A comparative study of the gut microbiota in immune-mediated inflammatory diseases—does a common dysbiosis exist?

Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for developing secondary inflammation-related conditions. While an ambiguous etiology is common to all IMIDs, in recent years, considerable knowledge h...

Full description

Saved in:
Bibliographic Details
Published inMicrobiome Vol. 6; no. 1; pp. 221 - 15
Main Authors Forbes, Jessica D., Chen, Chih-yu, Knox, Natalie C., Marrie, Ruth-Ann, El-Gabalawy, Hani, de Kievit, Teresa, Alfa, Michelle, Bernstein, Charles N., Van Domselaar, Gary
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 13.12.2018
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for developing secondary inflammation-related conditions. While an ambiguous etiology is common to all IMIDs, in recent years, considerable knowledge has emerged regarding the plausible role of the gut microbiome in IMIDs. This study used 16S rRNA gene amplicon sequencing to compare the gut microbiota of patients with Crohn's disease (CD; N = 20), ulcerative colitis (UC; N = 19), multiple sclerosis (MS; N = 19), and rheumatoid arthritis (RA; N = 21) versus healthy controls (HC; N = 23). Biological replicates were collected from participants within a 2-month interval. This study aimed to identify common (or unique) taxonomic biomarkers of IMIDs using both differential abundance testing and a machine learning approach. Significant microbial community differences between cohorts were observed (pseudo F = 4.56; p = 0.01). Richness and diversity were significantly different between cohorts (pFDR < 0.001) and were lowest in CD while highest in HC. Abundances of Actinomyces, Eggerthella, Clostridium III, Faecalicoccus, and Streptococcus (pFDR < 0.001) were significantly higher in all disease cohorts relative to HC, whereas significantly lower abundances were observed for Gemmiger, Lachnospira, and Sporobacter (pFDR < 0.001). Several taxa were found to be differentially abundant in IMIDs versus HC including significantly higher abundances of Intestinibacter in CD, Bifidobacterium in UC, and unclassified Erysipelotrichaceae in MS and significantly lower abundances of Coprococcus in CD, Dialister in MS, and Roseburia in RA. A machine learning approach to classify disease versus HC was highest for CD (AUC = 0.93 and AUC = 0.95 for OTU and genus features, respectively) followed by MS, RA, and UC. Gemmiger and Faecalicoccus were identified as important features for classification of subjects to CD and HC. In general, features identified by differential abundance testing were consistent with machine learning feature importance. This study identified several gut microbial taxa with differential abundance patterns common to IMIDs. We also found differentially abundant taxa between IMIDs. These taxa may serve as biomarkers for the detection and diagnosis of IMIDs and suggest there may be a common component to IMID etiology.
AbstractList Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for developing secondary inflammation-related conditions. While an ambiguous etiology is common to all IMIDs, in recent years, considerable knowledge has emerged regarding the plausible role of the gut microbiome in IMIDs. This study used 16S rRNA gene amplicon sequencing to compare the gut microbiota of patients with Crohn's disease (CD; N = 20), ulcerative colitis (UC; N = 19), multiple sclerosis (MS; N = 19), and rheumatoid arthritis (RA; N = 21) versus healthy controls (HC; N = 23). Biological replicates were collected from participants within a 2-month interval. This study aimed to identify common (or unique) taxonomic biomarkers of IMIDs using both differential abundance testing and a machine learning approach. Significant microbial community differences between cohorts were observed (pseudo F = 4.56; p = 0.01). Richness and diversity were significantly different between cohorts (pFDR < 0.001) and were lowest in CD while highest in HC. Abundances of Actinomyces, Eggerthella, Clostridium III, Faecalicoccus, and Streptococcus (pFDR < 0.001) were significantly higher in all disease cohorts relative to HC, whereas significantly lower abundances were observed for Gemmiger, Lachnospira, and Sporobacter (pFDR < 0.001). Several taxa were found to be differentially abundant in IMIDs versus HC including significantly higher abundances of Intestinibacter in CD, Bifidobacterium in UC, and unclassified Erysipelotrichaceae in MS and significantly lower abundances of Coprococcus in CD, Dialister in MS, and Roseburia in RA. A machine learning approach to classify disease versus HC was highest for CD (AUC = 0.93 and AUC = 0.95 for OTU and genus features, respectively) followed by MS, RA, and UC. Gemmiger and Faecalicoccus were identified as important features for classification of subjects to CD and HC. In general, features identified by differential abundance testing were consistent with machine learning feature importance. This study identified several gut microbial taxa with differential abundance patterns common to IMIDs. We also found differentially abundant taxa between IMIDs. These taxa may serve as biomarkers for the detection and diagnosis of IMIDs and suggest there may be a common component to IMID etiology.
Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for developing secondary inflammation-related conditions. While an ambiguous etiology is common to all IMIDs, in recent years, considerable knowledge has emerged regarding the plausible role of the gut microbiome in IMIDs. This study used 16S rRNA gene amplicon sequencing to compare the gut microbiota of patients with Crohn's disease (CD; N = 20), ulcerative colitis (UC; N = 19), multiple sclerosis (MS; N = 19), and rheumatoid arthritis (RA; N = 21) versus healthy controls (HC; N = 23). Biological replicates were collected from participants within a 2-month interval. This study aimed to identify common (or unique) taxonomic biomarkers of IMIDs using both differential abundance testing and a machine learning approach.BACKGROUNDImmune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for developing secondary inflammation-related conditions. While an ambiguous etiology is common to all IMIDs, in recent years, considerable knowledge has emerged regarding the plausible role of the gut microbiome in IMIDs. This study used 16S rRNA gene amplicon sequencing to compare the gut microbiota of patients with Crohn's disease (CD; N = 20), ulcerative colitis (UC; N = 19), multiple sclerosis (MS; N = 19), and rheumatoid arthritis (RA; N = 21) versus healthy controls (HC; N = 23). Biological replicates were collected from participants within a 2-month interval. This study aimed to identify common (or unique) taxonomic biomarkers of IMIDs using both differential abundance testing and a machine learning approach.Significant microbial community differences between cohorts were observed (pseudo F = 4.56; p = 0.01). Richness and diversity were significantly different between cohorts (pFDR < 0.001) and were lowest in CD while highest in HC. Abundances of Actinomyces, Eggerthella, Clostridium III, Faecalicoccus, and Streptococcus (pFDR < 0.001) were significantly higher in all disease cohorts relative to HC, whereas significantly lower abundances were observed for Gemmiger, Lachnospira, and Sporobacter (pFDR < 0.001). Several taxa were found to be differentially abundant in IMIDs versus HC including significantly higher abundances of Intestinibacter in CD, Bifidobacterium in UC, and unclassified Erysipelotrichaceae in MS and significantly lower abundances of Coprococcus in CD, Dialister in MS, and Roseburia in RA. A machine learning approach to classify disease versus HC was highest for CD (AUC = 0.93 and AUC = 0.95 for OTU and genus features, respectively) followed by MS, RA, and UC. Gemmiger and Faecalicoccus were identified as important features for classification of subjects to CD and HC. In general, features identified by differential abundance testing were consistent with machine learning feature importance.RESULTSSignificant microbial community differences between cohorts were observed (pseudo F = 4.56; p = 0.01). Richness and diversity were significantly different between cohorts (pFDR < 0.001) and were lowest in CD while highest in HC. Abundances of Actinomyces, Eggerthella, Clostridium III, Faecalicoccus, and Streptococcus (pFDR < 0.001) were significantly higher in all disease cohorts relative to HC, whereas significantly lower abundances were observed for Gemmiger, Lachnospira, and Sporobacter (pFDR < 0.001). Several taxa were found to be differentially abundant in IMIDs versus HC including significantly higher abundances of Intestinibacter in CD, Bifidobacterium in UC, and unclassified Erysipelotrichaceae in MS and significantly lower abundances of Coprococcus in CD, Dialister in MS, and Roseburia in RA. A machine learning approach to classify disease versus HC was highest for CD (AUC = 0.93 and AUC = 0.95 for OTU and genus features, respectively) followed by MS, RA, and UC. Gemmiger and Faecalicoccus were identified as important features for classification of subjects to CD and HC. In general, features identified by differential abundance testing were consistent with machine learning feature importance.This study identified several gut microbial taxa with differential abundance patterns common to IMIDs. We also found differentially abundant taxa between IMIDs. These taxa may serve as biomarkers for the detection and diagnosis of IMIDs and suggest there may be a common component to IMID etiology.CONCLUSIONSThis study identified several gut microbial taxa with differential abundance patterns common to IMIDs. We also found differentially abundant taxa between IMIDs. These taxa may serve as biomarkers for the detection and diagnosis of IMIDs and suggest there may be a common component to IMID etiology.
Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for developing secondary inflammation-related conditions. While an ambiguous etiology is common to all IMIDs, in recent years, considerable knowledge has emerged regarding the plausible role of the gut microbiome in IMIDs. This study used 16S rRNA gene amplicon sequencing to compare the gut microbiota of patients with Crohn's disease (CD; N = 20), ulcerative colitis (UC; N = 19), multiple sclerosis (MS; N = 19), and rheumatoid arthritis (RA; N = 21) versus healthy controls (HC; N = 23). Biological replicates were collected from participants within a 2-month interval. This study aimed to identify common (or unique) taxonomic biomarkers of IMIDs using both differential abundance testing and a machine learning approach. Significant microbial community differences between cohorts were observed (pseudo F = 4.56; p = 0.01). Richness and diversity were significantly different between cohorts (pFDR < 0.001) and were lowest in CD while highest in HC. Abundances of Actinomyces, Eggerthella, Clostridium III, Faecalicoccus, and Streptococcus (pFDR < 0.001) were significantly higher in all disease cohorts relative to HC, whereas significantly lower abundances were observed for Gemmiger, Lachnospira, and Sporobacter (pFDR < 0.001). Several taxa were found to be differentially abundant in IMIDs versus HC including significantly higher abundances of Intestinibacter in CD, Bifidobacterium in UC, and unclassified Erysipelotrichaceae in MS and significantly lower abundances of Coprococcus in CD, Dialister in MS, and Roseburia in RA. A machine learning approach to classify disease versus HC was highest for CD (AUC = 0.93 and AUC = 0.95 for OTU and genus features, respectively) followed by MS, RA, and UC. Gemmiger and Faecalicoccus were identified as important features for classification of subjects to CD and HC. In general, features identified by differential abundance testing were consistent with machine learning feature importance. This study identified several gut microbial taxa with differential abundance patterns common to IMIDs. We also found differentially abundant taxa between IMIDs. These taxa may serve as biomarkers for the detection and diagnosis of IMIDs and suggest there may be a common component to IMID etiology.
Background Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for developing secondary inflammation-related conditions. While an ambiguous etiology is common to all IMIDs, in recent years, considerable knowledge has emerged regarding the plausible role of the gut microbiome in IMIDs. This study used 16S rRNA gene amplicon sequencing to compare the gut microbiota of patients with Crohn's disease (CD; N = 20), ulcerative colitis (UC; N = 19), multiple sclerosis (MS; N = 19), and rheumatoid arthritis (RA; N = 21) versus healthy controls (HC; N = 23). Biological replicates were collected from participants within a 2-month interval. This study aimed to identify common (or unique) taxonomic biomarkers of IMIDs using both differential abundance testing and a machine learning approach. Results Significant microbial community differences between cohorts were observed (pseudo F = 4.56; p = 0.01). Richness and diversity were significantly different between cohorts (pFDR < 0.001) and were lowest in CD while highest in HC. Abundances of Actinomyces, Eggerthella, Clostridium III, Faecalicoccus, and Streptococcus (pFDR < 0.001) were significantly higher in all disease cohorts relative to HC, whereas significantly lower abundances were observed for Gemmiger, Lachnospira, and Sporobacter (pFDR < 0.001). Several taxa were found to be differentially abundant in IMIDs versus HC including significantly higher abundances of Intestinibacter in CD, Bifidobacterium in UC, and unclassified Erysipelotrichaceae in MS and significantly lower abundances of Coprococcus in CD, Dialister in MS, and Roseburia in RA. A machine learning approach to classify disease versus HC was highest for CD (AUC = 0.93 and AUC = 0.95 for OTU and genus features, respectively) followed by MS, RA, and UC. Gemmiger and Faecalicoccus were identified as important features for classification of subjects to CD and HC. In general, features identified by differential abundance testing were consistent with machine learning feature importance. Conclusions This study identified several gut microbial taxa with differential abundance patterns common to IMIDs. We also found differentially abundant taxa between IMIDs. These taxa may serve as biomarkers for the detection and diagnosis of IMIDs and suggest there may be a common component to IMID etiology. Keywords: Gut microbiota, Inflammatory bowel disease, Rheumatoid arthritis, Multiple sclerosis, 16S rRNA gene amplicon sequencing, Immune-mediated inflammatory disease, Bacteria, Machine learning classifiers, Taxonomic biomarkers
Abstract Background Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for developing secondary inflammation-related conditions. While an ambiguous etiology is common to all IMIDs, in recent years, considerable knowledge has emerged regarding the plausible role of the gut microbiome in IMIDs. This study used 16S rRNA gene amplicon sequencing to compare the gut microbiota of patients with Crohn’s disease (CD; N = 20), ulcerative colitis (UC; N = 19), multiple sclerosis (MS; N = 19), and rheumatoid arthritis (RA; N = 21) versus healthy controls (HC; N = 23). Biological replicates were collected from participants within a 2-month interval. This study aimed to identify common (or unique) taxonomic biomarkers of IMIDs using both differential abundance testing and a machine learning approach. Results Significant microbial community differences between cohorts were observed (pseudo F = 4.56; p = 0.01). Richness and diversity were significantly different between cohorts (pFDR < 0.001) and were lowest in CD while highest in HC. Abundances of Actinomyces, Eggerthella, Clostridium III, Faecalicoccus, and Streptococcus (pFDR < 0.001) were significantly higher in all disease cohorts relative to HC, whereas significantly lower abundances were observed for Gemmiger, Lachnospira, and Sporobacter (pFDR < 0.001). Several taxa were found to be differentially abundant in IMIDs versus HC including significantly higher abundances of Intestinibacter in CD, Bifidobacterium in UC, and unclassified Erysipelotrichaceae in MS and significantly lower abundances of Coprococcus in CD, Dialister in MS, and Roseburia in RA. A machine learning approach to classify disease versus HC was highest for CD (AUC = 0.93 and AUC = 0.95 for OTU and genus features, respectively) followed by MS, RA, and UC. Gemmiger and Faecalicoccus were identified as important features for classification of subjects to CD and HC. In general, features identified by differential abundance testing were consistent with machine learning feature importance. Conclusions This study identified several gut microbial taxa with differential abundance patterns common to IMIDs. We also found differentially abundant taxa between IMIDs. These taxa may serve as biomarkers for the detection and diagnosis of IMIDs and suggest there may be a common component to IMID etiology.
