Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges
ABSTRACT Cellulosic nanoparticles with high Young's modulus, crystallinity, specific surface area, and aspect ratio can be found in the natural structure of plant fibers. Indeed, lignocellulosic fibers consist of semicrystalline cellulose nanofibrils embedded in an amorphous matrix mainly compo...
Saved in:
Published in | Journal of polymer science. Part B, Polymer physics Vol. 52; no. 12; pp. 791 - 806 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, NJ
Blackwell Publishing Ltd
15.06.2014
Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Cellulosic nanoparticles with high Young's modulus, crystallinity, specific surface area, and aspect ratio can be found in the natural structure of plant fibers. Indeed, lignocellulosic fibers consist of semicrystalline cellulose nanofibrils embedded in an amorphous matrix mainly composed of lignin and hemicelluloses. These nanostructures give the mechanical strength to higher plant cells, and are biodegradable, renewable, resistant, and widely available to produce nanocomposites with low density, and improved and controlled mechanical, optical, and barrier properties. Nanoparticles can be extracted from cellulose using a top‐down mechanically or chemically assisted deconstructing strategy, and owing to their highly reactive surface ensuing nanomaterials can be chemically modified to tailor their properties for a wide range of applications. This review is limited to cellulose chemically extracted nanocrystals and aims to provide an overview about several aspects that involve this material, including sources, properties, challenges, and perspectives. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 791–806
Impressive mechanical properties and reinforcing capability, abundance, low weight, renewability, and biodegradability make cellulose nanocrystals ideal candidates for use in polymer nanocomposites. This Review also looks at the broad range of potential applications of these nanoparticles, as well as the remaining questions in the field. |
---|---|
AbstractList | ABSTRACT
Cellulosic nanoparticles with high Young's modulus, crystallinity, specific surface area, and aspect ratio can be found in the natural structure of plant fibers. Indeed, lignocellulosic fibers consist of semicrystalline cellulose nanofibrils embedded in an amorphous matrix mainly composed of lignin and hemicelluloses. These nanostructures give the mechanical strength to higher plant cells, and are biodegradable, renewable, resistant, and widely available to produce nanocomposites with low density, and improved and controlled mechanical, optical, and barrier properties. Nanoparticles can be extracted from cellulose using a top‐down mechanically or chemically assisted deconstructing strategy, and owing to their highly reactive surface ensuing nanomaterials can be chemically modified to tailor their properties for a wide range of applications. This review is limited to cellulose chemically extracted nanocrystals and aims to provide an overview about several aspects that involve this material, including sources, properties, challenges, and perspectives. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 791–806
Impressive mechanical properties and reinforcing capability, abundance, low weight, renewability, and biodegradability make cellulose nanocrystals ideal candidates for use in polymer nanocomposites. This Review also looks at the broad range of potential applications of these nanoparticles, as well as the remaining questions in the field. Cellulosic nanoparticles with high Young's modulus, crystallinity, specific surface area, and aspect ratio can be found in the natural structure of plant fibers. Indeed, lignocellulosic fibers consist of semicrystalline cellulose nanofibrils embedded in an amorphous matrix mainly composed of lignin and hemicelluloses. These nanostructures give the mechanical strength to higher plant cells, and are biodegradable, renewable, resistant, and widely available to produce nanocomposites with low density, and improved and controlled mechanical, optical, and barrier properties. Nanoparticles can be extracted from cellulose using a top-down mechanically or chemically assisted deconstructing strategy, and owing to their highly reactive surface ensuing nanomaterials can be chemically modified to tailor their properties for a wide range of applications. This review is limited to cellulose chemically extracted nanocrystals and aims to provide an overview about several aspects that involve this material, including sources, properties, challenges, and perspectives. Cellulosic nanoparticles with high Young's modulus, crystallinity, specific surface area, and aspect ratio can be found in the natural structure of plant fibers. Indeed, lignocellulosic fibers consist of semicrystalline cellulose nanofibrils embedded in an amorphous matrix mainly composed of lignin and hemicelluloses. These nanostructures give the mechanical strength to higher plant cells, and are biodegradable, renewable, resistant, and widely available to produce nanocomposites with low density, and improved and controlled mechanical, optical, and barrier properties. Nanoparticles can be extracted from cellulose using a top-down mechanically or chemically assisted deconstructing strategy, and owing to their highly reactive surface ensuing nanomaterials can be chemically modified to tailor their properties for a wide range of applications. This review is limited to cellulose chemically extracted nanocrystals and aims to provide an overview about several aspects that involve this material, including sources, properties, challenges, and perspectives. copyright 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 791-806 Impressive mechanical properties and reinforcing capability, abundance, low weight, renewability, and biodegradability make cellulose nanocrystals ideal candidates for use in polymer nanocomposites. This Review also looks at the broad range of potential applications of these nanoparticles, as well as the remaining questions in the field. Cellulosic nanoparticles with high Young's modulus, crystallinity, specific surface area, and aspect ratio can be found in the natural structure of plant fibers. Indeed, lignocellulosic fibers consist of semicrystalline cellulose nanofibrils embedded in an amorphous matrix mainly composed of lignin and hemicelluloses. These nanostructures give the mechanical strength to higher plant cells, and are biodegradable, renewable, resistant, and widely available to produce nanocomposites with low density, and improved and controlled mechanical, optical, and barrier properties. Nanoparticles can be extracted from cellulose using a top-down mechanically or chemically assisted deconstructing strategy, and owing to their highly reactive surface ensuing nanomaterials can be chemically modified to tailor their properties for a wide range of applications. This review is limited to cellulose chemically extracted nanocrystals and aims to provide an overview about several aspects that involve this material, including sources, properties, challenges, and perspectives. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 791-806 [PUBLICATION ABSTRACT] Cellulosic nanoparticles with high Young's modulus, crystallinity, specific surface area, and aspect ratio can be found in the natural structure of plant fibers. Indeed, lignocellulosic fibers consist of semicrystalline cellulose nanofibrils embedded in an amorphous matrix mainly composed of lignin and hemicelluloses. These nanostructures give the mechanical strength to higher plant cells, and are biodegradable, renewable, resistant, and widely available to produce nanocomposites with low density, and improved and controlled mechanical, optical, and barrier properties. Nanoparticles can be extracted from cellulose using a top‐down mechanically or chemically assisted deconstructing strategy, and owing to their highly reactive surface ensuing nanomaterials can be chemically modified to tailor their properties for a wide range of applications. This review is limited to cellulose chemically extracted nanocrystals and aims to provide an overview about several aspects that involve this material, including sources, properties, challenges, and perspectives. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52 , 791–806 |
Author | El Kissi, Nadia Dufresne, Alain Mariano, Marcos |
Author_xml | – sequence: 1 givenname: Marcos surname: Mariano fullname: Mariano, Marcos organization: Grenoble Institute of Technology (Grenoble INP)-The International School of Paper, Print Media and Biomaterials (Pagora), CS10065, 38402, Saint Martin d'Hères Cedex, France – sequence: 2 givenname: Nadia surname: El Kissi fullname: El Kissi, Nadia organization: Laboratoire Rhéologie et Procédés, Grenoble INP-CNRS-UJF, UMR 5520, BP 53, 38041, Grenoble Cedex 9, France – sequence: 3 givenname: Alain surname: Dufresne fullname: Dufresne, Alain email: alain.dufresne@pagora.grenoble-inp.fr organization: Grenoble Institute of Technology (Grenoble INP)-The International School of Paper, Print Media and Biomaterials (Pagora), CS10065, 38402, Saint Martin d'Hères Cedex, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28569297$$DView record in Pascal Francis https://hal.science/hal-02302485$$DView record in HAL |
BookMark | eNp9kV1rFDEUhoNUcFu98RcMiKCFqfmejHd1q62ytFULgl6ETOaspmaTMZlt3X9v1ml7UcSrQM7zvDknZxfthBgAoacEHxCM6ash-u6AMt7iB2hGcNvWmCu1g2ZYqaaWVMpHaDfnS4xLTbQz9G0O3q99zFAFE6JNmzwanysT-iqBNyP0UyGuhpjdCPl19QmuHFxXcVnluIJqSHGANDqYLPvDeA_hO-TH6OGyZMGTm3MPXbx7ezE_qRdnx-_nh4vaikbguu0ltUSC4oQb1nPTi44vKSONbanERDDLZUdlJ1qLe9mpDjec9l3fdkQRy_bQyym2PKyH5FYmbXQ0Tp8cLvT2DlOGKVfiihT2xcSWpn-tIY965bItX2ACxHXWRDZEYkGwKuize-hlXKdQBtFEUKIkV4wV6vkNZbI1fplMsC7ftUGVkC1tm8LhibMp5pxgqa0bzehiGJNxXhOstwvU2wXqvwssyv495Tb1nzCZ4GvnYfMfUp-fLd7cOvXkuDzC7zvHpJ9aNqwR-svpsf7w8evpETn_rBX7AyIeu9w |
CODEN | JPLPAY |
CitedBy_id | crossref_primary_10_4028_www_scientific_net_MSF_827_174 crossref_primary_10_1016_j_carbpol_2016_06_069 crossref_primary_10_3390_polym13193227 crossref_primary_10_3390_foods12040746 crossref_primary_10_1016_j_carbpol_2014_08_110 crossref_primary_10_1016_j_carbpol_2015_04_051 crossref_primary_10_1093_jxb_erv535 crossref_primary_10_1007_s10570_016_0937_7 crossref_primary_10_1002_app_45857 crossref_primary_10_1002_app_44880 crossref_primary_10_1016_j_rser_2016_12_088 crossref_primary_10_1007_s10570_021_03889_5 crossref_primary_10_1111_1541_4337_13047 crossref_primary_10_1039_D0RA04649C crossref_primary_10_3390_biomass2040021 crossref_primary_10_1016_j_progpolymsci_2021_101418 crossref_primary_10_1016_j_ijbiomac_2020_02_333 crossref_primary_10_1021_acssuschemeng_9b07250 crossref_primary_10_1134_S0965545X19050080 crossref_primary_10_1021_acssuschemeng_7b00415 crossref_primary_10_1002_slct_202404613 crossref_primary_10_1002_smm2_1118 crossref_primary_10_1002_pen_26695 crossref_primary_10_1016_j_coco_2025_102258 crossref_primary_10_1680_jemmr_20_00073 crossref_primary_10_1002_poc_3851 crossref_primary_10_1016_j_mtsust_2022_100115 crossref_primary_10_1016_j_pmatsci_2025_101430 crossref_primary_10_1016_j_polymertesting_2019_106276 crossref_primary_10_1007_s10853_016_0589_x crossref_primary_10_1016_j_jcis_2022_12_106 crossref_primary_10_3390_polym13132061 crossref_primary_10_1016_j_ijbiomac_2023_123916 crossref_primary_10_47115_bsagriculture_1374533 crossref_primary_10_3390_jcs5020043 crossref_primary_10_1007_s10570_020_03247_x crossref_primary_10_1016_j_cocis_2017_03_005 crossref_primary_10_1039_C7BM00510E crossref_primary_10_1039_D0NR02228D crossref_primary_10_1007_s00289_019_02731_0 crossref_primary_10_1002_cjce_24156 crossref_primary_10_17533_udea_redin_n83a06 crossref_primary_10_1016_j_eurpolymj_2017_04_020 crossref_primary_10_1016_j_indcrop_2016_11_011 