A comparative study of the gut microbiota in immune-mediated inflammatory diseases—does a common dysbiosis exist?
Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for developing secondary inflammation-related conditions. While an ambiguous etiology is common to all IMIDs, in recent years, considerable knowledge h...
Saved in:
Published in | Microbiome Vol. 6; no. 1; pp. 221 - 15 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
13.12.2018
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for developing secondary inflammation-related conditions. While an ambiguous etiology is common to all IMIDs, in recent years, considerable knowledge has emerged regarding the plausible role of the gut microbiome in IMIDs. This study used 16S rRNA gene amplicon sequencing to compare the gut microbiota of patients with Crohn's disease (CD; N = 20), ulcerative colitis (UC; N = 19), multiple sclerosis (MS; N = 19), and rheumatoid arthritis (RA; N = 21) versus healthy controls (HC; N = 23). Biological replicates were collected from participants within a 2-month interval. This study aimed to identify common (or unique) taxonomic biomarkers of IMIDs using both differential abundance testing and a machine learning approach.
Significant microbial community differences between cohorts were observed (pseudo F = 4.56; p = 0.01). Richness and diversity were significantly different between cohorts (pFDR < 0.001) and were lowest in CD while highest in HC. Abundances of Actinomyces, Eggerthella, Clostridium III, Faecalicoccus, and Streptococcus (pFDR < 0.001) were significantly higher in all disease cohorts relative to HC, whereas significantly lower abundances were observed for Gemmiger, Lachnospira, and Sporobacter (pFDR < 0.001). Several taxa were found to be differentially abundant in IMIDs versus HC including significantly higher abundances of Intestinibacter in CD, Bifidobacterium in UC, and unclassified Erysipelotrichaceae in MS and significantly lower abundances of Coprococcus in CD, Dialister in MS, and Roseburia in RA. A machine learning approach to classify disease versus HC was highest for CD (AUC = 0.93 and AUC = 0.95 for OTU and genus features, respectively) followed by MS, RA, and UC. Gemmiger and Faecalicoccus were identified as important features for classification of subjects to CD and HC. In general, features identified by differential abundance testing were consistent with machine learning feature importance.
This study identified several gut microbial taxa with differential abundance patterns common to IMIDs. We also found differentially abundant taxa between IMIDs. These taxa may serve as biomarkers for the detection and diagnosis of IMIDs and suggest there may be a common component to IMID etiology. |
---|---|
AbstractList | Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for developing secondary inflammation-related conditions. While an ambiguous etiology is common to all IMIDs, in recent years, considerable knowledge has emerged regarding the plausible role of the gut microbiome in IMIDs. This study used 16S rRNA gene amplicon sequencing to compare the gut microbiota of patients with Crohn's disease (CD; N = 20), ulcerative colitis (UC; N = 19), multiple sclerosis (MS; N = 19), and rheumatoid arthritis (RA; N = 21) versus healthy controls (HC; N = 23). Biological replicates were collected from participants within a 2-month interval. This study aimed to identify common (or unique) taxonomic biomarkers of IMIDs using both differential abundance testing and a machine learning approach. Significant microbial community differences between cohorts were observed (pseudo F = 4.56; p = 0.01). Richness and diversity were significantly different between cohorts (pFDR < 0.001) and were lowest in CD while highest in HC. Abundances of Actinomyces, Eggerthella, Clostridium III, Faecalicoccus, and Streptococcus (pFDR < 0.001) were significantly higher in all disease cohorts relative to HC, whereas significantly lower abundances were observed for Gemmiger, Lachnospira, and Sporobacter (pFDR < 0.001). Several taxa were found to be differentially abundant in IMIDs versus HC including significantly higher abundances of Intestinibacter in CD, Bifidobacterium in UC, and unclassified Erysipelotrichaceae in MS and significantly lower abundances of Coprococcus in CD, Dialister in MS, and Roseburia in RA. A machine learning approach to classify disease versus HC was highest for CD (AUC = 0.93 and AUC = 0.95 for OTU and genus features, respectively) followed by MS, RA, and UC. Gemmiger and Faecalicoccus were identified as important features for classification of subjects to CD and HC. In general, features identified by differential abundance testing were consistent with machine learning feature importance. This study identified several gut microbial taxa with differential abundance patterns common to IMIDs. We also found differentially abundant taxa between IMIDs. These taxa may serve as biomarkers for the detection and diagnosis of IMIDs and suggest there may be a common component to IMID etiology. Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for developing secondary inflammation-related conditions. While an ambiguous etiology is common to all IMIDs, in recent years, considerable knowledge has emerged regarding the plausible role of the gut microbiome in IMIDs. This study used 16S rRNA gene amplicon sequencing to compare the gut microbiota of patients with Crohn's disease (CD; N = 20), ulcerative colitis (UC; N = 19), multiple sclerosis (MS; N = 19), and rheumatoid arthritis (RA; N = 21) versus healthy controls (HC; N = 23). Biological replicates were collected from participants within a 2-month interval. This study aimed to identify common (or unique) taxonomic biomarkers of IMIDs using both differential abundance testing and a machine learning approach.BACKGROUNDImmune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for developing secondary inflammation-related conditions. While an ambiguous etiology is common to all IMIDs, in recent years, considerable knowledge has emerged regarding the plausible role of the gut microbiome in IMIDs. This study used 16S rRNA gene amplicon sequencing to compare the gut microbiota of patients with Crohn's disease (CD; N = 20), ulcerative colitis (UC; N = 19), multiple sclerosis (MS; N = 19), and rheumatoid arthritis (RA; N = 21) versus healthy controls (HC; N = 23). Biological replicates were collected from participants within a 2-month interval. This study aimed to identify common (or unique) taxonomic biomarkers of IMIDs using both differential abundance testing and a machine learning approach.Significant