Pharmacokinetic equations versus Bayesian guided vancomycin monitoring: Pharmacokinetic model and model‐informed precision dosing trial simulations
The recently released revised vancomycin consensus guideline endorsed area under the concentration‐time curve (AUC) guided monitoring. Means to AUC‐guided monitoring include pharmacokinetic (PK) equations and Bayesian software programs, with the latter approach being preferable. We aimed to evaluate...
Saved in:
Published in | Clinical and translational science Vol. 15; no. 4; pp. 942 - 953 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.04.2022
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The recently released revised vancomycin consensus guideline endorsed area under the concentration‐time curve (AUC) guided monitoring. Means to AUC‐guided monitoring include pharmacokinetic (PK) equations and Bayesian software programs, with the latter approach being preferable. We aimed to evaluate the predictive performance of these two methods when monitoring using troughs or peaks and troughs at varying single or mixed dosing intervals (DIs), and evaluate the significance of satisfying underlying assumptions of steady‐state and model transferability. Methods included developing a vancomycin population PK model and conducting model‐informed precision dosing clinical trial simulations. A one‐compartment PK model with linear elimination, exponential between‐subject variability, and mixed (additive and proportional) residual error model resulted in the best model fit. Conducted simulations demonstrated that Bayesian‐guided AUC can, potentially, outperform that of equation‐based AUC predictions depending on the quality of model diagnostics and met assumptions. Ideally, Bayesian‐guided AUC predictive performance using a trough from the first DI was equivalent to that of PK equations using two measurements (peak and trough) from the fifth DI. Model transferability diagnostics can guide the selection of Bayesian priors but are not strong indicators of predictive performance. Mixed versus single fourth and/or fifth DI sampling seems indifferent. This study illustrated cases associated with the most reliable AUC predictions and showed that only proper Bayesian‐guided monitoring is always faster and more reliable than equations‐guided monitoring in pre‐steady‐state DIs in the absence of a loading dose. This supports rapid Bayesian monitoring using data as sparse and early as a trough at the first DI. |
---|---|
AbstractList | The recently released revised vancomycin consensus guideline endorsed area under the concentration‐time curve (AUC) guided monitoring. Means to AUC‐guided monitoring include pharmacokinetic (PK) equations and Bayesian software programs, with the latter approach being preferable. We aimed to evaluate the predictive performance of these two methods when monitoring using troughs or peaks and troughs at varying single or mixed dosing intervals (DIs), and evaluate the significance of satisfying underlying assumptions of steady‐state and model transferability. Methods included developing a vancomycin population PK model and conducting model‐informed precision dosing clinical trial simulations. A one‐compartment PK model with linear elimination, exponential between‐subject variability, and mixed (additive and proportional) residual error model resulted in the best model fit. Conducted simulations demonstrated that Bayesian‐guided AUC can, potentially, outperform that of equation‐based AUC predictions depending on the quality of model diagnostics and met assumptions. Ideally, Bayesian‐guided AUC predictive performance using a trough from the first DI was equivalent to that of PK equations using two measurements (peak and trough) from the fifth DI. Model transferability diagnostics can guide the selection of Bayesian priors but are not strong indicators of predictive performance. Mixed versus single fourth and/or fifth DI sampling seems indifferent. This study illustrated cases associated with the most reliable AUC predictions and showed that only proper Bayesian‐guided monitoring is always faster and more reliable than equations‐guided monitoring in