Background Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for developing secondary inflammation-related conditions. While an ambiguous etiology is common to all IMIDs, in recent years, considerable knowledge has emerged regarding the plausible role of the gut microbiome in IMIDs. This study used 16S rRNA gene amplicon sequencing to compare the gut microbiota of patients with Crohn’s disease (CD; N = 20), ulcerative colitis (UC; N = 19), multiple sclerosis (MS; N = 19), and rheumatoid arthritis (RA; N = 21) versus healthy controls (HC; N = 23). Biological replicates were collected from participants within a 2-month interval. This study aimed to identify common (or unique) taxonomic biomarkers of IMIDs using both differential abundance testing and a machine learning approach. Results Significant microbial community differences between cohorts were observed (pseudo F = 4.56; p = 0.01). Richness and diversity were significantly different between cohorts (pFDR < 0.001) and were lowest in CD while highest in HC. Abundances of Actinomyces, Eggerthella, Clostridium III, Faecalicoccus, and Streptococcus (pFDR < 0.001) were significantly higher in all disease cohorts relative to HC, whereas significantly lower abundances were observed for Gemmiger, Lachnospira, and Sporobacter (pFDR < 0.001). Several taxa were found to be differentially abundant in IMIDs versus HC including significantly higher abundances of Intestinibacter in CD, Bifidobacterium in UC, and unclassified Erysipelotrichaceae in MS and significantly lower abundances of Coprococcus in CD, Dialister in MS, and Roseburia in RA. A machine learning approach to classify disease versus HC was highest for CD (AUC = 0.93 and AUC = 0.95 for OTU and genus features, respectively) followed by MS, RA, and UC. Gemmiger and Faecalicoccus were identified as important features for classification of subjects to CD and HC. In general, features identified by differential abundance testing were consistent with machine learning feature importance. Conclusions This study identified several gut microbial taxa with differential abundance patterns common to IMIDs. We also found differentially abundant taxa between IMIDs. These taxa may serve as biomarkers for the detection and diagnosis of IMIDs and suggest there may be a common component to IMID etiology.
ArticleNumber 221
Audience Academic
Author Marrie, Ruth-Ann
El-Gabalawy, Hani
de Kievit, Teresa
Bernstein, Charles N.
Chen, Chih-yu
Forbes, Jessica D.
Alfa, Michelle
Van Domselaar, Gary
Knox, Natalie C.
Author_xml – sequence: 1
  givenname: Jessica D.
  surname: Forbes
  fullname: Forbes, Jessica D.
– sequence: 2
  givenname: Chih-yu
  surname: Chen
  fullname: Chen, Chih-yu
– sequence: 3
  givenname: Natalie C.
  surname: Knox
  fullname: Knox, Natalie C.
– sequence: 4
  givenname: Ruth-Ann
  surname: Marrie
  fullname: Marrie, Ruth-Ann
– sequence: 5
  givenname: Hani
  surname: El-Gabalawy
  fullname: El-Gabalawy, Hani
– sequence: 6
  givenname: Teresa
  surname: de Kievit
  fullname: de Kievit, Teresa
– sequence: 7
  givenname: Michelle
  surname: Alfa
  fullname: Alfa, Michelle
– sequence: 8
  givenname: Charles N.
  surname: Bernstein
  fullname: Bernstein, Charles N.
– sequence: 9
  givenname: Gary
  surname: Van Domselaar
  fullname: Van Domselaar, Gary
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30545401$$D View this record in MEDLINE/PubMed
BookMark eNp1kstu1DAUhiNURMvQB2CDLLGBRYrvSTagUcVlpEpIXNaW48vUoyQeYqfq7HgInpAn4YRpoVNBosjR8f9_to__x8XREAdXFE8JPiOklq8Sx0TWJSbwScxK_qA4oZg3JZWkPrrzf1ycprTB8DSEV7x-VBwzLLgA_0mRlsjEfqtHncOVQylPdoeiR_nSofWUUR_MGNsQs0ZhQKHvp8GVvbNBZ2eh5Dvd9zrHcYdsSE4nl35-_2GjS0jP5D4OyO4SEFJIyF2HlN88KR563SV3ejMuiq_v3n45_1BefHy_Ol9elEZUgpfEaobbhkjHONUNcbaRVHrHOcUeC2wwZW1VV94zzU0jjfS4tYx739Iae8oWxWrPtVFv1HYMvR53KuqgfhfiuFZ6zMF0TjHmiKmpgJUE5wK3jNaV9QxXFJCwg0Xxes_aTi0c37ghj7o7gB7ODOFSreOVkrShWFYAeHEDGOO3yaWs-pCM6zo9uDglRYmoZCVJ04D0-T3pJk7jAK2aVTURBNPqr2qt4QBwExHWNTNULYUUglHJZ9XZP1TwWgdXC4nyAeoHhpcHBtBkd53XekpJrT5_OtQ-u9uUP924jRcIqr0AQpTS6LwyIUPS4tyj0CmC1Zxltc-ygiyrOcuKg5Pcc97C_-_5BSTE9H8
CitedBy_id crossref_primary_10_1186_s13099_024_00638_4
crossref_primary_10_3389_fnins_2022_879318
crossref_primary_10_3389_fmicb_2022_917558
crossref_primary_10_1007_s00520_021_06013_2
crossref_primary_10_3390_nu16060793
crossref_primary_10_1080_19490976_2023_2291164
crossref_primary_10_3390_microorganisms10071273
crossref_primary_10_1039_D3FO01491F
crossref_primary_10_1155_2022_1482811
crossref_primary_10_1186_s12938_023_01148_1
crossref_primary_10_3389_frmbi_2024_1451735
crossref_primary_10_1016_j_cellin_2023_100100
crossref_primary_10_2174_1389450122666210623125603
crossref_primary_10_1016_j_jneuroim_2021_577700
crossref_primary_10_2139_ssrn_3893548
crossref_primary_10_3389_fonc_2022_865121
crossref_primary_10_1093_braincomms_fcab113
crossref_primary_10_3390_microorganisms10030617
crossref_primary_10_1038_s41598_023_39055_z
crossref_primary_10_3390_genes14081572
crossref_primary_10_3390_microorganisms9102118
crossref_primary_10_1002_art_42289
crossref_primary_10_1155_2021_5536148
crossref_primary_10_1371_journal_pone_0283880
crossref_primary_10_1089_omi_2022_0002
crossref_primary_10_3390_ijms23094494
crossref_primary_10_1152_ajpgi_00360_2020
crossref_primary_10_3389_fmicb_2022_813576
crossref_primary_10_1177_09612033241281891
crossref_primary_10_1186_s12917_021_03105_3
crossref_primary_10_1016_j_eclinm_2023_102193
crossref_primary_10_1186_s40246_023_00561_w
crossref_primary_10_1186_s40168_022_01373_1
crossref_primary_10_1177_13524585221079533
crossref_primary_10_1038_s41579_024_01068_4
crossref_primary_10_1097_MD_0000000000037049
crossref_primary_10_1186_s12866_023_03084_5
crossref_primary_10_1128_mbio_01987_23
crossref_primary_10_1128_spectrum_01913_24
crossref_primary_10_1136_gutjnl_2020_322670
crossref_primary_10_3390_curroncol29050243
crossref_primary_10_1016_j_autrev_2022_103234
crossref_primary_10_1016_j_lwt_2023_115107
crossref_primary_10_3389_fmicb_2022_1063578
crossref_primary_10_3389_fcimb_2022_919352
crossref_primary_10_1093_ibd_izac194
crossref_primary_10_1016_j_nrl_2020_10_017
crossref_primary_10_1002_art_41729
crossref_primary_10_1080_19490976_2023_2274126
crossref_primary_10_1186_s40168_022_01408_7
crossref_primary_10_1093_sexmed_qfad039
