Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges

ABSTRACT Cellulosic nanoparticles with high Young's modulus, crystallinity, specific surface area, and aspect ratio can be found in the natural structure of plant fibers. Indeed, lignocellulosic fibers consist of semicrystalline cellulose nanofibrils embedded in an amorphous matrix mainly compo...

Full description

Saved in:
Bibliographic Details
Published inJournal of polymer science. Part B, Polymer physics Vol. 52; no. 12; pp. 791 - 806
Main Authors Mariano, Marcos, El Kissi, Nadia, Dufresne, Alain
Format Journal Article
LanguageEnglish
Published Hoboken, NJ Blackwell Publishing Ltd 15.06.2014
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Cellulosic nanoparticles with high Young's modulus, crystallinity, specific surface area, and aspect ratio can be found in the natural structure of plant fibers. Indeed, lignocellulosic fibers consist of semicrystalline cellulose nanofibrils embedded in an amorphous matrix mainly composed of lignin and hemicelluloses. These nanostructures give the mechanical strength to higher plant cells, and are biodegradable, renewable, resistant, and widely available to produce nanocomposites with low density, and improved and controlled mechanical, optical, and barrier properties. Nanoparticles can be extracted from cellulose using a top‐down mechanically or chemically assisted deconstructing strategy, and owing to their highly reactive surface ensuing nanomaterials can be chemically modified to tailor their properties for a wide range of applications. This review is limited to cellulose chemically extracted nanocrystals and aims to provide an overview about several aspects that involve this material, including sources, properties, challenges, and perspectives. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 791–806 Impressive mechanical properties and reinforcing capability, abundance, low weight, renewability, and biodegradability make cellulose nanocrystals ideal candidates for use in polymer nanocomposites. This Review also looks at the broad range of potential applications of these nanoparticles, as well as the remaining questions in the field.
AbstractList ABSTRACT Cellulosic nanoparticles with high Young's modulus, crystallinity, specific surface area, and aspect ratio can be found in the natural structure of plant fibers. Indeed, lignocellulosic fibers consist of semicrystalline cellulose nanofibrils embedded in an amorphous matrix mainly composed of lignin and hemicelluloses. These nanostructures give the mechanical strength to higher plant cells, and are biodegradable, renewable, resistant, and widely available to produce nanocomposites with low density, and improved and controlled mechanical, optical, and barrier properties. Nanoparticles can be extracted from cellulose using a top‐down mechanically or chemically assisted deconstructing strategy, and owing to their highly reactive surface ensuing nanomaterials can be chemically modified to tailor their properties for a wide range of applications. This review is limited to cellulose chemically extracted nanocrystals and aims to provide an overview about several aspects that involve this material, including sources, properties, challenges, and perspectives. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 791–806 Impressive mechanical properties and reinforcing capability, abundance, low weight, renewability, and biodegradability make cellulose nanocrystals ideal candidates for use in polymer nanocomposites. This Review also looks at the broad range of potential applications of these nanoparticles, as well as the remaining questions in the field.
Cellulosic nanoparticles with high Young's modulus, crystallinity, specific surface area, and aspect ratio can be found in the natural structure of plant fibers. Indeed, lignocellulosic fibers consist of semicrystalline cellulose nanofibrils embedded in an amorphous matrix mainly composed of lignin and hemicelluloses. These nanostructures give the mechanical strength to higher plant cells, and are biodegradable, renewable, resistant, and widely available to produce nanocomposites with low density, and improved and controlled mechanical, optical, and barrier properties. Nanoparticles can be extracted from cellulose using a top-down mechanically or chemically assisted deconstructing strategy, and owing to their highly reactive surface ensuing nanomaterials can be chemically modified to tailor their properties for a wide range of applications. This review is limited to cellulose chemically extracted nanocrystals and aims to provide an overview about several aspects that involve this material, including sources, properties, challenges, and perspectives.
Cellulosic nanoparticles with high Young's modulus, crystallinity, specific surface area, and aspect ratio can be found in the natural structure of plant fibers. Indeed, lignocellulosic fibers consist of semicrystalline cellulose nanofibrils embedded in an amorphous matrix mainly composed of lignin and hemicelluloses. These nanostructures give the mechanical strength to higher plant cells, and are biodegradable, renewable, resistant, and widely available to produce nanocomposites with low density, and improved and controlled mechanical, optical, and barrier properties. Nanoparticles can be extracted from cellulose using a top-down mechanically or chemically assisted deconstructing strategy, and owing to their highly reactive surface ensuing nanomaterials can be chemically modified to tailor their properties for a wide range of applications. This review is limited to cellulose chemically extracted nanocrystals and aims to provide an overview about several aspects that involve this material, including sources, properties, challenges, and perspectives. copyright 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 791-806 Impressive mechanical properties and reinforcing capability, abundance, low weight, renewability, and biodegradability make cellulose nanocrystals ideal candidates for use in polymer nanocomposites. This Review also looks at the broad range of potential applications of these nanoparticles, as well as the remaining questions in the field.
Cellulosic nanoparticles with high Young's modulus, crystallinity, specific surface area, and aspect ratio can be found in the natural structure of plant fibers. Indeed, lignocellulosic fibers consist of semicrystalline cellulose nanofibrils embedded in an amorphous matrix mainly composed of lignin and hemicelluloses. These nanostructures give the mechanical strength to higher plant cells, and are biodegradable, renewable, resistant, and widely available to produce nanocomposites with low density, and improved and controlled mechanical, optical, and barrier properties. Nanoparticles can be extracted from cellulose using a top-down mechanically or chemically assisted deconstructing strategy, and owing to their highly reactive surface ensuing nanomaterials can be chemically modified to tailor their properties for a wide range of applications. This review is limited to cellulose chemically extracted nanocrystals and aims to provide an overview about several aspects that involve this material, including sources, properties, challenges, and perspectives. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 791-806 [PUBLICATION ABSTRACT]
Cellulosic nanoparticles with high Young's modulus, crystallinity, specific surface area, and aspect ratio can be found in the natural structure of plant fibers. Indeed, lignocellulosic fibers consist of semicrystalline cellulose nanofibrils embedded in an amorphous matrix mainly composed of lignin and hemicelluloses. These nanostructures give the mechanical strength to higher plant cells, and are biodegradable, renewable, resistant, and widely available to produce nanocomposites with low density, and improved and controlled mechanical, optical, and barrier properties. Nanoparticles can be extracted from cellulose using a top‐down mechanically or chemically assisted deconstructing strategy, and owing to their highly reactive surface ensuing nanomaterials can be chemically modified to tailor their properties for a wide range of applications. This review is limited to cellulose chemically extracted nanocrystals and aims to provide an overview about several aspects that involve this material, including sources, properties, challenges, and perspectives. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52 , 791–806
Author El Kissi, Nadia
Dufresne, Alain
Mariano, Marcos
Author_xml – sequence: 1
  givenname: Marcos
  surname: Mariano
  fullname: Mariano, Marcos
  organization: Grenoble Institute of Technology (Grenoble INP)-The International School of Paper, Print Media and Biomaterials (Pagora), CS10065, 38402, Saint Martin d'Hères Cedex, France
– sequence: 2
  givenname: Nadia
  surname: El Kissi
  fullname: El Kissi, Nadia
  organization: Laboratoire Rhéologie et Procédés, Grenoble INP-CNRS-UJF, UMR 5520, BP 53, 38041, Grenoble Cedex 9, France
– sequence: 3
  givenname: Alain
  surname: Dufresne
  fullname: Dufresne, Alain
  email: alain.dufresne@pagora.grenoble-inp.fr
  organization: Grenoble Institute of Technology (Grenoble INP)-The International School of Paper, Print Media and Biomaterials (Pagora), CS10065, 38402, Saint Martin d'Hères Cedex, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28569297$$DView record in Pascal Francis
https://hal.science/hal-02302485$$DView record in HAL
BookMark eNp9kV1rFDEUhoNUcFu98RcMiKCFqfmejHd1q62ytFULgl6ETOaspmaTMZlt3X9v1ml7UcSrQM7zvDknZxfthBgAoacEHxCM6ash-u6AMt7iB2hGcNvWmCu1g2ZYqaaWVMpHaDfnS4xLTbQz9G0O3q99zFAFE6JNmzwanysT-iqBNyP0UyGuhpjdCPl19QmuHFxXcVnluIJqSHGANDqYLPvDeA_hO-TH6OGyZMGTm3MPXbx7ezE_qRdnx-_nh4vaikbguu0ltUSC4oQb1nPTi44vKSONbanERDDLZUdlJ1qLe9mpDjec9l3fdkQRy_bQyym2PKyH5FYmbXQ0Tp8cLvT2DlOGKVfiihT2xcSWpn-tIY965bItX2ACxHXWRDZEYkGwKuize-hlXKdQBtFEUKIkV4wV6vkNZbI1fplMsC7ftUGVkC1tm8LhibMp5pxgqa0bzehiGJNxXhOstwvU2wXqvwssyv495Tb1nzCZ4GvnYfMfUp-fLd7cOvXkuDzC7zvHpJ9aNqwR-svpsf7w8evpETn_rBX7AyIeu9w
CODEN JPLPAY
CitedBy_id crossref_primary_10_4028_www_scientific_net_MSF_827_174
crossref_primary_10_1016_j_carbpol_2016_06_069
crossref_primary_10_3390_polym13193227
crossref_primary_10_3390_foods12040746
crossref_primary_10_1016_j_carbpol_2014_08_110
crossref_primary_10_1016_j_carbpol_2015_04_051
crossref_primary_10_1093_jxb_erv535
crossref_primary_10_1007_s10570_016_0937_7
crossref_primary_10_1002_app_45857
crossref_primary_10_1002_app_44880
crossref_primary_10_1016_j_rser_2016_12_088
crossref_primary_10_1007_s10570_021_03889_5
crossref_primary_10_1111_1541_4337_13047
crossref_primary_10_1039_D0RA04649C
crossref_primary_10_3390_biomass2040021
crossref_primary_10_1016_j_progpolymsci_2021_101418
crossref_primary_10_1016_j_ijbiomac_2020_02_333
crossref_primary_10_1021_acssuschemeng_9b07250
crossref_primary_10_1134_S0965545X19050080
crossref_primary_10_1021_acssuschemeng_7b00415
crossref_primary_10_1002_slct_202404613
crossref_primary_10_1002_smm2_1118
crossref_primary_10_1002_pen_26695
crossref_primary_10_1016_j_coco_2025_102258
crossref_primary_10_1680_jemmr_20_00073
crossref_primary_10_1002_poc_3851
crossref_primary_10_1016_j_mtsust_2022_100115
crossref_primary_10_1016_j_pmatsci_2025_101430
crossref_primary_10_1016_j_polymertesting_2019_106276
crossref_primary_10_1007_s10853_016_0589_x
crossref_primary_10_1016_j_jcis_2022_12_106
crossref_primary_10_3390_polym13132061
crossref_primary_10_1016_j_ijbiomac_2023_123916
crossref_primary_10_47115_bsagriculture_1374533
crossref_primary_10_3390_jcs5020043
crossref_primary_10_1007_s10570_020_03247_x
crossref_primary_10_1016_j_cocis_2017_03_005
crossref_primary_10_1039_C7BM00510E
crossref_primary_10_1039_D0NR02228D
crossref_primary_10_1007_s00289_019_02731_0
crossref_primary_10_1002_cjce_24156
crossref_primary_10_17533_udea_redin_n83a06
crossref_primary_10_1016_j_eurpolymj_2017_04_020
crossref_primary_10_1016_j_indcrop_2016_11_011
crossref_primary_10_1002_cplu_202300704
crossref_primary_10_3390_molecules27228032
crossref_primary_10_1016_j_ijbiomac_2019_06_241
crossref_primary_10_1016_j_jscs_2018_02_005
crossref_primary_10_3390_polym15143044
crossref_primary_10_3390_polym9040117
crossref_primary_10_3390_polym13132052
crossref_primary_10_1098_rsta_2017_0043
crossref_primary_10_2139_ssrn_4663507
crossref_primary_10_1002_mame_201900092
crossref_primary_10_1002_adsu_202100100
crossref_primary_10_1016_j_chphi_2021_100025
crossref_primary_10_1021_acssuschemeng_8b02278
crossref_primary_10_7584_JKTAPPI_2019_02_51_1_114
crossref_primary_10_1021_acs_biomac_3c01337
crossref_primary_10_1155_2015_687490
crossref_primary_10_1039_C8GC00577J
crossref_primary_10_1039_D1TC02360H
crossref_primary_10_1021_acssuschemeng_6b03144
crossref_primary_10_1039_C5PY00367A
crossref_primary_10_1016_j_carbon_2019_05_007
crossref_primary_10_1590_1980_5373_mr_2019_0192
crossref_primary_10_1016_j_carbpol_2015_09_101
crossref_primary_10_1177_0095244318758156
crossref_primary_10_1016_j_electacta_2016_08_020
crossref_primary_10_1007_s12274_022_4626_6
crossref_primary_10_1246_cl_200702
crossref_primary_10_1021_acsaem_8b00240
crossref_primary_10_1146_annurev_matsci_120116_114326
crossref_primary_10_3390_chemistry3030066
crossref_primary_10_1016_j_jcis_2021_04_071
crossref_primary_10_1515_rams_2019_0001
crossref_primary_10_1016_j_carbpol_2024_122698
crossref_primary_10_1016_j_compstruct_2015_09_043
crossref_primary_10_1016_j_porgcoat_2021_106407
crossref_primary_10_1021_acsami_1c21656
crossref_primary_10_3390_polym14071477
crossref_primary_10_1016_j_carres_2023_108899
crossref_primary_10_1021_acs_langmuir_1c01585
crossref_primary_10_1080_05704928_2021_1951283
crossref_primary_10_1021_acsami_7b01738
crossref_primary_10_1007_s10924_017_1089_z
crossref_primary_10_1016_j_ijbiomac_2020_03_020
crossref_primary_10_3390_catal7110322
crossref_primary_10_1007_s10570_021_03691_3