pre‐steady‐state DIs in the absence of a loading dose. This supports rapid Bayesian monitoring using data as sparse and early as a trough at the first DI. Abstract The recently released revised vancomycin consensus guideline endorsed area under the concentration‐time curve (AUC) guided monitoring. Means to AUC‐guided monitoring include pharmacokinetic (PK) equations and Bayesian software programs, with the latter approach being preferable. We aimed to evaluate the predictive performance of these two methods when monitoring using troughs or peaks and troughs at varying single or mixed dosing intervals (DIs), and evaluate the significance of satisfying underlying assumptions of steady‐state and model transferability. Methods included developing a vancomycin population PK model and conducting model‐informed precision dosing clinical trial simulations. A one‐compartment PK model with linear elimination, exponential between‐subject variability, and mixed (additive and proportional) residual error model resulted in the best model fit. Conducted simulations demonstrated that Bayesian‐guided AUC can, potentially, outperform that of equation‐based AUC predictions depending on the quality of model diagnostics and met assumptions. Ideally, Bayesian‐guided AUC predictive performance using a trough from the first DI was equivalent to that of PK equations using two measurements (peak and trough) from the fifth DI. Model transferability diagnostics can guide the selection of Bayesian priors but are not strong indicators of predictive performance. Mixed versus single fourth and/or fifth DI sampling seems indifferent. This study illustrated cases associated with the most reliable AUC predictions and showed that only proper Bayesian‐guided monitoring is always faster and more reliable than equations‐guided monitoring in pre‐steady‐state DIs in the absence of a loading dose. This supports rapid Bayesian monitoring using data as sparse and early as a trough at the first DI. The recently released revised vancomycin consensus guideline endorsed area under the concentration-time curve (AUC) guided monitoring. Means to AUC-guided monitoring include pharmacokinetic (PK) equations and Bayesian software programs, with the latter approach being preferable. We aimed to evaluate the predictive performance of these two methods when monitoring using troughs or peaks and troughs at varying single or mixed dosing intervals (DIs), and evaluate the significance of satisfying underlying assumptions of steady-state and model transferability. Methods included developing a vancomycin population PK model and conducting model-informed precision dosing clinical trial simulations. A one-compartment PK model with linear elimination, exponential between-subject variability, and mixed (additive and proportional) residual error model resulted in the best model fit. Conducted simulations demonstrated that Bayesian-guided AUC can, potentially, outperform that of equation-based AUC predictions depending on the quality of model diagnostics and met assumptions. Ideally, Bayesian-guided AUC predictive performance using a trough from the first DI was equivalent to that of PK equations using two measurements (peak and trough) from the fifth DI. Model transferability diagnostics can guide the selection of Bayesian priors but are not strong indicators of predictive performance. Mixed versus single fourth and/or fifth DI sampling seems indifferent. This study illustrated cases associated with the most reliable AUC predictions and showed that only proper Bayesian-guided monitoring is always faster and more reliable than equations-guided monitoring in pre-steady-state DIs in the absence of a loading dose. This supports rapid Bayesian monitoring using data as sparse and early as a trough at the first DI.The recently released revised vancomycin consensus guideline endorsed area under the concentration-time curve (AUC) guided monitoring. Means to AUC-guided monitoring include pharmacokinetic (PK) equations and Bayesian software programs, with the latter approach being preferable. We aimed to evaluate the predictive performance of these two methods when monitoring using troughs