microbial community differences between cohorts were observed (pseudo F = 4.56; p = 0.01). Richness and diversity were significantly different between cohorts (pFDR < 0.001) and were lowest in CD while highest in HC. Abundances of Actinomyces, Eggerthella, Clostridium III, Faecalicoccus, and Streptococcus (pFDR < 0.001) were significantly higher in all disease cohorts relative to HC, whereas significantly lower abundances were observed for Gemmiger, Lachnospira, and Sporobacter (pFDR < 0.001). Several taxa were found to be differentially abundant in IMIDs versus HC including significantly higher abundances of Intestinibacter in CD, Bifidobacterium in UC, and unclassified Erysipelotrichaceae in MS and significantly lower abundances of Coprococcus in CD, Dialister in MS, and Roseburia in RA. A machine learning approach to classify disease versus HC was highest for CD (AUC = 0.93 and AUC = 0.95 for OTU and genus features, respectively) followed by MS, RA, and UC. Gemmiger and Faecalicoccus were identified as important features for classification of subjects to CD and HC. In general, features identified by differential abundance testing were consistent with machine learning feature importance.RESULTSSignificant microbial community differences between cohorts were observed (pseudo F = 4.56; p = 0.01). Richness and diversity were significantly different between cohorts (pFDR < 0.001) and were lowest in CD while highest in HC. Abundances of Actinomyces, Eggerthella, Clostridium III, Faecalicoccus, and Streptococcus (pFDR < 0.001) were significantly higher in all disease cohorts relative to HC, whereas significantly lower abundances were observed for Gemmiger, Lachnospira, and Sporobacter (pFDR < 0.001). Several taxa were found to be differentially abundant in IMIDs versus HC including significantly higher abundances of Intestinibacter in CD, Bifidobacterium in UC, and unclassified Erysipelotrichaceae in MS and significantly lower abundances of Coprococcus in CD, Dialister in MS, and Roseburia in RA. A machine learning approach to classify disease versus HC was highest for CD (AUC = 0.93 and AUC = 0.95 for OTU and genus features, respectively) followed by MS, RA, and UC. Gemmiger and Faecalicoccus were identified as important features for classification of subjects to CD and HC. In general, features identified by differential abundance testing were consistent with machine learning feature importance.This study identified several gut microbial taxa with differential abundance patterns common to IMIDs. We also found differentially abundant taxa between IMIDs. These taxa may serve as biomarkers for the detection and diagnosis of IMIDs and suggest there may be a common component to IMID etiology.CONCLUSIONSThis study identified several gut microbial taxa with differential abundance patterns common to IMIDs. We also found differentially abundant taxa between IMIDs. These taxa may serve as biomarkers for the detection and diagnosis of IMIDs and suggest there may be a common component to IMID etiology. Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for developing secondary inflammation-related conditions. While an ambiguous etiology is common to all IMIDs, in recent years, considerable knowledge has emerged regarding the plausible role of the gut microbiome in IMIDs. This study used 16S rRNA gene amplicon sequencing to compare the gut microbiota of patients with Crohn's disease (CD; N = 20), ulcerative colitis (UC; N = 19), multiple sclerosis (MS; N = 19), and rheumatoid arthritis (RA; N = 21) versus healthy controls (HC; N = 23). Biological replicates were collected from participants within a 2-month interval. This study aimed to identify common (or unique) taxonomic biomarkers of IMIDs using both differential abundance testing and a machine learning approach. Significant microbial community differences between cohorts were observed (pseudo F = 4.56; p = 0.01). Richness and diversity were significantly different between cohorts (pFDR < 0.001) and were lowest in CD while highest in HC. Abundances of Actinomyces, Eggerthella, Clostridium III, Faecalicoccus, and Streptococcus (pFDR < 0.001) were significantly higher in all disease cohorts relative to HC, whereas significantly lower abundances were observed for Gemmiger, Lachnospira, and Sporobacter (pFDR < 0.001). Several taxa were found to be differentially abundant in IMIDs versus HC including significantly higher abundances of Intestinibacter in CD, Bifidobacterium in UC, and unclassified Erysipelotrichaceae in MS and significantly lower abundances of Coprococcus in CD, Dialister in MS, and Roseburia in RA. A machine learning approach to classify disease versus HC was highest for CD (AUC = 0.93 and AUC = 0.95 for OTU and genus features, respectively) followed by MS, RA, and UC. Gemmiger and Faecalicoccus were identified as important features for classification of subjects to CD and HC. In general, features identified by differential abundance testing were consistent with machine learning feature importance. This study identified several gut microbial taxa with differential abundance patterns common to IMIDs. We also found differentially abundant taxa between IMIDs. These taxa may serve as biomarkers for the detection and diagnosis of IMIDs and suggest there may be a common component to IMID etiology. Background Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for developing secondary inflammation-related conditions. While an ambiguous etiology is common to all IMIDs, in recent years, considerable knowledge has emerged regarding the plausible role of the gut microbiome in IMIDs. This study used 16S rRNA gene amplicon sequencing to compare the gut microbiota of patients with Crohn's disease (CD; N = 20), ulcerative colitis (UC; N = 19), multiple sclerosis (MS; N = 19), and rheumatoid arthritis (RA; N = 21) versus healthy controls (HC; N = 23). Biological replicates were collected from participants within a 2-month interval. This study aimed to identify common (or unique) taxonomic biomarkers of IMIDs using both differential abundance testing and a machine learning approach. Results Significant microbial community differences between cohorts were observed (pseudo F = 4.56; p = 0.01). Richness and diversity were significantly different between cohorts (pFDR < 0.001) and were lowest in CD while highest in HC. Abundances of Actinomyces, Eggerthella, Clostridium III, Faecalicoccus, and Streptococcus (pFDR < 0.001) were significantly higher in all disease cohorts relative to HC, whereas significantly lower abundances were observed for Gemmiger, Lachnospira, and Sporobacter (pFDR < 0.001). Several taxa