crossref_primary_10_1016_j_carbpol_2018_08_033
crossref_primary_10_1021_acs_jpclett_6b00570
crossref_primary_10_1002_sstr_202400104
crossref_primary_10_1016_j_bpj_2022_02_013
crossref_primary_10_1007_s10973_018_7639_3
crossref_primary_10_1016_j_ijbiomac_2024_136130
crossref_primary_10_3390_jcs7080342
crossref_primary_10_1007_s10570_019_02642_3
crossref_primary_10_1007_s10570_021_04227_5
crossref_primary_10_1007_s11192_016_1922_5
crossref_primary_10_1021_acs_langmuir_6b03765
crossref_primary_10_1590_1980_5373_mr_2017_0750
crossref_primary_10_1002_pc_25393
crossref_primary_10_1016_j_ijbiomac_2024_135282
crossref_primary_10_3390_ma15010082
crossref_primary_10_1016_j_ijbiomac_2020_03_115
crossref_primary_10_1002_pc_27576
crossref_primary_10_1016_j_fpsl_2021_100763
crossref_primary_10_1007_s10570_021_04205_x
crossref_primary_10_1016_j_polymertesting_2020_106867
crossref_primary_10_1021_acs_biomac_4c01802
crossref_primary_10_1002_app_49291
crossref_primary_10_1021_acs_jpcb_6b01370
crossref_primary_10_1080_01932691_2020_1847137
crossref_primary_10_3389_fchem_2021_810781
crossref_primary_10_1016_j_indcrop_2018_06_015
crossref_primary_10_1021_acsaenm_3c00378
crossref_primary_10_1016_j_carbpol_2017_06_032
crossref_primary_10_1021_acsami_9b20101
crossref_primary_10_1016_j_carbpol_2019_05_075
crossref_primary_10_1021_acsami_2c01353
crossref_primary_10_1002_app_53298
crossref_primary_10_3390_polym13172853
crossref_primary_10_1016_j_carbpol_2024_122591
crossref_primary_10_1038_s41467_021_25176_4
crossref_primary_10_3390_nano7050106
crossref_primary_10_1007_s12221_018_8138_7
crossref_primary_10_1021_acsami_6b09852
crossref_primary_10_3390_gels10120777
crossref_primary_10_1039_D1TA08147K
crossref_primary_10_1016_j_ijbiomac_2018_11_205
crossref_primary_10_1039_C7SM00685C
crossref_primary_10_3390_polym17030345
crossref_primary_10_1021_acs_biomac_1c00183
crossref_primary_10_1021_acssuschemeng_2c04806
crossref_primary_10_1007_s12649_020_00937_2
crossref_primary_10_1016_j_ijbiomac_2019_06_205
crossref_primary_10_1016_j_ijbiomac_2019_08_055
crossref_primary_10_1007_s10570_018_1760_0
crossref_primary_10_1002_adma_202002264
crossref_primary_10_1515_secm_2020_0024
crossref_primary_10_1016_j_carbpol_2019_115037
crossref_primary_10_1007_s10311_020_00989_9
crossref_primary_10_1021_acs_langmuir_6b04628
crossref_primary_10_1007_s10570_017_1464_x
crossref_primary_10_1016_j_porgcoat_2019_05_015
crossref_primary_10_1002_pts_2389
crossref_primary_10_1016_j_tifs_2020_05_016
crossref_primary_10_1021_acsomega_4c06021
crossref_primary_10_1016_j_desal_2018_04_009
crossref_primary_10_3390_ma11050795
crossref_primary_10_1016_j_jclepro_2022_131541
crossref_primary_10_1021_acsami_7b09009
crossref_primary_10_1021_acs_macromol_1c01155
crossref_primary_10_1080_10408398_2018_1534800
crossref_primary_10_1021_acsapm_9b00007
crossref_primary_10_1007_s13399_021_02028_1
crossref_primary_10_1021_acsami_7b04931
crossref_primary_10_1122_1_5010789
crossref_primary_10_1007_s13367_021_0015_z
crossref_primary_10_1021_acssuschemeng_7b00630
crossref_primary_10_1021_acsami_0c11152
crossref_primary_10_1007_s10570_016_0994_y
crossref_primary_10_1038_s41598_024_69346_y
crossref_primary_10_1007_s10570_020_03364_7
crossref_primary_10_1680_jgrma_15_00013
crossref_primary_10_3390_nano9020272
crossref_primary_10_1002_app_42752
crossref_primary_10_1155_2022_6519480
crossref_primary_10_1007_s10570_022_04796_z
crossref_primary_10_1002_mame_201700661
crossref_primary_10_1007_s10570_022_04587_6
crossref_primary_10_1016_j_eurpolymj_2016_01_035
crossref_primary_10_1007_s10570_016_0883_4
crossref_primary_10_1007_s10570_017_1244_7
crossref_primary_10_1016_j_carbpol_2017_07_087
crossref_primary_10_1016_j_compscitech_2018_05_010
crossref_primary_10_1016_j_bios_2017_01_068
crossref_primary_10_1016_j_carbpol_2018_04_075
crossref_primary_10_1039_C9EN00184K
crossref_primary_10_1016_j_ijbiomac_2022_07_124
crossref_primary_10_1007_s10570_022_04443_7
crossref_primary_10_1016_j_powtec_2018_07_076
crossref_primary_10_1002_pc_28629
crossref_primary_10_1007_s10570_019_02742_0
crossref_primary_10_1016_j_compositesb_2019_106988
crossref_primary_10_1088_1755_1315_572_1_012044
crossref_primary_10_1021_acssuschemeng_5b00762
crossref_primary_10_3390_polym11050781
crossref_primary_10_1007_s40725_019_00088_1
crossref_primary_10_1039_C5NR02520F
crossref_primary_10_1007_s10570_017_1220_2
crossref_primary_10_1680_gmat_14_00017
crossref_primary_10_1002_app_44361
crossref_primary_10_1021_acssuschemeng_4c01365
crossref_primary_10_3390_ma11081272
crossref_primary_10_1007_s12221_020_9380_3
crossref_primary_10_1016_j_carbpol_2020_116393
crossref_primary_10_1021_acs_est_5b00888
crossref_primary_10_1021_acssuschemeng_0c01797
crossref_primary_10_1038_s41598_020_63575_7
crossref_primary_10_1016_j_eurpolymj_2017_10_026
crossref_primary_10_1016_j_eurpolymj_2017_10_027
crossref_primary_10_3390_polym16212984
crossref_primary_10_1155_2023_7890912
crossref_primary_10_1007_s10570_023_05581_2
crossref_primary_10_1007_s40820_021_00627_1
crossref_primary_10_1007_s11090_023_10335_w
crossref_primary_10_2139_ssrn_4194362
crossref_primary_10_1016_j_jcis_2024_11_143
crossref_primary_10_1002_advs_202206243
crossref_primary_10_1007_s10924_019_01389_z
crossref_primary_10_1016_j_ijbiomac_2019_02_166
crossref_primary_10_1021_acs_iecr_1c00413
crossref_primary_10_1016_j_carbpol_2020_117136
crossref_primary_10_1016_j_diamond_2022_109347
crossref_primary_10_1016_j_carbpol_2024_122838
crossref_primary_10_1007_s10856_020_06386_6
crossref_primary_10_1039_D3DT00498H
crossref_primary_10_1134_S0965545X16060109
crossref_primary_10_1016_j_ijbiomac_2016_12_040
crossref_primary_10_1016_j_tetlet_2024_155420
crossref_primary_10_1016_j_jclepro_2017_02_083
crossref_primary_10_3390_jcs3020051
crossref_primary_10_1016_j_carbpol_2019_115079
crossref_primary_10_1002_polb_23770
crossref_primary_10_1016_j_compositesa_2022_107390
crossref_primary_10_1016_j_carbpol_2023_121579
crossref_primary_10_1016_j_jpowsour_2023_233351
crossref_primary_10_1002_pol_20220127
crossref_primary_10_1021_acs_biomac_8b01269
crossref_primary_10_35812_CelluloseChemTechnol_2023_57_96
crossref_primary_10_1007_s10853_018_2414_1
crossref_primary_10_1039_C8RA01868E
crossref_primary_10_1007_s10570_021_03958_9
crossref_primary_10_1007_s10570_020_03060_6
crossref_primary_10_1016_j_carbpol_2016_11_032
crossref_primary_10_1016_j_eurpolymj_2016_04_013
crossref_primary_10_1016_j_indcrop_2016_09_011
crossref_primary_10_1002_pol_20200507
crossref_primary_10_1021_acs_chemmater_7b00531
crossref_primary_10_1016_j_cscee_2025_101120
crossref_primary_10_1007_s10924_024_03227_3
crossref_primary_10_1016_j_colsurfa_2023_130997
crossref_primary_10_1016_j_micromeso_2021_111382
crossref_primary_10_1021_acsapm_9b01098
crossref_primary_10_1021_acs_biomac_0c01031
crossref_primary_10_1039_D0NH00696C
crossref_primary_10_1016_j_carbpol_2022_120199
crossref_primary_10_1021_acs_nanolett_8b02522
crossref_primary_10_1007_s12247_022_09671_9
crossref_primary_10_1007_s42452_019_0765_0
crossref_primary_10_1016_j_carbpol_2015_05_007
crossref_primary_10_1016_j_biteb_2021_100838
crossref_primary_10_1016_j_eurpolymj_2018_08_045
crossref_primary_10_1016_j_diamond_2020_107821
crossref_primary_10_1016_j_foodhyd_2023_108571
crossref_primary_10_1007_s10570_019_02622_7
crossref_primary_10_1002_smll_202407956
crossref_primary_10_1007_s10853_020_05105_4
crossref_primary_10_1007_s10570_024_06181_4
crossref_primary_10_1016_j_indcrop_2018_07_073
crossref_primary_10_1016_j_polymer_2017_08_064
crossref_primary_10_1007_s00396_020_04640_5
crossref_primary_10_1016_j_eurpolymj_2017_10_035
crossref_primary_10_3390_applbiosci2010009
crossref_primary_10_2139_ssrn_4059755
crossref_primary_10_1016_j_ijbiomac_2025_140098
crossref_primary_10_1007_s10854_022_09724_2
crossref_primary_10_1021_acs_macromol_9b01612
crossref_primary_10_1371_journal_pone_0222216
crossref_primary_10_1007_s10570_024_05831_x
crossref_primary_10_1016_j_colsurfa_2017_12_059
crossref_primary_10_1021_acsomega_8b00056
crossref_primary_10_1016_j_polymdegradstab_2023_110646
crossref_primary_10_1186_s12989_017_0221_5
crossref_primary_10_1016_j_polymer_2016_12_010
crossref_primary_10_1007_s10570_019_02876_1
crossref_primary_10_1007_s10924_023_02835_9
crossref_primary_10_1016_j_eurpolymj_2015_01_026
crossref_primary_10_1002_mame_201400313
crossref_primary_10_1002_pc_24583
crossref_primary_10_1016_j_cej_2022_134856
crossref_primary_10_1021_acssuschemeng_0c01593
crossref_primary_10_1039_D4MA00890A
crossref_primary_10_3390_polym11121912
crossref_primary_10_1016_j_carbpol_2016_07_073
crossref_primary_10_1016_j_colsurfa_2017_06_056
crossref_primary_10_1080_02678292_2019_1613686
crossref_primary_10_1002_adma_201704477
crossref_primary_10_1002_star_201900284
crossref_primary_10_1002_cben_201600001
crossref_primary_10_1002_app_44438
crossref_primary_10_1002_app_45648
crossref_primary_10_1016_j_cis_2020_102178
crossref_primary_10_1021_acs_iecr_7b03836
crossref_primary_10_1002_adma_202312707
crossref_primary_10_1021_acsbiomaterials_9b00802
crossref_primary_10_1002_pc_26427
crossref_primary_10_1016_j_carbpol_2015_10_027
crossref_primary_10_1016_j_rinma_2022_100261
crossref_primary_10_5254_rct_22_77013
crossref_primary_10_1002_adma_202000922
crossref_primary_10_1002_app_44789
crossref_primary_10_1002_app_42004
crossref_primary_10_1016_j_carbpol_2018_09_019
crossref_primary_10_3390_polym13213614
crossref_primary_10_1007_s00289_023_04965_5
crossref_primary_10_1155_2017_6361245
crossref_primary_10_1007_s10570_017_1482_8
crossref_primary_10_1007_s40725_015_0016_6
crossref_primary_10_1016_j_progpolymsci_2018_09_002
crossref_primary_10_1016_j_carbpol_2019_04_086
crossref_primary_10_1080_10408398_2020_1832440
crossref_primary_10_1016_j_impact_2020_100216
crossref_primary_10_1021_acs_jpcb_6b11425
crossref_primary_10_1021_acs_macromol_7b00516
crossref_primary_10_1016_j_seppur_2024_128604
crossref_primary_10_1016_j_carbpol_2024_122891
crossref_primary_10_1016_j_indcrop_2016_01_012
crossref_primary_10_1016_j_jmps_2017_11_006
crossref_primary_10_1186_s13068_023_02307_1
crossref_primary_10_1002_mren_202100046
crossref_primary_10_1080_15440478_2020_1856279
crossref_primary_10_1109_JPROC_2016_2577518
crossref_primary_10_1016_j_polymertesting_2020_106381
crossref_primary_10_1016_j_ijbiomac_2024_134557
crossref_primary_10_1007_s42114_024_01152_6
crossref_primary_10_1016_j_cossms_2019_06_005
crossref_primary_10_1016_j_indcrop_2016_01_019
crossref_primary_10_1016_j_rechem_2022_100540
crossref_primary_10_1007_s10570_016_0925_y
crossref_primary_10_1016_j_cej_2021_131086
crossref_primary_10_1039_C8GC00205C
crossref_primary_10_1177_0040517519873868
crossref_primary_10_1007_s10570_018_1958_1
crossref_primary_10_1016_j_indcrop_2024_119704
crossref_primary_10_1021_acssuschemeng_9b04005
crossref_primary_10_1016_j_jclepro_2018_11_099
crossref_primary_10_3390_s19122726
crossref_primary_10_1002_polb_23729
crossref_primary_10_1007_s13762_022_04209_5
crossref_primary_10_1016_j_ultsonch_2022_106180
crossref_primary_10_1002_admi_202201979
crossref_primary_10_1089_ind_2014_0026
crossref_primary_10_1039_D1GC02507D
crossref_primary_10_1007_s10570_022_04514_9
crossref_primary_10_1039_C6RA25707K
crossref_primary_10_1055_s_0040_1717051
crossref_primary_10_1021_acs_langmuir_0c00068
crossref_primary_10_1016_j_solmat_2022_112124
crossref_primary_10_1016_j_carbpol_2023_120789
crossref_primary_10_1016_j_jece_2020_104276
crossref_primary_10_1016_j_ijbiomac_2025_140149
crossref_primary_10_1016_j_greeac_2022_100009
crossref_primary_10_1002_SMMD_20220017
crossref_primary_10_1021_es506351r
crossref_primary_10_1016_j_ijbiomac_2023_126534
crossref_primary_10_1021_acs_macromol_8b02243
crossref_primary_10_1007_s10570_018_2175_7
crossref_primary_10_1002_ceat_202300379
crossref_primary_10_1016_j_ijbiomac_2023_126657
crossref_primary_10_1016_j_ijbiomac_2023_128834
crossref_primary_10_1007_s00289_022_04388_8
crossref_primary_10_1177_09673911221140935
crossref_primary_10_1016_j_carbpol_2015_08_068
crossref_primary_10_1021_acs_biomac_5b01245
crossref_primary_10_1021_acssuschemeng_9b00066
crossref_primary_10_1039_C6RA16295A
crossref_primary_10_1016_j_cej_2022_139439
crossref_primary_10_1016_j_compscitech_2020_108338
crossref_primary_10_1016_j_polymer_2018_04_047
crossref_primary_10_1021_acsanm_1c01244
crossref_primary_10_1016_j_polymer_2017_09_043
crossref_primary_10_1016_j_compscitech_2020_108452
crossref_primary_10_3390_foods10071512
crossref_primary_10_1002_admt_202200615
crossref_primary_10_1080_1023666X_2021_2016305
crossref_primary_10_1002_mame_201600351
crossref_primary_10_1016_j_carbpol_2020_117415
crossref_primary_10_1021_acsanm_1c02210
crossref_primary_10_1021_acs_biomac_7b00578
crossref_primary_10_1021_acs_biomac_6b00910
crossref_primary_10_1007_s10965_022_02996_6
crossref_primary_10_1016_j_indcrop_2020_112938
crossref_primary_10_1039_D1MA00049G
crossref_primary_10_1007_s10570_021_03927_2
crossref_primary_10_1080_10601325_2023_2245855
crossref_primary_10_1021_acs_biomac_9b01764
crossref_primary_10_3390_catal11010096
crossref_primary_10_1007_s00289_024_05190_4
crossref_primary_10_1016_j_ijbiomac_2018_10_187
crossref_primary_10_1039_C6NR09494E
crossref_primary_10_1016_j_polymertesting_2023_108047
crossref_primary_10_1080_25740881_2021_1976204
crossref_primary_10_1016_j_ijbiomac_2024_136949
crossref_primary_10_1080_15440478_2022_2134266
crossref_primary_10_1039_C7NR00251C
crossref_primary_10_1016_j_indcrop_2024_118493
crossref_primary_10_1016_j_jcomc_2021_100164
crossref_primary_10_1039_D0RA07972C
crossref_primary_10_1002_slct_202100831
crossref_primary_10_1039_D3GC03756H
crossref_primary_10_1007_s10570_020_03185_8
crossref_primary_10_1021_acssuschemeng_9b07833
crossref_primary_10_3390_polym13050688
crossref_primary_10_3390_ijms23084310
crossref_primary_10_1016_j_carbpol_2022_119133
crossref_primary_10_1016_j_ijadhadh_2022_103278