or peaks and troughs at varying single or mixed dosing intervals (DIs), and evaluate the significance of satisfying underlying assumptions of steady-state and model transferability. Methods included developing a vancomycin population PK model and conducting model-informed precision dosing clinical trial simulations. A one-compartment PK model with linear elimination, exponential between-subject variability, and mixed (additive and proportional) residual error model resulted in the best model fit. Conducted simulations demonstrated that Bayesian-guided AUC can, potentially, outperform that of equation-based AUC predictions depending on the quality of model diagnostics and met assumptions. Ideally, Bayesian-guided AUC predictive performance using a trough from the first DI was equivalent to that of PK equations using two measurements (peak and trough) from the fifth DI. Model transferability diagnostics can guide the selection of Bayesian priors but are not strong indicators of predictive performance. Mixed versus single fourth and/or fifth DI sampling seems indifferent. This study illustrated cases associated with the most reliable AUC predictions and showed that only proper Bayesian-guided monitoring is always faster and more reliable than equations-guided monitoring in pre-steady-state DIs in the absence of a loading dose. This supports rapid Bayesian monitoring using data as sparse and early as a trough at the first DI. |
Author | Nekka, Fahima Thirion, Daniel J. G. Aljutayli, Abdullah Bonnefois, Guillaume |
AuthorAffiliation | 4 Certara Inc. Montréal Quebec Canada 2 Department of Pharmaceutics Faculty of Pharmacy Qassim University Buraydah Saudi Arabia 5 Laboratoire de Pharmacométrie Faculté de Pharmacie Université de Montréal Montréal Quebec Canada 3 Department of Pharmacy McGill University Health Center Montréal Quebec Canada 6 Centre de recherches mathématiques Université de Montréal Montréal Quebec Canada 1 Faculty of Pharmacy Université de Montréal Montréal Quebec Canada |
AuthorAffiliation_xml | – name: 6 Centre de recherches mathématiques Université de Montréal Montréal Quebec Canada – name: 2 Department of Pharmaceutics Faculty of Pharmacy Qassim University Buraydah Saudi Arabia – name: 3 Department of Pharmacy McGill University Health Center Montréal Quebec Canada – name: 5 Laboratoire de Pharmacométrie Faculté de Pharmacie Université de Montréal Montréal Quebec Canada – name: 1 Faculty of Pharmacy Université de Montréal Montréal Quebec Canada – name: 4 Certara Inc. Montréal Quebec Canada |
Author_xml | – sequence: 1 givenname: Abdullah surname: Aljutayli fullname: Aljutayli, Abdullah email: abdullah.aljutayli@umontreal.ca organization: Qassim University – sequence: 2 givenname: Daniel J. G. surname: Thirion fullname: Thirion, Daniel J. G. organization: McGill University Health Center – sequence: 3 givenname: Guillaume surname: Bonnefois fullname: Bonnefois, Guillaume organization: Certara Inc – sequence: 4 givenname: Fahima surname: Nekka fullname: Nekka, Fahima organization: Université de Montréal |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35170243$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ksuKFDEUhoOMOBdd-AIScKOLnklSlbq4GNDGy8CAguM6nKRO9aStSnqSqpbe-QhufEGfxEzX2DgNGgg5JP_5Tv7kHJMD5x0S8pSzU57GmRniKc8EZw_IES-lmFWsEAe7WOaH5DjGJWNFVlTyETnMJC-ZyLMj8vPTNYQejP9qHQ7WULwZYbDeRbrGEMdI38AGowVHF6NtsKFrcMb3G2Md7b2zgw_WLV7RfU7vG-wouGaKfn3_YV3rQ58Iq4DGxlSDNj6mZDoECx2Nth-7qfZj8rCFLuKTu_WEfHn39mr-YXb58f3F_PXlzMhSslldVg3mMhlpAXWd522lW9GKnENd56wxdVYJIQ0XyDVwCXUjqowbiXmZZpudkIuJ23hYqlWwPYSN8mDVdsOHhYKQ3HSo6lLrQleQXq7OK85AMJZi1Bqh0sIk1vnEWo06uTTohgDdPej9E2ev1cKvVc04E1IkwIs7QPA3I8ZB9TYa7Dpw6MeoRCGSn0oWt9Lne9KlH4NLT5VUkrGaF0wm1bO_b7S7yp_fT4KXk8AEH2PAdifhTN12lkqdpbadlbRne1pjh-1vJTO2-1_GN9vh5t9oNb_6PGX8Bm6R4_o |
CitedBy_id | crossref_primary_10_1111_bcp_16334 crossref_primary_10_1128_aac_00699_24 crossref_primary_10_1002_prp2_1026 crossref_primary_10_1097_FTD_0000000000001226 crossref_primary_10_3343_alm_2024_0218 crossref_primary_10_1002_phar_2722 crossref_primary_10_1016_j_biopha_2022_113777 crossref_primary_10_1002_phar_4623 crossref_primary_10_1002_psp4_13253 crossref_primary_10_1111_cts_13626 crossref_primary_10_3390_antibiotics12020301 crossref_primary_10_1007_s40262_023_01233_7 crossref_primary_10_1007_s13318_024_00897_1 crossref_primary_10_1093_jac_dkae374 crossref_primary_10_3390_antibiotics12091441 crossref_primary_10_3389_fphar_2023_1252757 |