were found to be differentially abundant in IMIDs versus HC including significantly higher abundances of Intestinibacter in CD, Bifidobacterium in UC, and unclassified Erysipelotrichaceae in MS and significantly lower abundances of Coprococcus in CD, Dialister in MS, and Roseburia in RA. A machine learning approach to classify disease versus HC was highest for CD (AUC = 0.93 and AUC = 0.95 for OTU and genus features, respectively) followed by MS, RA, and UC. Gemmiger and Faecalicoccus were identified as important features for classification of subjects to CD and HC. In general, features identified by differential abundance testing were consistent with machine learning feature importance. Conclusions This study identified several gut microbial taxa with differential abundance patterns common to IMIDs. We also found differentially abundant taxa between IMIDs. These taxa may serve as biomarkers for the detection and diagnosis of IMIDs and suggest there may be a common component to IMID etiology. Keywords: Gut microbiota, Inflammatory bowel disease, Rheumatoid arthritis, Multiple sclerosis, 16S rRNA gene amplicon sequencing, Immune-mediated inflammatory disease, Bacteria, Machine learning classifiers, Taxonomic biomarkers Abstract Background Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for developing secondary inflammation-related conditions. While an ambiguous etiology is common to all IMIDs, in recent years, considerable knowledge has emerged regarding the plausible role of the gut microbiome in IMIDs. This study used 16S rRNA gene amplicon sequencing to compare the gut microbiota of patients with Crohn’s disease (CD; N = 20), ulcerative colitis (UC; N = 19), multiple sclerosis (MS; N = 19), and rheumatoid arthritis (RA; N = 21) versus healthy controls (HC; N = 23). Biological replicates were collected from participants within a 2-month interval. This study aimed to identify common (or unique) taxonomic biomarkers of IMIDs using both differential abundance testing and a machine learning approach. Results Significant microbial community differences between cohorts were observed (pseudo F = 4.56; p = 0.01). Richness and diversity were significantly different between cohorts (pFDR < 0.001) and were lowest in CD while highest in HC. Abundances of Actinomyces, Eggerthella, Clostridium III, Faecalicoccus, and Streptococcus (pFDR < 0.001) were significantly higher in all disease cohorts relative to HC, whereas significantly lower abundances were observed for Gemmiger, Lachnospira, and Sporobacter (pFDR < 0.001). Several taxa were found to be differentially abundant in IMIDs versus HC including significantly higher abundances of Intestinibacter in CD, Bifidobacterium in UC, and unclassified Erysipelotrichaceae in MS and significantly lower abundances of Coprococcus in CD, Dialister in MS, and Roseburia in RA. A machine learning approach to classify disease versus HC was highest for CD (AUC = 0.93 and AUC = 0.95 for OTU and genus features, respectively) followed by MS, RA, and UC. Gemmiger and Faecalicoccus were identified as important features for classification of subjects to CD and HC. In general, features identified by differential abundance testing were consistent with machine learning feature importance. Conclusions This study identified several gut microbial taxa with differential abundance patterns common to IMIDs. We also found differentially abundant taxa between IMIDs. These taxa may serve as biomarkers for the detection and diagnosis of IMIDs and suggest there may be a common component to IMID etiology. Background Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for developing secondary inflammation-related conditions. While an ambiguous etiology is common to all IMIDs, in recent years, considerable knowledge has emerged regarding the plausible role of the gut microbiome in IMIDs. This study used 16S rRNA gene amplicon sequencing to compare the gut microbiota of patients with Crohn’s disease (CD; N = 20), ulcerative colitis (UC; N = 19), multiple sclerosis (MS; N = 19), and rheumatoid arthritis (RA; N = 21) versus healthy controls (HC; N = 23). Biological replicates were collected from participants within a 2-month interval. This study aimed to identify common (or unique) taxonomic biomarkers of IMIDs using both differential abundance testing and a machine learning approach. Results Significant microbial community differences between cohorts were observed (pseudo F = 4.56; p = 0.01). Richness and diversity were significantly different between cohorts (pFDR < 0.001) and were lowest in CD while highest in HC. Abundances of Actinomyces, Eggerthella, Clostridium III, Faecalicoccus, and Streptococcus (pFDR < 0.001) were significantly higher in all disease cohorts relative to HC, whereas significantly lower abundances were observed for Gemmiger, Lachnospira, and Sporobacter (pFDR < 0.001). Several taxa were found to be differentially abundant in IMIDs versus HC including significantly higher abundances of Intestinibacter in CD, Bifidobacterium in UC, and unclassified Erysipelotrichaceae in MS and significantly lower abundances of Coprococcus in CD, Dialister in MS, and Roseburia in RA. A machine learning approach to classify disease versus HC was highest for CD (AUC = 0.93 and AUC = 0.95 for OTU and genus features, respectively) followed by MS, RA, and UC. Gemmiger and Faecalicoccus were identified as important features for classification of subjects to CD and HC. In general, features identified by differential abundance testing were consistent with machine learning feature importance. Conclusions This study identified several gut microbial taxa with differential abundance patterns common to IMIDs. We also found differentially abundant taxa between IMIDs. These taxa may serve as biomarkers for the detection and diagnosis of IMIDs and suggest there may be a common component to IMID etiology. |
ArticleNumber | 221 |
Audience | Academic |
Author | Marrie, Ruth-Ann El-Gabalawy, Hani de Kievit, Teresa Bernstein, Charles N. Chen, Chih-yu Forbes, Jessica D. Alfa, Michelle Van Domselaar, Gary Knox, Natalie C. |