crossref_primary_10_1021_acssusresmgt_4c00047
crossref_primary_10_1016_j_rineng_2024_102084
crossref_primary_10_1016_j_matchemphys_2022_127092
crossref_primary_10_3390_polym11030518
crossref_primary_10_3390_pr12020297
crossref_primary_10_1016_j_ijbiomac_2022_04_037
crossref_primary_10_1016_j_susmat_2023_e00809
crossref_primary_10_1039_D3SU00302G
crossref_primary_10_1016_j_apsusc_2018_10_063
crossref_primary_10_1016_j_foodhyd_2022_107484
crossref_primary_10_1016_j_mser_2024_100799
crossref_primary_10_1002_aenm_202400208
crossref_primary_10_1021_bm5016078
crossref_primary_10_3390_polym17060783
crossref_primary_10_1038_s41467_021_21500_0
crossref_primary_10_1111_jfpe_13344
crossref_primary_10_1016_j_carbpol_2017_09_002
crossref_primary_10_1177_08927057211020800
crossref_primary_10_1021_acs_biomac_7b00026
crossref_primary_10_1002_cben_202300014
crossref_primary_10_1002_pc_24983
crossref_primary_10_1016_j_jenvman_2023_119928
crossref_primary_10_1002_pc_25701
crossref_primary_10_1016_j_bcab_2024_103124
crossref_primary_10_3390_polym12020336
crossref_primary_10_1038_srep31654
crossref_primary_10_3390_ma14216260
crossref_primary_10_1002_admi_202300162
crossref_primary_10_1002_adma_202000657
crossref_primary_10_1039_C8SM01484A
crossref_primary_10_1088_2631_6331_ab47f9
crossref_primary_10_1021_acs_chemrev_2c00816
crossref_primary_10_1039_D0NA00408A
crossref_primary_10_1002_star_202000033
crossref_primary_10_1007_s10854_018_0409_y
crossref_primary_10_1021_acsapm_3c02801
crossref_primary_10_3390_cryst12010106
crossref_primary_10_7584_ktappi_2016_48_1_005
crossref_primary_10_1007_s10570_014_0423_z
crossref_primary_10_1039_D4MA00033A
crossref_primary_10_1080_01614940_2022_2048570
crossref_primary_10_1007_s10570_018_1822_3
crossref_primary_10_1039_C7NR04656A
crossref_primary_10_1016_j_jcomc_2021_100113
crossref_primary_10_1088_2053_1591_ab8a82
crossref_primary_10_1016_j_ijbiomac_2024_132668
crossref_primary_10_1021_acsapm_1c00765
crossref_primary_10_1016_j_apsusc_2017_12_137
crossref_primary_10_1002_app_48500
crossref_primary_10_1016_j_cemconcomp_2023_105276
crossref_primary_10_1016_j_indcrop_2018_02_022
crossref_primary_10_1007_s10570_018_2044_4
crossref_primary_10_1007_s12355_016_0507_1
crossref_primary_10_1016_j_apsusc_2022_153974
crossref_primary_10_1016_j_carbpol_2019_115825
crossref_primary_10_1016_j_jiec_2017_12_034
crossref_primary_10_1088_2053_1591_aad9d4
crossref_primary_10_1021_acs_macromol_4c02323
crossref_primary_10_1002_adma_202000630
crossref_primary_10_1080_00222348_2020_1845498
crossref_primary_10_1088_1361_6528_ac6fef
crossref_primary_10_1007_s40544_024_0940_1
crossref_primary_10_1016_j_crgsc_2021_100081
crossref_primary_10_1007_s10570_018_1723_5
crossref_primary_10_1002_app_44493
crossref_primary_10_1021_acsanm_0c02881
crossref_primary_10_1002_pat_5464
crossref_primary_10_1016_j_polymer_2014_11_017
crossref_primary_10_1140_epjp_s13360_022_02999_8
crossref_primary_10_1021_acsami_4c04015
crossref_primary_10_1021_acsomega_7b00387
crossref_primary_10_1039_C7NR09037D
crossref_primary_10_1007_s13399_023_04678_9
crossref_primary_10_3390_nano11020520
crossref_primary_10_1039_D1MA00689D
crossref_primary_10_1002_adem_201901452
crossref_primary_10_1016_j_msec_2015_08_041
crossref_primary_10_1021_acsanm_3c05752
crossref_primary_10_1007_s10570_019_02377_1
crossref_primary_10_1360_SSC_2024_0212
crossref_primary_10_1016_j_carbpol_2018_07_034
crossref_primary_10_1007_s12039_015_0873_3
crossref_primary_10_1016_j_cis_2023_103076
crossref_primary_10_1016_j_ijbiomac_2023_128552
crossref_primary_10_1016_j_fpsl_2019_100429
crossref_primary_10_1007_s42464_019_00032_9
crossref_primary_10_1021_acs_biomac_6b01639
crossref_primary_10_1155_2023_8435480
crossref_primary_10_1021_acsomega_3c02016
crossref_primary_10_1016_j_culher_2023_01_003
crossref_primary_10_3390_app8122463
crossref_primary_10_1039_D2GC03384D
crossref_primary_10_1007_s10570_019_02379_z
crossref_primary_10_1177_0892705718815530
crossref_primary_10_1021_acsnano_8b03074
crossref_primary_10_1007_s10965_019_1783_8
crossref_primary_10_1007_s11837_016_2018_7
crossref_primary_10_1021_acs_macromol_1c01886
crossref_primary_10_1021_acsomega_0c06002
crossref_primary_10_1016_j_carbpol_2023_120718
crossref_primary_10_1002_pat_5246
crossref_primary_10_1021_acs_biomac_4c01034
crossref_primary_10_1016_j_ijbiomac_2023_127472
crossref_primary_10_1016_j_fct_2020_111847
crossref_primary_10_1002_mame_202400037
crossref_primary_10_1016_j_carpta_2022_100272
crossref_primary_10_1177_0021998318817814
crossref_primary_10_1007_s10570_021_04368_7
crossref_primary_10_1016_j_indcrop_2017_06_006
crossref_primary_10_1021_acssuschemeng_7b03437
crossref_primary_10_1002_adma_201603386
crossref_primary_10_1080_00405000_2019_1633216
crossref_primary_10_1016_j_carbpol_2017_03_076
crossref_primary_10_1021_bm5013458
crossref_primary_10_1080_01932691_2020_1775092
crossref_primary_10_1016_j_carbpol_2018_08_093
crossref_primary_10_5005_jp_journals_10015_2486
crossref_primary_10_3390_nano9121702
crossref_primary_10_1016_j_cocis_2017_01_003
crossref_primary_10_1039_D1EN00233C
crossref_primary_10_3389_fchem_2020_00392
crossref_primary_10_1016_j_carbpol_2018_05_087
crossref_primary_10_1007_s10570_022_04603_9
crossref_primary_10_1021_acssuschemeng_0c07451
crossref_primary_10_1002_pen_26713
crossref_primary_10_1016_j_plaphy_2023_108244
crossref_primary_10_1002_pen_24770
crossref_primary_10_7584_JKTAPPI_2017_02_49_1_25
crossref_primary_10_1021_acs_chemmater_7b01170
crossref_primary_10_1002_pen_25621
crossref_primary_10_1007_s13762_024_06299_9
crossref_primary_10_1021_acs_biomac_3c01196
crossref_primary_10_1016_j_indcrop_2023_117703
crossref_primary_10_1039_C7SM00384F
crossref_primary_10_1007_s10570_019_02683_8
crossref_primary_10_1021_acs_biomac_8b00746
crossref_primary_10_1007_s10570_018_1975_0
crossref_primary_10_2174_1389557522666220829085805
crossref_primary_10_3390_polym12051021
crossref_primary_10_1021_acsami_6b15986
crossref_primary_10_1021_acssuschemeng_6b01253
crossref_primary_10_1021_acsami_1c08056
crossref_primary_10_35812_CelluloseChemTechnol_2021_55_22
crossref_primary_10_1039_D0RA07141B
crossref_primary_10_1002_adv_22087
crossref_primary_10_1002_pc_23819
crossref_primary_10_1016_j_carbpol_2022_120104
crossref_primary_10_1109_JSEN_2024_3401204
crossref_primary_10_3390_jfb14040184
crossref_primary_10_1007_s10904_018_0855_2
crossref_primary_10_1073_pnas_1900161116
crossref_primary_10_1016_j_carbpol_2014_08_029
crossref_primary_10_1680_jgrma_23_00143
crossref_primary_10_1007_s10570_020_03176_9
crossref_primary_10_1007_s10570_021_04017_z
crossref_primary_10_1016_j_eurpolymj_2015_06_007
crossref_primary_10_1021_acs_jctc_0c00225
crossref_primary_10_1021_acs_iecr_0c04319
crossref_primary_10_1080_09205063_2020_1817706
crossref_primary_10_1016_j_carpta_2021_100065
crossref_primary_10_1039_D1RA04812K
crossref_primary_10_1039_D4RA02939A
crossref_primary_10_1021_acssuschemeng_0c05036
crossref_primary_10_3389_fchem_2022_922437
crossref_primary_10_1021_acssuschemeng_0c08429
crossref_primary_10_1016_j_apsusc_2020_145566
crossref_primary_10_1007_s10570_024_06273_1
crossref_primary_10_1007_s10570_021_03830_w
crossref_primary_10_1007_s10570_017_1249_2
crossref_primary_10_1016_j_giant_2024_100299
crossref_primary_10_1080_01694243_2019_1596650
crossref_primary_10_1007_s10570_020_03166_x
crossref_primary_10_1021_acssuschemeng_1c00815
crossref_primary_10_1016_j_carpta_2022_100234
crossref_primary_10_1007_s10570_017_1324_8
crossref_primary_10_1016_j_apsusc_2017_03_272
crossref_primary_10_1093_insilicoplants_diac004
crossref_primary_10_1007_s13233_021_9001_z
crossref_primary_10_1007_s10570_017_1555_8
crossref_primary_10_1007_s00107_024_02105_y
crossref_primary_10_1039_C8SM00433A
crossref_primary_10_1021_acsmacrolett_7b00609
crossref_primary_10_1021_acs_biomac_7b00209
crossref_primary_10_1016_j_cocis_2017_02_001
crossref_primary_10_3390_jfb14030118
crossref_primary_10_1016_j_cocis_2017_02_004
crossref_primary_10_1007_s10570_016_1158_9
crossref_primary_10_1002_adsu_202400887
crossref_primary_10_1007_s10924_021_02078_6
crossref_primary_10_1016_j_polymdegradstab_2016_03_022
crossref_primary_10_1021_acsbiomaterials_0c01618
crossref_primary_10_1016_j_indcrop_2015_12_078
crossref_primary_10_1016_j_carbpol_2021_119049
crossref_primary_10_1016_j_carbpol_2017_05_089
crossref_primary_10_1016_j_ijbiomac_2022_01_168
crossref_primary_10_1021_acs_biomac_0c00805
crossref_primary_10_1016_j_carbpol_2018_04_124
crossref_primary_10_3390_polym16213015
crossref_primary_10_1039_C6NR01737A
crossref_primary_10_3390_polym15061356
crossref_primary_10_1021_acsami_0c21337
crossref_primary_10_1016_j_carbpol_2019_115785
crossref_primary_10_1016_j_carbpol_2016_01_014
crossref_primary_10_1016_j_ijbiomac_2018_11_064
crossref_primary_10_1016_j_fpsl_2021_100715
crossref_primary_10_1021_acsami_1c03805
crossref_primary_10_1016_j_molliq_2018_06_062
crossref_primary_10_1002_app_47001
crossref_primary_10_1016_j_susmat_2024_e01010
crossref_primary_10_3390_membranes13010108
crossref_primary_10_1002_polb_24139
crossref_primary_10_1016_j_memsci_2021_119473
crossref_primary_10_1016_j_carpta_2022_100212
crossref_primary_10_1155_2023_4431941
crossref_primary_10_1002_aic_17910
crossref_primary_10_1039_D3TA01447A
Cites_doi 10.1016/j.polymer.2009.07.038
10.1039/b809212e
10.1016/j.carbpol.2012.05.025
10.1021/ma801796u
10.1021/bm061104q
10.1007/s10570-013-9870-1
10.1038/184632a0
10.1021/bm034519
10.3144/expresspolymlett.2008.60
10.1002/pat.1995.220060514
10.1021/la950133b
10.1007/BF00816384
10.1021/bm1013316
10.1021/jp960224x
10.1021/la990046
10.1016/j.carbpol.2010.10.047
10.1039/b910517d
10.1016/j.eurpolymj.2008.06.010
10.1007/s10570-009-9350-9
10.1002/mame.201000444
10.1515/9783110254600
10.1016/0032-3861(60)90040-9
10.1021/la001070m
10.1021/jp072258i
10.1016/j.biortech.2009.11.058
10.1016/j.eurpolymj.2013.04.035
10.3891/acta.chem.scand.03-0649
10.1021/bm101506j
10.1021/bm200613y
10.1002/(SICI)1097-4628(19990314)71:11<1797::AID-APP9>3.0.CO;2-E
10.1021/la9913957
10.1002/app.30308
10.1590/S1516-14392013005000033
10.1007/s10570-013-0071-8
10.1002/mame.201300232
10.1016/j.carbpol.2005.08.027
10.1002/mabi.200500094
10.1021/ma4010154
10.1016/0032-3861(91)90435-L
10.1002/mabi.200900073
10.1016/j.memsci.2008.04.009
10.1007/BF00254940
10.1016/j.carbpol.2008.11.030
10.1021/cr900339w
10.1016/0032-3861(62)90102-7
10.1021/bm050479t
10.1007/s10570-011-9507-1
10.1107/S0365110X51000751
10.1021/bm200581h
10.1021/bm0101769
10.1021/bm050828j
10.1021/bm900319k
10.1002/hlca.19360190110
10.1166/jnn.2006.906
10.1021/ma300463y
10.1007/s10570-013-0132-z
10.1002/mabi.200600034
10.1016/j.memsci.2012.09.048
10.1002/pol.1962.1205716551
10.1021/bm301955k
10.1023/A:1021065905986
10.1021/bm101106c
10.1002/app.39328
10.1515/9783110218244
10.1007/s11705-007-0041-5
10.1063/1.1661482
10.1007/s10570-009-9384-z
10.1021/la960724h
10.3139/217.2603
10.1021/am9006337
10.1007/s11051-011-0275-5
10.1007/s0089460020278
10.1111/j.1750-3841.2009.01386.x
10.1590/S0100-40422001000600020
10.1016/j.carbpol.2009.04.034
10.1021/la9028595
10.1016/j.carbpol.2010.10.036
10.1016/j.compscitech.2011.11.017
10.1021/am9003705
10.1016/j.carbpol.2010.11.022
10.1016/j.polymer.2008.08.008
10.1021/la900452a
10.1016/j.carbpol.2007.05.040
10.1007/s10570-006-9046-3
10.1021/ma0008701
10.1126/science.1153307
10.1007/978-94-007-1168-6
10.1016/j.indcrop.2010.07.018
10.1590/S0104-14282011005000048
10.1016/j.carbpol.2011.01.039
10.1016/j.eurpolymj.2013.07.017
10.1007/s10570-007-9119-y
10.1021/jf1006853
10.1002/app.20870
10.1016/0032-3861(86)90342-3
10.1039/b817223d
10.1002/mats.1995.040040409
10.1111/j.1750-3841.2009.01186.x
10.1016/j.progpolymsci.2009.10.005
10.1166/jnn.2006.132
10.1063/1.2963491
10.1039/b818056c
10.1002/polb.1995.090331110
10.1016/j.cattod.2010.03.057
10.1021/ma00215a012
10.1166/jnn.2009.dk24
10.1016/j.polymer.2011.02.004
10.1021/mz2001737
10.1002/polb.23327
10.1039/b608177k
10.1007/s10570-010-9430-x
10.1021/bm8011117
10.13073/0015-7473-61.2.104
10.1007/s10570-005-9039-7
10.1021/ma201502k
10.1098/rspa.1968.0157
10.1021/ma030532a
10.1016/j.biombioe.2011.02.001
10.1016/j.mattod.2013.06.004
10.1021/la101795s
10.1002/app.28418
10.1039/B916130A
10.1016/S0032-3861(02)00051-4
10.1021/bm900520n
10.1021/bm1010905
10.1021/ma00122a053
10.1016/j.carbpol.2012.08.057
10.1021/bm801193d
10.1016/j.eurpolymj.2009.12.025
10.1016/S0141-8130(05)80008-X
10.1021/bm8001717
10.1021/la900323n
10.1016/j.compscitech.2010.01.018
10.1002/app.38896
10.1007/s10570-012-9823-0
10.1007/s10570-012-9820-3
10.1021/bm400784j
10.1002/1097-4628(20001209)78:11<1939::AID-APP130>3.0.CO;2-9
10.1080/02678299408036525
10.1007/s10570-006-9068-x
10.1021/bm049291k
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
2015 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
– notice: 2015 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
IQODW
7SR
7U5
8FD
JG9
L7M
1XC
DOI 10.1002/polb.23490
DatabaseName Istex
CrossRef
Pascal-Francis
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList

Materials Research Database
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
Applied Sciences
EISSN 1099-0488
EndPage 806
ExternalDocumentID oai_HAL_hal_02302485v1
3296483521
28569297
10_1002_polb_23490
POLB23490
ark_67375_WNG_JQZND1PS_8
Genre reviewArticle
GroupedDBID -~X
.GA
.Y3
05W
10A
1L6
1OC
1ZS
4.4
4ZD
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
7PT
8-1
8UM
930
A03
AAEVG
AAHBH
AAHHS
AANLZ
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
BDRZF
BRXPI
BSCLL
BY8
CS3
DCZOG
DR2
DRFUL
DRSTM
EBS
EJD
F00
F5P
G-S
GNP
GODZA
GYXMG
HBH
HGLYW
HHY
HHZ
IX1
KQQ
LATKE
LAW
LEEKS
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MRFUL
MSFUL
MSSTM
MXFUL
MXSTM
OIG
P2P
P2W
P4D
QB0
QRW
RNS
ROL
RWB
RWI
RYL
SUPJJ
TN5
UB1
UPT
V2E
W99
WH7
WIH
WJL
WOHZO
WQJ
WXSBR
XG1
XPP
XV2
YQT
ZZTAW
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
AAYXX
ADMLS
AGQPQ
AGYGG
CITATION
1OB
31~
6TJ
AI.