crossref_primary_10_1002_cplu_202300704 crossref_primary_10_3390_molecules27228032 crossref_primary_10_1016_j_ijbiomac_2019_06_241 crossref_primary_10_1016_j_jscs_2018_02_005 crossref_primary_10_3390_polym15143044 crossref_primary_10_3390_polym9040117 crossref_primary_10_3390_polym13132052 crossref_primary_10_1098_rsta_2017_0043 crossref_primary_10_2139_ssrn_4663507 crossref_primary_10_1002_mame_201900092 crossref_primary_10_1002_adsu_202100100 crossref_primary_10_1016_j_chphi_2021_100025 crossref_primary_10_1021_acssuschemeng_8b02278 crossref_primary_10_7584_JKTAPPI_2019_02_51_1_114 crossref_primary_10_1021_acs_biomac_3c01337 crossref_primary_10_1155_2015_687490 crossref_primary_10_1039_C8GC00577J crossref_primary_10_1039_D1TC02360H crossref_primary_10_1021_acssuschemeng_6b03144 crossref_primary_10_1039_C5PY00367A crossref_primary_10_1016_j_carbon_2019_05_007 crossref_primary_10_1590_1980_5373_mr_2019_0192 crossref_primary_10_1016_j_carbpol_2015_09_101 crossref_primary_10_1177_0095244318758156 crossref_primary_10_1016_j_electacta_2016_08_020 crossref_primary_10_1007_s12274_022_4626_6 crossref_primary_10_1246_cl_200702 crossref_primary_10_1021_acsaem_8b00240 crossref_primary_10_1146_annurev_matsci_120116_114326 crossref_primary_10_3390_chemistry3030066 crossref_primary_10_1016_j_jcis_2021_04_071 crossref_primary_10_1515_rams_2019_0001 crossref_primary_10_1016_j_carbpol_2024_122698 crossref_primary_10_1016_j_compstruct_2015_09_043 crossref_primary_10_1016_j_porgcoat_2021_106407 crossref_primary_10_1021_acsami_1c21656 crossref_primary_10_3390_polym14071477 crossref_primary_10_1016_j_carres_2023_108899 crossref_primary_10_1021_acs_langmuir_1c01585 crossref_primary_10_1080_05704928_2021_1951283 crossref_primary_10_1021_acsami_7b01738 crossref_primary_10_1007_s10924_017_1089_z crossref_primary_10_1016_j_ijbiomac_2020_03_020 crossref_primary_10_3390_catal7110322 crossref_primary_10_1007_s10570_021_03691_3 crossref_primary_10_1016_j_carbpol_2018_08_033 crossref_primary_10_1021_acs_jpclett_6b00570 crossref_primary_10_1002_sstr_202400104 crossref_primary_10_1016_j_bpj_2022_02_013 crossref_primary_10_1007_s10973_018_7639_3 crossref_primary_10_1016_j_ijbiomac_2024_136130 crossref_primary_10_3390_jcs7080342 crossref_primary_10_1007_s10570_019_02642_3 crossref_primary_10_1007_s10570_021_04227_5 crossref_primary_10_1007_s11192_016_1922_5 crossref_primary_10_1021_acs_langmuir_6b03765 crossref_primary_10_1590_1980_5373_mr_2017_0750 crossref_primary_10_1002_pc_25393 crossref_primary_10_1016_j_ijbiomac_2024_135282 crossref_primary_10_3390_ma15010082 crossref_primary_10_1016_j_ijbiomac_2020_03_115 crossref_primary_10_1002_pc_27576 crossref_primary_10_1016_j_fpsl_2021_100763 crossref_primary_10_1007_s10570_021_04205_x crossref_primary_10_1016_j_polymertesting_2020_106867 crossref_primary_10_1021_acs_biomac_4c01802 crossref_primary_10_1002_app_49291 crossref_primary_10_1021_acs_jpcb_6b01370 crossref_primary_10_1080_01932691_2020_1847137 crossref_primary_10_3389_fchem_2021_810781 crossref_primary_10_1016_j_indcrop_2018_06_015 crossref_primary_10_1021_acsaenm_3c00378 crossref_primary_10_1016_j_carbpol_2017_06_032 crossref_primary_10_1021_acsami_9b20101 crossref_primary_10_1016_j_carbpol_2019_05_075 crossref_primary_10_1021_acsami_2c01353 crossref_primary_10_1002_app_53298 crossref_primary_10_3390_polym13172853 crossref_primary_10_1016_j_carbpol_2024_122591 crossref_primary_10_1038_s41467_021_25176_4 crossref_primary_10_3390_nano7050106 crossref_primary_10_1007_s12221_018_8138_7 crossref_primary_10_1021_acsami_6b09852 crossref_primary_10_3390_gels10120777 crossref_primary_10_1039_D1TA08147K crossref_primary_10_1016_j_ijbiomac_2018_11_205 crossref_primary_10_1039_C7SM00685C crossref_primary_10_3390_polym17030345 crossref_primary_10_1021_acs_biomac_1c00183 crossref_primary_10_1021_acssuschemeng_2c04806 crossref_primary_10_1007_s12649_020_00937_2 crossref_primary_10_1016_j_ijbiomac_2019_06_205 crossref_primary_10_1016_j_ijbiomac_2019_08_055 crossref_primary_10_1007_s10570_018_1760_0 crossref_primary_10_1002_adma_202002264 crossref_primary_10_1515_secm_2020_0024 crossref_primary_10_1016_j_carbpol_2019_115037 crossref_primary_10_1007_s10311_020_00989_9 crossref_primary_10_1021_acs_langmuir_6b04628 crossref_primary_10_1007_s10570_017_1464_x crossref_primary_10_1016_j_porgcoat_2019_05_015 crossref_primary_10_1002_pts_2389 crossref_primary_10_1016_j_tifs_2020_05_016 crossref_primary_10_1021_acsomega_4c06021 crossref_primary_10_1016_j_desal_2018_04_009 crossref_primary_10_3390_ma11050795 crossref_primary_10_1016_j_jclepro_2022_131541 crossref_primary_10_1021_acsami_7b09009 crossref_primary_10_1021_acs_macromol_1c01155 crossref_primary_10_1080_10408398_2018_1534800 crossref_primary_10_1021_acsapm_9b00007 crossref_primary_10_1007_s13399_021_02028_1 crossref_primary_10_1021_acsami_7b04931 crossref_primary_10_1122_1_5010789 crossref_primary_10_1007_s13367_021_0015_z crossref_primary_10_1021_acssuschemeng_7b00630 crossref_primary_10_1021_acsami_0c11152 crossref_primary_10_1007_s10570_016_0994_y crossref_primary_10_1038_s41598_024_69346_y crossref_primary_10_1007_s10570_020_03364_7 crossref_primary_10_1680_jgrma_15_00013 crossref_primary_10_3390_nano9020272 crossref_primary_10_1002_app_42752 crossref_primary_10_1155_2022_6519480 crossref_primary_10_1007_s10570_022_04796_z crossref_primary_10_1002_mame_201700661 crossref_primary_10_1007_s10570_022_04587_6 crossref_primary_10_1016_j_eurpolymj_2016_01_035 crossref_primary_10_1007_s10570_016_0883_4 crossref_primary_10_1007_s10570_017_1244_7 crossref_primary_10_1016_j_carbpol_2017_07_087 crossref_primary_10_1016_j_compscitech_2018_05_010 crossref_primary_10_1016_j_bios_2017_01_068 crossref_primary_10_1016_j_carbpol_2018_04_075 crossref_primary_10_1039_C9EN00184K crossref_primary_10_1016_j_ijbiomac_2022_07_124 crossref_primary_10_1007_s10570_022_04443_7 crossref_primary_10_1016_j_powtec_2018_07_076 crossref_primary_10_1002_pc_28629 crossref_primary_10_1007_s10570_019_02742_0 crossref_primary_10_1016_j_compositesb_2019_106988 crossref_primary_10_1088_1755_1315_572_1_012044 crossref_primary_10_1021_acssuschemeng_5b00762 crossref_primary_10_3390_polym11050781 crossref_primary_10_1007_s40725_019_00088_1 crossref_primary_10_1039_C5NR02520F crossref_primary_10_1007_s10570_017_1220_2 crossref_primary_10_1680_gmat_14_00017 crossref_primary_10_1002_app_44361 crossref_primary_10_1021_acssuschemeng_4c01365 crossref_primary_10_3390_ma11081272 crossref_primary_10_1007_s12221_020_9380_3 crossref_primary_10_1016_j_carbpol_2020_116393 crossref_primary_10_1021_acs_est_5b00888 crossref_primary_10_1021_acssuschemeng_0c01797 crossref_primary_10_1038_s41598_020_63575_7 crossref_primary_10_1016_j_eurpolymj_2017_10_026 crossref_primary_10_1016_j_eurpolymj_2017_10_027 crossref_primary_10_3390_polym16212984 crossref_primary_10_1155_2023_7890912 crossref_primary_10_1007_s10570_023_05581_2 crossref_primary_10_1007_s40820_021_00627_1 crossref_primary_10_1007_s11090_023_10335_w crossref_primary_10_2139_ssrn_4194362 crossref_primary_10_1016_j_jcis_2024_11_143 crossref_primary_10_1002_advs_202206243 crossref_primary_10_1007_s10924_019_01389_z crossref_primary_10_1016_j_ijbiomac_2019_02_166 crossref_primary_10_1021_acs_iecr_1c00413 crossref_primary_10_1016_j_carbpol_2020_117136 crossref_primary_10_1016_j_diamond_2022_109347 crossref_primary_10_1016_j_carbpol_2024_122838 crossref_primary_10_1007_s10856_020_06386_6 crossref_primary_10_1039_D3DT00498H crossref_primary_10_1134_S0965545X16060109 crossref_primary_10_1016_j_ijbiomac_2016_12_040 crossref_primary_10_1016_j_tetlet_2024_155420 crossref_primary_10_1016_j_jclepro_2017_02_083 crossref_primary_10_3390_jcs3020051 crossref_primary_10_1016_j_carbpol_2019_115079 crossref_primary_10_1002_polb_23770 crossref_primary_10_1016_j_compositesa_2022_107390 crossref_primary_10_1016_j_carbpol_2023_121579 crossref_primary_10_1016_j_jpowsour_2023_233351 crossref_primary_10_1002_pol_20220127 crossref_primary_10_1021_acs_biomac_8b01269 crossref_primary_10_35812_CelluloseChemTechnol_2023_57_96 crossref_primary_10_1007_s10853_018_2414_1 crossref_primary_10_1039_C8RA01868E crossref_primary_10_1007_s10570_021_03958_9 crossref_primary_10_1007_s10570_020_03060_6 crossref_primary_10_1016_j_carbpol_2016_11_032 crossref_primary_10_1016_j_eurpolymj_2016_04_013 crossref_primary_10_1016_j_indcrop_2016_09_011 crossref_primary_10_1002_pol_20200507 crossref_primary_10_1021_acs_chemmater_7b00531 crossref_primary_10_1016_j_cscee_2025_101120 crossref_primary_10_1007_s10924_024_03227_3 crossref_primary_10_1016_j_colsurfa_2023_130997 crossref_primary_10_1016_j_micromeso_2021_111382 crossref_primary_10_1021_acsapm_9b01098 crossref_primary_10_1021_acs_biomac_0c01031 crossref_primary_10_1039_D0NH00696C crossref_primary_10_1016_j_carbpol_2022_120199 crossref_primary_10_1021_acs_nanolett_8b02522 crossref_primary_10_1007_s12247_022_09671_9 crossref_primary_10_1007_s42452_019_0765_0 crossref_primary_10_1016_j_carbpol_2015_05_007 crossref_primary_10_1016_j_biteb_2021_100838 crossref_primary_10_1016_j_eurpolymj_2018_08_045 crossref_primary_10_1016_j_diamond_2020_107821 crossref_primary_10_1016_j_foodhyd_2023_108571 crossref_primary_10_1007_s10570_019_02622_7 crossref_primary_10_1002_smll_202407956 crossref_primary_10_1007_s10853_020_05105_4 crossref_primary_10_1007_s10570_024_06181_4 crossref_primary_10_1016_j_indcrop_2018_07_073 crossref_primary_10_1016_j_polymer_2017_08_064 crossref_primary_10_1007_s00396_020_04640_5 crossref_primary_10_1016_j_eurpolymj_2017_10_035 crossref_primary_10_3390_applbiosci2010009 crossref_primary_10_2139_ssrn_4059755 crossref_primary_10_1016_j_ijbiomac_2025_140098 crossref_primary_10_1007_s10854_022_09724_2 crossref_primary_10_1021_acs_macromol_9b01612 crossref_primary_10_1371_journal_pone_0222216 crossref_primary_10_1007_s10570_024_05831_x crossref_primary_10_1016_j_colsurfa_2017_12_059 crossref_primary_10_1021_acsomega_8b00056 crossref_primary_10_1016_j_polymdegradstab_2023_110646 crossref_primary_10_1186_s12989_017_0221_5 crossref_primary_10_1016_j_polymer_2016_12_010 crossref_primary_10_1007_s10570_019_02876_1 crossref_primary_10_1007_s10924_023_02835_9 crossref_primary_10_1016_j_eurpolymj_2015_01_026 crossref_primary_10_1002_mame_201400313 crossref_primary_10_1002_pc_24583 crossref_primary_10_1016_j_cej_2022_134856 crossref_primary_10_1021_acssuschemeng_0c01593 crossref_primary_10_1039_D4MA00890A crossref_primary_10_3390_polym11121912 crossref_primary_10_1016_j_carbpol_2016_07_073 crossref_primary_10_1016_j_colsurfa_2017_06_056 crossref_primary_10_1080_02678292_2019_1613686 crossref_primary_10_1002_adma_201704477 crossref_primary_10_1002_star_201900284 crossref_primary_10_1002_cben_201600001 crossref_primary_10_1002_app_44438 crossref_primary_10_1002_app_45648 crossref_primary_10_1016_j_cis_2020_102178 crossref_primary_10_1021_acs_iecr_7b03836 crossref_primary_10_1002_adma_202312707 crossref_primary_10_1021_acsbiomaterials_9b00802 crossref_primary_10_1002_pc_26427 crossref_primary_10_1016_j_carbpol_2015_10_027 crossref_primary_10_1016_j_rinma_2022_100261 crossref_primary_10_5254_rct_22_77013 crossref_primary_10_1002_adma_202000922 crossref_primary_10_1002_app_44789 crossref_primary_10_1002_app_42004 crossref_primary_10_1016_j_carbpol_2018_09_019 crossref_primary_10_3390_polym13213614 crossref_primary_10_1007_s00289_023_04965_5 crossref_primary_10_1155_2017_6361245 crossref_primary_10_1007_s10570_017_1482_8 crossref_primary_10_1007_s40725_015_0016_6 crossref_primary_10_1016_j_progpolymsci_2018_09_002 crossref_primary_10_1016_j_carbpol_2019_04_086 crossref_primary_10_1080_10408398_2020_1832440 crossref_primary_10_1016_j_impact_2020_100216 crossref_primary_10_1021_acs_jpcb_6b11425 crossref_primary_10_1021_acs_macromol_7b00516 crossref_primary_10_1016_j_seppur_2024_128604 crossref_primary_10_1016_j_carbpol_2024_122891 crossref_primary_10_1016_j_indcrop_2016_01_012 