Author_xml | – sequence: 1 givenname: Jessica D. surname: Forbes fullname: Forbes, Jessica D. – sequence: 2 givenname: Chih-yu surname: Chen fullname: Chen, Chih-yu – sequence: 3 givenname: Natalie C. surname: Knox fullname: Knox, Natalie C. – sequence: 4 givenname: Ruth-Ann surname: Marrie fullname: Marrie, Ruth-Ann – sequence: 5 givenname: Hani surname: El-Gabalawy fullname: El-Gabalawy, Hani – sequence: 6 givenname: Teresa surname: de Kievit fullname: de Kievit, Teresa – sequence: 7 givenname: Michelle surname: Alfa fullname: Alfa, Michelle – sequence: 8 givenname: Charles N. surname: Bernstein fullname: Bernstein, Charles N. – sequence: 9 givenname: Gary surname: Van Domselaar fullname: Van Domselaar, Gary |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30545401$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kstu1DAUhiNURMvQB2CDLLGBRYrvSTagUcVlpEpIXNaW48vUoyQeYqfq7HgInpAn4YRpoVNBosjR8f9_to__x8XREAdXFE8JPiOklq8Sx0TWJSbwScxK_qA4oZg3JZWkPrrzf1ycprTB8DSEV7x-VBwzLLgA_0mRlsjEfqtHncOVQylPdoeiR_nSofWUUR_MGNsQs0ZhQKHvp8GVvbNBZ2eh5Dvd9zrHcYdsSE4nl35-_2GjS0jP5D4OyO4SEFJIyF2HlN88KR563SV3ejMuiq_v3n45_1BefHy_Ol9elEZUgpfEaobbhkjHONUNcbaRVHrHOcUeC2wwZW1VV94zzU0jjfS4tYx739Iae8oWxWrPtVFv1HYMvR53KuqgfhfiuFZ6zMF0TjHmiKmpgJUE5wK3jNaV9QxXFJCwg0Xxes_aTi0c37ghj7o7gB7ODOFSreOVkrShWFYAeHEDGOO3yaWs-pCM6zo9uDglRYmoZCVJ04D0-T3pJk7jAK2aVTURBNPqr2qt4QBwExHWNTNULYUUglHJZ9XZP1TwWgdXC4nyAeoHhpcHBtBkd53XekpJrT5_OtQ-u9uUP924jRcIqr0AQpTS6LwyIUPS4tyj0CmC1Zxltc-ygiyrOcuKg5Pcc97C_-_5BSTE9H8 |
CitedBy_id | crossref_primary_10_1186_s13099_024_00638_4 crossref_primary_10_3389_fnins_2022_879318 crossref_primary_10_3389_fmicb_2022_917558 crossref_primary_10_1007_s00520_021_06013_2 crossref_primary_10_3390_nu16060793 crossref_primary_10_1080_19490976_2023_2291164 crossref_primary_10_3390_microorganisms10071273 crossref_primary_10_1039_D3FO01491F crossref_primary_10_1155_2022_1482811 crossref_primary_10_1186_s12938_023_01148_1 crossref_primary_10_3389_frmbi_2024_1451735 crossref_primary_10_1016_j_cellin_2023_100100 crossref_primary_10_2174_1389450122666210623125603 crossref_primary_10_1016_j_jneuroim_2021_577700 crossref_primary_10_2139_ssrn_3893548 crossref_primary_10_3389_fonc_2022_865121 crossref_primary_10_1093_braincomms_fcab113 crossref_primary_10_3390_microorganisms10030617 crossref_primary_10_1038_s41598_023_39055_z crossref_primary_10_3390_genes14081572 crossref_primary_10_3390_microorganisms9102118 crossref_primary_10_1002_art_42289 crossref_primary_10_1155_2021_5536148 crossref_primary_10_1371_journal_pone_0283880 crossref_primary_10_1089_omi_2022_0002 crossref_primary_10_3390_ijms23094494 crossref_primary_10_1152_ajpgi_00360_2020 crossref_primary_10_3389_fmicb_2022_813576 crossref_primary_10_1177_09612033241281891 crossref_primary_10_1186_s12917_021_03105_3 crossref_primary_10_1016_j_eclinm_2023_102193 crossref_primary_10_1186_s40246_023_00561_w crossref_primary_10_1186_s40168_022_01373_1 crossref_primary_10_1177_13524585221079533 crossref_primary_10_1038_s41579_024_01068_4 crossref_primary_10_1097_MD_0000000000037049 crossref_primary_10_1186_s12866_023_03084_5 crossref_primary_10_1128_mbio_01987_23 crossref_primary_10_1128_spectrum_01913_24 crossref_primary_10_1136_gutjnl_2020_322670 crossref_primary_10_3390_curroncol29050243 crossref_primary_10_1016_j_autrev_2022_103234 crossref_primary_10_1016_j_lwt_2023_115107 crossref_primary_10_3389_fmicb_2022_1063578 crossref_primary_10_3389_fcimb_2022_919352 crossref_primary_10_1093_ibd_izac194 crossref_primary_10_1016_j_nrl_2020_10_017 crossref_primary_10_1002_art_41729 crossref_primary_10_1080_19490976_2023_2274126 crossref_primary_10_1186_s40168_022_01408_7 crossref_primary_10_1093_sexmed_qfad039 crossref_primary_10_3389_fmicb_2024_1404995 crossref_primary_10_3389_fpsyt_2021_645045 crossref_primary_10_1007_s10528_024_10847_w crossref_primary_10_1111_ctr_14534 crossref_primary_10_3389_fmicb_2019_02410 crossref_primary_10_1016_j_tjnut_2023_11_011 crossref_primary_10_1371_journal_pone_0249405 crossref_primary_10_3390_plants11010004 crossref_primary_10_1097_j_pain_0000000000003034 crossref_primary_10_3389_fmicb_2023_1178744 crossref_primary_10_3390_nu13072234 crossref_primary_10_3390_bioengineering10020231 crossref_primary_10_3390_nu14224818 crossref_primary_10_1016_j_intimp_2024_111527 crossref_primary_10_26599_FSHW_2022_9250222 crossref_primary_10_3389_fnins_2022_852506 crossref_primary_10_14309_ctg_0000000000000597 crossref_primary_10_3389_fimmu_2023_1212551 crossref_primary_10_1038_s41586_024_08242_x crossref_primary_10_1097_CM9_0000000000000714 crossref_primary_10_1038_s41598_022_15230_6 crossref_primary_10_1186_s12866_022_02703_x crossref_primary_10_1016_j_jenvman_2021_113795 crossref_primary_10_1002_advs_202203707 crossref_primary_10_1016_j_isci_2021_103481 crossref_primary_10_1016_j_fct_2021_112699 crossref_primary_10_3389_fmed_2020_606298 crossref_primary_10_1128_spectrum_02065_22 crossref_primary_10_1016_j_aninu_2021_06_009 crossref_primary_10_1016_j_isci_2023_108530 crossref_primary_10_1053_j_gastro_2020_11_050 crossref_primary_10_1111_jgh_16043 crossref_primary_10_3389_fmicb_2021_623739 crossref_primary_10_3390_app9122486 crossref_primary_10_3390_ijerph191610189 crossref_primary_10_1016_j_pnpbp_2020_110111 crossref_primary_10_3390_ijms232214478 crossref_primary_10_1038_s41598_024_63893_0 crossref_primary_10_1186_s40168_022_01364_2 crossref_primary_10_1002_EXP_20230165 crossref_primary_10_1016_j_clnu_2022_04_014 crossref_primary_10_1038_s41598_024_64313_z crossref_primary_10_1007_s13205_024_03960_5 crossref_primary_10_1016_j_crbiot_2024_100211 crossref_primary_10_1016_j_jff_2023_105521 crossref_primary_10_3389_fgene_2020_572194 crossref_primary_10_1016_j_intimp_2020_106288 crossref_primary_10_3390_nu11061398 crossref_primary_10_3390_ijms24010707 crossref_primary_10_17816_MAJ633511 crossref_primary_10_1007_s13311_021_01016_7 crossref_primary_10_3390_ijms23095144 crossref_primary_10_1016_j_brainresbull_2024_111115 crossref_primary_10_3389_fimmu_2024_1436581 crossref_primary_10_1016_j_jep_2023_117182 crossref_primary_10_1001_jamapsychiatry_2021_2573 crossref_primary_10_1016_S1875_5364_22_60158_4 crossref_primary_10_1186_s12864_019_5510_y crossref_primary_10_26508_lsa_202101178 crossref_primary_10_1016_j_cgh_2023_07_012 crossref_primary_10_3389_fcimb_2021_757718 crossref_primary_10_3390_app14209383 crossref_primary_10_3390_life12050669 crossref_primary_10_5534_wjmh_220278 crossref_primary_10_1093_rap_rkad034 crossref_primary_10_3389_fmicb_2023_1174832 crossref_primary_10_1186_s13568_023_01560_9 crossref_primary_10_3389_fmicb_2023_1320567 crossref_primary_10_3390_ijms252312852 crossref_primary_10_1016_j_jacl_2024_05_004 crossref_primary_10_1016_j_nrleng_2020_10_013 crossref_primary_10_1080_14737175_2021_1978843 crossref_primary_10_1038_s41598_020_79947_y crossref_primary_10_1007_s00431_022_04494_9 crossref_primary_10_1017_S0033291719003027 crossref_primary_10_3390_ijms22041899 crossref_primary_10_1016_j_dld_2023_11_015 crossref_primary_10_1016_j_chom_2024_11_013 crossref_primary_10_1093_rheumatology_keaa835 crossref_primary_10_3389_fimmu_2025_1513599 crossref_primary_10_1007_s00431_020_03880_5 crossref_primary_10_1016_j_psj_2022_102091 