Cites_doi | 10.5414/CP203033 10.1093/ajhp/zxaa036 10.1111/jcpt.12995 10.1002/psp4.12422 10.1007/s10928-020-09695-z 10.1016/j.cmpb.2005.04.005 10.1002/cpt.2065 10.1111/j.1365-2710.2008.01016.x 10.1007/s40262-020-00866-2 10.1093/ajhp/zxz070 10.1002/phar.1531 10.1128/AAC.02042-17 10.1016/j.cmi.2019.02.029 10.1002/9781118784860 10.1007/s13318-018-0534-2 10.1007/s40262-018-0727-5 10.1002/cpdd.638 10.1038/psp.2013.24 10.1890/03-0757 10.1002/psp4.12353 10.3389/fphar.2020.00620 10.1146/annurev-pharmtox-033020-113257 10.1111/j.1365-2125.2005.02547.x 10.1016/j.addr.2014.05.016 10.1111/bcp.14360 10.1007/978-0-387-98141-3 10.1007/978-1-4419-9485-1 10.1086/491712 10.1093/cid/ciaa1354 10.1002/phar.2191 10.2165/11596390-000000000-00000 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. 2022 The Authors. Clinical and Translational Science published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. – notice: 2022 The Authors. Clinical and Translational Science published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7T5 7TK 7TM 7U9 7X7 7XB 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M7N M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
DOI | 10.1111/cts.13210 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Immunology Abstracts Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Bayesian vs. Equation Vancomycin Monitoring |
EISSN | 1752-8062 |
EndPage | 953 |
ExternalDocumentID | oai_doaj_org_article_97bb6b8a51794810a200517ebbea8b2c PMC9010252 35170243 10_1111_cts_13210 CTS13210 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Pfizer – fundername: NSERC Industrial Research Chair in Pharmacometrics – fundername: NSERC Discovery funderid: RGPIN‐2020‐05982 – fundername: ; – fundername: NSERC Discovery grantid: RGPIN‐2020‐05982 |
GroupedDBID | --- 05W 0R~ 10A 1OC 24P 29B 31~ 4.4 52S 53G 5GY 5VS 7X7 8-1 8FE 8FH 8FI 8FJ AAHHS AANHP AAZKR ABDBF ABUWG ACBWZ ACCFJ ACCMX ACRPL ACUHS ACXQS ACYXJ ADKYN ADNMO ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AFZJQ AIWBW AJBDE ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BBNVY BDRZF BENPR BHPHI BPHCQ BRXPI BVXVI CAG CCPQU COF CS3 DIK EBD EBS EJD EMOBN ESX F5P FEDTE FYUFA G-S GODZA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ IAO IHR ITC KQ8 LH4 LK8 LW6 M7P MY~ O9- OIG OK1 P2P PIMPY PQQKQ PROAC QB0 ROL RPM SUPJJ SV3 TUS UKHRP WIN XG1 AAYXX AGQPQ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PQGLB 3V. 7QP 7T5 7TK 7TM 7U9 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5750-978de45243faeb944f8bf2f241a9940dc938225c12e1ba15a9d2831c5e475e4f3 |
IEDL.DBID | 24P |
ISSN | 1752-8054 1752-8062 |
IngestDate | Wed Aug 27 01:14:40 EDT 2025 Thu Aug 21 14:09:36 EDT 2025 Tue Aug 05 10:53:29 EDT 2025 Wed Aug 13 04:30:47 EDT 2025 Mon Jul 21 05:46:01 EDT 2025 Tue Jul 01 01:05:37 EDT 2025 Thu Apr 24 23:06:37 EDT 2025 Wed Jan 22 16:24:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution-NonCommercial 2022 The Authors. Clinical and Translational Science published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5750-978de45243faeb944f8bf2f241a9940dc938225c12e1ba15a9d2831c5e475e4f3 |
Notes | Funding information This work was supported by the NSERC Industrial Research Chair in Pharmacometrics, jointly supported by Syneos Health and Pfizer, and NSERC Discovery Grant RGPIN‐2020‐05982, held by F. Nekka. Abdullah Aljutayli is a recipient of a Qassim University scholarship. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcts.13210 |
PMID | 35170243 |
PQID | 2650091605 |
PQPubID | 2029979 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_97bb6b8a51794810a200517ebbea8b2c pubmedcentral_primary_oai_pubmedcentral_nih_gov_9010252 proquest_miscellaneous_2629388562 proquest_journals_2650091605 pubmed_primary_35170243 crossref_primary_10_1111_cts_13210 crossref_citationtrail_10_1111_cts_13210 wiley_primary_10_1111_cts_13210_CTS13210 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Clinical and translational science |