crossref_primary_10_1016_j_jmps_2017_11_006 crossref_primary_10_1186_s13068_023_02307_1 crossref_primary_10_1002_mren_202100046 crossref_primary_10_1080_15440478_2020_1856279 crossref_primary_10_1109_JPROC_2016_2577518 crossref_primary_10_1016_j_polymertesting_2020_106381 crossref_primary_10_1016_j_ijbiomac_2024_134557 crossref_primary_10_1007_s42114_024_01152_6 crossref_primary_10_1016_j_cossms_2019_06_005 crossref_primary_10_1016_j_indcrop_2016_01_019 crossref_primary_10_1016_j_rechem_2022_100540 crossref_primary_10_1007_s10570_016_0925_y crossref_primary_10_1016_j_cej_2021_131086 crossref_primary_10_1039_C8GC00205C crossref_primary_10_1177_0040517519873868 crossref_primary_10_1007_s10570_018_1958_1 crossref_primary_10_1016_j_indcrop_2024_119704 crossref_primary_10_1021_acssuschemeng_9b04005 crossref_primary_10_1016_j_jclepro_2018_11_099 crossref_primary_10_3390_s19122726 crossref_primary_10_1002_polb_23729 crossref_primary_10_1007_s13762_022_04209_5 crossref_primary_10_1016_j_ultsonch_2022_106180 crossref_primary_10_1002_admi_202201979 crossref_primary_10_1089_ind_2014_0026 crossref_primary_10_1039_D1GC02507D crossref_primary_10_1007_s10570_022_04514_9 crossref_primary_10_1039_C6RA25707K crossref_primary_10_1055_s_0040_1717051 crossref_primary_10_1021_acs_langmuir_0c00068 crossref_primary_10_1016_j_solmat_2022_112124 crossref_primary_10_1016_j_carbpol_2023_120789 crossref_primary_10_1016_j_jece_2020_104276 crossref_primary_10_1016_j_ijbiomac_2025_140149 crossref_primary_10_1016_j_greeac_2022_100009 crossref_primary_10_1002_SMMD_20220017 crossref_primary_10_1021_es506351r crossref_primary_10_1016_j_ijbiomac_2023_126534 crossref_primary_10_1021_acs_macromol_8b02243 crossref_primary_10_1007_s10570_018_2175_7 crossref_primary_10_1002_ceat_202300379 crossref_primary_10_1016_j_ijbiomac_2023_126657 crossref_primary_10_1016_j_ijbiomac_2023_128834 crossref_primary_10_1007_s00289_022_04388_8 crossref_primary_10_1177_09673911221140935 crossref_primary_10_1016_j_carbpol_2015_08_068 crossref_primary_10_1021_acs_biomac_5b01245 crossref_primary_10_1021_acssuschemeng_9b00066 crossref_primary_10_1039_C6RA16295A crossref_primary_10_1016_j_cej_2022_139439 crossref_primary_10_1016_j_compscitech_2020_108338 crossref_primary_10_1016_j_polymer_2018_04_047 crossref_primary_10_1021_acsanm_1c01244 crossref_primary_10_1016_j_polymer_2017_09_043 crossref_primary_10_1016_j_compscitech_2020_108452 crossref_primary_10_3390_foods10071512 crossref_primary_10_1002_admt_202200615 crossref_primary_10_1080_1023666X_2021_2016305 crossref_primary_10_1002_mame_201600351 crossref_primary_10_1016_j_carbpol_2020_117415 crossref_primary_10_1021_acsanm_1c02210 crossref_primary_10_1021_acs_biomac_7b00578 crossref_primary_10_1021_acs_biomac_6b00910 crossref_primary_10_1007_s10965_022_02996_6 crossref_primary_10_1016_j_indcrop_2020_112938 crossref_primary_10_1039_D1MA00049G crossref_primary_10_1007_s10570_021_03927_2 crossref_primary_10_1080_10601325_2023_2245855 crossref_primary_10_1021_acs_biomac_9b01764 crossref_primary_10_3390_catal11010096 crossref_primary_10_1007_s00289_024_05190_4 crossref_primary_10_1016_j_ijbiomac_2018_10_187 crossref_primary_10_1039_C6NR09494E crossref_primary_10_1016_j_polymertesting_2023_108047 crossref_primary_10_1080_25740881_2021_1976204 crossref_primary_10_1016_j_ijbiomac_2024_136949 crossref_primary_10_1080_15440478_2022_2134266 crossref_primary_10_1039_C7NR00251C crossref_primary_10_1016_j_indcrop_2024_118493 crossref_primary_10_1016_j_jcomc_2021_100164 crossref_primary_10_1039_D0RA07972C crossref_primary_10_1002_slct_202100831 crossref_primary_10_1039_D3GC03756H crossref_primary_10_1007_s10570_020_03185_8 crossref_primary_10_1021_acssuschemeng_9b07833 crossref_primary_10_3390_polym13050688 crossref_primary_10_3390_ijms23084310 crossref_primary_10_1016_j_carbpol_2022_119133 crossref_primary_10_1016_j_ijadhadh_2022_103278 crossref_primary_10_1021_acssusresmgt_4c00047 crossref_primary_10_1016_j_rineng_2024_102084 crossref_primary_10_1016_j_matchemphys_2022_127092 crossref_primary_10_3390_polym11030518 crossref_primary_10_3390_pr12020297 crossref_primary_10_1016_j_ijbiomac_2022_04_037 crossref_primary_10_1016_j_susmat_2023_e00809 crossref_primary_10_1039_D3SU00302G crossref_primary_10_1016_j_apsusc_2018_10_063 crossref_primary_10_1016_j_foodhyd_2022_107484 crossref_primary_10_1016_j_mser_2024_100799 crossref_primary_10_1002_aenm_202400208 crossref_primary_10_1021_bm5016078 crossref_primary_10_3390_polym17060783 crossref_primary_10_1038_s41467_021_21500_0 crossref_primary_10_1111_jfpe_13344 crossref_primary_10_1016_j_carbpol_2017_09_002 crossref_primary_10_1177_08927057211020800 crossref_primary_10_1021_acs_biomac_7b00026 crossref_primary_10_1002_cben_202300014 crossref_primary_10_1002_pc_24983 crossref_primary_10_1016_j_jenvman_2023_119928 crossref_primary_10_1002_pc_25701 crossref_primary_10_1016_j_bcab_2024_103124 crossref_primary_10_3390_polym12020336 crossref_primary_10_1038_srep31654 crossref_primary_10_3390_ma14216260 crossref_primary_10_1002_admi_202300162 crossref_primary_10_1002_adma_202000657 crossref_primary_10_1039_C8SM01484A crossref_primary_10_1088_2631_6331_ab47f9 crossref_primary_10_1021_acs_chemrev_2c00816 crossref_primary_10_1039_D0NA00408A crossref_primary_10_1002_star_202000033 crossref_primary_10_1007_s10854_018_0409_y crossref_primary_10_1021_acsapm_3c02801 crossref_primary_10_3390_cryst12010106 crossref_primary_10_7584_ktappi_2016_48_1_005 crossref_primary_10_1007_s10570_014_0423_z crossref_primary_10_1039_D4MA00033A crossref_primary_10_1080_01614940_2022_2048570 crossref_primary_10_1007_s10570_018_1822_3 crossref_primary_10_1039_C7NR04656A crossref_primary_10_1016_j_jcomc_2021_100113 crossref_primary_10_1088_2053_1591_ab8a82 crossref_primary_10_1016_j_ijbiomac_2024_132668 crossref_primary_10_1021_acsapm_1c00765 crossref_primary_10_1016_j_apsusc_2017_12_137 crossref_primary_10_1002_app_48500 crossref_primary_10_1016_j_cemconcomp_2023_105276 crossref_primary_10_1016_j_indcrop_2018_02_022 crossref_primary_10_1007_s10570_018_2044_4 crossref_primary_10_1007_s12355_016_0507_1 crossref_primary_10_1016_j_apsusc_2022_153974 crossref_primary_10_1016_j_carbpol_2019_115825 crossref_primary_10_1016_j_jiec_2017_12_034 crossref_primary_10_1088_2053_1591_aad9d4 crossref_primary_10_1021_acs_macromol_4c02323 crossref_primary_10_1002_adma_202000630 crossref_primary_10_1080_00222348_2020_1845498 crossref_primary_10_1088_1361_6528_ac6fef crossref_primary_10_1007_s40544_024_0940_1 crossref_primary_10_1016_j_crgsc_2021_100081 crossref_primary_10_1007_s10570_018_1723_5 crossref_primary_10_1002_app_44493 crossref_primary_10_1021_acsanm_0c02881 crossref_primary_10_1002_pat_5464 crossref_primary_10_1016_j_polymer_2014_11_017 crossref_primary_10_1140_epjp_s13360_022_02999_8 crossref_primary_10_1021_acsami_4c04015 crossref_primary_10_1021_acsomega_7b00387 crossref_primary_10_1039_C7NR09037D crossref_primary_10_1007_s13399_023_04678_9 crossref_primary_10_3390_nano11020520 crossref_primary_10_1039_D1MA00689D crossref_primary_10_1002_adem_201901452 crossref_primary_10_1016_j_msec_2015_08_041 crossref_primary_10_1021_acsanm_3c05752 crossref_primary_10_1007_s10570_019_02377_1 crossref_primary_10_1360_SSC_2024_0212 crossref_primary_10_1016_j_carbpol_2018_07_034 crossref_primary_10_1007_s12039_015_0873_3 crossref_primary_10_1016_j_cis_2023_103076 crossref_primary_10_1016_j_ijbiomac_2023_128552 crossref_primary_10_1016_j_fpsl_2019_100429 crossref_primary_10_1007_s42464_019_00032_9 crossref_primary_10_1021_acs_biomac_6b01639 crossref_primary_10_1155_2023_8435480 crossref_primary_10_1021_acsomega_3c02016 crossref_primary_10_1016_j_culher_2023_01_003 crossref_primary_10_3390_app8122463 crossref_primary_10_1039_D2GC03384D crossref_primary_10_1007_s10570_019_02379_z crossref_primary_10_1177_0892705718815530 crossref_primary_10_1021_acsnano_8b03074 crossref_primary_10_1007_s10965_019_1783_8 crossref_primary_10_1007_s11837_016_2018_7 crossref_primary_10_1021_acs_macromol_1c01886 crossref_primary_10_1021_acsomega_0c06002 crossref_primary_10_1016_j_carbpol_2023_120718 crossref_primary_10_1002_pat_5246 crossref_primary_10_1021_acs_biomac_4c01034 crossref_primary_10_1016_j_ijbiomac_2023_127472 crossref_primary_10_1016_j_fct_2020_111847 crossref_primary_10_1002_mame_202400037 crossref_primary_10_1016_j_carpta_2022_100272 crossref_primary_10_1177_0021998318817814 crossref_primary_10_1007_s10570_021_04368_7 crossref_primary_10_1016_j_indcrop_2017_06_006 crossref_primary_10_1021_acssuschemeng_7b03437 crossref_primary_10_1002_adma_201603386 crossref_primary_10_1080_00405000_2019_1633216 crossref_primary_10_1016_j_carbpol_2017_03_076 crossref_primary_10_1021_bm5013458 crossref_primary_10_1080_01932691_2020_1775092 crossref_primary_10_1016_j_carbpol_2018_08_093 crossref_primary_10_5005_jp_journals_10015_2486 crossref_primary_10_3390_nano9121702 crossref_primary_10_1016_j_cocis_2017_01_003 crossref_primary_10_1039_D1EN00233C crossref_primary_10_3389_fchem_2020_00392 crossref_primary_10_1016_j_carbpol_2018_05_087 crossref_primary_10_1007_s10570_022_04603_9 crossref_primary_10_1021_acssuschemeng_0c07451 crossref_primary_10_1002_pen_26713 crossref_primary_10_1016_j_plaphy_2023_108244 crossref_primary_10_1002_pen_24770 crossref_primary_10_7584_JKTAPPI_2017_02_49_1_25 crossref_primary_10_1021_acs_chemmater_7b01170 crossref_primary_10_1002_pen_25621 crossref_primary_10_1007_s13762_024_06299_9 crossref_primary_10_1021_acs_biomac_3c01196 crossref_primary_10_1016_j_indcrop_2023_117703 crossref_primary_10_1039_C7SM00384F crossref_primary_10_1007_s10570_019_02683_8 crossref_primary_10_1021_acs_biomac_8b00746 crossref_primary_10_1007_s10570_018_1975_0 crossref_primary_10_2174_1389557522666220829085805 crossref_primary_10_3390_polym12051021 crossref_primary_10_1021_acsami_6b15986 crossref_primary_10_1021_acssuschemeng_6b01253 crossref_primary_10_1021_acsami_1c08056 crossref_primary_10_35812_CelluloseChemTechnol_2021_55_22 crossref_primary_10_1039_D0RA07141B crossref_primary_10_1002_adv_22087 crossref_primary_10_1002_pc_23819 crossref_primary_10_1016_j_carbpol_2022_120104 crossref_primary_10_1109_JSEN_2024_3401204 crossref_primary_10_3390_jfb14040184 crossref_primary_10_1007_s10904_018_0855_2 crossref_primary_10_1073_pnas_1900161116 crossref_primary_10_1016_j_carbpol_2014_08_029 crossref_primary_10_1680_jgrma_23_00143 crossref_primary_10_1007_s10570_020_03176_9 crossref_primary_10_1007_s10570_021_04017_z crossref_primary_10_1016_j_eurpolymj_2015_06_007 crossref_primary_10_1021_acs_jctc_0c00225 crossref_primary_10_1021_acs_iecr_0c04319 crossref_primary_10_1080_09205063_2020_1817706 crossref_primary_10_1016_j_carpta_2021_100065 crossref_primary_10_1039_D1RA04812K crossref_primary_10_1039_D4RA02939A crossref_primary_10_1021_acssuschemeng_0c05036 crossref_primary_10_3389_fchem_2022_922437 crossref_primary_10_1021_acssuschemeng_0c08429 crossref_primary_10_1016_j_apsusc_2020_145566 crossref_primary_10_1007_s10570_024_06273_1 crossref_primary_10_1007_s10570_021_03830_w crossref_primary_10_1007_s10570_017_1249_2 crossref_primary_10_1016_j_giant_2024_100299 crossref_primary_10_1080_01694243_2019_1596650 crossref_primary_10_1007_s10570_020_03166_x crossref_primary_10_1021_acssuschemeng_1c00815 crossref_primary_10_1016_j_carpta_2022_100234 crossref_primary_10_1007_s10570_017_1324_8 crossref_primary_10_1016_j_apsusc_2017_03_272 crossref_primary_10_1093_insilicoplants_diac004 crossref_primary_10_1007_s13233_021_9001_z crossref_primary_10_1007_s10570_017_1555_8 crossref_primary_10_1007_s00107_024_02105_y crossref_primary_10_1039_C8SM00433A crossref_primary_10_1021_acsmacrolett_7b00609 crossref_primary_10_1021_acs_biomac_7b00209 crossref_primary_10_1016_j_cocis_2017_02_001 crossref_primary_10_3390_jfb14030118 crossref_primary_10_1016_j_cocis_2017_02_004 crossref_primary_10_1007_s10570_016_1158_9 crossref_primary_10_1002_adsu_202400887 crossref_primary_10_1007_s10924_021_02078_6 crossref_primary_10_1016_j_polymdegradstab_2016_03_022 crossref_primary_10_1021_acsbiomaterials_0c01618 crossref_primary_10_1016_j_indcrop_2015_12_078 crossref_primary_10_1016_j_carbpol_2021_119049 crossref_primary_10_1016_j_carbpol_2017_05_089 crossref_primary_10_1016_j_ijbiomac_2022_01_168 crossref_primary_10_1021_acs_biomac_0c00805 crossref_primary_10_1016_j_carbpol_2018_04_124 crossref_primary_10_3390_polym16213015 crossref_primary_10_1039_C6NR01737A crossref_primary_10_3390_polym15061356 crossref_primary_10_1021_acsami_0c21337 crossref_primary_10_1016_j_carbpol_2019_115785 crossref_primary_10_1016_j_carbpol_2016_01_014 crossref_primary_10_1016_j_ijbiomac_2018_11_064 crossref_primary_10_1016_j_fpsl_2021_100715 crossref_primary_10_1021_acsami_1c03805 crossref_primary_10_1016_j_molliq_2018_06_062 crossref_primary_10_1002_app_47001 crossref_primary_10_1016_j_susmat_2024_e01010 crossref_primary_10_3390_membranes13010108 crossref_primary_10_1002_polb_24139 crossref_primary_10_1016_j_memsci_2021_119473 crossref_primary_10_1016_j_carpta_2022_100212 crossref_primary_10_1155_2023_4431941 crossref_primary_10_1002_aic_17910 crossref_primary_10_1039_D3TA01447A |