crossref_primary_10_3390_pharmaceutics15041203 crossref_primary_10_1186_s12859_020_03933_4 crossref_primary_10_3390_jcm9061757 crossref_primary_10_3389_fmed_2020_00538 crossref_primary_10_3389_fmicb_2020_01065 crossref_primary_10_3390_ijms24065161 crossref_primary_10_3390_molecules28124828 crossref_primary_10_1093_ndt_gfac328 crossref_primary_10_1136_ard_2024_226362 crossref_primary_10_3390_nu14010037 crossref_primary_10_1186_s12866_020_01724_8 crossref_primary_10_1186_s13062_020_00287_y crossref_primary_10_3389_fcell_2021_716604 crossref_primary_10_1007_s12020_023_03538_w crossref_primary_10_1016_j_semarthrit_2024_152574 crossref_primary_10_1053_j_gastro_2021_12_287 crossref_primary_10_1021_acs_jafc_4c03019 crossref_primary_10_3390_biomedicines12030553 crossref_primary_10_3389_fcimb_2024_1327083 crossref_primary_10_1016_S2666_7568_20_30034_9 crossref_primary_10_3389_fcell_2020_538130 crossref_primary_10_3389_fnut_2022_931458 crossref_primary_10_1007_s40263_023_00986_w crossref_primary_10_1016_j_envres_2023_115366 crossref_primary_10_3390_jcm10081598 crossref_primary_10_1016_j_jneuroim_2019_577126 crossref_primary_10_1016_j_clinre_2021_101669 crossref_primary_10_1177_0300060520926033 crossref_primary_10_1038_s41598_022_23757_x crossref_primary_10_1371_journal_pbio_3002230 crossref_primary_10_3389_fmicb_2024_1483705 crossref_primary_10_1186_s12905_024_02945_z crossref_primary_10_3390_microorganisms11051246 crossref_primary_10_1038_s41746_020_0229_3 crossref_primary_10_3389_fcimb_2022_959793 crossref_primary_10_1002_ctd2_182 crossref_primary_10_3390_nu14245278 crossref_primary_10_3390_foods12213890 crossref_primary_10_1128_spectrum_03948_23 crossref_primary_10_3389_fgene_2023_1129247 crossref_primary_10_4236_jbm_2025_133008 crossref_primary_10_1177_15598276221123005 crossref_primary_10_3390_diagnostics12102514 crossref_primary_10_3390_jcm11154464 crossref_primary_10_1016_j_ebiom_2022_104055 crossref_primary_10_15829_1728_8800_2021_2834 crossref_primary_10_3389_fcimb_2023_1105366 crossref_primary_10_1002_jsfa_12457 crossref_primary_10_14309_ajg_0000000000000305 crossref_primary_10_3389_fcimb_2023_1105126 crossref_primary_10_3389_fnins_2021_613120 crossref_primary_10_1097_MOG_0000000000001027 crossref_primary_10_1002_cam4_6636 crossref_primary_10_1038_s41564_022_01121_z crossref_primary_10_3389_fimmu_2022_940500 crossref_primary_10_3390_toxins14100648 crossref_primary_10_1093_ibd_izad091 crossref_primary_10_3389_fnut_2022_843076 crossref_primary_10_1038_s41591_020_1095_x crossref_primary_10_1016_j_bbamcr_2023_119643 crossref_primary_10_3390_nu14193985 crossref_primary_10_3389_fcimb_2023_1157918 crossref_primary_10_3168_jds_2024_25455 crossref_primary_10_1016_j_ecoenv_2022_113371 crossref_primary_10_1128_spectrum_02159_21 crossref_primary_10_3389_fphar_2020_587534 crossref_primary_10_1016_j_msard_2019_101427 crossref_primary_10_1093_ibd_izac115 crossref_primary_10_3390_microorganisms12020370 crossref_primary_10_3390_nu14091926 crossref_primary_10_1002_acn3_51004 crossref_primary_10_3389_fendo_2023_1159148 crossref_primary_10_3389_fcimb_2020_557368 crossref_primary_10_3389_fimmu_2023_1338918 crossref_primary_10_3389_fmicb_2024_1427313 crossref_primary_10_3390_ani13061006 crossref_primary_10_1016_j_cellsig_2024_111140 crossref_primary_10_1186_s12882_020_01741_9 crossref_primary_10_31083_j_jin2307127 crossref_primary_10_1371_journal_pone_0277270 crossref_primary_10_3390_pharmaceutics11020095 crossref_primary_10_1080_17474124_2019_1671822 crossref_primary_10_3389_fmicb_2022_925929 crossref_primary_10_3389_fcvm_2023_1250263 crossref_primary_10_1007_s00018_022_04430_y crossref_primary_10_1016_j_crfs_2024_100760 crossref_primary_10_1016_j_ijcard_2023_131554 crossref_primary_10_3390_ani11030686 crossref_primary_10_1093_rheumatology_keae706 crossref_primary_10_1016_j_parkreldis_2019_06_003 crossref_primary_10_3390_microorganisms13020250 crossref_primary_10_1038_s41598_024_57949_4 crossref_primary_10_3390_microorganisms11112750 crossref_primary_10_1016_j_numecd_2025_103964 crossref_primary_10_1128_msystems_00627_24 crossref_primary_10_1016_j_autrev_2020_102508 crossref_primary_10_1016_j_lfs_2020_118129 crossref_primary_10_1186_s12866_023_03020_7 crossref_primary_10_1093_ecco_jcc_jjad126 crossref_primary_10_1039_D4FO01471E crossref_primary_10_17816_MAJ115019 crossref_primary_10_1016_j_cmi_2020_02_006 crossref_primary_10_1134_S0022093024010095 crossref_primary_10_1186_s13073_024_01364_x crossref_primary_10_3390_ijerph20054624 crossref_primary_10_3389_fmicb_2024_1396031 crossref_primary_10_1007_s00284_022_02899_1 crossref_primary_10_1002_eji_202250337 crossref_primary_10_3390_biom10111479 crossref_primary_10_1002_acn3_51944 crossref_primary_10_3390_ijms232213665 crossref_primary_10_1016_j_bbi_2024_05_037 crossref_primary_10_1017_S0033291721005092 crossref_primary_10_31857_S0044452924010098 crossref_primary_10_3390_jcm13082237 crossref_primary_10_1016_j_ncl_2023_07_005 crossref_primary_10_3390_microorganisms12071387 crossref_primary_10_1038_s43856_024_00565_0 crossref_primary_10_1371_journal_pone_0281265 crossref_primary_10_1038_s41598_024_56989_0 crossref_primary_10_3390_antibiotics13050392 crossref_primary_10_1007_s40744_022_00475_4 crossref_primary_10_1007_s10620_019_05828_8 crossref_primary_10_3390_antiox10081278 crossref_primary_10_1007_s10620_020_06449_2 crossref_primary_10_3389_fcimb_2022_733992 crossref_primary_10_1186_s12911_022_01985_5 crossref_primary_10_21926_obm_neurobiol_2403232 crossref_primary_10_3390_ijms25158451 crossref_primary_10_3389_fimmu_2023_1155333 crossref_primary_10_3389_fmicb_2021_635333 crossref_primary_10_3390_medicina56110628 crossref_primary_10_1093_ismejo_wrae146 crossref_primary_10_3389_fcimb_2022_918237 crossref_primary_10_1038_s41584_021_00585_3 crossref_primary_10_1080_00071668_2024_2308276 crossref_primary_10_1186_s10020_019_0102_5 crossref_primary_10_3390_ph15030336 crossref_primary_10_3390_biomedicines12071459 crossref_primary_10_1128_msystems_00835_22 crossref_primary_10_1002_acr2_11387 crossref_primary_10_37349_emed_2024_00251 crossref_primary_10_3748_wjg_v27_i41_7065 crossref_primary_10_1152_ajpgi_00163_2019 crossref_primary_10_3390_biology11070973 crossref_primary_10_1038_s41598_022_05708_8 crossref_primary_10_1007_s12602_023_10075_5 crossref_primary_10_3390_ijms25179366 crossref_primary_10_1093_nar_gkad667 crossref_primary_10_1186_s40168_024_02012_7 crossref_primary_10_17816_MAJ108241 crossref_primary_10_1002_ptr_7222 crossref_primary_10_1007_s43032_023_01289_7 crossref_primary_10_1038_s41598_021_81628_3 crossref_primary_10_3389_fmicb_2021_633732 crossref_primary_10_1016_j_pharmthera_2022_108327 crossref_primary_10_3390_biomedicines11071913 crossref_primary_10_3389_fcimb_2021_675414 |