PublicationTitleAlternate | Clin Transl Sci |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2019; 8 2015; 35 2021; 109 2021; 6 2013; 2 2020; 86 2011 2020; 61 2019; 76 1997; 276 2019; 58 2009 2020; 59 2018; 62 2020; 77 2020; 11 2021; 72 2012; 51 2018; 7 2009; 34 2006; 42 2006; 61 2020; 75 2021 2019; 44 2019; 25 2018 2020; 47 2014 2018; 56 2018; 38 2014; 77 2005; 79 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 Beal S (e_1_2_8_31_1) 2018 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 Bradley N (e_1_2_8_13_1) 2021 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 Hughes DM (e_1_2_8_9_1) 2020; 75 Stewart JJ (e_1_2_8_5_1) 2021; 6 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 62 start-page: e02042‐1 issue: 2 year: 2018 end-page: 17 article-title: Prospective trial on the use of trough concentration versus area under the curve to determine therapeutic vancomycin dosing publication-title: Antimicrob Agents Chemother – year: 2011 – year: 2009 – volume: 276 start-page: 122 year: 1997 end-page: 126 article-title: A general model for the origin of allometric scaling laws in biology publication-title: Science – volume: 58 start-page: 767 year: 2019 end-page: 780 article-title: Vancomycin pharmacokinetics throughout life: results from a pooled population analysis and evaluation of current dosing recommendations publication-title: Clin Pharmacokinet – volume: 56 start-page: 56 year: 2018 article-title: Investigation of the age dependency of vancomycin clearance by population pharmacokinetic modeling publication-title: Int J Clin Pharmacol Ther – volume: 7 start-page: 785 year: 2018 end-page: 787 article-title: Model‐informed precision dosing at the bedside: scientific challenges and opportunities publication-title: CPT Pharmacomet Syst Pharmacol – volume: 47 start-page: 431 issue: 5 year: 2020 end-page: 446 article-title: Prior information for population pharmacokinetic and pharmacokinetic/pharmacodynamic analysis: overview and guidance with a focus on the NONMEM PRIOR subroutine publication-title: Journal of Pharmacokinetics and Pharmacodynamics – volume: 77 start-page: 835 year: 2020 end-page: 864 article-title: Therapeutic monitoring of vancomycin for serious methicillin‐resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health‐System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists publication-title: Am J Health Syst Pharm – volume: 44 start-page: 361 year: 2019 end-page: 370 article-title: Development of a population pharmacokinetic model of vancomycin and its application in Chinese geriatric patients with pulmonary infections publication-title: Eur J Drug Metab Pharmacokinet – volume: 11 start-page: 620 year: 2020 article-title: Software tools for model‐informed precision dosing: how well do they satisfy the needs? publication-title: Frontiers Pharmacol – volume: 59 start-page: 671 issue: 6 year: 2020 end-page: 698 article-title: An Update on Population Pharmacokinetic Analyses of Vancomycin, Part I: In Adults publication-title: Clinical Pharmacokinetics – volume: 38 start-page: 1174 year: 2018 end-page: 1183 article-title: Review and validation of Bayesian dose‐optimizing software and equations for calculation of the vancomycin area under the curve in critically ill patients publication-title: Pharmacotherapy – volume: 2 start-page: 1 issue: 6 year: 2013 end-page: 9 article-title: Modeling and Simulation Workbench for NONMEM: Tutorial on Pirana, PsN, and Xpose publication-title: CPT: Pharmacometrics & Systems Pharmacology – year: 2018 – volume: 25 start-page: 1286.e1 year: 2019 end-page: 1286.e7 article-title: Towards precision dosing of vancomycin: a systematic evaluation of pharmacometric models for Bayesian forecasting publication-title: Clin Microbiol Infect – year: 2014 – volume: 35 start-page: 127 year: 2015 end-page: 139 article-title: Pharmacokinetics of vancomycin in extremely obese patients with suspected or confirmed Staphylococcus aureus infections publication-title: Pharmacotherapy – volume: 6 start-page: 3 issue: 1 year: 2021 end-page: 9 article-title: A Canadian perspective on the revised 2020 ASHP–IDSA–PIDS–SIDP