AZFZN
FEDTE
HF~
HVGLF
IQODW
LH4
M6T
MRSTM
RIWAO
SAMSI
VH1
7SR
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
1XC
ID FETCH-LOGICAL-c5750-9d62c16e8414a3d4ad5b4f2317c9260153c46b26b59c0d6b8b0742dbd9b181c3
IEDL.DBID DR2
ISSN 0887-6266
IngestDate Wed Jun 18 06:32:38 EDT 2025
Thu Jul 10 22:19:10 EDT 2025
Fri Jul 25 12:13:56 EDT 2025
Wed Apr 02 07:27:39 EDT 2025
Tue Jul 01 01:14:15 EDT 2025
Thu Apr 24 23:05:29 EDT 2025
Wed Jan 22 17:06:38 EST 2025
Wed Oct 30 09:52:46 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords polysaccharides
State of the art
Cellulose
Polymer
biofibers
nanocomposites
mechanical properties
barrier
nanoparticles
Nanocomposite
Manufacturing
Filler
Nanocrystal
Nanocomposites
Cellulose nanocrystals CNC
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5750-9d62c16e8414a3d4ad5b4f2317c9260153c46b26b59c0d6b8b0742dbd9b181c3
Notes istex:F3EC3A613D96AAB10C19C3DBEB3DFD5E6A73CFBC
ArticleID:POLB23490
ark:/67375/WNG-JQZND1PS-8
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8181-1849
0000-0002-7334-1055
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/polb.23490
PQID 1521864833
PQPubID 1016371
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_02302485v1
proquest_miscellaneous_1671605108
proquest_journals_1521864833
pascalfrancis_primary_28569297
crossref_citationtrail_10_1002_polb_23490
crossref_primary_10_1002_polb_23490
wiley_primary_10_1002_polb_23490_POLB23490
istex_primary_ark_67375_WNG_JQZND1PS_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 June 2014
PublicationDateYYYYMMDD 2014-06-15
PublicationDate_xml – month: 06
  year: 2014
  text: 15 June 2014
  day: 15
PublicationDecade 2010
PublicationPlace Hoboken, NJ
PublicationPlace_xml – name: Hoboken, NJ
– name: Hoboken
PublicationTitle Journal of polymer science. Part B, Polymer physics
PublicationTitleAlternate J. Polym. Sci. Part B: Polym. Phys
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References S. Berlioz, S. Molina-Boisseau, Y. Nishiyama, L. Heux, Biomacromolecules 2009, 10, 2144-2151.
J. M. Raquez, Y. Murena, A. L. Goffin, Y. Habibi, B. Ruelle, F. DeBuyl, P. Dubois, Compos. Sci. Technol. 2012, 72, 544-549.
Y. Lu, L. Weng, X. Cao, Macromol. Biosci. 2005, 5, 1101-1107.
K. Kamide, Cellulose and Cellulose Derivatives; Elsevier B.V., Amsterdam, The Netherlands, 2005.
S. Neyertz, A. Pizzi, A. Merlin, B. Maigret, D. Brown, X. Deglise, J. Appl. Polym. Sci. 2000, 78, 1939-1946.
M. Bergenstråhle, L. A. Berglund, K. Mazeau, J. Phys. Chem. B 2007, 111, 9138-9145.
J. Araki, M. Wada, S. Kuga, Langmuir 2001, 17, 21-27.
J. F. Revol, L. Godbout, X. M. Dong, D. G. Gray, H. Chanzy, G. Maret, Liq. Cryst. 1994, 16, 127-134.
R. A. Khan, S. Salmieri, D. Dussault, J. Uribe-Calderon, M. R. Kamal, A. Safrany, M. Lacroix, J. Agric. Food Chem. 2010, 58, 7878-7885.
A. L. Goffin, J. M. Raquez, E. Duquesne, G. Siqueira, Y. Habibi, A. Dufresne, Ph. Dubois, Polymer 2011, 52, 1532-1538.
I. Diddens, B. Murphy, M. Krisch, M. Müller, Macromolecules 2008, 41, 9755-9759.
G. Siqueira, H. Abdillahi, J. Bras, A. Dufresne, Cellulose 2010, 17, 289-298.
G. Siqueira, J. Bras, A. Dufresne, Biomacromolecules 2009, 10, 425-432.
J. Majoinen, A. Walther, J. R. McKee, E. Kontturi, V. Aseyev, J. M. Malho, J. Ruokolainen, O. Ikkala, Biomacromolecules 2011, 12, 2997-3006.
G. Morandi, L. Heath, W. Thielemans, Langmuir 2009, 25, 8280-8286.
Y. Habibi, A. Dufresne, Biomacromolecules 2008, 9, 1974-1980.
V. Landry, A. Alemdar, P. Blanchet, Forest Prod. J. 2011, 61, 104-112.
E. Kloser, D. G. Gray, Langmuir 2010, 26, 13450-13456.
D. H. Milanez, R. M. Do Amaral, Mater. Res, 2013, 16, 635-641.
S. Iwamoto, W. Kai, A. Isogai, T. Iwata, Biomacromolecules 2009, 10, 2571-2576.
S. Boufi, H. Kaddami, A. Dufresne, Macromol. Mater. Eng., in press. Article first published online: 7 Oct 2013, DOI: 10.1002/mame.201300232.
Y. Lu, L. Weng, X. Cao, Carbohydr. Polym. 2006, 63, 198-204.
A. Šturcova, G. R. Davies, S. J. Eichhorn, Biomacromolecules 2005, 6, 1055-1061.
K. L. Dagnon, K. Shanmuganathan, C. Weder, S. J. Rowan, Macromolecules 2012, 45, 4707-4715.
E. Espino-Pérez, J. Bras, V. Ducruet, A. Guinault, A. Dufresne, S. Domenek, Eur. Polym. J. 2013, 49, 3144-3154.
X. Cao, Y. Chen, P. R. Chang, M. Stumborg, M. A. Huneault, J. Appl. Polym. Sci. 2008, 109, 3804-3810.
J. Bras, D. Viet, C. Bruzzese, A. Dufresne, Carbohydr. Polym. 2011, 84, 211-215.
Y. Wang, X. Cao, L. Zhang, Macromol. Biosci. 2006, 6, 524-531.
K. Tashiro, M. Kobayashi, Polym. Bull. 1985, 14, 213-218.
H. Althues, J. Henle, S. Kaskel, Chem. Soc. Rev. 2007, 36, 1454-1465.
L. H. Mattoso, E. S. Medeiros, D. A. Baker, J. Avloni, D. F. Wood, W. J. Orts, J. Nanosci. Nanotechnol. 2009, 9, 2917-2922.
M. Matsuo, C. Sawatari, Y. Iwai, F. Ozaki, Macromolecules 1990, 23, 3266-3275.
S. Noorani, J. Simonsen, S. Atre, Cellulose 2007, 14, 577-584.
J. P. de Mesquita, C. L. Donnici, I. F. Teixeira, F. V. Pereira, Carbohydr. Polym. 2012, 90, 210-217.
A. P. Mathew, A. Dufresne, Biomacromolecules 2002, 3, 609-617.
L. Chazeau, J. Y. Cavaillé, G. R. Canova, R. Dendievel, B. Boutherin, J. Appl. Polym. Sci. 1999, 71, 1797-1808.
Y. Chen, C. Liu, P. R. Chang, X. Cao, D. P. Anderson, Carbohydr. Polym. 2009, 76, 607-615.
K. Shanmuganathan, J. R. Capadona, S. J. Rowan, C. Weder, ACS Appl. Mater. Interfaces 2010, 2, 165-174.
S. Berndt, F. Wesarg, C. Wiegand, D. Kralisch, F. A. Müller, Cellulose 2013, 20, 771-783.
X. M. Dong, D. G. Gray, Langmuir 1997, 13, 2404-2409.
H. M. C. Azeredo, L. H. C. Mattoso, R. J. Avena-Bustillos, G. C. Filho, M. L. Munford, D. Wood, T. H. McHugh, J. Food Sci. 2010, 75, N1-N7.
C. Goussé, H. Chanzy, G. Excoffier, L. Soubeyrand, E. Fleury, Polymer 2002, 43, 2645-2651.
A. Dufresne, Mater. Today 2013, 16, 220-227.
S. Beck, J. Bouchard, R. Berry, Biomacromolecules 2011, 12, 167-172.
N. Lin, A. Dufresne, Macromolecules 2013, 46, 5570-5583.
M. J. John, S. Thomas, Carbohydr. Polym. 2008, 71, 343-364.
K. Shanmuganathan, J. R. Capadona, S. J. Rowan, C. Weder, Prog. Polym. Sci. 2010, 35, 212-222.
N. Lin, A. Dufresne, Biomacromolecules 2013, 14, 871-880.
X. Cao, Y. Habibi, L. A. Lucia, J. Mater. Chem. 2009, 19, 7137-7145.
E. M. Teixeira, D. Pasquini, A. A. S. Curvelo, E. Corradini, M. N. Belgacem, A. Dufresne, Carbohydr. Polym. 2009, 78, 422-431.
G. Siqueira, J. Bras, A. Dufresne, Langmuir 2009, 26, 402-411.
C. Aulin, S. Ahola, P. Josefsson, T. Nishino, Y. Hirose, M. Österberg, L. Wågberg, Langmuir 2009, 25, 7675-7685.
F. L. Dri, L. G. Hector Jr., R. J. Moon, P. D. Zavattieri, Cellulose 2013, 20, 2703-2718.
B. G. Rånby, Acta Chem. Scand. 1949, 3, 649-650.
J. F. Sassi, H. Chanzy, Cellulose 1995, 2, 111-127.
A. Bendahou, H.Kaddami, A.Dufresne, Eur. Polym. J. 2010, 46, 609-620.
L. Heux, G. Chauve, C. Bonini, Langmuir 2000, 16, 8210-8212.
M. Grunert, W. T. Winter, J. Polym. Environ. 2002, 10, 27-30.
M. D. Sanchez-Garcia, J. M. Laragon, Cellulose 2010, 17, 987-1004.
J. B. Miller, E. K. Hobbie, J. Polym. Sci. Part B: Polym. Phys. 2013, 51, 1195-1208.
A. Pei, Q. Zhou, L. Berglund, Compos. Sci. Technol. 2010, 70, 815-821.
D. Liu, T. Zhong, P. R. Chang, K. Li, Q. Wu, Bioresource Technol. 2010, 101, 2529-2536.
L. M. J. Kroon-Batenburg, J. Kroon, M. G. Northolt, Polym. Commun. 1986, 27, 290-292.
I. Kvien, B. S. Tanem, K. Oksman, Biomacromolecules 2005, 6, 3160-3165.
M. de Oliveira Taipina, M. M. Favaro Ferrarezi, I. V. Pagotto Yoshida, M. do Carmo Gonçalves, Cellulose 2013, 20, 217-226.
M. J. Sobkowicz, B. Braun, J. R. Dorgan, Green Chem. 2009, 11, 680-682.
S. Harrisson, G. L. Drisko, E. Malmström, A. Hult, K. L. Wooley, Biomacromolecules 2011, 12, 1214-1223.
X. Cao, Y. Chen, P. R. Chang, A. D. Muir, G. Falk, eXPRESS Polym. Lett. 2008, 2, 502-510.
R. Rusli, S. J. Eichhorn, Appl. Phys. Lett. 2008, 93, 033111-1-3.
J. Ganster, J. Blackwell, J. Mol. Model. 1996, 2, 278-285.
G. Siqueira, J. Bras, N. Follain, S. Belbekhouche, S. Marais, A. Dufresne, Carbohydr. Polym. 2013, 91, 711-717.
W. Thielemans, C. R. Warbey, D. A. Walsh, Green Chem. 2009, 11, 531-537.
N. L. Garcia de Rodriguez, W. Thielemans, A. Dufresne, Cellulose 2006, 13, 261-270.
T. Nishino, In Green Composites; C. Baillie, Ed.; CRC Press, Boca Raton, Boston, New York, Washington DC, 2004; Chapter 4, pp 61-79-79.
S. Reiling, J. Brickmann, Macromol. Theory Simul. 1995, 4, 725-743.
V. Favier, H. Chanzy, J. Y. Cavaillé, Macromolecules 1995, 28, 6365-6367.
K. Ben Azouz, E. C. Ramires, W. Van den Fonteyne, N. El Kissi, A. Dufresne, ACS Macro Lett. 2012, 1, 236-240.
Y. Habibi, L. A. Lucia, O. J. Rojas, Chem. Rev. 2010, 110, 3479-3500.
M. Roman, W. T. Winter, Biomacromolecules 2004, 5 1671-1677.
A. Saxena, T. J. Elder, A. J. Ragauskas, Carbohydr. Polym. 2011, 84, 1371-1377.
Q. Xu, J. Yi, X. Zhang, H. Zhang, Eur. Polym. J. 2008, 44, 2830-2837.
V. Favier, G. R. Canova, J. Y. Cavaillé, H. Chanzy, A. Dufresne, C. Gauthier, Polym. Adv. Technol. 1995, 6, 351-355.
K. B. R. Teodoro, E. M. Teixeira, A. C. Corrêa, A. de Campos, J. M. Marconcini, L. H. C. Mattoso, Polímeros 2011, 21, 280-285.