Cites_doi | 10.1007/s10620-014-3350-9 10.1002/ibd.22860 10.1007/s10482-008-9232-4 10.1128/IAI.00026-06 10.1093/ecco-jcc/jjw136 10.1136/annrheumdis-2016-211064 10.1128/AEM.00062-07 10.1186/gb-2011-12-6-r60 10.1136/archdischild-2011-300633 10.1053/j.gastro.2005.06.021 10.1099/ijs.0.000021 10.1128/mBio.01250-16 10.1016/j.chom.2015.09.008 10.3389/fimmu.2017.01668 10.1111/j.1572-0241.2007.01215.x 10.1038/nature11550 10.1038/srep30594 10.1038/nmeth.2658 10.2217/fmb.11.31 10.1016/j.jaut.2017.04.005 10.1038/emm.2017.36 10.1093/nar/gkn879 10.1038/nature12331 10.1016/j.chom.2014.02.005 10.1152/ajpgi.00293.2016 10.1016/S0065-2504(08)60168-3 10.1073/pnas.1716911114 10.1093/bioinformatics/btw313 10.1038/mi.2016.75 10.1109/TSMCC.2011.2161285 10.1155/2012/517637 10.1212/WNL.88.16_supplement.S44.007 10.1002/9781118960608.gbm00628 10.1099/00207713-49-4-1725 10.1016/j.crohns.2013.04.002 10.1159/000475917 10.1002/ana.22366 10.1186/s40168-015-0092-7 10.1016/S0140-6736(17)31472-1 10.1371/journal.pone.0184624 10.1038/nm.3914 10.1186/s40168-017-0237-y 10.1371/journal.pone.0061217 10.1136/gutjnl-2016-313235 10.2217/fmb-2016-0130 10.1016/S1474-4422(14)70267-4 10.1186/s40168-015-0114-5 10.1097/MIB.0000000000000684 10.1038/nmicrobiol.2017.4 10.1111/j.1572-0241.2008.02118.x 10.1586/eci.13.10 10.1038/nature11450 10.1371/journal.pone.0137429 10.1038/nmeth.3252 10.3748/wjg.v22.i7.2195 10.1007/s00535-017-1384-4 10.1155/2005/269076 10.1093/nar/gkm864 10.1185/030079906X104641 10.3389/fimmu.2017.01391 10.1073/pnas.1423854112 10.1371/journal.pcbi.1004977 10.1186/s13073-016-0299-7 10.1093/bioinformatics/btr381 10.1128/mSystems.00036-17 10.1002/art.27584 10.1136/gut.2005.073817 10.1099/ijs.0.064626-0 10.1038/s41467-017-01973-8 10.1111/jgh.14129 10.1186/s13059-017-1271-6 10.1038/srep28484 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 BioMed Central Ltd. Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s). 2018 |
Copyright_xml | – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s40168-018-0603-4 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2049-2618 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_33e1c82534254450b3287df3072bd36e PMC6292067 A565532647 30545401 10_1186_s40168_018_0603_4 |
Genre | Journal Article Comparative Study |
GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ASPBG BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION DIK EBLON EBS EJD FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAG IAO IEP IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ ROL RPM RSV SOJ UKHRP -A0 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM PMFND 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5754-1da30b916e342a91ed9626fe4420f050c023b787ff3a4c96c6f0bd34ffb280f23 |
IEDL.DBID | 7X7 |
ISSN | 2049-2618 |
IngestDate | Wed Aug 27 01:32:24 EDT 2025 Thu Aug 21 18:19:47 EDT 2025 Fri Jul 11 13:41:02 EDT 2025 Fri Jul 25 11:45:40 EDT 2025 Tue Jun 17 21:55:29 EDT 2025 Tue Jun 10 20:26:01 EDT 2025 Fri Jun 27 05:10:48 EDT 2025 Thu Jan 02 22:59:06 EST 2025 Tue Jul 01 04:16:36 EDT 2025 Thu Apr 24 23:00:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 16S rRNA gene amplicon sequencing Gut microbiota Inflammatory bowel disease Multiple sclerosis Immune-mediated inflammatory disease Machine learning classifiers Rheumatoid arthritis Bacteria Taxonomic biomarkers |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5754-1da30b916e342a91ed9626fe4420f050c023b787ff3a4c96c6f0bd34ffb280f23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2158151027?pq-origsite=%requestingapplication% |
PMID | 30545401 |
PQID | 2158151027 |
PQPubID | 2040205 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_33e1c82534254450b3287df3072bd36e pubmedcentral_primary_oai_pubmedcentral_nih_gov_6292067 proquest_miscellaneous_2157676199 proquest_journals_2158151027 gale_infotracmisc_A565532647 gale_infotracacademiconefile_A565532647 gale_incontextgauss_ISR_A565532647 pubmed_primary_30545401 crossref_citationtrail_10_1186_s40168_018_0603_4 crossref_primary_10_1186_s40168_018_0603_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-13 |
PublicationDateYYYYMMDD | 2018-12-13 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Microbiome |
PublicationTitleAlternate | Microbiome |
PublicationYear | 2018 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | GG Kaplan (603_CR69) 2008; 103 A Kageyama (603_CR49) 1999; 49 A Liaw (603_CR28) 2002; 2 C Manichanh (603_CR44) 2006; 55 J Halfvarson (603_CR43) 2017; 2 J Hablot (603_CR61) 2017; 12 J Chen (603_CR16) 2016; 8 603_CR14 603_CR17 603_CR56 EK Wright (603_CR66) 2017; 11 603_CR13 603_CR52 CA Lozupone (603_CR70) 2012; 489 R Flores (603_CR74) 2015; 3 JR Cole (603_CR24) 2009; 37 T Sharpton (603_CR11) 2017; 2 E Pruesse (603_CR21) 2007; 35 RC Edgar (603_CR22) 2011; 27 A Oksanen (603_CR34) 2016 C Wen (603_CR60) 2017; 18 CH Polman (603_CR18) 2011; 69 603_CR65 603_CR67 603_CR62 D Robinson Jr (603_CR8) 2006; 22 603_CR20 MJ Anderson (603_CR33) 2001; 26 JD Forbes (603_CR42) 2016; 22 J Bayry (603_CR1) 2013; 9 J Ning (603_CR72) 2015; 3 X Liu (603_CR15) 2016; 6 M Galar (603_CR29) 2012; 42 AN Ananthakrishnan (603_CR4) 2015; 60 N Lee (603_CR75) 2017; 49 X Zhang (603_CR45) 2015; 21 D Gevers (603_CR59) 2014; 15 S Weiss (603_CR26) 2017; 5 Q Wang (603_CR23) 2007; 73 RL Knoll (603_CR12) 2017; 312 A Langer-Gould (603_CR68) 2017; 88 N Segata (603_CR27) 2011; 12 603_CR39 K Atarashi (603_CR77) 2013; 500 E Generali (603_CR3) 2017; 83 603_CR32 603_CR76 JD Lewis (603_CR53) 2015; 18 IB McInnes (603_CR6) 2017; 389 603_CR78 603_CR35 M Kanno (603_CR57) 2015; 65 603_CR73 MY Zeng (603_CR36) 2017; 10 MD Kappelman (603_CR7) 2011; 96 EA Franzosa (603_CR71) 2015; 112 V Pascal (603_CR41) 2017; 66 JN Paulson (603_CR25) 2013; 10 L Belbasis (603_CR5) 2015; 14 CN Bernstein (603_CR9) 2005; 129 K Nishino (603_CR63) 2018; 53 C Duvallet (603_CR64) 2017; 8 J Chen (603_CR37) 2016; 6 S Michail (603_CR38) 2012; 18 603_CR2 Z Gu (603_CR30) 2016; 32 J Qin (603_CR50) 2012; 490 X Weng (603_CR10) 2007; 102 W Huber (603_CR31) 2015; 12 D Aletaha (603_CR19) 2010; 62 M Breban (603_CR40) 2017; 76 S Miyake (603_CR51) 2015; 10 C Miller (603_CR58) 2017; 07 A Nahum (603_CR46) 2017; 11 I Herrmann (603_CR55) 2006; 74 VR Thota (603_CR47) 2011; 6 Z Tamanai-Shacoori (603_CR54) 2017; 12 F Turroni (603_CR48) 2008; 94 |