guidelines for vancomycin AUC‐based therapeutic drug monitoring for serious MRSA infections publication-title: Official J Assoc Med Microbiol Infect Dis Can – volume: 72 start-page: e675 issue: 10 year: 2021 end-page: e681 article-title: Vancomycin Advanced Therapeutic Drug Monitoring: Exercise in Futility or Virtuous Endeavor to Improve Drug Efficacy and Safety? publication-title: Clinical Infectious Diseases – volume: 75 start-page: 434 year: 2020 end-page: 437 article-title: Bayesian clinical decision support‐guided versus clinician‐guided vancomycin dosing in attainment of targeted pharmacokinetic parameters in a paediatric population publication-title: J Antimicrob Chemother – volume: 79 start-page: 241 year: 2005 end-page: 257 article-title: PsN‐Toolkit—a collection of computer intensive statistical methods for non‐linear mixed effect modeling using NONMEM publication-title: Comput Methods Programs Biomed – volume: 8 start-page: 538 year: 2019 end-page: 556 article-title: NONMEM tutorial part II: estimation methods and advanced examples publication-title: CPT Pharmacomet Syst Pharmacol – volume: 44 start-page: 750 year: 2019 end-page: 759 article-title: A new population pharmacokinetic model for vancomycin in patients with variable renal function: therapeutic drug monitoring based on extended covariate model using CKD‐EPI estimation publication-title: J Clin Pharm Ther – volume: 51 start-page: 1 year: 2012 end-page: 13 article-title: Vancomycin publication-title: Clin Pharmacokinet – volume: 61 start-page: 225 issue: 1 year: 2020 end-page: 245 article-title: Model‐informed precision dosing: background, requirements, validation, implementation, and forward trajectory of individualizing drug therapy publication-title: Annu Rev Pharmacol Toxicol – volume: 61 start-page: 164 year: 2006 end-page: 176 article-title: Population pharmacokinetic modelling of gentamicin and vancomycin in patients with unstable renal function following cardiothoracic surgery publication-title: Br J Clin Pharmacol – start-page: 1 year: 2021 end-page: 6 article-title: Assessment of the Implementation of AUC Dosing and Monitoring Practices With Vancomycin at Hospitals Across the United States publication-title: Journal of Pharmacy Practice – volume: 34 start-page: 473 year: 2009 end-page: 483 article-title: Population pharmacokinetic analysis of vancomycin in patients with gram‐positive infections and the influence of infectious disease type publication-title: J Clin Pharm Ther – volume: 42 start-page: S35 year: 2006 end-page: S39 article-title: The pharmacokinetic and pharmacodynamic properties of vancomycin publication-title: Clin Infect Dis – volume: 8 start-page: 418 year: 2019 end-page: 425 article-title: Toward dynamic prescribing information: codevelopment of companion model‐informed precision dosing tools in drug development publication-title: Clin Pharmacol Drug Dev – volume: 77 start-page: 50 year: 2014 end-page: 57 article-title: Innovative approaches to optimizing the delivery of vancomycin in individual patients publication-title: Adv Drug Deliv Rev – volume: 109 start-page: 175 issue: 1 year: 2021 end-page: 183 article-title: A Model averaging/selection approach improves the predictive performance of model‐informed precision dosing: vancomycin as a case study publication-title: Clin Pharm Ther – volume: 86 start-page: 2497 issue: 12 year: 2020 end-page: 2506 article-title: Prospective validation of a model‐informed precision dosing tool for vancomycin in intensive care patients publication-title: Br J Clin Pharmacol – volume: 76 start-page: 889 year: 2019 end-page: 894 article-title: Readiness to implement vancomycin monitoring based on area under the concentration–time curve: a cross‐sectional survey of a national health consortium publication-title: Am J Health‐System Pharm – ident: e_1_2_8_26_1 doi: 10.5414/CP203033 – ident: e_1_2_8_2_1 doi: 10.1093/ajhp/zxaa036 – ident: e_1_2_8_29_1 doi: 10.1111/jcpt.12995 – ident: e_1_2_8_20_1 doi: 10.1002/psp4.12422 – ident: e_1_2_8_21_1 doi: 10.1007/s10928-020-09695-z – ident: e_1_2_8_15_1 doi: 10.1016/j.cmpb.2005.04.005 – ident: e_1_2_8_6_1 doi: 10.1002/cpt.2065 – ident: e_1_2_8_28_1 