Cites_doi | 10.1016/j.polymer.2009.07.038 10.1039/b809212e 10.1016/j.carbpol.2012.05.025 10.1021/ma801796u 10.1021/bm061104q 10.1007/s10570-013-9870-1 10.1038/184632a0 10.1021/bm034519 10.3144/expresspolymlett.2008.60 10.1002/pat.1995.220060514 10.1021/la950133b 10.1007/BF00816384 10.1021/bm1013316 10.1021/jp960224x 10.1021/la990046 10.1016/j.carbpol.2010.10.047 10.1039/b910517d 10.1016/j.eurpolymj.2008.06.010 10.1007/s10570-009-9350-9 10.1002/mame.201000444 10.1515/9783110254600 10.1016/0032-3861(60)90040-9 10.1021/la001070m 10.1021/jp072258i 10.1016/j.biortech.2009.11.058 10.1016/j.eurpolymj.2013.04.035 10.3891/acta.chem.scand.03-0649 10.1021/bm101506j 10.1021/bm200613y 10.1002/(SICI)1097-4628(19990314)71:11<1797::AID-APP9>3.0.CO;2-E 10.1021/la9913957 10.1002/app.30308 10.1590/S1516-14392013005000033 10.1007/s10570-013-0071-8 10.1002/mame.201300232 10.1016/j.carbpol.2005.08.027 10.1002/mabi.200500094 10.1021/ma4010154 10.1016/0032-3861(91)90435-L 10.1002/mabi.200900073 10.1016/j.memsci.2008.04.009 10.1007/BF00254940 10.1016/j.carbpol.2008.11.030 10.1021/cr900339w 10.1016/0032-3861(62)90102-7 10.1021/bm050479t 10.1007/s10570-011-9507-1 10.1107/S0365110X51000751 10.1021/bm200581h 10.1021/bm0101769 10.1021/bm050828j 10.1021/bm900319k 10.1002/hlca.19360190110 10.1166/jnn.2006.906 10.1021/ma300463y 10.1007/s10570-013-0132-z 10.1002/mabi.200600034 10.1016/j.memsci.2012.09.048 10.1002/pol.1962.1205716551 10.1021/bm301955k 10.1023/A:1021065905986 10.1021/bm101106c 10.1002/app.39328 10.1515/9783110218244 10.1007/s11705-007-0041-5 10.1063/1.1661482 10.1007/s10570-009-9384-z 10.1021/la960724h 10.3139/217.2603 10.1021/am9006337 10.1007/s11051-011-0275-5 10.1007/s0089460020278 10.1111/j.1750-3841.2009.01386.x 10.1590/S0100-40422001000600020 10.1016/j.carbpol.2009.04.034 10.1021/la9028595 10.1016/j.carbpol.2010.10.036 10.1016/j.compscitech.2011.11.017 10.1021/am9003705 10.1016/j.carbpol.2010.11.022 10.1016/j.polymer.2008.08.008 10.1021/la900452a 10.1016/j.carbpol.2007.05.040 10.1007/s10570-006-9046-3 10.1021/ma0008701 10.1126/science.1153307 10.1007/978-94-007-1168-6 10.1016/j.indcrop.2010.07.018 10.1590/S0104-14282011005000048 10.1016/j.carbpol.2011.01.039 10.1016/j.eurpolymj.2013.07.017 10.1007/s10570-007-9119-y 10.1021/jf1006853 10.1002/app.20870 10.1016/0032-3861(86)90342-3 10.1039/b817223d 10.1002/mats.1995.040040409 10.1111/j.1750-3841.2009.01186.x 10.1016/j.progpolymsci.2009.10.005 10.1166/jnn.2006.132 10.1063/1.2963491 10.1039/b818056c 10.1002/polb.1995.090331110 10.1016/j.cattod.2010.03.057 10.1021/ma00215a012 10.1166/jnn.2009.dk24 10.1016/j.polymer.2011.02.004 10.1021/mz2001737 10.1002/polb.23327 10.1039/b608177k 10.1007/s10570-010-9430-x 10.1021/bm8011117 10.13073/0015-7473-61.2.104 10.1007/s10570-005-9039-7 10.1021/ma201502k 10.1098/rspa.1968.0157 10.1021/ma030532a 10.1016/j.biombioe.2011.02.001 10.1016/j.mattod.2013.06.004 10.1021/la101795s 10.1002/app.28418 10.1039/B916130A 10.1016/S0032-3861(02)00051-4 10.1021/bm900520n 10.1021/bm1010905 10.1021/ma00122a053 10.1016/j.carbpol.2012.08.057 10.1021/bm801193d 10.1016/j.eurpolymj.2009.12.025 10.1016/S0141-8130(05)80008-X 10.1021/bm8001717 10.1021/la900323n 10.1016/j.compscitech.2010.01.018 10.1002/app.38896 10.1007/s10570-012-9823-0 10.1007/s10570-012-9820-3 10.1021/bm400784j 10.1002/1097-4628(20001209)78:11<1939::AID-APP130>3.0.CO;2-9 10.1080/02678299408036525 10.1007/s10570-006-9068-x 10.1021/bm049291k |
ContentType | Journal Article |
Copyright | 2014 Wiley Periodicals, Inc. 2015 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. – notice: 2015 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION IQODW 7SR 7U5 8FD JG9 L7M 1XC |
DOI | 10.1002/polb.23490 |
DatabaseName | Istex CrossRef Pascal-Francis Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics Applied Sciences |
EISSN | 1099-0488 |
EndPage | 806 |
ExternalDocumentID | oai_HAL_hal_02302485v1 3296483521 28569297 10_1002_polb_23490 POLB23490 ark_67375_WNG_JQZND1PS_8 |
Genre | reviewArticle |
GroupedDBID | -~X .GA .Y3 05W 10A 1L6 1OC 1ZS 4.4 4ZD 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 7PT 8-1 8UM 930 A03 AAEVG AAHBH AAHHS AANLZ AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADEOM ADIZJ ADMGS ADOZA ADXAS AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU BDRZF BRXPI BSCLL BY8 CS3 DCZOG DR2 DRFUL DRSTM EBS EJD F00 F5P G-S GNP GODZA GYXMG HBH HGLYW HHY HHZ IX1 KQQ LATKE LAW LEEKS LOXES LP6 LP7 LUTES LYRES MEWTI MRFUL MSFUL MSSTM MXFUL MXSTM OIG P2P P2W P4D QB0 QRW RNS ROL RWB RWI RYL SUPJJ TN5 UB1 UPT V2E W99 WH7 WIH WJL WOHZO WQJ WXSBR XG1 XPP XV2 YQT ZZTAW AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ AAYXX ADMLS AGQPQ AGYGG CITATION 1OB 31~ 6TJ AI. AZFZN FEDTE HF~ HVGLF IQODW LH4 M6T MRSTM RIWAO SAMSI VH1 7SR 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 1XC |
ID | FETCH-LOGICAL-c5750-9d62c16e8414a3d4ad5b4f2317c9260153c46b26b59c0d6b8b0742dbd9b181c3 |
IEDL.DBID | DR2 |
ISSN | 0887-6266 |
IngestDate | Wed Jun 18 06:32:38 EDT 2025 Thu Jul 10 22:19:10 EDT 2025 Fri Jul 25 12:13:56 EDT 2025 Wed Apr 02 07:27:39 EDT 2025 Tue Jul 01 01:14:15 EDT 2025 Thu Apr 24 23:05:29 EDT 2025 Wed Jan 22 17:06:38 EST 2025 Wed Oct 30 09:52:46 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | polysaccharides State of the art Cellulose Polymer biofibers nanocomposites mechanical properties barrier nanoparticles Nanocomposite Manufacturing Filler Nanocrystal Nanocomposites Cellulose nanocrystals CNC |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5750-9d62c16e8414a3d4ad5b4f2317c9260153c46b26b59c0d6b8b0742dbd9b181c3 |
Notes | istex:F3EC3A613D96AAB10C19C3DBEB3DFD5E6A73CFBC ArticleID:POLB23490 ark:/67375/WNG-JQZND1PS-8 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8181-1849 0000-0002-7334-1055 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/polb.23490 |
PQID | 1521864833 |
PQPubID | 1016371 |
PageCount | 16 |
ParticipantIDs | hal_primary_oai_HAL_hal_02302485v1 proquest_miscellaneous_1671605108 proquest_journals_1521864833 pascalfrancis_primary_28569297 crossref_citationtrail_10_1002_polb_23490 crossref_primary_10_1002_polb_23490 wiley_primary_10_1002_polb_23490_POLB23490 istex_primary_ark_67375_WNG_JQZND1PS_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 June 2014 |
PublicationDateYYYYMMDD | 2014-06-15 |
PublicationDate_xml | – month: 06 year: 2014 text: 15 June 2014 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, NJ |
PublicationPlace_xml | – name: Hoboken, NJ – name: Hoboken |
PublicationTitle | Journal of polymer science. Part B, Polymer physics |
PublicationTitleAlternate | J. Polym. Sci. Part B: Polym. Phys |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley – name: Wiley Subscription Services, Inc |
References | S. Berlioz, S. Molina-Boisseau, Y. Nishiyama, L. Heux, Biomacromolecules 2009, 10, 2144-2151. J. M. Raquez, Y. Murena, A. L. Goffin, Y. Habibi, B. Ruelle, F. DeBuyl, P. Dubois, Compos. Sci. Technol. 2012, 72, 544-549. Y. Lu, L. Weng, X. Cao, Macromol. Biosci. 2005, 5, 1101-1107. K. Kamide, Cellulose and Cellulose Derivatives; Elsevier B.V., Amsterdam, The Netherlands, 2005. S. Neyertz, A. Pizzi, A. Merlin, B. Maigret, D. Brown, X. Deglise, J. Appl. Polym. Sci. 2000, 78, 1939-1946. M. Bergenstråhle, L. A. Berglund, K. Mazeau, J. Phys. Chem. B 2007, 111, 9138-9145. J. Araki, M. Wada, S. Kuga, Langmuir 2001, 17, 21-27. J. F. Revol, L. Godbout, X. M. Dong, D. G. Gray, H. Chanzy, G. Maret, Liq. Cryst. 1994, 16, 127-134. R. A. Khan, S. Salmieri, D. Dussault, J. Uribe-Calderon, M. R. Kamal, A. Safrany, M. Lacroix, J. Agric. Food Chem. 2010, 58, 7878-7885. A. L. Goffin, J. M. Raquez, E. Duquesne, G. Siqueira, Y. Habibi, A. Dufresne, Ph. Dubois, Polymer 2011, 52, 1532-1538. I. Diddens, B. Murphy, M. Krisch, M. Müller, Macromolecules 2008, 41, 9755-9759. G. Siqueira, H. Abdillahi, J. Bras, A. Dufresne, Cellulose 2010, 17, 289-298. G. Siqueira, J. Bras, A. Dufresne, Biomacromolecules 2009, 10, 425-432. J. Majoinen, A. Walther, J. R. McKee, E. Kontturi, V. Aseyev, J. M. Malho, J. Ruokolainen, O. Ikkala, Biomacromolecules 2011, 12, 2997-3006. G. Morandi, L. Heath, W. Thielemans, Langmuir 2009, 25, 8280-8286. Y. Habibi, A. Dufresne, Biomacromolecules 2008, 9, 1974-1980. V. Landry, A. Alemdar, P. Blanchet, Forest Prod. J. 2011, 61, 104-112. E. Kloser, D. G. Gray, Langmuir 2010, 26, 13450-13456. D. H. Milanez, R. M. Do Amaral, Mater. Res, 2013, 16, 635-641. S. Iwamoto, W. Kai, A. Isogai, T. Iwata, Biomacromolecules 2009, 10, 2571-2576. S. Boufi, H. Kaddami, A. Dufresne, Macromol. Mater. Eng., in press. Article first published online: 7 Oct 2013, DOI: 10.1002/mame.201300232. Y. Lu, L. Weng, X. Cao, Carbohydr. Polym. 2006, 63, 198-204. A. Šturcova, G. R. Davies, S. J. Eichhorn, Biomacromolecules 2005, 6, 1055-1061. K. L. Dagnon, K. Shanmuganathan, C. Weder, S. J. Rowan, Macromolecules 2012, 45, 4707-4715. E. Espino-Pérez, J. Bras, V. Ducruet, A. Guinault, A. Dufresne, S. Domenek, Eur. Polym. J. 2013, 49, 3144-3154. X. Cao, Y. Chen, P. R. Chang, M. Stumborg, M. A. Huneault, J. Appl. Polym. Sci. 2008, 109, 3804-3810. J. Bras, D. Viet, C. Bruzzese, A. Dufresne, Carbohydr. Polym. 2011, 84, 211-215. Y. Wang, X. Cao, L. Zhang, Macromol. Biosci. 2006, 6, 524-531. K. Tashiro, M. Kobayashi, Polym. Bull. 1985, 14, 213-218. H. Althues, J. Henle, S. Kaskel, Chem. Soc. Rev. 2007, 36, 1454-1465. L. H. Mattoso, E. S. Medeiros, D. A. Baker, J. Avloni, D. F. Wood, W. J. Orts, J. Nanosci. Nanotechnol. 2009, 9, 2917-2922. M. Matsuo, C. Sawatari, Y. Iwai, F. Ozaki, Macromolecules 1990, 23, 3266-3275. S. Noorani, J. Simonsen, S. Atre, Cellulose 2007, 14, 577-584. J. P. de Mesquita, C. L. Donnici, I. F. Teixeira, F. V. Pereira, Carbohydr. Polym. 2012, 90, 210-217. A. P. Mathew, A. Dufresne, Biomacromolecules 2002, 3, 609-617. L. Chazeau, J. Y. Cavaillé, G. R. Canova, R. Dendievel, B. Boutherin, J. Appl. Polym. Sci. 1999, 71, 1797-1808. Y. Chen, C. Liu, P. R. Chang, X. Cao, D. P. Anderson, Carbohydr. Polym. 2009, 76, 607-615. K. Shanmuganathan, J. R. Capadona, S. J. Rowan, C. Weder, ACS Appl. Mater. Interfaces 2010, 2, 165-174. S. Berndt, F. Wesarg, C. Wiegand, D. Kralisch, F. A. Müller, Cellulose 2013, 20, 771-783. X. M. Dong, D. G. Gray, Langmuir 1997, 13, 2404-2409. H. M. C. Azeredo, L. H. C. Mattoso, R. J. Avena-Bustillos, G. C. Filho, M. L. Munford, D. Wood, T. H. McHugh, J. Food Sci. 2010, 75, N1-N7. C. Goussé, H. Chanzy, G. Excoffier, L. Soubeyrand, E. Fleury, Polymer 2002, 43, 2645-2651. A. Dufresne, Mater. Today 2013, 16, 220-227. S. Beck, J. Bouchard, R. Berry, Biomacromolecules 2011, 12, 167-172. N. Lin, A. Dufresne, Macromolecules 2013, 46, 5570-5583. M. J. John, S. Thomas, Carbohydr. Polym. 2008, 71, 343-364. K. Shanmuganathan, J. R. Capadona, S. J. Rowan, C. Weder, Prog. Polym. Sci. 2010, 35, 212-222. N. Lin, A. Dufresne, Biomacromolecules 2013, 14, 871-880. X. Cao, Y. Habibi, L. A. Lucia, J. Mater. Chem. 2009, 19, 7137-7145. E. M. Teixeira, D. Pasquini, A. A. S. Curvelo, E. Corradini, M. N. Belgacem, A. Dufresne, Carbohydr. Polym. 2009, 78, 422-431. G. Siqueira, J. Bras, A. Dufresne, Langmuir 2009, 26, 402-411. C. Aulin, S. Ahola, P. Josefsson, T. Nishino, Y. Hirose, M. Österberg, L. Wågberg, Langmuir 2009, 25, 7675-7685. F. L. Dri, L. G. Hector Jr., R. J. Moon, P. D. Zavattieri, Cellulose 2013, 20, 2703-2718. B. G. Rånby, Acta Chem. Scand. 1949, 3, 649-650. J. F. Sassi, H. Chanzy, Cellulose 1995, 2, 111-127. A. Bendahou, H.Kaddami, A.Dufresne, Eur. Polym. J. 2010, 46, 609-620. L. Heux, G. Chauve, C. Bonini, Langmuir 2000, 16, 8210-8212. M. Grunert, W. T. Winter, J. Polym. Environ. 2002, 10, 27-30. M. D. Sanchez-Garcia, J. M. Laragon, Cellulose 2010, 17, 987-1004. J. B. Miller, E. K. Hobbie, J. Polym. Sci. Part B: Polym. Phys. 2013, 51, 1195-1208. A. Pei, Q. Zhou, L. Berglund, Compos. Sci. Technol. 2010, 70, 815-821. D. Liu, T. Zhong, P. R. Chang, K. Li, Q. Wu, Bioresource Technol. 2010, 101, 2529-2536. L. M. J. Kroon-Batenburg, J. Kroon, M. G. Northolt, Polym. Commun. 1986, 27, 290-292. I. Kvien, B. S. Tanem, K. Oksman, Biomacromolecules 2005, 6, 3160-3165. M. de Oliveira Taipina, M. M. Favaro Ferrarezi, I. V. Pagotto Yoshida, M. do Carmo Gonçalves, Cellulose 2013, 20, 217-226. M. J. Sobkowicz, B. Braun, J. R. Dorgan, Green Chem. 2009, 11, 680-682. S. Harrisson, G. L. Drisko, E. Malmström, A. Hult, K. L. Wooley, Biomacromolecules 2011, 12, 1214-1223. X. Cao, Y. Chen, P. R. Chang, A. D. Muir, G. Falk, eXPRESS Polym. Lett. 2008, 2, 502-510. R. Rusli, S. J. Eichhorn, Appl. Phys. Lett. 2008, 93, 033111-1-3. J. Ganster, J. Blackwell, J. Mol. Model. 1996, 2, 278-285. G. Siqueira, J. Bras, N. Follain, S. Belbekhouche, S. Marais, A. Dufresne, Carbohydr. Polym. 2013, 91, 711-717. W. Thielemans, C. R. Warbey, D. A. Walsh, Green Chem. 2009, 11, 531-537. N. L. Garcia de Rodriguez, W. Thielemans, A. Dufresne, Cellulose 2006, 13, 261-270. T. Nishino, In Green Composites; C. Baillie, Ed.; CRC Press, Boca Raton, Boston, New York, Washington DC, 2004; Chapter 4, pp 61-79-79. S. Reiling, J. Brickmann, Macromol. Theory Simul. 1995, 4, 725-743. V. Favier, H. Chanzy, J. Y. Cavaillé, Macromolecules 1995, 28, 6365-6367. K. Ben Azouz, E. C. Ramires, W. Van den Fonteyne, N. El Kissi, A. Dufresne, ACS Macro Lett. 2012, 1, 236-240. Y. Habibi, L. A. Lucia, O. J. Rojas, Chem. Rev. 2010, 110, 3479-3500. M. Roman, W. T. Winter, Biomacromolecules 2004, 5 1671-1677. A. Saxena, T. J. Elder, A. J. Ragauskas, Carbohydr. Polym. 2011, 84, 1371-1377. Q. Xu, J. Yi, X. Zhang, H. Zhang, Eur. Polym. J. 2008, 44, 2830-2837. V. Favier, G. R. Canova, J. Y. Cavaillé, H. Chanzy, A. Dufresne, C. Gauthier, Polym. Adv. Technol. 1995, 6, 351-355. K. B. R. Teodoro, E. M. Teixeira, A. C. Corrêa, A. de Campos, J. M. Marconcini, L. H. C. Mattoso, Polímeros 2011, 21, 280-285. H. I. de Vries, Acta Crystallogr. 1951, 4, 219-226. A. C. Corrêa, E. M. Teixeira, V. B. Carmona, K. B. R. Teodoro, C. Ribeiro, L. H. C. Mattoso, J. M. Marconcini, Cellulose 2014, 21, 311-322. H. M. C. Azeredo, K. W. E. Miranda, M. F. Rosa, D. M. Nascimento, M. R. de Moura, Food Sci. Technol. 2012, 46, 294-297. N. Follain, S. Belbekhouche, J. Bras, G. Siqueira, S. Marais, A. Dufresne, J. Membr. Sci. 2013, 427, 218-229. T. Nishino, K. Takano, K. Nakamae, J. Polym. Sci. Part B: Polym. Phys. 1995, 33, 1647-1651. J. Yi, Q. Xu, X. Zhang, H. Zhang, Cellulose 2009, 16, 989-997. T. Ebeling, M. Paillet, R. Borsali, O. Diat, A. Dufresne, J. Y. Cavaillé, H. Chanzy, Langmuir 1999, 15, 6123-6126. O. Van den Berg, J. R. Capadona, C. Weder, Biomacromolecules 2007, 8, 1353-1357. J. Yi, Q. Xu, X. Zhang, H. Zhang, Polymer 2008, 49, 4406-4412. X. M. Dong, T. Kimura, J. F. Revol, D. G. Gray, Langmuir 1996, 12, 2076-2082. H. M. C. Azeredo, L. H. C. Mattoso, D. Wood, T. G. Williams, R. J. Avena-Bustillos, T. H. McHugh, J. Food Sci. 2009, 74, N31-N35. C. Crestini, M. Crucianelli, M. Orlandi, R. Saladino, Catal. Today 2010, 156, 8-22. K. Tashiro, M. Kobayashi, Polymer 1991, 32, 1516-1526. S. Belbekhouche, J. Bras, G. Siqueira, C. Chappey, L. Lebrun, B. Khelifi, S. Marais, A. Dufresne, Carbohydr. Polym. 2011, 83, 1740-1748. J. Mann, L. Roldan-Gonzales, Polymer 1962, 3, 549-553. J. F. Revol, H. Bradford, J. Giasson, R. H. Marchessault, D. G. Gray, Int. J. Biol. Macromol. 1992, 14, 170-172. F. Tanaka, T. Iwata, Cellulose 2006, 13, 509-517. N. Wang, E. Ding, R. Cheng, Front. Chem. Eng. China 2007, 1, 228-232. S. Qian, H. Mao, K. Sheng, J. Lu, Y. Luo, C. Hou, J. Appl. Polym. Sci. 2013, 130, 1667-1674. M. S. Cintrón, G. P. Johnson, A. D. French, Cellulose 2011, 18, 505-516. H. Yuan, Y. Nishiyama, M. Wada, S. Kuga, Biomacromolecules 2006, 7, 696-700. F. Azzam, L. Heux, J. L. Putaux, B. Jean, Biomacromolecules 2010, 11, 3652-3659. Y. J. Choi, J. Simonsen, J. Nanosci. Nanotechnol. 2006, 6, 633-639. K. Meyer, W. Lotmar, Helv. Chim. Acta 1936, 19, 68-86. L. R. G. Treloar, Polymer 1960, 1, 290-303. X. Yu, S. Tong, M. Ge, L. Wu, J. Zuo, C. Cao, W. Song, J. Environ. Sci. 2 013, 25, 933-943. I. Sakurada, Y.Nukushina, T. Ito, J. Polym. Sci. 1962, 57, 651-660. X. Wu, R. Moon, A. Martini, Cellulose 2013, 20, 43-55. S. A. Paralikar, J. Simonsen, J. Lombardi, J. Membr. Sci. 2008, 320, 248-258. J. Mendez, P. K. Annamalai, S. J. Eichhorn, R. Rusli, S. J. Rowan, E. J. Foster, C. Weder, Macromolecules 2011, 44, 6827-6835. M. A. S. Azizi Samir, F. Alloin, J. Y. Sanchez, N. El Kissi, A. Dufresne, Macromolecules 2004, 37, 1386-1393. Y. Habibi, A. L. Goffin, N. Schiltz, E. Duquesne, P. Dubois, A. Dufresne, J. Mat. Chem. 2008, 18, 5002-5010. L. B. Brasileiro, J. L. Colodette, D. P. Veloso, Quim. Nova 2001, 24, 819-829. B. Braun, J. R. Dorgan, Biomacromolecules 2009, 10, 334-341. N. Lin, J. Huang, P. R. Chang, J. Feng, J. Yu, Carbohydr. Polym. 2011, 83, 1834-1842. K. J. Klabunde, J. Stark, O. Koper, C. Mohs, D. G. Park, S. Decker, Y. Jiang, I. Lagadic, D. Zhang, J. Phys. Chem. 1996, 100, 2010; 11 2010; 17 1995; 33 2002; 10 2010; 101 2013; 129 1960; 1 2011; 61 2004; 4 2008; 109 2011; 52 2004; 5 2009; 113 1972; 43 1951; 4 2014; 21 2009; 11 2010; 20 2010; 26 2009; 10 2000; 16 1995; 28 2002; 86 2013; 51 2004; 37 2010; 110 2007; 8 2012; 27 2007; 1 2009; 19 2010; 2 2009; 16 1985; 14 1936; 19 2010; 32 1959; 184 2010; 35 1962; 3 2011; 84 2011; 83 2013; 91 013 2002; 3 1995; 2 2001; 24 1995; 4 1995; 6 2007; 14 1996; 12 2009; 78 2009; 74 1990; 23 2009; 76 2010; 46 2000; 78 2008; 49 1986; 27 2005; 5 2005; 6 1998; 3 1994; 16 2008; 44 2008; 41 2012; 46 2012; 45 2010; 58 1949; 3 2013; 20 2008; 9 2011; 13 1996; 100 2011; 12 1992; 14 2008; 2 2008; 71 2011; 18 2007; 36 2012; 72 2006; 63 2013; 14 2013; 16 2009; 50 2010; 156 1999; 15 2002; 43 1997; 13 2008; 319 2011; 21 2001; 17 2010; 70 1996; 2 1968; 306 2009; 25 2010; 75 2013; 49 2012 2006; 13 2013; 427 2010 1991; 32 2013; 46 2008; 18 2006; 7 2006; 6 2011; 35 2005 1962; 57 2008; 320 2008; 93 2009; 26 2011; 296 2012; 90 2004; 93 2012; 1 2007; 2007 2007; 111 2000; 33 2009; 9 2011; 44 2013; 130 2013 1999; 71 2009; 1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_131_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_135_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_147_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_124_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_132_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_148_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_42_1 Nishino T. (e_1_2_10_10_1) 2004 Grunert M. (e_1_2_10_72_1) 2002; 86 e_1_2_10_110_1 e_1_2_10_91_1 Yu X. (e_1_2_10_69_1); 013 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_145_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_130_1 Azeredo H. M. C. (e_1_2_10_140_1) 2012; 46 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_146_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_142_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – reference: L. B. Brasileiro, J. L. Colodette, D. P. Veloso, Quim. Nova 2001, 24, 819-829. – reference: N. S. Çetin, P. Tingaut, N. Ozmen, N. Henry, D. Harper, M. Dadmun, G. Sebe, Macromol. Biosci. 2009, 9, 997-1003. – reference: J. Mann, L. Roldan-Gonzales, Polymer 1962, 3, 549-553. – reference: A. Dufresne, Int. Polym. Proc. 2012, 27, 557-564. – reference: S. Harrisson, G. L. Drisko, E. Malmström, A. Hult, K. L. Wooley, Biomacromolecules 2011, 12, 1214-1223. – reference: X. M. Dong, T. Kimura, J. F. Revol, D. G. Gray, Langmuir 1996, 12, 2076-2082. – reference: H. M. C. Azeredo, K. W. E. Miranda, M. F. Rosa, D. M. Nascimento, M. R. de Moura, Food Sci. Technol. 2012, 46, 294-297. – reference: S. Berlioz, S. Molina-Boisseau, Y. Nishiyama, L. Heux, Biomacromolecules 2009, 10, 2144-2151. – reference: X. Cao, Y. Chen, P. R. Chang, M. Stumborg, M. A. Huneault, J. Appl. Polym. Sci. 2008, 109, 3804-3810. – reference: M. Schroers, A. Kokil, C. Weder, J. Appl. Polym. Sci. 2004, 93, 2883-2888. – reference: S. Belbekhouche, J. Bras, G. Siqueira, C. Chappey, L. Lebrun, B. Khelifi, S. Marais, A. Dufresne, Carbohydr. Polym. 2011, 83, 1740-1748. – reference: A. L. Goffin, J. M. Raquez, E. Duquesne, G. Siqueira, Y. Habibi, A. Dufresne, Ph. Dubois, Polymer 2011, 52, 1532-1538. – reference: Y. Habibi, L. A. Lucia, O. J. Rojas, Chem. Rev. 2010, 110, 3479-3500. – reference: M. J. John, S. Thomas, Carbohydr. Polym. 2008, 71, 343-364. – reference: A. Pei, Q. Zhou, L. Berglund, Compos. Sci. Technol. 2010, 70, 815-821. – reference: W. Thielemans, C. R. Warbey, D. A. Walsh, Green Chem. 2009, 11, 531-537. – reference: S. Boufi, H. Kaddami, A. Dufresne, Macromol. Mater. Eng., in press. Article first published online: 7 Oct 2013, DOI: 10.1002/mame.201300232. – reference: J. Bras, M. L. Hassan, C. Bruzesse, E. A. Hassan, N. A. El-Wakil, A. Dufresne, Ind. Crops Prod. 2010, 32, 627-633. – reference: N. Lin, G. Chen, J. Huang, A. Dufresne, P. R. Chang, J. Appl. Polym. Sci. 2009, 113, 3417-3425. – reference: M. D. Sanchez-Garcia, J. M. Laragon, Cellulose 2010, 17, 987-1004. – reference: K. Shanmuganathan, J. R. Capadona, S. J. Rowan, C. Weder, ACS Appl. Mater. Interfaces 2010, 2, 165-174. – reference: H. M. C. Azeredo, L. H. C. Mattoso, D. Wood, T. G. Williams, R. J. Avena-Bustillos, T. H. McHugh, J. Food Sci. 2009, 74, N31-N35. – reference: K. Shanmuganathan, J. R. Capadona, S. J. Rowan, C. Weder, Prog. Polym. Sci. 2010, 35, 212-222. – reference: J. R. Capadona, K. Shanmuganathan, D. J. Tyler, S. J. Rowan, C. Weder, Science 2008, 319, 1370-1374. – reference: A. Saxena, T. J. Elder, A. J. Ragauskas, Carbohydr. Polym. 2011, 84, 1371-1377. – reference: H. U. Suess, Pulp Bleaching Today; de Gruyter, GmbH & Co. KG: Berlin/New York, 2010. – reference: R. A. Khan, S. beck, D. Dussault, S. Salmieri, J. Bouchard, M. Lacroix, J. Appl. Polym. Sci. 2013, 129, 3038-3046. – reference: J. M. Raquez, Y. Murena, A. L. Goffin, Y. Habibi, B. Ruelle, F. DeBuyl, P. Dubois, Compos. Sci. Technol. 2012, 72, 544-549. – reference: A. Dufresne. J. Nanosci. Nanotechnol. 2006, 6, 322-330. – reference: M. de Oliveira Taipina, M. M. Favaro Ferrarezi, I. V. Pagotto Yoshida, M. do Carmo Gonçalves, Cellulose 2013, 20, 217-226. – reference: K. L. Dagnon, K. Shanmuganathan, C. Weder, S. J. Rowan, Macromolecules 2012, 45, 4707-4715. – reference: J. Ganster, J. Blackwell, J. Mol. Model. 1996, 2, 278-285. – reference: V. Favier, G. R. Canova, J. Y. Cavaillé, H. Chanzy, A. Dufresne, C. Gauthier, Polym. Adv. Technol. 1995, 6, 351-355. – reference: M. A. Jaswon, P. P. Gillis, R.E. Mark, Proc. Roy. Soc. 1968, 306, 389-412. – reference: J. P. de Mesquita, C. L. Donnici, I. F. Teixeira, F. V. Pereira, Carbohydr. Polym. 2012, 90, 210-217. – reference: J. Bras, D. Viet, C. Bruzzese, A. Dufresne, Carbohydr. Polym. 2011, 84, 211-215. – reference: K. Shanmuganathan, J. R. Capadona, S. J. Rowan, C. Weder, J. Mater. Chem. 2010, 20, 180-186. – reference: X. M. Dong, D. G. Gray, Langmuir 1997, 13, 2404-2409. – reference: E. Kloser, D. G. Gray, Langmuir 2010, 26, 13450-13456. – reference: L. R. G. Treloar, Polymer 1960, 1, 290-303. – reference: S. Noorani, J. Simonsen, S. Atre, Cellulose 2007, 14, 577-584. – reference: S. Berndt, F. Wesarg, C. Wiegand, D. Kralisch, F. A. Müller, Cellulose 2013, 20, 771-783. – reference: K. Tashiro, M. Kobayashi, Polymer 1991, 32, 1516-1526. – reference: C. Aulin, S. Ahola, P. Josefsson, T. Nishino, Y. Hirose, M. Österberg, L. Wågberg, Langmuir 2009, 25, 7675-7685. – reference: J. Araki, M. Wada, S. Kuga, Langmuir 2001, 17, 21-27. – reference: D. H. Milanez, R. M. Do Amaral, Mater. Res, 2013, 16, 635-641. – reference: X. Yu, S. Tong, M. Ge, L. Wu, J. Zuo, C. Cao, W. Song, J. Environ. Sci. 2 013, 25, 933-943. – reference: G. Morandi, L. Heath, W. Thielemans, Langmuir 2009, 25, 8280-8286. – reference: S. Neyertz, A. Pizzi, A. Merlin, B. Maigret, D. Brown, X. Deglise, J. Appl. Polym. Sci. 2000, 78, 1939-1946. – reference: S. J. Eichhorn, G. R. Davies, Cellulose 2006, 13, 291-307. – reference: R. H. Marchessault, F. F. Morehead, N. M. Walter, Nature 1959, 184, 632-633. – reference: I. Kvien, B. S. Tanem, K. Oksman, Biomacromolecules 2005, 6, 3160-3165. – reference: I. Diddens, B. Murphy, M. Krisch, M. Müller, Macromolecules 2008, 41, 9755-9759. – reference: T. Nishino, K. Takano, K. Nakamae, J. Polym. Sci. Part B: Polym. Phys. 1995, 33, 1647-1651. – reference: M. Roman, W. T. Winter, Biomacromolecules 2004, 5 1671-1677. – reference: K. J. Klabunde, J. Stark, O. Koper, C. Mohs, D. G. Park, S. Decker, Y. Jiang, I. Lagadic, D. Zhang, J. Phys. Chem. 1996, 100, 12142-12153. – reference: K. Kamide, Cellulose and Cellulose Derivatives; Elsevier B.V., Amsterdam, The Netherlands, 2005. – reference: F. Tanaka, T. Iwata, Cellulose 2006, 13, 509-517. – reference: H. Yuan, Y. Nishiyama, M. Wada, S. Kuga, Biomacromolecules 2006, 7, 696-700. – reference: N. Wang, E. Ding, R. Cheng, Front. Chem. Eng. China 2007, 1, 228-232. – reference: M. S. Cintrón, G. P. Johnson, A. D. French, Cellulose 2011, 18, 505-516. – reference: M. Grunert, W. T. Winter, J. Polym. Environ. 2002, 10, 27-30. – reference: Y. J. Choi, J. Simonsen, J. Nanosci. Nanotechnol. 2006, 6, 633-639. – reference: S. Reiling, J. Brickmann, Macromol. Theory Simul. 1995, 4, 725-743. – reference: S. Iwamoto, W. Kai, A. Isogai, T. Iwata, Biomacromolecules 2009, 10, 2571-2576. – reference: J. Mendez, P. K. Annamalai, S. J. Eichhorn, R. Rusli, S. J. Rowan, E. J. Foster, C. Weder, Macromolecules 2011, 44, 6827-6835. – reference: X. Wu, R. Moon, A. Martini, Cellulose 2013, 20, 43-55. – reference: J. O. Zoppe, M. S. Peresin, Y. Habibi, R. A. Venditti, O. J. Rojas, ACS Appl. Mater. Interfaces 2009, 1, 1996-2004. – reference: C. Mancera, F. Ferrando, J. Salvadó, N. E. El Mansouri, Biomass Bioenerg. 2011, 35, 2072-2079. – reference: C. Goussé, H. Chanzy, G. Excoffier, L. Soubeyrand, E. Fleury, Polymer 2002, 43, 2645-2651. – reference: N. Lin, A. Dufresne, Macromolecules 2013, 46, 5570-5583. – reference: E. M. Teixeira, D. Pasquini, A. A. S. Curvelo, E. Corradini, M. N. Belgacem, A. Dufresne, Carbohydr. Polym. 2009, 78, 422-431. – reference: H. M. C. Azeredo, L. H. C. Mattoso, R. J. Avena-Bustillos, G. C. Filho, M. L. Munford, D. Wood, T. H. McHugh, J. Food Sci. 2010, 75, N1-N7. – reference: R. Rusli, S. J. Eichhorn, Appl. Phys. Lett. 2008, 93, 033111-1-3. – reference: A. Dufresne, Nanocellulose: From Nature to High Performance Tailored Materials; Walter de Gruyter GmbH: Berlin/Boston, 2012. – reference: K. Meyer, W. Lotmar, Helv. Chim. Acta 1936, 19, 68-86. – reference: A. L. Goffin, J. M. Raquez, E. Duquesne, G. Siqueira, Y. Habibi, A. Dufresne, Ph. Dubois, Biomacromolecules 2011, 12, 2456-2465. – reference: H. Ma, C. Burger, B. S. Hsiao, B. Chu, Biomacromolecules 2011, 12, 970-976. – reference: I. Sakurada, Y.Nukushina, T. Ito, J. Polym. Sci. 1962, 57, 651-660. – reference: J. Yi, Q. Xu, X. Zhang, H. Zhang, Cellulose 2009, 16, 989-997. – reference: A. C. Corrêa, E. M. Teixeira, V. B. Carmona, K. B. R. Teodoro, C. Ribeiro, L. H. C. Mattoso, J. M. Marconcini, Cellulose 2014, 21, 311-322. – reference: M. A. S. Azizi Samir, F. Alloin, J. Y. Sanchez, N. El Kissi, A. Dufresne, Macromolecules 2004, 37, 1386-1393. – reference: J. C. Halpin, J. L. Kardos, J. Appl. Phys. 1972, 43, 2235-2241. – reference: H. Althues, J. Henle, S. Kaskel, Chem. Soc. Rev. 2007, 36, 1454-1465. – reference: J. F. Revol, L. Godbout, X. M. Dong, D. G. Gray, H. Chanzy, G. Maret, Liq. Cryst. 1994, 16, 127-134. – reference: A. P. Mathew, A. Dufresne, Biomacromolecules 2002, 3, 609-617. – reference: J. Majoinen, A. Walther, J. R. McKee, E. Kontturi, V. Aseyev, J. M. Malho, J. Ruokolainen, O. Ikkala, Biomacromolecules 2011, 12, 2997-3006. – reference: M. Grunert, W. T. Winter, Polym. Mater. Sci. Eng. 2002, 86, 367-368. – reference: Y. Lu, L. Weng, X. Cao, Macromol. Biosci. 2005, 5, 1101-1107. – reference: X. Cao, Y. Habibi, L. A. Lucia, J. Mater. Chem. 2009, 19, 7137-7145. – reference: N. L. Garcia de Rodriguez, W. Thielemans, A. Dufresne, Cellulose 2006, 13, 261-270. – reference: Y. Habibi, A. L. Goffin, N. Schiltz, E. Duquesne, P. Dubois, A. Dufresne, J. Mat. Chem. 2008, 18, 5002-5010. – reference: V. Landry, A. Alemdar, P. Blanchet, Forest Prod. J. 2011, 61, 104-112. – reference: Y. Lu, L. Weng, X. Cao, Carbohydr. Polym. 2006, 63, 198-204. – reference: B. G. Rånby, Acta Chem. Scand. 1949, 3, 649-650. – reference: M. Martinez-Sanz, M. A. Abdelwahab, A. Lopez-Rubio, J. M. Lagaron, E. Chiellini, T. G. Williams, D. F. Wood, W. J. Orts, S. H. Imam, Eur. Polym. J. 2013, 49, 2062-2072. – reference: T. Nishino, In Green Composites; C. Baillie, Ed.; CRC Press, Boca Raton, Boston, New York, Washington DC, 2004; Chapter 4, pp 61-79-79. – reference: C. Crestini, M. Crucianelli, M. Orlandi, R. Saladino, Catal. Today 2010, 156, 8-22. – reference: J. F. Revol, H. Bradford, J. Giasson, R. H. Marchessault, D. G. Gray, Int. J. Biol. Macromol. 1992, 14, 170-172. – reference: M. J. Sobkowicz, B. Braun, J. R. Dorgan, Green Chem. 2009, 11, 680-682. – reference: Y. Wang, X. Cao, L. Zhang, Macromol. Biosci. 2006, 6, 524-531. – reference: V. Khoshkava, M. R. Kamal, Biomacromolecules 2013, 14, 3155-3163. – reference: E. Espino-Pérez, J. Bras, V. Ducruet, A. Guinault, A. Dufresne, S. Domenek, Eur. Polym. J. 2013, 49, 3144-3154. – reference: A. Bendahou, H.Kaddami, A.Dufresne, Eur. Polym. J. 2010, 46, 609-620. – reference: K. B. R. Teodoro, E. M. Teixeira, A. C. Corrêa, A. de Campos, J. M. Marconcini, L. H. C. Mattoso, Polímeros 2011, 21, 280-285. – reference: K. Tashiro, M. Kobayashi, Polym. Bull. 1985, 14, 213-218. – reference: D. Liu, T. Zhong, P. R. Chang, K. Li, Q. Wu, Bioresource Technol. 2010, 101, 2529-2536. – reference: X. Cao, Y. Chen, P. R. Chang, A. D. Muir, G. Falk, eXPRESS Polym. Lett. 2008, 2, 502-510. – reference: C. M. Roco, C. A. Mirkin, M. C. Hersam, J. Nanopart. Res. 2011, 13, 897-919. – reference: J. Yi, Q. Xu, X. Zhang, H. Zhang, Polymer 2008, 49, 4406-4412. – reference: R. A. Khan, S. Salmieri, D. Dussault, J. Uribe-Calderon, M. R. Kamal, A. Safrany, M. Lacroix, J. Agric. Food Chem. 2010, 58, 7878-7885. – reference: Y. Chen, C. Liu, P. R. Chang, X. Cao, D. P. Anderson, Carbohydr. Polym. 2009, 76, 607-615. – reference: L. Heux, G. Chauve, C. Bonini, Langmuir 2000, 16, 8210-8212. – reference: L. Chazeau, J. Y. Cavaillé, G. R. Canova, R. Dendievel, B. Boutherin, J. Appl. Polym. Sci. 1999, 71, 1797-1808. – reference: L. H. Mattoso, E. S. Medeiros, D. A. Baker, J. Avloni, D. F. Wood, W. J. Orts, J. Nanosci. Nanotechnol. 2009, 9, 2917-2922. – reference: G. Siqueira, J. Bras, N. Follain, S. Belbekhouche, S. Marais, A. Dufresne, Carbohydr. Polym. 2013, 91, 711-717. – reference: G. Siqueira, J. Bras, A. Dufresne, Langmuir 2009, 26, 402-411. – reference: Y. Habibi, A. Dufresne, Biomacromolecules 2008, 9, 1974-1980. – reference: N. Follain, S. Belbekhouche, J. Bras, G. Siqueira, S. Marais, A. Dufresne, J. Membr. Sci. 2013, 427, 218-229. – reference: F. L. Dri, L. G. Hector Jr., R. J. Moon, P. D. Zavattieri, Cellulose 2013, 20, 2703-2718. – reference: A. J. de Menezes, G. Siqueira, A. A. S. Curvelo, A. Dufresne, Polymer 2009, 50, 4552-4563. – reference: M. N. Anglès, A. Dufresne, Macromolecules 2000, 33, 8344-8353. – reference: H. I. de Vries, Acta Crystallogr. 1951, 4, 219-226. – reference: L. M. J. Kroon-Batenburg, J. Kroon, M. G. Northolt, Polym. Commun. 1986, 27, 290-292. – reference: M. Matsuo, C. Sawatari, Y. Iwai, F. Ozaki, Macromolecules 1990, 23, 3266-3275. – reference: A. Dufresne, Mater. Today 2013, 16, 220-227. – reference: T. Ebeling, M. Paillet, R. Borsali, O. Diat, A. Dufresne, J. Y. Cavaillé, H. Chanzy, Langmuir 1999, 15, 6123-6126. – reference: J. F. Sassi, H. Chanzy, Cellulose 1995, 2, 111-127. – reference: B. Braun, J. R. Dorgan, Biomacromolecules 2009, 10, 334-341. – reference: J. B. Miller, E. K. Hobbie, J. Polym. Sci. Part B: Polym. Phys. 2013, 51, 1195-1208. – reference: A. Šturcova, G. R. Davies, S. J. Eichhorn, Biomacromolecules 2005, 6, 1055-1061. – reference: O. Van den Berg, J. R. Capadona, C. Weder, Biomacromolecules 2007, 8, 1353-1357. – reference: S. Qian, H. Mao, K. Sheng, J. Lu, Y. Luo, C. Hou, J. Appl. Polym. Sci. 2013, 130, 1667-1674. – reference: V. Favier, H. Chanzy, J. Y. Cavaillé, Macromolecules 1995, 28, 6365-6367. – reference: K. Ben Azouz, E. C. Ramires, W. Van den Fonteyne, N. El Kissi, A. Dufresne, ACS Macro Lett. 2012, 1, 236-240. – reference: G. Siqueira, H. Abdillahi, J. Bras, A. Dufresne, Cellulose 2010, 17, 289-298. – reference: G. Siqueira, J. Bras, A. Dufresne, Biomacromolecules 2009, 10, 425-432. – reference: F. Azzam, L. Heux, J. L. Putaux, B. Jean, Biomacromolecules 2010, 11, 3652-3659. – reference: M. Bergenstråhle, L. A. Berglund, K. Mazeau, J. Phys. Chem. B 2007, 111, 9138-9145. – reference: S. Beck, J. Bouchard, R. Berry, Biomacromolecules 2011, 12, 167-172. – reference: S. A. Paralikar, J. Simonsen, J. Lombardi, J. Membr. Sci. 2008, 320, 248-258. – reference: N. Lin, J. Huang, P. R. Chang, J. Feng, J. Yu, Carbohydr. Polym. 