H. I. de Vries, Acta Crystallogr. 1951, 4, 219-226.
A. C. Corrêa, E. M. Teixeira, V. B. Carmona, K. B. R. Teodoro, C. Ribeiro, L. H. C. Mattoso, J. M. Marconcini, Cellulose 2014, 21, 311-322.
H. M. C. Azeredo, K. W. E. Miranda, M. F. Rosa, D. M. Nascimento, M. R. de Moura, Food Sci. Technol. 2012, 46, 294-297.
N. Follain, S. Belbekhouche, J. Bras, G. Siqueira, S. Marais, A. Dufresne, J. Membr. Sci. 2013, 427, 218-229.
T. Nishino, K. Takano, K. Nakamae, J. Polym. Sci. Part B: Polym. Phys. 1995, 33, 1647-1651.
J. Yi, Q. Xu, X. Zhang, H. Zhang, Cellulose 2009, 16, 989-997.
T. Ebeling, M. Paillet, R. Borsali, O. Diat, A. Dufresne, J. Y. Cavaillé, H. Chanzy, Langmuir 1999, 15, 6123-6126.
O. Van den Berg, J. R. Capadona, C. Weder, Biomacromolecules 2007, 8, 1353-1357.
J. Yi, Q. Xu, X. Zhang, H. Zhang, Polymer 2008, 49, 4406-4412.
X. M. Dong, T. Kimura, J. F. Revol, D. G. Gray, Langmuir 1996, 12, 2076-2082.
H. M. C. Azeredo, L. H. C. Mattoso, D. Wood, T. G. Williams, R. J. Avena-Bustillos, T. H. McHugh, J. Food Sci. 2009, 74, N31-N35.
C. Crestini, M. Crucianelli, M. Orlandi, R. Saladino, Catal. Today 2010, 156, 8-22.
K. Tashiro, M. Kobayashi, Polymer 1991, 32, 1516-1526.
S. Belbekhouche, J. Bras, G. Siqueira, C. Chappey, L. Lebrun, B. Khelifi, S. Marais, A. Dufresne, Carbohydr. Polym. 2011, 83, 1740-1748.
J. Mann, L. Roldan-Gonzales, Polymer 1962, 3, 549-553.
J. F. Revol, H. Bradford, J. Giasson, R. H. Marchessault, D. G. Gray, Int. J. Biol. Macromol. 1992, 14, 170-172.
F. Tanaka, T. Iwata, Cellulose 2006, 13, 509-517.
N. Wang, E. Ding, R. Cheng, Front. Chem. Eng. China 2007, 1, 228-232.
S. Qian, H. Mao, K. Sheng, J. Lu, Y. Luo, C. Hou, J. Appl. Polym. Sci. 2013, 130, 1667-1674.
M. S. Cintrón, G. P. Johnson, A. D. French, Cellulose 2011, 18, 505-516.
H. Yuan, Y. Nishiyama, M. Wada, S. Kuga, Biomacromolecules 2006, 7, 696-700.
F. Azzam, L. Heux, J. L. Putaux, B. Jean, Biomacromolecules 2010, 11, 3652-3659.
Y. J. Choi, J. Simonsen, J. Nanosci. Nanotechnol. 2006, 6, 633-639.
K. Meyer, W. Lotmar, Helv. Chim. Acta 1936, 19, 68-86.
L. R. G. Treloar, Polymer 1960, 1, 290-303.
X. Yu, S. Tong, M. Ge, L. Wu, J. Zuo, C. Cao, W. Song, J. Environ. Sci. 2 013, 25, 933-943.
I. Sakurada, Y.Nukushina, T. Ito, J. Polym. Sci. 1962, 57, 651-660.
X. Wu, R. Moon, A. Martini, Cellulose 2013, 20, 43-55.
S. A. Paralikar, J. Simonsen, J. Lombardi, J. Membr. Sci. 2008, 320, 248-258.
J. Mendez, P. K. Annamalai, S. J. Eichhorn, R. Rusli, S. J. Rowan, E. J. Foster, C. Weder, Macromolecules 2011, 44, 6827-6835.
M. A. S. Azizi Samir, F. Alloin, J. Y. Sanchez, N. El Kissi, A. Dufresne, Macromolecules 2004, 37, 1386-1393.
Y. Habibi, A. L. Goffin, N. Schiltz, E. Duquesne, P. Dubois, A. Dufresne, J. Mat. Chem. 2008, 18, 5002-5010.
L. B. Brasileiro, J. L. Colodette, D. P. Veloso, Quim. Nova 2001, 24, 819-829.
B. Braun, J. R. Dorgan, Biomacromolecules 2009, 10, 334-341.
N. Lin, J. Huang, P. R. Chang, J. Feng, J. Yu, Carbohydr. Polym. 2011, 83, 1834-1842.
K. J. Klabunde, J. Stark, O. Koper, C. Mohs, D. G. Park, S. Decker, Y. Jiang, I. Lagadic, D. Zhang, J. Phys. Chem. 1996, 100,
2010; 11
2010; 17
1995; 33
2002; 10
2010; 101
2013; 129
1960; 1
2011; 61
2004; 4
2008; 109
2011; 52
2004; 5
2009; 113
1972; 43
1951; 4
2014; 21
2009; 11
2010; 20
2010; 26
2009; 10
2000; 16
1995; 28
2002; 86
2013; 51
2004; 37
2010; 110
2007; 8
2012; 27
2007; 1
2009; 19
2010; 2
2009; 16
1985; 14
1936; 19
2010; 32
1959; 184
2010; 35
1962; 3
2011; 84
2011; 83
2013; 91
013
2002; 3
1995; 2
2001; 24
1995; 4
1995; 6
2007; 14
1996; 12
2009; 78
2009; 74
1990; 23
2009; 76
2010; 46
2000; 78
2008; 49
1986; 27
2005; 5
2005; 6
1998; 3
1994; 16
2008; 44
2008; 41
2012; 46
2012; 45
2010; 58
1949; 3
2013; 20
2008; 9
2011; 13
1996; 100
2011; 12
1992; 14
2008; 2
2008; 71
2011; 18
2007; 36
2012; 72
2006; 63
2013; 14
2013; 16
2009; 50
2010; 156
1999; 15
2002; 43
1997; 13
2008; 319
2011; 21
2001; 17
2010; 70
1996; 2
1968; 306
2009; 25
2010; 75
2013; 49
2012
2006; 13
2013; 427
2010
1991; 32
2013; 46
2008; 18
2006; 7
2006; 6
2011; 35
2005
1962; 57
2008; 320
2008; 93
2009; 26
2011; 296
2012; 90
2004; 93
2012; 1
2007; 2007
2007; 111
2000; 33
2009; 9
2011; 44
2013; 130
2013
1999; 71
2009; 1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_131_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_135_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_120_1
e_1_2_10_147_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_124_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_132_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_148_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_42_1
Nishino T. (e_1_2_10_10_1) 2004
Grunert M. (e_1_2_10_72_1) 2002; 86
e_1_2_10_110_1
e_1_2_10_91_1
Yu X. (e_1_2_10_69_1); 013
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_145_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_130_1
Azeredo H. M. C. (e_1_2_10_140_1) 2012; 46
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_146_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_142_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – reference: L. B. Brasileiro, J. L. Colodette, D. P. Veloso, Quim. Nova 2001, 24, 819-829.
– reference: N. S. Çetin, P. Tingaut, N. Ozmen, N. Henry, D. Harper, M. Dadmun, G. Sebe, Macromol. Biosci. 2009, 9, 997-1003.
– reference: J. Mann, L. Roldan-Gonzales, Polymer 1962, 3, 549-553.
– reference: A. Dufresne, Int. Polym. Proc. 2012, 27, 557-564.
– reference: S. Harrisson, G. L. Drisko, E. Malmström, A. Hult, K. L. Wooley, Biomacromolecules 2011, 12, 1214-1223.
– reference: X. M. Dong, T. Kimura, J. F. Revol, D. G. Gray, Langmuir 1996, 12, 2076-2082.
– reference: H. M. C. Azeredo, K. W. E. Miranda, M. F. Rosa, D. M. Nascimento, M. R. de Moura, Food Sci. Technol. 2012, 46, 294-297.
– reference: S. Berlioz, S. Molina-Boisseau, Y. Nishiyama, L. Heux, Biomacromolecules 2009, 10, 2144-2151.
– reference: X. Cao, Y. Chen, P. R. Chang, M. Stumborg, M. A. Huneault, J. Appl. Polym. Sci. 2008, 109, 3804-3810.
– reference: M. Schroers, A. Kokil, C. Weder, J. Appl. Polym. Sci. 2004, 93, 2883-2888.
– reference: S. Belbekhouche, J. Bras, G. Siqueira, C. Chappey, L. Lebrun, B. Khelifi, S. Marais, A. Dufresne, Carbohydr. Polym. 2011, 83, 1740-1748.
– reference: A. L. Goffin, J. M. Raquez, E. Duquesne, G. Siqueira, Y. Habibi, A. Dufresne, Ph. Dubois, Polymer 2011, 52, 1532-1538.
– reference: Y. Habibi, L. A. Lucia, O. J. Rojas, Chem. Rev. 2010, 110, 3479-3500.
– reference: M. J. John, S. Thomas, Carbohydr. Polym. 2008, 71, 343-364.
– reference: A. Pei, Q. Zhou, L. Berglund, Compos. Sci. Technol. 2010, 70, 815-821.
– reference: W. Thielemans, C. R. Warbey, D. A. Walsh, Green Chem. 2009, 11, 531-537.
– reference: S. Boufi, H. Kaddami, A. Dufresne, Macromol. Mater. Eng., in press. Article first published online: 7 Oct 2013, DOI: 10.1002/mame.201300232.
– reference: J. Bras, M. L. Hassan, C. Bruzesse, E. A. Hassan, N. A. El-Wakil, A. Dufresne, Ind. Crops Prod. 2010, 32, 627-633.
– reference: N. Lin, G. Chen, J. Huang, A. Dufresne, P. R. Chang, J. Appl. Polym. Sci. 2009, 113, 3417-3425.
– reference: M. D. Sanchez-Garcia, J. M. Laragon, Cellulose 2010, 17, 987-1004.
– reference: K. Shanmuganathan, J. R. Capadona, S. J. Rowan, C. Weder, ACS Appl. Mater. Interfaces 2010, 2, 165-174.
– reference: H. M. C. Azeredo, L. H. C. Mattoso, D. Wood, T. G. Williams, R. J. Avena-Bustillos, T. H. McHugh, J. Food Sci. 2009, 74, N31-N35.
– reference: K. Shanmuganathan, J. R. Capadona, S. J. Rowan, C. Weder, Prog. Polym. Sci. 2010, 35, 212-222.
– reference: J. R. Capadona, K. Shanmuganathan, D. J. Tyler, S. J. Rowan, C. Weder, Science 2008, 319, 1370-1374.
– reference: A. Saxena, T. J. Elder, A. J. Ragauskas, Carbohydr. Polym. 2011, 84, 1371-1377.
– reference: H. U. Suess, Pulp Bleaching Today; de Gruyter, GmbH & Co. KG: Berlin/New York, 2010.
– reference: R. A. Khan, S. beck, D. Dussault, S. Salmieri, J. Bouchard, M. Lacroix, J. Appl. Polym. Sci. 2013, 129, 3038-3046.
– reference: J. M. Raquez, Y. Murena, A. L. Goffin, Y. Habibi, B. Ruelle, F. DeBuyl, P. Dubois, Compos. Sci. Technol. 2012, 72, 544-549.
– reference: A. Dufresne. J. Nanosci. Nanotechnol. 2006, 6, 322-330.
– reference: M. de Oliveira Taipina, M. M. Favaro Ferrarezi, I. V. Pagotto Yoshida, M. do Carmo Gonçalves, Cellulose 2013, 20, 217-226.
– reference: K. L. Dagnon, K. Shanmuganathan, C. Weder, S. J. Rowan, Macromolecules 2012, 45, 4707-4715.
– reference: J. Ganster, J. Blackwell, J. Mol. Model. 1996, 2, 278-285.
– reference: V. Favier, G. R. Canova, J. Y. Cavaillé, H. Chanzy, A. Dufresne, C. Gauthier, Polym. Adv. Technol. 1995, 6, 351-355.
– reference: M. A. Jaswon, P. P. Gillis, R.E. Mark, Proc. Roy. Soc. 1968, 306, 389-412.
– reference: J. P. de Mesquita, C. L. Donnici, I. F. Teixeira, F. V. Pereira, Carbohydr. Polym. 2012, 90, 210-217.
– reference: J. Bras, D. Viet, C. Bruzzese, A. Dufresne, Carbohydr. Polym. 2011, 84, 211-215.
– reference: K. Shanmuganathan, J. R. Capadona, S. J. Rowan, C. Weder, J. Mater. Chem. 2010, 20, 180-186.
– reference: X. M. Dong, D. G. Gray, Langmuir 1997, 13, 2404-2409.
– reference: E. Kloser, D. G. Gray, Langmuir 2010, 26, 13450-13456.
– reference: L. R. G. Treloar, Polymer 1960, 1, 290-303.
– reference: S. Noorani, J. Simonsen, S. Atre, Cellulose 2007, 14, 577-584.
– reference: S. Berndt, F. Wesarg, C. Wiegand, D. Kralisch, F. A. Müller, Cellulose 2013, 20, 771-783.
– reference: K. Tashiro, M. Kobayashi, Polymer 1991, 32, 1516-1526.
– reference: C. Aulin, S. Ahola, P. Josefsson, T. Nishino, Y. Hirose, M. Österberg, L. Wågberg, Langmuir 2009, 25, 7675-7685.
– reference: J. Araki, M. Wada, S. Kuga, Langmuir 2001, 17, 21-27.
– reference: D. H. Milanez, R. M. Do Amaral, Mater. Res, 2013, 16, 635-641.
– reference: X. Yu, S. Tong, M. Ge, L. Wu, J. Zuo, C. Cao, W. Song, J. Environ. Sci. 2 013, 25, 933-943.
– reference: G. Morandi, L. Heath, W. Thielemans, Langmuir 2009, 25, 8280-8286.
– reference: S. Neyertz, A. Pizzi, A. Merlin, B. Maigret, D. Brown, X. Deglise, J. Appl. Polym. Sci. 2000, 78, 1939-1946.
– reference: S. J. Eichhorn, G. R. Davies, Cellulose 2006, 13, 291-307.
– reference: R. H. Marchessault, F. F. Morehead, N. M. Walter, Nature 1959, 184, 632-633.
– reference: I. Kvien, B. S. Tanem, K. Oksman, Biomacromolecules 2005, 6, 3160-3165.
– reference: I. Diddens, B. Murphy, M. Krisch, M. Müller, Macromolecules 2008, 41, 9755-9759.
– reference: T. Nishino, K. Takano, K. Nakamae, J. Polym. Sci. Part B: Polym. Phys. 1995, 33, 1647-1651.
– reference: M. Roman, W. T. Winter, Biomacromolecules 2004, 5 1671-1677.
– reference: K. J. Klabunde, J. Stark, O. Koper, C. Mohs, D. G. Park, S. Decker, Y. Jiang, I. Lagadic, D. Zhang, J. Phys. Chem. 1996, 100, 12142-12153.
– reference: K. Kamide, Cellulose and Cellulose Derivatives; Elsevier B.V., Amsterdam, The Netherlands, 2005.
– reference: F. Tanaka, T. Iwata, Cellulose 2006, 13, 509-517.
– reference: H. Yuan, Y. Nishiyama, M. Wada, S. Kuga, Biomacromolecules 2006, 7, 696-700.
– reference: N. Wang, E. Ding, R. Cheng, Front. Chem. Eng. China 2007, 1, 228-232.
– reference: M. S. Cintrón, G. P. Johnson, A. D. French, Cellulose 2011, 18, 505-516.
– reference: M. Grunert, W. T. Winter, J. Polym. Environ. 2002, 10, 27-30.
– reference: Y. J. Choi, J. Simonsen, J. Nanosci. Nanotechnol. 2006, 6, 633-639.
– reference: S. Reiling, J. Brickmann, Macromol. Theory Simul. 1995, 4, 725-743.
– reference: S. Iwamoto, W. Kai, A. Isogai, T. Iwata, Biomacromolecules 2009, 10, 2571-2576.
– reference: J. Mendez, P. K. Annamalai, S. J. Eichhorn, R. Rusli, S. J. Rowan, E. J. Foster, C. Weder, Macromolecules 2011, 44, 6827-6835.
– reference: X. Wu, R. Moon, A. Martini, Cellulose 2013, 20, 43-55.
– reference: J. O. Zoppe, M. S. Peresin, Y. Habibi, R. A. Venditti, O. J. Rojas, ACS Appl. Mater. Interfaces 2009, 1, 1996-2004.
– reference: C. Mancera, F. Ferrando, J. Salvadó, N. E. El Mansouri, Biomass Bioenerg. 2011, 35, 2072-2079.
– reference: C. Goussé, H. Chanzy, G. Excoffier, L. Soubeyrand, E. Fleury, Polymer 2002, 43, 2645-2651.
– reference: N. Lin, A. Dufresne, Macromolecules 2013, 46, 5570-5583.
– reference: E. M. Teixeira, D. Pasquini, A. A. S. Curvelo, E. Corradini, M. N. Belgacem, A. Dufresne, Carbohydr. Polym. 2009, 78, 422-431.
– reference: H. M. C. Azeredo, L. H. C. Mattoso, R. J. Avena-Bustillos, G. C. Filho, M. L. Munford, D. Wood, T. H. McHugh, J. Food Sci. 2010, 75, N1-N7.
– reference: R. Rusli, S. J. Eichhorn, Appl. Phys. Lett. 2008, 93, 033111-1-3.
– reference: A. Dufresne, Nanocellulose: From Nature to High Performance Tailored Materials; Walter de Gruyter GmbH: Berlin/Boston, 2012.
– reference: K. Meyer, W. Lotmar, Helv. Chim. Acta 1936, 19, 68-86.
– reference: A. L. Goffin, J. M. Raquez, E. Duquesne, G. Siqueira, Y. Habibi, A. Dufresne, Ph. Dubois, Biomacromolecules 2011, 12, 2456-2465.
– reference: H. Ma, C. Burger, B. S. Hsiao, B. Chu, Biomacromolecules 2011, 12, 970-976.
– reference: I. Sakurada, Y.Nukushina, T. Ito, J. Polym. Sci. 1962, 57, 651-660.
– reference: J. Yi, Q. Xu, X. Zhang, H. Zhang, Cellulose 2009, 16, 989-997.
– reference: A. C. Corrêa, E. M. Teixeira, V. B. Carmona, K. B. R. Teodoro, C. Ribeiro, L. H. C. Mattoso, J. M. Marconcini, Cellulose 2014, 21, 311-322.
– reference: M. A. S. Azizi Samir, F. Alloin, J. Y. Sanchez, N. El Kissi, A. Dufresne, Macromolecules 2004, 37, 1386-1393.
– reference: J. C. Halpin, J. L. Kardos, J. Appl. Phys. 1972, 43, 2235-2241.
– reference: H. Althues, J. Henle, S. Kaskel, Chem. Soc. Rev. 2007, 36, 1454-1465.
– reference: J. F. Revol, L. Godbout, X. M. Dong, D. G. Gray, H. Chanzy, G. Maret, Liq. Cryst. 1994, 16, 127-134.
– reference: A. P. Mathew, A. Dufresne, Biomacromolecules 2002, 3, 609-617.
– reference: J. Majoinen, A. Walther, J. R. McKee, E. Kontturi, V. Aseyev, J. M. Malho, J. Ruokolainen, O. Ikkala, Biomacromolecules 2011, 12, 2997-3006.
– reference: M. Grunert, W. T. Winter, Polym. Mater. Sci. Eng. 2002, 86, 367-368.
– reference: Y. Lu, L. Weng, X. Cao, Macromol. Biosci. 2005, 5, 1101-1107.
– reference: X. Cao, Y. Habibi, L. A. Lucia, J. Mater. Chem. 2009, 19, 7137-7145.
– reference: N. L. Garcia de Rodriguez, W. Thielemans, A. Dufresne, Cellulose 2006, 13, 261-270.
– reference: Y. Habibi, A. L. Goffin, N. Schiltz, E. Duquesne, P. Dubois, A. Dufresne, J. Mat. Chem. 2008, 18, 5002-5010.
– reference: V. Landry, A. Alemdar, P. Blanchet, Forest Prod. J. 2011, 61, 104-112.
– reference: Y. Lu, L. Weng, X. Cao, Carbohydr. Polym. 2006, 63, 198-204.
– reference: B. G. Rånby, Acta Chem. Scand. 1949, 3, 649-650.
– reference: M. Martinez-Sanz, M. A. Abdelwahab, A. Lopez-Rubio, J. M. Lagaron, E. Chiellini, T. G. Williams, D. F. Wood, W. J. Orts, S. H. Imam, Eur. Polym. J. 2013, 49, 2062-2072.
– reference: T. Nishino, In Green Composites; C. Baillie, Ed.; CRC Press, Boca Raton, Boston, New York, Washington DC, 2004; Chapter 4, pp 61-79-79.
– reference: C. Crestini, M. Crucianelli, M. Orlandi, R. Saladino, Catal. Today 2010, 156, 8-22.
– reference: J. F. Revol, H. Bradford, J. Giasson, R. H. Marchessault, D. G. Gray, Int. J. Biol. Macromol. 1992, 14, 170-172.
– reference: M. J. Sobkowicz, B. Braun, J. R. Dorgan, Green Chem. 2009, 11, 680-682.
– reference: Y. Wang, X. Cao, L. Zhang, Macromol. Biosci. 2006, 6, 524-531.
– reference: V. Khoshkava, M. R. Kamal, Biomacromolecules 2013, 14, 3155-3163.
– reference: E. Espino-Pérez, J. Bras, V. Ducruet, A. Guinault, A. Dufresne, S. Domenek, Eur. Polym. J. 2013, 49, 3144-3154.
– reference: A. Bendahou, H.Kaddami, A.Dufresne, Eur. Polym. J. 2010, 46, 609-620.
– reference: K. B. R. Teodoro, E. M. Teixeira, A. C. Corrêa, A. de Campos, J. M. Marconcini, L. H. C. Mattoso, Polímeros 2011, 21, 280-285.
– reference: K. Tashiro, M. Kobayashi, Polym. Bull. 1985, 14, 213-218.
– reference: D. Liu, T. Zhong, P. R. Chang, K. Li, Q. Wu, Bioresource Technol. 2010, 101, 2529-2536.
– reference: X. Cao, Y. Chen, P. R. Chang, A. D. Muir, G. Falk, eXPRESS Polym. Lett. 2008, 2, 502-510.
– reference: C. M. Roco, C. A. Mirkin, M. C. Hersam, J. Nanopart. Res. 2011, 13, 897-919.
– reference: J. Yi, Q. Xu, X. Zhang, H. Zhang, Polymer 2008, 49, 4406-4412.
– reference: R. A. Khan, S. Salmieri, D. Dussault, J. Uribe-Calderon, M. R. Kamal, A. Safrany, M. Lacroix, J. Agric. Food Chem. 2010, 58, 7878-7885.
– reference: Y. Chen, C. Liu, P. R. Chang, X. Cao, D. P. Anderson, Carbohydr. Polym. 2009, 76, 607-615.
– reference: L. Heux, G. Chauve, C. Bonini, Langmuir 2000, 16, 8210-8212.
– reference: L. Chazeau, J. Y. Cavaillé, G. R. Canova, R. Dendievel, B. Boutherin, J. Appl. Polym. Sci. 1999, 71, 1797-1808.
– reference: L. H. Mattoso, E. S. Medeiros, D. A. Baker, J. Avloni, D. F. Wood, W. J. Orts, J. Nanosci. Nanotechnol. 2009, 9, 2917-2922.
– reference: G. Siqueira, J. Bras, N. Follain, S. Belbekhouche, S. Marais, A. Dufresne, Carbohydr. Polym. 2013, 91, 711-717.
– reference: G. Siqueira, J. Bras, A. Dufresne, Langmuir 2009, 26, 402-411.
– reference: Y. Habibi, A. Dufresne, Biomacromolecules 2008, 9, 1974-1980.
– reference: N. Follain, S. Belbekhouche, J. Bras, G. Siqueira, S. Marais, A. Dufresne, J. Membr. Sci. 2013, 427, 218-229.
– reference: F. L. Dri, L. G. Hector Jr., R. J. Moon, P. D. Zavattieri, Cellulose 2013, 20, 2703-2718.
– reference: A. J. de Menezes, G. Siqueira, A. A. S. Curvelo, A. Dufresne, Polymer 2009, 50, 4552-4563.
– reference: M. N. Anglès, A. Dufresne, Macromolecules 2000, 33, 8344-8353.
– reference: H. I. de Vries, Acta Crystallogr. 1951, 4, 219-226.
– reference: L. M. J. Kroon-Batenburg, J. Kroon, M. G. Northolt, Polym. Commun. 1986, 27, 290-292.
– reference: M. Matsuo, C. Sawatari, Y. Iwai, F. Ozaki, Macromolecules 1990, 23, 3266-3275.
– reference: A. Dufresne, Mater. Today 2013, 16, 220-227.
– reference: T. Ebeling, M. Paillet, R. Borsali, O. Diat, A. Dufresne, J. Y. Cavaillé, H. Chanzy, Langmuir 1999, 15, 6123-6126.
– reference: J. F. Sassi, H. Chanzy, Cellulose 1995, 2, 111-127.
– reference: B. Braun, J. R. Dorgan, Biomacromolecules 2009, 10, 334-341.
– reference: J. B. Miller, E. K. Hobbie, J. Polym. Sci. Part B: Polym. Phys. 2013, 51, 1195-1208.
– reference: A. Šturcova, G. R. Davies, S. J. Eichhorn, Biomacromolecules 2005, 6, 1055-1061.
– reference: O. Van den Berg, J. R. Capadona, C. Weder, Biomacromolecules 2007, 8, 1353-1357.
– reference: S. Qian, H. Mao, K. Sheng, J. Lu, Y. Luo, C. Hou, J. Appl. Polym. Sci. 2013, 130, 1667-1674.
– reference: V. Favier, H. Chanzy, J. Y. Cavaillé, Macromolecules 1995, 28, 6365-6367.
– reference: K. Ben Azouz, E. C. Ramires, W. Van den Fonteyne, N. El Kissi, A. Dufresne, ACS Macro Lett. 2012, 1, 236-240.
– reference: G. Siqueira, H. Abdillahi, J. Bras, A. Dufresne, Cellulose 2010, 17, 289-298.
– reference: G. Siqueira, J. Bras, A. Dufresne, Biomacromolecules 2009, 10, 425-432.
– reference: F. Azzam, L. Heux, J. L. Putaux, B. Jean, Biomacromolecules 2010, 11, 3652-3659.
– reference: M. Bergenstråhle, L. A. Berglund, K. Mazeau, J. Phys. Chem. B 2007, 111, 9138-9145.
– reference: S. Beck, J. Bouchard, R. Berry, Biomacromolecules 2011, 12, 167-172.
– reference: S. A. Paralikar, J. Simonsen, J. Lombardi, J. Membr. Sci. 2008, 320, 248-258.
– reference: N. Lin, J. Huang, P. R. Chang, J. Feng, J. Yu, Carbohydr. Polym. 2011, 83, 1834-1842.
– reference: Q. Xu, J. Yi, X. Zhang, H. Zhang, Eur. Polym. J. 2008, 44, 2830-2837.
– reference: A. Bendahou, H. Kaddami, E. Espuche, F. Gouanvé, A. Dufresne, Macromol. Mater. Eng. 2011, 296, 760-769.
– reference: N. Lin, A. Dufresne, Biomacromolecules 2013, 14, 871-880.
– volume: 13
  start-page: 291
  year: 2006
  end-page: 307
  publication-title: Cellulose
– volume: 2
  start-page: 278
  year: 1996
  end-page: 285
  publication-title: J. Mol. Model.
– volume: 49
  start-page: 2062
  year: 2013
  end-page: 2072
  publication-title: Eur. Polym. J.
– volume: 3
  start-page: 131
  year: 1998
  end-page: 172
– volume: 50
  start-page: 4552
  year: 2009
  end-page: 4563
  publication-title: Polymer
– year: 2005
– volume: 51
  start-page: 1195
  year: 2013
  end-page: 1208
  publication-title: J. Polym. Sci. Part B: Polym. Phys.
– volume: 18
  start-page: 505
  year: 2011
  end-page: 516
  publication-title: Cellulose
– volume: 21
  start-page: 311
  year: 2014
  end-page: 322
  publication-title: Cellulose
– volume: 10
  start-page: 2571
  year: 2009
  end-page: 2576
  publication-title: Biomacromolecules
– volume: 93
  start-page: 2883
  year: 2004
  end-page: 2888
  publication-title: J. Appl. Polym. Sci.
– volume: 8
  start-page: 1353
  year: 2007
  end-page: 1357
  publication-title: Biomacromolecules
– volume: 10
  start-page: 27
  year: 2002
  end-page: 30
  publication-title: J. Polym. Environ.
– volume: 32
  start-page: 627
  year: 2010
  end-page: 633
  publication-title: Ind. Crops Prod.
– volume: 49
  start-page: 3144
  year: 2013
  end-page: 3154
  publication-title: Eur. Polym. J.
– volume: 3
  start-page: 609
  year: 2002
  end-page: 617
  publication-title: Biomacromolecules
– volume: 5
  start-page: 1101
  year: 2005
  end-page: 1107
  publication-title: Macromol. Biosci.
– volume: 32
  start-page: 1516
  year: 1991
  end-page: 1526
  publication-title: Polymer
– volume: 84
  start-page: 1371
  year: 2011
  end-page: 1377
  publication-title: Carbohydr. Polym.
– volume: 78
  start-page: 422
  year: 2009
  end-page: 431
  publication-title: Carbohydr. Polym.
– volume: 13
  start-page: 509
  year: 2006
  end-page: 517
  publication-title: Cellulose
– volume: 44
  start-page: 2830
  year: 2008
  end-page: 2837
  publication-title: Eur. Polym. J.
– volume: 20
  start-page: 2703
  year: 2013
  end-page: 2718
  publication-title: Cellulose
– volume: 100
  start-page: 12142
  year: 1996
  end-page: 12153
  publication-title: J. Phys. Chem.
– volume: 1
  start-page: 1996
  year: 2009
  end-page: 2004
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 557
  year: 2012
  end-page: 564
  publication-title: Int. Polym. Proc.
– volume: 17
  start-page: 987
  year: 2010
  end-page: 1004
  publication-title: Cellulose
– volume: 74
  start-page: N31
  year: 2009
  end-page: N35
  publication-title: J. Food Sci.
– volume: 12
  start-page: 167
  year: 2011
  end-page: 172
  publication-title: Biomacromolecules
– volume: 130
  start-page: 1667
  year: 2013
  end-page: 1674
  publication-title: J. Appl. Polym. Sci.
– volume: 14
  start-page: 170
  year: 1992
  end-page: 172
  publication-title: Int. J. Biol. Macromol.
– volume: 83
  start-page: 1834
  year: 2011
  end-page: 1842
  publication-title: Carbohydr. Polym.
– volume: 15
  start-page: 6123
  year: 1999
  end-page: 6126
  publication-title: Langmuir
– volume: 91
  start-page: 711
  year: 2013
  end-page: 717
  publication-title: Carbohydr. Polym.
– volume: 58
  start-page: 7878
  year: 2010
  end-page: 7885
  publication-title: J. Agric. Food Chem.