crossref_primary_10_3389_fmicb_2024_1404995
crossref_primary_10_3389_fpsyt_2021_645045
crossref_primary_10_1007_s10528_024_10847_w
crossref_primary_10_1111_ctr_14534
crossref_primary_10_3389_fmicb_2019_02410
crossref_primary_10_1016_j_tjnut_2023_11_011
crossref_primary_10_1371_journal_pone_0249405
crossref_primary_10_3390_plants11010004
crossref_primary_10_1097_j_pain_0000000000003034
crossref_primary_10_3389_fmicb_2023_1178744
crossref_primary_10_3390_nu13072234
crossref_primary_10_3390_bioengineering10020231
crossref_primary_10_3390_nu14224818
crossref_primary_10_1016_j_intimp_2024_111527
crossref_primary_10_26599_FSHW_2022_9250222
crossref_primary_10_3389_fnins_2022_852506
crossref_primary_10_14309_ctg_0000000000000597
crossref_primary_10_3389_fimmu_2023_1212551
crossref_primary_10_1038_s41586_024_08242_x
crossref_primary_10_1097_CM9_0000000000000714
crossref_primary_10_1038_s41598_022_15230_6
crossref_primary_10_1186_s12866_022_02703_x
crossref_primary_10_1016_j_jenvman_2021_113795
crossref_primary_10_1002_advs_202203707
crossref_primary_10_1016_j_isci_2021_103481
crossref_primary_10_1016_j_fct_2021_112699
crossref_primary_10_3389_fmed_2020_606298
crossref_primary_10_1128_spectrum_02065_22
crossref_primary_10_1016_j_aninu_2021_06_009
crossref_primary_10_1016_j_isci_2023_108530
crossref_primary_10_1053_j_gastro_2020_11_050
crossref_primary_10_1111_jgh_16043
crossref_primary_10_3389_fmicb_2021_623739
crossref_primary_10_3390_app9122486
crossref_primary_10_3390_ijerph191610189
crossref_primary_10_1016_j_pnpbp_2020_110111
crossref_primary_10_3390_ijms232214478
crossref_primary_10_1038_s41598_024_63893_0
crossref_primary_10_1186_s40168_022_01364_2
crossref_primary_10_1002_EXP_20230165
crossref_primary_10_1016_j_clnu_2022_04_014
crossref_primary_10_1038_s41598_024_64313_z
crossref_primary_10_1007_s13205_024_03960_5
crossref_primary_10_1016_j_crbiot_2024_100211
crossref_primary_10_1016_j_jff_2023_105521
crossref_primary_10_3389_fgene_2020_572194
crossref_primary_10_1016_j_intimp_2020_106288
crossref_primary_10_3390_nu11061398
crossref_primary_10_3390_ijms24010707
crossref_primary_10_17816_MAJ633511
crossref_primary_10_1007_s13311_021_01016_7
crossref_primary_10_3390_ijms23095144
crossref_primary_10_1016_j_brainresbull_2024_111115
crossref_primary_10_3389_fimmu_2024_1436581
crossref_primary_10_1016_j_jep_2023_117182
crossref_primary_10_1001_jamapsychiatry_2021_2573
crossref_primary_10_1016_S1875_5364_22_60158_4
crossref_primary_10_1186_s12864_019_5510_y
crossref_primary_10_26508_lsa_202101178
crossref_primary_10_1016_j_cgh_2023_07_012
crossref_primary_10_3389_fcimb_2021_757718
crossref_primary_10_3390_app14209383
crossref_primary_10_3390_life12050669
crossref_primary_10_5534_wjmh_220278
crossref_primary_10_1093_rap_rkad034
crossref_primary_10_3389_fmicb_2023_1174832
crossref_primary_10_1186_s13568_023_01560_9
crossref_primary_10_3389_fmicb_2023_1320567
crossref_primary_10_3390_ijms252312852
crossref_primary_10_1016_j_jacl_2024_05_004
crossref_primary_10_1016_j_nrleng_2020_10_013
crossref_primary_10_1080_14737175_2021_1978843
crossref_primary_10_1038_s41598_020_79947_y
crossref_primary_10_1007_s00431_022_04494_9
crossref_primary_10_1017_S0033291719003027
crossref_primary_10_3390_ijms22041899
crossref_primary_10_1016_j_dld_2023_11_015
crossref_primary_10_1016_j_chom_2024_11_013
crossref_primary_10_1093_rheumatology_keaa835
crossref_primary_10_3389_fimmu_2025_1513599
crossref_primary_10_1007_s00431_020_03880_5
crossref_primary_10_1016_j_psj_2022_102091
crossref_primary_10_3390_pharmaceutics15041203
crossref_primary_10_1186_s12859_020_03933_4
crossref_primary_10_3390_jcm9061757
crossref_primary_10_3389_fmed_2020_00538
crossref_primary_10_3389_fmicb_2020_01065
crossref_primary_10_3390_ijms24065161
crossref_primary_10_3390_molecules28124828
crossref_primary_10_1093_ndt_gfac328
crossref_primary_10_1136_ard_2024_226362
crossref_primary_10_3390_nu14010037
crossref_primary_10_1186_s12866_020_01724_8
crossref_primary_10_1186_s13062_020_00287_y
crossref_primary_10_3389_fcell_2021_716604
crossref_primary_10_1007_s12020_023_03538_w
crossref_primary_10_1016_j_semarthrit_2024_152574
crossref_primary_10_1053_j_gastro_2021_12_287
crossref_primary_10_1021_acs_jafc_4c03019
crossref_primary_10_3390_biomedicines12030553
crossref_primary_10_3389_fcimb_2024_1327083
crossref_primary_10_1016_S2666_7568_20_30034_9
crossref_primary_10_3389_fcell_2020_538130
crossref_primary_10_3389_fnut_2022_931458
crossref_primary_10_1007_s40263_023_00986_w
crossref_primary_10_1016_j_envres_2023_115366
crossref_primary_10_3390_jcm10081598
crossref_primary_10_1016_j_jneuroim_2019_577126
crossref_primary_10_1016_j_clinre_2021_101669
crossref_primary_10_1177_0300060520926033
crossref_primary_10_1038_s41598_022_23757_x
crossref_primary_10_1371_journal_pbio_3002230
crossref_primary_10_3389_fmicb_2024_1483705
crossref_primary_10_1186_s12905_024_02945_z
crossref_primary_10_3390_microorganisms11051246
crossref_primary_10_1038_s41746_020_0229_3
crossref_primary_10_3389_fcimb_2022_959793
crossref_primary_10_1002_ctd2_182
crossref_primary_10_3390_nu14245278
crossref_primary_10_3390_foods12213890
crossref_primary_10_1128_spectrum_03948_23
crossref_primary_10_3389_fgene_2023_1129247
crossref_primary_10_4236_jbm_2025_133008
crossref_primary_10_1177_15598276221123005
crossref_primary_10_3390_diagnostics12102514
crossref_primary_10_3390_jcm11154464
crossref_primary_10_1016_j_ebiom_2022_104055
crossref_primary_10_15829_1728_8800_2021_2834
crossref_primary_10_3389_fcimb_2023_1105366
crossref_primary_10_1002_jsfa_12457
crossref_primary_10_14309_ajg_0000000000000305
crossref_primary_10_3389_fcimb_2023_1105126
crossref_primary_10_3389_fnins_2021_613120
crossref_primary_10_1097_MOG_0000000000001027
crossref_primary_10_1002_cam4_6636
crossref_primary_10_1038_s41564_022_01121_z
crossref_primary_10_3389_fimmu_2022_940500
crossref_primary_10_3390_toxins14100648
crossref_primary_10_1093_ibd_izad091
crossref_primary_10_3389_fnut_2022_843076
crossref_primary_10_1038_s41591_020_1095_x
crossref_primary_10_1016_j_bbamcr_2023_119643
crossref_primary_10_3390_nu14193985
crossref_primary_10_3389_fcimb_2023_1157918
crossref_primary_10_3168_jds_2024_25455
crossref_primary_10_1016_j_ecoenv_2022_113371