2011, 83, 1834-1842. – reference: Q. Xu, J. Yi, X. Zhang, H. Zhang, Eur. Polym. J. 2008, 44, 2830-2837. – reference: A. Bendahou, H. Kaddami, E. Espuche, F. Gouanvé, A. Dufresne, Macromol. Mater. Eng. 2011, 296, 760-769. – reference: N. Lin, A. Dufresne, Biomacromolecules 2013, 14, 871-880. – volume: 13 start-page: 291 year: 2006 end-page: 307 publication-title: Cellulose – volume: 2 start-page: 278 year: 1996 end-page: 285 publication-title: J. Mol. Model. – volume: 49 start-page: 2062 year: 2013 end-page: 2072 publication-title: Eur. Polym. J. – volume: 3 start-page: 131 year: 1998 end-page: 172 – volume: 50 start-page: 4552 year: 2009 end-page: 4563 publication-title: Polymer – year: 2005 – volume: 51 start-page: 1195 year: 2013 end-page: 1208 publication-title: J. Polym. Sci. Part B: Polym. Phys. – volume: 18 start-page: 505 year: 2011 end-page: 516 publication-title: Cellulose – volume: 21 start-page: 311 year: 2014 end-page: 322 publication-title: Cellulose – volume: 10 start-page: 2571 year: 2009 end-page: 2576 publication-title: Biomacromolecules – volume: 93 start-page: 2883 year: 2004 end-page: 2888 publication-title: J. Appl. Polym. Sci. – volume: 8 start-page: 1353 year: 2007 end-page: 1357 publication-title: Biomacromolecules – volume: 10 start-page: 27 year: 2002 end-page: 30 publication-title: J. Polym. Environ. – volume: 32 start-page: 627 year: 2010 end-page: 633 publication-title: Ind. Crops Prod. – volume: 49 start-page: 3144 year: 2013 end-page: 3154 publication-title: Eur. Polym. J. – volume: 3 start-page: 609 year: 2002 end-page: 617 publication-title: Biomacromolecules – volume: 5 start-page: 1101 year: 2005 end-page: 1107 publication-title: Macromol. Biosci. – volume: 32 start-page: 1516 year: 1991 end-page: 1526 publication-title: Polymer – volume: 84 start-page: 1371 year: 2011 end-page: 1377 publication-title: Carbohydr. Polym. – volume: 78 start-page: 422 year: 2009 end-page: 431 publication-title: Carbohydr. Polym. – volume: 13 start-page: 509 year: 2006 end-page: 517 publication-title: Cellulose – volume: 44 start-page: 2830 year: 2008 end-page: 2837 publication-title: Eur. Polym. J. – volume: 20 start-page: 2703 year: 2013 end-page: 2718 publication-title: Cellulose – volume: 100 start-page: 12142 year: 1996 end-page: 12153 publication-title: J. Phys. Chem. – volume: 1 start-page: 1996 year: 2009 end-page: 2004 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 557 year: 2012 end-page: 564 publication-title: Int. Polym. Proc. – volume: 17 start-page: 987 year: 2010 end-page: 1004 publication-title: Cellulose – volume: 74 start-page: N31 year: 2009 end-page: N35 publication-title: J. Food Sci. – volume: 12 start-page: 167 year: 2011 end-page: 172 publication-title: Biomacromolecules – volume: 130 start-page: 1667 year: 2013 end-page: 1674 publication-title: J. Appl. Polym. Sci. – volume: 14 start-page: 170 year: 1992 end-page: 172 publication-title: Int. J. Biol. Macromol. – volume: 83 start-page: 1834 year: 2011 end-page: 1842 publication-title: Carbohydr. Polym. – volume: 15 start-page: 6123 year: 1999 end-page: 6126 publication-title: Langmuir – volume: 91 start-page: 711 year: 2013 end-page: 717 publication-title: Carbohydr. Polym. – volume: 58 start-page: 7878 year: 2010 end-page: 7885 publication-title: J. Agric. Food Chem. – volume: 16 start-page: 220 year: 2013 end-page: 227 publication-title: Mater. Today – volume: 6 start-page: 3160 year: 2005 end-page: 3165 publication-title: Biomacromolecules – volume: 45 start-page: 4707 year: 2012 end-page: 4715 publication-title: Macromolecules – volume: 6 start-page: 351 year: 1995 end-page: 355 publication-title: Polym. Adv. Technol. – volume: 83 start-page: 1740 year: 2011 end-page: 1748 publication-title: Carbohydr. Polym. – volume: 78 start-page: 1939 year: 2000 end-page: 1946 publication-title: J. Appl. Polym. Sci. – volume: 7 start-page: 696 year: 2006 end-page: 700 publication-title: Biomacromolecules – volume: 1 start-page: 228 year: 2007 end-page: 232 publication-title: Front. Chem. Eng. China – volume: 3 start-page: 549 year: 1962 end-page: 553 publication-title: Polymer – volume: 93 start-page: 033111‐1‐3 year: 2008 publication-title: Appl. Phys. Lett. – volume: 70 start-page: 815 year: 2010 end-page: 821 publication-title: Compos. Sci. Technol. – volume: 84 start-page: 211 year: 2011 end-page: 215 publication-title: Carbohydr. Polym. – volume: 25 start-page: 7675 year: 2009 end-page: 7685 publication-title: Langmuir – volume: 90 start-page: 210 year: 2012 end-page: 217 publication-title: Carbohydr. Polym. – volume: 184 start-page: 632 year: 1959 end-page: 633 publication-title: Nature – volume: 20 start-page: 217 year: 2013 end-page: 226 publication-title: Cellulose – volume: 12 start-page: 970 year: 2011 end-page: 976 publication-title: Biomacromolecules – volume: 20 start-page: 180 year: 2010 end-page: 186 publication-title: J. Mater. Chem. – volume: 6 start-page: 1055 year: 2005 end-page: 1061 publication-title: Biomacromolecules – volume: 129 start-page: 3038 year: 2013 end-page: 3046 publication-title: J. Appl. Polym. Sci. – volume: 46 start-page: 5570 year: 2013 end-page: 5583 publication-title: Macromolecules – volume: 16 start-page: 127 year: 1994 end-page: 134 publication-title: Liq. Cryst. – volume: 156 start-page: 8 year: 2010 end-page: 22 publication-title: Catal. Today – year: 2010 – volume: 37 start-page: 1386 year: 2004 end-page: 1393 publication-title: Macromolecules – volume: 26 start-page: 13450 year: 2010 end-page: 13456 publication-title: Langmuir – volume: 17 start-page: 21 year: 2001 end-page: 27 publication-title: Langmuir – volume: 14 start-page: 871 year: 2013 end-page: 880 publication-title: Biomacromolecules – volume: 72 start-page: 544 year: 2012 end-page: 549 publication-title: Compos. Sci. Technol. – volume: 2007 year: 2007 – volume: 1 start-page: 290 year: 1960 end-page: 303 publication-title: Polymer – volume: 24 start-page: 819 year: 2001 end-page: 829 publication-title: Quim. Nova – volume: 71 start-page: 1797 year: 1999 end-page: 1808 publication-title: J. Appl. Polym. Sci. – volume: 10 start-page: 2144 year: 2009 end-page: 2151 publication-title: Biomacromolecules – volume: 320 start-page: 248 year: 2008 end-page: 258 publication-title: J. Membr. Sci. – year: 2013 – volume: 26 start-page: 402 year: 2009 end-page: 411 publication-title: Langmuir – volume: 10 start-page: 425 year: 2009 end-page: 432 publication-title: Biomacromolecules – volume: 13 start-page: 2404 year: 1997 end-page: 2409 publication-title: Langmuir – volume: 16 start-page: 989 year: 2009 end-page: 997 publication-title: Cellulose – volume: 4 start-page: 61 year: 2004 end-page: 79 – volume: 16 start-page: 8210 year: 2000 end-page: 8212 publication-title: Langmuir – volume: 14 start-page: 213 year: 1985 end-page: 218 publication-title: Polym. Bull. – volume: 113 start-page: 3417 year: 2009 end-page: 3425 publication-title: J. Appl. Polym. Sci. – volume: 75 start-page: N1 year: 2010 end-page: N7 publication-title: J. Food Sci. – volume: 11 start-page: 680 year: 2009 end-page: 682 publication-title: Green Chem. – volume: 2 start-page: 165 year: 2010 end-page: 174 publication-title: ACS Appl. Mater. Interfaces – volume: 109 start-page: 3804 year: 2008 end-page: 3810 publication-title: J. Appl. Polym. Sci. – volume: 9 start-page: 997 year: 2009 end-page: 1003 publication-title: Macromol. Biosci. – volume: 111 start-page: 9138 year: 2007 end-page: 9145 publication-title: J. Phys. Chem. B – volume: 3 start-page: 649 year: 1949 end-page: 650 publication-title: Acta Chem. Scand. – volume: 49 start-page: 4406 year: 2008 end-page: 4412 publication-title: Polymer – volume: 35 start-page: 212 year: 2010 end-page: 222 publication-title: Prog. Polym. Sci. – volume: 36 start-page: 1454 year: 2007 end-page: 1465 publication-title: Chem. Soc. Rev. – volume: 63 start-page: 198 year: 2006 end-page: 204 publication-title: Carbohydr. Polym. – volume: 35 start-page: 2072 year: 2011 end-page: 2079 publication-title: Biomass Bioenerg. – volume: 52 start-page: 1532 year: 2011 end-page: 1538 publication-title: Polymer – volume: 319 start-page: 1370 year: 2008 end-page: 1374 publication-title: Science – volume: 46 start-page: 609 year: 2010 end-page: 620 publication-title: Eur. Polym. J. – volume: 17 start-page: 289 year: 2010 end-page: 298 publication-title: Cellulose – volume: 6 start-page: 633 year: 2006 end-page: 639 publication-title: J. Nanosci. Nanotechnol. – volume: 16 start-page: 635 year: 2013 end-page: 641 publication-title: Mater. Res – volume: 4 start-page: 725 year: 1995 end-page: 743 publication-title: Macromol. Theory Simul. – volume: 57 start-page: 651 year: 1962 end-page: 660 publication-title: J. Polym. Sci. – volume: 12 start-page: 2997 year: 2011 end-page: 3006 publication-title: Biomacromolecules – volume: 2 start-page: 502 year: 2008 end-page: 510 publication-title: eXPRESS Polym. Lett. – volume: 101 start-page: 2529 year: 2010 end-page: 2536 publication-title: Bioresource Technol. – volume: 427 start-page: 218 year: 2013 end-page: 229 publication-title: J. Membr. Sci. – volume: 12 start-page: 1214 year: 2011 end-page: 1223 publication-title: Biomacromolecules – volume: 10 start-page: 334 year: 2009 end-page: 341 publication-title: Biomacromolecules – volume: 19 start-page: 68 year: 1936 end-page: 86 publication-title: Helv. Chim. Acta – volume: 71 start-page: 343 year: 2008 end-page: 364 publication-title: Carbohydr. Polym. – volume: 41 start-page: 9755 year: 2008 end-page: 9759 publication-title: Macromolecules – volume: 11 start-page: 531 year: 2009 end-page: 537 publication-title: Green Chem. – volume: 9 start-page: 1974 year: 2008 end-page: 1980 publication-title: Biomacromolecules – volume: 12 start-page: 2456 year: 2011 end-page: 2465 publication-title: Biomacromolecules – volume: 13 start-page: 261 year: 2006 end-page: 270 publication-title: Cellulose – volume: 33 start-page: 1647 year: 1995 end-page: 1651 publication-title: J. Polym. Sci. Part B: Polym. Phys. – volume: 18 start-page: 5002 year: 2008 end-page: 5010 publication-title: J. Mat. Chem. – volume: 46 start-page: 294 year: 2012 end-page: 297 publication-title: Food Sci. Technol. – volume: 21 start-page: 280 year: 2011 end-page: 285 publication-title: Polímeros – volume: 25 start-page: 8280 year: 2009 end-page: 8286 publication-title: Langmuir – volume: 1 start-page: 236 year: 2012 end-page: 240 publication-title: ACS Macro Lett. – volume: 9 start-page: 2917 year: 2009 end-page: 2922 publication-title: Nanosci. Nanotechnol. – volume: 6 start-page: 322 year: 2006 end-page: 330 publication-title: J. Nanosci. Nanotechnol. – volume: 61 start-page: 104 year: 2011 end-page: 112 publication-title: Forest Prod. J. – volume: 20 start-page: 771 year: 2013 end-page: 783 publication-title: Cellulose – volume: 44 start-page: 6827 year: 2011 end-page: 6835 publication-title: Macromolecules – volume: 76 start-page: 607 year: 2009 end-page: 615 publication-title: Carbohydr. Polym. – volume: 4 start-page: 219 year: 1951 end-page: 226 publication-title: Acta Crystallogr. – volume: 5 start-page: 1671 year: 2004 end-page: 1677 publication-title: Biomacromolecules – volume: 43 start-page: 2645 year: 2002 end-page: 2651 publication-title: Polymer – publication-title: Macromol. Mater. Eng. – volume: 306 start-page: 389 year: 1968 end-page: 412 publication-title: Proc. Roy. Soc. – volume: 86 start-page: 367 year: 2002 end-page: 368 publication-title: Polym. Mater. Sci. Eng. – volume: 20 start-page: 43 year: 2013 end-page: 55 publication-title: Cellulose – volume: 23 start-page: 3266 year: 1990 end-page: 3275 publication-title: Macromolecules – year: 2012 – volume: 110 start-page: 3479 year: 2010 end-page: 3500 publication-title: Chem. Rev. – volume: 27 start-page: 290 year: 1986 end-page: 292 publication-title: Polym. Commun. – volume: 14 start-page: 3155 year: 2013 end-page: 3163 publication-title: Biomacromolecules – volume: 14 start-page: 577 year: 2007 end-page: 584 publication-title: Cellulose – volume: 43 start-page: 2235 year: 1972 end-page: 2241 publication-title: J. Appl. Phys. – volume: 33 start-page: 8344 year: 2000 end-page: 8353 publication-title: Macromolecules – volume: 19 start-page: 7137 year: 2009 end-page: 7145 publication-title: J. Mater. Chem. – volume: 6 start-page: 524 year: 2006 end-page: 531 publication-title: Macromol. Biosci. – volume: 013 start-page: 933 issue: 25 end-page: 943 publication-title: J. Environ. Sci. 2 – volume: 28 start-page: 6365 year: 1995 end-page: 6367 publication-title: Macromolecules – volume: 2 start-page: 111 year: 1995 end-page: 127 publication-title: Cellulose – volume: 12 start-page: 2076 year: 1996 end-page: 2082 publication-title: Langmuir – volume: 13 start-page: 897 year: 2011 end-page: 919 publication-title: J. Nanopart. Res. – volume: 296 start-page: 760 year: 2011 end-page: 769 publication-title: Macromol. Mater. Eng. – volume: 11 start-page: 3652 year: 2010 end-page: 3659 publication-title: Biomacromolecules – ident: e_1_2_10_11_1 doi: 10.1016/j.polymer.2009.07.038 – ident: e_1_2_10_47_1 doi: 10.1039/b809212e – ident: e_1_2_10_134_1 doi: 10.1016/j.carbpol.2012.05.025 – ident: e_1_2_10_41_1 doi: 10.1021/ma801796u – ident: e_1_2_10_56_1 doi: 10.1021/bm061104q – ident: e_1_2_10_149_1 doi: 10.1007/s10570-013-9870-1 – ident: e_1_2_10_108_1 doi: 10.1038/184632a0 – ident: e_1_2_10_46_1 doi: 10.1021/bm034519 – ident: e_1_2_10_127_1 doi: 10.3144/expresspolymlett.2008.60 – ident: e_1_2_10_7_1 doi: 10.1002/pat.1995.220060514 – ident: e_1_2_10_112_1 doi: 10.1021/la950133b – ident: e_1_2_10_61_1 doi: 10.1007/BF00816384 – ident: e_1_2_10_122_1 doi: 10.1021/bm1013316 – ident: e_1_2_10_5_1 doi: 10.1021/jp960224x – ident: e_1_2_10_49_1 doi: 10.1021/la990046 – ident: e_1_2_10_68_1 doi: 10.1016/j.carbpol.2010.10.047 – ident: e_1_2_10_95_1 doi: 10.1039/b910517d – ident: e_1_2_10_91_1 doi: 10.1016/j.eurpolymj.2008.06.010 – ident: e_1_2_10_92_1 doi: 10.1007/s10570-009-9350-9 – ident: e_1_2_10_147_1 doi: 10.1002/mame.201000444 – ident: e_1_2_10_6_1 doi: 10.1515/9783110254600 – ident: e_1_2_10_21_1 doi: 10.1016/0032-3861(60)90040-9 – ident: e_1_2_10_80_1 doi: 10.1021/la001070m – ident: e_1_2_10_30_1 doi: 10.1021/jp072258i – ident: e_1_2_10_129_1 doi: 10.1016/j.biortech.2009.11.058 – ident: e_1_2_10_93_1 doi: 10.1016/j.eurpolymj.2013.04.035 – ident: e_1_2_10_45_1 doi: 10.3891/acta.chem.scand.03-0649 – ident: e_1_2_10_86_1 doi: 10.1021/bm101506j – ident: e_1_2_10_94_1 doi: 10.1021/bm200613y – ident: e_1_2_10_15_1 – ident: e_1_2_10_138_1 doi: 10.1002/(SICI)1097-4628(19990314)71:11<1797::AID-APP9>3.0.CO;2-E – ident: e_1_2_10_59_1 doi: 10.1021/la9913957 – ident: e_1_2_10_88_1 doi: 10.1002/app.30308 – ident: e_1_2_10_8_1 doi: 10.1590/S1516-14392013005000033 – ident: e_1_2_10_33_1 doi: 10.1007/s10570-013-0071-8 – ident: e_1_2_10_118_1 doi: 10.1002/mame.201300232 – ident: e_1_2_10_125_1 doi: 10.1016/j.carbpol.2005.08.027 – ident: e_1_2_10_124_1 doi: 10.1002/mabi.200500094 – ident: e_1_2_10_82_1 doi: 10.1021/ma4010154 – ident: e_1_2_10_25_1 doi: 10.1016/0032-3861(91)90435-L – ident: e_1_2_10_67_1 doi: 10.1002/mabi.200900073 – ident: e_1_2_10_139_1 doi: 10.1016/j.memsci.2008.04.009 – ident: e_1_2_10_22_1 doi: 10.1007/BF00254940 – ident: e_1_2_10_128_1 doi: 10.1016/j.carbpol.2008.11.030 – ident: e_1_2_10_44_1 doi: 10.1021/cr900339w – ident: e_1_2_10_38_1 doi: 10.1016/0032-3861(62)90102-7 – ident: e_1_2_10_60_1 doi: 10.1021/bm050479t – ident: e_1_2_10_31_1 doi: 10.1007/s10570-011-9507-1 – ident: e_1_2_10_111_1 doi: 10.1107/S0365110X51000751 – ident: e_1_2_10_96_1 doi: 10.1021/bm200581h – ident: e_1_2_10_123_1 doi: 10.1021/bm0101769 – ident: e_1_2_10_62_1 doi: 10.1021/bm050828j – ident: e_1_2_10_64_1 doi: 10.1021/bm900319k – ident: e_1_2_10_20_1 doi: 10.1002/hlca.19360190110 – ident: e_1_2_10_101_1 doi: 10.1166/jnn.2006.906 – ident: e_1_2_10_107_1 doi: 10.1021/ma300463y – ident: e_1_2_10_98_1 doi: 10.1007/s10570-013-0132-z – ident: e_1_2_10_131_1 doi: 10.1002/mabi.200600034 – ident: e_1_2_10_78_1 doi: 10.1016/j.memsci.2012.09.048 – ident: e_1_2_10_35_1 doi: 10.1002/pol.1962.1205716551 – ident: e_1_2_10_9_1 – ident: e_1_2_10_148_1 doi: 10.1021/bm301955k – ident: e_1_2_10_71_1 doi: 10.1023/A:1021065905986 – ident: e_1_2_10_83_1 doi: 10.1021/bm101106c – ident: e_1_2_10_14_1 doi: 10.1002/app.39328 – volume: 86 start-page: 367 year: 2002 ident: e_1_2_10_72_1 publication-title: Polym. Mater. Sci. Eng. – ident: e_1_2_10_16_1 doi: 10.1515/9783110218244 – ident: e_1_2_10_3_1 – ident: e_1_2_10_63_1 doi: 10.1007/s11705-007-0041-5 – ident: e_1_2_10_99_1 doi: 10.1063/1.1661482 – ident: e_1_2_10_51_1 doi: 10.1007/s10570-009-9384-z – ident: e_1_2_10_113_1 doi: 10.1021/la960724h – ident: e_1_2_10_53_1 doi: 10.3139/217.2603 – ident: e_1_2_10_106_1 doi: 10.1021/am9006337 – ident: e_1_2_10_2_1 doi: 10.1007/s11051-011-0275-5 – ident: e_1_2_10_34_1 doi: 10.1007/s0089460020278 – ident: e_1_2_10_142_1 doi: 10.1111/j.1750-3841.2009.01386.x – ident: e_1_2_10_17_1 doi: 10.1590/S0100-40422001000600020 – ident: e_1_2_10_130_1 doi: 10.1016/j.carbpol.2009.04.034 – volume: 46 start-page: 294 year: 2012 ident: e_1_2_10_140_1 publication-title: Food Sci. Technol. – ident: e_1_2_10_58_1 doi: 10.1021/la9028595 – ident: e_1_2_10_120_1 doi: 10.1016/j.carbpol.2010.10.036 – ident: e_1_2_10_75_1 doi: 10.1016/j.compscitech.2011.11.017 – ident: e_1_2_10_89_1 doi: 10.1021/am9003705 – ident: e_1_2_10_100_1 doi: 10.1016/j.carbpol.2010.11.022 – ident: e_1_2_10_84_1 doi: 10.1016/j.polymer.2008.08.008 – ident: e_1_2_10_85_1 doi: 10.1021/la900452a – ident: e_1_2_10_18_1 doi: 10.1016/j.carbpol.2007.05.040 – ident: e_1_2_10_28_1 doi: 10.1007/s10570-006-9046-3 – ident: e_1_2_10_50_1 doi: 10.1021/ma0008701 – ident: e_1_2_10_102_1 doi: 10.1126/science.1153307 – ident: e_1_2_10_19_1 – ident: e_1_2_10_52_1 doi: 10.1007/978-94-007-1168-6 – ident: e_1_2_10_137_1 doi: 10.1016/j.indcrop.2010.07.018 – ident: e_1_2_10_48_1 doi: 10.1590/S0104-14282011005000048 – ident: e_1_2_10_144_1 doi: 10.1016/j.carbpol.2011.01.039 – ident: e_1_2_10_117_1 doi: 10.1016/j.eurpolymj.2013.07.017 – ident: e_1_2_10_146_1 doi: 10.1007/s10570-007-9119-y – ident: e_1_2_10_143_1 doi: 10.1021/jf1006853 – ident: e_1_2_10_57_1 doi: 10.1002/app.20870 – ident: e_1_2_10_24_1 doi: 10.1016/0032-3861(86)90342-3 – ident: e_1_2_10_66_1 doi: 10.1039/b817223d – ident: e_1_2_10_26_1 doi: 10.1002/mats.1995.040040409 – ident: e_1_2_10_141_1 doi: 10.1111/j.1750-3841.2009.01186.x – ident: e_1_2_10_104_1 doi: 10.1016/j.progpolymsci.2009.10.005 – ident: e_1_2_10_132_1 doi: 10.1166/jnn.2006.132 – ident: e_1_2_10_39_1 doi: 10.1063/1.2963491 – ident: e_1_2_10_121_1 doi: 10.1039/b818056c – ident: e_1_2_10_37_1 doi: 10.1002/polb.1995.090331110 – ident: e_1_2_10_13_1 doi: 10.1016/j.cattod.2010.03.057 – ident: e_1_2_10_36_1 doi: 10.1021/ma00215a012 – ident: e_1_2_10_150_1 doi: 10.1166/jnn.2009.dk24 – ident: e_1_2_10_90_1 doi: 10.1016/j.polymer.2011.02.004 – ident: e_1_2_10_97_1 doi: 10.1021/mz2001737 – ident: e_1_2_10_4_1 doi: 10.1002/polb.23327 – ident: e_1_2_10_115_1 doi: 10.1039/b608177k – ident: e_1_2_10_133_1 doi: 10.1007/s10570-010-9430-x – ident: e_1_2_10_65_1 doi: 10.1021/bm8011117 – ident: e_1_2_10_116_1 doi: 10.13073/0015-7473-61.2.104 – ident: e_1_2_10_135_1 doi: 10.1007/s10570-005-9039-7 – start-page: 61 volume-title: In Green Composites year: 2004 ident: e_1_2_10_10_1 – ident: e_1_2_10_103_1 doi: 10.1021/ma201502k – ident: e_1_2_10_23_1 doi: 10.1098/rspa.1968.0157 – ident: e_1_2_10_55_1 doi: 10.1021/ma030532a – ident: e_1_2_10_12_1 doi: 10.1016/j.biombioe.2011.02.001 – ident: e_1_2_10_43_1 doi: 10.1016/j.mattod.2013.06.004 – ident: e_1_2_10_81_1 doi: 10.1021/la101795s – ident: e_1_2_10_126_1 doi: 10.1002/app.28418 – ident: e_1_2_10_105_1 doi: 10.1039/B916130A – ident: e_1_2_10_73_1 doi: 10.1016/S0032-3861(02)00051-4 – ident: e_1_2_10_42_1 doi: 10.1021/bm900520n – ident: e_1_2_10_114_1 doi: 10.1021/bm1010905 – ident: e_1_2_10_54_1 doi: 10.1021/ma00122a053 – ident: e_1_2_10_79_1 doi: 10.1016/j.carbpol.2012.08.057 – ident: e_1_2_10_77_1 doi: 10.1021/bm801193d – ident: e_1_2_10_136_1 doi: 10.1016/j.eurpolymj.2009.12.025 – ident: e_1_2_10_109_1 doi: 10.1016/S0141-8130(05)80008-X – ident: e_1_2_10_87_1 doi: 10.1021/bm8001717 – ident: e_1_2_10_119_1 doi: 10.1021/la900323n – ident: e_1_2_10_74_1 doi: 10.1016/j.compscitech.2010.01.018 – ident: e_1_2_10_145_1 doi: 10.1002/app.38896 – ident: e_1_2_10_32_1 doi: 10.1007/s10570-012-9823-0 – volume: 013 start-page: 933 issue: 25 ident: e_1_2_10_69_1 publication-title: J. Environ. Sci. 2 – ident: e_1_2_10_76_1 doi: 10.1007/s10570-012-9820-3 – ident: e_1_2_10_70_1 doi: 10.1021/bm400784j – ident: e_1_2_10_27_1 doi: 10.1002/1097-4628(20001209)78:11<1939::AID-APP130>3.0.CO;2-9 – ident: e_1_2_10_110_1 doi: 10.1080/02678299408036525 – ident: e_1_2_10_29_1 doi: 10.1007/s10570-006-9068-x – ident: e_1_2_10_40_1 doi: 10.1021/bm049291k |
SSID | ssj0009959 |
Score | 2.6125126 |
SecondaryResourceType | review_article |
Snippet | ABSTRACT
Cellulosic nanoparticles with high Young's modulus, crystallinity, specific surface area, and aspect ratio can be found in the natural structure of... Cellulosic nanoparticles with high Young's modulus, crystallinity, specific surface area, and aspect ratio can be found in the natural structure of plant... |
SourceID | hal proquest pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 791 |
SubjectTerms | Applied sciences barrier Biodegradability biofibers Cellulose Chemical Sciences Composites Compounding ingredients Density Engineering Sciences Exact sciences and technology Fillers and reinforcing agents Forms of application and semi-finished materials mechanical properties Nanocomposites Nanocrystals Nanoparticles Nanostructure Polymer industry, paints, wood polysaccharides Specific surface Technology of polymers |
Title | Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges |
URI | https://api.istex.fr/ark:/67375/WNG-JQZND1PS-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpolb.23490 https://www.proquest.com/docview/1521864833 https://www.proquest.com/docview/1671605108 https://hal.science/hal-02302485 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ti9QwEB7OE9EvvpyK1fOoLwgK3du0aZqKX87VcznO9dQTD0VC3opwtV22u6L-ejPptuuKCPqtNBPKJJPJM83kGYD7Mi8syTWJMpMlESVaR5JyE9HCOrRguM0lXk5-OWHjd_TgJD3ZgCfdXZiWH6L_4YYrw_trXOBSNbsr0tBpXapBnNAcA3ZM1kJE9GbFHYVEWh3Np0PtrOcmjXdXXdd2ozOfMRfyLA7vN8yRlI0bpqKtb7EGQH-FsX4f2r8EnzoN2vST08Firgb6x2_kjv-r4mW4uASo4V5rUVdgw1ZbcH7U1YXbgnM-aVQ3V-HjyJbloqwbG1ayqvXsu4OaZRPKyoT-jow1bYPzOZgbZpvHYXsWEdZF2NRfbDjFs4AZkrr6Xror7dJcg-P958ejcbQs1hBph_iGUW5YrAmznBIqE0OlSRUtHHrMdI60ZWmiKVMxU2muh4YprjAqN8rkyoEMnVyHzaqu7A0I3aaaZrog1nL0KLkcxs5iaIGXGXWW0gAednMm9JLIHOtplKKlYI4Fjpvw4xbAvV522tJ3_FHqrlOvF0DG7fHeocB3GKIh69tXEsADbxm9mJydYlZclor3kxfi4PWHyTNy9FbwAHbWTKfvEPOUOTSaBbDd2ZJYeoxGII7ijPIkCeBO3-ymFg9wZGXrhZNhLrpFL-q-8cgbzl-UEkevDp_6p5v_InwLLjhMSDEbjqTbsDmfLexth7vmasevr5--Eyg6 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELdgE9q-8BggwsYIDyGBlK5JHCfh2yiMMroyRhETfLD8iiYtS6qmRcBfz53zKEUICb5FyVmRz-fz7-zz7wh5LNLM-KnyvVjHoUd9pTxBE-3RzABa0IlJBV5OPhqz4Ud6eBqdNrk5eBem5ofoNtxwZlh_jRMcN6T3lqyh0zKXvSCkKUTs61jS20ZUJ0v2KKTSaok-Abezjp002Fu2XVmPLp9hNuQ6KvgbZkmKChSV1RUuViDor0DWrkQH1-pyq5UlMMQElPPeYi576sdv9I7_3cnr5GqDUd392qhukEum2CIbg7Y03Ba5YvNGVXWTfBmYPF_kZWXcQhSlmn0HtJlXrii0a6_JGF1_ALeD6WGmeu7WxxFumblVeWHcKR4HzJDX1bZSbXWX6haZHLyaDIZeU6_BUwD6-l6qWaB8ZhLqUxFqKnQkaQYAMlYpMpdFoaJMBkxGqeprJhOJgbmWOpWAM1R4m6wVZWHuEBfW1ShWmW9Mgk4lFf0AjIZmeJ9RxRF1yNN20LhquMyxpEbOaxbmgKPeuNWbQx51stOaweOPUg-he50Akm4P90cc32GUhsRvX32HPLGm0YmJ2TkmxsUR_zR-zQ_ffx6_9I8_8MQhuyu20zUIkogBII0dstMaE2-cRsURSiWMJmHokAfdZxhaPMMRhSkXIMMgwEVHCv94Zi3nL53ix-9GL-zT3X8Rvk82hpOjER-9Gb_dJpsAESkmx_nRDlmbzxbmHsCwudy1k-0nJXcsVQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NTTy-8BggAmOEh5BAStckjpMgvoyWUkYpBTZtAiHLrwhpIamaFgF_PT6nSSlCSPAtis-Kzj6ffxeffwfwgKeZ9lPpe7GKQ4_4UnqcJMojmTZoQSU65Xg5-fWYDo_IwUl0sgFPm7swNT9E-8MNV4b117jApyrbW5GGTstcdIKQpCZg3yK0m6BN99-tyKOQSavh-TSwnbbkpMHequ_adnTmMyZDbuH4fsMkSV6ZccrqAhdrCPRXHGs3osEl-NSoUOefnHYWc9GRP35jd_xfHS_DxSVCdfdrk7oCG7rYhvO9pjDcNpy1WaOyugofezrPF3lZabfgRSln3w3WzCuXF8q1l2S0qhuM08HkMF09cevDCLfM3Kr8ot0pHgbMkNXV9pJNbZfqGhwOnh_2ht6yWoMnDeTreqmigfSpTohPeKgIV5EgmYGPsUyRtywKJaEioCJKZVdRkQgMy5VQqTAoQ4bXYbMoC30DXLOrRrHMfK0TdCkp7wbGZEiGtxllHBEHHjVzxuSSyRwLauSs5mAOGI4bs-PmwP1Wdlrzd_xR6p5RrxVAyu3h_ojhO4zRkPbtq-_AQ2sZrRifnWJaXByx4_ELdvD2w7jvT96zxIHdNdNpOwRJRA0cjR3YaWyJLV1GxRBIJZQkYejA3bbZTC2e4PBClwsjQ014i27UfOOxNZy_KMUmb0bP7NPNfxG-A-cm_QEbvRy_ugUXDD4kmBnnRzuwOZ8t9G2DweZi1y61n59GKw0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cellulose+nanocrystals+and+related+nanocomposites%3A+Review+of+some+properties+and+challenges&rft.jtitle=Journal+of+polymer+science.+Part+B%2C+Polymer+physics&rft.au=Mariano%2C+Marcos&rft.au=El+Kissi%2C+Nadia&rft.au=Dufresne%2C+Alain&rft.date=2014-06-15&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0887-6266&rft.eissn=1099-0488&rft.volume=52&rft.issue=12&rft.spage=791&rft.epage=806&rft_id=info:doi/10.1002%2Fpolb.23490&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_JQZND1PS_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-6266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-6266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-6266&client=summon |