– volume: 16
  start-page: 220
  year: 2013
  end-page: 227
  publication-title: Mater. Today
– volume: 6
  start-page: 3160
  year: 2005
  end-page: 3165
  publication-title: Biomacromolecules
– volume: 45
  start-page: 4707
  year: 2012
  end-page: 4715
  publication-title: Macromolecules
– volume: 6
  start-page: 351
  year: 1995
  end-page: 355
  publication-title: Polym. Adv. Technol.
– volume: 83
  start-page: 1740
  year: 2011
  end-page: 1748
  publication-title: Carbohydr. Polym.
– volume: 78
  start-page: 1939
  year: 2000
  end-page: 1946
  publication-title: J. Appl. Polym. Sci.
– volume: 7
  start-page: 696
  year: 2006
  end-page: 700
  publication-title: Biomacromolecules
– volume: 1
  start-page: 228
  year: 2007
  end-page: 232
  publication-title: Front. Chem. Eng. China
– volume: 3
  start-page: 549
  year: 1962
  end-page: 553
  publication-title: Polymer
– volume: 93
  start-page: 033111‐1‐3
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 70
  start-page: 815
  year: 2010
  end-page: 821
  publication-title: Compos. Sci. Technol.
– volume: 84
  start-page: 211
  year: 2011
  end-page: 215
  publication-title: Carbohydr. Polym.
– volume: 25
  start-page: 7675
  year: 2009
  end-page: 7685
  publication-title: Langmuir
– volume: 90
  start-page: 210
  year: 2012
  end-page: 217
  publication-title: Carbohydr. Polym.
– volume: 184
  start-page: 632
  year: 1959
  end-page: 633
  publication-title: Nature
– volume: 20
  start-page: 217
  year: 2013
  end-page: 226
  publication-title: Cellulose
– volume: 12
  start-page: 970
  year: 2011
  end-page: 976
  publication-title: Biomacromolecules
– volume: 20
  start-page: 180
  year: 2010
  end-page: 186
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 1055
  year: 2005
  end-page: 1061
  publication-title: Biomacromolecules
– volume: 129
  start-page: 3038
  year: 2013
  end-page: 3046
  publication-title: J. Appl. Polym. Sci.
– volume: 46
  start-page: 5570
  year: 2013
  end-page: 5583
  publication-title: Macromolecules
– volume: 16
  start-page: 127
  year: 1994
  end-page: 134
  publication-title: Liq. Cryst.
– volume: 156
  start-page: 8
  year: 2010
  end-page: 22
  publication-title: Catal. Today
– year: 2010
– volume: 37
  start-page: 1386
  year: 2004
  end-page: 1393
  publication-title: Macromolecules
– volume: 26
  start-page: 13450
  year: 2010
  end-page: 13456
  publication-title: Langmuir
– volume: 17
  start-page: 21
  year: 2001
  end-page: 27
  publication-title: Langmuir
– volume: 14
  start-page: 871
  year: 2013
  end-page: 880
  publication-title: Biomacromolecules
– volume: 72
  start-page: 544
  year: 2012
  end-page: 549
  publication-title: Compos. Sci. Technol.
– volume: 2007
  year: 2007
– volume: 1
  start-page: 290
  year: 1960
  end-page: 303
  publication-title: Polymer
– volume: 24
  start-page: 819
  year: 2001
  end-page: 829
  publication-title: Quim. Nova
– volume: 71
  start-page: 1797
  year: 1999
  end-page: 1808
  publication-title: J. Appl. Polym. Sci.
– volume: 10
  start-page: 2144
  year: 2009
  end-page: 2151
  publication-title: Biomacromolecules
– volume: 320
  start-page: 248
  year: 2008
  end-page: 258
  publication-title: J. Membr. Sci.
– year: 2013
– volume: 26
  start-page: 402
  year: 2009
  end-page: 411
  publication-title: Langmuir
– volume: 10
  start-page: 425
  year: 2009
  end-page: 432
  publication-title: Biomacromolecules
– volume: 13
  start-page: 2404
  year: 1997
  end-page: 2409
  publication-title: Langmuir
– volume: 16
  start-page: 989
  year: 2009
  end-page: 997
  publication-title: Cellulose
– volume: 4
  start-page: 61
  year: 2004
  end-page: 79
– volume: 16
  start-page: 8210
  year: 2000
  end-page: 8212
  publication-title: Langmuir
– volume: 14
  start-page: 213
  year: 1985
  end-page: 218
  publication-title: Polym. Bull.
– volume: 113
  start-page: 3417
  year: 2009
  end-page: 3425
  publication-title: J. Appl. Polym. Sci.
– volume: 75
  start-page: N1
  year: 2010
  end-page: N7
  publication-title: J. Food Sci.
– volume: 11
  start-page: 680
  year: 2009
  end-page: 682
  publication-title: Green Chem.
– volume: 2
  start-page: 165
  year: 2010
  end-page: 174
  publication-title: ACS Appl. Mater. Interfaces
– volume: 109
  start-page: 3804
  year: 2008
  end-page: 3810
  publication-title: J. Appl. Polym. Sci.
– volume: 9
  start-page: 997
  year: 2009
  end-page: 1003
  publication-title: Macromol. Biosci.
– volume: 111
  start-page: 9138
  year: 2007
  end-page: 9145
  publication-title: J. Phys. Chem. B
– volume: 3
  start-page: 649
  year: 1949
  end-page: 650
  publication-title: Acta Chem. Scand.
– volume: 49
  start-page: 4406
  year: 2008
  end-page: 4412
  publication-title: Polymer
– volume: 35
  start-page: 212
  year: 2010
  end-page: 222
  publication-title: Prog. Polym. Sci.
– volume: 36
  start-page: 1454
  year: 2007
  end-page: 1465
  publication-title: Chem. Soc. Rev.
– volume: 63
  start-page: 198
  year: 2006
  end-page: 204
  publication-title: Carbohydr. Polym.
– volume: 35
  start-page: 2072
  year: 2011
  end-page: 2079
  publication-title: Biomass Bioenerg.
– volume: 52
  start-page: 1532
  year: 2011
  end-page: 1538
  publication-title: Polymer
– volume: 319
  start-page: 1370
  year: 2008
  end-page: 1374
  publication-title: Science
– volume: 46
  start-page: 609
  year: 2010
  end-page: 620
  publication-title: Eur. Polym. J.
– volume: 17
  start-page: 289
  year: 2010
  end-page: 298
  publication-title: Cellulose
– volume: 6
  start-page: 633
  year: 2006
  end-page: 639
  publication-title: J. Nanosci. Nanotechnol.
– volume: 16
  start-page: 635
  year: 2013
  end-page: 641
  publication-title: Mater. Res
– volume: 4
  start-page: 725
  year: 1995
  end-page: 743
  publication-title: Macromol. Theory Simul.
– volume: 57
  start-page: 651
  year: 1962
  end-page: 660
  publication-title: J. Polym. Sci.
– volume: 12
  start-page: 2997
  year: 2011
  end-page: 3006
  publication-title: Biomacromolecules
– volume: 2
  start-page: 502
  year: 2008
  end-page: 510
  publication-title: eXPRESS Polym. Lett.
– volume: 101
  start-page: 2529
  year: 2010
  end-page: 2536
  publication-title: Bioresource Technol.
– volume: 427
  start-page: 218
  year: 2013
  end-page: 229
  publication-title: J. Membr. Sci.
– volume: 12
  start-page: 1214
  year: 2011
  end-page: 1223
  publication-title: Biomacromolecules
– volume: 10
  start-page: 334
  year: 2009
  end-page: 341
  publication-title: Biomacromolecules
– volume: 19
  start-page: 68
  year: 1936
  end-page: 86
  publication-title: Helv. Chim. Acta
– volume: 71
  start-page: 343
  year: 2008
  end-page: 364
  publication-title: Carbohydr. Polym.
– volume: 41
  start-page: 9755
  year: 2008
  end-page: 9759
  publication-title: Macromolecules
– volume: 11
  start-page: 531
  year: 2009
  end-page: 537
  publication-title: Green Chem.
– volume: 9
  start-page: 1974
  year: 2008
  end-page: 1980
  publication-title: Biomacromolecules
– volume: 12
  start-page: 2456
  year: 2011
  end-page: 2465
  publication-title: Biomacromolecules
– volume: 13
  start-page: 261
  year: 2006
  end-page: 270
  publication-title: Cellulose
– volume: 33
  start-page: 1647
  year: 1995
  end-page: 1651
  publication-title: J. Polym. Sci. Part B: Polym. Phys.
– volume: 18
  start-page: 5002
  year: 2008
  end-page: 5010
  publication-title: J. Mat. Chem.
– volume: 46
  start-page: 294
  year: 2012
  end-page: 297
  publication-title: Food Sci. Technol.
– volume: 21
  start-page: 280
  year: 2011
  end-page: 285
  publication-title: Polímeros
– volume: 25
  start-page: 8280
  year: 2009
  end-page: 8286
  publication-title: Langmuir
– volume: 1
  start-page: 236
  year: 2012
  end-page: 240
  publication-title: ACS Macro Lett.
– volume: 9
  start-page: 2917
  year: 2009
  end-page: 2922
  publication-title: Nanosci. Nanotechnol.
– volume: 6
  start-page: 322
  year: 2006
  end-page: 330
  publication-title: J. Nanosci. Nanotechnol.
– volume: 61
  start-page: 104
  year: 2011
  end-page: 112
  publication-title: Forest Prod. J.
– volume: 20
  start-page: 771
  year: 2013
  end-page: 783
  publication-title: Cellulose
– volume: 44
  start-page: 6827
  year: 2011
  end-page: 6835
  publication-title: Macromolecules
– volume: 76
  start-page: 607
  year: 2009
  end-page: 615
  publication-title: Carbohydr. Polym.
– volume: 4
  start-page: 219
  year: 1951
  end-page: 226
  publication-title: Acta Crystallogr.
– volume: 5
  start-page: 1671
  year: 2004
  end-page: 1677
  publication-title: Biomacromolecules
– volume: 43
  start-page: 2645
  year: 2002
  end-page: 2651
  publication-title: Polymer
– publication-title: Macromol. Mater. Eng.
– volume: 306
  start-page: 389
  year: 1968
  end-page: 412
  publication-title: Proc. Roy. Soc.
– volume: 86
  start-page: 367
  year: 2002
  end-page: 368
  publication-title: Polym. Mater. Sci. Eng.
– volume: 20
  start-page: 43
  year: 2013
  end-page: 55
  publication-title: Cellulose
– volume: 23
  start-page: 3266
  year: 1990
  end-page: 3275
  publication-title: Macromolecules
– year: 2012
– volume: 110
  start-page: 3479
  year: 2010
  end-page: 3500
  publication-title: Chem. Rev.
– volume: 27
  start-page: 290
  year: 1986
  end-page: 292
  publication-title: Polym. Commun.
– volume: 14
  start-page: 3155
  year: 2013
  end-page: 3163
  publication-title: Biomacromolecules
– volume: 14
  start-page: 577
  year: 2007
  end-page: 584
  publication-title: Cellulose
– volume: 43
  start-page: 2235
  year: 1972
  end-page: 2241
  publication-title: J. Appl. Phys.
– volume: 33
  start-page: 8344
  year: 2000
  end-page: 8353
  publication-title: Macromolecules
– volume: 19
  start-page: 7137
  year: 2009
  end-page: 7145
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 524
  year: 2006
  end-page: 531
  publication-title: Macromol. Biosci.
– volume: 013
  start-page: 933
  issue: 25
  end-page: 943
  publication-title: J. Environ. Sci. 2
– volume: 28
  start-page: 6365
  year: 1995
  end-page: 6367
  publication-title: Macromolecules
– volume: 2
  start-page: 111
  year: 1995
  end-page: 127
  publication-title: Cellulose
– volume: 12
  start-page: 2076
  year: 1996
  end-page: 2082
  publication-title: Langmuir
– volume: 13
  start-page: 897
  year: 2011
  end-page: 919
  publication-title: J. Nanopart. Res.
– volume: 296
  start-page: 760
  year: 2011
  end-page: 769
  publication-title: Macromol. Mater. Eng.
– volume: 11
  start-page: 3652
  year: 2010
  end-page: 3659
  publication-title: Biomacromolecules
– ident: e_1_2_10_11_1
  doi: 10.1016/j.polymer.2009.07.038
– ident: e_1_2_10_47_1
  doi: 10.1039/b809212e
– ident: e_1_2_10_134_1
  doi: 10.1016/j.carbpol.2012.05.025
– ident: e_1_2_10_41_1
  doi: 10.1021/ma801796u
– ident: e_1_2_10_56_1
  doi: 10.1021/bm061104q
– ident: e_1_2_10_149_1
  doi: 10.1007/s10570-013-9870-1
– ident: e_1_2_10_108_1
  doi: 10.1038/184632a0
– ident: e_1_2_10_46_1
  doi: 10.1021/bm034519
– ident: e_1_2_10_127_1
  doi: 10.3144/expresspolymlett.2008.60
– ident: e_1_2_10_7_1
  doi: 10.1002/pat.1995.220060514
– ident: e_1_2_10_112_1
  doi: 10.1021/la950133b
– ident: e_1_2_10_61_1
  doi: 10.1007/BF00816384
– ident: e_1_2_10_122_1
  doi: 10.1021/bm1013316
– ident: e_1_2_10_5_1
  doi: 10.1021/jp960224x
– ident: e_1_2_10_49_1
  doi: 10.1021/la990046
– ident: e_1_2_10_68_1
  doi: 10.1016/j.carbpol.2010.10.047
– ident: e_1_2_10_95_1
  doi: 10.1039/b910517d
– ident: e_1_2_10_91_1
  doi: 10.1016/j.eurpolymj.2008.06.010
– ident: e_1_2_10_92_1
  doi: 10.1007/s10570-009-9350-9
– ident: e_1_2_10_147_1
  doi: 10.1002/mame.201000444
– ident: e_1_2_10_6_1
  doi: 10.1515/9783110254600
– ident: e_1_2_10_21_1
  doi: 10.1016/0032-3861(60)90040-9
– ident: e_1_2_10_80_1
  doi: 10.1021/la001070m
– ident: e_1_2_10_30_1
  doi: 10.1021/jp072258i
– ident: e_1_2_10_129_1
  doi: 10.1016/j.biortech.2009.11.058
– ident: e_1_2_10_93_1
  doi: 10.1016/j.eurpolymj.2013.04.035
– ident: e_1_2_10_45_1
  doi: 10.3891/acta.chem.scand.03-0649
– ident: e_1_2_10_86_1
  doi: 10.1021/bm101506j
– ident: e_1_2_10_94_1
  doi: 10.1021/bm200613y
– ident: e_1_2_10_15_1
– ident: e_1_2_10_138_1
  doi: 10.1002/(SICI)1097-4628(19990314)71:11<1797::AID-APP9>3.0.CO;2-E
– ident: e_1_2_10_59_1
  doi: 10.1021/la9913957
– ident: e_1_2_10_88_1
  doi: 10.1002/app.30308
– ident: e_1_2_10_8_1
  doi: 10.1590/S1516-14392013005000033
– ident: e_1_2_10_33_1
  doi: 10.1007/s10570-013-0071-8
– ident: e_1_2_10_118_1
  doi: 10.1002/mame.201300232
– ident: e_1_2_10_125_1
  doi: 10.1016/j.carbpol.2005.08.027
– ident: e_1_2_10_124_1
  doi: 10.1002/mabi.200500094
– ident: e_1_2_10_82_1
  doi: 10.1021/ma4010154
– ident: e_1_2_10_25_1
  doi: 10.1016/0032-3861(91)90435-L
– ident: e_1_2_10_67_1
  doi: 10.1002/mabi.200900073
– ident: e_1_2_10_139_1
  doi: 10.1016/j.memsci.2008.04.009
– ident: e_1_2_10_22_1
  doi: 10.1007/BF00254940
– ident: e_1_2_10_128_1
  doi: 10.1016/j.carbpol.2008.11.030
– ident: e_1_2_10_44_1
  doi: 10.1021/cr900339w
– ident: e_1_2_10_38_1
  doi: 10.1016/0032-3861(62)90102-7
– ident: e_1_2_10_60_1
  doi: 10.1021/bm050479t
– ident: e_1_2_10_31_1
  doi: 10.1007/s10570-011-9507-1
– ident: e_1_2_10_111_1
  doi: 10.1107/S0365110X51000751
– ident: e_1_2_10_96_1
  doi: 10.1021/bm200581h
– ident: e_1_2_10_123_1
  doi: 10.1021/bm0101769
– ident: e_1_2_10_62_1
  doi: 10.1021/bm050828j
– ident: e_1_2_10_64_1
  doi: 10.1021/bm900319k
– ident: e_1_2_10_20_1
  doi: 10.1002/hlca.19360190110
– ident: e_1_2_10_101_1
  doi: 10.1166/jnn.2006.906
– ident: e_1_2_10_107_1
  doi: 10.1021/ma300463y
– ident: e_1_2_10_98_1
  doi: 10.1007/s10570-013-0132-z
– ident: e_1_2_10_131_1
  doi: 10.1002/mabi.200600034
– ident: e_1_2_10_78_1
  doi: 10.1016/j.memsci.2012.09.048
– ident: e_1_2_10_35_1
  doi: 10.1002/pol.1962.1205716551
– ident: e_1_2_10_9_1
– ident: e_1_2_10_148_1
  doi: 10.1021/bm301955k
– ident: e_1_2_10_71_1
  doi: 10.1023/A:1021065905986
– ident: e_1_2_10_83_1
  doi: 10.1021/bm101106c
– ident: e_1_2_10_14_1
  doi: 10.1002/app.39328
– volume: 86
  start-page: 367
  year: 2002
  ident: e_1_2_10_72_1
  publication-title: Polym. Mater. Sci. Eng.