References_xml | – volume: 60 start-page: 290 year: 2015 ident: 603_CR4 publication-title: Dig Dis Sci doi: 10.1007/s10620-014-3350-9 – volume: 18 start-page: 1799 year: 2012 ident: 603_CR38 publication-title: Inflamm Bowel Dis doi: 10.1002/ibd.22860 – volume: 94 start-page: 35 year: 2008 ident: 603_CR48 publication-title: Antonie Van Leeuwenhoek doi: 10.1007/s10482-008-9232-4 – volume: 74 start-page: 4841 year: 2006 ident: 603_CR55 publication-title: Infect Immun doi: 10.1128/IAI.00026-06 – volume: 11 start-page: 191 year: 2017 ident: 603_CR66 publication-title: J Crohns Colitis doi: 10.1093/ecco-jcc/jjw136 – volume: 76 start-page: 1614 year: 2017 ident: 603_CR40 publication-title: Ann Rheum Dis doi: 10.1136/annrheumdis-2016-211064 – volume: 73 start-page: 5261 year: 2007 ident: 603_CR23 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00062-07 – volume: 12 start-page: R60 year: 2011 ident: 603_CR27 publication-title: Genome Biol doi: 10.1186/gb-2011-12-6-r60 – volume: 96 start-page: 1042 year: 2011 ident: 603_CR7 publication-title: Arch Dis Child doi: 10.1136/archdischild-2011-300633 – volume: 129 start-page: 827 year: 2005 ident: 603_CR9 publication-title: Gastroenterology doi: 10.1053/j.gastro.2005.06.021 – volume: 07 start-page: 148 year: 2017 ident: 603_CR58 publication-title: J Microbiol Infect Dis – volume: 65 start-page: 805 year: 2015 ident: 603_CR57 publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.000021 – ident: 603_CR39 doi: 10.1128/mBio.01250-16 – volume: 18 start-page: 489 year: 2015 ident: 603_CR53 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.09.008 – ident: 603_CR2 doi: 10.3389/fimmu.2017.01668 – volume: 102 start-page: 1429 year: 2007 ident: 603_CR10 publication-title: Am J Gastroenterol doi: 10.1111/j.1572-0241.2007.01215.x – volume-title: Package “vegan” year: 2016 ident: 603_CR34 – volume: 489 start-page: 220 year: 2012 ident: 603_CR70 publication-title: Nature doi: 10.1038/nature11550 – volume: 26 start-page: 32 year: 2001 ident: 603_CR33 publication-title: Austral Ecol – ident: 603_CR20 – volume: 6 start-page: 30594 year: 2016 ident: 603_CR15 publication-title: Sci Rep doi: 10.1038/srep30594 – volume: 10 start-page: 1200 year: 2013 ident: 603_CR25 publication-title: Nat Methods doi: 10.1038/nmeth.2658 – volume: 6 start-page: 595 year: 2011 ident: 603_CR47 publication-title: Future Microbiol doi: 10.2217/fmb.11.31 – volume: 83 start-page: 51 year: 2017 ident: 603_CR3 publication-title: J Autoimmun doi: 10.1016/j.jaut.2017.04.005 – volume: 49 year: 2017 ident: 603_CR75 publication-title: Exp Mol Med doi: 10.1038/emm.2017.36 – volume: 37 start-page: D141 year: 2009 ident: 603_CR24 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn879 – volume: 500 start-page: 232 year: 2013 ident: 603_CR77 publication-title: Nature doi: 10.1038/nature12331 – volume: 15 start-page: 382 year: 2014 ident: 603_CR59 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.02.005 – volume: 312 start-page: G327 year: 2017 ident: 603_CR12 publication-title: Am J Physiol-Gastrointest Liver Physiol doi: 10.1152/ajpgi.00293.2016 – ident: 603_CR35 doi: 10.1016/S0065-2504(08)60168-3 – ident: 603_CR14 doi: 10.1073/pnas.1716911114 – volume: 32 start-page: 2847 year: 2016 ident: 603_CR30 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw313 – volume: 10 start-page: 18 year: 2017 ident: 603_CR36 publication-title: Mucosal Immunol doi: 10.1038/mi.2016.75 – volume: 42 start-page: 463 year: 2012 ident: 603_CR29 publication-title: IEEE Trans Syst Man Cybern Part C Appl Rev doi: 10.1109/TSMCC.2011.2161285 – ident: 603_CR52 doi: 10.1155/2012/517637 – volume: 88 start-page: S44.007 year: 2017 ident: 603_CR68 publication-title: Neurology doi: 10.1212/WNL.88.16_supplement.S44.007 – ident: 603_CR62 doi: 10.1002/9781118960608.gbm00628 – volume: 49 start-page: 1725 year: 1999 ident: 603_CR49 publication-title: Int J Syst Evol Microbiol doi: 10.1099/00207713-49-4-1725 – ident: 603_CR76 doi: 10.1016/j.crohns.2013.04.002 – volume: 11 start-page: 377 year: 2017 ident: 603_CR46 publication-title: Case Rep Gastroenterol doi: 10.1159/000475917 – volume: 69 start-page: 292 year: 2011 ident: 603_CR18 publication-title: Ann Neurol doi: 10.1002/ana.22366 – volume: 3 start-page: 33 year: 2015 ident: 603_CR74 publication-title: Microbiome doi: 10.1186/s40168-015-0092-7 – volume: 389 start-page: 2328 year: 2017 ident: 603_CR6 publication-title: Lancet doi: 10.1016/S0140-6736(17)31472-1 – volume: 12 year: 2017 ident: 603_CR61 publication-title: PLoS One doi: 10.1371/journal.pone.0184624 – volume: 21 start-page: 895 year: 2015 ident: 603_CR45 publication-title: Nat Med doi: 10.1038/nm.3914 – volume: 2 start-page: 18 year: 2002 ident: 603_CR28 publication-title: R News – volume: 5 start-page: 27 year: 2017 ident: 603_CR26 publication-title: Microbiome doi: 10.1186/s40168-017-0237-y – ident: 603_CR32 doi: 10.1371/journal.pone.0061217 – volume: 66 start-page: 813 year: 2017 ident: 603_CR41 publication-title: Gut doi: 10.1136/gutjnl-2016-313235 – volume: 12 start-page: 157 year: 2017 ident: 603_CR54 publication-title: Future Microbiol doi: 10.2217/fmb-2016-0130 – volume: 14 start-page: 263 year: 2015 ident: 603_CR5 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(14)70267-4 – ident: 603_CR65 – volume: 3 start-page: 47 year: 2015 ident: 603_CR72 publication-title: Microbiome doi: 10.1186/s40168-015-0114-5 – volume: 22 start-page: 817 year: 2016 ident: 603_CR42 publication-title: Inflamm Bowel Dis doi: 10.1097/MIB.0000000000000684 – volume: 2 start-page: 17004 year: 2017 ident: 603_CR43 publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2017.4 – volume: 103 start-page: 2925 year: 2008 ident: 603_CR69 publication-title: Am J Gastroenterol doi: 10.1111/j.1572-0241.2008.02118.x – volume: 9 start-page: 297 year: 2013 ident: 603_CR1 publication-title: Expert Rev Clin Immunol doi: 10.1586/eci.13.10 – volume: 490 start-page: 55 year: 2012 ident: 603_CR50 publication-title: Nature doi: 10.1038/nature11450 – volume: 10 year: 2015 ident: 603_CR51 publication-title: PLoS One doi: 10.1371/journal.pone.0137429 – volume: 12 start-page: 115 year: 2015 ident: 603_CR31 publication-title: Nat Methods doi: 10.1038/nmeth.3252 – ident: 603_CR78 doi: 10.3748/wjg.v22.i7.2195 – volume: 53 start-page: 95 year: 2018 ident: 603_CR63 publication-title: J Gastroenterol doi: 10.1007/s00535-017-1384-4 – ident: 603_CR17 doi: 10.1155/2005/269076 – volume: 35 start-page: 7188 year: 2007 ident: 603_CR21 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm864 – volume: 22 start-page: 989 year: 2006 ident: 603_CR8 publication-title: Curr Med Res Opin doi: 10.1185/030079906X104641 – ident: 603_CR13 doi: 10.3389/fimmu.2017.01391 – volume: 112 start-page: E2930 year: 2015 ident: 603_CR71 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1423854112 – ident: 603_CR73 doi: 10.1371/journal.pcbi.1004977 – volume: 8 start-page: 43 year: 2016 ident: 603_CR16 publication-title: Genome Med doi: 10.1186/s13073-016-0299-7 – volume: 27 start-page: 2194 year: 2011 ident: 603_CR22 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr381 – volume: 2 start-page: e00036 year: 2017 ident: 603_CR11 publication-title: mSystems doi: 10.1128/mSystems.00036-17 – volume: 62 start-page: 2569 year: 2010 ident: 603_CR19 publication-title: Arthritis Rheum doi: 10.1002/art.27584 – volume: 55 start-page: 205 year: 2006 ident: 603_CR44 publication-title: Gut doi: 10.1136/gut.2005.073817 – ident: 603_CR56 doi: 10.1099/ijs.0.064626-0 – volume: 8 start-page: 1784 year: 2017 ident: 603_CR64 publication-title: Nat Commun doi: 10.1038/s41467-017-01973-8 – ident: 603_CR67 doi: 10.1111/jgh.14129 – volume: 18 start-page: 142 year: 2017 ident: 603_CR60 publication-title: Genome Biol doi: 10.1186/s13059-017-1271-6 – volume: 6 start-page: 28484 year: 2016 ident: 603_CR37 publication-title: Sci Rep doi: 10.1038/srep28484 |