crossref_primary_10_1128_spectrum_02159_21
crossref_primary_10_3389_fphar_2020_587534
crossref_primary_10_1016_j_msard_2019_101427
crossref_primary_10_1093_ibd_izac115
crossref_primary_10_3390_microorganisms12020370
crossref_primary_10_3390_nu14091926
crossref_primary_10_1002_acn3_51004
crossref_primary_10_3389_fendo_2023_1159148
crossref_primary_10_3389_fcimb_2020_557368
crossref_primary_10_3389_fimmu_2023_1338918
crossref_primary_10_3389_fmicb_2024_1427313
crossref_primary_10_3390_ani13061006
crossref_primary_10_1016_j_cellsig_2024_111140
crossref_primary_10_1186_s12882_020_01741_9
crossref_primary_10_31083_j_jin2307127
crossref_primary_10_1371_journal_pone_0277270
crossref_primary_10_3390_pharmaceutics11020095
crossref_primary_10_1080_17474124_2019_1671822
crossref_primary_10_3389_fmicb_2022_925929
crossref_primary_10_3389_fcvm_2023_1250263
crossref_primary_10_1007_s00018_022_04430_y
crossref_primary_10_1016_j_crfs_2024_100760
crossref_primary_10_1016_j_ijcard_2023_131554
crossref_primary_10_3390_ani11030686
crossref_primary_10_1093_rheumatology_keae706
crossref_primary_10_1016_j_parkreldis_2019_06_003
crossref_primary_10_3390_microorganisms13020250
crossref_primary_10_1038_s41598_024_57949_4
crossref_primary_10_3390_microorganisms11112750
crossref_primary_10_1016_j_numecd_2025_103964
crossref_primary_10_1128_msystems_00627_24
crossref_primary_10_1016_j_autrev_2020_102508
crossref_primary_10_1016_j_lfs_2020_118129
crossref_primary_10_1186_s12866_023_03020_7
crossref_primary_10_1093_ecco_jcc_jjad126
crossref_primary_10_1039_D4FO01471E
crossref_primary_10_17816_MAJ115019
crossref_primary_10_1016_j_cmi_2020_02_006
crossref_primary_10_1134_S0022093024010095
crossref_primary_10_1186_s13073_024_01364_x
crossref_primary_10_3390_ijerph20054624
crossref_primary_10_3389_fmicb_2024_1396031
crossref_primary_10_1007_s00284_022_02899_1
crossref_primary_10_1002_eji_202250337
crossref_primary_10_3390_biom10111479
crossref_primary_10_1002_acn3_51944
crossref_primary_10_3390_ijms232213665
crossref_primary_10_1016_j_bbi_2024_05_037
crossref_primary_10_1017_S0033291721005092
crossref_primary_10_31857_S0044452924010098
crossref_primary_10_3390_jcm13082237
crossref_primary_10_1016_j_ncl_2023_07_005
crossref_primary_10_3390_microorganisms12071387
crossref_primary_10_1038_s43856_024_00565_0
crossref_primary_10_1371_journal_pone_0281265
crossref_primary_10_1038_s41598_024_56989_0
crossref_primary_10_3390_antibiotics13050392
crossref_primary_10_1007_s40744_022_00475_4
crossref_primary_10_1007_s10620_019_05828_8
crossref_primary_10_3390_antiox10081278
crossref_primary_10_1007_s10620_020_06449_2
crossref_primary_10_3389_fcimb_2022_733992
crossref_primary_10_1186_s12911_022_01985_5
crossref_primary_10_21926_obm_neurobiol_2403232
crossref_primary_10_3390_ijms25158451
crossref_primary_10_3389_fimmu_2023_1155333
crossref_primary_10_3389_fmicb_2021_635333
crossref_primary_10_3390_medicina56110628
crossref_primary_10_1093_ismejo_wrae146
crossref_primary_10_3389_fcimb_2022_918237
crossref_primary_10_1038_s41584_021_00585_3
crossref_primary_10_1080_00071668_2024_2308276
crossref_primary_10_1186_s10020_019_0102_5
crossref_primary_10_3390_ph15030336
crossref_primary_10_3390_biomedicines12071459
crossref_primary_10_1128_msystems_00835_22
crossref_primary_10_1002_acr2_11387
crossref_primary_10_37349_emed_2024_00251
crossref_primary_10_3748_wjg_v27_i41_7065
crossref_primary_10_1152_ajpgi_00163_2019
crossref_primary_10_3390_biology11070973
crossref_primary_10_1038_s41598_022_05708_8
crossref_primary_10_1007_s12602_023_10075_5
crossref_primary_10_3390_ijms25179366
crossref_primary_10_1093_nar_gkad667
crossref_primary_10_1186_s40168_024_02012_7
crossref_primary_10_17816_MAJ108241
crossref_primary_10_1002_ptr_7222
crossref_primary_10_1007_s43032_023_01289_7
crossref_primary_10_1038_s41598_021_81628_3
crossref_primary_10_3389_fmicb_2021_633732
crossref_primary_10_1016_j_pharmthera_2022_108327
crossref_primary_10_3390_biomedicines11071913
crossref_primary_10_3389_fcimb_2021_675414
Cites_doi 10.1007/s10620-014-3350-9
10.1002/ibd.22860
10.1007/s10482-008-9232-4
10.1128/IAI.00026-06
10.1093/ecco-jcc/jjw136
10.1136/annrheumdis-2016-211064
10.1128/AEM.00062-07
10.1186/gb-2011-12-6-r60
10.1136/archdischild-2011-300633
10.1053/j.gastro.2005.06.021
10.1099/ijs.0.000021
10.1128/mBio.01250-16
10.1016/j.chom.2015.09.008
10.3389/fimmu.2017.01668
10.1111/j.1572-0241.2007.01215.x
10.1038/nature11550
10.1038/srep30594
10.1038/nmeth.2658
10.2217/fmb.11.31
10.1016/j.jaut.2017.04.005
10.1038/emm.2017.36
10.1093/nar/gkn879
10.1038/nature12331
10.1016/j.chom.2014.02.005
10.1152/ajpgi.00293.2016
10.1016/S0065-2504(08)60168-3
10.1073/pnas.1716911114
10.1093/bioinformatics/btw313
10.1038/mi.2016.75
10.1109/TSMCC.2011.2161285
10.1155/2012/517637
10.1212/WNL.88.16_supplement.S44.007
10.1002/9781118960608.gbm00628
10.1099/00207713-49-4-1725
10.1016/j.crohns.2013.04.002
10.1159/000475917
10.1002/ana.22366
10.1186/s40168-015-0092-7
10.1016/S0140-6736(17)31472-1
10.1371/journal.pone.0184624
10.1038/nm.3914
10.1186/s40168-017-0237-y
10.1371/journal.pone.0061217
10.1136/gutjnl-2016-313235
10.2217/fmb-2016-0130
10.1016/S1474-4422(14)70267-4
10.1186/s40168-015-0114-5
10.1097/MIB.0000000000000684
10.1038/nmicrobiol.2017.4
10.1111/j.1572-0241.2008.02118.x
10.1586/eci.13.10
10.1038/nature11450
10.1371/journal.pone.0137429
10.1038/nmeth.3252
10.3748/wjg.v22.i7.2195
10.1007/s00535-017-1384-4
10.1155/2005/269076
10.1093/nar/gkm864
10.1185/030079906X104641
10.3389/fimmu.2017.01391
10.1073/pnas.1423854112
10.1371/journal.pcbi.1004977
10.1186/s13073-016-0299-7
10.1093/bioinformatics/btr381
10.1128/mSystems.00036-17
10.1002/art.27584
10.1136/gut.2005.073817
10.1099/ijs.0.064626-0
10.1038/s41467-017-01973-8
10.1111/jgh.14129
10.1186/s13059-017-1271-6
10.1038/srep28484
ContentType Journal Article
Copyright COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s). 2018
Copyright_xml – notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s). 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s40168-018-0603-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2049-2618
EndPage 15
ExternalDocumentID oai_doaj_org_article_33e1c82534254450b3287df3072bd36e
PMC6292067
A565532647
30545401
10_1186_s40168_018_0603_4
Genre Journal Article
Comparative Study
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABUWG
ACGFS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ASPBG
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SOJ
UKHRP
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5754-1da30b916e342a91ed9626fe4420f050c023b787ff3a4c96c6f0bd34ffb280f23
IEDL.DBID 7X7
ISSN 2049-2618
IngestDate Wed Aug 27 01:32:24 EDT 2025
Thu Aug 21 18:19:47 EDT 2025
Fri Jul 11 13:41:02 EDT 2025
Fri Jul 25 11:45:40 EDT 2025
Tue Jun 17 21:55:29 EDT 2025
Tue Jun 10 20:26:01 EDT 2025
Fri Jun 27 05:10:48 EDT 2025
Thu Jan 02 22:59:06 EST 2025
Tue Jul 01 04:16:36 EDT 2025
Thu Apr 24 23:00:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 16S rRNA gene amplicon sequencing
Gut microbiota
Inflammatory bowel disease
Multiple sclerosis
Immune-mediated inflammatory disease
Machine learning classifiers
Rheumatoid arthritis
Bacteria
Taxonomic biomarkers
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5754-1da30b916e342a91ed9626fe4420f050c023b787ff3a4c96c6f0bd34ffb280f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.proquest.com/docview/2158151027?pq-origsite=%requestingapplication%
PMID 30545401
PQID 2158151027
PQPubID 2040205
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_33e1c82534254450b3287df3072bd36e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6292067
proquest_miscellaneous_2157676199
proquest_journals_2158151027
gale_infotracmisc_A565532647
gale_infotracacademiconefile_A565532647
gale_incontextgauss_ISR_A565532647
pubmed_primary_30545401
crossref_citationtrail_10_1186_s40168_018_0603_4
crossref_primary_10_1186_s40168_018_0603_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-13
PublicationDateYYYYMMDD 2018-12-13
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-13
  day: 13
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Microbiome
PublicationTitleAlternate Microbiome
PublicationYear 2018
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References GG Kaplan (603_CR69) 2008; 103
A Kageyama (603_CR49) 1999; 49
A Liaw (603_CR28) 2002; 2
C Manichanh (603_CR44) 2006; 55
J Halfvarson (603_CR43) 2017; 2
J Hablot (603_CR61) 2017; 12
J Chen (603_CR16) 2016; 8
603_CR14
603_CR17
603_CR56
EK Wright (603_CR66) 2017; 11
603_CR13
603_CR52
CA Lozupone (603_CR70) 2012; 489
R Flores (603_CR74) 2015; 3
JR Cole (603_CR24) 2009; 37
T Sharpton (603_CR11) 2017; 2
E Pruesse (603_CR21) 2007; 35
RC Edgar (603_CR22) 2011; 27
A Oksanen (603_CR34) 2016
C Wen (603_CR60) 2017; 18
CH Polman (603_CR18) 2011; 69
603_CR65
603_CR67
603_CR62
D Robinson Jr (603_CR8) 2006; 22
603_CR20
MJ Anderson (603_CR33) 2001; 26
JD Forbes (603_CR42) 2016; 22
J Bayry (603_CR1) 2013; 9
J Ning (603_CR72) 2015; 3
X Liu (603_CR15) 2016; 6
M Galar (603_CR29) 2012; 42
AN Ananthakrishnan (603_CR4) 2015; 60
N Lee (603_CR75) 2017; 49
X Zhang (603_CR45) 2015; 21
D Gevers (603_CR59) 2014; 15
S Weiss (603_CR26) 2017; 5
Q Wang (603_CR23) 2007; 73
RL Knoll (603_CR12) 2017; 312
A Langer-Gould (603_CR68) 2017; 88
N Segata (603_CR27) 2011; 12
603_CR39
K Atarashi (603_CR77) 2013; 500
E Generali (603_CR3) 2017; 83
603_CR32
603_CR76
JD Lewis (603_CR53) 2015; 18
IB McInnes (603_CR6) 2017; 389
603_CR78
603_CR35
M Kanno (603_CR57) 2015; 65
603_CR73
MY Zeng (603_CR36) 2017; 10
MD Kappelman (603_CR7) 2011; 96
EA Franzosa (603_CR71) 2015; 112
V Pascal (603_CR41) 2017; 66
JN Paulson (603_CR25) 2013; 10
L Belbasis (603_CR5) 2015; 14
CN Bernstein (603_CR9) 2005; 129
K Nishino (603_CR63) 2018; 53
C Duvallet (603_CR64) 2017; 8
J Chen (603_CR37) 2016; 6
S Michail (603_CR38) 2012; 18
603_CR2
Z Gu (603_CR30) 2016; 32
J Qin (603_CR50) 2012; 490
X Weng (603_CR10) 2007; 102
W Huber (603_CR31) 2015; 12
D Aletaha (603_CR19) 2010; 62
M Breban (603_CR40) 2017; 76
S Miyake (603_CR51) 2015; 10
C Miller (603_CR58) 2017; 07
A Nahum (603_CR46) 2017; 11
I Herrmann (603_CR55) 2006; 74
VR Thota (603_CR47) 2011; 6
Z Tamanai-Shacoori (603_CR54) 2017; 12
F Turroni (603_CR48) 2008; 94
References_xml – volume: 60
  start-page: 290
  year: 2015
  ident: 603_CR4
  publication-title: Dig Dis Sci
  doi: 10.1007/s10620-014-3350-9
– volume: 18
  start-page: 1799
  year: 2012
  ident: 603_CR38
  publication-title: Inflamm Bowel Dis
  doi: 10.1002/ibd.22860
– volume: 94
  start-page: 35
  year: 2008
  ident: 603_CR48
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/s10482-008-9232-4
– volume: 74
  start-page: 4841
  year: 2006
  ident: 603_CR55
  publication-title: Infect Immun
  doi: 10.1128/IAI.00026-06
– volume: 11
  start-page: 191
  year: 2017
  ident: 603_CR66
  publication-title: J Crohns Colitis
  doi: 10.1093/ecco-jcc/jjw136
– volume: 76
  start-page: 1614
  year: 2017
  ident: 603_CR40
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2016-211064
– volume: 73
  start-page: 5261
  year: 2007
  ident: 603_CR23
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00062-07
– volume: 12
  start-page: R60
  year: 2011
  ident: 603_CR27
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-6-r60
– volume: 96
  start-page: 1042
  year: 2011
  ident: 603_CR7
  publication-title: Arch Dis Child
  doi: 10.1136/archdischild-2011-300633
– volume: 129
  start-page: 827
  year: 2005
  ident: 603_CR9
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2005.06.021
– volume: 07
  start-page: 148
  year: 2017
  ident: 603_CR58
  publication-title: J Microbiol Infect Dis
– volume: 65
  start-page: 805
  year: 2015
  ident: 603_CR57
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.000021
– ident: 603_CR39
  doi: 10.1128/mBio.01250-16
– volume: 18
  start-page: 489
  year: 2015
  ident: 603_CR53
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.09.008
– ident: 603_CR2
  doi: 10.3389/fimmu.2017.01668
– volume: 102
  start-page: 1429
  year: 2007
  ident: 603_CR10
  publication-title: Am J Gastroenterol
  doi: 10.1111/j.1572-0241.2007.01215.x
– volume-title: Package “vegan”
  year: 2016
  ident: 603_CR34
– volume: 489
  start-page: 220
  year: 2012
  ident: 603_CR70
  publication-title: Nature
  doi: 10.1038/nature11550
– volume: 26
  start-page: 32
  year: 2001
  ident: 603_CR33
  publication-title: Austral Ecol
– ident: 603_CR20
– volume: 6
  start-page: 30594
  year: 2016
  ident: 603_CR15
  publication-title: Sci Rep
  doi: 10.1038/srep30594
– volume: 10