– ident: e_1_2_10_16_1
  doi: 10.1515/9783110218244
– ident: e_1_2_10_3_1
– ident: e_1_2_10_63_1
  doi: 10.1007/s11705-007-0041-5
– ident: e_1_2_10_99_1
  doi: 10.1063/1.1661482
– ident: e_1_2_10_51_1
  doi: 10.1007/s10570-009-9384-z
– ident: e_1_2_10_113_1
  doi: 10.1021/la960724h
– ident: e_1_2_10_53_1
  doi: 10.3139/217.2603
– ident: e_1_2_10_106_1
  doi: 10.1021/am9006337
– ident: e_1_2_10_2_1
  doi: 10.1007/s11051-011-0275-5
– ident: e_1_2_10_34_1
  doi: 10.1007/s0089460020278
– ident: e_1_2_10_142_1
  doi: 10.1111/j.1750-3841.2009.01386.x
– ident: e_1_2_10_17_1
  doi: 10.1590/S0100-40422001000600020
– ident: e_1_2_10_130_1
  doi: 10.1016/j.carbpol.2009.04.034
– volume: 46
  start-page: 294
  year: 2012
  ident: e_1_2_10_140_1
  publication-title: Food Sci. Technol.
– ident: e_1_2_10_58_1
  doi: 10.1021/la9028595
– ident: e_1_2_10_120_1
  doi: 10.1016/j.carbpol.2010.10.036
– ident: e_1_2_10_75_1
  doi: 10.1016/j.compscitech.2011.11.017
– ident: e_1_2_10_89_1
  doi: 10.1021/am9003705
– ident: e_1_2_10_100_1
  doi: 10.1016/j.carbpol.2010.11.022
– ident: e_1_2_10_84_1
  doi: 10.1016/j.polymer.2008.08.008
– ident: e_1_2_10_85_1
  doi: 10.1021/la900452a
– ident: e_1_2_10_18_1
  doi: 10.1016/j.carbpol.2007.05.040
– ident: e_1_2_10_28_1
  doi: 10.1007/s10570-006-9046-3
– ident: e_1_2_10_50_1
  doi: 10.1021/ma0008701
– ident: e_1_2_10_102_1
  doi: 10.1126/science.1153307
– ident: e_1_2_10_19_1
– ident: e_1_2_10_52_1
  doi: 10.1007/978-94-007-1168-6
– ident: e_1_2_10_137_1
  doi: 10.1016/j.indcrop.2010.07.018
– ident: e_1_2_10_48_1
  doi: 10.1590/S0104-14282011005000048
– ident: e_1_2_10_144_1
  doi: 10.1016/j.carbpol.2011.01.039
– ident: e_1_2_10_117_1
  doi: 10.1016/j.eurpolymj.2013.07.017
– ident: e_1_2_10_146_1
  doi: 10.1007/s10570-007-9119-y
– ident: e_1_2_10_143_1
  doi: 10.1021/jf1006853
– ident: e_1_2_10_57_1
  doi: 10.1002/app.20870
– ident: e_1_2_10_24_1
  doi: 10.1016/0032-3861(86)90342-3
– ident: e_1_2_10_66_1
  doi: 10.1039/b817223d
– ident: e_1_2_10_26_1
  doi: 10.1002/mats.1995.040040409
– ident: e_1_2_10_141_1
  doi: 10.1111/j.1750-3841.2009.01186.x
– ident: e_1_2_10_104_1
  doi: 10.1016/j.progpolymsci.2009.10.005
– ident: e_1_2_10_132_1
  doi: 10.1166/jnn.2006.132
– ident: e_1_2_10_39_1
  doi: 10.1063/1.2963491
– ident: e_1_2_10_121_1
  doi: 10.1039/b818056c
– ident: e_1_2_10_37_1
  doi: 10.1002/polb.1995.090331110
– ident: e_1_2_10_13_1
  doi: 10.1016/j.cattod.2010.03.057
– ident: e_1_2_10_36_1
  doi: 10.1021/ma00215a012
– ident: e_1_2_10_150_1
  doi: 10.1166/jnn.2009.dk24
– ident: e_1_2_10_90_1
  doi: 10.1016/j.polymer.2011.02.004
– ident: e_1_2_10_97_1
  doi: 10.1021/mz2001737
– ident: e_1_2_10_4_1
  doi: 10.1002/polb.23327
– ident: e_1_2_10_115_1
  doi: 10.1039/b608177k
– ident: e_1_2_10_133_1
  doi: 10.1007/s10570-010-9430-x
– ident: e_1_2_10_65_1
  doi: 10.1021/bm8011117
– ident: e_1_2_10_116_1
  doi: 10.13073/0015-7473-61.2.104
– ident: e_1_2_10_135_1
  doi: 10.1007/s10570-005-9039-7
– start-page: 61
  volume-title: In Green Composites
  year: 2004
  ident: e_1_2_10_10_1
– ident: e_1_2_10_103_1
  doi: 10.1021/ma201502k
– ident: e_1_2_10_23_1
  doi: 10.1098/rspa.1968.0157
– ident: e_1_2_10_55_1
  doi: 10.1021/ma030532a
– ident: e_1_2_10_12_1
  doi: 10.1016/j.biombioe.2011.02.001
– ident: e_1_2_10_43_1
  doi: 10.1016/j.mattod.2013.06.004
– ident: e_1_2_10_81_1
  doi: 10.1021/la101795s
– ident: e_1_2_10_126_1
  doi: 10.1002/app.28418
– ident: e_1_2_10_105_1
  doi: 10.1039/B916130A
– ident: e_1_2_10_73_1
  doi: 10.1016/S0032-3861(02)00051-4
– ident: e_1_2_10_42_1
  doi: 10.1021/bm900520n
– ident: e_1_2_10_114_1
  doi: 10.1021/bm1010905
– ident: e_1_2_10_54_1
  doi: 10.1021/ma00122a053
– ident: e_1_2_10_79_1
  doi: 10.1016/j.carbpol.2012.08.057
– ident: e_1_2_10_77_1
  doi: 10.1021/bm801193d
– ident: e_1_2_10_136_1
  doi: 10.1016/j.eurpolymj.2009.12.025
– ident: e_1_2_10_109_1
  doi: 10.1016/S0141-8130(05)80008-X
– ident: e_1_2_10_87_1
  doi: 10.1021/bm8001717
– ident: e_1_2_10_119_1
  doi: 10.1021/la900323n
– ident: e_1_2_10_74_1
  doi: 10.1016/j.compscitech.2010.01.018
– ident: e_1_2_10_145_1
  doi: 10.1002/app.38896
– ident: e_1_2_10_32_1
  doi: 10.1007/s10570-012-9823-0
– volume: 013
  start-page: 933
  issue: 25
  ident: e_1_2_10_69_1
  publication-title: J. Environ. Sci. 2
– ident: e_1_2_10_76_1
  doi: 10.1007/s10570-012-9820-3
– ident: e_1_2_10_70_1
  doi: 10.1021/bm400784j
– ident: e_1_2_10_27_1
  doi: 10.1002/1097-4628(20001209)78:11<1939::AID-APP130>3.0.CO;2-9
– ident: e_1_2_10_110_1
  doi: 10.1080/02678299408036525
– ident: e_1_2_10_29_1
  doi: 10.1007/s10570-006-9068-x
– ident: e_1_2_10_40_1
  doi: 10.1021/bm049291k
SSID ssj0009959
Score 2.6125126
SecondaryResourceType review_article
Snippet ABSTRACT Cellulosic nanoparticles with high Young's modulus, crystallinity, specific surface area, and aspect ratio can be found in the natural structure of...
Cellulosic nanoparticles with high Young's modulus, crystallinity, specific surface area, and aspect ratio can be found in the natural structure of plant...
SourceID hal
proquest
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 791
SubjectTerms Applied sciences
barrier
Biodegradability
biofibers
Cellulose
Chemical Sciences
Composites
Compounding ingredients
Density
Engineering Sciences
Exact sciences and technology
Fillers and reinforcing agents
Forms of application and semi-finished materials
mechanical properties
Nanocomposites
Nanocrystals
Nanoparticles
Nanostructure
Polymer industry, paints, wood
polysaccharides
Specific surface
Technology of polymers
Title Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges
URI https://api.istex.fr/ark:/67375/WNG-JQZND1PS-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpolb.23490
https://www.proquest.com/docview/1521864833
https://www.proquest.com/docview/1671605108
https://hal.science/hal-02302485
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ti9QwEB7OE9EvvpyK1fOoLwgK3du0aZqKX87VcznO9dQTD0VC3opwtV22u6L-ejPptuuKCPqtNBPKJJPJM83kGYD7Mi8syTWJMpMlESVaR5JyE9HCOrRguM0lXk5-OWHjd_TgJD3ZgCfdXZiWH6L_4YYrw_trXOBSNbsr0tBpXapBnNAcA3ZM1kJE9GbFHYVEWh3Np0PtrOcmjXdXXdd2ozOfMRfyLA7vN8yRlI0bpqKtb7EGQH-FsX4f2r8EnzoN2vST08Firgb6x2_kjv-r4mW4uASo4V5rUVdgw1ZbcH7U1YXbgnM-aVQ3V-HjyJbloqwbG1ayqvXsu4OaZRPKyoT-jow1bYPzOZgbZpvHYXsWEdZF2NRfbDjFs4AZkrr6Xror7dJcg-P958ejcbQs1hBph_iGUW5YrAmznBIqE0OlSRUtHHrMdI60ZWmiKVMxU2muh4YprjAqN8rkyoEMnVyHzaqu7A0I3aaaZrog1nL0KLkcxs5iaIGXGXWW0gAednMm9JLIHOtplKKlYI4Fjpvw4xbAvV522tJ3_FHqrlOvF0DG7fHeocB3GKIh69tXEsADbxm9mJydYlZclor3kxfi4PWHyTNy9FbwAHbWTKfvEPOUOTSaBbDd2ZJYeoxGII7ijPIkCeBO3-ymFg9wZGXrhZNhLrpFL-q-8cgbzl-UEkevDp_6p5v_InwLLjhMSDEbjqTbsDmfLexth7vmasevr5--Eyg6
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELdgE9q-8BggwsYIDyGBlK5JHCfh2yiMMroyRhETfLD8iiYtS6qmRcBfz53zKEUICb5FyVmRz-fz7-zz7wh5LNLM-KnyvVjHoUd9pTxBE-3RzABa0IlJBV5OPhqz4Ud6eBqdNrk5eBem5ofoNtxwZlh_jRMcN6T3lqyh0zKXvSCkKUTs61jS20ZUJ0v2KKTSaok-Abezjp002Fu2XVmPLp9hNuQ6KvgbZkmKChSV1RUuViDor0DWrkQH1-pyq5UlMMQElPPeYi576sdv9I7_3cnr5GqDUd392qhukEum2CIbg7Y03Ba5YvNGVXWTfBmYPF_kZWXcQhSlmn0HtJlXrii0a6_JGF1_ALeD6WGmeu7WxxFumblVeWHcKR4HzJDX1bZSbXWX6haZHLyaDIZeU6_BUwD6-l6qWaB8ZhLqUxFqKnQkaQYAMlYpMpdFoaJMBkxGqeprJhOJgbmWOpWAM1R4m6wVZWHuEBfW1ShWmW9Mgk4lFf0AjIZmeJ9RxRF1yNN20LhquMyxpEbOaxbmgKPeuNWbQx51stOaweOPUg-he50Akm4P90cc32GUhsRvX32HPLGm0YmJ2TkmxsUR_zR-zQ_ffx6_9I8_8MQhuyu20zUIkogBII0dstMaE2-cRsURSiWMJmHokAfdZxhaPMMRhSkXIMMgwEVHCv94Zi3nL53ix-9GL-zT3X8Rvk82hpOjER-9Gb_dJpsAESkmx_nRDlmbzxbmHsCwudy1k-0nJXcsVQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NTTy-8BggAmOEh5BAStckjpMgvoyWUkYpBTZtAiHLrwhpIamaFgF_PT6nSSlCSPAtis-Kzj6ffxeffwfwgKeZ9lPpe7GKQ4_4UnqcJMojmTZoQSU65Xg5-fWYDo_IwUl0sgFPm7swNT9E-8MNV4b117jApyrbW5GGTstcdIKQpCZg3yK0m6BN99-tyKOQSavh-TSwnbbkpMHequ_adnTmMyZDbuH4fsMkSV6ZccrqAhdrCPRXHGs3osEl-NSoUOefnHYWc9GRP35jd_xfHS_DxSVCdfdrk7oCG7rYhvO9pjDcNpy1WaOyugofezrPF3lZabfgRSln3w3WzCuXF8q1l2S0qhuM08HkMF09cevDCLfM3Kr8ot0pHgbMkNXV9pJNbZfqGhwOnh_2ht6yWoMnDeTreqmigfSpTohPeKgIV5EgmYGPsUyRtywKJaEioCJKZVdRkQgMy5VQqTAoQ4bXYbMoC30DXLOrRrHMfK0TdCkp7wbGZEiGtxllHBEHHjVzxuSSyRwLauSs5mAOGI4bs-PmwP1Wdlrzd_xR6p5RrxVAyu3h_ojhO4zRkPbtq-_AQ2sZrRifnWJaXByx4_ELdvD2w7jvT96zxIHdNdNpOwRJRA0cjR3YaWyJLV1GxRBIJZQkYejA3bbZTC2e4PBClwsjQ014i27UfOOxNZy_KMUmb0bP7NPNfxG-A-cm_QEbvRy_ugUXDD4kmBnnRzuwOZ8t9G2DweZi1y61n59GKw0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cellulose+nanocrystals+and+related+nanocomposites%3A+Review+of+some+properties+and+challenges&rft.jtitle=Journal+of+polymer+science.+Part+B%2C+Polymer+physics&rft.au=Mariano%2C+Marcos&rft.au=El+Kissi%2C+Nadia&rft.au=Dufresne%2C+Alain&rft.date=2014-06-15&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0887-6266&rft.eissn=1099-0488&rft.volume=52&rft.issue=12&rft.spage=791&rft.epage=806&rft_id=info:doi/10.1002%2Fpolb.23490&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_JQZND1PS_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-6266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-6266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-6266&client=summon