SSID | ssj0000914748 |
Score | 2.5915215 |
Snippet | Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for... Background Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk... Abstract Background Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 221 |
SubjectTerms | 16S rRNA gene amplicon sequencing Abundance Adult Ambulatory care Arthritis Arthritis, Rheumatoid - microbiology Artificial intelligence Bacteria Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Biological markers Biomarkers Case-Control Studies Colitis Colitis, Ulcerative - microbiology Comparative literature Crohn Disease - microbiology Crohn's disease Diagnosis DNA, Bacterial - genetics DNA, Ribosomal - genetics Dysbacteriosis Dysbiosis Dysbiosis - diagnosis Etiology Etiology (Medicine) Female Gastrointestinal Microbiome Genes Genetic aspects Genetic research Gut microbiota Health Humans Immune-mediated inflammatory disease Immunologic diseases Inflammation Inflammatory bowel disease Inflammatory bowel diseases Inflammatory Bowel Diseases - microbiology Inflammatory diseases Intestinal microflora Learning algorithms Machine Learning Male Metagenomics - methods Microbiomes Microbiota Microbiota (Symbiotic organisms) Middle Aged Multiple sclerosis Multiple Sclerosis - microbiology Pathogenesis Phylogeny Rheumatoid arthritis Rheumatoid factor Risk factors RNA RNA, Ribosomal, 16S - genetics rRNA 16S Sequence Analysis, DNA - methods Studies Taxonomy Ulcerative colitis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9UwFA4yILgR31ZHiSIIQpi8mrYruYrDKOhCHZhdyHO8MNOK6V3Mzh_hL_SXeJJ2rrcIunHRTXP6Ouck-U5z8h2EnknfWcqtJ63vApGmNsT41pOGW9qa4I0q_zvef1BHx_LdSX2yU-or54RN9MCT4g6ECMxBGCNkIdOiVgDG9xFcE54gVMijL8x5O8FUGYM7JhvZzsuYrFUHCQIJlfO24FBUELmYiApf_5-j8s60tEyZ3JmDDm-g6zN4xKvppW-iK6G_ha5O5SQvbqO0wu43mTcuzLF4iBgwHj7djPh8PbEujQave7zOO0MCKVtHAHbCqQjecV5W3fG8bpN-fv_hh5CwyXcGj8X-IsEd0jrhzKE5vryDjg_ffH59ROaiCsQBMpOEeSOoBVAYQKOmY8F3ENPEICWnkdbUwSRuoRfHKIx0nXIqUlC0jNHylkYu7qK9fujDfYRtqANvGXWCB0Bd1EglwPBNCLxpLPMVopca1m5mHM-FL850iTxapSejaDCKzkbRskIvtpd8neg2_ib8KpttK5iZsssJ8B89-4_-l_9U6Gk2us5cGH1Otjk1m5T0208f9QrAbg3wVjYVej4LxQG-wJl57wLoIdNnLST3F5LQWd2y-dK39DxYJA2oqwXgBZqr0JNtc74yJ8D1YdgUmUblX05dhe5Nrrj9bhiyM48iq1CzcNKFYpYt_fpLoRJXuViZah78D00-RNd47l6MEyb20d74bRMeAWIb7ePSOX8BPUE77g priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fi9QwEA_nieCL-N-ep0QRBKGaJtm0fZBjFY9TOB_UhXsLSZOshbvW2-6C--aH8BP6SZxJu-sVj3vYl2ZSNpOZzG-a5DeEvJCutIxblxau9Kk0E5MaV7g055YVxjuj4veO48_qaCY_nUxOdsimvNWgwO7S1A7rSc0Wp69_nq8PwOHfRocv1JsOcgSFR7Lgp5hI5TVyHQJTjn56PKD9uDCXmcxlMextXtpzFJ0iif__S_WFWDU-R3khMB3eJrcGREmnvQncITu-uUtu9DUm1_dIN6XVP4ZvGulkaRsoAD86Xy3pWd1TMS0NrRta43URn8b7JIBF4VEAkzmLW_F02Mzp_vz67VrfUYNvBjOmbt3BG7q6o0isuTy4T2aHH769P0qHSgtpBXBNppkzgllAil5IbsrMuxISneCl5CywCasgsltw7RCEkVWpKhWYdUKGYHnBAhcPyG7TNv4RodZPPC8yVgnuAYoxI5UAa8i953luM5cQttGwrgYacqyGcapjOlIo3U-KhknROClaJuTVtsuPnoPjKuF3OG1bQaTPjg_axVwP3qiF8FkFuTGMFsmImBWQOLoA6x2YrVA-Ic9x0jUSZDR4AmduVl2nP379oqeAgCeAeWWekJeDUGhhBJUZLjSAHpBTayS5P5IED67GzRvb0hsH0ADFCkBjoLmEPNs2Y088Fdf4dhVlcoXfocqEPOxNcTtuWMeRXDFLSD4y0pFixi1N_T3yiyusYKbyvav_1mNyk6PjZDzNxD7ZXS5W_gkAtKV9Gt3uLxNfN9M priority: 102 providerName: Scholars Portal |
Title | A comparative study of the gut microbiota in immune-mediated inflammatory diseases—does a common dysbiosis exist? |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30545401 https://www.proquest.com/docview/2158151027 https://www.proquest.com/docview/2157676199 https://pubmed.ncbi.nlm.nih.gov/PMC6292067 https://doaj.org/article/33e1c82534254450b3287df3072bd36e |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagFRIXxD-BsjIICQnJqhN7neRUbVFLQWqFCpX2ZjmxvUSiSWl2D73xEDwhT8KM4902Quphc4gn0doznj9PviHknbRlxbPKssKWjkkzNczYwrI8q3hhnDUq5DuOT9TRmfwyn85jwq2PZZVrnRgUte1qzJHvgmkqwDpBFLV38Yth1yg8XY0tNO6SbYQuw5KufJ5vcixgC2Uui3iYmRZqt4dwQmH1FvwUF0yOzFFA7f9fN98wTuPCyRuW6PAheRBdSDobeP6I3HHtY3JvaCp59YT0M1pfQ3rTgB9LO0_B06OL1ZKeNwP20tLQpqUNfh_iWPiABJxPuOVBRs7D2TuNpzf9399_bOd6avDNsBDUXvXwhr7pKSJpLveekrPDg-8fj1hsrcBq8M8kS60RvALX0AmZmTJ1toTIxjspM-75lNdgyivYy94LI-tS1crzygrpfZUV3GfiGdlqu9a9ILRyU5cVKa9F5sD34kYqAezPncvyvEptQvh6hXUdccex_cVPHeKPQumBKRqYopEpWibkw-aRiwF04zbifWTbhhDxssON7nKh4_bTQri0hmAYZovoQ7wSEClaDwoO5FQol5C3yHSNiBgtltwszKrv9edvp3oGLu8UnFyZJ-R9JPIdzKA28QsGWAcE0RpR7owoYcvW4-G1bOmoMnp9LeAJebMZxiexDK513SrQ5AoTT2VCng-iuJk3KG5EU0wTko-EdLQw45G2-REAxRW2LFP5y9v_1ityP8ONk2YsFTtka3m5cq_BI1tWk7DtJmR7_-Dk6-kk5DXg-mmewvVYFv8Am_o5MQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLamTghuEP8EBhgEQkKK5tiuk1ygqYNNLdsqNDZpd8aJ7VKJJWNphXrHQ_AcPBRPwjlJ2i1C2t0uehOfRPX5P_75DiGvpU0zxjMbJjZ1oTR9Exqb2DDmGUuMs0bV6x0HYzU8lp9O-idr5M_yLgweq1z6xNpR2zLHNfJNCE0JRCeoorbOfoTYNQp3V5ctNBq12HOLn1CyVe9HH0G-bzjf3Tn6MAzbrgJhDqmJDCNrBMsgK3JCcpNGzqaQ1HsnJWee9VkOUSwDNfZeGJmnKleeZVZI7zOeMI9AB-Dy16WAUqZH1rd3xp8PV6s6EH1lLJN2-zRK1GYFBYzC82LwU0yEshMA6z4B_0eDS-Gwe1TzUuzbvUNut0krHTRadpesueIeudG0sVzcJ9WA5hcg4rRGrKWlp5Bb0sl8Rk-nDdrTzNBpQad4I8WF9ZUVSHfhkQetPK13-2m7X1T9_fXblq6iBr8MrKd2UcEXqmlFEbtztvWAHF8L2x-SXlEW7jGhmes7nkQsF9xBtseMVAIULnaOx3EW2YCwJYd13iKdY8ON77queBKlG6FoEIpGoWgZkHerV84amI-riLdRbCtCROiuH5TnE90avBbCRTmU3zBbxDtimYDa1HpwqWAZQrmAvEKha8TgKPCQz8TMq0qPvhzqASTZfUirZRyQty2RL2EGuWnvTAAfELarQ7nRoQQnkXeHl7qlWydV6QuTCsjL1TC-iQfvClfOa5pY4VJXGpBHjSqu5g2hAvEbo4DEHSXtMKY7Uky_1RDmCpukqfjJ1X_rBbk5PDrY1_uj8d5TcoujEUU8jMQG6c3O5-4Z5IOz7HlrhJR8vW67_wdPNnJI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+the+gut+microbiota+in+immune-mediated+inflammatory+diseases%E2%80%94does+a+common+dysbiosis+exist%3F&rft.jtitle=Microbiome&rft.au=bes%2C+Jessica+D&rft.au=Chih-yu%2C+Chen&rft.au=Knox%2C+Natalie+C&rft.au=Ruth-Ann+Marrie&rft.date=2018-12-13&rft.pub=BioMed+Central&rft.eissn=2049-2618&rft.volume=6&rft_id=info:doi/10.1186%2Fs40168-018-0603-4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon |