e_1_2_7_62_1 article-title: Effect of phthalate esters on developing reproductive tract of male rats publication-title: Hum. Reprod – ident: e_1_2_7_23_1 doi: 10.1016/j.aca.2007.10.044 – ident: e_1_2_7_36_1 doi: 10.1016/S0968-5677(98)00042-X – ident: e_1_2_7_41_1 doi: 10.1016/j.bios.2006.06.023 – ident: e_1_2_7_25_1 doi: 10.1016/j.carbpol.2011.12.027 – ident: e_1_2_7_11_1 doi: 10.1016/j.snb.2008.10.035 – ident: e_1_2_7_10_1 doi: 10.1016/S0169-409X(98)00055-6 – ident: e_1_2_7_56_1 doi: 10.1039/C5RA11061K – ident: e_1_2_7_64_1 doi: 10.1016/j.aca.2009.12.029 – ident: e_1_2_7_20_1 doi: 10.1002/pi.3101 – ident: e_1_2_7_59_1 doi: 10.1016/j.yrtph.2008.11.005 – ident: e_1_2_7_37_1 doi: 10.1002/1521-4095(200007)12:14<1019::AID-ADMA1019>3.0.CO;2-K – ident: e_1_2_7_27_1 doi: 10.1016/j.chroma.2009.03.056 – ident: e_1_2_7_53_1 doi: 10.1016/j.snb.2008.07.029 – ident: e_1_2_7_19_1 doi: 10.1016/j.snb.2013.12.039 – ident: e_1_2_7_21_1 doi: 10.3390/ijms16023656 – volume: 22 start-page: 2165 year: 2010 ident: e_1_2_7_40_1 article-title: Molecularly imprinted functional materials based on polysaccharides publication-title: Prog. Chem – ident: e_1_2_7_46_1 doi: 10.1109/JSEN.2011.2158537 – ident: e_1_2_7_65_1 doi: 10.1631/jzus.B1500225 – ident: e_1_2_7_15_1 doi: 10.1007/s10847-003-8838-4 – ident: e_1_2_7_39_1 doi: 10.1016/j.talanta.2013.05.003 – ident: e_1_2_7_33_1 doi: 10.1016/S0378-4347(00)00057-8 – ident: e_1_2_7_29_1 doi: 10.1016/S0003-2670(99)00645-5 – ident: e_1_2_7_42_1 doi: 10.1016/j.apsusc.2009.11.064 – ident: e_1_2_7_60_1 doi: 10.1016/S0149-2918(00)88266-1 – ident: e_1_2_7_35_1 doi: 10.1016/S0040-4039(01)00045-4 – ident: e_1_2_7_44_1 doi: 10.1039/a704176d – ident: e_1_2_7_7_1 doi: 10.1021/cr050576c – volume: 1187 start-page: 94 ident: e_1_2_7_26_1 article-title: Molecularly imprinted polymer prepared with bonded β‐cyclodextrin and acrylamide on functionalized silica gel for selective recognition of tryptophan in aqueous media publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2008.02.004 – ident: e_1_2_7_16_1 doi: 10.1016/S0003-2670(00)01303-9 – ident: e_1_2_7_32_1 doi: 10.1002/1615-9314(20020901)25:13<789::AID-JSSC789>3.0.CO;2-J – ident: e_1_2_7_3_1 doi: 10.1016/j.carbpol.2009.09.010 – ident: e_1_2_7_45_1 doi: 10.1002/(SICI)1097-4628(19980620)68:12<1973::AID-APP11>3.0.CO;2-T – ident: e_1_2_7_54_1 doi: 10.1016/S0925-4005(03)00260-0 – ident: e_1_2_7_22_1 doi: 10.3390/ijms15046111 – ident: e_1_2_7_31_1 doi: 10.1016/j.biortech.2006.09.009 – ident: e_1_2_7_2_1 doi: 10.1016/j.trac.2010.07.020 – ident: e_1_2_7_48_1 doi: 10.1007/s00216-012-6299-6 |
SSID | ssj0017890 |
Score | 2.3898864 |
SecondaryResourceType | review_article |
Snippet | As a versatile tool in separation science, cyclodextrins and their derivatives, known as emerging functional monomers, have been used extensively in molecular... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2321 |
SubjectTerms | additives Amino acids Binding Copolymers cost effectiveness Cyclodextrin Cyclodextrins Cyclodextrins - chemistry Derivatives drugs Functional monomers Imprinted polymers Inclusion complexes Molecular Imprinting Molecularly imprinted polymers Monomers pesticides Pharmacology plant hormones Polymers Polymers - chemistry proteins Sensors Separation |
Title | State-of-the-art applications of cyclodextrins as functional monomers in molecular imprinting techniques: a review |
URI | https://api.istex.fr/ark:/67375/WNG-KLW5ZVNV-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjssc.201600003 https://www.ncbi.nlm.nih.gov/pubmed/27324352 https://www.proquest.com/docview/1798193601 https://www.proquest.com/docview/1798995983 https://www.proquest.com/docview/1825514733 https://www.proquest.com/docview/1836655203 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcigceBQoCwUZCcEp7a5fcbhVK0pVYA-UPsTFchxbKm2zqNmVCqf-hP5Gfkln4iTsVqUIcYmiZCJNJmPPN87MZ0JeMa9Tq7xKMi7SBEKAS6wseBIyG0Q-4IIF7Hf-NFJbu2L7QB7MdPFHfohuwQ1HRj1f4wC3ebX-mzT0W1UhBeFA4ZSLdJ9YsIWo6HPHHzXALk_MuCBsgzJ91bI29tn6_ONzUekWGvjsOsg5j2DrELR5j9hW-Vh5crQ2neRr7ucVXsf_ebv75G6DT-lGdKgHZMGXy2Rp2G4Lt0zuzDAYPiRnNVj9dX4xDnAAMAlHcEY6-1-cjgN1P9wxNs9P4LGK2opiPI3LkPQE-yoAhdLDEs6b3Xrp4QkuOWJRNu14Zqu31NLYbPOI7G6--zLcSprNHBIHiFAkYgDuArkLLwRXhQ7SOi-LfuY4QNbU19RtEBuDkl5kOu9D4ikCtzwDPOfTIuOPyWI5Lv0TQtMUUGcuAIkxLqSXWgfLhWPB5dqFXPdI0n5M4xqmc9xw49hEjmZm0Lqms26PvOnkv0eOjz9Kvq59oxOzp0dYGZdKsz96bz583Jdf90Z7BgRXW-cxzaRQGeSGA80hBe6Rl91t-Hz4j8aWfjyNMkgBp_kNMpDVA85N-Y0yXCkpGeq8Ep23UxoQKwOrMrBT7YJ_eWmzvbMzFFqIp_8o_4zcxouxsG6VLE5Op_45QLhJ_qIeppfeMEGl |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPRQOLZRHtxQwEoJT2l0_EocbWlGWdrsH-kK9WI5jS6Vttmp2pcKJn9DfyC9hJk5CF0ER4hKttBNpMhl7vnFmviHkJXMqMbGLo5SLJIIQYCMjcx751HiR9bhgHvudd0bxYF9sfZJNNSH2wgR-iPbADVdGtV_jAscD6Y2frKGfyxI5CHsx7rn8NpnHsd5VVvWxZZDqYZ8n5lwQuEGdbtzwNnbZxuz9M3FpHk18-TvQOYthqyC0uUSyRv1Qe3KyPp1k6_brL8yO__V898hiDVHp2-BT98ktVyyThX4zGW6Z3L1GYviAXFZ49fu3q7GHC-BJuII_0uufxunYU_vFnmL__ARuK6kpKYbUcBJJz7C1AoAoPS7gdz2wlx6f4akj1mXTlmq2fEMNDf02D8n-5ru9_iCq5zlEFkChiEQPPAbSF54LHufKS2OdzLup5YBaE1ext0F49LF0IlVZF3JP4bnhKUA6l-Qpf0TminHhVghNEgCemQAwxriQTirlDReWeZsp6zPVIVHzNrWtyc5x5sapDjTNTKN1dWvdDnndyp8Hmo8_Sr6qnKMVMxcnWByXSH04eq-3h4fy6GB0oEFwrfEeXe8LpUZ6ONAcsuAOedH-Da8PP9OYwo2nQQZZ4BS_QQYSe4C6Cb9RhsexlAx1fhy8t1UaQCsDqzKwU-WDf3lovbW72xdKiNV_lH9OFgZ7O0M9_DDafkLuoECos1sjc5OLqXsKiG6SPavW7A_OJkXA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglXgceJTXQgEjITilzcaPONzQlqW0ZYUofYiL5Ti2VNpmq2ZXKpz4CfxGfgkzcRJ2ERQhLlakTKTxZOz5xvZ8JuRp4lRqpJNRxngaQQiwkREFi3xmPM_7jCce653fjuT6Dt_YF_szVfyBH6JbcMORUc_XOMBPCr_6kzT0U1UhBWFf4pTLLpJFLmOFfr32viOQ6mOZJ6ZcELdBm1i2tI1xsjr__VxYWkQLn_0Oc85D2DoGDa8T02ofjp4crkwn-Yr98gux4_907wa51gBU-jJ41E1ywZVL5PKgvRduiVydoTC8Rc5qtPr967exhwbQJLTgjXR2Y5yOPbWf7RFWz0_gs4qaimJADeuQ9BgLKwCG0oMSnpvreunBMa454qls2hHNVi-ooaHa5jbZGb76MFiPmtscIguQkEe8D_4CyQsrOJOF8sJYJ4o4swwwa-pq7jYIjl4KxzOVx5B5cs8MywDQubTI2B2yUI5Ld4_QNAXYmXOAYgnjwgmlvGHcJt7myvpc9UjU_kxtG6pzvHHjSAeS5kSjdXVn3R553smfBJKPP0o-q32jEzOnh3g0LhV6b_Rab27tiY-7o10Ngsut8-hmVqg0ksOB5pAD98iT7jX8PtykMaUbT4MMcsApdo4MpPUAdFN2rgyTUogEdb4bnLdTGiBrAlZNwE61C_6l03pje3vAFef3_1H-Mbn0bm2ot96MNh-QK_g-HLJbJguT06l7CHBukj-qR-wP6rNEeA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State%E2%80%90of%E2%80%90the%E2%80%90art+applications+of+cyclodextrins+as+functional+monomers+in+molecular+imprinting+techniques%3A+a+review&rft.jtitle=Journal+of+separation+science&rft.au=%E1%B8%B6ay%2C+Suvijj%C4%81&rft.au=Ni%2C+Xiaofeng&rft.au=Yu%2C+Haining&rft.au=Shen%2C+Shengrong&rft.date=2016-06-01&rft.issn=1615-9306&rft.volume=39&rft.issue=12+p.2321-2331&rft.spage=2321&rft.epage=2331&rft_id=info:doi/10.1002%2Fjssc.201600003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-9306&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-9306&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-9306&client=summon |