  start-page: 1200
  year: 2013
  ident: 603_CR25
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2658
– volume: 6
  start-page: 595
  year: 2011
  ident: 603_CR47
  publication-title: Future Microbiol
  doi: 10.2217/fmb.11.31
– volume: 83
  start-page: 51
  year: 2017
  ident: 603_CR3
  publication-title: J Autoimmun
  doi: 10.1016/j.jaut.2017.04.005
– volume: 49
  year: 2017
  ident: 603_CR75
  publication-title: Exp Mol Med
  doi: 10.1038/emm.2017.36
– volume: 37
  start-page: D141
  year: 2009
  ident: 603_CR24
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn879
– volume: 500
  start-page: 232
  year: 2013
  ident: 603_CR77
  publication-title: Nature
  doi: 10.1038/nature12331
– volume: 15
  start-page: 382
  year: 2014
  ident: 603_CR59
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.02.005
– volume: 312
  start-page: G327
  year: 2017
  ident: 603_CR12
  publication-title: Am J Physiol-Gastrointest Liver Physiol
  doi: 10.1152/ajpgi.00293.2016
– ident: 603_CR35
  doi: 10.1016/S0065-2504(08)60168-3
– ident: 603_CR14
  doi: 10.1073/pnas.1716911114
– volume: 32
  start-page: 2847
  year: 2016
  ident: 603_CR30
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw313
– volume: 10
  start-page: 18
  year: 2017
  ident: 603_CR36
  publication-title: Mucosal Immunol
  doi: 10.1038/mi.2016.75
– volume: 42
  start-page: 463
  year: 2012
  ident: 603_CR29
  publication-title: IEEE Trans Syst Man Cybern Part C Appl Rev
  doi: 10.1109/TSMCC.2011.2161285
– ident: 603_CR52
  doi: 10.1155/2012/517637
– volume: 88
  start-page: S44.007
  year: 2017
  ident: 603_CR68
  publication-title: Neurology
  doi: 10.1212/WNL.88.16_supplement.S44.007
– ident: 603_CR62
  doi: 10.1002/9781118960608.gbm00628
– volume: 49
  start-page: 1725
  year: 1999
  ident: 603_CR49
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/00207713-49-4-1725
– ident: 603_CR76
  doi: 10.1016/j.crohns.2013.04.002
– volume: 11
  start-page: 377
  year: 2017
  ident: 603_CR46
  publication-title: Case Rep Gastroenterol
  doi: 10.1159/000475917
– volume: 69
  start-page: 292
  year: 2011
  ident: 603_CR18
  publication-title: Ann Neurol
  doi: 10.1002/ana.22366
– volume: 3
  start-page: 33
  year: 2015
  ident: 603_CR74
  publication-title: Microbiome
  doi: 10.1186/s40168-015-0092-7
– volume: 389
  start-page: 2328
  year: 2017
  ident: 603_CR6
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)31472-1
– volume: 12
  year: 2017
  ident: 603_CR61
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0184624
– volume: 21
  start-page: 895
  year: 2015
  ident: 603_CR45
  publication-title: Nat Med
  doi: 10.1038/nm.3914
– volume: 2
  start-page: 18
  year: 2002
  ident: 603_CR28
  publication-title: R News
– volume: 5
  start-page: 27
  year: 2017
  ident: 603_CR26
  publication-title: Microbiome
  doi: 10.1186/s40168-017-0237-y
– ident: 603_CR32
  doi: 10.1371/journal.pone.0061217
– volume: 66
  start-page: 813
  year: 2017
  ident: 603_CR41
  publication-title: Gut
  doi: 10.1136/gutjnl-2016-313235
– volume: 12
  start-page: 157
  year: 2017
  ident: 603_CR54
  publication-title: Future Microbiol
  doi: 10.2217/fmb-2016-0130
– volume: 14
  start-page: 263
  year: 2015
  ident: 603_CR5
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(14)70267-4
– ident: 603_CR65
– volume: 3
  start-page: 47
  year: 2015
  ident: 603_CR72
  publication-title: Microbiome
  doi: 10.1186/s40168-015-0114-5
– volume: 22
  start-page: 817
  year: 2016
  ident: 603_CR42
  publication-title: Inflamm Bowel Dis
  doi: 10.1097/MIB.0000000000000684
– volume: 2
  start-page: 17004
  year: 2017
  ident: 603_CR43
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2017.4
– volume: 103
  start-page: 2925
  year: 2008
  ident: 603_CR69
  publication-title: Am J Gastroenterol
  doi: 10.1111/j.1572-0241.2008.02118.x
– volume: 9
  start-page: 297
  year: 2013
  ident: 603_CR1
  publication-title: Expert Rev Clin Immunol
  doi: 10.1586/eci.13.10
– volume: 490
  start-page: 55
  year: 2012
  ident: 603_CR50
  publication-title: Nature
  doi: 10.1038/nature11450
– volume: 10
  year: 2015
  ident: 603_CR51
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0137429
– volume: 12
  start-page: 115
  year: 2015
  ident: 603_CR31
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3252
– ident: 603_CR78
  doi: 10.3748/wjg.v22.i7.2195
– volume: 53
  start-page: 95
  year: 2018
  ident: 603_CR63
  publication-title: J Gastroenterol
  doi: 10.1007/s00535-017-1384-4
– ident: 603_CR17
  doi: 10.1155/2005/269076
– volume: 35
  start-page: 7188
  year: 2007
  ident: 603_CR21
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm864
– volume: 22
  start-page: 989
  year: 2006
  ident: 603_CR8
  publication-title: Curr Med Res Opin
  doi: 10.1185/030079906X104641
– ident: 603_CR13
  doi: 10.3389/fimmu.2017.01391
– volume: 112
  start-page: E2930
  year: 2015
  ident: 603_CR71
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1423854112
– ident: 603_CR73
  doi: 10.1371/journal.pcbi.1004977
– volume: 8
  start-page: 43
  year: 2016
  ident: 603_CR16
  publication-title: Genome Med
  doi: 10.1186/s13073-016-0299-7
– volume: 27
  start-page: 2194
  year: 2011
  ident: 603_CR22
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr381
– volume: 2
  start-page: e00036
  year: 2017
  ident: 603_CR11
  publication-title: mSystems
  doi: 10.1128/mSystems.00036-17
– volume: 62
  start-page: 2569
  year: 2010
  ident: 603_CR19
  publication-title: Arthritis Rheum
  doi: 10.1002/art.27584
– volume: 55
  start-page: 205
  year: 2006
  ident: 603_CR44
  publication-title: Gut
  doi: 10.1136/gut.2005.073817
– ident: 603_CR56
  doi: 10.1099/ijs.0.064626-0
– volume: 8
  start-page: 1784
  year: 2017
  ident: 603_CR64
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01973-8
– ident: 603_CR67
  doi: 10.1111/jgh.14129
– volume: 18
  start-page: 142
  year: 2017
  ident: 603_CR60
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1271-6
– volume: 6
  start-page: 28484
  year: 2016
  ident: 603_CR37
  publication-title: Sci Rep
  doi: 10.1038/srep28484
SSID ssj0000914748
Score 2.5915215
Snippet Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for...
Background Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk...