doi: 10.1111/j.1365-2710.2008.01016.x – ident: e_1_2_8_23_1 doi: 10.1007/s40262-020-00866-2 – ident: e_1_2_8_12_1 doi: 10.1093/ajhp/zxz070 – ident: e_1_2_8_25_1 doi: 10.1002/phar.1531 – ident: e_1_2_8_4_1 doi: 10.1128/AAC.02042-17 – volume: 75 start-page: 434 year: 2020 ident: e_1_2_8_9_1 article-title: Bayesian clinical decision support‐guided versus clinician‐guided vancomycin dosing in attainment of targeted pharmacokinetic parameters in a paediatric population publication-title: J Antimicrob Chemother – ident: e_1_2_8_36_1 doi: 10.1016/j.cmi.2019.02.029 – ident: e_1_2_8_19_1 doi: 10.1002/9781118784860 – ident: e_1_2_8_27_1 doi: 10.1007/s13318-018-0534-2 – volume-title: NONMEM 7.4. 3 Users Guides (1989‐2018) year: 2018 ident: e_1_2_8_31_1 – ident: e_1_2_8_24_1 doi: 10.1007/s40262-018-0727-5 – start-page: 1 year: 2021 ident: e_1_2_8_13_1 article-title: Assessment of the Implementation of AUC Dosing and Monitoring Practices With Vancomycin at Hospitals Across the United States publication-title: Journal of Pharmacy Practice – ident: e_1_2_8_8_1 doi: 10.1002/cpdd.638 – ident: e_1_2_8_17_1 doi: 10.1038/psp.2013.24 – ident: e_1_2_8_16_1 doi: 10.1890/03-0757 – ident: e_1_2_8_22_1 doi: 10.1002/psp4.12353 – ident: e_1_2_8_35_1 doi: 10.3389/fphar.2020.00620 – ident: e_1_2_8_7_1 doi: 10.1146/annurev-pharmtox-033020-113257 – ident: e_1_2_8_30_1 doi: 10.1111/j.1365-2125.2005.02547.x – ident: e_1_2_8_32_1 doi: 10.1016/j.addr.2014.05.016 – ident: e_1_2_8_34_1 doi: 10.1111/bcp.14360 – volume: 6 start-page: 3 issue: 1 year: 2021 ident: e_1_2_8_5_1 article-title: A Canadian perspective on the revised 2020 ASHP–IDSA–PIDS–SIDP guidelines for vancomycin AUC‐based therapeutic drug monitoring for serious MRSA infections publication-title: Official J Assoc Med Microbiol Infect Dis Can – ident: e_1_2_8_18_1 doi: 10.1007/978-0-387-98141-3 – ident: e_1_2_8_10_1 doi: 10.1007/978-1-4419-9485-1 – ident: e_1_2_8_3_1 doi: 10.1086/491712 – ident: e_1_2_8_14_1 doi: 10.1093/cid/ciaa1354 – ident: e_1_2_8_11_1 doi: 10.1002/phar.2191 – ident: e_1_2_8_33_1 doi: 10.2165/11596390-000000000-00000 |
SSID | ssj0063685 |
Score | 2.356509 |
Snippet | The recently released revised vancomycin consensus guideline endorsed area under the concentration‐time curve (AUC) guided monitoring. Means to AUC‐guided... The recently released revised vancomycin consensus guideline endorsed area under the concentration-time curve (AUC) guided monitoring. Means to AUC-guided... Abstract The recently released revised vancomycin consensus guideline endorsed area under the concentration‐time curve (AUC) guided monitoring. Means to... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 942 |
SubjectTerms | Accuracy Anti-Bacterial Agents Antibiotics Area Under Curve Bayes Theorem Bayesian analysis Clinical trials Creatinine Dosage Drug Monitoring - methods Drug therapy Humans Pharmacokinetics Population Simulation Software Staphylococcus infections Vancomycin Vancomycin - pharmacokinetics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELaqHlAvCGiBQEGm4tBLYO3YScyNVq0qpFaVaKXeIv_Cqmy2NLuH3ngELrwgT8KM7V11oYgLh0j5mThOPBN_tme-IeR1oznzrnZlCHVdCq55qVtpSwT_wVVKSIkBzscn9dG5-HAhL26l-kKfsEQPnD7cW9UYU5tWI5WUaNlI80gr5Y3xujXc4t8X-rzFYCr9g2ukVY-hkBLsHVBJ5hRCHx47G94wjFxZ6YkiYf9dKPNPZ8nbIDb2QocPyP0MH-n7VO2HZM33j8i947xAvkl-nGYq6ks4BBnqvyYu74Gi_8V8oHv6xmPgJP00HzvvKLoATCc3cDudRPvGib539PdyYsYcqnuX9n5--54oV6GEq-ucp4e6Kc480JgJhA7jSU4NNmyR88ODs_2jMmdeKC3At1EJQ0vnheSiCtobJURoTeABenutlBg5qyoAFtIy7pnRTGrlAKYwK71oYAvVY7LeT3v_lFDFg2JGSleNgrCsNpW2jQi8aWVd8ZYVZHfRCp3NtOSYHeNLtxieQIN1scEKsrMUvUpcHHcJ7WFTLgWQPjueAKXqslJ1_1KqgmwvFKHLNj10HMAsaBqM_wryankZrBGXWHTvp3OUAfjUwqvxgjxJerOsSQVPQP7HgjQrGrVS1dUr_fhzZPxGHxouoczdqHt_f_tu_-xj3Hn2Pz7Dc7LBMdojOiptk_XZ9dy_AAw2My-juf0CWqoyGQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgLojxTCjKIQy-BtWPn0UtFK6oKqQiJVtpb5Ge7gk22m91Db_0JXPiD_BJmHG_KQuGwUjaZOLFmJv5sz3xDyJtCceZsblPv8zwVXPFUldKkCP69zSohJSY4H3_Kj07Fx7EcxwW3LoZVrr6J4UNtW4Nr5O84QAkY2wB9780uUqwahbursYTGbXIHqcvQqovxMOHKkVw9JERK8HrAJpFZCCN5zKJ7yzB_ZW08CrT9N2HNv0Mmf4eyYSw6fEDuRxBJ3_da3yS3XPOQ3D2O2-SPyI_PkZD6K_wFGeouekbvjmIUxrKj--rSYfokPVtOrLMUAwHa6SXcTqfBy3G5b5f-2U6om0NVY_ujn1ffe-JVaGE2j9V6qG1x_YGGeiC0m0xjgbDuMTk9_HBycJTG-gupARA3SmGCaZ2QXGReOV0J4UvtuYcxX1WVGFlTZQAvpGHcMa2YVJUFsMKMdKKAn8-ekI2mbdwzQivuK6altNnIC8NynSlTCM-LUuYZL1lCdlZaqE0kJ8caGd_q1SQFFFYHhSXk9SA66xk5bhLaR1UOAkiiHU6087M6-mRdFVrnulTIUiZKNlI8MJY5rZ0qNTcJ2V4ZQh09u6uv7TAhr4bL4JO40aIa1y5RBkBUCV3jCXna283wJhk8AVkgE1KsWdTaq65faSbngfcbI2m4hDZ3gu39u_f1wcmXcLD1_x48J_c4ZnOEQKRtsrGYL90LwFgL_TI40i8eXimN priority: 102 providerName: ProQuest |
Title | Pharmacokinetic equations versus Bayesian guided vancomycin monitoring: Pharmacokinetic model and model‐informed precision dosing trial simulations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcts.13210 https://www.ncbi.nlm.nih.gov/pubmed/35170243 https://www.proquest.com/docview/2650091605 https://www.proquest.com/docview/2629388562 https://pubmed.ncbi.nlm.nih.gov/PMC9010252 https://doaj.org/article/97bb6b8a51794810a200517ebbea8b2c |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6VVkJcKt4YSrQgDr0YxetdP-BEqlYVUqsIWik3a58lgthtnBx64ydw4Q_yS5hZr60GisQhkR2PN7ZmP--365lvCHmTS5ZYk5nYuSyLOZMsloXQMZJ_Z9KSC4EJzien2fE5_zgTsy3yvs-F6fQhhgU3RIZ_XiPApWpvgFyv2rcJZqDcITuYWovxfIxP-8dwhsrqPhtSAOSBmARZIQzjGU7dGIy8Zv9tRPPveMmbPNYPREf3yW5gkPRD5_IHZMvWD8ndk_CO_BH5OQ1q1F9hF2yoverkvFuKIRjrlk7ktcXcSXqxnhtrKEYBNItrOJ0uPMRxre8d_bMdXzSHytp0W7--_-hUV6GFy2Uo1UNNg4sP1BcDoe18EaqDtY_J-dHh2cFxHIovxBoY3DiG2aWxXDCeOmlVybkrlGMOBnxZlnxsdJkCtxA6YTZRMhGyNMBUEi0sz-Hj0idku25q-4zQkrkyUUKYdOy4TjKVSp1zx_JCZCkrkojs916odFAmxwIZ36p-hgIOq7zDIvJ6ML3s5DhuM5qgKwcDVND2PzTLiyoAsipzpTJVSJQo40UylszLlVmlrCwU0xHZ6ztCFWDdVgz4LBAsmAJG5NVwGACJb1lkbZs12gCDKuDWWESedv1muJIU_gElICOSb_SojUvdPFLPv3jRbwyjYQLa3Pd97993Xx2cffYbz__f9AW5xzCtw0ck7ZHt1XJtXwLZWqmRBxV857N8RHYmh6fTTyO_cPEbdXUtHA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgEXxBtDgQWB1IuLvd71AwkhWqhS2lRIpFJuZl8uEcRO40QoN34CF_4GP4pfwszaDgQKtx4iOfZ47dWM57E78w0hjxPJQmti4xdFHPucSebLVGgfnf_CRBkXAguc-4dx74i_GYrhGvne1cJgWmWnE52iNpXGNfKnDFwJsG3gfb-YnPjYNQp3V7sWGo1Y7NvFZwjZ6ud7r4C_TxjbfT3Y6fltVwFfg2sS-BA2GcsF41Ehrco4L1JVsAIsmcwyHhidRWA0hQ6ZDZUMhcwMmOBQC8sT-BURjHuOnAfDG2CwlwyXAV6MYO6uAFOAlgFfqEUywswhPau3QqyXWbF_rk3Aab7t3ymav7vOzvbtXiGXW6eVvmyk7CpZs-U1cqHfbstfJ9_etgDYH-Ev0FB70iCI1xSzPuY13ZYLi-Wa9Hg-MtZQTDyoxgu4nY6dVsHlxWf0z3Fcnx4qS9Mc_fjytQF6hREm07Y7EDUVrndQ13-E1qNx25CsvkGOzoQzN8l6WZX2NqEZK7JQCWGioOA6jFUkdcILlqQijlgaemSz40KuWzB07MnxKe-CImBY7hjmkUdL0kmDAHIa0TayckmAoN3uRDU9zlsdkGeJUrFKJaKi8TQMJHMIaVYpK1PFtEc2OkHIW01S57_k3iMPl5dBB-DGjixtNUcacNpSmBrzyK1GbpZvEsETEHXSI8mKRK286uqVcvTB4Yxj5g4TMOamk71_zz7fGbxzB3f-P4MH5GJv0D_ID_YO9--SSwwrSVwS1AZZn03n9h74dzN1331UlLw_66_4J_ZyZWI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJ028IP4TGGAQSHsJaxw7f5AQotuqjbFqgk3aW7Bje1TQpGtaob7xEXjhy_Bx-CTcOUmhMHjbQ6W0cZ1Yd7772b77HSFPYskCoyPtWxtFPmeS-TIRuY_g3-ow5UJggvPBINo95q9PxMkK-d7mwmBYZWsTnaHWZY575JsMoAT4NkDfm7YJizjc7r8cn_lYQQpPWttyGrWK7Jv5Z1i-VS_2tkHWTxnr7xxt7fpNhQE_B5jS9WEJpQ0XjIdWGpVybhNlmQWvJtOUd3WehuBARR4wEygZCJlqcMdBLgyP4WND6PcSWY1xVdQhq72dweHb1g9ESO3u0jEF2BxARg2vEcYR5dPqWYDZM0ve0BUNOA_p_h2w-TuQdp6wf5VcaSAsfVXr3DWyYorrZO2gOaS_Qb4dNnTYH-ErtKHmrOYTryjGgMwq2pNzg8mb9HQ21EZTDEMoR3P4Ox05G4Objc_pn_24qj1UFrq--vHla037Cj2MJ02tIKpL3P2grhoJrYajpjxZdZMcX4hsbpFOURbmDqEps2mghNBh1_I8iFQo85hbFiciClkSeGSjlUKWN9ToWKHjU9YukUBgmROYRx4vmo5rPpDzGvVQlIsGSOHtfignp1ljEbI0VipSiUSONJ4EXckcX5pRyshEsdwj660iZI1dqbJfs8Ajjxa3wSLgMY8sTDnDNgDhEhga88jtWm8WbxLCE5CD0iPxkkYtverynWL4wbGOYxwPE9DnhtO9f48-2zp65y7u_n8ED8kazODszd5g_x65zDCtxEVErZPOdDIz9wHsTdWDZlZR8v6iJ_JPj1Nq_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pharmacokinetic+equations+versus+Bayesian+guided+vancomycin+monitoring%3A+Pharmacokinetic+model+and+model%E2%80%90informed+precision+dosing+trial+simulations&rft.jtitle=Clinical+and+translational+science&rft.au=Aljutayli%2C+Abdullah&rft.au=Thirion%2C+Daniel+J.+G.&rft.au=Bonnefois%2C+Guillaume&rft.au=Nekka%2C+Fahima&rft.date=2022-04-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1752-8054&rft.eissn=1752-8062&rft.volume=15&rft.issue=4&rft.spage=942&rft.epage=953&rft_id=info:doi/10.1111%2Fcts.13210&rft_id=info%3Apmid%2F35170243&rft.externalDocID=PMC9010252 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-8054&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-8054&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-8054&client=summon |