Abstract Background Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 221
SubjectTerms 16S rRNA gene amplicon sequencing
Abundance
Adult
Ambulatory care
Arthritis
Arthritis, Rheumatoid - microbiology
Artificial intelligence
Bacteria
Bacteria - classification
Bacteria - genetics
Bacteria - isolation & purification
Biological markers
Biomarkers
Case-Control Studies
Colitis
Colitis, Ulcerative - microbiology
Comparative literature
Crohn Disease - microbiology
Crohn's disease
Diagnosis
DNA, Bacterial - genetics
DNA, Ribosomal - genetics
Dysbacteriosis
Dysbiosis
Dysbiosis - diagnosis
Etiology
Etiology (Medicine)
Female
Gastrointestinal Microbiome
Genes
Genetic aspects
Genetic research
Gut microbiota
Health
Humans
Immune-mediated inflammatory disease
Immunologic diseases
Inflammation
Inflammatory bowel disease
Inflammatory bowel diseases
Inflammatory Bowel Diseases - microbiology
Inflammatory diseases
Intestinal microflora
Learning algorithms
Machine Learning
Male
Metagenomics - methods
Microbiomes
Microbiota
Microbiota (Symbiotic organisms)
Middle Aged
Multiple sclerosis
Multiple Sclerosis - microbiology
Pathogenesis
Phylogeny
Rheumatoid arthritis
Rheumatoid factor
Risk factors
RNA
RNA, Ribosomal, 16S - genetics
rRNA 16S
Sequence Analysis, DNA - methods
Studies
Taxonomy
Ulcerative colitis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9UwFA4yILgR31ZHiSIIQpi8mrYruYrDKOhCHZhdyHO8MNOK6V3Mzh_hL_SXeJJ2rrcIunHRTXP6Ouck-U5z8h2EnknfWcqtJ63vApGmNsT41pOGW9qa4I0q_zvef1BHx_LdSX2yU-or54RN9MCT4g6ECMxBGCNkIdOiVgDG9xFcE54gVMijL8x5O8FUGYM7JhvZzsuYrFUHCQIJlfO24FBUELmYiApf_5-j8s60tEyZ3JmDDm-g6zN4xKvppW-iK6G_ha5O5SQvbqO0wu43mTcuzLF4iBgwHj7djPh8PbEujQave7zOO0MCKVtHAHbCqQjecV5W3fG8bpN-fv_hh5CwyXcGj8X-IsEd0jrhzKE5vryDjg_ffH59ROaiCsQBMpOEeSOoBVAYQKOmY8F3ENPEICWnkdbUwSRuoRfHKIx0nXIqUlC0jNHylkYu7qK9fujDfYRtqANvGXWCB0Bd1EglwPBNCLxpLPMVopca1m5mHM-FL850iTxapSejaDCKzkbRskIvtpd8neg2_ib8KpttK5iZsssJ8B89-4_-l_9U6Gk2us5cGH1Otjk1m5T0208f9QrAbg3wVjYVej4LxQG-wJl57wLoIdNnLST3F5LQWd2y-dK39DxYJA2oqwXgBZqr0JNtc74yJ8D1YdgUmUblX05dhe5Nrrj9bhiyM48iq1CzcNKFYpYt_fpLoRJXuViZah78D00-RNd47l6MEyb20d74bRMeAWIb7ePSOX8BPUE77g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fi9QwEA_nieCL-N-ep0QRBKGaJtm0fZBjFY9TOB_UhXsLSZOshbvW2-6C--aH8BP6SZxJu-sVj3vYl2ZSNpOZzG-a5DeEvJCutIxblxau9Kk0E5MaV7g055YVxjuj4veO48_qaCY_nUxOdsimvNWgwO7S1A7rSc0Wp69_nq8PwOHfRocv1JsOcgSFR7Lgp5hI5TVyHQJTjn56PKD9uDCXmcxlMextXtpzFJ0iif__S_WFWDU-R3khMB3eJrcGREmnvQncITu-uUtu9DUm1_dIN6XVP4ZvGulkaRsoAD86Xy3pWd1TMS0NrRta43URn8b7JIBF4VEAkzmLW_F02Mzp_vz67VrfUYNvBjOmbt3BG7q6o0isuTy4T2aHH769P0qHSgtpBXBNppkzgllAil5IbsrMuxISneCl5CywCasgsltw7RCEkVWpKhWYdUKGYHnBAhcPyG7TNv4RodZPPC8yVgnuAYoxI5UAa8i953luM5cQttGwrgYacqyGcapjOlIo3U-KhknROClaJuTVtsuPnoPjKuF3OG1bQaTPjg_axVwP3qiF8FkFuTGMFsmImBWQOLoA6x2YrVA-Ic9x0jUSZDR4AmduVl2nP379oqeAgCeAeWWekJeDUGhhBJUZLjSAHpBTayS5P5IED67GzRvb0hsH0ADFCkBjoLmEPNs2Y088Fdf4dhVlcoXfocqEPOxNcTtuWMeRXDFLSD4y0pFixi1N_T3yiyusYKbyvav_1mNyk6PjZDzNxD7ZXS5W_gkAtKV9Gt3uLxNfN9M
  priority: 102
  providerName: Scholars Portal
Title A comparative study of the gut microbiota in immune-mediated inflammatory diseases—does a common dysbiosis exist?
URI https://www.ncbi.nlm.nih.gov/pubmed/30545401
https://www.proquest.com/docview/2158151027
https://www.proquest.com/docview/2157676199
https://pubmed.ncbi.nlm.nih.gov/PMC6292067
https://doaj.org/article/33e1c82534254450b3287df3072bd36e
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagFRIXxD-BsjIICQnJqhN7neRUbVFLQWqFCpX2ZjmxvUSiSWl2D73xEDwhT8KM4902Quphc4gn0doznj9PviHknbRlxbPKssKWjkkzNczYwrI8q3hhnDUq5DuOT9TRmfwyn85jwq2PZZVrnRgUte1qzJHvgmkqwDpBFLV38Yth1yg8XY0tNO6SbYQuw5KufJ5vcixgC2Uui3iYmRZqt4dwQmH1FvwUF0yOzFFA7f9fN98wTuPCyRuW6PAheRBdSDobeP6I3HHtY3JvaCp59YT0M1pfQ3rTgB9LO0_B06OL1ZKeNwP20tLQpqUNfh_iWPiABJxPuOVBRs7D2TuNpzf9399_bOd6avDNsBDUXvXwhr7pKSJpLveekrPDg-8fj1hsrcBq8M8kS60RvALX0AmZmTJ1toTIxjspM-75lNdgyivYy94LI-tS1crzygrpfZUV3GfiGdlqu9a9ILRyU5cVKa9F5sD34kYqAezPncvyvEptQvh6hXUdccex_cVPHeKPQumBKRqYopEpWibkw-aRiwF04zbifWTbhhDxssON7nKh4_bTQri0hmAYZovoQ7wSEClaDwoO5FQol5C3yHSNiBgtltwszKrv9edvp3oGLu8UnFyZJ-R9JPIdzKA28QsGWAcE0RpR7owoYcvW4-G1bOmoMnp9LeAJebMZxiexDK513SrQ5AoTT2VCng-iuJk3KG5EU0wTko-EdLQw45G2-REAxRW2LFP5y9v_1ityP8ONk2YsFTtka3m5cq_BI1tWk7DtJmR7_-Dk6-kk5DXg-mmewvVYFv8Am_o5MQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLamTghuEP8EBhgEQkKK5tiuk1ygqYNNLdsqNDZpd8aJ7VKJJWNphXrHQ_AcPBRPwjlJ2i1C2t0uehOfRPX5P_75DiGvpU0zxjMbJjZ1oTR9Exqb2DDmGUuMs0bV6x0HYzU8lp9O-idr5M_yLgweq1z6xNpR2zLHNfJNCE0JRCeoorbOfoTYNQp3V5ctNBq12HOLn1CyVe9HH0G-bzjf3Tn6MAzbrgJhDqmJDCNrBMsgK3JCcpNGzqaQ1HsnJWee9VkOUSwDNfZeGJmnKleeZVZI7zOeMI9AB-Dy16WAUqZH1rd3xp8PV6s6EH1lLJN2-zRK1GYFBYzC82LwU0yEshMA6z4B_0eDS-Gwe1TzUuzbvUNut0krHTRadpesueIeudG0sVzcJ9WA5hcg4rRGrKWlp5Bb0sl8Rk-nDdrTzNBpQad4I8WF9ZUVSHfhkQetPK13-2m7X1T9_fXblq6iBr8MrKd2UcEXqmlFEbtztvWAHF8L2x-SXlEW7jGhmes7nkQsF9xBtseMVAIULnaOx3EW2YCwJYd13iKdY8ON77queBKlG6FoEIpGoWgZkHerV84amI-riLdRbCtCROiuH5TnE90avBbCRTmU3zBbxDtimYDa1HpwqWAZQrmAvEKha8TgKPCQz8TMq0qPvhzqASTZfUirZRyQty2RL2EGuWnvTAAfELarQ7nRoQQnkXeHl7qlWydV6QuTCsjL1TC-iQfvClfOa5pY4VJXGpBHjSqu5g2hAvEbo4DEHSXtMKY7Uky_1RDmCpukqfjJ1X_rBbk5PDrY1_uj8d5TcoujEUU8jMQG6c3O5-4Z5IOz7HlrhJR8vW67_wdPNnJI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+the+gut+microbiota+in+immune-mediated+inflammatory+diseases%E2%80%94does+a+common+dysbiosis+exist%3F&rft.jtitle=Microbiome&rft.au=bes%2C+Jessica+D&rft.au=Chih-yu%2C+Chen&rft.au=Knox%2C+Natalie+C&rft.au=Ruth-Ann+Marrie&rft.date=2018-12-13&rft.pub=BioMed+Central&rft.eissn=2049-2618&rft.volume=6&rft_id=info:doi/10.1186%2Fs40168-018-0603-4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon